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ABSTRACT

The tremendous advances in machine learning and optimization over the past decade have

immensely increased the opportunity to personalize and improve decisions for a plethora

of problems in healthcare. This brings forward several challenges and opportunities that

have been the primary motivation behind this dissertation and its contributions in both

practical and theoretical aspects. This dissertation is broadly about sequential decision-

making and statistical learning under limited resources. In this area, we treat sequentially

arriving individuals, each of which should be assigned to the most appropriate resource. Per

each arrival, the decision-maker receives some contextual information, chooses an action,

and gains noisy feedback corresponding to the action. The aim is to minimize the regret of

choosing sub-optimal actions over a time horizon. We provide data-driven and personalized

methodologies for this class of problems. Our data-driven methods adaptively learn from

data over time to make efficient and effective real-time decisions for each individual, when

resources are limited. With a particular focus on high-impact problems in healthcare, we

develop new online algorithms to solve healthcare operations problems. The theoretical

contributions lie in the design and analysis of a new class of online learning algorithms for

sequential decision-making and proving theoretical performance guarantees for them. The

practical contributions are to apply our methodology to solve and provide managerial and

practical insights for problems in healthcare, service operations, and operations management

in general.

In Chapter II, we study a fundamental problem inherent in many applications, called joint

online learning and resource allocation. In a general setting, heterogeneous customers arrive

sequentially, each of which can be allocated to a resource in an online fashion. Customers

stochastically request resources and the algorithm makes allocations that yield stochastic

rewards, which the system receives as feedback outcomes after an uncertain delay. We

introduce a generic framework that judiciously synergizes online learning with a broad class of

online resource allocation mechanisms. The sequence of customer contexts is adversarial and

the customer reward and the resource consumption are stochastic and unknown. First, we

propose an online algorithm for a general resource allocation problem, which strikes a three-

way balance between exploration, exploitation, and hedging against an adversarial arrival

ix



sequence. We provide a performance guarantee for this online algorithm in terms of Bayesian

regret. Next, we develop our second online algorithm for an advance scheduling problem and

evaluate its theoretical performance. Our second algorithm has a more delicate structure

and offers multi-day scheduling while accounting for the no-show behavior of customers.

We demonstrate the practicality and efficacy of our methodology using clinical data from

a partner health system. Our results show that the proposed algorithms provide promising

results compared to several benchmark policies.

In Chapter III, we focus on the choice of care unit type upon admission to the hospital,

which is a challenging task due to the wide variety of patient characteristics, uncertain needs

of patients, and the limited number of beds in intensive and intermediate care units. The

care unit placement decisions involve capturing the trade-off between the benefit of better

health outcomes versus the opportunity cost of reserving high-demand beds for potentially

more complex patients arriving in the future. By focusing on reducing the readmission risk of

patients, we develop an online algorithm under the presence of limited reusable hospital beds.

The algorithm is designed to (i) adaptively learn the readmission risk of patients through

batch learning with delayed feedback and (ii) choose the best care unit placement for a patient

based on the observed contextual information and the occupancy level of the care units. We

prove that our online algorithm admits a Bayesian regret bound. We also investigate and

assess the effectiveness of our optimization-learning methodology using hospital system data.

Our empirical results suggest that implementing our approach provides promising results

compared to different benchmark policies and improves the current policy of our partner

hospital.
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CHAPTER I

Introduction

The unprecedented access to big data coupled with advances in artificial intelligence has

immensely increased the opportunity to automate decisions for a wide range of problems.

Recently, we have seen a plethora of decision support tools that provide personalized and

data-driven decisions for a broad range of applications. In healthcare, decision support tools

can provide personalized treatment recommendation based on patients’ clinical history and

bio-makers. In marketing, such decision support tools have shown the potential to increase

revenue by recommending personalized ads tailored to users’ demographics and interests. In

many real-world problems, it is often the case that decisions should be made sequentially.

In particular, users arrive sequentially and a sequence of decisions should be made in real-

time. There are two key elements in developing online/sequential decision-making paradigms

(1) learning from data and predicting user-specific outcomes for possible decisions and (2)

harnessing the predicted outcomes and making personalized decisions in real-time.

In many applications, making good decisions partly depends on learning from good data.

A decision-making algorithm with good performance should learn from data and perform well

when predicting for cases that do not precisely match the previous observations. The online

decision-making paradigm suffers from partial feedback. That is, one can only obtain user

outcomes corresponding to the chosen decision and cannot observe the counterfactuals from

other decisions that could have been made. In this setting, there is often a lack of diverse and

rich data that is available in advance. Adaptive learning is an essential technique to ensure

effective and efficient learning. Online decision-making algorithms with adaptive learning

provide the opportunity to guide the data gathering process as their decisions affect the

future data that will be obtained. Hence, the new information is collected adaptively and

the most useful information is obtained as quickly as possible. This leads to a fundamental

exploration-exploitation trade-off, where one should exploit the current knowledge to make

decisions that increase performance (exploitation) while exploring poorly estimated decisions

to achieve better ones in subsequent rounds (exploration).
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An underlying issue that appears in many operations research/management (OR/OM)

problems is the need to sequentially optimize personalized decisions in the presence of limited

resources. Depending on the nature of the problem, the decisions are often limited to either

single-use resources or reusable resources. Single-use resources are the ones that can be used

only one time (e.g., inventory control and advance scheduling), while reusable resources can

be occupied for some time duration and then will be released and become available again

(e.g., cloud computing platforms such as Amazon Web Services, rental marketplaces such as

Airbnb, and hospital bed management). Surprisingly, most studies in the literature of online

decision-making with statistical learning do not consider such critical limitations. This brings

forward several challenges and opportunities that have motivated this dissertation and its

contributions to both practical and theoretical aspects in the relevant literature.

The unifying theme of this dissertation is designing online decision-making with adaptive

learning frameworks under limited resources. Per arrival of a user/patient, the decision-

maker receives contextual information, chooses an action that depletes some resources, and

gains noisy feedback data corresponding to the user and action. The aim is to minimize

the regret of choosing sub-optimal actions over a time horizon. Under the full information

assumption (no need for learning), this area has been well-studied in the literature. However,

in many real-world applications, it is rare for service providers or clinicians to know an

action’s reward or service time beforehand. More often, decisions must be made when either

no data is available, or a small amount of data is available beforehand. Time and again, we

have seen the importance of this need. This is evidenced by several pandemics where various

sectors have experienced drastic changes in user/patient behavior and resource consumption,

rendering past data unreliable and calling for adaptive learning. This dissertation aims to (i)

design easy-to-implement algorithms with a theoretical guarantee for practical problems in

healthcare, and (ii) provide effective solutions and insights. It provides data-driven methods

building on recent technological advances in optimization, sequential decision-making, and

statistical learning theory, as we describe in each chapter. The insights derived can empower

healthcare institutions and service industries to deliver personalized and high-quality service.

This dissertation is presented in a multiple manuscript format as independent academic

papers. The direct results in Chapters II and III have appeared as individual research

papers [111] and [110]. For those interested in methodologies similar to those presented in

the dissertation, the author has also significantly contributed to the research manuscripts of

[68] and [42].

Chapter II - Online Resource Allocation with Personalized Learning. This

chapter was motivated by the expansion of new outpatient space being built for a partner

health system and the need for a patient appointment scheduling platform. As the first

2



step, we study a general problem of joint online learning and resource allocation. This is

a fundamental problem inherent in many applications. In a general setting, heterogeneous

customers arrive sequentially, each of which can be allocated to a resource in an online

fashion. Customers stochastically consume the resources, allocation decisions yield stochastic

rewards, and the system receives feedback outcomes after an uncertain delay.

Learning under delayed feedback is one of the main complexities of this problem. A com-

mon assumption in most online learning settings is that the feedback is received immediately

once a decision is made. However, this assumption is not practical in many applications. For

example, when a patient is assigned to an appointment, the soonest possible time to receive

the feedback of the patient is after the scheduled date of appointment. To deal with having

delayed feedback, we introduce an asynchronous strategy for learning. This strategy neces-

sitates new modeling and theoretical innovations to enable designing and evaluating online

algorithms. Another major complexity stems from the need for allocating limited resources

when there is no information on future arrivals (adversarial arrivals). In particular, we need

a robust policy that can be implemented without any information about the evolution of

future demands. In this setting, heterogenous users with stochastic resource consumption

arrive sequentially over time and the limited resources should be assigned to them to hedge

against the future arrival sequence. Inspired by the primal-dual paradigm, we incorporate

an online resource allocation mechanism into our algorithms that judiciously allocate the

limited resources and hedges against the future arrivals.

In this chapter, we introduce a generic framework that judiciously synergizes online

learning with a broad class of online resource allocation mechanisms, where the sequence

of customer contexts is adversarial and the customer reward and the resource consumption

are stochastic and unknown. We first propose an online algorithm for a general resource

allocation problem, which strikes a three-way balance between exploration, exploitation,

and hedging against adversarial arrival sequence. We provide a performance guarantee for

this online algorithm in terms of regret. Next, we develop our second online algorithm for an

advance scheduling problem and evaluate its theoretical performance. Our second algorithm

has a more delicate structure and offers multi-day scheduling while accounting for the no-

show behavior of customers. The no-show behavior of customers adds a tangled structure

to the problem and complicates the learning process. In particular, when a customer is

assigned to a server-date pair, the no-show feedback cannot be observed immediately, and

customer feedback outcomes cannot be observed at all if the customer does not show up

on the service date. To the best of our knowledge, this is the first learning-based advance

scheduling algorithm which captures the no-show behavior and has a performance guarantee.

We demonstrate the practicality and efficacy of our methodology using clinical data from

3



a partner health system. Our results show that our algorithms provide promising results

compared to several benchmark policies.

Chapter III - Personalized Hospital Admission Control: A Contextual Learn-

ing Approach. This chapter was motivated by the recent admission control issues at a

partner hospital. There are three main categories/types of care units in hospitals, including

the intensive care unit (ICU), step down/intermediate care unit (SDU) and general bed unit

(GB). The choice of type of care unit for a patient upon admission to the hospital matters

and is complicated by the limited unit capacity, high variability in patients’ health status,

and the high utilization of intensive and intermediate care units. Currently, hospitals rely

on available clinical expertise to make care unit placement decisions. However, it is difficult

for clinicians to recognize the most appropriate care for a patient with uncertain needs. In

hospitals, it might seem good to more generously allocate the higher level of care units to

patients. The ICU is the most expensive unit type, followed by the SDU. These high-level

care units are scarce relative to the GB. Thus, giving a high-level bed to one patient will

often mean that another patient gets denied, because of the limited number of beds offering

critical care services. This resource limitation adds the complexity of the need for capturing

the trade-off between the (i) benefit of better health outcomes when assigning a patient to

a high-level bed and (ii) opportunity cost of reserving high-level beds for potentially more

complex patients arriving in the future. In addition, we must estimate the benefit a patient

will receive if offered a higher level of care unit.

We modeled this problem as a multi-period admission control with online learning. Dur-

ing each interval, patients arrive sequentially and they must be assigned to the care unit

that provides the right type of care. Patient arrivals and lengths of stay are stochastic, and

resources (care unit beds) are limited and reusable. By focusing on reducing the readmission

risk of patients, we design an online algorithm for care unit placement that aims to mini-

mize the total expected readmission risk over a time horizon. The design of this algorithm

necessitates several new contributions to the relevant literature because it lacks online learn-

ing algorithms that make sequential decisions under limited reusable resources. On a high

level, our algorithm includes two interacting layers: contextual batch learning under delayed

feedback and online allocation of reusable resources. Having an accurate belief on the pa-

tient outcome (risk of readmission) corresponding to different possible alternatives (care unit

placements) is a key ingredient that should be taken into account. Our algorithm adaptively

learns the expected risk of readmission using the feedback outcomes observed (whether the

patient is readmitted or not). To capture the effect of care unit placement decisions on ca-

pacity, we incorporated a policy guide model into our algorithm to approximate the effect of

lengths of stay on capacity. Our algorithm judiciously makes care unit placement decisions

4



by leveraging our policy guide model, and the algorithm continuously updates itself using

the feedback outcomes.

On the theoretical side, we prove a performance guarantee using the notion of regret.

Deriving this regret involves bounding two types of loss: (i) the loss associated with contex-

tual batch learning with delay, and (ii) the loss associated with the allocation of reusable

resources. We proposed a new bridging technique to add these losses and derive a bound

on the regret. On the practical side, we evaluate the performance of our algorithm using

real hospital system data. Our work provides a proof of concept for using our methodology

for care unit placements in hospitals. This work provides insights into the potential abil-

ity of learning algorithms to reduce readmission rates and possibly other patient outcomes

such as mortality risk. Furthermore, our general method can also deliver a cutting-edge

methodology to several other applications, including but not limited to computing platforms

such as Amazon Web Services (AWS), hospitality services such as Airbnb, and hotel-booking

platforms.

Chapter IV - Conclusions and Future Research. This dissertation investigates the

long-lasting gap in the area of joint learning and optimization. In Chapter IV, we summarize

some of our most important contributions to the healthcare problems of advance scheduling

and care unit placements. We also discuss some promising future research avenues that could

expand on this dissertation.
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CHAPTER II

Online Resource Allocation with Personalized

Learning1

2.1 Introduction

The rapid growth of information and accessibility to big data provide a unique opportu-

nity to shift toward personalized decision-making. Typically, personalization can be achieved

by learning from the past data and decision outcomes and making personalized decisions

for new users based on their contextual information such as demographic and clinical/web

history (see, e.g., [18], [20], and [33]). The growth of accessibility to personalized health

information can revolutionize personalization in the healthcare industry. For instance, on-

line appointment platforms have the potential to increase access to high-quality care for

all patients by pairing patients with the best available doctors in their area and providing

appointments based on patients’ conditions and preferences. This generalizes to other areas

such as marketing, where personalization can help companies achieve greater click-through

rates by offering personalized ads and promotions based on user demographics and interests.

There are two core elements in developing a real-time system for personalized resource

allocation, including (i) learning a model that predicts user-specific outcomes for the possible

decisions/actions, and (ii) harnessing such a predictive model to make personalized resource

allocation decisions for subsequent users. This sequential decision-making with learning

process suffers from bandit feedback, where one can only obtain user reactions/outcomes

(often called feedback) for the chosen decision and cannot observe counterfactuals from

other decisions that could have been made. This hurdle spurs a more data-efficient method

for learning a model rather than offline statistical models. Both offline and online statistical

methods rely on historical data to provide estimates; however, online methods offer the

1Mohammad Zhalechian, Esmaeil Keyvanshokooh, Cong Shi, and Mark P Van Oyen. Online resource
allocation with personalized learning. Operations Research, 2022.
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advantage of adaptive learning. In adaptive learning, new information is collected adaptively

such that the most useful information is collected as quickly as possible rather than simply

using potentially large historical data. The key to adaptive learning is the exploration-

exploitation trade-off ([8]). The decision-maker often wishes to exploit the current estimate

to make decisions that maximize the reward (exploitation) while exploring more about poorly

estimated decisions to achieve higher rewards in subsequent decisions (exploration). The

challenge here is to carefully balance this exploration-exploitation trade-off.

In addition to learning, we often must optimize personalized decisions in the presence of

limited resources and unknown future arrivals. In this setting, heterogeneous users with

stochastic resource consumption arrive sequentially over time and the limited resources

should be assigned to them to hedge against the future arrival sequence. For instance, an

appointment scheduling platform needs to schedule upfront appointments (provider-date) to

arriving patients in an online fashion under limited availability of providers. Here, not only

is the decision-maker often uncertain about the patient rewards and service times, but there

is also a lack of information about future sequence of patient types. Thus, patients should

be scheduled such that there will be available capacity for high-reward/urgent patients that

might show up in the future ([103]).

We consider the problem of online resource allocation with personalized learning and

design a real-time system for personalized resource allocation. Customers are often char-

acterized by context vectors that contain their contextual information. In many real-world

problems of this type, two important features should be taken into account: (i) the number

of future customer arrivals and their context vectors are unknown, and (ii) there are often

unknown model parameters vital for making decisions for each arriving customer. Various

versions of this problem have been studied extensively in the literature, but mostly sepa-

rately (i.e., either online resource allocation or online learning with limited resources). In

the typical online resource allocation problem (adversarial or stochastic), the reward and the

resource consumption of each arriving customer are known and the difficulty is in conducting

resource allocation to hedge against the uncertainty of the future arrival sequence. In the

online learning problem with limited resources, the typical assumption is that the customer

contexts are independently and identically distributed (IID), which results in the existence

of an underlying (fixed) optimal randomized allocation strategy. Thus, the difficulty is to

balance the exploration and exploitation trade-off to converge to the optimal allocation strat-

egy. However, neither of the models developed for the above-mentioned problems addresses

a resource allocation problem with both features (i) and (ii).

Another important but often neglected issue in online learning problems is delayed feed-

back, which is a key ingredient in the learning process. A common assumption in most
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online learning settings is that the feedback is received immediately once a decision is made;

however, it is often realized with delay in many applications. For example, an appointment

scheduling platform may schedule hundreds of patients per day while the soonest possible

time to receive the feedback of a patient is after the scheduled date of appointment. Fur-

thermore, a realized feedback may not be processed immediately after it is received in some

cases ([29]), which can be another reason for having delayed feedback.

The above discussions and challenges raise the following two important research questions

that we answer in this chapter: (i) how one can provide a generic personalized resource

allocation framework that strikes a three-way balance between exploration, exploitation,

and hedging against the adversarial arrival sequence under delayed feedback, and (ii) how

this framework can be tailored to the advance scheduling problem with multi-day scheduling

and no-show behavior.

2.1.1 Contributions and Main Results

We introduce a generic framework that synergizes online contextual learning with a broad

class of online resource allocation mechanisms. First, we consider a general resource alloca-

tion problem. Next, we consider an advance scheduling problem, which is an application of

our generic framework but with a more delicate structure. For each problem, we develop an

online algorithm with a theoretical performance guarantee. Below, we shall summarize our

main results and contributions.

(a) We develop a new general Bayesian regret analysis for online resource allocation al-

gorithms with personalized learning in a setting where the (i) sequence of customer

contexts is adversarial (no need for IID assumption), (ii) customer reward is stochastic,

and (iii) resource consumption is stochastic. Our analysis allows for seamless integra-

tion of competitive ratio bounds for online resource allocation algorithms and Bayesian

regret bounds for contextual learning algorithms. In particular, bounding the Bayesian

regret of our algorithms necessitates defining an auxiliary problem and proposing a set

of bridging techniques (see proof of Theorem II.1). Note that an auxiliary problem

is also defined by [35] to derive a lower bound for resource allocation with learning.

However, their auxiliary problem is different from the one required for our analysis (see

§2.4.1 for details). By introducing an auxiliary problem in which the unknown model

parameters are known but not the sequence of customer contexts, we can decompose

the main regret term into two parts: (i) the loss corresponding to uncertainty in re-

wards and resource consumption values, and (ii) the loss related to the optimality gap

of an online resource allocation mechanism for solving the auxiliary problem. Then,
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we derive the following general performance guarantee:

BayesReg(L) ≤ CLS-Loss + (1− α) E[V BM ],

where BayesReg(L) is the Bayesian regret of the algorithm over the planning hori-

zon of length L (see Definition II.2). The CLS-Loss term comprises the contextual

learning loss and the loss associated with the stochastic nature of resource consump-

tion; it is sub-linear in the number of arrivals over the planning horizon. Also, α is

the competitive ratio of any possible resource allocation mechanism included in the

algorithm, V BM is the total expected reward obtained by the benchmark given the

model parameters and the sequence of customer contexts, and E[V BM ] is the expected

value of V BM over the prior distributions of the model parameters.

(b) Our framework can handle delayed bandit feedback. When there is no delay, the updat-

ing process for an estimator can be done using a synchronous strategy in which both

the context vector and the realized feedback are needed to update the estimator. This

strategy does not work without having immediate feedback. Thus, we introduce an

asynchronous strategy under delayed feedback, which necessitates the development of

a new confidence bound. As a by-product of our regret analysis, we develop a con-

fidence bound under delayed feedback for the unknown parameter in a linear model

using the ordinary least squares (OLS) method. Assuming Dmax as an upper bound on

delays, our confidence bound yields a regret bound of Õ
(
d
√
T +dDmax

)
for a standard

contextual bandit problem studied by [112] when the reward model is linear. This is

a strictly tighter bound than the one provided in that study (see §2.4.3 for a detailed

comparison), and it is of independent interest beyond this chapter.

(c) In addition to uncertain rewards, there is also uncertainty in resource consumption by

the heterogeneous customers. Our online algorithms enforce the capacity constraints

only in expectation. Accordingly, there is a possibility of exceeding the resource ca-

pacity in some cases. We impose a penalty on the amount of capacity allocated in

excess of the resource capacity and subtract it from the total expected reward of the

algorithm obtained by ignoring the possibility of exceeding the resource capacity. We

derive a high-probability bound for the penalty term, which is sub-linear in the num-

ber of arrivals over the planning horizon (Propositions II.3 and II.4). In the study

of [49], an online algorithm is proposed to adaptively learn an unknown parameter

in the capacity constraints. For a setting with finite contextual information sampled

IID from a known distribution, they imposed a penalty term to bound the amount of
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capacity allocated in excess of the resource capacity and derived an upper bound of

Õ
(√
|X |KT

)
, where K is the number of actions and |X | is the number of possible

contexts. This bound explodes when the number of possible contexts increases. As a

by-product of our algorithm’s design and regret analysis techniques, we derive an upper

bound of Õ
(
(d + K)

√
T
)

for the penalty term in the instantaneous feedback setting,

which depends on the dimension of the feature space d+K rather than
√
|X |K.

(d) Our algorithm for advance scheduling not only provides multi-day scheduling, but also

captures the no-show behavior. The bulk of our additional analyses for this setting

is related to deriving a confidence bound on the expected reward when there is an

unknown probability of no-show. The main source of complexity comes from the

fact that when a customer is assigned to a server-date, the no-show feedback cannot

be observed immediately, and customer feedback outcomes cannot be observed at all

if the customer does not show up on the service date. This tangled structure for

observing feedback outcomes requires deriving a new confidence bound that can be of

independent interest in other applications as well (Proposition II.5). To the best of

our knowledge, our algorithm is the first learning-based advance scheduling algorithm

with a performance guarantee that captures the no-show behavior.

2.1.2 Literature Review

We discuss two major research domains and streams of literature relevant to our work:

(i) multi-armed bandits and (ii) online resource allocation.

Multi-armed bandits. Multi-armed bandit (MAB) is an online framework for making

sequential decisions over time when there is uncertainty about the effect of each action (arm)

on the outcome. In this framework, the agent selects an action from a set of possible actions,

then a bandit feedback is revealed that helps the agent make better decisions over time.

Contextual MAB is a generalization of MAB in which the reward of each action depends

on the observed contextual information at each round. The contextual setting addresses

many real-world applications such as online recommendation systems, online advertising,

and personalized healthcare. For a comprehensive review of recent MAB studies, we refer to

[99].

MAB with Resource Constraints. MAB with resource constraints is a recent class of MAB,

where each action consumes a certain amount of the resources. [10] and [4] studied standard

MAB with resource constraints and proposed online algorithms with a performance guaran-

tee. In the revenue management area, [49] studied a pricing problem that can be viewed as

MAB with resource constraints; they proposed an algorithm to maximize the total revenue
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with limited inventory. [12], [5], and [3] studied MAB with resource constraints and IID con-

text vectors. [12] extended the general contextual MAB to a resourceful contextual bandit

which allows a budget constraint. [5] proposed an efficient algorithm for the contextual ban-

dit with knapsack by generalizing the approach of [2] designed for the non-constraint version

of this problem. [3] developed a linear contextual bandit with knapsack and constructed

confidence ellipsoids to estimate the unknown parameters. In the above-mentioned studies,

the IID assumption for context vectors results in the existence of an underlying optimal

randomized allocation strategy. However, there is no (fixed) optimal randomized allocation

strategy in our problem setting in which context vectors are picked by an adversary (no IID

assumption).

MAB with Delayed Feedback. The issue of delayed feedback has been identified and

discussed by the salient empirical study of [29]. [64] studied a stochastic MAB with no

side (contextual) information and an adversarial MAB with side information. They showed

that the delayed feedback setting causes an additive penalty in the stochastic model and a

multiplicative penalty in the adversarial model. [91] studied another MAB with aggregated

and anonymous feedback in which only the sum of the previously generated rewards can

be observed at the end of each round; they matched the same regret bound as in [64].

[105] analyzed MAB in a setting that user feedback is censored if the delay time exceeds a

threshold. [22] studied an adversarial bandit under adversarial delay (arbitrary sequence of

delays). They provided a finite-sample delay-adaptive regret bound for the Exp3 algorithm

with delay. Contextual bandits with delay are much less explored in the literature. [45]

studied a stochastic contextual bandit with fixed delay. For a finite class of policies, they

provided a regret bound of O(
√
K log(N)(τc +

√
T )), where N is the number of policies and

τc is the fixed delay. Recently, [112] studied a contextual generalized linear model (GLM)

bandit with delay and proposed an upper confidence bound (UCB) algorithm. When delay

is bounded, they established a regret bound of Õ
(
(d +

√
dDmax)

√
T
)
, where Dmax is an

upper bound on delays and d is the feature dimension. For the IID setting, they established

a regret bound of Õ
(
(
√
µd +

√
σd + d)

√
T
)
, where µ and σ are the mean of delay and

a parameter to characterize the tail of delay, respectively. Their proof is built upon the

analysis provided by [77] for a GLM-UCB algorithm with a warm-up period using a maximum

likelihood estimator without regularization. The design of their algorithm and proof ideas

are significantly different from those in this chapter, in which we have a linear model and

use an OLS estimator with regularization under bounded delayed feedback.

Online Resource Allocation. Competitive ratio is the most widely used method for

evaluating the performance of online resource allocation algorithms. In particular, it is

often defined as the relative performance between an online algorithm and a benchmark

11



(clairvoyant policy) under the worst-case input instance. Since our framework incorporates

an online resource allocation mechanism, we also briefly review two relevant streams of

literature, including online matching and online advance scheduling.

Online Matching. Studies in this area usually fall into two main settings, including

stochastic and adversarial. In the stochastic setting, algorithms either depend heavily on

forecasting the arrival pattern using historical data or consider an assumption on the arrival

pattern. In the adversarial setting, algorithms do not need an assumption on the arrival

pattern and have the key advantage of being robust to possible changes in the arrival pattern.

[81] studied the Adwords problem and developed an online algorithm achieving a competitive

ratio of 1−1/e based on a trade-off revealing linear program (LP) technique. [25] developed

an elegant primal-dual paradigm for the same problem with the same competitive ratio.

Several variants of this problem have been studied in the literature. We refer to [43] and

[66] for recent generalizations of this problem. The Bayesian regret of our online algorithms

partly depends on the competitive ratio of a resource allocation mechanism used in our

algorithms. We introduce two variants of the primal-dual paradigm proposed by [25] and

use them as resource allocation mechanisms in our online algorithms. The first one allows

customers to have different heterogeneous rewards and resource consumption values. The

second version extends the first one to cope with scheduling customers over multiple days.

Online Advance Scheduling. The literature of advance scheduling has focused on two

types of waiting, including direct and indirect. As indicated by [55], direct waiting refers to

the time that a customer/patient arrives at the system/clinic on the day of the appointment

until the service time; while indirect waiting refers to the time between receiving a request

and the actual appointment date. Most of the literature on advance scheduling focuses on

intra-day scheduling to reduce direct waiting. Our work focuses on multi-day scheduling

to reduce indirect waiting. [90], [56], and [47] proposed several heuristics for this problem

and investigated the structural properties of the optimal policies. [103] studied a two-class

advance scheduling model and proposed analytical results for this problem. In a stochastic

setting with heterogeneous patients, [107] and [101] proposed online algorithms with bounded

competitive ratios. For the adversarial setting with heterogeneous patients, [67] developed

an online advance scheduling algorithm in which the capacity of providers could be extended

at the expense of overtime cost. They provided a competitive ratio using the primal-dual

analysis developed by [25]. No-show behavior is another feature of advance scheduling that

can be captured in modeling this problem. [78] was the first study that explicitly modeled

patient no-shows in an appointment scheduling problem. [47] also studied an appointment

scheduling problem with patient no-shows. They characterized the structure of the static

optimal policy and provided a bound on the optimality gap in a stochastic setting. To the
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best of our knowledge, there is no prior research work on advance scheduling with learning

and no-show behavior; however, we explicitly model the no-shows in our second model (ad-

vance scheduling). It is worth noting that past studies are split on the dependence of the

no-show probability on the service/appointment delay (see, e.g., [106] and [78]). Our theo-

retical performance guarantee for the PAS-LD algorithm holds when the no-show probability

is independent of the service delay.

Lastly, the closest works to ours include [89] and [35]. [89] studied an online matching

problem with learning, in which several types of patients must be matched to perishable re-

sources, the reward distribution is unknown, and each patient assignment consumes one unit

of the capacity. With non-stationary Poisson processes for patient arrivals, they proposed a

two-phase algorithm that has distinct phases for exploration and exploitation. They proved

that the algorithm achieves a regret bound that increases sub-linearly with the number of

planning cycles. [35] studied the problem of allocating limited resources to heterogeneous

customers over time, where the rewards are known and the resource consumption distribution

associated with each customer type and action should be learned over time. They provided

an information-theoretic lower bound without the IID assumption. We provide a Bayesian

regret for our framework in which (i) we do not have the IID assumption on contexts, so there

is no optimal allocation strategy fixed over time, (ii) both reward and resource consumption

are stochastic, (iii) the no-show behavior should be taken into account in our second model

(advance scheduling), and (iv) the learning process is done under bounded delayed feedback.

2.1.3 Organization and General Notation

The remainder of this chapter is organized as follows. We formulate our problem in §2.2

and propose two online algorithms in §2.3. We carry out a non-asymptotic performance

analysis in §2.4. In §3.5, we provide a case study using clinical data from a partner health

system. Finally, we conclude our chapter in §2.6.

All vectors are column vectors. For any column vector x ∈ Rn, x′ denotes its trans-

pose. The determinant and trace of a square matrix M is denoted by det(M) and tr(M),

respectively. The Euclidean norm and weighted norm of x are denoted by ‖x‖ =
√
x′x and

‖x‖M =
√
x′Mx, respectively. Also, I denotes the identity matrix. For a symmetric posi-

tive definite matrix V , we define λmin as the smallest eigenvalue of V . We use 1(·) as the

indicator function.
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2.2 Personalized Resource Allocation with Learning System Mod-

els

In this section, we start by formally defining our framework for a general online resource

allocation problem. Then, we tailor our framework to an online advance scheduling problem,

which is an application of our generic framework for multi-day scheduling and has a more

delicate structure.

We make three assumptions in our models: (i) the sequence of customer contexts is

unknown (context vectors do not necessarily come from a fixed distribution) and picked by

an oblivious adversary, which is a non-adaptive adversary that picks the sequence of customer

contexts upfront, (ii) the customer-resource (customer-server) match quality with a linear

model is stochastic and stationary over time, and it has an unknown model parameter that

should be learned adaptively, and (iii) the resource consumption (service time) is stochastic

and follows an unknown distribution and its mean value may depend on the customer’s

context. To simplify the presentation and reduce cumbersome notation, we assume that the

mean resource consumption by a customer is known upon arrival. Note that this assumption

is not necessary and can be dropped via Corollary II.2.

2.2.1 General Online Resource Allocation

Consider a finite planning horizon of length L. We define L = {1, . . . , L} as the set of

days and K = {1, . . . , K} as the set of resources. For each resource k, there are Ck available

units of capacity that are not replenishable during the considered planning horizon. Let

M` = {1, . . . ,M`} be the set of customers who arrive sequentially on day ` ∈ L. Each

customer is associated with a context vector which carries the customer’s information. Let

ϕXi (`) ∈ Rd be the context vector of the ith customer on day `, and ϕAk (`) be a K-dimensional

action vector corresponding to the choice of resource k, i.e., ϕAk (`) = (1k=1, . . . ,1k=K)
′
. We

define φik(`) =
(
ϕ
′X
i (`), ϕ

′A
k (`)

)′
as the feature vector, which concatenates the context vector

ϕXi (`) and the action vector ϕAk (`). Note that our model can be easily extended to a setting

in which any action-context pair can be mapped to a d-dimensional feature vector using a

known feature map.

Dynamics. Allocation decisions are made in an online fashion such that customers are

handled as they arrive without knowing the future sequence of customer contexts. Upon

arrival of the ith customer on day `, a context ϕXi (`) is revealed to the system. Then,

the customer must be either assigned to an available resource k ∈ K or rejected based on

the revealed context ϕXi (`) and the available observations up to the current time. If this

customer is assigned to resource k, it will consume Sik(`) units of capacity in Ck. The
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dependence on ` is only used to pair the customer i to the arrival day ` and the amount of

resource consumption does not depend on the day of arrival (similarly for the match quality,

below). Finally, the system observes the reward which depends on the customer-resource

match quality Qik(`) and the resource consumption Sik(`). The match quality feedback is

received with delay, which can be an arbitrary amount of time. Our performance analysis

only requires the existence of an upper bound on the feedback delay. We assume that if

there is not enough capacity when a customer is assigned to a resource, the customer still

gets fully served but the system only receives a fraction of the reward proportional to the

resource consumption not exceeding the available resource capacity.

Modeling reward and resource consumption. Given that a customer is assigned to a

resource, the reward depends on two components: (i) customer-resource match quality (per

unit of resource consumption) and (ii) resource consumption. The two main components are

modeled below.

Customer-resource match quality: The choice of resource k ∈ K for the ith customer on day

` yields the following stochastic match quality:

Qik(`) = 〈φik(`), w〉+ ξik(`),

where w ∈ Rd+K is the unknown model parameter and Qik(`) ∈ [0, cQ]. The noise values,

ξik(`), are independent σξ-sub-Gaussian random variables with zero mean (see Definition

II.1).

Definition II.1. A real-valued random variable ξ is σξ-sub-Gaussian if E[etξ] ≤ eσ
2
ξ t

2/2, ∀ t ∈
R.

This definition implies that E[ξ] = 0 and Var[ξ] ≤ σ2
ξ . Many distributions are sub-

Gaussian, including any bounded and centered distribution, and the Gaussian distribution.

Resource consumption: Our system model also accounts for stochastic resource consump-

tion values. If resource k ∈ K is chosen for the ith customer on day `, the customer uses

Sik(`) units of this resource, regardless of `. We assume that Sik(`) is a stochastic re-

source consumption with known expected value of sik(`) = E[Sik(`)] ≤ cs. The noise values,

ηik(`) = Sik(`)− sik(`), are independent ση-sub-Gaussian random variables with zero mean.

Note that we assume known expected resource consumption (upon arrival), for the sake of

reducing cumbersome notation. This assumption is not necessary and can be dropped via

Corollary II.2.

Hence, the expected reward of the ith customer on day ` assigned to resource k is obtained
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by:

E[Qik(`) Sik(`)] = 〈φik(`), w〉sik(`),

where we assume that the customer-resource match quality is independent of the resource

consumption. Although one can argue that the match quality may affect the service time,

this independence assumption can be reasonable in many applications. For example, often

in practice, hospitals and clinics set the appointment length for a procedure in a manner

that does not depend on the provider, which can be captured by our reward model.

The goal in our general online resource allocation problem is to maximize the total

expected reward over L days. This can be viewed as maximizing the expected match quality

(see, e.g., [85] and [104]) which is weighted by the expected resource consumption (see, e.g.,

[100] and [81]). For technical reasons, let Hi` denote the history available upon the arrival of

the ith customer on day `, including context vectors, actions, and realized feedback outcomes.

Let M̄ be an upper bound on the maximum number of arrivals on each day, and ∆ be the

maximum number of days required for match quality feedback to be realized. To simplify

the notation, we let qik(`) and rik(`) denote 〈φik(`), w〉 and 〈φik(`), w〉sik(`), respectively.

Let k(i, `) be the selected resource for the ith customer on day `, which we will often write

it as k∗ when indices (i, `) are obvious. Without loss of generality, we assume ‖w‖ ≤ 1 and

‖φik(`)‖ ≤ cφ.

2.2.2 Online Advance Scheduling: A More Delicate Model

Online advance scheduling can be viewed as an application of our generic framework. A

main difference between our general resource allocation and advance scheduling problems

is that the latter provides multi-day scheduling and captures the no-show behavior of cus-

tomers. There is also an additional layer of complexity in the advance scheduling problem

with multi-day scheduling regarding the perishable nature of resources. In particular, the

remaining capacity can be stored and used later in the general resource allocation problem;

however, the capacity (i.e., availability of servers) is perishable in the advance scheduling

problem and the remaining availability of servers on a day cannot be transferred to the next

day.

Consider a scheduling horizon of length L. We define L = {1, . . . , L} as the set of days,

and K = {1, . . . , K} as the set of servers. Let M` = {1, . . . ,M`} be the set of customers

who arrive sequentially on day ` ∈ L. Each customer is associated with a context vector

(e.g., urgency, request type, and demographics) revealed to the system upon arrival. Let

ϕXi (`) ∈ Rd be the context vector of the ith customer on day `. If a customer is accepted, the
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customer must be assigned to (i) a server k ∈ K and (ii) a future service date t ∈ L\{1}. We

use both indices ` ∈ L and t ∈ L\{1} to refer to a day in the scheduling horizon, but index

` refers to the arrival day of customers and index t refers to the scheduled date. We define

a server-date pair (k, t) to refer to the server k and the service date t chosen for a customer.

For each day t ∈ L\{1}, each server k ∈ K has a limited capacity Ckt which explicitly allows

for capacity to vary by day. Let ϕAkt(`) be an A-dimensional action vector corresponding to

the choice of server k and service delay t− `, which may also include contextual information

about the selected server. We define φikt(`) =
(
ϕ
′X
i (`), ϕ

′A
kt (`)

)′
as the feature vector, which

concatenates the context vector ϕXi (`) and the action vector ϕAkt(`).

Dynamics. Upon arrival of the ith customer on day `, a context ϕXi (`) is revealed to the

system. Then, the customer must be either assigned to an available server-date (k, t) such

that t ≥ ` + 1 or rejected based on the revealed context vector ϕXi (`) and the observations

up to the current time. We assume that customers do not cancel the scheduled service, but

they may not show up on the service date. If the customer shows up, Sikt(`) units of the

server’s availability in Ckt is occupied and the system observes two feedback outcomes (i.e.,

no-show outcome and match quality) with delay. If the customer does not show up, the

system cannot observe the match quality feedback. The feedback delay can be equal to the

service delay, but our method allows for additional feedback processing time. To keep the

modeling general, we assume that the delay for feedback outcomes can be greater than the

service delay but there is an upper bound on it. We assume that if there is not enough

capacity when a customer shows up for the scheduled service, the customer still gets fully

served but the system only receives a fraction of the reward proportional to the service time

not exceeding the server’s availability.

Modeling reward and service time. Given that a customer is assigned to a server-date

(k, t), the reward depends on three components: (i) no-show outcome, (ii) customer-server

match quality (per unit of service time), and (iii) service time. The three main components

are modeled below.

No-show: We consider no-show using the binary variable SU i(`), where SU i(`) = 1 indicates

that the ith customer on day ` shows up on the service date. We assume that E[SU i(`)] = p is

unknown, where p indicates the probability that the customer shows up on the service date.

The noise values, εi(`) = SU i(`)− p, are independent 1-sub-Gaussian random variables with

zero mean.

Note that our model and algorithm are suitable for systems with no cancellation or low

cancellation rates. However, they can be easily extended to capture the cancellation behavior

when cancellation probabilities are known.

Customer-server match quality: If the system assigns the ith customer on day ` to server
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k ∈ K and the customer shows up, it yields a stochastic match qualityQikt(`) = 〈φikt(`), w〉+
ξikt(`), where w ∈ Rd+A is the unknown model parameter and Qikt(`) ∈ [0, cQ]. The noise

values, ξikt(`), are independent σξ-sub-Gaussian random variables with zero mean.

Service time: Our framework also accounts for stochastic service times. If server k ∈ K
is chosen for the ith customer on day ` and the customer shows up, it yields a stochastic

service time Sikt(`) with the expected value of sikt(`) = E
[
Sikt(`)

]
≤ cs. The noise values,

ηikt(`) = Sikt(`)−sikt(`), are independent ση-sub-Gaussian random variables with zero mean.

Clearly, the system observes the reward if the patient shows up on the service date.

Hence, the expected reward of the ith customer on day ` assigned to server-date (k, t) can

be calculated as:

E
[
SU i(`) Qikt(`) Sikt(`)

]
= p 〈φikt(`), w〉sikt(`).

The goal in our personalized advance scheduling problem is to maximize the total expected

reward over a finite scheduling horizon of length L. For technical reasons, let H̄i` denote the

history available upon the arrival of the ith customer on day `, including context vectors,

actions, and realized feedback outcomes. Let M̄ be an upper bound on the maximum number

of arrivals on each day, and ∆ be the maximum number of days required for a feedback to

be realized. Note that we consider the same upper bound ∆ for two feedback outcomes only

for ease of notation. To simplify the notation, we let qikt(`) and rikt(`) denote p 〈φikt(`), w〉
and p 〈φikt(`), w〉sikt(`), receptively. Let k(i, `) and t(i, `) be the selected server and service

date for the ith customer on day `, respectively. For notational convenience, we will often

write them as k∗ and t∗ when indices (i, `) is obvious. Without loss of generality, we assume

‖w‖ ≤ 1 and ‖φikt(`)‖ ≤ cφ.

2.3 Online Algorithms for Resource Allocation and Advance Schedul-

ing

First, we present our online algorithm for a general resource allocation problem, called

Personalized Resource Allocation while Learning with Delay (PRA-LD). Next, we present

our second online algorithm tailored to the advance scheduling problem, called Personalized

Advance Scheduling while Learning with Delay (PAS-LD). In §2.3.1 and §2.3.3, we describe

the high-level intuition of our algorithms. We provide the detailed steps of our algorithms

in §2.3.2 and §2.3.4.
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2.3.1 Main Idea of Personalized Resource Allocation while Learning with Delay

In our general resource allocation problem, customers arrive sequentially over each day,

each characterized by a unique set of characteristics (contextual information). Then, each

customer must be either assigned to an available resource k ∈ K or rejected. Recall that

each resource can be used on any day of the planning horizon. If we knew the unknown

model parameter w and the sequence of customer contexts ϕX = {ϕXi (`)}`∈L,i∈M`
, we could

assign customers to resources by solving the following offline optimization model in advance.

max
x

L∑
`=1

M∑̀
i=1

K∑
k=1

rik(`) xik(`) (2.1)

s.t.
L∑
`=1

M∑̀
i=1

sik(`) xik(`) ≤ Ck, ∀ k ∈ K (2.2)

K∑
k=1

xik(`) ≤ 1, ∀ ` ∈ L, ∀ i ∈M` (2.3)

xik(`) ∈ {0, 1}, ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K, (2.4)

where xik(`) is corresponding to assigning the i-th customer on day ` to resource k. The

objective function (2.1) is to maximize the total expected reward. Constraint (2.2) ensures

that the sum of expected resource consumption values by the customers assigned to each

resource does not exceed the capacity. Constraint (2.3) ensures that each customer is not

assigned to more than one resource.

However, we know neither the unknown model parameter w associated with match quality

nor the sequence of customer contexts in advance. In fact, we need to learn the distribution

of the unknown model parameter as customers arrive sequentially over each day. Hence,

we design an online algorithm that simultaneously learns the distribution of the unknown

model parameter and makes online resource allocation decisions judiciously without knowing

the future sequence of customer contexts, which are chosen adversarially. The PRA-LD

algorithm leverages contextual learning and online resource allocation techniques to overcome

these hurdles and provides personalized decisions.

The PRA-LD algorithm has four main steps. Through the first and second steps, the

algorithm provides an individualized estimate for the expected reward of each arriving cus-

tomer. This estimate depends on the unknown model parameter that should be learned

iteratively based on the available observations up to the current time. Here, the exploration-

exploitation trade-off is a major challenge. For instance, based on our uncertain estimates

in the early days of the planning horizon, we may incorrectly conclude that a specific re-
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source is not a good choice for a customer with certain characteristics, and consequently,

we may not be able to identify this incorrect belief without making a different allocation

decision for a very similar customer. Inspired by the idea of posterior sampling (PS), our al-

gorithm computes a posterior distribution for the unknown model parameter and then takes

random samples from the posterior distribution. The intuition behind this sampling is to

provide the opportunity to explore alternative choices (carry out exploration) and balance the

exploration-exploitation trade-off. In our algorithm, we assume a Gaussian prior distribution

over the unknown model parameter but our theoretical results are prior-independent.

In the third step, the algorithm either assigns a resource to the arriving customer or rejects

the customer according to the available capacity of the resources, the expected resource

consumption, and the sample reward. The assignment decision should be made under no

assumption on the future sequence of customer contexts. If a policy myopically offers the

best possible assignment to each customer (i.e., greedy policy), it will not produce a robust

solution in some cases. For instance, consider a scenario where a system mostly receives

low-reward customers in the first half of the planning horizon while it receives high-reward

customers in the second half. In this scenario, most available resources may be occupied by

the low-reward customers who arrived in the first half of the planning horizon. Thus, the

high-reward customers would be either rejected or assigned to sub-optimal resources because

of the limited capacity.

To overcome this problem, we employ a mechanism to make online resource allocation de-

cisions that has good performance compared to the decisions that could have been generated

by a natural LP-relaxation of the optimization model (2.1) − (2.4). Thus, our framework

not only learns the distribution of the unknown model parameter, but also avoids greedy

resource allocation by adopting a resource allocation mechanism.

In the final step, the algorithm leverages the newly realized match quality feedback out-

comes to update the posterior distribution of the unknown model parameter. The feedback

is revealed with some delay after assigning a customer to a resource. The estimator gets up-

dated on the fly following our asynchronous strategy. That is, we update the estimator after

assigning each customer to a resource using the realized feature vector, but the customer

feedback is included in the updating process once it gets realized.

2.3.2 Personalized Resource Allocation while Learning with Delay

Let (`, i, k∗) be a tuple referring to the ith customer on day ` assigned to resource k∗. To

update the posterior distribution over vector w, we define F (Q)(i, `) as a set that contains

tuples (s, n, k∗) of customers with realized match quality feedback outcomes after the last

update, where s ≤ ` and n < i. We provide the detailed steps of PRA-LD in Algorithm 1.
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Algorithm 1 PRA-LD Algorithm

1: Initialize m1
1 and B1

1 as the mean and the covariance matrix of the Gaussian prior over
vector w, receptively.

2: for ` = {1, · · · , L} do
3: for each arriving customer i ∈M` on day ` do
4: Observe the contextual information ϕXi (`) of the customer.
5: Sample w̃i(`) from N (m`

i , (B
`
i )
−1).

6: Set q̃ik(`) = 〈φik(`), w̃i(`)〉, and sik(`) = E[Sik(`)], ∀ k ∈ K.
7: Assign the customer to a resource or reject the customer following xik(`) for
k ∈ K obtained by a resource allocation mechanism OPRA

(
r̃ik(`), sik(`)

)
, where r̃ik(`) =

q̃ik(`)sik(`).
8: Obtain set F (Q)(i, `).
9: if i 6= M` then

10: Set B`
i+1 = B`

i + φik∗(`) φ
′

ik∗(`).
11: Set g`i+1 = g`i +

∑
(s,n,k∗)∈F(Q)(i,`)

Qnk∗(s) φnk∗(s).

12: Set m`
i+1 = (B`

i+1)−1 g`i+1.
13: else:
14: Repeat Steps (10-12) by replacing Π`

i+1 with Π`+1
1 , where Π ∈ {B, g,m}.

Description. At first, the prior parameters are initialized based on prior beliefs. There are

four main steps in each of the L days. First, upon arrival of a customer, a random sample

is drawn from the posterior distribution of w. Next, a sample reward is obtained using the

random sample obtained in the first step and the realized context vector. The expected

resource consumption, which can depend on the customer’s context, is also obtained as it

is known in our setting. Then, each arriving customer is either assigned to a resource or

rejected following the assignment decision xik(`) obtained by a general resource allocation

mechanism OPRA
(
r̃ik(`), sik(`)

)
, where xik(`) = 1 indicates that the ith customer on day `

must be assigned to resource k. Finally, we update the posterior distribution of w after

assigning a customer to a resource following Steps (8-14). Note that we do not use the

context vectors of rejected customers for updating the estimators. Our updating process is

on the fly such that the estimator uses the realized feature vector of the customer assigned

to a resource, but the feedback of a customer is later included in the updating process when

it gets realized. The updating equations follow a Bayesian inference procedure to update the

posterior distribution (see [6] for details).

Resource Allocation Mechanism. While the PRA-LD algorithm is designed to work

with many resource allocation mechanisms, here we focus on Mechanism 1 as an example

for the resource allocation mechanism in Step 7 of Algorithm 1. In particular, we adapt the

primal-dual paradigm proposed by [25] for our setting. The key point of this primal-dual
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paradigm is that it maintains a set of dual variables to guide the primal solution, and the

evolution of the primal solution determines the update of the dual variables. Consider the

dual problem of a natural LP-relaxation of the optimization model (2.1− 2.4):

min
y,θ

K∑
k=1

yk Ck +
L∑
`=1

M∑̀
i=1

θi(`)

s.t. sik(`) yk + θi(`) ≥ rik(`), ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K

yk, θi(`) ≥ 0, ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K,

where yk and θi(`) are dual variables corresponding to constraints (2.2) and (2.3), respec-

tively.

Mechanism 1 Primal-Dual Resource Allocation Mechanism

1: Set k∗ = arg max
k∈K

{
r̃ik(`)− sik(`) yk

}
.

2: if (r̃ik∗(`)− sik∗(`) yk∗) ≥ 0 then
3: Set xik∗(`) = 1 .
4: Set θi(`) = r̃ik∗(`)− sik∗(`) yk∗ .

5: Set yk∗ = yk∗
(

1 +
sik∗(`)

Ck∗

)
+ β

( r̃ik∗(`)

Ck∗

)
.

6: else:
7: Set xik(`) = 0, ∀ k ∈ K.

In Mechanism 1, the dual variables yk and θi(`) are initially set to zero for ` ∈ L, i ∈
M`, k ∈ K. Upon arrival of a customer, we find a candidate resource k∗ that maximizes

the term in Step 1, which is the sample reward minus the cost of allocating the expected

capacity. This term can be viewed as the acceptance/rejection criterion such that a positive

value for the candidate resource k∗ will assign the customer to this resource; otherwise,

the customer should be rejected. If we assign the customer to resource k∗, we update the

dual variable yk∗ in an incrementally increasing fashion in Step 5. The first term on the

right-hand side of Step 5 increases yk∗ by an amount proportional to the fraction of the

capacity used by the accepted customer. The second term depends on β and the ratio of

the estimated reward to the total capacity. The multiplicative updating equation in Step

5 must ensure that there is a sufficiently large increase in yk∗ to prevent acceptance of any

future customer when the capacity is exhausted in expectation. To achieve this, we set β

to ηmax

Γ−1
, where ηmax = max

i,k,`

{
q̃ik(`)}, Λ = max

i,k,`

( sik(`)
Ck

)
, and Γ = (1 + Λ)1/Λ. Note that

setting the value of β requires knowing the values of ηmax and Λ. Although the sample

match quality and the expected resource consumption values (if the resource consumption

depends on the customer’s context) are unknown in advance, ηmax and Λ can be calculated
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in many applications because the range of the match quality and the resource consumption

values are often chosen by decision makers and known a priori. The updating equation for

dual variable θi(`) in Step 4 ensures that the dual problem remains feasible.

2.3.3 Main Idea of Personalized Advance Scheduling while Learning with Delay

In our advance scheduling problem, upon arrival, a customer should be either rejected

or assigned to a server and a future service date within the scheduling horizon. If we knew

the unknown model parameters (p and w) and the sequence of customer contexts ϕX =

{ϕXi (`)}`∈L,i∈M`
, we could schedule customers by solving the following offline optimization

model at the beginning of the scheduling horizon.

max
x

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

rikt(`) xikt(`) (2.5)

s.t.
t−1∑
`=1

M∑̀
i=1

sikt(`) xikt(`) ≤ Ckt, ∀ k ∈ K, ∀ t ∈ L\{1} (2.6)

K∑
k=1

L∑
t=`+1

xikt(`) ≤ 1, ∀ ` ∈ L, ∀ i ∈M` (2.7)

xikt(`) ∈ {0, 1}, ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K, ∀ t ≥ `+ 1, (2.8)

where xikt(`) is corresponding to assigning the ith customer on day ` to server-date (k, t).

The objective function (2.5) is to maximize the total expected reward. Constraint (2.6)

ensures that the sum of the expected service times of the customers assigned to a server on

a day does not exceed the availability of the server on that day. Constraint (2.7) ensures

that each customer is not assigned to more than one server-date. Note that the scheduled

service date for an arriving customer must be after the arrival day (i.e., t should be equal or

greater than `+ 1).

In our online setting, solving the above optimization model is not possible because the

model parameters and the sequence of customer contexts are unknown. Unlike Algorithm

1, the PAS-LD algorithm is designed to allow for the possibility of no-show and multi-day

scheduling. The proposed algorithm has four main steps. Through the first and second steps,

the algorithm provides customer-specific estimates necessary for the advance scheduling. The

reward used in the algorithm depends on the quality of match and the probability of no-

show. To carry out exploration, the algorithm takes random samples from the posterior

distribution over pw and uses them to obtain sample rewards. It also obtains the expected

service time as it is known in our setting.

23



In the third step, the algorithm either assigns an arriving customer to a server-date (multi-

day scheduling) or rejects the customer in an online fashion when there is no assumption on

the future sequence of customer contexts. Similar to Algorithm 1, any advance scheduling

mechanisms appropriate for our setting can be incorporated.

In the final step, the algorithm leverages the realized quality of match and no-show

feedback outcomes to update the posterior distribution. If a customer shows up on the

service date, both feedback outcomes will be revealed with delay; otherwise, only the no-

show feedback will be revealed. We follow our asynchronous strategy for updating the

estimator.

2.3.4 Personalized Advance Scheduling while Learning with Delay

Let (`, i, k∗, t∗) be a tuple referring to the ith customer on day ` assigned to server-date

(k∗, t∗). To update the posterior distribution over vector pw, we define F (SU ,Q)(i, `) as a

set that contains tuples (s, n, k∗, t∗) of customers with realized no-show and match quality

feedback outcomes after the last update, where s ≤ ` and n < i. We provide the detailed

steps of PAS-LD in Algorithm 2.

Algorithm 2 PAS-LD Algorithm

1: Initialize m1
1 and (B1

1)−1 as the mean vector and the covariance matrix of the Gaussian
prior over vector pw, respectively.

2: for ` = {1, · · · , L} do
3: for each arriving customer i ∈M` on day ` do
4: Observe the contextual information ϕXi (`) of the customer.
5: Sample w̃ci (`) from N (m`

i , (B
`
i )
−1).

6: Set q̃ikt(`) = 〈φikt(`), w̃ci (`)〉, and sikt(`) = E[Sikt(`)], ∀ k ∈ K, ∀ t ≥ `+ 1.
7: Assign the customer to a server-date or reject following xikt(`) for
k ∈ K, t ≥ `+ 1 obtained by an advance scheduling mechanism OPAS

(
r̃ikt(`), sikt(`)

)
,

where r̃ikt(`) = q̃ikt(`)sikt(`).
8: Obtain set F (SU ,Q)(i, `).
9: if i 6= M` then

10: Set B`
i+1 = B`

i + φik∗t∗(`) φ
′

ik∗t∗(`).
11: Set g`i+1 = g`i +

∑
(s,n,k∗,t∗)∈F(SU,Q)(i,`)

SUn(s)Qnk∗t∗(s) φnk∗t∗(s).

12: Set m`
i+1 = (B`

i+1)−1 g`i+1.
13: else:
14: Repeat Steps (10-12) by replacing Π`

i+1 with Π`+1
1 , where Π ∈ {B, g,m}.

Description. The prior parameters can be initialized based on prior beliefs. The algorithm

proceeds over L days. Unlike Algorithm 1, sample rewards should be obtained by considering

the probability of no-show. The decision variables xikt(`) are obtained by a general advance
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scheduling mechanism OPAS
(
r̃ikt(`), sikt(`)

)
, where xikt(`) = 1 indicates that the ith customer

on day ` must be assigned to server-date (k, t). The estimators are updated following Steps

(8-14) in the algorithm.

Advance Scheduling Mechanism. As an example for the advance scheduling mechanism

in Step 7 of Algorithm 2, we focus on Mechanism 2 which is a modified version of the

Mechanism 1 tailored to multi-day scheduling. This mechanism is designed based on the

primal-dual paradigm which maintains a set of dual variables to guide the primal solution.

Consider the dual problem for a natural LP-relaxation of the optimization model (2.5−2.8):

min
y,θ

K∑
k=1

L∑
t=2

ykt Ckt +
L∑
`=1

M∑̀
i=1

θi(`)

s.t. sikt(`) ykt + θi(`) ≥ rikt(`), ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K, ∀ t ≥ `+ 1

ykt, θi(`) ≥ 0, ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K, ∀ t ≥ `+ 1,

where ykt and θi(`) are dual variables corresponding to constraints (2.6) and (2.7), respec-

tively.

In Mechanism 2, the dual variables ykt and θi(`) are initially set to zero for ` ∈ L, i ∈
M`, k ∈ K, t ≥ `+ 1. The intuition is similar to Mechanism 1. Upon arrival of a customer,

we find a candidate server-date (k∗, t∗) that maximizes the term in Step 1. Note that we

only search over t ≥ ` + 1 to ensure that the candidate service date for the customer is

after the arrival day. The term in Step 2 can be viewed as the acceptance/rejection criterion

such that a positive value for the candidate (k∗, t∗) will assign the customer to this server-

date; otherwise, the customer should be rejected. If we assign the customer to server-date

(k∗, t∗), we update the dual variable yk∗t∗ in an incrementally increasing fashion in Step 5

to make sure that the capacity constraints hold in expectation. We set β̃ = η̃max

(Γ̃−1)
, where

η̃max = max
i,k,t,`

{
q̃ikt(`)}, Λ̃ = max

i,k,t,`

( sikt(`)
Ckt

)
, and Γ̃ = (1 + Λ̃)1/Λ̃. Note that the updating

equation for the dual variable θi(`) in Step 4 ensures that the dual problem remains feasible.

Mechanism 2 Primal-Dual Advance Scheduling Mechanism

1: Set (k∗, t∗) = arg max
k∈K, t≥`+1

{
r̃ikt(`)− sikt(`) ykt

}
.

2: if (r̃ik∗t∗(`)− sik∗t∗(`) yk∗t∗) ≥ 0 then
3: Set xik∗t∗(`) = 1 .
4: Set θi(`) = r̃ik∗t∗(`)− sik∗t∗(`) yk∗t∗ .

5: Set yk∗t∗ = yk∗t∗
(

1 +
sik∗t∗(`)

Ck∗t∗

)
+ β̃

( r̃ik∗t∗(`)

Ck∗t∗

)
.

6: else:
7: Set xikt(`) = 0, ∀ k ∈ K, ∀ t ≥ `+ 1.
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2.4 Theoretical Performance Analysis and Discussions

We derive a non-asymptotic (i.e., finite-time) performance guarantee for the PRA-LD

and PAS-LD algorithms using the notion of Bayesian regret. We start by discussing the

performance measure and the auxiliary problem in §2.4.1. We then define the benchmarks

and state the main theoretical results in §2.4.2. Finally, we discuss our results and position

them in the related literature in §2.4.3.

2.4.1 Performance Measure and Auxiliary Problem

Performance Measure. We evaluate the performance of our algorithms in terms of the

Bayesian regret, which is a standard metric in the literature (see, e.g., [94] and [95]). This

metric is called Bayesian regret since it represents the Bayes risk. The algorithm’s regret

measures the cumulative loss relative to a benchmark, and the algorithm’s Bayesian regret

is simply the expected regret over the prior distribution of the unknown model parameter.

Bayesian regret has two main advantages: (i) it allows for an arbitrary prior distribution over

the unknown model parameter, and (ii) it makes a connection between the PS-based and

the UCB-based methods, which provides the opportunity to leverage some of the appealing

theoretical properties of the UCB-based methods in deriving the Bayesian regret.

Definition II.2 (Regret and Bayesian Regret). Given the unknown model parameter

ϑ, the regret over the planning horizon of length L is defined by

Reg(L, ϑ) = E
[
OFV π −OFV ALG|ϑ

]
,

where OFV π and OFV ALG are the total rewards obtained by the optimal policy and the

online algorithm, respectively. The conditional expectation is taken over the random real-

izations given ϑ (e.g., realizations of rewards and resource consumption values), and possible

randomization in the online algorithm (e.g., random samples).

Bayesian regret over the planning horizon of length L is then defined by

BayesReg(L) = E
[
Reg(L, ϑ)

]
,

where the expectation is taken over the prior distribution of ϑ.

Auxiliary Problem. Defining an auxiliary problem and introducing a bridging technique,

we provide a general approach for analyzing the performance of online resource allocation

with personalized learning algorithms. This allows for seamless integration of competitive
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ratio bounds for online resource allocation algorithms and Bayesian regret bounds for con-

textual learning algorithms. The auxiliary problem can be formally defined as an online

resource allocation problem, where customers arrive sequentially and the available resources

should be allocated to hedge against the adversarial arrival sequence of customers in the

future. The main difference between the original problem and the auxiliary problem is that

the model parameters are known to the latter, unlike the former. It is worth noting that the

notion of auxiliary problem is introduced in the recent study of [35] to derive an information

theoretic lower bound for resource allocation with learning. However, the auxiliary problem

defined by [35] is different from the one we defined and used in our analysis. Their auxiliary

problem only focuses on the exploration-exploitation trade-off, assuming no resource con-

straints. Thus, it can be viewed as a contextual bandit problem. In contrast, our auxiliary

problem only focuses on the online resource allocation, assuming known model parameters.

Since we are working with different auxiliary problems, a different bridging technique is

required to derive the Bayesian regret of our algorithms.

We define two auxiliary problems corresponding to the general resource allocation and

advance scheduling problems. In the first auxiliary problem, upon arrival of a customer, the

expected match quality and the expected resource consumption of the customer are known.

Then, a decision (either assigning the customer to a resource or rejecting the customer)

should be made using a mechanism which guarantees that the capacity constraints hold in

expectation. The second auxiliary problem corresponding to our advance scheduling problem

can be defined similarly such that the expected match quality, the probability of no-show,

and the expected service time are known upon arrival of a customer in this problem. To

keep the results general in our theorems, we derive theoretical performance guarantees for

our algorithms with general mechanisms; but the corollaries provide performance guarantees

with respect to specific mechanisms.

2.4.2 Performance of Proposed Online Algorithms

First, we define a benchmark for the PRA-LD algorithm in §2.4.2.1, and provide a

roadmap for proving its main theoretical result (Theorem II.1) in §2.4.2.2. Next, we de-

fine another benchmark for the PAS-LD algorithm in §2.4.2.3, and provide a roadmap for

proving its main theoretical result (Theorem II.2) in §2.4.2.4. We also provide theoretical

results for PRA-LD and PAS-LD when adapting primal-dual resource allocation mechanisms

in Corollaries II.1 and II.3.
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2.4.2.1 Benchmark for the PRA-LD Algorithm

We need to define a benchmark to evaluate the performance of our PRA-LD algorithm.

Since our general resource allocation problem incorporates both online learning and online

resource allocation tasks, the benchmark should be clairvoyant in terms of both tasks. An

offline optimal benchmark that knows the unknown model parameter w, the sequence of

customer contexts, and the realizations of rewards and resource consumption values in ad-

vance is too strong to compete with. An alternative is the optimal online clairvoyant policy

that knows the model parameter and the sequence of customer contexts, but not the realiza-

tions of rewards and resource consumption values. Instead, we introduce a stronger offline

LP-based benchmark that has access to the same information as the clairvoyant policy, but

only needs to satisfy the capacity constraints in expectation as opposed to all realizations. In

particular, our offline LP-based benchmark is a relaxation of the optimal online clairvoyant

policy by only requiring the capacity constraints to hold in expectation. Offline LP-based

benchmarks are commonly used in recent literature of online resource allocation problems

(e.g., [53], [54], and [48]). Our offline LP-based benchmark has two main advantages: (i) as

we will show, it provides an upper bound on the expected total reward of the clairvoyant pol-

icy, and (ii) it naturally provides the opportunity to incorporate primal-dual-based resource

allocation mechanisms in our online algorithm.

To evaluate the performance of the PRA-LD algorithm, we formulate the offline LP-based

benchmark-I which knows the unknown model parameter w and the sequence of customer

contexts ϕX = {ϕXi (`)}`∈L,i∈M`
, and satisfies the capacity constraints only in expectation.

Offline LP-based Benchmark-I (LP1[ϕ
X , w]):

max
x

L∑
`=1

M∑̀
i=1

K∑
k=1

rik(`) xik(`)

s.t.
L∑
`=1

M∑̀
i=1

sik(`) xik(`) ≤ Ck, ∀ k ∈ K

K∑
k=1

xik(`) ≤ 1, ∀ ` ∈ L, ∀ i ∈M`

xik(`) ≥ 0, ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K.

In Lemma II.1 (see Appendix C), we formally prove that the expected total reward of

the clairvoyant policy is upper bounded by the above LP-based benchmark.
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2.4.2.2 Bayesian Regret of the PRA-LD Algorithm

We state our main theoretical results for the PRA-LD algorithm.

Theorem II.1 (Bayesian Regret of PRA-LD). The Bayesian regret of the PRA-LD

algorithm over the planning horizon of length L is upper bounded with probability at least

1− 2δ as:

BayesReg(L) ≤ H(L, δ) + cQσηK

√
2NL log

(2

δ

)
+ (1− α) E[V BM1 ].

In this bound, NL is the total number of arrivals over L days, and the order of H(L, δ) is

O

(
(d+K)

√
NL log

(
1 +

NL

d+ k

)
log

(
1

δ2
+

NL

(d+ k)δ2

)
+ (d+K)M̄∆ log

(
1 +

NL

d+ k

)
+NLδ

)
,

where M̄ is an upper bound on the maximum number of arrivals on each day, and ∆ is

the maximum number of days required for a feedback to be realized. Also, V BM1 is the total

expected reward of the LP-based benchmark-I, and E[V BM1 ] is the expected value of V BM1

over the prior distribution of the unknown model parameter. The term α corresponds to

hedging against adversarial arrivals of customer contexts, and it is the constant/expected

competitive ratio of the resource allocation mechanism incorporated in the algorithm. That

is, defining V AUX1 as the total expected reward obtained by a mechanism for solving the

auxiliary problem, we have V AUX1/V BM1 ≥ α.

Proof. To obtain the Bayesian Regret, first we define the following notation:

V BM1 =
L∑
`=1

M∑̀
i=1

K∑
k=1

rik(`) x
∗
ik(`), (2.9)

V AUX1 =
L∑
`=1

M∑̀
i=1

K∑
k=1

rik(`) x
Aux∗

ik (`), (2.10)

V ALG1 =
L∑
`=1

M∑̀
i=1

K∑
k=1

rik(`) x
Alg∗

ik (`), (2.11)

where the above three terms respectively denote the total expected reward obtained by (i)

the LP-based benchmark-I, which knows the model parameter w as well as the sequence

of customer contexts ϕX in advance, (ii) the resource allocation mechanism for solving the

auxiliary problem, which knows the model parameter w but does not know the sequence

of customer contexts ϕX , and (iii) the PRA-LD algorithm (ignoring a penalty term below),
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which does not know the model parameter w and the sequence of customer contexts ϕX in

advance.

We should note that the resource consumption is stochastic and the PRA-LD algorithm

enforces the capacity constraints only in expectation. Thus, there is a possibility of exceeding

the resource capacity in some cases (see Proposition II.3 in Appendix A for details). We

impose a penalty on the amount of capacity allocated in excess of the resource capacity and

call it PenaltyLoss-I. Thus, the Bayesian regret of PRA-LD can be calculated using the

following bridging technique:

BayesReg(L) = E
[
V BM1 ]− E

[
V ALG1 −PenaltyLoss-I]

= E
[
V AUX1 − V ALG1 ] + E

[
V BM1 − V AUX1 ] + E[PenaltyLoss-I], (2.12)

where the first term is the contextual learning loss associated with learning the distribution

of the unknown model parameter related to customers’ match quality. The second term

is the optimality gap of the resource allocation mechanism used for solving the auxiliary

problem. The last term can be viewed as the loss associated with uncertainty in the resource

consumption.

In the following, we bound the three terms in (2.12), separately.

Part I (Loss Associated with Stochastic Reward). Based on the definitions of V AUX1

and V ALG1 in (2.10) and (2.11), we have:

E
[
V AUX1 − V ALG1 ] = E

[ L∑
`=1

M∑̀
i=1

K∑
k=1

rik(`) x
Aux∗

ik (`)
]
− E

[ L∑
`=1

M∑̀
i=1

K∑
k=1

rik(`) x
Alg∗

ik (`)
]

=
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
rik(`) x

Aux∗

ik (`)− rik(`) xAlg
∗

ik (`)
]
.

The above term is bounded with high probability by the result of Proposition II.2 (see

Appendix A). For any δ > 0, the following holds with probability at least 1− δ.

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
rik(`) x

Aux∗

ik (`)− rik(`) xAlg
∗

ik (`)
]

≤ 2 cs
√
NL

√
2 (d+K) log

(
1 +

c2φNL

λ(d+K)

)(
σξ

√
(d+K) log

(
1 +

c2φNL

λ(d+K)

)
+ log

(
1
δ2

)
+ λ1/2

)

+ 4 cscQ(d+K)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+K)

)
+ cscQNLδ .

Part II (Loss Associated with Stochastic Resource Consumption). The expected
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penalty loss can be calculated as follows:

E[PenaltyLoss-I] = cQ

K∑
k=1

E

( L∑
`=1

M∑̀
i=1

Sik(`) xAlg
∗

ik (`)− Ck

)+
 ,

where cQ is the maximum possible value for the match quality.

The above term is bounded with high probability by the result of Proposition II.3 (see

Appendix A). For any δ > 0, the following holds with probability at least 1− δ.

E[PenaltyLoss-I] ≤ cQσηK

√
2NL log

(2

δ

)
.

Part III (Loss Associated with Online Resource Allocation). Recall that the aux-

iliary problem is a simpler version of the actual problem in which the unknown model pa-

rameter w is known in advance. To solve the auxiliary problem, one must employ a resource

allocation mechanism, for which there is an optimality gap. Suppose α is a constant com-

petitive ratio of the resource allocation mechanism of PRA-LD. Then, given the unknown

model parameter w, we have V AUX1/V BM1 ≥ α. Next, we have the following by a simple

algebra:

V BM1 − V AUX1 ≤
(
1− α

)
V BM1 .

Taking expectation over the prior distribution of w on both sides, we obtain the following:

E
[
V BM1 − V AUX1

]
≤ (1− α) E[V BM1 ] .

Note that if the competitive ratio α depends on the model parameter, the above result holds

by replacing α with its expected value over the prior distribution of the model parameter.

According to (2.12), summing the upper bounds established in Parts I, II, and III com-

pletes the proof.

Corollary II.1 (Bayesian Regret of PRA-LD using Mechanism 1). With δ = 1
NL

,

the Bayesian regret of the PRA-LD algorithm with Mechanism 1 over the planning horizon

of length L is as follows:

O
(

(d+K)
√
NL log

(
NL

)
+ (d+K)M̄∆ log

(
NL

))
+ (1− ρ) E[V BM1 ],

where ρ = E[1−ηmaxΛ
1+β

], ηmax = max
i,k,`
{qik(`)}, Λ = max

i,k,`

( sik(`)
Ck

)
, Γ = (1 + Λ)1/Λ, and β = ηmax

Γ−1
.

When Λ→ 0 and ηmax → 1, then coefficient β → 1/(e− 1). Thus, the above ratio converges
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to 1− 1/e, which recovers the classical result in the primal-dual paradigm.

While the Bayesian regret derived in Theorem II.1 provides a performance guarantee for

PRA-LD with a general resource allocation mechanism, this corollary tailors the result to

Mechanism 1. The proof hinges on the competitive ratio of Mechanism 1 (see Proposition

II.8 in Appendix C) and the result of Theorem II.1 with δ = 1/NL. The proof is omitted for

brevity.

Corollary II.2 (Bayesian Regret of PRA-LD with Unknown Mean Resource Con-

sumption). With δ = 1
NL

, the Bayesian regret of the PRA-LD algorithm when learning both

match quality and resource consumption over the planning horizon of length L is as follows:

O
(

(d+K)
√
NL log

(
NL

)
+ (d+K)M̄∆ log

(
NL

))
+ (1− α) E[V BM1 ].

While the Bayesian regret derived in Theorem II.1 provides a performance guarantee for

PRA-LD with known mean resource consumption upon arrival of a customer, this corollary

tailors the result to a setting in which both match quality and resource consumption should

be learned. We assume the following resource consumption model:

If resource k ∈ K is chosen for the ith customer on day `, the customer uses Sik(`) units

of this resource, regardless of `. We assume that Sik(`) ∈ [cS, cS] is a stochastic resource

consumption following a linear model with the expected value:

E[Sik(`)] = sik(`) = 〈φik(`), z〉,

where z ∈ Rd+K is the unknown model parameter. The noise values, ηik(`) = Sik(`) −
〈φik(`), z〉, are independent ση-sub-Gaussian random variables.

The proof hinges on a new high-probability bound on the penalty loss when the unknown

model parameter z should be learned. Following the same steps in Theorem II.1 and with

δ = 1/NL, it can be shown that the loss associated with the stochastic reward (Part I) has the

order of O
(
(d+K)

√
NL log

(
NL

)
+ (d+K)M̄∆ log

(
NL

))
. When the stochastic resource

consumption has a model with an unknown parameter, we prove that the penalty loss (Part

II) has the order of O
(
(d+K)

√
NL log

(
NL

)
+ (d+K)M̄∆ log

(
NL

))
(see Proposition II.4

in Appendix A). As expected, this penalty loss is higher compared to the penalty loss when

the mean resource consumption is known (i.e., O(K
√
NL logNL)); however, it has the same

order as the loss associated with the stochastic reward. Hence, the order of the Bayesian

regret remains the same as the one when the mean resource consumption is known. The

proof is omitted for brevity.
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2.4.2.3 Benchmark for the PAS-LD Algorithm

There are three main differences between our advance scheduling and general resource

allocation problems. First, we schedule customers to servers over multiple days rather than

only assigning customers to resources. Second, some customers may not show up on the

service date. Lastly, similar to many service applications, the resources (availability of

servers) are perishable. That is, unlike the global resource constraints in the general resource

allocation problem, the remaining availability of servers on a day cannot be transferred to

the next day. Thus, a different benchmark is needed to evaluate the performance of the

PAS-LD algorithm.

Similar to what we argued for our general resource allocation problem, a possible bench-

mark is the optimal online clairvoyant policy that knows the unknown model parameters

and the sequence of customer contexts, but not the realizations of rewards and service times.

We employ a stronger offline LP-based benchmark that has access to the same information

known by the clairvoyant policy but only needs to satisfy the capacity constraints in expec-

tation. We call it the offline LP-based benchmark-II (LP2 [ϕX , p, w]), which is a natural LP

relaxation of the optimization model (2.5)− (2.8) with xikt(`) ≥ 0.

Following our arguments in Lemma II.1 (see Appendix C), it can be proven that the

expected total reward of the clairvoyant policy is upper bounded by the LP-based benchmark-

II. We use this LP model as our benchmark to evaluate the performance of the PAS-LD

algorithm.

2.4.2.4 Bayesian Regret of the PAS-LD Algorithm

In Theorem II.2 and Corollary II.3, we state our main theoretical results for the PAS-LD

algorithm.

Theorem II.2 (Bayesian Regret of PAS-LD). The Bayesian regret of the PAS-LD

algorithm over the scheduling horizon of length L is upper bounded with probability at least

1− 3δ as:

BayesReg(L) ≤ E(L, δ) + cQσηKL

√
2NL log

(2

δ

)
+ (1− α) E[V BM2 ].

In this bound, NL is the total number of arrivals over L days, and the order of E(L, δ) is

O
(

(d+ A)

√
NL log

(
1 + NL

d+A

)
log
(

1
δ2

+ NL
(d+A)δ2

)
+ (d+ A)M̄∆ log

(
1 + NL

d+A

)
+NLδ

)
,

where M̄ is an upper bound on the maximum number of arrivals on each day, and ∆ is
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the maximum number of days required for a feedback to be realized. Also, V BM2 is the

total expected reward of the LP-based benchmark-II, and E[V BM2 ] is the expected value of

V BM2 over the prior distribution of the unknown model parameters. The term α is the

constant/expected competitive ratio of the advance scheduling mechanism incorporated in the

algorithm.

Proof. To obtain the Bayesian Regret for our PAS-LD algorithm, first we define the following

notation:

V BM2 =
L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

rikt(`) x
∗
ikt(`), (2.13)

V AUX2 =
L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

rikt(`) x
Aux∗

ikt (`), (2.14)

V ALG2 =
L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

rikt(`) x
Alg∗

ikt (`), (2.15)

where the above three terms respectively denote the total expected reward obtained by (i)

the LP-based benchmark-II, which knows the unknown model parameters p and w as well

as the sequence of customer contexts ϕX in advance, (ii) the advance scheduling mechanism

for solving the auxiliary problem, which knows the unknown model parameters but does

not know the sequence of customer contexts, and (iii) the PAS-LD algorithm (ignoring a

penalty term below), which does not know the unknown model parameters and the sequence

of customer contexts in advance.

We should note that the service time is stochastic and the PAS-LD algorithm enforces

the capacity constraints only in expectation. Thus, there is a possibility of exceeding servers’

availability in some cases. We impose a penalty on the amount of capacity allocated in excess

of the servers’ availability and call it PenaltyLoss-II. Accordingly, the Bayesian regret

can be calculated using the following bridging technique:

BayesReg(L) = E
[
V BM2

]
− E

[
V ALG2 −PenaltyLoss-II]

= E
[
V AUX2 − V ALG2 ] + E

[
V BM2 − V AUX2 ] + E[PenaltyLoss-II], (2.16)

where the first term is the contextual learning loss associated with learning the distribution

of the unknown model parameters, the second term is the optimality gap of the advance

scheduling mechanism used for solving the auxiliary problem, and the last term is the loss

associated with uncertainty in the service time.

In the following, we bound the three terms in (2.16), separately.
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Part I (Loss Associated with Stochastic Reward). Based on the definitions of V AUX2

and V ALG2 in (2.14) and (2.15), we have:

E
[
V AUX2 − V ALG2 ] = E

[ L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

rikt(`) x
Aux∗

ikt (`)
]
− E

[ L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

rikt(`) x
Alg∗

ikt (`)
]

=
L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
rikt(`) x

Aux∗

ikt (`)− rikt(`) xAlg
∗

ikt (`)
]
.

The above term can be bounded with high probability following the result of Proposition

II.6 (see Appendix B). For any δ > 0, the following holds with probability at least 1− 2δ.

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
rikt(`) x

Aux∗

ikt (`)− rikt(`) xAlg
∗

ikt (`)
]

≤ 2 cs
√
NL

√
2 (d+ A) log

(
1 +

c2φNL

λ(d+A)

)(
(cQ + σξ)

√
(d+ A) log

(
1 +

c2φNL

λ(d+A)

)
+ log

(
1
δ2

)
+ λ1/2

)
+ 4 cscQ(d+ A)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+ A)

)
+ 2 cscQNLδ.

Part II (Loss Associated with Stochastic Service Time). We assume that if a cus-

tomer does not show up on the service date, the server’s availability is still decreased by

the expected service time of the customer. Accordingly, the expected penalty loss can be

calculated as follows:

E[PenaltyLoss-II] =

cQ

K∑
k=1

L∑
t=2

E

( t−1∑
`=1

M∑̀
i=1

(
SU i(`) Sikt(`) +

(
1− SU i(`)

)
sikt(`)

)
xAlg

∗

ikt (`)− Ckt

)+
 .

The above term can be bounded with high probability following the result of Proposition

II.7 (see Appendix B). For any δ > 0, the following holds with probability at least 1− δ.

E[PenaltyLoss-II] ≤ cQσηKL

√
2NL log

(2

δ

)
.

Part III (Loss Associated with Online Advance Scheduling). The auxiliary problem

is a simpler version of the actual problem in which the unknown model parameters p and w are

known in advance. To solve the auxiliary problem, there is a need for an advance scheduling

mechanism. Similar to Part III of Theorem II.1, the optimality gap of this mechanism for

solving the auxiliary problem can be bounded using the concept of competitive ratio as
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follows:

E
[
V BM2 − V AUX2

]
≤ (1− α) E[V BM2 ],

where the expectation is over the prior distribution of the unknown model parameters, and α

is the constant/expected competitive ratio of the advance scheduling mechanism of PAS-LD.

According to (2.16), summing the upper bounds established in Parts I, II, and III com-

pletes the proof.

Corollary II.3 (Bayesian Regret of PAS-LD with Mechanism 2). With δ = 1
NL

, the

Bayesian regret of the PAS-LD algorithm with Mechanism 2 over the scheduling horizon of

length L is as follows:

O
(

(d+ A)
√
NL log

(
NL

)
+ (d+ A)M̄∆ log

(
NL

)
+KL

√
NL log

(
NL

))
+ (1− ρ̃) E[V BM2 ],

where ρ̃ = E[1−η̃maxΛ̃

1+β̃
], η̃max = max

i,k,t,`
{qikt(`)}, Λ̃ = max

i,k,t,`

(
sikt(`)
Ckt

)
, Γ̃ = (1+Λ̃)1/Λ̃, and β̃ = η̃max

Γ̃−1
.

When Λ̃→ 0 and η̃max → 1, then coefficient β̃ → 1/(e− 1). Thus, the above ratio converges

to 1− 1/e.

The proof hinges on the competitive ratio of Mechanism 2 (see Proposition II.9 in Ap-

pendix C) and the result of Theorem II.2 with δ = 1/NL. The proof for the competitive ratio

of Mechanism 2 can be reproduced by working with dual problem of LP2 [ϕX , p, w] instead

of LP1 [ϕX , w] in Proposition II.8 (see Appendix C). The proof is omitted for brevity.

2.4.3 Discussions of the Main Results

We discuss our theoretical results and position them in the literature.

First, as a by-product of our regret analysis, we develop a new confidence bound for the

unknown parameter in a linear model under bounded delayed feedback. The effect of delayed

feedback in contextual bandits is much less explored in the literature than the other settings,

but we note the studies of [45] (with fixed delay) and [112] (with bounded delay). The latter

studied a GLM bandit with delay and proposed the delayed UCB algorithm with a warm-

up period and a non-regularized MLE. When there is only an upper bound on delay, they

established a regret bound of Õ
(
(d+
√
dDmax)

√
T
)
, where Dmax is an upper bound on delays

and d is the feature dimension. For the contextual bandit problem studied by [112] when the

reward model is linear and the feedback delay is bounded, our confidence bound constructed

using an OLS estimator with regularization yields a regret bound of Õ
(
d
√
T + dDmax

)
.

Similar to the regret bound of [112], the first term of our regret bound does not depend on
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delay and the upper bound on delays only impacts the second term. Note that their regret

bound Õ
(
(d +

√
dDmax)

√
T
)

is obtained under the implicit assumption that dDmax ≤ T .

Under this assumption, our regret bound is strictly tighter than the one derived by [112].

In our advance scheduling problem, customers may not show up for the scheduled service

after being assigned to a server and a service date. This adds on an additional layer of

complexity in learning the match quality because the match quality feedback of a customer

cannot be observed at all if the customer does not show up on the service date. Our PAS-

LD algorithm learns the distribution of pw vector, where p and w are the unknown model

parameters corresponding to no-show and match quality. We developed an estimator for

pw and provided a new confidence bound for pw under delayed feedback. Compared to the

confidence bound derived for w, this confidence bound has an extra additive logarithmic

term in the number of arrivals, which can be viewed as the cost of estimating pw instead of

w.

Next, we shall relate to the literature of contextual MAB with resource constraints. In

this area, the studies of [12], [3], and [5] are among the closely related ones to our work.

However, their online algorithms cannot be extended to our setting because of their IID

assumption for context vectors of customers that results in the existence of an underlying

(fixed) optimal randomized allocation strategy. [35] considered the allocation of limited re-

sources to heterogeneous customers over time without the IID assumption. In their setting,

the rewards are known and the resource consumption distribution associated with each cus-

tomer type and action should be learned over time. They provided an information-theoretic

lower bound that depends on the competitive ratio of an oracle for solving a problem similar

to our auxiliary problem. Their methodology and techniques are different and not compara-

ble to our work. Our online algorithms admit Bayesian regret upper bounds without needing

the IID assumption. Our Bayesian regret bounds indicate that the contextual learning loss

associated with learning the distributions of the unknown model parameters is sub-linear in

the number of arrivals over the planning horizon. The loss associated with the uncertainty in

the resource consumption values is also sub-linear in the number of arrivals over the planning

horizon. The sequence of customer contexts is adversarial in our setting and it comes at the

cost of having the term (1−α) E[V BM ] in the bound. This term is indeed the optimality gap

of a resource allocation mechanism with a competitive ratio of α for solving the auxiliary

problem.

In the PRA-LD algorithm, the loss associated with contextual learning with delay is of or-

der O
(
(d+K)

√
NL log(NL) + (d+K)M̄∆ log(NL)

)
, which can be further decomposed into

two terms. The first termO
(
(d+K)

√
NL log(NL)

)
has the same order as the state-of-the-art

regret bound for the contextual learning problems, and the second termO
(
(d+K)M̄∆ log(NL)

)
37



comes from the assumption of bounded delayed feedback. The loss associated with uncer-

tainty in the resource consumption values is of order O
(
K
√
NL log(NL)

)
. Also, the loss

associated with the optimality gap of Mechanism 1 is
(
1 − E

[
1−ηmaxΛ

1+β

])
E[V BM1 ], where

ηmax = max
i,k,`
{qik(`)}, Λ = max

i,k,`

( sik(`)
Ck

)
, Γ = (1 + Λ)1/Λ, and β = ηmax

Γ−1
. From a different

angle, 1−ηmaxΛ
1+β

can be viewed as the competitive ratio of Mechanism 1 for online resource

allocation. When ηmax tends to 1 and the ratio of expected resource consumption per re-

quest to total capacity Λ tends to 0, the parameter β = ηmax

Γ−1
tends to 1/(e − 1) because

Γ = (1 + Λ)1/Λ; subsequently, the competitive ratio converges to 1− 1/e which recovers the

classical result obtained by [81] and [25]. The same arguments and interpretations also hold

for the Bayesian regret bound derived for PAS-LD.

2.5 Case Study and Empirical Results

Our models and methodology are motivated by emerging technology and intent in the

healthcare industry to offer online advance scheduling to patients. Online learning facilitates

the successful adaption of new approaches and supports learning patient preferences. Our

methodology can increase access to timely and appropriate high-quality care by offering

personalized appointment visits based on patients’ needs and preferences. Using clinical

data from a partner health system, we evaluate the performance of our proposed PAS-LD

algorithm compared with other algorithms/policies.

2.5.1 Data Description and Problem Formulation

Data Description. Our partner health system offers appointment visits to provide diagno-

sis, consultation, and several procedures, including prostate cancer, micro-surgical urology,

kidney stones/cancer, and bladder cancer. The medical clinic is staffed with physicians

(MDs) and physician assistants (PAs) with five major specialties: (i) general, (ii) andrology

(Andro), (iii) oncology (Onco), (iv) endoscopy (Endo), and (v) neurourology and pelvic re-

constructive surgery (NPR). We used the patient appointments related to 12 providers (i.e.,

8 MDs and 4 PAs) working in the same medical clinic five days a week from 8:00 am to 5:00

pm.

Our clinical dataset contains more than 4500 appointment visits for which we have in-

formation regarding both patients and providers. Each visit provides: (1) age, (2) chief

complaint of the patient (service request), (3) patient’s urgency level (Emergent, Urgent,

Elective), (4) arrival date and scheduled date providing the appointment delay, (5) service

time/duration, (6) provider for the patient, and (7) provider’s credentials (MD/PA). We
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Figure 2.1: Total number of patient arrivals with NPR service request, which is served by
two providers.

selected several important variables which can be classified into the following two major

categories:

• Patient characteristics : Demographics, service type request (General, Andro, Onco,

Endo, and NPR), and urgency level (Emergent, Urgent, Elective),

• Provider skills : Credentials (MD/PA) and expertise level for the relevant specialty.

As there is no system for scoring the expertise of providers in the medical clinic at the

time, we employed judgment to create one. Consulting with the clinic and considering the

main- and sub-specialties of each provider, we assigned a value between zero and one to the

relevant five major specialties for each provider. In some settings, this information could

be computed using providers’ ratings by patients. The no-show events were modeled as

independent Bernoulli trials.

As we mentioned, the medical clinic offers appointment visits to patients with five ma-

jor service requests. Our data shows that there is high variability in the arrival pattern of

patients over different days. As an example, the number of patients who arrive on each day

with an NPR service request is shown in Figure 2.1. As can be seen, the arrival pattern

is highly uncertain and the same uncertainty also applies to the arrival pattern of patients

with other service requests. Thus, a data-driven online algorithm that does not require in-

formation regarding the distribution of arrivals or patterns over time is intuitively preferable

to traditional approaches.

Problem Formulation. We formulate this patient appointment scheduling problem using

our framework for advance scheduling. We make no assumption on future arrivals. Upon
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arrival of a patient, either a provider and an appointment date should be assigned to the

patient or the patient must be rejected. Patient rewards depend on the patient-provider

match quality, service time, and the no-show outcome. The quality of match could be

obtained by patient satisfaction surveys to better address the patients’ needs. It is worth

noting that the priority categories of emergent, urgent, and elective patients (urgency level)

paired with appointment delay provide the opportunity to indirectly reduce access delay for

the more urgent patients.

The main considerations for assigning a provider-date to a patient are the available

capacity of the clinic, the expected patient-specific service time, and the expected patient-

specific match quality. To calculate the expected service time, we need the information on

patient characteristics and the skills of the providers. The expected match quality also needs

a third element which is the appointment delay (i.e., number of days between the arrival date

and the appointment date). The feedback information on the match quality is assumed to

be revealed immediately after the patient is served by the provider on the appointment date.

The no-show feedback is revealed immediately at the time of the scheduled appointment. The

expected patient-specific service times are estimated by a linear regression model trained on

the entire dataset. The objective of the algorithm is to maximize the total expected reward

over a finite-time scheduling horizon.

Real-time evaluation is the ideal way to assess our online algorithm. Evaluating our algo-

rithm with offline clinical data has two main hurdles. First, our algorithm has not been im-

plemented by our partner health system; thus, there is a lack of data on the patient-provider

match quality and we must estimate it. We randomly generated the patient-provider match

quality outcomes using different uniform distributions as a function of the patient character-

istics, the skills of the chosen provider, and the appointment delay. Second, even if we had

access to the real patient-provider match quality, evaluating our algorithm retrospectively

based on the observational data would be challenging since we need counterfactual out-

comes. In practice, the outcomes of the other decisions not taken are not required, because

the algorithm assigns a patient to only one provider-date pair and obtains the corresponding

outcome. However, we need to estimate the counterfactuals when we evaluate our algorithm

based on the observational data. In particular, if a patient is assigned to a provider-date in

the dataset but our algorithm assigns the patient to a different provider-date, we must esti-

mate the outcome associated with our algorithm’s decision to evaluate its performance. We

separately estimated the counterfactuals corresponding to patient-provider match quality by

a linear regression model trained on the entire dataset.
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2.5.2 Evaluation and Empirical Results

Using our clinical data, we evaluate the performance of the PAS-LD algorithm with

respect to the commonly used First-Come-First-Served (FCFS) policy and other algorithms.

We consider 10 random permutations of our dataset to ensure the result is not tied to one

realization of patient arrivals. We calculate two performance measures: average performance

and average cumulative regret. The average performance is the ratio of the cumulative

expected reward obtained by an algorithm/policy relative to the optimal objective function

value of the LP-based benchmark-II averaged over permutations. The average cumulative

regret measures the difference between the cumulative expected reward of the offline LP-

based benchmark-II and an algorithm/policy averaged over permutations.

Since providers’ availability hours are limited in our clinic, we cannot easily compare our

algorithm with the most widely used online learning algorithms in the literature. We design

and compare the following algorithms/policies:

(a) PAS-LD algorithm: The online algorithm generated by our framework with Mechanism

2 for online advance scheduling.

(b) Greedy algorithm: The PAS-LD algorithm with the greedy advance scheduling mech-

anism in which a patient should be assigned to a provider-date that yields the highest

reward.

(c) FCFS policy : A pervasive policy implemented for many service systems. This policy

assigns each patient to a provider with the earliest availability as long as it meets the

availability of the provider. Ties are broken randomly.

(d) PAS-LD-OFU algorithm: A variant of the PAS-LD algorithm with Mechanism 2 to

replace the PS method with the optimisim in the face of uncertainty (OFU) method

(see [76]).

Average Performance. In this analysis, we aim to gain insights into the sensitivity of

the average performance with respect to variations in the capacity (providers’ availability

hours) and the mean service time. We consider a scheduling horizon of 50 days and compare

the average performance of PAS-LD, Greedy, and FCFS under different capacity and mean

service time scales.

Table 2.1 reports the average performance results with regard to different levels of a ca-

pacity scale. In particular, we evaluate the average performance with regard to a capacity

scale parameter c1 ∈ {1.5, 1.4, . . . , 0.7}, where c1 is the multiplier on the hours available
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Capacity scale FCFS Greedy PAS-LD

1.5 73.95% 89.68% 90.83%

1.4 74.13% 89.03% 90.57%

1.3 73.23% 85.72% 90.31%

1.2 72.56% 85.36% 89.69%

1.1 71.51% 83.28% 89.36%

1.0 69.68% 80.61% 88.77%

0.9 64.96% 77.05% 88.95%

0.8 61.39% 72.97% 87.19%

0.7 57.68% 69.18% 87.59%

Table 2.1: Average performance of algorithms/policies as capacity is varied.

for every provider. The results indicate that when the capacity increases, the average per-

formance increases. As the capacity decreases, the average performance decreases. This

insight is intuitive and consistent with our theoretical result. Predictably, PAS-LD has the

best average performance among the other policies/algorithms because (i) it leverages the

estimated patient-specific match quality, and (ii) it uses an advance scheduling mechanism

that hedges against the future arrival sequence by judiciously allocating the scarce resources

over the scheduling horizon. Both FCFS and Greedy are more sensitive to variations in

capacity compared to PAS-LD (see Table 2.3). The poor performance of FCFS is largely

due to the lack of attention to the reward of arriving patients during the decision-making

process. FCFS has better performance when providers’ availability hours are increased since

there is less need to judiciously allocate the scarce resources in that case. Greedy performs

consistently better than FCFS and also performs comparably to PAS-LD when the capacity

is abundant. Note that both PAS-LD and Greedy learn the expected patient match quality

adaptively and take it into account for scheduling patient appointments. Assigning a patient

to a provider-date that yields the highest reward (being greedy) can provide a good strategy

when there is abundant capacity because hedging against the future arrival sequence becomes

less important. The overall results show that the PAS-LD algorithm offers the greatest value

when the capacity is moderate to low.

Table 2.2 reports the average performance results with regard to different levels of a

mean service time scale. In particular, we evaluate the average performance with regard to

a mean service time scale parameter c2 ∈ {0.7, 0.8, . . . , 1.5}, where c2 is the multiplier on the

mean service time for every patient. The results are consistent with the results reported in

Table 2.1 in a sense that PAS-LD outperforms FCFS and Greedy over all values of the mean

service time scale parameter. We observe that the average performance of PAS-LD is less
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Service time scale FCFS Greedy PAS-LD

0.7 74.05% 88.33% 90.67%

0.8 72.56% 84.32% 89.38%

0.9 71.51% 83.19% 89.30%

1.0 69.68% 80.61% 88.77%

1.1 65.07% 80.01% 88.51%

1.2 62.00% 78.92% 88.50%

1.3 61.25% 74.95% 88.45%

1.4 57.46% 73.77% 88.21%

1.5 57.39% 70.57% 88.10%

Table 2.2: Average performance of algorithms/policies as mean service time is varied.

Measure
Variation in capacity Variation in service time

FCFS Greedy PAS-LD FCFS Greedy PAS-LD

Mean 68.79% 81.43% 89.25% 65.66% 79.41% 88.88%

Standard devia-
tion

6.02% 7.11% 1.27% 6.49% 5.59% 0.81%

Range 16.45% 20.50% 3.64% 16.66% 17.76% 2.57%

Table 2.3: Statistical measures corresponding to variations in capacity and mean service
time.

sensitive to variations in the mean service time compared to FCFS and Greedy (see Table

2.3). Note that when the mean service time is short, the average performance increases.

As the mean service time increases, the average performance decreases. This insight is not

only consistent with our theoretical result but also intuitive. Increasing the mean service

time, PAS-LD will have less flexibility in assignment decisions which results in lower average

performance. Note that for the next two analyses we return to the real-world capacity and

mean service time (scales of c1 = 1 and c2 = 1).

Average Cumulative Regret. In this analysis, we first evaluate the performance of three

strategies to deal with delayed feedback. Next, we investigate another method to balance the

exploration-exploitation trade-off and evaluate its impact on the performance of the PAS-LD

algorithm.

We consider the following three strategies to deal with delayed feedback and discuss

the corresponding results. The first one is our proposed asynchronous (ASYN) strategy in

which we update the estimator for the unknown model parameters on the fly. The second

and third ones are fixed waiting time (FWT) strategies in which we update the estimator
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Figure 2.2: Average cumulative regret of different updating strategies.

based on the feedback of a decision after a fixed number of days (cFWT ) that is long enough

to guarantee that the feedback is realized. That is, we update the estimator on day ` by

supplying the feedback of decisions made on day ` − cFWT and assume that the feedback

outcomes are realized by this time. We consider two FWT strategies, including (i) FWT-5:

the maximum time for each feedback to get realized is 5 days, and (ii) FWT-10: similar to

the previous scenario but for 10 days. We also consider the ideal case in which there is no

delayed feedback (ND). That is, we assume that a patient’s feedback is realized immediately

after assigning the patient to a provider-date.

Figure 2.2 illustrates the average cumulative regret of the variants of PAS-LD with differ-

ent strategies to deal with delayed feedback as well as the ideal case with no delay. The ideal

case, ND, outperforms the others since this is an unrealistic case with immediate feedback

at the time of making the appointment. As can be seen, the ASYN strategy implemented

in our actual PAS-LD algorithm is not much worse than ND and outperforms the two FWT

strategies. When there are few samples, the slope of the average cumulative regret of the

ASYN strategy is significantly less than the others because it learns more quickly using the

realized feedback outcomes rather than the FWT strategies which receive the same informa-

tion but with delay. As we get more samples and the estimator gets closer to convergence,

the slopes of ASYN, FWT-5, and FWT-10 converge to the slope of the ideal case.

In our PAS-LD algorithm, the exploration-exploitation trade-off is balanced by using the

PS method. OFU is another popular method used to balance the exploration-exploitation

trade-off in online learning algorithms. The PAS-LD-OFU algorithm with the OFU method

constructs confidence sets for the unknown model parameters and selects the action with the

highest optimistic estimate (highest upper bound). We evaluate the impact of using PS and
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Figure 2.3: Average cumulative regret of PAS-LD and PAS-LD-OFU.

OFU methods by comparing the average cumulative regrets obtained by PAS-LD-OFU and

PAS-LD. To make a fair comparison, we consider a non-informative prior for the unknown

model parameters.

Figure 2.3 shows the average cumulative regret of PAS-LD and PAS-LD-OFU over 50

days. Overall, the average cumulative regret of PAS-LD is less than that of PAS-LD-OFU.

When there are few samples, the slope of the average cumulative regret of PAS-LD-OFU is

significantly higher than PAS-LD, but as we get more samples the slope of PAS-LD-OFU

gets closer to the slope of PAS-LD. This implies that the PS method used in PAS-LD yields a

lower regret in our problem compared to the OFU method used in PAS-LD-OFU, especially

when there are few samples. The better learning ability of algorithms with the PS method

compared to algorithms with the OFU method has been seen empirically in other problems

as well (see, e.g., [29]). We further investigate the difference in the performance of PAS-LD

and PAS-LD-OFU by looking at their average cumulative regrets and the corresponding

ratios with respect to different strategies to deal with delayed feedback. Table 2.4 shows the

average cumulative regret of PAS-LD-OFU and PAS-LD after 50 days corresponding to the

ASYN strategy and three FWT strategies (i.e., FWT-5, FWT-10, and FWT-15). We find

that PAS-LD is more robust compared to PAS-LD-OFU as the ratio between the average

cumulative regrets is increasing when the fixed waiting time is getting longer. The advantage

of PS over OFU shown in this analysis might be due to the randomization process used in

the PS method and its ability to better alleviates the influence of delayed feedback outcomes

compared to the OFU method with optimistic estimates.
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Algorithm
Strategy

ASYN FWT-5 FWT-10 FWT-15

PAS-LD-
OFU

6286.63 8849.46 10709.50 12672.51

PAS-LD 5318.34 6990.46 8203.40 9285.01

Ratio 1.18 1.27 1.31 1.36

Table 2.4: Impact of different learning methods on average cumulative regret at the end of
the horizon.

2.6 Conclusion

We studied a resource allocation problem with personalized learning, where the sequence

of customer contexts is adversarial and the customer reward and the resource consump-

tion are stochastic and unknown. Our objective was to create algorithmic optimization

procedures with theoretical performance guarantees, especially to allow healthcare delivery

systems make a real-time decision to allocate each arriving patient to a suitable clinician

in a timely manner. Learning is emphasized here to solve settings with a lack of historical

data. We introduced a generic framework for adversarial arrivals, which judiciously syner-

gizes online learning with a broad class of online resource allocation mechanisms. Within this

framework, we developed two online algorithms, namely PRA-LD and PAS-LD, which admit

rigorous performance guarantees. While in the general resource allocation model, customers

should be assigned to only resources, they should be assigned to servers and service dates

in the advance scheduling model. The PRA-LD algorithm is designed for a general resource

allocation problem in which customers arrive sequentially and should be either assigned to a

resource or rejected. The PAS-LD algorithm is designed for a multi-day advance scheduling

problem and it offers servers and service dates to sequentially arriving customers while ac-

counting for the possibility of no-show. Our algorithms strike a three-way balance between

exploration, exploitation, and hedging against the future arrival sequence. They can operate

under practical settings for which the learning process is conducted under delayed feedback

outcomes.

We provided theoretical performance guarantees for the proposed algorithms, which re-

quire several new technical ideas some of which may be of independent interest beyond

the scope of this study. We also evaluated the empirical performance of our PAS-LD algo-

rithm with a primal-dual advance scheduling mechanism using a dataset from our partner

health system. The empirical results showed that the proposed PAS-LD algorithm with a

primal-dual advance scheduling mechanism performs better than a greedy variant of it and
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extremely well compared to the pervasive FCFS policy. We also found that our advance

scheduling algorithm can handle no-shows and delayed feedback very well, which are among

the major practical challenges in healthcare settings. Our asynchronous strategy for updat-

ing the estimators of unknown model parameters outperformed other strategies by a large

margin and performed not much worse than the ideal case without delayed feedback. Our

framework and proposed algorithms can be applied to many other practical problems that

require both learning and resource allocation in an online fashion.

2.7 Appendix

2.7.1 Appendix A. Technical Results for the PRA-LD Algorithm

Proposition II.1 (Confidence Bound for PRA-LD under Delayed Feedback). For

any i, `, and δ > 0, the following holds with probability at least 1− δ.

∣∣〈φik∗(`), w〉 − 〈φik∗(`), ŵi(`)〉∣∣
≤‖φik∗(`)‖V −1

i`

(
σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(w)
ik∗ (`)

)
,

where Vi` =


∑`−1

s=1

∑Ms

j=1 φjk∗(s) φ
′

jk∗(s) + λI i = 1∑`−1
s=1

∑Ms

j=1 φjk∗(s) φ
′

jk∗(s) +
∑i−1

j=1 φjk∗(`) φ
′

jk∗(`) + λI i ≥ 2
is the design

matrix such that λ > 0 and

Σ
(w)
ik∗ (`) = cQ

(∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗(s)‖V −1
i`

+
(∑i−1

j=1 ‖φjk∗(`)‖V −1
i`

)
1i 6=1

)
+ λ1/2.

Proof. Constructing a confidence bound on the expected match quality involves the following

two steps.

Step 1 (Online estimator for parameter w). Recall that we assumed Qik∗(`) as the

uncertain feedback of the ith customer on day ` assigned to resource k∗. Based on the least

squares principle, we can obtain an estimator for w by minimizing the following term:

Ui`(w) =
`−1∑
s=1

Ms∑
j=1

(
φ
′

jk∗(s) w −Qjk∗(s)
)2

+
( i−1∑
j=1

(
φ
′

jk∗(`) w −Qjk∗(`)
)2
)
1i 6=1 + λ ‖w‖2 ,

where λ > 0 is the regularization parameter. Note that for the first customer of each day

(i = 1), Ui`(w) includes all the feature vectors and the realized feedback outcomes up to the

beginning of day `. However, for other customers (i 6= 1), Ui`(w) includes all the feature

vectors and the realized feedback outcomes up to the beginning of day ` plus all the feature

vectors and the feedback outcomes observed on day ` until the i− 1th customer.
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Minimizing the above term (∇wUi`(w) = 0) yields the following estimator for the param-

eter w:

ŵIi (`) =

(
`−1∑
s=1

Ms∑
j=1

φjk∗(s) φ
′

jk∗(s) +
( i−1∑
j=1

φjk∗(`) φ
′

jk∗(`)
)
1i 6=1 + λI

)−1

(
`−1∑
s=1

Ms∑
j=1

Qjk∗(s) φjk∗(s) +
( i−1∑
j=1

Qjk∗(`) φjk∗(`)
)
1i 6=1

)
,

where ŵIi (`) is the ideal L2-regularized least squares estimator of w with the regularization

parameter λ. This estimator is obtained by assuming that all the match quality feedback

outcomes of prior customers are realized by the time we calculate ŵIi (`).

In our setting, we have access to the feature vectors of all customers assigned to different

resources (i.e., feature vectors of customers will be available right after making decisions for

them) but the feedback outcomes might not be available immediately after making decisions

for them. Indeed, feedback outcomes arrive sequentially with delay in our setting. Accord-

ingly, it is not possible to use ŵIi (`) as our estimator because it requires the assumption of

no delayed feedback. In the PRA-LD algorithm, we use our asynchronous strategy in which

estimators for the unknown model parameters are updated on the fly based on the avail-

able information. Let (`, i, k∗) be a tuple referring to the ith customer on day ` assigned to

resource k∗. We define RF (Q)(i, `) as the set containing tuples (s, j, k∗) of customers with

realized match quality feedback outcomes before the arrival of the ith customer on day `,

where s ≤ ` and j < i. Similarly, we define UF (Q)(i, `) as the set containing tuples (s, j, k∗)

of customers with unrealized match quality feedback outcomes before the arrival of the ith

customer on day `.

We define ŵi(`) as our new estimator, which uses only the available information up to

the current time. It can be obtained as follows:

ŵi(`) =

(
`−1∑
s=1

Ms∑
j=1

φjk∗(s) φ
′

jk∗(s) +
( i−1∑
j=1

φjk∗(`) φ
′

jk∗(`)
)
1i 6=1 + λI

)−1

 ∑
(s,j,k∗)∈RF(Q)(i,`)

Qjk∗(s) φjk∗(s)

 .

Note that we update this estimator after each customer by using the available information

up to the current time. In particular, the estimator always uses the feature vectors of all

customers assigned, but it uses the feedback outcomes if they are realized up to the current

time.
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Step 2 (Confidence bound). Our aim is to construct a confidence bound that contains the

true expected match quality with high probability. To do so, we first establish the following

decomposition:

w − ŵi(`) =
(
w − ŵIi (`)

)
+
(
ŵIi (`)− ŵi(`)

)
.

We would like to derive an upper bound for
∣∣〈φik∗(`), w〉 − 〈φik∗(`), ŵi(`)〉∣∣. According

to the above decomposition and using the triangle inequality, we have:

∣∣〈φik∗(`), w〉 − 〈φik∗(`), ŵi(`)〉∣∣ ≤∣∣〈φik∗(`), w〉 − 〈φik∗(`), ŵIi (`)〉∣∣︸ ︷︷ ︸
(I)

+
∣∣〈φik∗(`), ŵIi (`)〉 − 〈φik∗(`), ŵi(`)〉∣∣︸ ︷︷ ︸

(II)

.

Next, we construct the confidence bound by bounding the two terms.

Term (I): Following the method used in [1] (see Theorem 2), it can be shown that the

following bound holds for any i and `:

∣∣〈φik∗(`), w〉 − 〈φik∗(`), ŵIi (`)〉∣∣
≤ ‖φik∗(`)‖V −1

i`

∥∥∥∥∥
`−1∑
s=1

Ms∑
j=1

ξjk∗(s) φjk∗(s) +
( i−1∑
j=1

ξjk∗(`) φjk∗(`)
)
1i 6=1

∥∥∥∥∥
V −1
i`

+ λ1/2

 ,

where Vi` =


∑`−1

s=1

∑Ms

j=1 φjk∗(s) φ
′

jk∗(s) + λI i = 1∑`−1
s=1

∑Ms

j=1 φjk∗(s) φ
′

jk∗(s) +
∑i−1

j=1 φjk∗(`) φ
′

jk∗(`) + λI i ≥ 2
is the design

matrix.

Let H0
i` be a sigma algebra generated by the feature vectors and the noise values upon

the arrival of the ith customer on day `. Note that ξik(`) is σξ-sub-Gaussian and the sequence

{
∑`−1

s=1

∑Ms

j=1 ξjk∗(s) φjk∗(s) +
(∑i−1

j=1 ξjk∗(`) φjk∗(`)
)
1i 6=1}`∈L,i∈M`

is a martingale adapted to

{H0
i`}`∈L,i∈M`

. In the literature, it is proved that this martingale stays close to zero (see

Theorem 1 in [1]). Accordingly, for any i, `, and δ > 0, the following holds with probability

at least 1− δ:∥∥∥∥∥
`−1∑
s=1

Ms∑
j=1

ξjk∗(s) φjk∗(s) +
( i−1∑
j=1

ξjk∗(`) φjk∗(`)
)
1i 6=1

∥∥∥∥∥
V −1
i`

≤ σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
.
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Term (II): First, we calculate the difference between the two estimators as:

ŵIi (`)− ŵi(`)

= V −1
i`

( ∑
(s,j,k∗)∈{RF(Q)(i,`) ∪ UF(Q)(i,`)}

Qjk∗(s) φjk∗(s)−
∑

(s,j,k∗)∈RF(Q)(i,`)

Qjk∗(s) φjk∗(s)
)

= V −1
i`

∑
(s,j,k∗)∈UF(Q)(i,`)

Qjk∗(s) φjk∗(s).

Accordingly, we have the following result:

〈φik∗(`), ŵIi (`)− ŵi(`)〉 =
〈
φik∗(`), V

−1
i`

∑
(s,j,k∗)∈UF(Q)(i,`)

Qjk∗(s) φjk∗(s)
〉

=
〈
φik∗(`),

∑
(s,j,k∗)∈UF(Q)(i,`)

Qjk∗(s) φjk∗(s)
〉
V −1
i`

≤ ‖φik∗(`)‖V −1
i`

∥∥∥∥∥∥
∑

(s,j,k∗)∈UF(Q)(i,`)

Qjk∗(s) φjk∗(s)

∥∥∥∥∥∥
V −1
i`

≤ ‖φik∗(`)‖V −1
i`

∑
(s,j,k∗)∈UF(Q)(i,`)

‖Qjk∗(s) φjk∗(s)‖V −1
i`

≤ cQ ‖φik∗(`)‖V −1
i`

∑
(s,j,k∗)∈UF(Q)(i,`)

‖φjk∗(s)‖V −1
i`
, (2.17)

where the first inequality is obtained using the Cauchy-Schwartz inequality 〈a, b〉M ≤ ‖a‖M ‖b‖M
for any vectors a, b ∈ Rn and matrix M . The second inequality holds by the triangle in-

equality. The last inequality holds because Qik(`) ∈ [0, cQ].

Let ∆ be the maximum number of days required for a feedback to be realized. Thus, on

day `, we know that the feedback outcomes of all customers who arrived before day ` −∆

are realized for sure. Then, it is not hard to see that the summation of weighted norms in

(2.17) can be upper bounded as:

∑
(s,j,k∗)∈UF(Q)(i,`)

‖φjk∗(s)‖V −1
i`
≤

`−1∑
s=max{1,`−∆}

Ms∑
j=1

‖φjk∗(s)‖V −1
i`

+
( i−1∑
j=1

‖φjk∗(`)‖V −1
i`

)
1i 6=1.
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Combining the bounds for Terms (I) and (II), we obtain the following:

∣∣〈φik∗(`), w〉 − 〈φik∗(`), ŵi(`)〉∣∣
≤ ‖φik∗(`)‖V −1

i`

(
σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(w)
ik∗ (`)

)
,

where Σ
(w)
ik∗ (`) = cQ

(∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗(s)‖V −1
i`

+
(∑i−1

j=1 ‖φjk∗(`)‖V −1
i`

)
1i 6=1

)
+ λ1/2.

Proposition II.2 (Contextual Learning Loss Associated with Stochastic Reward

in PRA-LD). For any δ > 0, the following holds with probability at least 1− δ.

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
rik(`) x

Aux∗

ik (`)− rik(`) xAlg
∗

ik (`)
]

≤ 2cs
√
NL

√
2 (d+K) log

(
1 +

c2φNL

λ(d+K)

)(
σξ

√
(d+K) log

(
1 +

c2φNL

λ(d+K)

)
+ log

(
1
δ2

)
+ λ1/2

)

+ 4 cscQ(d+K)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+K)

)
+ cscQNLδ .

Proof. In the PRA-LD algorithm, we specify a prior distribution over the unknown model

parameter w, and then update the posterior distribution by receiving new information. Upon

arrival of a new customer, we take a random sample w̃i(`) from the posterior distribution

over w to obtain the sample match quality. Recall that the history Hi` upon the arrival of

the ith customer on day ` includes context vectors, actions, and realized feedback outcomes.

Since w̃i(`) is sampled from the posterior distribution P(w|Hi`), parameters w and w̃i(`) are

identically distributed conditional on the history Hi`, i.e., P(w̃i(`)|Hi`) = P(w|Hi`).

Recall that xAlg
∗

i (`) = {xAlg
∗

ik (`)}k∈K is the optimal solution of PRA-LD, and xAux
∗

i (`) =

{xAux∗ik (`)}k∈K is the optimal solution of the resource allocation mechanism to solve the aux-

iliary problem in which w is known in advance. In our proof techniques, we need to show

that xAlg
∗

i (`) and xAux
∗

i (`) are identically distributed conditional on the history Hi`, i.e.,

P(xAlg
∗

i (`)|Hi`) = P(xAux
∗

i (`)|Hi`). In the PRA-LD algorithm with a general resource allo-

cation mechanism, assigning the ith customer on day ` to a resource depends on the sample

match quality q̃ik(`), expected service time sik(`), and a variable used in the mechanism

to keep track of the remaining capacity nAlgik (`). Similarly, this assignment decision in the

auxiliary problem depends on qik(`), sik(`), and nAuxik (`). Accordingly, we need to argue that

P(q̃ik(`), n
Alg
ik (`)|Hi`) = P(qik(`), n

Aux
ik (`)|Hi`). First, note that q̃ik(`) and nAlgik (`) are inde-

pendent random variables given Hi` because nAlgik (`) depends on all actions, context vectors,
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sample match quality values, and expected resource consumption values corresponding to

the customers arrived prior to the ith customer on day `. The same argument holds for the

auxiliary problem. Second, since w and w̃i(`) are identically distributed given the history

Hi`, we have P(q̃ik(`)|Hi`) = P(qik(`)|Hi`), and P(nAlgik (`)|Hi`) = P(nAuxik (`)|Hi`). Thus, we

conclude that xAlg
∗

i (`) and xAux
∗

i (`) are identically distributed conditional on the history Hi`.

Let UB
(w)
ik (`) and LB

(w)
ik (`) be the sequences of real-valued functions of Hi` and feature

vector φik(`) which are defined as:

UB
(w)
ik (`) = min

{
cQ, max

w∈Θ
(w)
i`

〈φik(`), w〉
}
, LB

(w)
ik (`) = max

{
0, min

w∈Θ
(w)
i`

〈φik(`), w〉
}
,

where Θ
(w)
i` is the confidence set that contains w with high probability. The above quantities

indicate the largest and smallest possible values for the expected match quality given the

history Hi`, respectively.

Recall that rik(`) = qik(`) sik(`). Since sik(`) ≤ cs is known, we have:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
rik(`) x

Aux∗

ik (`)− rik(`) xAlg
∗

ik (`)
]
≤

cs

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
qik(`) x

Aux∗

ik (`)− qik(`) xAlg
∗

ik (`)
]
.

Now we are ready to establish the following decomposition:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
qik(`) x

Aux∗

ik (`)− qik(`) xAlg
∗

ik (`)
]

=
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
E
[
qik(`) x

Aux∗

ik (`)− qik(`) xAlg
∗

ik (`)|Hi`

]]
=

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
E
[
qik(`) x

Aux∗

ik (`) + UB
(w)
ik (`) xAlg

∗

ik (`)

− UB(w)
ik (`) xAux

∗

ik (`)− qik(`) xAlg
∗

ik (`)|Hi`

]]
=

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
UB

(w)
ik (`) xAlg

∗

ik (`)− qik(`) xAlg
∗

ik (`)
]

+
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
qik(`) x

Aux∗

ik (`)− UB(w)
ik (`) xAux

∗

ik (`)
]
. (2.18)

Note that the above decomposition, first introduced by [95], is used to leverage the connec-
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tion between PS-based and UCB algorithms. The first equality holds by the law of total

expectation. The second equality holds by P(xAux
∗

i (`)|Hi`) = P(xAlg
∗

i (`)|Hi`) and knowing

that UB
(w)
ik (`) is a deterministic function given the history Hi`.

According to Proposition II.1, the following confidence bound holds with probability at

least 1− δ:

∣∣〈φik∗(`), w〉 − 〈φik∗(`), ŵi(`)〉∣∣
≤ ‖φik∗(`)‖V −1

i`

(
σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(w)
ik∗ (`)

)
,

where Σ
(w)
ik∗ (`) = cQ

(∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗(s)‖V −1
i`

+
(∑i−1

j=1 ‖φjk∗(`)‖V −1
i`

)
1i 6=1

)
+ λ1/2.

Accordingly, the two terms in (2.18) can be bounded with probability at least 1− δ.
For the first term in (2.18), we have:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
UB

(w)
ik (`) xAlg

∗

ik (`)− qik(`) xAlg
∗

ik (`)
]

≤
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
UB

(w)
ik (`) xAlg

∗

ik (`)− LB(w)
ik (`) xAlg

∗

ik (`)
]
.

By Lemma II.2, the above term is bounded as:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
UB

(w)
ik (`) xAlg

∗

ik (`)− LB(w)
ik (`) xAlg

∗

ik (`)
]

≤ 2
√
NL

√
2 (d+K) log

(
1 +

c2φNL

λ(d+K)

)(
σξ

√
(d+K) log

(
1 +

c2φNL

λ(d+K)

)
+ log

(
1
δ2

)
+ λ1/2

)

+ 4 cQ(d+K)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+K)

)
.

By Lemma II.3, the second term in (2.18) is bounded as:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
qik(`) x

Aux∗

ik (`)− UB(w)
ik (`) xAux

∗

ik (`)
]
≤ cQNLδ.

Putting the last two results together completes the proof.
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Proposition II.3 (Penalty Loss for Exceeding Resource Capacity). For any δ > 0,

the following holds with probability at least 1− δ.

E[PenaltyLoss-I] ≤ cQσηK

√
2NL log

(
2

δ

)
.

Proof. Recall that the resource consumption by a customer is stochastic in our problem and

it is realized after the customer is assigned to a resource. Our online algorithm enforces the

capacity constraints to hold only in expectation, where the algorithm assigns a customer to

a resource by relying on the expected resource consumption value. Accordingly, the total

realized resource consumption values of all customers assigned to a resource may exceed the

capacity of that resource. Thus, we consider a penalty on the amount of capacity allocated

in excess of the resource capacity. The expected penalty loss can be calculated as follows:

E[PenaltyLoss-I] = cQ

K∑
k=1

E

( L∑
`=1

M∑̀
i=1

Sik(`) xAlg
∗

ik (`)− Ck

)+
 ,

where cQ is the maximum possible value for the match quality.

To establish an upper bound for the above term, we decompose it into two terms:

K∑
k=1

E

( L∑
`=1

M∑̀
i=1

Sik(`) xAlg
∗

ik (`)− Ck

)+


=
K∑
k=1

E

( L∑
`=1

M∑̀
i=1

(
Sik(`) xAlg

∗

ik (`)− sik(`) xAlg
∗

ik (`) + sik(`) x
Alg∗

ik (`)
)
− Ck

)+


≤
K∑
k=1

E

[∣∣∣∣∣
L∑
`=1

M∑̀
i=1

(
Sik(`) xAlg

∗

ik (`)− sik(`) xAlg
∗

ik (`)
)∣∣∣∣∣
]

︸ ︷︷ ︸
(I)

+
K∑
k=1

E

( L∑
`=1

M∑̀
i=1

sik(`) x
Alg∗

ik (`)− Ck

)+


︸ ︷︷ ︸
(II)

.

The rest of the proof can be done by bounding each term, separately.
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Term (I): First, we have:

K∑
k=1

E

[∣∣∣∣∣
L∑
`=1

M∑̀
i=1

(
Sik(`) xAlg

∗

ik (`)− sik(`) xAlg
∗

ik (`)
)∣∣∣∣∣
]

=
K∑
k=1

E

[∣∣∣∣∣
L∑
`=1

M∑̀
i=1

(
Sik(`)− sik(`)

)
xAlg

∗

ik (`)

∣∣∣∣∣
]

≤
K∑
k=1

E

[∣∣∣∣∣
L∑
`=1

M∑̀
i=1

(
Sik(`)− sik(`)

)∣∣∣∣∣
]
.

Note that Sik(`)− sik(`) is the noise value which is a ση-sub-Gaussian random variable.

By the Azuma-Hoeffding inequality for sub-Gaussian random variables and its corollary (see

Lemma II.4), the following high-probability bound holds:∣∣∣∣∣
L∑
`=1

M∑̀
i=1

(
Sik(`)− sik(`)

)∣∣∣∣∣ ≤ ση

√
2NL log

(
2

δ

)
, with probability at least 1− δ. (2.19)

By (2.19), we have:

K∑
k=1

E

[∣∣∣∣∣
L∑
`=1

M∑̀
i=1

(
Sik(`)− sik(`)

)∣∣∣∣∣
]
≤ σηK

√
2NL log

(2

δ

)
.

Term (II): The algorithm guarantees that the capacity constraints hold in expectation.

Then, we have:

Ck ≥
L∑
`=1

M∑̀
i=1

sik(`) x
Alg∗

ik (`), ∀ k ∈ K.

Accordingly, we have:

K∑
k=1

E

( L∑
`=1

M∑̀
i=1

sik(`) x
Alg∗

ik (`)− Ck

)+
 ≤ 0.

Summing the bounds obtained for Terms (I) and (II) completes the proof.
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Proposition II.4 (Penalty Loss with Unknown Mean Resource Consumption). For

any δ > 0, the following holds with probability at least 1− 2δ.

E[PenaltyLoss-I]

≤ cQ

(
2
√
NL

√
2 (d+K) log

(
1 +

c2φNL

λ(d+K)

)(
ση

√
(d+K) log

(
1 +

c2φNL

λ(d+K)

)
+ log

(
1
δ2

)
+ λ1/2

)

+ 4 cS(d+K)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+K)

)
+ σηK

√
2NL log

(
2

δ

)
+ 2 cSNLδ

)
.

Proof. Recall that if resource k ∈ K is chosen for the ith customer on day `, the customer uses

Sik(`) units of this resource, regardless of `. We assume that Sik(`) ∈ [cS, cS] is a stochastic

resource consumption following a linear model with the expected value:

E[Sik(`)] = sik(`) = 〈φik(`), z〉,

where z ∈ Rd+K is the unknown model parameter. The noise values, ηik(`) = Sik(`) −
〈φik(`), z〉, are independent ση-sub-Gaussian random variables.

According to Proposition II.3, the expected penalty loss can be calculated as follows:

E[PenaltyLoss-I] = cQ

K∑
k=1

E

( L∑
`=1

M∑̀
i=1

Sik(`) xAlg
∗

ik (`)− Ck

)+
 ,

where cQ is the maximum possible value for the match quality.

To establish an upper bound for the above term, we decompose it into two terms:

K∑
k=1

E

( L∑
`=1

M∑̀
i=1

Sik(`) xAlg
∗

ik (`)− Ck

)+


≤
K∑
k=1

E

[∣∣∣∣∣
L∑
`=1

M∑̀
i=1

(
Sik(`) xAlg

∗

ik (`)− sik(`) xAlg
∗

ik (`)
)∣∣∣∣∣
]

︸ ︷︷ ︸
(I)

+
K∑
k=1

E

( L∑
`=1

M∑̀
i=1

sik(`) x
Alg∗

ik (`)− Ck

)+


︸ ︷︷ ︸
(II)

.

The rest of the proof can be done by bounding each term, separately.

Term (I): Similar to Proposition II.3, with probability at least 1 − δ, the first term is
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bounded as follows:

K∑
k=1

E

[∣∣∣∣∣
L∑
`=1

M∑̀
i=1

(
Sik(`) xAlg

∗

ik (`)− sik(`) xAlg
∗

ik (`)
)∣∣∣∣∣
]
≤ σηK

√
2NL log

(2

δ

)
.

Term (II): We define s̃ik(`) = 〈φik(`), z̃i(`)〉, where z̃i(`) is sampled from the posterior

distribution P(z|Hi`). The algorithm guarantees that the capacity constraints hold in ex-

pectation. Hence:

Ck ≥
L∑
`=1

M∑̀
i=1

s̃ik(`) x
Alg∗

ik (`), ∀ k ∈ K.

Accordingly, we have:

K∑
k=1

E

( L∑
`=1

M∑̀
i=1

sik(`) x
Alg∗

ik (`)− Ck

)+


≤
K∑
k=1

E

( L∑
`=1

M∑̀
i=1

(
sik(`) x

Alg∗

ik (`)− s̃ik(`) xAlg
∗

ik (`)
))+


=

K∑
k=1

E

( L∑
`=1

M∑̀
i=1

(
sik(`)− s̃ik(`)

)
xAlg

∗

ik (`)

)+


≤
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
sik(`)− s̃ik(`)

)+

xAlg
∗

ik (`)

]
,

where the last inequality holds by (
∑n

i=1 ai)
+ ≤

∑n
i=1(ai)

+ for any ai ∈ R.

Let UB
(z)
ik (`) and LB

(z)
ik (`) be the sequences of real-valued functions of Hi` and feature

vector φik(`) which are defined as:

UB
(z)
ik (`) = min

{
cS, max

z∈Θ
(z)
i`

〈φik(`), z〉
}
, LB

(z)
ik (`) = max

{
cS, min

z∈Θ
(z)
i`

〈φik(`), z〉
}
,

where Θ
(z)
i` is the confidence set that contains z with high probability. The above quantities

indicate the largest and smallest possible values for the expected resource consumption given

the history Hi`, respectively.
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Next, we establish the following decomposition:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
sik(`)− s̃ik(`)

)+

xAlg
∗

ik (`)

]

=
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
sik(`)− UB(z)

ik (`) + UB
(z)
ik (`)− LB(z)

ik (`) + LB
(z)
ik (`)− s̃ik(`)

)+

xAlg
∗

ik (`)

]

≤
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
sik(`)− UB(z)

ik (`)
)+

xAlg
∗

ik (`)

]
+

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
UB

(z)
ik (`)− LB(z)

ik (`)
)
xAlg

∗

ik (`)
]

+
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
LB

(z)
ik (`)− s̃ik(`)

)+

xAlg
∗

ik (`)

]
,

where the inequality holds by (a + b + c)+ ≤ a+ + b+ + c+ for any a, b, c ∈ R and the fact

that UB
(z)
ik (`) ≥ LB

(z)
ik (`) for any ` ∈ L, i ∈M`, k ∈ K.

Using the confidence bound established in Proposition II.1, the above three terms can be

bounded with probability at least 1− δ.
By Lemma II.3, the first term can be bounded as:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
sik(`)− UB(z)

ik (`)
)+

xAlg
∗

ik (`)

]
≤ cSNLδ.

By Lemma II.2, the second term can be bounded as:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
UB

(z)
ik (`)− LB(z)

ik (`)
)
xAlg

∗

ik (`)
]

≤ 2
√
NL

√
2 (d+K) log

(
1 +

c2φNL

λ(d+K)

)(
ση

√
(d+K) log

(
1 +

c2φNL

λ(d+K)

)
+ log

(
1
δ2

)
+ λ1/2

)

+ 4 cS(d+K)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+K)

)
,

where λ is the regularization parameter. Note that assuming the same regularization pa-

rameter when estimating w and z is only to keep the notation simple and it is not necessary.

For the third term, we have the following because we cannot assign a customer to more
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than one resource:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
LB

(z)
ik (`)− s̃ik(`)

)+

xAlg
∗

ik (`)

]
=

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
LB

(z)
ik (`)− s̃ik(`)

)+

1k(i,`)=k

]

=
L∑
`=1

M∑̀
i=1

E
[(
LB

(z)
ik∗(`)− s̃ik∗(`)

)+
]
.

Since parameters z and z̃i(`) are identically distributed conditional on the history Hi`

(i.e., P(z̃i(`)|Hi`) = P(z|Hi`)), we have P(s̃ik∗(`)|Hi`) = P(sik∗(`)|Hi`). Because LB
(z)
ik∗(`) is

deterministic given Hi`, we have:

L∑
`=1

M∑̀
i=1

E
[(
LB

(z)
ik∗(`)− s̃ik∗(`)

)+
]

=
L∑
`=1

M∑̀
i=1

E
[
E
[(
LB

(z)
ik∗(`)− s̃ik∗(`)

)+∣∣∣Hi`

]]

=
L∑
`=1

M∑̀
i=1

E
[
E
[(
LB

(z)
ik∗(`)− sik∗(`)

)+∣∣∣Hi`

]]

=
L∑
`=1

M∑̀
i=1

E
[(
LB

(z)
ik∗(`)− sik∗(`)

)+
]
.

Accordingly, the third term can be bounded as:

L∑
`=1

M∑̀
i=1

E
[(
LB

(z)
ik∗(`)− sik∗(`)

)+
]
≤ cSNLδ,

where the upper bound is obtained by Lemma II.3.

Summing the bounds obtained for Terms (I) and (II) completes the proof.

2.7.2 Appendix B. Technical Results for the PAS-LD Algorithm

Proposition II.5 (Confidence Bound for PAS-LD under Delayed Feedback). For

any i, `, and δ > 0, the following holds with probability at least 1− 2δ.

∣∣p 〈φik∗t∗(`), w〉 − 〈φik∗t∗(`), ŵci (`)〉∣∣
≤ ‖φik∗t∗(`)‖V −1

i`

(
(cQ + σξ)

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(pw)
ik∗t∗(`)

)
,
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where Vi` =


∑`−1

s=1

∑Ms

j=1 φjk∗t∗(s) φ
′

jk∗t∗(s) + λI i = 1∑`−1
s=1

∑Ms

j=1 φjk∗t∗(s) φ
′

jk∗t∗(s) +
∑i−1

j=1 φjk∗t∗(`) φ
′

jk∗t∗(`) + λI i ≥ 2
is the de-

sign matrix such that λ > 0 and

Σ
(pw)
ik∗t∗(`) = cQ

(∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗t∗(s)‖V −1
i`

+
(∑i−1

j=1 ‖φjk∗t∗(`)‖V −1
i`

)
1i 6=1

)
+ λ1/2.

Proof. In our advance scheduling problem, customers may not show up on the service date

after being assigned to a server and date. This adds an additional layer of complexity for

estimating the parameter w, because the match quality feedback cannot be observed at all

if the customer does not show up on the service date. In this proposition, we provide an

estimator for pw and a confidence bound on the expected match quality by taking into

account the probability that a customer shows up.

First, we define an ideal estimator of pw under no delayed feedback assumption as follows:

ŵc−Ii (`) =

(
`−1∑
s=1

Ms∑
j=1

φjk∗t∗(s) φ
′

jk∗t∗(s) +
( i−1∑
j=1

φjk∗t∗(`) φ
′

jk∗t∗(`)
)
1i 6=1 + λI

)−1

(
`−1∑
s=1

Ms∑
j=1

SU j(s)Qjk∗t∗(s) φjk∗t∗(s) +
( i−1∑
j=1

SU j(`)Qjk∗t∗(`) φjk∗t∗(`)
)
1i 6=1

)
,

where ŵc−Ii (`) is obtained by assuming that all no-show and match quality feedback outcomes

of prior customers are realized by the time we calculate ŵc−Ii (`). Note that ŵc−Ii (`) is different

from ŵIi (`) defined in Proposition II.1 because it also captures the no-show behavior.

In our setting, neither the match quality feedback nor the no-show feedback is available

right after scheduling a customer. In particular, some feedback outcomes needed for obtain-

ing ŵc−Ii (`) might not be available. Thus, ŵc−Ii (`) cannot be used as an estimate for pw. Let

(`, i, k∗, t∗) be a tuple referring to the ith customer on day ` assigned to server-date (k∗, t∗).

We define RF (SU ,Q)(i, `) as the set containing tuples (s, j, k∗, t∗) of customers with realized

no-show and match quality feedback outcomes before the arrival of the ith customer on day

`, where s ≤ ` and j < i. Similarly, let UF (SU ,Q)(i, `) be the set containing tuples (s, j, k∗, t∗)

of customers with unrealized no-show and match quality feedback outcomes before the ar-

rival of the ith customer on day `. We define ŵci (`) as an estimator of pw under delayed

feedback. This estimator uses only the available information up to the current time and can
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be obtained as follows:

ŵci (`) =

(
`−1∑
s=1

Ms∑
j=1

φjk∗t∗(s) φ
′

jk∗t∗(s) +
( i−1∑
j=1

φjk∗t∗(`) φ
′

jk∗t∗(`)
)
1i 6=1 + λI

)−1

 ∑
(s,j,k∗,t∗)∈RF(SU,Q)(i,`)

SU j(s)Qjk∗t∗(s) φjk∗t∗(s)

 .

We would like to derive an upper bound for
∣∣p 〈φik∗t∗(`), w〉 − 〈φik∗t∗(`), ŵci (`)〉∣∣. Using

the triangle inequality, we have:

∣∣p 〈φik∗t∗(`), w〉 − 〈φik∗t∗(`), ŵci (`)〉∣∣
≤
∣∣p 〈φik∗t∗(`), w〉 − 〈φik∗t∗(`), ŵc−Ii (`)〉

∣∣︸ ︷︷ ︸
(I)

+
∣∣〈φik∗t∗(`), ŵc−Ii (`)〉 − 〈φik∗t∗(`), ŵci (`)〉

∣∣︸ ︷︷ ︸
(II)

.

We construct the confidence bound by bounding the two terms.

Term (I): We start with bounding
∥∥ŵc−Ii (`)− p w

∥∥
Vi`

.

∥∥ŵc−Ii (`)− p w
∥∥
Vi`

=

∥∥∥∥∥V −1
i`

(
`−1∑
s=1

Ms∑
j=1

SU j(s)Qjk∗t∗(s) φjk∗t∗(s) +
( i−1∑
j=1

SU j(`)Qjk∗t∗(`) φjk∗t∗(`)
)
1i 6=1

)
− p w

∥∥∥∥∥
Vi`

≤

∥∥∥∥∥
`−1∑
s=1

Ms∑
j=1

εj(s)Qjk∗t∗(s) φjk∗t∗(s) +
( i−1∑
j=1

εj(`)Qjk∗t∗(`) φjk∗t∗(`)
)
1i 6=1

∥∥∥∥∥
V −1
i`

+

∥∥∥∥∥V −1
i`

(
`−1∑
s=1

Ms∑
j=1

p Qjk∗t∗(s) φjk∗t∗(s) +
( i−1∑
j=1

p Qjk∗t∗(`) φjk∗t∗(`)
)
1i 6=1

)
− p w

∥∥∥∥∥
Vi`

≤

∥∥∥∥∥
`−1∑
s=1

Ms∑
j=1

εj(s)Qjk∗t∗(s) φjk∗t∗(s) +
( i−1∑
j=1

εj(`)Qjk∗t∗(`) φjk∗t∗(`)
)
1i 6=1

∥∥∥∥∥
V −1
i`

(2.20)

+ p

∥∥∥∥∥
`−1∑
s=1

Ms∑
j=1

ξjk∗t∗(s) φjk∗t∗(s) +
( i−1∑
j=1

ξjk∗t∗(`) φjk∗t∗(`)
)
1i 6=1

∥∥∥∥∥
V −1
i`

+ p

∥∥∥∥∥V −1
i`

(
`−1∑
s=1

Ms∑
j=1

φjk∗t∗(s) φ
′

jk∗t∗(s) w +
( i−1∑
j=1

φjk∗t∗(`) φ
′

jk∗t∗(`) w
)
1i 6=1

)
− w

∥∥∥∥∥
Vi`

,

where the first inequality is obtained by replacing SU i(`) with p+εi(`) and using the triangle

inequality. The last inequality is obtained by replacing Qik∗t∗(`) with 〈φik∗t∗(`), w〉+ξik∗t∗(`)
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in the second term and using the triangle inequality.

Let H̄0
i` be a sigma algebra generated by the feature vectors and the noise values upon the

arrival of the ith customer on day `. Note that εi(`)Qikt(`) is cQ-sub-Gaussian and ξikt(`) is σξ-

sub-Gaussian. Then, we have two sequences that are martingales adapted to {H̄0
i`}`∈L,i∈M`

.

First one is {
∑`−1

s=1

∑Ms

j=1 εj(s)Qjk∗t∗(s) φjk∗t∗(s)+(
∑i−1

j=1 εj(`)Qjk∗t∗(`) φjk∗t∗(`))1i 6=1}`∈L,i∈M`

and the second one is {
∑`−1

s=1

∑Ms

j=1 ξjk∗t∗(s) φjk∗t∗(s)+(
∑i−1

j=1 ξjk∗t∗(`) φjk∗t∗(`))1i 6=1}`∈L,i∈M`
.

Then, the first and second terms in (2.20) can be bounded using the same technique used

to bound Term (I) in Proposition II.1. Accordingly, for any i, `, and δ > 0, each of the

followings holds with probability at least 1− δ:∥∥∥∥∥
`−1∑
s=1

Ms∑
j=1

εj(s)Qjk∗t∗(s) φjk∗t∗(s) +
( i−1∑
j=1

εj(`)Qjk∗t∗(`) φjk∗t∗(`)
)
1i 6=1

∥∥∥∥∥
V −1
i`

≤ cQ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
,

p

∥∥∥∥∥
`−1∑
s=1

Ms∑
j=1

ξjk∗t∗(s) φjk∗t∗(s) +
( i−1∑
j=1

ξjk∗t∗(`) φjk∗t∗(`)
)
1i 6=1

∥∥∥∥∥
V −1
i`

≤ σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
.

Next, we simplify the third term in (2.20). Let Wi` = Vi` − λI. Then, we have:

p

∥∥∥∥∥V −1
i`

(
`−1∑
s=1

Ms∑
j=1

φjk∗t∗(s) φ
′

jk∗t∗(s)w +
( i−1∑
j=1

φjk∗t∗(`) φ
′

jk∗t∗(`) w
)
1i 6=1

)
− w

∥∥∥∥∥
Vi`

= p
∥∥(V −1

i` Wi` − I
)
w
∥∥
Vi`
,

= p
(
w
′
(V −1

i` Wi` − I)Vi`(V
−1
i` Wi` − I)w

)1/2

= p
(
w
′
(I − V −1

i` Wi`)Vi`(I − V −1
i` Wi`)w

)1/2

= p λ1/2
(
w
′
(I − V −1

i` Wi`)w
)1/2

≤ p λ1/2 ‖w‖ ≤ λ1/2,

where the inequality holds because ‖w‖ ≤ 1.
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Accordingly, Term (I) is bounded with probability at least 1− 2δ:

∣∣p 〈φik∗t∗(`), w〉 − 〈φik∗t∗(`), ŵc−Ii (`)〉
∣∣

≤ ‖φik∗t∗(`)‖V −1
i`

∥∥ŵc−Ii (`)− pw
∥∥
Vi`

≤ ‖φik∗t∗(`)‖V −1
i`

(
(cQ + σξ)

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ λ1/2

)
.

Term (II): This term can be bounded following our technique used to bound Term (II) in

Proposition II.1. Accordingly, we have:

∣∣〈φik∗t∗(`), ŵc−Ii (`)〉 − 〈φik∗t∗(`), ŵci (`)〉
∣∣

≤ cQ ‖φik∗t∗(`)‖V −1
i`

∑
(s,j,k∗,t∗)∈UF(SU,Q)(i,`)

‖φjk∗t∗(s)‖V −1
i`

≤ cQ ‖φik∗t∗(`)‖V −1
i`

 `−1∑
s=max{1,`−∆}

Ms∑
j=1

‖φjk∗t∗(s)‖V −1
i`

+
( i−1∑
j=1

‖φjk∗t∗(`)‖V −1
i`

)
1i 6=1

 .

Combining the bounds for Terms (I) and (II), we obtain the following:

∣∣p 〈φik∗t∗(`), w〉 − 〈φik∗t∗(`), ŵci (`)〉∣∣
≤ ‖φik∗t∗(`)‖V −1

i`

(
(cQ + σξ)

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(pw)
ik∗t∗(`)

)
,

where Σ
(pw)
ik∗t∗(`) = cQ

(∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗t∗(s)‖V −1
i`

+
(∑i−1

j=1 ‖φjk∗t∗(`)‖V −1
i`

)
1i 6=1

)
+

λ1/2.

Proposition II.6 (Contextual Learning Loss Associated with Stochastic Reward in PAS-LD).

For any δ > 0, the following holds with probability at least 1− 2δ.

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
rikt(`) x

Aux∗

ikt (`)− rikt(`) xAlg
∗

ikt (`)
]

≤ 2cs
√
NL

√
2 (d+ A) log

(
1 +

c2φNL

λ(d+A)

)(
(cQ + σξ)

√
(d+ A) log

(
1 +

c2φNL

λ(d+A)

)
+ log

(
1
δ2

)
+ λ1/2

)
+ 4 cscQ(d+ A)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+ A)

)
+ 2 cscQNLδ.

Proof. Recall that xAlg
∗

i (`) = {xAlg
∗

ikt (`)}k∈K,t≥`+1 is the optimal solution of the PAS-LD algo-

rithm, and xAux
∗

i (`) = {xAux∗ikt (`)}k∈K,t≥`+1 is the optimal solution of the advance scheduling
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mechanism to solve the auxiliary problem in which the unknown model parameters (p and w)

are known in advance. Similar to our arguments in Proposition II.2, xAlg
∗

i (`) and xAux
∗

i (`) are

identically distributed conditional on the history H̄i`, i.e., P(xAlg
∗

i (`)|H̄i`) = P(xAux
∗

i (`)|H̄i`).

Let UB
(pw)
ikt (`) and LB

(pw)
ikt (`) be the sequences of real-valued functions of H̄i` and feature

vector φikt(`) which are defined as:

UB
(pw)
ikt (`) = min

{
cQ, max

pw∈Θ
(pw)
i`

〈φikt(`), pw〉
}
, LB

(pw)
ikt (`) = max

{
0, min

pw∈Θ
(pw)
i`

〈φikt(`), pw〉
}
,

where Θ
(pw)
i` is the confidence set that contains pw with high probability.

Recall that rikt(`) = qikt(`) sikt(`). Since sikt(`) ≤ cs is known, we have:

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
rikt(`) x

Aux∗

ikt (`)− rikt(`) xAlg
∗

ikt (`)
]

≤ cs

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
qikt(`) x

Aux∗

ikt (`)− qikt(`) xAlg
∗

ikt (`)
]
.

Accordingly, we establish the following decomposition:

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
qikt(`) x

Aux∗

ikt (`)− qikt(`) xAlg
∗

ikt (`)
]

=
L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
E
[
qikt(`) x

Aux∗

ikt (`)− qikt(`) xAlg
∗

ikt (`)|H̄i`

]]
=

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
E
[
qikt(`) x

Aux∗

ikt (`) + UB
(pw)
ikt (`) xAlg

∗

ikt (`)

− UB(pw)
ikt (`) xAux

∗

ikt (`)− qikt(`) xAlg
∗

ikt (`)|H̄i`

]]
=

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
UB

(pw)
ikt (`) xAlg

∗

ikt (`)− qikt(`) xAlg
∗

ikt (`)
]

+
L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
qikt(`) x

Aux∗

ikt (`)− UB(pw)
ikt (`) xAux

∗

ikt (`)
]
, (2.21)

where the first equality holds by the law of total expectation. The second equality holds

by P(xAlg
∗

i (`)|H̄i`) = P(xAux
∗

i (`)|H̄i`) and knowing that UB
(pw)
ikt (`) is a deterministic function

given the history H̄i`.

According to Proposition II.5, the following confidence bound holds with probability at
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least 1− 2δ:

∣∣p 〈φik∗t∗(`), w〉 − 〈φik∗t∗(`), ŵci (`)〉∣∣
≤ ‖φik∗t∗(`)‖V −1

i`

(
(cQ + σξ)

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(pw)
ik∗t∗(`)

)
,

where Σ
(pw)
ik∗t∗(`) = cQ

(∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗t∗(s)‖V −1
i`

+
(∑i−1

j=1 ‖φjk∗t∗(`)‖V −1
i`

)
1i 6=1

)
+

λ1/2.

Accordingly, the two terms in (2.21) can be bounded with probability at least 1− 2δ.

For the first term in (2.21), we have:

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
UB

(pw)
ikt (`) xAlg

∗

ikt (`)− qikt(`) xAlg
∗

ikt (`)
]
≤

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
UB

(pw)
ikt (`) xAlg

∗

ikt (`)− LB(pw)
ikt (`) xAlg

∗

ikt (`)
]
.

Similar to our arguments in Lemma II.2, we have:

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
UB

(pw)
ikt (`) xAlg

∗

ikt (`)− LB(pw)
ikt (`) xAlg

∗

ikt `)
]

≤ 2
L∑
`=1

M∑̀
i=1

E

[
‖φik∗t∗(`)‖V −1

i`

(
(cQ + σξ)

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(pw)
ik∗t∗(`)

)]
,

(2.22)

where Σ
(pw)
ik∗t∗(`) = cQ

(∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗t∗(s)‖V −1
i`

+
(∑i−1

j=1 ‖φjk∗t∗(`)‖V −1
i`

)
1i 6=1

)
+

λ1/2.

Following similar steps in Lemmas II.2 and II.5, we have:

L∑
`=1

M∑̀
i=1

‖φik∗t∗(`)‖V −1
i`
≤
√
NL

√
2 (d+ A) log

(
1 +

c2
φNL

λ(d+ A)

)
,

and,

2 log

(
det(Vi`)

1/2 det(λI)−1/2

δ

)
≤ (d+ A) log

(
1 +

c2
φN`

λ(d+ A)

)
+ log

(
1

δ2

)
.
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Then, we can derive the following bound for the right-hand side of (2.22):

L∑
`=1

M∑̀
i=1

‖φik∗t∗(`)‖V −1
i`

(
(cQ + σξ)

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(pw)
ik∗t∗(`)

)

≤
√
NL

√
2 (d+ A) log

(
1 +

c2φNL

λ(d+A)

)(
(cQ + σξ)

√
(d+ A) log

(
1 +

c2φNL

λ(d+A)

)
+ log

(
1
δ2

)
+ λ1/2

)
+ 2 cQ(d+ A)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+ A)

)
.

The second term in (2.21) can be bounded by a similar technique used in Lemma II.3 as:

L∑
`=1

M∑̀
i=1

K∑
k=1

L∑
t=`+1

E
[
qikt(`) x

Aux∗

ikt (`)− UB(pw)
ikt (`) xAux

∗

ikt (`)
]
≤ 2 cQNLδ.

Summing the bounds derived for the two terms in (2.21) completes the proof.

Proposition II.7 (Penalty Loss for Exceeding Servers’ Availability). For any δ > 0, the

following holds with probability at least 1− δ.

E[PenaltyLoss-II] ≤ cQσηKL

√
2NL log

(2

δ

)
.

Proof. Recall that the resource consumption by a customer is stochastic in our general re-

source allocation problem and we discussed why we should account for the possibility of

exceeding resource capacity in Proposition II.3. A similar argument also holds for our ad-

vance scheduling problem in which service time of a customer is stochastic and it is realized

after a customer is assigned to a server-date. The PAS-LD algorithm enforces the capacity

constraints to hold only in expectation by relying on the expected service time. Accordingly,

the total realized service times of customers assigned to a server-date may exceed the avail-

ability of the server on that day. Thus, we consider a penalty on the amount of capacity

allocated in excess of the servers’ availability on different days.

We assume that if a customer does not show up on the service date, the server’s availabil-

ity is still decreased by the expected service time of the customer. Accordingly, the expected

penalty loss can be calculated as follows:

E[PenaltyLoss-II]

= cQ

K∑
k=1

L∑
t=2

E

( t−1∑
`=1

M∑̀
i=1

(
SU i(`) Sikt(`) +

(
1− SU i(`)

)
sikt(`)

)
xAlg

∗

ikt (`)− Ckt

)+
 ,
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where cQ is the maximum possible value for the match quality.

To establish an upper bound for the above term, we decompose it into two terms:

K∑
k=1

L∑
t=2

E

( t−1∑
`=1

M∑̀
i=1

(
SU i(`) Sikt(`) +

(
1− SU i(`)

)
sikt(`)

)
xAlg

∗

ikt (`)− Ckt

)+


≤
K∑
k=1

L∑
t=2

E

[∣∣∣∣∣
t−1∑
`=1

M∑̀
i=1

SU i(`)
(
Sikt(`) xAlg

∗

ikt (`)− sikt(`) xAlg
∗

ikt (`)
)∣∣∣∣∣
]

︸ ︷︷ ︸
(I)

+
K∑
k=1

L∑
t=2

E

( t−1∑
`=1

M∑̀
i=1

sikt(`) x
Alg∗

ikt (`)− Ckt

)+


︸ ︷︷ ︸
(II)

.

The rest of the proof can be done by bounding each term, separately.

Term (I): First, we have:

K∑
k=1

L∑
t=2

E

[∣∣∣∣∣
t−1∑
`=1

M∑̀
i=1

SU i(`)
(
Sikt(`) xAlg

∗

ikt (`)− sikt(`) xAlg
∗

ikt (`)
)∣∣∣∣∣
]

=
K∑
k=1

L∑
t=2

E

[∣∣∣∣∣
t−1∑
`=1

M∑̀
i=1

SU i(`)
(
Sikt(`)− sikt(`)

)
xAlg

∗

ikt (`)

∣∣∣∣∣
]

≤
K∑
k=1

L∑
t=2

E

[∣∣∣∣∣
t−1∑
`=1

M∑̀
i=1

SU i(`)
(
Sikt(`)− sikt(`)

)∣∣∣∣∣
]
.

Note that SU i(`)(Sikt(`)−sikt(`)) is a ση-sub-Gaussian random variable because ηikt(`) =

Sikt(`)− sikt(`) is ση-sub-Gaussian and SU i(`) ∈ {0, 1}. By the Azuma-Hoeffding inequality

for sub-Gaussian random variables and its corollary (see Lemma II.4), the following high-

probability bound holds:∣∣∣∣∣
L∑
`=1

M∑̀
i=1

SU i(`)
(
Sikt(`)− sikt(`)

)∣∣∣∣∣ ≤ ση

√
2NL log

(2

δ

)
, with probability at least 1− δ.

(2.23)

K∑
k=1

L∑
t=2

E

[∣∣∣∣∣
t−1∑
`=1

M∑̀
i=1

SU i(`)
(
Sikt(`)− sikt(`)

)∣∣∣∣∣
]
≤ σηKL

√
2NL log

(2

δ

)
.

Term (II): The algorithm guarantees that the capacity constraints hold in expectation.
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Then, we have:

Ckt ≥
t−1∑
`=1

M∑̀
i=1

sikt(`) x
Alg∗

ikt (`), ∀ k ∈ K, ∀ t ∈ L\{1}.

Accordingly, we have:

K∑
k=1

L∑
t=2

E

( t−1∑
`=1

M∑̀
i=1

sikt(`) x
Alg∗

ikt (`)− Ckt

)+
 ≤ 0.

Summing the bounds derived for Terms (I) and (II) completes the proof.

2.7.3 Appendix C. Lemmas 1, 2, 3, and Propositions 8 and 9

Lemma II.1 (Upper Bound on Expected Total Reward of Clairvoyant Policy). In

the general resource allocation problem, the expected total reward of the clairvoyant policy is

upper bounded by the LP-based benchmark-I (LP1[ϕX , w]).

Proof. Let 1ik`(ϕ
X , w) ∈ {0, 1} be the indicator that the clairvoyant policy assigns the ith

customer on day ` to resource k for a given sequence of customer contexts ϕX and model

parameter w. Recall that the clairvoyant policy is feasible. Thus, the capacity constraints

should hold for any sample path of realized match quality values Q = {Qik(`)}`∈L,i∈M`,k∈K,

resource consumption values S = {Sik(`)}`∈L,i∈M`,k∈K, and possible randomization in the

clairvoyant policy. Then, we have:

L∑
`=1

M∑̀
i=1

Sik(`) 1ik`(ϕX , w) ≤ Ck, ∀ k ∈ K. (2.24)

Note that the random variable Sik(`) is independent of the random variable 1ik`(ϕ
X , w) as

the clairvoyant policy does not observe Sik(`) when assigns the ith customer on day ` to

resource k.

First, we need to show that E[1ik`(ϕ
X , w)] is a feasible solution for the offline LP-based

benchmark-I. By taking expectation of both sides of (2.24) over random realizations of

resource consumption and match quality, and other possible randomization, we have:

L∑
`=1

M∑̀
i=1

sik(`) E[1ik`(ϕ
X , w)] ≤ Ck, ∀ k ∈ K,

where the above inequality holds since sik(`) = E[Sik(`)].
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Let xik(`) = E[1ik`(ϕ
X , w)]. Then, the capacity constraints in LP1[ϕX , w] hold. By

definition, xik(`) ≥ 0 and constraints
∑K

k=1 xik(`) ≤ 1 hold as well. Next, it is easy to

see that the objective function of LP1[ϕX , w] is equal to the expected total reward of the

clairvoyant policy. Thus, the expected total reward of the clairvoyant policy is upper bounded

by the offline LP-based benchmark-I.

Lemma II.2 (Bound on Difference Between Upper and Lower Bounds of Expected

Match Quality). Let UB
(w)
ik (`) and LB

(w)
ik (`) be the sequences of real-valued functions of

Hi` and feature vector φik(`):

UB
(w)
ik (`) = min

{
cQ, max

w∈Θ
(w)
i`

〈φik(`), w〉
}
, LB

(w)
ik (`) = max

{
0, min

w∈Θ
(w)
i`

〈φik(`), w〉
}
,

where Θ
(w)
i` is the confidence set that contains w with high probability.

Then, for any δ > 0, the following holds with probability at least 1− δ.

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
UB

(w)
ik (`) xAlg

∗

ik (`)− LB(w)
ik (`) xAlg

∗

ik (`)
]

≤ 2
√
NL

√
2 (d+K) log

(
1 +

c2φNL

λ(d+K)

)(
σξ

√
(d+K) log

(
1 +

c2φNL

λ(d+K)

)
+ log

(
1
δ2

)
+ λ1/2

)

+ 4 cQ (d+K)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+K)

)
.

Proof. Since we cannot assign a customer to more than one resource, we have:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
UB

(w)
ik (`) xAlg

∗

ik (`)− LB(w)
ik (`) xAlg

∗

ik (`)
]

=
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[ (
UB

(w)
ik (`)− LB(w)

ik (`)
)
1k(i,`)=k

]
=

L∑
`=1

M∑̀
i=1

E
[
UB

(w)
ik∗ (`)− LB(w)

ik∗ (`)
]
.

According to Proposition II.1, for any i, `, and δ > 0, the following holds with probability
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at least 1− δ:

∣∣〈φik∗(`), w〉 − 〈φik∗(`), ŵi(`)〉∣∣
≤ ‖φik∗(`)‖V −1

i`

(
σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(w)
ik∗ (`)

)
,

where Σ
(w)
ik∗ (`) = cQ

(∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗(s)‖V −1
i`

+
(∑i−1

j=1 ‖φjk∗(`)‖V −1
i`

)
1i 6=1

)
+ λ1/2.

The above term can be further simplified by the following algebra:

2 log

(
det(Vi`)

1/2 det(λI)−1/2

δ

)
= 2 log

(
det(Vi`)

1/2
)

+ 2 log

(
det(λI)−1/2

δ

)
≤ (d+K) log

(
λ+

c2
φN`

d+K

)
+ 2 log

(
det(λI)−1/2

)
+ 2 log

(
1

δ

)
= (d+K) log

(
λ+

c2
φN`

d+K

)
+ (d+K) log

(
1

λ

)
+ 2 log

(
1

δ

)
= (d+K) log

(
1 +

c2
φN`

λ(d+K)

)
+ log

(
1

δ2

)
.

Note that Vi` is a positive definite matrix, tr(Vi`) is equal to the summation of its eigenvalues,

and det(Vi`) is equal to the product of its eigenvalues. Then, by the inequality of arithmetic

and geometric means, we have:

det(Vi`) =
d+K∏
i=1

ζi ≤
( 1

d+K
tr(Vi`)

)d+K

≤
(
λ+

c2
φN`

d+K

)d+K

,

where ζi is the ith eigenvalue of the matrix Vi`. The second inequality holds by tr(Vi`) ≤
tr(λI) + c2

φN`.

According to the confidence bound in Proposition II.1 and definitions of UB
(w)
ik (`) and

LB
(w)
ik (`), the following holds with probability at least 1− δ:

E
[
UB

(w)
ik∗ (`)− LB(w)

ik∗ (`)
]

≤ 2 E

[
‖φik∗(`)‖V −1

i`

(
σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(w)
ik∗ (`)

)]
, (2.25)

where Σ
(w)
ik∗ (`) = cQ

(∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗(s)‖V −1
i`

+
(∑i−1

j=1 ‖φjk∗(`)‖V −1
i`

)
1i 6=1

)
+ λ1/2.
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Based on Lemma II.5, we have:

L∑
`=1

M∑̀
i=1

‖φik∗(`)‖2
V −1
i`
≤ 2 log

(
det(V1 L+1)

det(λI)

)
,

where det(V1 L+1) ≤
(
λ+

c2φNL

d+K

)d+K

.

Using the Cauchy-Schwarz inequality and the obtained bound for det(V1 L+1), we have:

L∑
`=1

M∑̀
i=1

‖φik∗(`)‖V −1
i`
≤
√
NL

√√√√ L∑
`=1

M∑̀
i=1

‖φik∗(`)‖2
V −1
i`
≤
√
NL

√
2 (d+K) log

(
1 +

c2
φNL

λ(d+K)

)
.

Furthermore, we have:

L∑
`=1

M∑̀
i=1

‖φik∗(`)‖V −1
i`

( `−1∑
s=max{1,`−∆}

Ms∑
j=1

‖φjk∗(s)‖V −1
i`

+
( i−1∑
j=1

‖φjk∗(`)‖V −1
i`

)
1i 6=1

)

≤ 1

2

L∑
`=1

M∑̀
i=1

`−1∑
s=max{1,`−∆}

Ms∑
j=1

(
‖φik∗(`)‖2

V −1
i`

+ ‖φjk∗(s)‖2
V −1
i`

)

+
1

2

L∑
`=1

M∑̀
i=1

( i−1∑
j=1

(
‖φik∗(`)‖2

V −1
i`

+ ‖φjk∗(`)‖2
V −1
i`

))
1i 6=1

≤ 1

2

L∑
`=1

M∑̀
i=1

`−1∑
s=max{1,`−∆}

Ms∑
j=1

(
‖φik∗(`)‖2

V −1
i`

+ ‖φjk∗(s)‖2
V −1
js

)

+
1

2

L∑
`=1

M∑̀
i=1

( i−1∑
j=1

(
‖φik∗(`)‖2

V −1
i`

+ ‖φjk∗(`)‖2
V −1
j`

))
1i 6=1

≤ 1

2
M̄∆

L∑
`=1

M∑̀
i=1

‖φik∗(`)‖2
V −1
i`

+
1

2

L∑
`=1

M∑̀
i=1

`−1∑
s=max{1,`−∆}

Ms∑
j=1

‖φjk∗(s)‖2
V −1
js

+
1

2
M̄

L∑
`=1

M∑̀
i=1

‖φik∗(`)‖2
V −1
i`

+
1

2

L∑
`=1

M∑̀
i=1

( i−1∑
j=1

‖φjk∗(`)‖2
V −1
j`

)
1i 6=1

≤ M̄∆
L∑
`=1

M∑̀
i=1

‖φik∗(`)‖2
V −1
i`

+ M̄

L∑
`=1

M∑̀
i=1

‖φik∗(`)‖2
V −1
i`
,

where M̄ is an upper bound on the maximum number of arrivals on each day. The first

inequality holds by using ab ≤ (a2 + b2)/2 for a, b ∈ R. The second inequality holds because

‖φjk(s)‖V −1
i`
≤ ‖φjk(s)‖V −1

js
for all j ≤ i, s ≤ `. The last inequality holds because∑L

`=1

∑M`

i=1

∑`−1
s=max{1,`−∆}

∑Ms

j=1 ‖φjk∗(s)‖
2
V −1
js
≤ M̄∆

∑L
`=1

∑M`

i=1 ‖φik∗(`)‖
2
V −1
i`

and
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∑L
`=1

∑M`

i=1

(∑i−1
j=1 ‖φjk∗(`)‖

2
V −1
j`

)
1i 6=1 ≤ M̄

∑L
`=1

∑M`

i=1 ‖φik∗(`)‖
2
V −1
i`

.

Now, we are ready to derive the following bound:

L∑
`=1

M∑̀
i=1

‖φik∗(`)‖V −1
i`

(
σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(w)
ik∗ (`)

)

≤
L∑
`=1

M∑̀
i=1

‖φik∗(`)‖V −1
i`

(
σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ λ1/2

)

+ cQM̄(1 + ∆)
L∑
`=1

M∑̀
i=1

‖φik∗(`)‖2
V −1
i`

≤
√
NL

√
2 (d+K) log

(
1 +

c2
φNL

λ(d+K)

)(
σξ

√
(d+K) log

(
1 +

c2
φNL

λ(d+K)

)
+ log

(
1

δ2

)
+ λ1/2

)

+ 2 cQ (d+K)M̄(1 + ∆) log

(
1 +

c2
φNL

λ(d+K)

)
.

Replacing the above result into the inequality (2.25) completes the proof.

Lemma II.3 (Bound on Difference Between Expected Match Quality and its

Upper/Lower Bound). For any δ > 0, the following bounds hold with probability at least

1− δ.

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
qik(`) x

Aux∗

ik (`)− UB(w)
ik (`) xAux

∗

ik (`)
]
≤ cQNLδ.

and,

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
LB

(w)
ik (`) xAux

∗

ik (`)− qik(`) xAux
∗

ik (`)
]
≤ cQNLδ.

Proof. Since we cannot assign each customer to more than one resource, we have

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
qik(`) x

Aux∗

ik (`)− UB(w)
ik (`) xAux

∗

ik (`)
]

=
L∑
`=1

M∑̀
i=1

K∑
k=1

E
[(
qik(`)− UB(w)

ik (`)
)
1k(i,`)=k

]
=

L∑
`=1

M∑̀
i=1

E
[
qik∗(`)− UB(w)

ik∗ (`)
]
.
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Since qik(`) ≤ cQ, we have:

L∑
`=1

M∑̀
i=1

(
qik∗(`)− UB(w)

ik∗ (`)
)
≤ cQ

L∑
`=1

M∑̀
i=1

1
(
qik∗(`) > UB

(w)
ik∗ (`)

)
.

Taking expectation from both sides results in the following:

L∑
`=1

M∑̀
i=1

E
[
qik∗(`)− UB(w)

ik∗ (`)
]
≤ cQ

L∑
`=1

M∑̀
i=1

P
(
qik∗(`) > UB

(w)
ik∗ (`)

)
.

Next, we define the sequences of UB
(w)

ik (`) and LB
(w)

ik (`) as follows:

UB
(w)

ik (`) = max
w∈Θ

(w)
i`

〈φik(`), w〉, LB
(w)

ik (`) = min
w∈Θ

(w)
i`

〈φik(`), w〉.

Recall from Proposition II.1 that for any i, `, and δ > 0, with probability at least 1− δ,
we have:

∣∣〈φik∗(`), w〉 − 〈φik∗(`), ŵi(`)〉∣∣ ≤ ‖φik∗(`)‖V −1
i`

(
σξ

√
2 log

(
det(Vi`)1/2 det(λI)−1/2

δ

)
+ Σ

(w)
ik∗ (`)

)
.

The above statement is equivalent to the following:

P
[
LB

(w)

ik∗ (`) ≤ qik∗(`) ≤ UB
(w)

ik∗ (`)
]
≥ 1− δ.

Note that if UB
(w)
ik∗ (`) < cQ, then UB

(w)
ik∗ (`) = UB

(w)

ik∗ (`) by definition of UB
(w)
ik∗ (`). When

qik∗(`) > UB
(w)
ik∗ (`), we have UB

(w)
ik∗ (`) < cQ, which implies that UB

(w)
ik∗ (`) = UB

(w)

ik∗ (`).

Accordingly, the proof of the first statement of the lemma is completed by the following

bound:

L∑
`=1

M∑̀
i=1

P
(
qik∗(`) > UB

(w)
ik∗ (`)

)
=

L∑
`=1

M∑̀
i=1

P
(
qik∗(`) > UB

(w)

ik∗ (`)
)
≤ NLδ.

Similarly, the following bound can be established for the second statement of the lemma:

L∑
`=1

M∑̀
i=1

K∑
k=1

E
[
LB

(w)
ik (`) xAux

∗

ik (`)− qik(`) xAux
∗

ik (`)
]
≤ cQNLδ.
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Proposition II.8 (Competitive Ratio of Mechanism 1). Let V AUX1 be the total expected

reward obtained by Mechanism 1 for solving the auxiliary problem, and let V BM1 be the total

expected reward of the LP-based benchmark-I. Then, the following holds:

V AUX1

V BM1
≥ 1− ηmaxΛ

1 + β
,

where ηmax = max
i,k,`

{ rik(`)
sik(`)

}
, Λ = max

i,k,`

( sik(`)
Ck

)
, Γ = (1 + Λ)1/Λ, and β = ηmax

Γ−1
.

Remark. When Λ → 0 and ηmax → 1, then coefficient β → 1/(e− 1). Thus, the above

ratio converges to 1− 1/e, which recovers the classical result in the primal-dual paradigm.

Proof. The aim is to derive the competitive ratio of Mechanism 1 for solving the auxiliary

problem, in which the model parameter w is known and there is no need for learning. Our

analysis is based on the primal-dual paradigm which maintains a set of dual variables to

guide the primal solutions.

We formulate primal and dual problems in which the model parameter w and the sequence

of customer contexts ϕX are known in advance.

Primal Problem:

max
x

L∑
`=1

M∑̀
i=1

K∑
k=1

rik(`) xik(`)

s.t.
L∑
`=1

M∑̀
i=1

sik(`) xik(`) ≤ Ck, ∀ k ∈ K (2.26)

K∑
k=1

xik(`) ≤ 1, ∀ ` ∈ L, ∀ i ∈M` (2.27)

xik(`) ≥ 0, ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K,

where xik(`) is corresponding to the probability of assigning the ith customer on day ` to

resource k.

We construct the dual problem by defining dual variables yk and θi(`) corresponding to

constraints (2.26) and (2.27), respectively.

Dual Problem:

min
y,θ

K∑
k=1

yk Ck +
L∑
`=1

M∑̀
i=1

θi(`)

s.t. sik(`) yk + θi(`) ≥ rik(`), ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K (2.28)

yk, θi(`) ≥ 0, ∀ ` ∈ L, ∀ i ∈M`, ∀ k ∈ K.
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The proof consists of two main steps. In Step 1, at each iteration (per arrival of a

customer), we show that the dual solution is always feasible, the primal solution is almost

feasible, and the ratio between the change in the objective value of the dual solution and the

change in the objective value of the primal solution is less than 1+β. In Step 2, we construct

a feasible primal solution for the resource allocation mechanism and bound its competitive

ratio.

Step 1 (Feasibility and Primal-Dual Change Ratio). The idea of the proof to show the

feasibility of the dual solution is similar to the proof of Theorem 3.1 in [25] for the Adwords

problem. However, we need to adapt it for our general resource allocation problem in which

customer rewards are not necessarily the same as the resource consumption values.

Part I: First, we prove that the resource allocation mechanism provides a feasible dual

solution.

At each iteration, the resource allocation mechanism sets the dual variable θi(`) to

rik∗(`) − sik∗(`) yk∗ . Due to the acceptance criterion (i.e., rik∗(`) − sik∗(`) yk∗ ≥ 0) used

in the mechanism, it is easy to see that constraint (2.28) holds and θi(`) ≥ 0. Note that

yk ≥ 0 due to the multiplicative updating equation for this variable. Hence, the mechanism

provides a feasible dual solution at each iteration.

Part II: Next, we prove that the mechanism provides an almost feasible primal solution at

each iteration.

First, note that constraint (2.27) holds since a customer must be either rejected or as-

signed to only one resource. Also, xik(`) ≥ 0 because its value is either 1 or 0. It remains to

show constraint (2.26) holds.

Let Ik be the set containing (i, `) pairs corresponding to the indices of the customers

assigned to resource k. Let J = {1, · · · , Jend} be the set of iterations, and Jk be the last

iteration that yk is updated using the multiplicative equation. For notational convenience,

we write Jk as J and then we have y
(J)
k as the last value of yk. We also define (ij, `j) pair to

refer to the customer at iteration j. We need to show that when
∑

(i,`)∈Ik sik(`) xik(`) ≥ Ck
and xik(`) = 1 for (i, `) ∈ Ik, an arriving customer cannot be assigned to resource k anymore.

Then, it suffices to show that the following holds for any ` ∈ L, i ∈M`, and k ∈ K:

If
∑

(n,s)∈Ik

snk(s) xnk(s) ≥ Ck, then
(
rik(`)− sik(`) y(J)

k

)
< 0. (2.29)

Note that there can be at most one iteration in which the above condition is violated. This

happens when there is available capacity before assigning a customer but it is less than

the expected resource consumption value of the customer. We carefully take care of this

possibility in Step 2.
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In the resource allocation mechanism, we have the following multiplicative updating

equation for dual variable yk at any relevant iteration j:

y
(j)
k = y

(j−1)
k

(
1 +

sijk(`j)

Ck

)
+ β

( rijk(`j)

Ck

)
.

Let ηmin = min
i,k,`

{ rik(`)
sik(`)

}
. Since we can uniformly scale the units of rik(`) by constant

1/ηmin, without loss of generality, we assume rik(`)
sik(`)

≥ 1 for each ` ∈ L, i ∈ M`, k ∈ K.

Then, we have:

y
(j)
k + β ≥ (y

(j−1)
k + β)

(
1 +

sijk(`j)

Ck

)
. (2.30)

We define Λ = max
i,k,`

( sik(`)
Ck

)
and Γ = (1 + Λ)1/Λ. Then, we have:

1 +
sik(`)

Ck
≥ Γ

(sik(`)
Ck

)
, ∀ ` ∈ L, i ∈M`, k ∈ K, (2.31)

where the inequality holds by using 1
m

ln(1 + m) ≥ 1
n

ln(1 + n) for any 0 ≤ m ≤ n ≤ 1,

and having m =
sik(`)

Ck
and n = Λ. Note that the assumption of 0 ≤ m ≤ n ≤ 1 holds

because clearly 0 ≤ m ≤ n and the expected resource consumption value of a customer is by

far less than the total capacity of a resource (n ≤ 1).

Plugging (2.31) into (2.30) and using a recursion technique yield the following:

y
(J)
k + β ≥ (y

(0)
k + β) Γ

∑
(i,`)∈Ik

(sik(`)
Ck

)
= β Γ

∑
(i,`)∈Ik

(sik(`)
Ck

)
,

where the equality holds because the initial value of yk is zero.

Next, the following holds because we have
∑

(i,`)∈Ik sik(`) xik(`) ≥ Ck, and xik(`) = 1 for

(i, `) ∈ Ik, k ∈ K:

y
(J)
k ≥ β (Γ− 1).

Recall that the resource allocation mechanism is required to meet (2.29), which implies

that when the capacity constraint is exceeded, the acceptance criterion does not hold. To

make sure that this condition holds, it suffices to have:

β (Γ− 1) ≥ rik(`)

sik(`)
, ∀ ` ∈ L, i ∈M`, ∀ k ∈ K.
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The appropriate choice for β is ηmax

(Γ−1)
, where ηmax = max

i,k,`

{
rik(`)
sik(`)

}
.

Part III: Lastly, we prove that the ratio between the change in the dual objective function

and the change in the primal objective function is less than 1 + β at each iteration.

Recall that (ij, `j) pair refers to the customer assigned to resource k∗ at iteration j. Also,

let ObjP and ObjD be the objective values of the primal and dual solutions, respectively.

Then, the change in the objective value of the primal solution at the jth iteration ∆(Obj)
(j)
P is

rijk∗(`j). Similarly, the change in the objective value of the dual solution at the jth iteration

∆(Obj)
(j)
D can be calculated as follows:

∆(Obj)
(j)
D = Ck∗ ∆(y

(j)
k∗ ) + θij(`j)

= Ck∗
(
y

(j−1)
k∗

(sijk∗(`j)
Ck∗

)
+ β

( rijk∗(`j)

Ck∗

))
+
(
rijk∗(`j)− sijk∗(`j) y

(j−1)
k∗

)
= rijk∗(`j) (1 + β).

Since ObjP =
∑

j∈J ∆(Obj)
(j)
P and ObjD =

∑
j∈J ∆(Obj)

(j)
D , we have ObjD/ObjP ≤

1 + β.

Step 2 (Competitive Ratio). At first, we construct a feasible primal solution for the

resource allocation mechanism. Then, we bound the ratio between the objective value of

the feasible primal solution and the objective value of the almost feasible primal solution.

Finally, we bound the competitive ratio.

We start by constructing a feasible primal solution for the resource allocation mechanism.

For each k ∈ K, we define xk = {xik(`)}(i,`)∈Ik as the almost feasible primal solution obtained

by the mechanism, and x̃k as the feasible primal solution obtained by tweaking xk. It should

be noted that we have x̃ik(`) = xik(`) for (i, `) ∈ Ik\{(iJ , `J)} and x̃iJk(`J) ≤ xiJk(`J).

Let ÕbjP be the objective value of the feasible primal solution obtained by converting the

almost feasible solution of the mechanism, and Obj BM1 be the objective value of the optimal

solution of the offline LP-based benchmark-I. By weak duality, we have Obj BM1 ≤ ObjD.

Then, the following holds:

ÕbjP
Obj BM1

≥ ÕbjP
ObjD

=
ÕbjP ObjP
ObjP ObjD

=
ÕbjP/ObjP
ObjD/ObjP

. (2.32)

By Part III in Step 1, we know that ObjD
ObjP

≤ (1 + β). Thus, we need to find a tight lower

bound for ÕbjP
ObjP

. In the following, we compute the ratio between the objective value of the

feasible primal solution x̃ and the objective value of the almost feasible primal solution x for
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each resource k.

Õbj
(k)

P

Obj
(k)
P

=

∑
(i,`)∈Ik rik(`) x̃ik(`)∑
(i,`)∈Ik rik(`) xik(`)

=

∑
(i,`)∈Ik rik(`) xik(`)− riJk(`J) xiJk(`J) + riJk(`J) x̃iJk(`J)∑

(i,`)∈Ik rik(`) xik(`)

= 1−
riJk(`J)

(
xiJk(`J)− x̃iJk(`J)

)∑
(i,`)∈Ik rik(`) xik(`)

= 1−

(
riJk(`J )

siJk(`J )

)
siJk(`J)

(
xiJk(`J)− x̃iJk(`J)

)
∑

(i,`)∈Ik

( rik(`)
sik(`)

)
sik(`) xik(`)

≥ 1−
(ηmax

ηmin

)siJk(`J)
(
xiJk(`J)− x̃iJk(`J)

)∑
(i,`)∈Ik sik(`) xik(`)

,

where ηmin = min
i,k,`

{ rik(`)
sik(`)

}
and ηmax = max

i,k,`

{ rik(`)
sik(`)

}
.

Note that xiJk(`J)− x̃iJk(`J) is either 1 or 0. Thus, we have:

Õbj
(k)

P

Obj
(k)
P

≥ 1−
(ηmax

ηmin

) siJk(`J)∑
(i,`)∈Ik sik(`) xik(`)

.

Accordingly, we have:

ÕbjP
ObjP

≥ min
k∈K

(Õbj(k)

P

Obj
(k)
P

)
≥ min

k∈K

(
1−

(ηmax

ηmin

) siJk(`J)∑
(i,`)∈Ik sik(`) xik(`)

)
= 1− ηmaxΛ ,

where the second equality holds by
∑

(i,`)∈Ik sik(`) xik(`) ≥ Ck and
siJk(`J )∑

(i,`)∈Ik
sik(`) xik(`)

≤
siJk(`J )

Ck
≤ max

i,k,`

( sik(`)
Ck

)
= Λ.

The proof is completed by the following bound:

ÕbjP
Obj BM1

≥ ÕbjP/ObjP
ObjD/ObjP

≥ 1− ηmaxΛ

1 + β
,

where the first inequality holds by (2.32).

Proposition II.9 (Competitive Ratio of Mechanism 2). Let V AUX2 be the total expected

reward obtained by Mechanism 2 for solving the auxiliary problem, and let V BM2 be the total

expected reward of the LP-based benchmark-II. Then, the following holds:

V AUX2

V BM2
≥ 1− η̃maxΛ̃

1 + β̃
,
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where η̃max = max
i,k,t,`

{ rikt(`)
sikt(`)

}
, Λ̃ = max

i,k,t,`

( sikt(`)
Ckt

)
, Γ̃ = (1 + Λ̃)1/Λ̃, and β̃ = η̃max

Γ̃−1
.

Remark. When Λ̃ → 0 and η̃max → 1, then coefficient β̃ → 1/(e− 1). Thus, the above

ratio converges to 1− 1/e.

Proof. The proof is similar to the proof of Proposition II.8 and we omit the details here.

2.7.4 Appendix D. Known Results

In this section, we provide some known results from the literature. For completeness, we

provide self-contained and more expository version of the original proof in Lemma II.5.

Lemma II.4 (Azuma-Hoeffding for Sub-Gaussian Random Variables). Let Y1, · · · , Yn
be a σ-sub-Gaussian martingale difference sequence adapted to X1, · · · , Xn such that:

E
[

exp (λYi) | Xi−1

]
≤ exp

(λ2σ2

2

)
, for all λ ∈ R.

Then, for every t > 0, we have:

P

(∣∣ n∑
i=1

Yi
∣∣ ≥ t

)
≤ 2 exp

(
− t2

2nσ2

)
.

As a corollary of the Azuma-Hoeffding inequality, we have the following bound:

∣∣ n∑
i=1

Yi
∣∣ ≤ σ

√
2n log

(
2

δ

)
, with probability at least 1− δ.

Lemma II.5 (Upper Bound on Summation of Feature Vectors). Let {φik(`)}`∈L,i∈M`

be a sequence of feature vectors in Rd+K. When λmin(Vi`) is large enough (i.e., λmin(Vi`) ≥
max{1, c2

φ}), the following holds almost surely (Adopted from Lemma 9 in [41]):

L∑
`=1

M∑̀
i=1

‖φik(`)‖2
V −1
i`
≤ 2 log

(
det(V1 L+1)

det(λI)

)
.
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Proof. The determinant of V1 L+1 can be calculated by the following iterative technique:

det(V1 L+1) = det(VMLL + φMLk(L) φ
′

MLk
(L))

= det

(
V

1/2
MLL

(
I + V

−1/2
MLL

φML
(L) φ

′

MLk
(L) V

−1/2
MLL

)
V

1/2
MLL

)
= det(VMLL) det

(
I +

(
V
−1/2
MLL

φMLk(L)
)(
V
−1/2
MLL

φMLk(L)
)′)

= det(VMLL)
(

1 + ‖φMLk(L)‖2
V −1
MLL

)
= det(λI)

[
L∏
`=1

M∏̀
i=1

(
1 + ‖φik(`)‖2

V −1
i`

)]
,

(2.33)

where the fourth equality holds because all the eigenvalues of a matrix of the form I + xx
′

where x ∈ Rn are one except the one which is 1 + ‖x‖2. The last equality is obtained by

recursion.

Taking the logarithm of (2.33) results in the following:

log
(

det(V1 L+1)
)

= log
(

det(λI)
)

+
L∑
`=1

M∑̀
i=1

log
(

1 + ‖φik(`)‖2
V −1
i`

)
.

Since x ≤ 2 log(1 + x) for 0 ≤ x ≤ 1, we have:

L∑
`=1

M∑̀
i=1

min
{

1, ‖φik(`)‖2
V −1
i`

}
≤ 2

L∑
`=1

M∑̀
i=1

log
(

1 + min
{

1, ‖φik(`)‖2
V −1
i`

})
≤ 2

L∑
`=1

M∑̀
i=1

log
(
1 + ‖φik(`)‖2

V −1
i`

)
= 2 log

(
det(V1 L+1)

det(λI)

)
.

Note that we have ‖φik(`)‖2
V −1
i`
≤ λ−1

min(Vi`) ‖φik(`)‖2 ≤ λ−1
min(Vi`) c

2
φ. Then, ‖φik(`)‖2

V −1
i`
≤

1 holds when λmin(Vi`) is large enough (i.e., λmin(Vi`) ≥ max{1, c2
φ}). Finally, we have:

L∑
`=1

M∑̀
i=1

‖φik(`)‖2
V −1
i`
≤ 2 log

(
det(V1 L+1)

det(λI)

)
.
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CHAPTER III

Personalized Hospital Admission Control: A

Contextual Learning Approach 1

3.1 Introduction

The choice of care unit upon admission to the hospital matters and is complicated by the

limited unit capacity, high variability in patients’ health status, and the high utilization of

intensive and intermediate care units. The intensive care unit (ICU) is the most expensive

care unit, consuming 15%-40% of hospital costs ([57], [93]). An ICU provides specialized

care for critical patients and has the highest ratio of patients to nurses. The step-down unit

(SDU), also known as intermediate care unit, is a less expensive unit which provides a lower

level of staffing and care. Generally, patients who can be treated in the SDU can be treated

in the ICU as well, while patients in the SDU receive a lower level of care compared to the

patients in the ICU ([28]). Although there are useful guidelines for critical care admissions

based on patient’s physical conditions and requirements, there is still a large grey area

regarding the admission decisions ([92]).

There are some studies in the literature investigating the various patient health outcomes

(e.g., mortality risk and readmission risk) associated with different levels of care (see e.g.,

[69] and [28]). Unplanned hospital readmissions have drawn substantial attention over the

past decade, because they reflect poor health outcomes and are deemed to be unnecessarily

high and costly. According to the Medicare payment advisory commission, almost 20% of

Medicare discharges are readmitted within 30 days, accounting for 15 to 20 billion dollars

([52]). Surprisingly, it has been shown in several studies that up to 75% of all readmissions

have been judged to be preventable ([17]). Many hospitals are eager to improve and reduce

their readmission rate for a variety of reasons. These include bad publicity, unreimbursed

1Mohammad Zhalechian, Esmaeil Keyvanshokooh, Cong Shi, and Mark P Van Oyen. Personalized hos-
pital admission control: a contextual learning approach. Operations Research, 2022.
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expenses (e.g., for procedures in a bundled payments agreement), and in some cases the

threat of penalties for hospitals with excessive readmission rates under the Affordable Care

Act (ACA). Using econometric approaches, it has been shown that there is a relationship

between readmissions and the care unit placement decisions, and the benefits associated with

different levels of care can be highly heterogeneous due to the different needs of patients

([28]). The literature has emphasized stochastic models and queueing analysis and control

to provide various models of congestion in the care units (see e.g., [69] and [60]). Our scope

is focused on providing an approach based on learning with optimization as an unexplored

direction that incorporates recent development in the field. In this chapter, we focus on

hospital readmission as a way to identify the limits to which an online algorithm for care

unit placement can improve the readmission rate; however, our methodology can be adapted

to other patient outcomes (e.g., mortality risk) as well.

In current practice, care unit placement (admission decision) highly depends on the

training and the experience of the physicians and staff ([87], [32]). The patient-specific

nature of admission decisions and the wide variety of patient characteristics make it almost

impossible for a physician to have a reliable estimation of the patient’s health outcome

based on the experience and the available data for the patient. On the other hand, there

is a fundamental trade-off between the benefit of assigning patients to an ICU or SDU and

the loss of an available bed for a more deserving patient arriving in the near future. As

a response to these challenges, the health community has raised the need to develop new

strategies for care unit placement decisions ([65], [31]).

Traditional readmission risk prediction and admission control employs offline estimation

of patient severity, where all the input-output data should be collected first and then model

parameters can be estimated. Both offline and online methods rely on historical data to

provide estimates; however, online methods offer the advantage of rapid adaptive learning.

The key in this type of learning is adaptive data collection through striking a trade-off

between taking advantage of our current beliefs to make decisions (exploitation) and learning

more about poorly estimated actions (exploration).

We address the fundamental question of how to pursue the goal of readmission reduction

through admission control when there is uncertainty regarding the needs of patients. To

investigate this question, we answer two follow-up research questions: First, how can one

develop a personalized admission control system that can (i) adaptively learn readmission

risks, and (ii) capture the trade-off between the benefit of higher level of care units and

needlessly utilizing these units. Second, can this admission control system be designed to

achieve a good performance guarantee? These questions motivate us to investigate online

learning methods that incorporate control.
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3.1.1 Main Results and Contributions

Our main methodological contributions are the (i) introduction of a personalized admis-

sion control system model, and (ii) development and analysis of a new class of online learning

algorithms for it, which we call the Personalized Admission Control (PAC) algorithm. In

the following, we summarize our main results and contributions.

(a) Our posterior sampling-based algorithm can adaptively learn readmission risks with

respect to different types of patients and care unit assignments. We partition the

finite time horizon into multiple intervals with equal length. At the beginning of

each interval, the algorithm updates the care unit assignment probabilities based on

the current belief about the expected rewards (non-readmission probabilities) and the

prior assignments. During each interval, the algorithm assigns sequentially arriving

patients to different care units based on the assignment probabilities computed for

that interval. At the end of each interval, the algorithm collects a batch of realized

feedback outcomes and updates the current belief about the expected rewards. These

features of the algorithm yield a new learning setting that we call batch learning with

delay. In this setting, the learning must be done through M batches and the feedback

of a patient in a batch is not immediately realized after assigning the patient to a care

unit. The earliest time a patient’s feedback is realized is at the end of the interval

in which they arrived; but it is usually realized at the end of a future interval due to

feedback delay. In our theoretical analysis, we derive an upper bound on the batch

learning loss incurred due to learning the expected rewards (see §3.4.4 for a detailed

discussion of our results).

(b) We solve a multi-period admission control problem with online learning in which pa-

tients have stochastic lengths of stay, the resources (care unit beds) have finite capacity,

and they are reusable. The reusable nature of hospital beds adds a nontrivial layer of

complexity to our problem. We need to account for the lengths of stay of the assigned

patients to different care unit beds and capture the effect of care unit placement de-

cisions on capacity. To do so, we design a policy guide model (i.e., a linear program)

which approximates the effect of lengths of stay on capacity and ensures a trade-off

between the benefit of better health outcomes by assigning patients to SDUs or ICUs

and the costly use of these high-demand beds. Our online algorithm judiciously makes

online care unit placement decisions by leveraging the policy guide model, which is

updated after each time interval. Our system model induces a loss network system in

which there is a possibility that a patient gets blocked and cannot receive treatment in

the assigned care unit. We analyze the blocking loss (i.e., the loss due to the possibility
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of assigning a patient to a fully utilized care unit) and capture the effect of blocking

on the theoretical performance of our algorithm.

(c) Our performance measure is Bayesian regret, which is the expected loss of an online

policy compared to an optimal clairvoyant policy. On a high level, our algorithm

includes two interacting layers for contextual learning and online allocation of reusable

resources. Accordingly, it admits a Bayesian regret bound which comes from two major

types of loss: (i) the loss associated with contextual learning (batch learning loss), and

(ii) the loss associated with the allocation of reusable resources (resource allocation

loss). Analyzing the Bayesian regret of our algorithm necessitates: (i) establishing a

new high-probability confidence bound on expected rewards (Proposition III.1), (ii)

deriving a high-probability upper bound on the batch learning loss (Proposition III.3),

(iii) analyzing the blocking loss and providing an upper bound on it (Proposition III.4),

and (iv) introducing a set of bridging techniques (Theorem III.1) to decompose the

Bayesian regret and derive an upper bound on it.

(d) We collaborated with a partner hospital to assess and enhance the real-world appli-

cability of our algorithm using hospital system data. This work provides insight into

the potential ability of learning algorithms to reduce readmission rates. From the op-

erational and clinical perspective, our optimization-learning methodology provides a

proof of concept for the use of this type of methodology for care unit placements in

hospitals. In our method, the information revealed for prior care unit placement deci-

sions is used to reduce the exposure of patients to less effective decisions and explore

promising care unit placements. Furthermore, our general method can also deliver

cutting-edge methodology to several other applications, including but not limited to

computing platforms such as Amazon Web Service (AWS), hospitality services such as

Airbnb, and hotel-booking platforms.

3.1.2 Literature Review

Our work is related to the following two streams of literature.

Allocation of Reusable Resources. The problem of allocating reusable resources without

online learning has been studied in several application domains, including admission control,

advance reservation, pricing, and assortment optimization. Several studies have been con-

ducted on admission control and scheduling policies in hospitals. [98] developed a model for

maximizing the number of lives saved by investigating variations of first-come-first-served

policy to admit patients to the ICU. [60] proposed analytical models to coordinate elective

admissions with other hospital subsystems and reduce hospital congestion. [69] conducted
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an econometric analysis to estimate the cost of denying ICU admission and provided a simu-

lation framework to evaluate the performance of several admission strategies. [96] proposed

an average cost dynamic program to optimize patient admissions in a neurology ward with

multiple types of patients. [44] proposed a data-driven approach to study the effect of off-

service placement on patient outcomes, bed assignment decisions, and the network structure

of care units. [40] developed an approximate dynamic programming approach to optimize

the allocation of patients to primary and non-primary units. Our work fits into this liter-

ature because we develop a data-driven policy to make care unit placement decisions. Our

policy captures stochastic lengths of stay and availability of limited care unit beds, which

are reusable resources. A key feature of our policy is improving the care unit placement

decisions on the fly by adaptively learning patient outcomes.

We model the hospital admission control as a stochastic control problem. Many stochas-

tic control problems have a corresponding fluid model that yields a deterministic control

problem that can often be solved directly as a linear program. The use of fluid models is

motivated by the extensive theory of optimal control of deterministic systems. Fluid approx-

imations are frequently used in analyzing stochastic queueing networks with time-varying

arrival rates ([80], [16] and [30]), restless bandit ([109] and [23]), admission control ([75]),

advance reservation ([34]), and revenue management ([74] and [88]). To design our care unit

placement policy, we follow the idea of fluid approximations by introducing a deterministic

linear program as a policy guide.

Next, we discuss some of the above-mentioned studies that are more relevant to ours. In

an infinite horizon setting with a single reusable resource, there are some studies with near-

optimal heuristics with constant factor performance guarantees. [75] studied an admission

control problem in which a single reusable resource is used to serve multiple classes of cus-

tomers. Each customer requests a particular set of resources upon arrival and the requests

must be accepted or rejected in real-time. [34] studied an advance reservation problem with

a non-homogeneous demand rate and a single type of resource. In their setting, each arriving

customer submits a service request upon arrival and specifies the start time and end time,

then the seller must decide to accept the request or reject it in real-time. There are some

other recent studies in a finite horizon setting with multiple types of reusable resources. [74]

developed an asymptotically near-optimal pricing control algorithm under a deterministic

service time assumption. They showed that the algorithm can be extended to a more general

setting with heterogeneous service time and advance reservation. [88] studied an assortment

optimization problem to offer a set of products to each arriving user, where the choice of

the users depends on their preferences over the set of products. They developed a policy

for assortment optimization of reusable resources under non-stationary Poisson arrivals and
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exponentially distributed service times, and proved that the policy is guaranteed to obtain

1/e fraction of the optimal total expected revenue. Note that all of the above-mentioned

studies assumed that the reward/revenue generated by each resource allocation is known to

the decision maker a priori. The closest work to ours is the study of [88] in the finite horizon

setting; however, they assumed that the revenue rate of allocating a product to a customer

is known a priori and their policy can be obtained by a one-shot optimization method.

Multi-armed Bandits. Multi-armed bandit (MAB) is an online learning framework for

making sequential decisions when the effect of each action on the outcome is uncertain. At

each step, the agent selects an action from the possible actions and the goal is to maximize

the expected cumulative reward obtained from the selected actions. We refer to [99] and [73]

for a comprehensive review.

Recently, there has been a growing interest in the development of sequential decision

making algorithms in healthcare using MABs, including response-adaptive clinical trial ([7]),

healthcare-adherence interventions ([84]), and treatment policies for chronic diseases ([86]).

The contextual MAB (CMAB) is a particularly useful class of MABs where the reward of

each action depends on the context that can be observed at each round. In this setting, the

agent adaptively collects information and learns the relation between observed information

and rewards to select the best action. There is a vast and growing body of literature on

CMAB. [8] introduced the first algorithm for the linear CMAB, called LinRel. Afterward,

this algorithm was improved by several other studies (e.g., [41], [94], [37], and [1]). In the

generalized linear model (GLM) setting, [50] proposed an upper confidence bound (UCB)

based algorithm and derived a regret bound for it, which was improved by [77]. Recently,

[14] provided a CMAB algorithm, called a LASSO bandit, in a setting where the covariates

are high-dimensional. [15] proved that a greedy algorithm can be rate optimal for a two-

armed bandit as long as a condition on covariates (i.e., covariate diversity) is met. They

also proposed a Greedy-First algorithm that performs exploration when the observed data

indicate its necessity. [13] proposed a contextual bandit with cross-learning in which the

learner also learns the reward that would have been achieved by choosing the same action

under different contexts. [46] proposed a CMAB algorithm that leverages a bootstrapping

approach to guide the exploration-exploitation trade-off. [36] introduced a non-stationary

bandit by leveraging a combination of stochastic and adversarial bandits. Th previously

mentioned studies do not consider the need for decision making under limited resources.

However, we must deal with limited resources in our problem setting.

The MAB problem with a Knapsack (BwK) is an important class of MABs where each

arm consumes a certain amount of the available resources. The studies of [11] and [4]

were among the first to propose a MAB with resource constraints. Afterward, [12], [5],
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and [3] studied extensions of BwK with independent and identically distributed context

vectors. Note that all of the aforementioned studies assume the existence of a global knapsack

constraint where the term global indicates that the total budget/capacity is fixed and time-

invariant. In contrast, we develop an online algorithm under the presence of resources that

can be repeatedly used over the planning horizon. This involves developing several new

modeling and technical ideas on batch learning under the presence of reusable resources and

delayed feedback.

Lastly, there are a few studies in the literature on online service platforms where there is a

need for online learning and queueing (see, e.g., [21], [62], [63], and [97]). [62] and [63] studied

a setting where there are a fixed number of servers with known service rates. Users arrive at

the system with unknown arrival rates, each of which brings a certain number of tasks. All

tasks should be assigned to servers and they yield user-server-dependent random rewards.

The system aims to maximize the expected rewards. By focusing on the steady-state be-

havior, they designed algorithms that have distinct phases for exploration and exploitation.

Although these studies involve learning when there are limited servers, their algorithms and

analyses cannot be extended to our setting because we have non-stationary arrival rates and

do not allow for queues in the system. [71] studied the queueing bandit problem, in which

each arm is a server that can serve a waiting job. An arriving job should be assigned to

a server and there is an unknown success probability. If a job is successfully completed, it

departs the system; if it fails, it remains in the queue until it is successfully served. The

stochastic reward is a binary value depending on whether the job was successfully served or

not. The aim is to minimize the queue-regret. They developed algorithms for a setting with

a single queue and multiple servers. In a follow-up study, [72] extended the previous analysis

to multiple queues and matching constraints. The algorithms and analyses developed for

this problem cannot be extended to ours because we pursue a different aim than minimizing

the length of queues.

3.1.3 Organization and General Notation

The remainder of this chapter is organized as follows. We formulate our problem in §3.2

and introduce our online algorithm in §3.3. We carry out a non-asymptotic regret analysis

in §3.4. In §3.5, we provide a case study as proof of concept using hospital system data.

Finally, we conclude this chapter in §3.6.

All vectors are column vectors. For any column vector x ∈ Rn, x′ denotes its transpose

and [x]` indicates its `th element. The determinant and trace of a square matrix M is

denoted by det(M) and tr(M). Also, I denotes the identity matrix. The Euclidean norm

and weighted norm of x are denoted by ‖x‖ =
√
x′x and ‖x‖M =

√
x′Mx, respectively. For
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two symmetric matrices A and B, A � B (A � B) means that A−B is positive semidefinite

(positive definite). For a symmetric positive definite matrix V , we define ρmin(V ) as the

smallest eigenvalue of V . We use 1(·) as the indicator function. We follow the convention

that
∑j

s=i as = 0 if i > j.

3.2 Personalized Admission Control System Model

We formally define our personalized admission control system model. We consider a finite

and discrete time horizon. We partition the time horizon into M disjoint and fixed-length

intervals and denoteM = {1, . . . ,M} as the set of disjoint intervals. Let J = {1, . . . , J} be

a set of care units and K = {1, . . . , K} be a set of patient types. Let Nk(m) be the number

of arrivals of type k ∈ K patients during interval m. It follows a Poisson distribution with

known mean λk(m). We define N̄(m) =
∑K

k=1Nk(m) and λ̄(m) =
∑K

k=1 λk(m).

Upon arrival, each patient is associated with a context vector (e.g., age, gender, ethnicity,

medical history) and needs to be assigned to a care unit. Let ϕk ∈ Ξ be the context vector

of any patient of type k ∈ K. As is standard in the literature, we assume the existence of

a known feature map Λ : Ξ × J → Rd and we define φkj = Λ(ϕk, j) as the d-dimensional

feature vector. To identify a patient’s feature vector based on their order of arrival during

an interval, it is notationally simpler to denote this term as φ
(i)
j (m) where i refers to the

order of arrival, and i and m correspond to a single patient with a specific type k. Hence,

φ
(i)
j (m) uniquely identifies the feature vector of the ith patient who arrived at interval m and

is assigned to care unit j.

Lengths of Stay. A hospital always has a limited number of beds (reusable resources)

in the intensive and intermediate care units. A patient should be assigned to a care unit

upon arrival. After a random amount of time, the patient gets discharged and the occupied

bed becomes available again. In our setting, we assume that the length of stay (LOS) is

exponentially distributed with known rate µkj for a type k patient assigned to care unit j.

This is a common assumption in the literature for tractability (see, e.g., [98], [69], and [88]).

Patient Reward. Each action/care unit assignment yields an uncertain binary reward,

where 1 corresponds to success (i.e., patient is not-readmitted) and 0 corresponds to failure

(i.e., patient is readmitted). The choice of care unit j ∈ J for the ith patient who arrived at

interval m yields the following stochastic reward:

R(i)
j (m) = σ(〈φ(i)

j (m), w〉) + ξ
(i)
j (m),

where w ∈ Rd is the unknown (true) model parameter and σ(y) = (1 + e−y)−1 for y ∈ R
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is the logistic function. The noise values, ξ
(i)
j (m), are zero-mean independent and bounded

random variables. To simplify the notation, we let r
(i)
j (m) = σ(〈φ(i)

j (m), w〉) be the expected

reward associated with the ith patient who arrived at interval m and was assigned to care

unit j under the parameter w.

Our admission control system model receives the readmission outcome as the feedback,

which cannot be realized immediately after assigning a patient to a care unit. In particular,

a non-readmission event cannot be realized until a certain number of days after the discharge

date (e.g., 30 days in our case study) and a readmission event cannot be realized until the

day of readmission.

Care Unit Placement Policy. The problem can be modeled as a discrete-time and finite-

horizon Markov decision process (MDP). By the memoryless property of arrival process and

lengths of stay, the current occupancy of beds in different care units is enough to know the

state of the system. The state of our system, u ∈ U , is observed at the beginning of an

interval and can be defined by the number of patients of type k ∈ K in care unit j ∈ J
(i.e., each state can be specified by a (JK)-dimensional vector). We define a decision rule

at interval m for type k patients as a mapping from the state of the system to a distribution

over the set of care units J :

πkm : U → Ω (J ),

where Ω (J ) is the space of probability distributions over the set J . Note that we use

πkm(j|u) to denote the probability of offering care unit j to a type k patient given the current

state of the system, u ∈ U , at interval m.

Accordingly, a state-dependent policy π ∈ Π can be formally defined as a sequence of

decision rules πkm for m ∈ M and k ∈ K. Due to the curse of dimensionality and the

limited information setting in our problem, we design a state-independent policy for care

unit assignments that performs well compared to the optimal state-dependent policy.

The goal of our personalized admission control system model is to maximize the total

expected reward over a finite time horizon. For technical reasons, we denote Dmax as the max-

imum number of intervals required for a feedback to be realized, and let N̄max = max
m∈M

N̄(m).

We also define T =
∑M

m=1 N̄(m) and T̄ =
∑M

m=1 λ̄(m). To simplify the presentation of our

results, we assume N̄max ≤ ζ T
M

where ζ is a positive constant that regulates the maximum

deviation of the number of arrivals across different intervals. Without loss of generality, we

assume ‖φkj‖ ≤ 1 and ‖w‖ ≤ 1.
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3.2.1 Benchmark and Linear Programming Relaxation

The notion of regret is commonly used in the literature as a metric to evaluate the

theoretical performance of a policy when the decision maker has limited access to information.

The regret of a policy is the average difference between the total reward obtained by the

policy and the total reward obtained by a benchmark, which is an optimal policy that has

access to the full information. In our problem, the full information setting corresponds to

the knowledge of the expected reward with respect to the assignment of each type of patient

to each care unit. This information is accessible when the model parameter w is known.

Our goal is to find an assignment policy for the limited information setting to maximize the

total expected reward and thereby yield a small regret over a finite time horizon.

For our problem, computing an optimal state-dependent policy under the full information

setting is intractable due to the curse of dimensionality. As an alternative, we propose

a deterministic linear program that yields state-independent assignment probabilities, and

we prove that the optimal objective value of this linear program is an upper bound on the

optimal expected reward achieved by the optimal state-dependent policy. The deterministic

linear program can be created by following a popular approach, called fluid approximation,

to approximate the decision problem and reduce it into a simpler optimization problem (see,

e.g., [51] and [79]). To relax the original problem, our deterministic linear program enforces

the capacity constraints only in expectation, while the capacity constraints have to hold for

every sample path in the original problem.

In the following, we first characterize the state-dependent optimal policy. Then, we

introduce our deterministic linear program formulation. Finally, we show that the optimal

expected reward obtained by the optimal state-dependent policy is upper bounded by the

optimal objective value obtained by the deterministic linear program.

We restrict the space of policies to the admissible policies that are (i) non-anticipative

(i.e., only use the information revealed up to the current time except the arrival rate infor-

mation across all intervals), and (ii) feasible (i.e., the total number of patients assigned to

each care unit does not exceed the capacity limit). We denote Π as the space of all admissible

policies. For an admissible policy π ∈ Π, we define Θπ
kj(m) as the number of type k patients

in care unit j at the beginning of interval m. Because of the capacity constraints, we have∑K
k=1 Θπ

kj(m) ≤ Cj for all j ∈ J and m ∈ M, where Cj is the capacity (total number

of beds) of care unit j. Let βπkj(m) denote the number of type k patients who arrived to

care unit j during interval m. Also, let Dπ
kj(m) denote the number of departures of type

k patients from care unit j during interval m. We observe that the following flow balance
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constraints hold for any j ∈ J and m ∈M:

K∑
k=1

Θπ
kj(m) +

K∑
k=1

βπkj(m) ≤ Cj +
K∑
k=1

Dπ
kj(m), (3.1)

Θπ
kj(m+ 1) = Θπ

kj(m) + βπkj(m)−Dπ
kj(m). (3.2)

For each interval m ∈M, any policy π ∈ Π induces a distribution Pπm(u) over the possible

occupancy states, which captures the randomness in the arrival process, the lengths of stay,

and the possible randomization in the policy. We define xπkj(m) as the probability that policy

π assigns a type k patient to care unit j during interval m, which can be obtained as follows:

xπkj(m) =
∑
u∈U

Pπm(u) πkm(j|u).

Accordingly, the average number of type k patients arriving to care unit j during interval

m is calculated by β̄πkj(m) = λk(m)xπkj(m). Let V π be the total reward obtained by policy

π ∈ Π given w. Then, it has the following conditional expectation:

E[V π|w] =
M∑
m=1

K∑
k=1

J∑
j=1

rkj β̄
π
kj(m),

where rkj = σ(〈φkj, w〉) is the expected reward of a type k ∈ K patient assigned to care unit

j ∈ J .

Next, we define V π∗ as the optimal (total) reward obtained by the optimal state-dependent

policy π∗ given w. Then, we have:

E[V π∗|w] = sup
π∈Π

E[V π|w].

To formulate our deterministic linear program, we need to compute the probability that

a patient remains in the care unit assigned until the end of a subsequent interval. Assume

that a type k patient is assigned to care unit j at the beginning of interval m, then the

probability that the patient remains in the respective care unit until the end of the interval

is e−µkj . It follows that the probability of a type k patient, whose arrival happens during

interval s and who is assigned to care unit j, to be still in the bed at the end of interval m

can be lower bounded by:

ψkj(s,m) =

e−(m−s+1)µkj if s ≤ m

0 if s > m.
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Now, we are ready to formulate our deterministic linear program. Given the model

parameter w, we define it as follows:

Deterministic Linear Program (LP UB)

max
x

M∑
m=1

K∑
k=1

J∑
j=1

rkj λk(m) xkj(m) (3.3)

s.t.
m∑
s=1

K∑
k=1

λk(s) xkj(s) ψkj(s,m) ≤ Cj, ∀ j ∈ J , ∀ m ∈M (3.4)

J∑
j=1

xkj(m) ≤ 1, ∀ k ∈ K, ∀ m ∈M (3.5)

xkj(m) ≥ 0, ∀ k ∈ K, ∀ j ∈ J , ∀ m ∈M. (3.6)

The objective function (3.3) maximizes the expected reward over the finite time horizon.

Constraint (3.4) ensures that the average number of patients assigned to a care unit up to

any interval does not exceed the total capacity of the care unit. Constraint (3.5) specifies

that the sum of probabilities of choosing a care unit for each patient type cannot exceed one.

Let x∗kj(m) be the optimal solution of the above linear program, which denotes the proba-

bility of assigning a type k patient to care unit j during interval m. Next, Lemma III.1 proves

that, given w, OPT UB =
∑M

m=1

∑K
k=1

∑J
j=1 rkj λk(m) x∗kj(m) provides an upper bound on

the optimal expected reward achieved by the optimal state-dependent policy E[V π∗|w]. We

highlight that the assignment probabilities obtained by the above linear program are state-

independent and the obtained x∗kj(m) may yield infeasible solutions since LP UB enforces the

capacity constraints only in expectation. Thus, the above linear program can be viewed as

a relaxed benchmark.

Lemma III.1 (Upper Bound on Optimal Expected Reward). Let OPT UB be the

optimal objective value of LP UB given the model parameter w. Then, the optimal expected

reward achieved by the optimal state-dependent policy E[V π∗|w] is upper bounded by OPT UB.

The proof of Lemma III.1 can be found in Appendix A.

3.3 Personalized Admission Control Algorithm

In this section, we propose an online algorithm that leverages online learning and op-

timization techniques and provides a personalized admission control system. In §3.3.1, we

describe the high-level intuition of our algorithm. We then provide the detailed steps of the

personalized admission control (PAC) algorithm in §3.3.2.
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3.3.1 Main Ideas of the Personalized Admission Control Algorithm

In our problem, each type of patient can be characterized by a unique set of character-

istics (e.g., medical records, diagnostics tests, and demographic information), and there is

uncertainty about the readmission impact of a care unit placement decision. This decision

should be made based on both patient characteristics and congestion in different care units

with limited beds. Also, it should capture the trade-off between the benefit of having a

lower risk of readmission in a higher level bed versus the opportunity cost of not having this

high-demand bed available when a more complex patient arrives in the future. The PAC

algorithm is designed to provide care unit placement decisions by synergizing contextual

learning and online optimization techniques, and it aims to maximize the expected reward

(minimize the expected readmission risk) over a finite time horizon.

There are two main challenges in deciding about care unit placements: (i) unknown

patient rewards, and (ii) accounting for limited reusable resources. In what follows, we

explain the intuition behind designing the PAC algorithm to address these challenges.

Suppose that we know the expected reward of each type of patient with respect to each

care unit assignment. Thus, the remaining challenge is to design a mechanism to make

care unit placement decisions. A possible care unit placement mechanism would be a greedy

mechanism, in which each patient should be assigned to a care unit that yields the highest

expected reward for that patient. It is well known that this may not result in obtaining

a high total expected reward over a time horizon, because it ignores the effect of current

decisions on the subsequent ones and does not capture the trade-off between the benefit of

higher level of care units and needlessly utilizing the limited beds in these units.

To overcome this greediness and maximize the expected reward over the entire time hori-

zon, we use an optimization method. As we discussed in §3.2.1, an optimal state-dependent

policy achieves the optimal expected reward, but the curse of dimensionality limits its use-

fulness. A common and powerful strategy is to relax the problem by enforcing the capacity

constraints only in expectation. Recall that LP UB proposed in §3.2.1 provides an upper

bound on the optimal expected reward obtained by the optimal state-dependent policy.

This motivates us to adopt such a linear program to make care unit placement decisions.

Note that LP UB relaxes the problem and generates a state-independent assignment proba-

bility for each type of patient with respect to each time interval. The cost of this relaxation

is the possibility of blocking, which happens when a patient is assigned to a care unit with

no available bed. To take advantage of such an intuitive and easy-to-implement approach

for care unit placement, we propose a variation of LP UB that provides a good relaxation

for which the loss that the system might incur due to blocking is upper bounded and un-

der control. We define a linear program called deterministic linear program with capacity
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buffer (LP C−UB), which is identical to LP UB, except that the capacity of care units are

scaled down by a pre-specified multiplier. This ensures that the loss due to the possibility

of blocking is limited and under control. We formally define LP C−UB as follows:

Deterministic Linear Program with Capacity Buffer (LP C−UB)

max
x

M∑
m=1

K∑
k=1

J∑
j=1

rkj λk(m) xkj(m) (3.7)

s.t.
m∑
s=1

K∑
k=1

λk(s) xkj(s) ψkj(s,m) ≤ e
−2 max

k,j
(µkj)

Cj, ∀ j ∈ J , ∀ m ∈M (3.8)

J∑
j=1

xkj(m) ≤ 1, ∀ k ∈ K, ∀ m ∈M (3.9)

xkj(m) ≥ 0, ∀ k ∈ K, ∀ j ∈ J , ∀ m ∈M, (3.10)

where xkj(m) can be interpreted as the probability of assigning a type k patient to care unit

j during interval m.

In Lemma III.2, we prove that adding this capacity buffer reduces the resulting ob-

jective function by at most a constant ratio compared to OPT UB (i.e., OPT C−UB ≥
e
−2 max

k,j
(µkj)

OPT UB). Thus, it shows that LP C−UB provides a time interval- and type-

dependent policy for care unit placements that is state-independent while obtaining a high

fraction of the expected reward obtained by LP UB.

Lemma III.2 (Lower Bound on Optimal Objective Value of LP C−UB). Let OPT C−UB

be the optimal objective value of LP C−UB given the model parameter w. Then, we have

OPT C−UB ≥ e
−2 max

k,j
(µkj)

OPT UB.

The proof of Lemma III.2 can be found in Appendix A.

Next, we discuss the challenge that the expected rewards of patients are not known in

our problem. Our algorithm should learn the expected reward (i.e., the probability of non-

readmission) of each patient type with respect to assignment to each care unit. We take

advantage of the structure of the reward model that allows for our algorithm to transfer

learning from one patient type to another. In particular, the expected reward of a patient

depends on a feature vector and an unknown vector parameter that needs to be learned

based on the available information. This structure allows the algorithm to work in a high-

dimensional setting with a large number of patient types and care units. It is worth noting

that in a low-dimensional setting, it is also possible to separately learn the reward of each

type of patient and action/care unit assignment pair, but this method is not efficient in a

high-dimensional setting because it does not allow for information sharing.
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The learning process suffers from bandit feedback, meaning that we only obtain feedback

from the selected decision and we do not observe counterfactual rewards for alternative

decisions. This hurdle may result in locking into a misperception caused by a lack of data.

For instance, based on our uncertain estimates in the early stage, we may incorrectly conclude

that SDU is not a good fit for a type of patient with a certain history of disease and discard

it for this type of patient. Subsequently, we may not be able to identify this incorrect belief

since we will not observe counterfactual rewards. To avoid this, there should be a thoughtful

trade-off between exploration and exploitation. Inspired by the idea of posterior sampling,

our algorithm assumes a posterior distribution over the unknown model parameter, and then

takes random samples from the posterior distribution. The intuition behind this sampling

is to balance the exploration-exploitation trade-off. If the algorithm only used the mean

of the posterior distribution in each time interval as an estimate for the unknown vector

parameters, it would exploit the current belief about the unknown parameter, and there

would be insufficiently exploring alternative choices. Therefore, we take random samples

from the posterior distribution to carry out explorations.

In our setting, we collect a new batch of feedback outcomes after each interval that can

be used to improve the estimated expected rewards. In particular, the learning should be

done through M batches and the feedback of a patient in a batch is not immediately realized

after assigning the patient to a care unit. In our problem, a non-readmission event cannot

be realized until a certain number of days after the discharge date and a readmission event

cannot be realized until the day of readmission. This is contrary to the typical online learning

problems in which the feedback is realized immediately and the estimator is updated after

receiving each feedback. This brings us to a new learning setting that we call batch learning

with delay. Since we need to learn from the realized feedback outcomes gradually, we cannot

follow a one-shot optimization method by solving LP C−UB. Instead, our algorithm solves

LP C−UB iteratively as a policy guide model. That is, at the beginning of each interval, the

algorithm obtains the assignment probabilities for the current interval by resolving LP C−UB

using the updated beliefs and the assignment probabilities obtained in the prior iterations.

3.3.2 Description of the Personalized Admission Control Algorithm

Let j(i),Alg∗(m) be the selected care unit by PAC for the ith patient who arrived at interval

m, which we will often write as j∗ when indices (i,m) are obvious. We also let D(i)(m) be

the feedback delay of the ith patient who arrived at interval m and let (m, i, j∗) be a tuple

referring to the ith patient who arrived at interval m and was assigned to care unit j∗. We

define F(m) =
{

(s, i, j∗) |s + D(i)(s) ≤ m − 1; i ∈ {1, . . . , N̄(s)}
}

as a set that contains

tuples (s, i, j∗) of patients with realized readmission feedback outcomes up to the end of
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interval m − 1. We also define a mapping function χ : {0, 1} → {−1, 1}, where χ(0) = −1

and χ(1) = 1. The detailed steps of the online PAC algorithm are provided in Algorithm 1.

Description. In the first step, the parameters p1
` and (q1

` )
−1 are initialized based on some

prior beliefs. The algorithm proceeds in M intervals. At the beginning of each interval,

we need to obtain the assignment probabilities by solving the LP at Step (5), in which we

use samples drawn from the posterior distributions obtained using the collected information

up to the beginning of the interval. The objective function of this LP is to maximize the

expected reward over the horizon of subsequent intervals beginning with the current one.

The first constraint ensures that the average number of patients assigned to each care unit

does not exceed the available capacity with buffer. The second constraint specifies that the

sum of probabilities for choosing a care unit for each patient type cannot exceed one. After

solving the LP, we obtain xkj(m) which is the probability of assigning a patient of type k to

care unit j during interval m. Then, we record the assignment probabilities corresponding

to the current interval that will be used in the subsequent intervals.

Next, we assign arriving patients of type k to care unit j based on xkj(m). After deciding

about the care unit placement of all patients who arrived during the current interval, we use

the realized batch of feedback outcomes to update the posterior distributions. The updating

process is done using an online Bayesian regression based on a Laplace approximation (see

[108] for more information). In particular, at the end of interval m, we update the parameters

of posterior distributions on the fly at Steps (9)-(12) using set B(m+1), which contains tuples

(s, i, j∗) of patients for which their feedback outcomes are realized during interval m.

3.4 Theoretical Performance Analysis and Discussions

We derive a non-asymptotic (i.e., finite-time) performance guarantee for the PAC algo-

rithm. We start by defining the performance measure in §3.4.1. Next, we provide a roadmap

for our regret analysis in §3.4.2. Then, we state our main theoretical results in §3.4.3. Finally,

we discuss the results in §3.4.4.

3.4.1 Performance Measure

We use the Bayesian regret as a metric to evaluate the theoretical performance of our

algorithm. The regret of an algorithm is its cumulative loss relative to a benchmark. The

Bayesian regret is the expected regret, where the expectation is taken with respect to the

prior distribution of the unknown model parameter (see Definition III.1). This quantity

is called Bayesian regret since it represents the Bayes risk (see, e.g., [94] and [95]). The

Bayesian regret has two main advantages: (i) it allows for an arbitrary prior distribution
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Algorithm 1 PAC Algorithm

1: Initialize p1
` and (q1

` )
−1 as the mean and variance of the Gaussian prior distribution over

[w]`, respectively.
2: for m = {1, . . . ,M} do
3: Sample [w̃(m)]` from the posterior distribution N

(
pm` , (q

m
` )−1

)
, ∀ ` ∈ {1, . . . , d}.

4: Set r̃kj(m) = σ
(
〈φkj, w̃(m)〉

)
, ∀ k ∈ K, ∀ j ∈ J , ∀ m ∈ {m, . . . ,M}.

5: Solve the LP with decision variables xkj(m), ∀ k ∈ K, ∀ j ∈ J , ∀ m ∈
{m, . . . ,M}:

max
x

M∑
s=m

K∑
k=1

J∑
j=1

r̃kj(s) λk(s) xkj(s)

s.t.

m∑
s=m

K∑
k=1

λk(s) xkj(s) ψkj(s,m) ≤ e
−2 max

k,j
(µkj)

Cj − Uj(m,m),

∀ j ∈ J , ∀ m ∈ {m, . . . ,M}
J∑
j=1

xkj(m) ≤ 1, ∀ k ∈ K, ∀ m ∈ {m, . . . ,M}

xkj(m) ≥ 0, ∀ k ∈ K, ∀ j ∈ J , ∀ m ∈ {m, . . . ,M},

where Uj(m,m) =
∑m−1

s=1

∑K
k=1 λk(s) xkj(s) ψkj(s,m) is a constant in the optimization

since all xkj(s) for 1 ≤ s ≤ m− 1 have already been determined in previous iterations.
6: Record and fix xkj(m), ∀ k ∈ K, ∀ j ∈ J .
7: for each arriving patient during interval m do
8: Assign patient of type k to care unit j with probability of xkj(m).

9: Obtain set B(m+ 1) = F(m+ 1)−F(m).
10: Solve the following optimization problem:

ηmax = arg max
η

1

2

d∑
`=1

qm` ([η]` − pm` )2 +
∑

(s,i,j∗)∈B(m+1)

log
(
1 + e−χ(R(i)

j∗ (s)) 〈η, φ(i)
j∗ (s)〉).

11: Set pm+1 = ηmax.

12: Set qm+1
` = qm` +

∑
(s,i,j∗)∈B(m+1)

e
−〈ηmax, φ

(i)
j∗ (s)〉(

1+e
−〈ηmax, φ

(i)
j∗ (s)〉

)2 ([φ(i)
j∗ (s)]`

)2
, ∀ ` ∈ {1, . . . , d}.
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over a particular class of mean reward functions, and (ii) it makes a connection between the

posterior sampling and upper confidence bound methods. This provides the opportunity to

leverage some of the appealing theoretical properties of the upper confidence bound method

in our theoretical analysis.

Definition III.1 (Bayesian Regret). Given the unknown model parameter w, the regret

over the finite time horizon with M disjoint and fixed-length intervals is defined by

Reg(T̄ , w) = E
[
BM − ALG|w

]
,

where T̄ =
∑M

m=1 λ̄(m). Also, BM and ALG are the total rewards of the benchmark and

the algorithm over the finite time horizon, respectively. The conditional expectation is taken

over the random arrivals, random realizations given w, and possible randomization in the

algorithm (i.e., random samples in posterior sampling and randomization in action selection).

Accordingly, the Bayesian regret can be calculated by taking expectation over the prior

distribution of w as follows:

BayesReg(T̄ ) = E
[
Reg(T̄ , w)

]
.

3.4.2 Roadmap for the Main Theoretical Results

We provide a road-map for proving our main theoretical result (Theorem III.1). We

start by defining an auxiliary problem that facilitates analyzing the theoretical performance

of PAC. The auxiliary problem is similar to our original problem defined in §3.2 with one

difference that the unknown model parameter is known a priori. Similarly, we define an

auxiliary algorithm to solve the auxiliary problem, which is similar to PAC except that it

does not need to learn the model parameter over time. In particular, the auxiliary algorithm

only includes solving LP C−UB and following its solution to assign patients to care units.

For notational convenience, we define x
(i),Aux∗

j (m), and x
(i),Alg∗

j (m) as the assignment

probabilities obtained by the auxiliary algorithm and PAC corresponding to the ith patient

who arrived at interval m with respect to care unit j, respectively. We also let j(i),Alg∗(m) be

the selected care unit by the auxiliary algorithm for the ith patient who arrived at interval
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m. Next, we define the following notation:

V Aux =
M∑
m=1

N̄(m)∑
i=1

J∑
j=1

r
(i)
j (m) 1{j(i),Aux∗(m) = j},

V Alg =
M∑
m=1

N̄(m)∑
i=1

J∑
j=1

r
(i)
j (m) 1{j(i),Alg∗(m) = j},

where (i) V Aux is the total reward obtained by the auxiliary algorithm, which knows the

model parameter w in advance and (ii) V Alg is the total reward obtained by our algorithm,

which does not know the model parameter w a priori. Note that there is a possibility

for patients to get blocked when we assign patients following the assignment probabilities

obtained by our algorithm or the auxiliary algorithm, and the loss due to the blocking is

not taken into account in V Alg and V Aux. We let V BL denote the loss due to the blocking

in the PAC algorithm. Thus, the actual total reward obtained by PAC can be calculated by

V Alg − V BL.

Figure 3.1: Outline for deriving the Bayesian regret of the PAC algorithm.

Figure 3.1 outlines the main steps for deriving the Bayesian regret of the PAC algorithm.

Proposition III.1 establishes a high-probability confidence bound on the expected reward.

Lemma III.4 and Proposition III.2 establish upper bounds on two main terms that are

essential to calculate the batch learning loss. Proposition III.3 provides an upper bound on

the batch learning loss. Lemma III.2 proves a lower bound on the optimal objective value

obtained by LP C−UB. Proposition III.4 derives an upper bound on the loss due to blocking.

Finally, we bound the Bayesian regret of our algorithm in Theorem III.1 using the direct

results of Propositions III.3, III.4, and Lemma III.2.
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3.4.3 Main Theoretical Results

Below, we state our main theoretical result.

Theorem III.1 (Bayesian Regret of the PAC Algorithm). With δ = 1
T̄

, the Bayesian

regret of the PAC algorithm over the finite time horizon with M disjoint and fixed-length

intervals is upper bounded with probability at least 3(1− 1
T̄

)3 as:

BayesReg(T̄ ) ≤
(

1− e
−2 max

k,j
(µkj)−1

)
E
[
OPT UB

]
+

1

e
Õ
(
d
√
T̄ + dDmax

T̄

M

(
1 +

T̄

dM

))
,

where Õ(·) hides logarithmic factors. Also, T̄ =
∑M

m=1 λ̄(m), E[OPT UB] is the expected

value of OPT UB over the prior distribution of the unknown model parameter, and Dmax is

the maximum number of intervals required for a feedback to be realized.

Proof. We first decompose the Bayesian regret by the following bridging technique:

BayesReg(T̄ ) = E
[
V π∗ −

(
V Alg − V BL

)]
≤ E

[
OPT UB − V Alg

]
+ E

[
V BL

]
,

where V π∗ is the total reward obtained by the optimal policy and V Alg − V BL is the total

reward of PAC by accounting for the blocked patients. The inequality holds by Lemma III.1.

Next, we have the following by Proposition III.4:

E[V BL|w] ≤

1−min
j∈J


Cj−1∑
n=0

Cn
j e
−Cj

n!


E[V Alg|w].

By taking expectation over the prior distribution of w on both sides, we have:

E
[
V Alg − V BL

]
≥ min

j∈J


Cj−1∑
n=0

Cn
j e
−Cj

n!

E
[
V Alg

]
≥ 1

e
E
[
V Alg

]
, (3.11)

where the last inequality holds since
∑Cj−1

n=0

Cnj e
−Cj

n!
≥ 1

e
for any j ∈ J .
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Based on the definitions of V Aux and V Alg provided in §3.4.2, we have:

E
[
V Aux − V Alg] = E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

r
(i)
j (m)x

(i),Aux∗

j (m) −
M∑
m=1

N̄(m)∑
i=1

J∑
j=1

r
(i)
j (m)x

(i),Alg∗

j (m)


=

M∑
m=1

K∑
k=1

J∑
j=1

E
[
rkj λk(m)xAux

∗

kj (m)− rkj λk(m)xAlg
∗

kj (m)
]
.

The above term can be bounded by the result of Proposition III.3 (see Appendix B). For

any δ > 0, the following holds with probability at least 1− δ.

M∑
m=1

K∑
k=1

J∑
j=1

E
[
rkj λk(m)xAux

∗

kj (m)− rkj λk(m)xAlg
∗

kj (m)
]
≤ L(T̄ , δ).

According to (3.11) and the above upper bound, the following holds with probability at

least 1− δ:

E
[
V Alg − V BL] ≥ 1

e

[
E
[
V Aux

]
− L(T̄ , δ)

]
≥ e

−2 max
k,j

(µkj)−1
E
[
OPT UB

]
− 1

e
L(T̄ , δ),

where the second inequality holds by E[V Aux|w] ≥ e
−2 max

k,j
(µkj)

OPT UB (see Lemma III.2 in

Appendix A).

Finally, using some simple algebra, the following holds with probability at least 1− δ:

E
[
OPT UB − V Alg

]
+ E

[
V BL

]
≤
(

1− e
−2 max

k,j
(µkj)−1

)
E
[
OPT UB

]
+

1

e
L(T̄ , δ).

According to our bridging technique, the above result is an upper bound on the Bayesian

regret, which completes the proof. In this upper bound, E[OPT UB] is the expected value of

OPT UB over the prior distribution of the unknown model parameter, and L(T̄ , δ) is defined

as:

L(T̄ , δ) =
1

2cσ

(
√

10 d
(√

ζ T + N̄max

)
log

(
1 +

T

d

)(√
d log

(
1 +

T

d2

)
+ log

(
1

δ2

)
+ cσ

)

+ 20 dDmaxN̄max

(
1 +

N̄max

d

)
log

(
1 +

T

d

))
+ δT̄ ,

where both T =
∑M

m=1 N̄(m) and N̄max = max
m∈M

N̄(m) are upper bounded by T̄ − log(δ) +
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√
(log(δ))2 − 2T̄ log(δ) and

(
T̄ − log(δ) +

√
(log(δ))2 − 2T̄ log(δ)

)
/M with probability at

least 1− δ, respectively (see Lemma III.7).

3.4.4 Discussions of the Main Results

Our PAC algorithm admits a Bayesian regret bound which comes from two major types

of loss: (i) the loss associated with contextual learning (batch learning loss), and (ii) the loss

associated with the allocation of reusable resources (resource allocation loss).

The batch learning loss is of order Õ
(
d
√
T̄ +dDmax

T̄
M

(
1 + T̄

dM

))
, where T̄ =

∑M
m=1 λ̄(m)

and Dmax is the maximum number of intervals required for a feedback outcome to be real-

ized. Recall that in the classical online learning problems, the estimator gets updated after

sampling one arm. In our setting with multiple patient arrivals in each time interval, we

update the estimator at the end of each time interval using the feedback outcomes realized

and the corresponding feature vectors corresponding to the prior batches. For the sake of

comparison, T̄ =
∑M

m=1 λ̄(m) can be viewed as the number of arrivals over the time horizon

in the typical online learning problems. Accordingly, the first term in the batch learning loss

matches the minimax lower bound Ω(d
√
T̄ ) up to a logarithmic factor provided by [41] for

the contextual bandit problems with infinite actions. Recall that the feedback of patients

arriving during a time interval may not be realized at the end of each batch. Our theoretical

upper bound shows that the batch learning with delay impacts the batch learning loss by an

additive factor of dDmax
T̄
M

(
1 + T̄

dM

)
. We highlight that the reward of each type of patient

and action pair can be learned separately in a low-dimensional setting. This is a special case

of our general batch learning setting in which feature vectors form an orthogonal system.

In this case, d = KJ and feature vectors can be constructed as the canonical basis {en}dn=1

of Rd, where en is a vector of all zeros except for the nth element which is one. Our upper

bound on the batch learning loss still holds for this case.

In contrast with the classical online learning problems, we have reusable resources with

limited capacity in our problem. This results in an extra term in the Bayesian regret called

resource allocation loss. This term is upper bounded by
(
1− e

−2 max
k,j

(µkj)−1)
E[OPT UB]. We

observe that independent of other parameters, as µkj → 0, the upper bound approaches

(1 − 1/e)E[OPT UB]. The resource allocation loss partly depends on the blocking loss of

the resource allocation mechanism. In particular, the blocking loss is upper bounded by

(1 − α)E[V Alg] where α = min
j∈J

{∑Cj−1
n=0

Cnj e
−Cj

n!

}
and V Alg is the total reward obtained by

our algorithm without accounting for the reward lost due to blocking. This implies that

regardless of the total capacity of each care unit, the blocking loss is upper bounded by

(1− 1/e)E[V Alg] because α ≥ 1/e by having at least one bed in each care unit.
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3.5 Case Study and Empirical Results

Using a hospital system dataset provided by our partner hospital, we evaluate the per-

formance of our PAC algorithm compared to several benchmark policies and a surrogate for

the hospital’s current policy. In §3.5.1, we first describe our dataset and then calibrate some

experimental design choices required for evaluating the empirical performance of our PAC

algorithm. In §3.5.2, we provide our empirical results. Finally, some managerial insights

are provided in §3.5.3 concerning the impact of implementing our methodology as a decision

support tool in practice.

Preliminaries. Our hospital admission control system model, on a high level, needs two

interacting mechanisms to (i) adaptively learn the desired patient outcome for different types

of patients with respect to different care unit placements, and (ii) judiciously assign patients

to different care units with respect to the desired patient outcome. Due to the interest of

our partner hospital, we focused on the readmission risk as the main patient outcome. With

some effort, our methodology can be extended to capture other possible patient outcomes

as well.

In our methodology, the information/feedback revealed for prior care unit placements is

used to improve our decision-making by reducing the exposure of patients to less effective

decisions and exploring promising ones. In our setting, we should deal with delayed feedback

because a non-readmission event cannot be realized until 30 days after the discharge date and

a readmission event cannot be realized until the day of readmission. We follow our on the

fly strategy to deal with delayed feedback. That is, we update the estimator associated with

the readmission risk only based on the available information. To account for the limited

reusable resources, our algorithm uses a policy guide model which captures the effect of

lengths of stay on the capacity of care units. This ensures a trade-off between the benefit of

better health outcomes by assigning patients to SDUs/ICUs versus the opportunity cost of

reserving high-demand beds for potentially complex arriving patients in the future.

3.5.1 Data Description and Experimental Design

Dataset. Our dataset includes more than 10,000 patients from our partner hospital admitted

from Emergency Department (ED) or Non-ED. This dataset contains the initial care unit

placement for each patient, including ICU, SDU, or GB. It also includes lengths of stay and

readmissions to one of the hospitals in the network of hospitals in the area and within the

health system. Moreover, our dataset includes the following patient-specific covariates upon

admission:

• Demographics : age, gender, race, marital status, and insurance type.
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• Diagnosis : diagnosis upon admission such as renal failure, chronic obstructive pul-

monary disease (COPD), sepsis, liver disease, cancer, anemia, myocardial infarction,

and hypertension.

• Risk factors : patient mortality risk stratum and admission type (ED/Non-ED). Note

that the patient mortality risk stratum is a mortality risk measure (MRM) that is

available before assigning a patient to a care unit. A mortality risk stratum system

has been operational in our partner hospital for multiple years. This measure is an

effective summary measure that is not only associated with the risk of death but also

correlates with the risk of other adverse health events (see [39] for more information).

Patient Classification. The first step of our experimental design is to classify patients into

several groups with similar characteristics. In our partner hospital, the patient’s mortality

risk stratum (available upon admission of a patient) is obtained by a predicted severity

score based on several different factors, including admission diagnosis (atrial fibrillation,

leukemia/lymphoma, metastatic cancer, cancer other than leukemia, lymphoma, cognitive

disorder, and neurological conditions), and clinical laboratory results for the tests performed

within the preceding 30 days of admission (hemoglobin, platelet count, white blood count,

serum troponin, blood urea nitrogen, serum albumin, serum lactate, arterial pH, and arterial

partial pressure of oxygen) (see [38]). We adopt a classification approach in which the avail-

able patient-specific covariates upon admission are used to cluster patients into 6 different

types. We created clusters based on combinations of three ranges for mortality risk and two

ranges for the number of diagnoses.

Table 3.1 shows summary statistics with regard to age and gender of each type of patient

as well as the mortality risk predicted by our partner hospital. We visualized the frequency

of five major diagnoses within each type of patient in Figure 3.2a. Figure 3.2b shows the

frequency of admissions from ED and Non-ED for each type of patient. There is a common

belief that the care pathways of surgical patients are quite standardized (e.g., [83] and

[102]). However, the care pathways of medical patients are more variable, especially for

those admitted from the ED. Thus, we put our focus on patients admitted as an ED patient

or a non-ED patient to a medical service.

Arrival Process. The frequency of patient arrivals over week days are shown in Figure 3.3.

As expected, we see that the frequency of arrivals varies by day and patient type. We assume

that the arrival process can be well approximated for each patient type by an independent

Poisson distribution for each time interval (day). It should be noted that validating this

assumption requires a more complicated analysis which is beyond the scope of this chapter

(see [24] and [70] for more information).
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Table 3.1: Summary statistics of patient characteristics and average mortality risks by pa-
tient types.

Patient type
Age

Female(%) Mortality(%)
Mean SD

1 52.03 15.56 57.67 0.006
2 53.37 14.11 67.54 0.008
3 65.17 13.49 46.07 0.021
4 66.39 12.46 53.88 0.024
5 74.23 13.92 53.87 0.092
6 75.32 12.28 51.98 0.126

(a) Frequency of five main diagnoses present on admis-
sion.

(b) Frequency of admissions from ED and Non-ED.

Figure 3.2: Visualization of the patient characteristics by patient types.
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Figure 3.3: Frequency of patient arrivals over week days stratified by each of the patient
types.

Length of Stay. Assuming that lengths of stay are following exponential/geometric

distributions is a relatively common assumption in the literature (see, e.g., [98], [69], and

[27]). Modeling lengths of stay using an exponential/geometric distribution is attractive

because (i) it is a good approximation for LOS, and (ii) its memoryless property reduces

the complexity of the theoretical analysis of congestion in different care units. We assume

that the LOS of each patient type in each care unit follows an exponential distribution. Our

analyses shown by Figures 3.4a and 3.4b support this assumption.

Additional Design Considerations. The length of the time intervals and the construction

of feature vectors are the two remaining steps of our experimental design. The length of each

time interval is considered to be a day for ease of exposition, but it should be thought of

as a tuning parameter to be adjusted to suit the application. In general, the smaller the

length of intervals, the sooner our algorithm has access to newly realized feedback, and

possibly the faster the learning rate. As we consider a low-dimensional setting with six

patient types and three care units, we constructed one-hot feature vectors corresponding to

all possible combinations of patient types and care units. In a high-dimensional setting, a

possible approach to create a feature map is to use a neural network ([73]). In particular,

we can train a neural network (either deep or not) on the available historical data to predict

the patient outcome. Then, we can obtain a feature map by removing the last layer of the

trained neural network.

It is worth noting that real-time evaluation is the ideal way to evaluate our algorithm,
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(a) Type 5 patient (the GB line matches the SDU line). (b) Type 6 patient.

Figure 3.4: Histogram of lengths of stay and fitted distributions of lengths of stay for each
care unit.

because counterfactual outcomes are not required when we assign a patient to only one care

unit and then obtain the corresponding outcome. Evaluating our algorithm retrospectively

based on the observational data is challenging because we need to access counterfactuals

in some scenarios. For instance, if our algorithm assigns a patient to the SDU while in the

dataset this patient is assigned to the ICU, we do not have access to the readmission outcome

of the patient. To address this issue, we estimate the counterfactuals associated with the

readmission outcomes using the entire set of observational data. In general, a classification

model can be trained (a logistic regression classifier in our case) on the entire data to predict

the outcome (whether the patient is readmitted or not) with respect to each care unit. Using

this method to estimate counterfactuals may cause potential estimation bias, possibly due

to a mismatch between the generative model and the functional form of the readmission

outcomes estimator. A more complex voting scheme or a soft ensemble classifier could be a

better method for reducing estimation bias and providing accurate estimates (see, e.g., [19]

and [26]), but those approaches are beyond the scope of this chapter. Lastly, a limitation

of our numerical case study is that care unit placement decisions are more complex than

having the single goal of minimizing the readmission rates. In practice, only a portion of

the patients can be placed in any of the unit types; however, we did not have access to the

data for a sophisticated mode. Our result should be thought of as an upper bound on the

potential to reduce readmission rates through care unit placements.
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3.5.2 Evaluation and Empirical Results

We evaluate the performance of our algorithm with respect to several benchmarks. We

consider 10 random permutations of our data in all analyses. We exploit three performance

measures, including cumulative regret, cumulative success rate, and distribution of success.

The cumulative regret measures the difference between the (expected) cumulative reward

of the benchmark and our online algorithm, where the benchmark is the upper bound on

the optimal expected reward (LP UB). Defining success as the event that a patient is not

readmitted, the cumulative success measures the total rate of the successful actions upon

each time interval. The distribution of success describes the distribution of the success rate

by the end of the time horizon. We also compare our algorithm with a surrogate that

approximates the current policy of our partner hospital.

Cumulative Regret and Success rate. Our algorithm is designed for making care unit

placement decisions under limited reusable resources; however, most online learning algo-

rithms in the literature are not capacitated. Thus, we cannot directly compare our algo-

rithm with the existing algorithms in the literature. As a benchmark, we design a variation

of PAC, called PAC-UCB, in which the posterior sampling method for learning is replaced

by the UCB method ([9], [76]).

First, we compare PAC and PAC-UCB with respect to the cumulative regret. Figure

3.5a illustrates the cumulative regret of each algorithm as a function of the time interval.

To exclude the effect of delayed feedback in our comparison, we assumed that patients’

feedback is realized immediately after making care unit placement decisions. Note that Alg-

ND refers to an algorithm using the assumption of no delayed feedback. We considered a

non-informative prior for PAC-ND. As can be seen, PAC-ND outperforms PAC-UCB-ND

across all time intervals. When there are few samples, the slope of PAC-UCB-ND is higher

than the slope of PAC-ND, which may be prohibitively costly in the healthcare setting. The

empirical results suggest that a posterior sampling-based algorithm is a better fit for learning

in our specific problem.

Good prior information for an algorithm in a Bayesian setting can improve its perfor-

mance. Our algorithm can admit prior information either from expert opinion or historical

data. To illustrate this, we gave PAC-ND access to informative prior information and called

it PAC-ND-Prior. We used roughly 30 days to generate prior information for PAC-ND-Prior,

and then implemented it on the rest of the data used for other algorithms. Figure 3.5a shows

that the magnitude of improvement in the cumulative regret obtained by starting with an

informative prior is fairly large. As can be seen, PAC-ND-Prior achieves significantly lower

cumulative regret than PAC-ND across all intervals.

Next, we investigate the impact of delayed feedback on regret. Our PAC algorithm uses
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(a) No Delay. (b) With Delay.

Figure 3.5: Cumulative regret of different online algorithms

the on the fly strategy to deal with delayed feedback. Our strategy updates the estimator of

the unknown vector parameter based on the available information. A simpler but less efficient

strategy would be the fixed waiting time (FWT) strategy. Note that in our problem the true

readmission feedback of a patient will be realized within 30 days after discharge. To deal with

the delayed feedback in the FWT strategy, we update the estimator based on the decisions

made up to a certain prior time that is long enough to ensure all feedback outcomes are

realized. In particular, we update our estimator at interval m using the feedback of decisions

made up to interval m−DLmax. We set DLmax to 40 which is less than its actual value in

our dataset.

Figure 3.5b illustrates the cumulative regret of three variations of our PAC algorithm:

(i) PAC, our original algorithm having the on the fly strategy, (ii) PAC-FWT, a variation of

PAC in which the FWT strategy is used to deal with delayed feedback, and (iii) PAC-ND, a

variation of our PAC algorithm with the assumption of no delayed feedback. Note that this

is an unrealistic assumption because we assume that a patient’s feedback is realized through

an oracle immediately after assigning the patient to a care unit. As we expected, PAC-ND

outperforms PAC and PAC-FWT since it is using information to which we do not have access

in reality. We observe that PAC with the on the fly strategy outperforms PAC-FWT over all

time intervals, and it has comparable performance compared to PAC-ND. The reason is the

ability of PAC to gain more information using the realized feedback compared to PAC-FWT

which uses the same information but with a fixed delay.

Last, we compare PAC and PAC-UCB with respect to the success rate. Figure 3.6 shows

the cumulative success rate of PAC and PAC-UCB (both with the on the fly strategy) as a

function of time interval, along with the statistical fluctuations (shaded error bars to depict
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Figure 3.6: Cumulative success rate of PAC and PAC-UCB.

± 1 standard deviation). As can be seen, PAC has a higher average cumulative success

rate than PAC-UCB across almost all time intervals. Figure 3.7 illustrates the distribution

of the success rate over 100 time intervals. We observe that PAC and PAC-UCB achieve

a median success rate of 88.1% and 85.6%, respectively. Overall, the results suggest that

PAC performs well compared to PAC-UCB when mean and median matter. The greater

performance of PAC with respect to the success rate may provide a significant advantage

particularly for healthcare, where any sub-optimal decision for a patient may endanger the

patient’s health.

Towards Derandomization of PAC – A Deterministic Care Unit Placement Pol-

icy. Our PAC algorithm generates a randomized policy for assigning patients to care units.

It uses randomization to judiciously utilize the limited capacity in a system with constraints

on the expected number of patients in each care unit. Although some randomization in care

unit placement is inherent in the current practice, we acknowledge that patients who are told

that the system’s decisions have some randomness in them may feel uncomfortable. To alle-

viate this concern, we propose a variation of PAC with a deterministic care unit placement

strategy called PAC-D.

Recall that in the PAC algorithm, we solve an LP iteratively to find the assignment

probabilities, and then we assign a patient of type k to care unit j during interval m following

the assignment probability of xkj(m). PAC-D uses the same LP as a policy guide but follows

a different strategy to assign patients to care units. In particular, at each interval, it keeps

track of the current fraction of patients of type k assigned to care unit j during that interval.

Then, the next type k patient is assigned to the care unit j with the highest difference

between xkj(m) and the current fraction. We also design a greedy algorithm, called Greedy,
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Figure 3.7: Box and whisker plot for the success rate of PAC and PAC-UCB over 100 time
intervals.

which does not use the LP but still learns the expected reward. It follows a greedy care unit

assignment strategy in which a patient is assigned to an available care unit that yields the

highest expected reward. In particular, upon arrival of a patient of type k during interval

m, Greedy assigns the patient to the care unit j which is argmax
j∈J

r̃kj(m) subject to real-time

capacity constraints.

We compare the success rate of PAC-D with PAC and Greedy. Figure 3.8 shows the

distribution of the success rate of all three algorithms over 100 time intervals. We observe

that PAC-D achieves a median success rate of 89.8%, which is 1.7% higher than PAC. This

improvement may be due to the fact that PAC-D more closely implements the allocations

suggested by the LP. It may learn faster over the time horizon because the care unit place-

ments suggested by it are closer to what the LP wants to achieve. The Greedy algorithm

achieves a median success rate of 82.0% which is 7.8% and 6.1% less than that of PAC-D

and PAC, respectively. The higher performance of PAC-D and PAC over Greedy shows the

value of looking ahead when making care unit placement decisions.

Comparison to Hospital’s Current Policy. Our partner hospital follows a care unit

placement policy that is based on traditional placement criteria and a novel MRM system. A

web-based application was developed and implemented in the hospital to generate mortality

risk predictions for arriving patients. By the time a patient is ready for bed placement, a

prediction of mortality risk is generated and available for clinicians to review. While the

real behavior is complicated by additional considerations, the principle is that the MRM

system prioritizes high-risk patients with an MRM of 0.2 or higher to be admitted to ICU.

Patients with an MRM higher than 0.07 are prioritized to be admitted to SDU, and low-risk

111



Figure 3.8: Box and whisker plot for the success rate of different online algorithms over 100
time intervals.

patients with an MRM of 0.07 or less are sent to GB. We consider the current policy of

the hospital as a benchmark and compare the performance of our algorithm against it. Our

comparison indicates the relative change in the readmission rate of a hospital that focuses

only on readmission reduction versus a traditional approach augmented by an MRM system.

The difference between PAC and the hospital’s policy with respect to the median success

rate is 8.6% over 100 intervals, and this difference reaches 10% by considering 30 intervals as

a warm-up period for PAC. We also investigated the success rate of PAC and the hospital’s

policy across different types of patients. Figure 3.9 shows the mean success rate of PAC and

the hospital’s policy for our six types of patients. As we expected, the mean success rate of

PAC is higher for all types of patients except type 5. A closer look at the difference between

the success rate of PAC and the hospital’s policy reveals that types 2, 4, and 6 have the

greatest improvement. According to Figure 3.2a, these three types all have high fractions

of the “renal”, “COPD”, “sepsis”, and “liver” disease. Another finding is that the highest

improvement in success rate occurs for type 6. According to Table 3.1 and Figure 3.2b,

patients of type 6 have the highest mortality risks and a large fraction of them are admitted

through ED. Interestingly, type 5 is the only type for which the success rate of PAC is lower

than the hospital’s policy. The complex trade-off between many factors (e.g., reward, LOS,

available capacity at their arrival time) makes it difficult to identify the exact reasons for

this. The observed improvements in the readmission outcome of patients, particularly for

the complex ones (type 6), seem to be a valuable and interesting advantage of the PAC

algorithm.

Our next analysis is to compare PAC and the hospital’s policy in terms of daily admission
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Figure 3.9: Mean success rate for PAC and hospital’s current policy across different types of
patients.

rates to different care units. To this aim, we simulated the current practice of the hospital

based on the available observational data and admission rules of the hospital’s MRM system.

The average number of admissions by day of the week for SDU, ICU, and GB are illustrated

in Figures 3.10a, 3.10b, and 3.10c, respectively. In the hospital’s policy, the number of

admitted patients to SDU over different days is relatively the same, while more patients

were admitted to ICU over the first half of the week compared to its second half. PAC

admitted more patients to ICU and fewer patients to SDU during the second half of the

week compared to the hospital’s policy. The difference between PAC and the hospital’s

policy in terms of the number of admitted patients to GB is not great over different days.

The high success rate of PAC and the observed differences between the number of admissions

to different care units suggest that PAC can prioritize patients such that the more complex

patients can be assigned to higher levels of care.

3.5.3 Managerial Insights

In this chapter, we considered a fundamental question of how to pursue the goal of

readmission reduction through admission control when there is uncertainty regarding the

needs of patients. To answer this question, we proposed an optimization-learning approach

and designed an online algorithm as an important first step toward answering this question.

Next, we considered follow-up questions regarding the efficiency of our approach: Does our

optimization-learning approach improve or degrade patient readmission outcomes? What is
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(a) Admissions to SDU. (b) Admissions to ICU.

(c) Admissions to GB.

Figure 3.10: Daily average admissions to GB, SDU, and ICU.
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the magnitude of possible improvements?

As discussed before, the costs and benefits associated with different care units are still

fundamental questions in the hospital operations management area. One of the main dif-

ficulties in answering these questions arises from the fact that such costs and benefits can

be highly patient-specific due to the different and often uncertain needs of patients. One

key feature of our approach is its ability to provide a time interval- and type-dependent

admission policy with respect to readmission risk by leveraging the estimated congestion in

the network of units and the future patient arrival pattern. This is done by approximating

the dynamics of the system. The other distinctive feature of our approach is its on the fly

strategy, which is effective to learn fast when the feedback of prior care unit assignments

is delayed in time. We note that it is difficult to make a large impact by merely changing

unit placement because a readmission event may depend on many other factors (see, e.g.,

[59] and [28]). However, our empirical results shown in Figures 3.6-3.10 suggest that our

methodology has the potential to be used as the core of a general framework to improve the

current policy of hospitals.

Our result shows that the difference between the median success rate of the PAC algo-

rithm and the hospital’s policy is up to 10%. According to Figure 3.9, we find that the

magnitude of improvements varies across different patient types. That is, the magnitude of

improvements in success rates is more significant for type 2, 4, and 6 patients (in increasing

order). There are a couple of points to discuss here. Based on Figure 3.2a, we observe

that there are two common characteristics among type 2, 4, and 6 patients: (i) a higher

fraction of these patients are having a history of comorbidities, especially “renal”, “COPD”,

“sepsis”, and “liver” disease, and (ii) a large fraction of them are admitted through ED.

Our observations suggest that further attention should be given to these patients to better

understand their precise characteristics and confirm that having a history of such diseases is

indeed an important factor that should be considered in the care unit placement decisions.

Furthermore, our results suggest that greater improvements are likely for patients admitting

from ED. One reason could be that the care pathways of Non-ED patients are less vari-

able compared to patients admitting from ED (e.g., [83] and [102]). The high variability in

the care pathways of patients admitting from ED can provide more opportunities for our

algorithm to leverage patient characteristics.

There might be several underlying reasons for the high success rate of decisions provided

by PAC compared to the hospital’s policy. Apart from estimating the risk of readmission

adaptively, one reason may be that the current policy of the hospital is not able to properly

account for the opportunity cost of using each bed type. Our approach accounts for the

opportunity cost of using an available bed or saving it for complex patients arrivals in the
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future. In fact, PAC provides a care unit placement policy based on a patient congestion

model. It can be viewed as a time interval- and type-dependent policy which is different

from the fixed threshold policy used in the hospital. Our policy can better accommodate

the congestion in different care units over time by using arrival rate information, while a

fixed threshold policy is hurt by variation in occupancy. Comparing PAC with Greedy in

Figure 3.8 supports this claim and highlights the value of looking ahead when making care

unit placement decisions.

The results in Figures 3.10a, 3.10b, 3.10c, and the high success rate of unit placement

decisions provided by PAC demonstrate that it can judiciously assign patients to different

care units. That is, it effectively weighs the overall effects of future arrival rates, LOS, and

the relative readmission reduction benefit a patient receives with respect to different care

units. The high success rate of PAC for complex patients (i.e., high mortality risk, key

commodities, and frequently being admitted through the ED) and its resource utilization,

which is roughly consistent with past practice, suggest that PAC can identify and prioritize

patients such that the more complex patients are assigned to higher levels of care. It is

expected that a higher level of care speeds up the healing process, which can be due to a

higher nurse to patient ratio in high-level care units. Our collaborators believe this to be true

and literature suggests it as well (see [82]). Thus, we expect our methodology to modestly

decrease the average length of stay. Investigating the truth of this hypothesis is beyond the

scope of this chapter, but it is worth investigating in future work.

Our methodology can also be useful when an unexpected crisis hits and the health care

system must adjust the existing strategies for care unit placements without sufficient data

to understand how patients will respond. For this setting, mortality will likely be a more

important criterion than readmission, which PAC can accommodate. The Coronavirus dis-

ease (COVID-19) pandemic is an example of such an unexpected crisis. To provide proper

care to COVID-19 cases and perform infection control, many hospitals reorganized their

routine operations and created special care units devoted to COVID-19 patients. While our

research study started long before the COVID-19 crisis and we are not considering a special

COVID-19 unit, our method can accommodate additional units such as a COVID-19 care

unit. Most importantly, the online aspect of our method is well suited the environment with

little historical data or undergoing a major change.

3.6 Conclusion

Hospital operations and clinical practice are shifting toward personalization to treat pa-

tients better. Hospitals and researchers are eager to learn more about the readmission impact
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of a care unit placement decision. This is challenging due to the wide variety of patient char-

acteristics, uncertain needs of patients, and the limited number of beds in intensive and

intermediate care units. In this study, we proposed an optimization-learning approach for

hospital admission control. We introduced a personalized admission control system model,

and developed and analyzed a new online algorithm for it. Our algorithm is designed to

adaptively learn readmission risks from data through batch learning with delayed feedback

and identify the best care unit placements for patients. The aim is to reduce patient read-

mission rates by capturing the trade-off between the benefit of better health outcomes for

patients arriving in the current time interval versus the value of reserving high-demand beds

for potentially more complex patients arriving in the future. We analyzed the Bayesian

regret of our algorithm and provided a rigorous analytical performance guarantee.

We evaluated the empirical performance of our online algorithm using hospital system

data and compared it to several benchmarks and a surrogate for the current policy of our

partner hospital. We also investigated the magnitude of improvements in patient readmission

outcomes. The case study results showed that our algorithm performs well compared to other

benchmarks and reduces the readmission rate up to 10% compared to the current policy of

our partner hospital. Our observations suggest that further attention should be given to

patients with a history of particular diseases. This helps to better understand the precise

characteristics of patients with these diseases and confirm that having a history of such

diseases is indeed an important factor that should be considered in the care unit placement

decisions. Also, the high success rate of PAC while avoiding over-utilization of SDUs and

ICUs suggests that it prioritizes complex patients to be assigned to higher levels of care.

We believe our results demonstrate the potential benefits of personalized admission control

systems in hospitals.

3.7 Appendix

3.7.1 Appendix A. Proofs of Lemmas 1 and 2

Lemma III.1 (Upper Bound on Optimal Expected Reward). Let OPT UB be the

optimal objective value of LP UB given the model parameter w. Then, the optimal expected

reward achieved by the optimal state-dependent policy E[V π∗|w] is upper bounded by OPT UB.

Proof. Let xπk(m) = {xπkj(m)}j∈J be the solution of an admissible policy π ∈ Π. First, we

show that xπk(m) is a feasible solution for LP UB. To do do, we need to show that xπk(m)

satisfies the constraints (3.4)-(3.6) of LP UB. It is easy to see that (3.5) and (3.6) are satisfied

by xπk(m), because policy π induces a distribution over the assignment of patients to care
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units.

Recall that the flow balance inequality (3.1) holds for each admissible policy π. Since

it must be satisfied for any realization, it must also hold after taking expectation on both

sides. Then, we have the following:

K∑
k=1

Θ̄π
kj(m) +

K∑
k=1

β̄πkj(m) ≤ Cj +
K∑
k=1

D̄π
kj(m), (3.12)

where Θ̄π
kj(m), β̄πkj(m), and D̄π

kj(m) are the mean values of Θπ
kj(m), βπkj(m), and Dπ

kj(m),

respectively.

Assuming that all arrivals occur at the beginning of each interval yields the following

upper bound on the expected number of departures of type k patients from care unit j:

D̄π
kj(m) ≤

(
Θ̄π
kj(m) + β̄πkj(m)

)(
1− e−µkj

)
, (3.13)

where P(LOS of a type k patient assigned to care unit j ≤ 1) = 1− e−µkj .
By plugging (3.13) into (3.12), we have:

K∑
k=1

β̄πkj(m) e−µkj ≤ Cj −
K∑
k=1

Θ̄π
kj(m) e−µkj . (3.14)

Moreover, since (3.2) must be satisfied for any realization, it must also hold after taking

expectation on both sides. Then, we have:

Θ̄π
kj(m) = Θ̄π

kj(m− 1) + β̄πkj(m− 1)− D̄π
kj(m− 1). (3.15)

Plugging (3.13) into (3.15) yields the following:

Θ̄π
kj(m)− Θ̄π

kj(m− 1) e−µkj ≥ β̄πkj(m− 1) e−µkj . (3.16)

Now, we are ready to show that xπk(m) satisfies the capacity constraint (3.4) for all j ∈ J
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and m ∈M.

m∑
s=1

K∑
k=1

λk(s) x
π
kj(s) ψkj(s,m)

=
m∑
s=1

K∑
k=1

ψkj(s,m) β̄πkj(s)

=
m∑
s=1

K∑
k=1

e−(m−s+1)µkj β̄πkj(s)

=
K∑
k=1

e−µkj β̄πkj(m) +
m−1∑
s=1

K∑
k=1

e−(m−s+1)µkj β̄πkj(s)

≤ Cj −
K∑
k=1

e−µkj Θ̄π
kj(m) +

m−1∑
s=1

K∑
k=1

e−(m−s+1)µkj β̄πkj(s)

≤ Cj −
K∑
k=1

e−µkj Θ̄π
kj(m) +

m−1∑
s=1

K∑
k=1

e−(m−s)µkj
(
Θ̄π
kj(s+ 1)− e−µkj Θ̄π

kj(s)
)

= Cj −
K∑
k=1

e−µkj Θ̄π
kj(m) +

K∑
k=1

(
e−µkj Θ̄π

kj(m)− e−mµkj Θ̄π
kj(1)

)
= Cj,

where the first inequality holds because of (3.14), and the second inequality holds because

of (3.16). Also, the forth equality follows from the telescoping series, and the last equality

holds because the system begins empty and the initial occupancy of any care unit is zero.

Next, it remains to discuss the objective functions. It is easy to observe that the objective

function of LP UB is the same as the expected reward of the policy π, i.e., E[V π|w] =∑M
m=1

∑K
k=1

∑J
j=1 rkj λk(m)xπkj(m). Thus, the optimal expected reward achieved by the

optimal state-dependent policy E[V π∗ |w] = sup
π∈Π

E[V π|w] is upper bounded by OPT UB, which

completes the proof.

Lemma III.2 (Lower Bound on Optimal Objective Value of LP C−UB). Let OPT C−UB

be the optimal objective value of LP C−UB given the model parameter w. Then, we have

OPT C−UB ≥ e
−2 max

k,j
(µkj)

OPT UB.
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Proof. Recall that we defined LP C−UB as follows:

max
x

M∑
m=1

K∑
k=1

J∑
j=1

rkj λk(m) xkj(m)

s.t.
m∑
s=1

K∑
k=1

λk(s) xkj(s) ψkj(s,m) ≤ e
−2 max

k,j
(µkj)

Cj, ∀ j ∈ J , ∀ m ∈M

J∑
j=1

xkj(m) ≤ 1, ∀ k ∈ K, ∀ m ∈M

xkj(m) ≥ 0, ∀ k ∈ K, ∀ j ∈ J , ∀ m ∈M,

where xkj(m) is the probability of assigning type k patients to care unit j during interval m.

Note that LP C−UB is similar to LP UB and the only difference is that the capacity of care

units are scaled down by a multiplier in LP C−UB. Let xkj(m) = e
−2 max

k,j
(µkj)

x∗kj(m), where

x∗kj(m) is the optimal solution of LP UB.

First, we show that e
−2 max

k,j
(µkj)

x∗kj(m) is a feasible solution for LP C−UB. Replacing

xkj(m) by e
−2 max

k,j
(µkj)

x∗kj(m) for all k ∈ K, j ∈ J , and m ∈ M in the first constraint of

LP C−UB, yields the following:

m∑
s=1

K∑
k=1

λk(s) x
∗
kj(s) ψkj(s,m) ≤ Cj, ∀ j ∈ J , ∀ m ∈M.

The above inequality holds since x∗kj(m) is the optimal solution of LP UB. Also, it is ob-

vious that the second constraint of LP C−UB holds as well. Thus, we can conclude that

e
−2 max

k,j
(µkj)

x∗kj(m) is a feasible solution for LP C−UB.

Next, we show the the optimal objective value of LP C−UB can be lower bounded as

follows, which completes the proof.

OPT C−UB ≥
M∑
m=1

K∑
k=1

J∑
j=1

rkj λk(m) xkj(m)

=
M∑
m=1

K∑
k=1

J∑
j=1

rkj λk(m) e
−2 max

k,j
(µkj)

x∗kj(m)

= e
−2 max

k,j
(µkj)

M∑
m=1

K∑
k=1

J∑
j=1

rkj λk(m) x∗kj(m) = e
−2 max

k,j
(µkj)

OPT UB.
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3.7.2 Appendix B. Technical Results on Batch Learning Loss

We provide our technical results for deriving an upper bound on the batch learning

loss. In Proposition III.1, we provide a high-probability confidence bound on the expected

reward. Proposition III.2 and Lemma III.4 establish upper bounds on two main terms that

are essential to calculate the batch learning loss. Proposition III.3 provides a high-probability

bound for the batch learning loss.

Proposition III.1 (Confidence Bound under Batch Learning with Delay). For any

i, m, and δ > 0, the following holds with probability at least 1− δ.

∣∣σ(〈φ(i)
j∗ (m), w〉

)
− σ

(
〈φ(i)

j∗ (m), ŵ(m)〉
)∣∣ ≤ Rad

(i)
j∗ (m),

In this upper bound, ŵ(m) is the maximum likelihood estimator of the unknown model pa-

rameter w at interval m, Rad
(i)
j∗ (m) = 1

4cσ

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

Υm, Um is the design matrix, and

Υm =

√√√√d log

(
1 +

∑m−1
s=1 N̄(s)

γd

)
+ log

(
1

δ2

)
+ 2

m−1∑
s=max{1,m−Dmax}

N̄(s)∑
i=1

∥∥∥φ(i)
j∗ (s)

∥∥∥
U−1
m

+ cσ,

where N̄(m) =
∑K

k=1Nk(m), Dmax is the maximum number of intervals required for a

feedback to be realized, and cσ = inf
w,φkj

σ̇
(
〈φkj, w〉

)
such that σ̇(·) is the derivative of σ(·).

Proof. Our aim is to develop a confidence bound which contains the true expected reward

with a high probability using the feedback outcomes realized by the end of interval m − 1

and the available feature vectors upon the end of interval m− 1.

In our setting, feedback outcomes arrive with delay. Therefore, the information that

whether a patient readmits or not is not available immediately after a care unit placement

decision is made for the patient. Indeed, the true feedback of a patient may be realized

up to a certain number of days after the discharge time. We update the model parameter

on the fly after each interval. That is, to update the estimator at the end of interval m,

we use the information (feature-feedback) of a patient assigned to a care unit in one of

the previous intervals if the patient’s feedback is realized by the end of interval m. Recall

that D(i)(m) is the feedback delay of the ith patient who arrived at interval m, which is

the number of intervals required for the feedback to be realized. Also, recall that F(m) ={
(s, i, j∗) | s + D(i)(s) ≤ m − 1; i ∈ {1, . . . , N̄(s)}

}
is the set containing tuples (s, i, j∗) of

patients with realized readmission feedback outcomes by the end of interval m−1. Similarly,

we denote F c(m) =
{

(s, i, j∗) | s ≤ m − 1, s + D(i)(s) ≥ m; i ∈ {1, . . . , N̄(s)}
}

as the set
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containing tuples (s, i, j∗) of patients with unrealized readmission feedback outcomes by the

end of interval m− 1.

We formally define ŵ(m) as the maximum likelihood estimator of w ∈ Rd at interval m.

The regularized log-likelihood function Gm(w) can be calculated as:

Gm(w) =∑
(s,i,j∗)∈F(m)

[
R(i)
j∗ (s) log σ

(
〈φ(i)

j∗ (s), w〉
)

+
(

1−R(i)
j∗ (s)

)
log
(

1− σ
(
〈φ(i)

j∗ (s), w〉
))]
− κ

2
‖w‖2 ,

where κ is the regularization parameter and Gm(w) is a strictly concave function of w for

κ > 0.

Next, we need to find the maximum of Gm(w) in order to obtain the maximum likelihood

estimator ŵ(m). The gradient of Gm(w) is obtained as follows:

∇wGm(w)

=
∑

(s,i,j∗)∈F(m)

(
R(i)
j∗ (s)− σ

(
〈φ(i)

j∗ (s), w〉
))
φ

(i)
j∗ (s)− κw. (3.17)

Thus, ŵ(m) is the unique solution of ∇wGm(w) = 0. Moreover, we highlight that the

estimator ŵ(m) is not updated after each patient and it is only updated after each interval

m.

Using the estimator ŵ(m), the confidence bound can be derived by the following steps.

First, we define the design matrix Um and the vector-valued function hm(·) corresponding

to interval m as follows:

Um =
m−1∑
s=1

N̄(s)∑
i=1

φ
(i)
j∗ (s) φ

′(i)
j∗ (s) + γI; hm(w) =

m−1∑
s=1

N̄(s)∑
i=1

σ
(
〈φ(i)

j∗ (s), w〉
)
φ

(i)
j∗ (s) + κw,

where we set κ to cσγ > 0. Note that Um contains all the feature vectors corresponding to

the patients who arrived by the end of interval m− 1 (see Figure 3.11 for an illustration).

Next, by the mean value theorem and the Lipschitz property of the logistic function σ(·)
(see Lemma III.5 in Appendix D), the following holds for any i and m:

∣∣σ(〈φ(i)
j∗ (m), w〉

)
− σ

(
〈φ(i)

j∗ (m), ŵ(m)〉
)∣∣ ≤ 1

4cσ

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

‖hm(w)− hm(ŵ(m))‖U−1
m
.

(3.18)

According to the definition of hm(·), we can expand the term ‖hm(ŵ(m))− hm(w)‖U−1
m
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Figure 3.11: The illustration of patient arrivals over different intervals.

on the right-hand side of (3.18) as follows:

‖hm(ŵ(m))− hm(w)‖U−1
m

≤

∥∥∥∥∥∥
∑

(s,i,j∗)∈F(m)

(
σ
(
〈φ(i)

j∗ (s), ŵ(m)〉
)
− σ

(
〈φ(i)

j∗ (s), w〉
))
φ

(i)
j∗ (s) + κ

(
ŵ(m)− w

)∥∥∥∥∥∥
U−1
m

+

∥∥∥∥∥∥
∑

(s,i,j∗)∈Fc(m)

(
σ
(
〈φ(i)

j∗ (s), ŵ(m)〉
)
− σ

(
〈φ(i)

j∗ (s), w〉
))
φ

(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m

, (3.19)

where the inequality holds by the triangle inequality.

Recall that ŵ(m) is the unique solution of ∇wGm(w) = 0. Then, the following holds by

(3.17): ∑
(s,i,j∗)∈F(m)

σ
(
〈φ(i)

j∗ (s), ŵ(m)〉
)
φ

(i)
j∗ (s) + κ ŵ(m) =

∑
(s,i,j∗)∈F(m)

R(i)
j∗ (s) φ

(i)
j∗ (s). (3.20)
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Accordingly, for the first term on the right-hand side of (3.19), we have:∥∥∥∥∥∥
∑

(s,i,j∗)∈F(m)

(
σ
(
〈φ(i)

j∗ (s), ŵ(m)〉
)
− σ

(
〈φ(i)

j∗ (s), w〉
))
φ

(i)
j∗ (s) + κ

(
ŵ(m)− w

)∥∥∥∥∥∥
U−1
m

=

∥∥∥∥∥∥
∑

(s,i,j∗)∈F(m)

(
R(i)
j∗ (s)− σ

(
〈φ(i)

j∗ (s), w〉
))
φ

(i)
j∗ (s)− κw

∥∥∥∥∥∥
U−1
m

≤

∥∥∥∥∥∥
∑

(s,i,j∗)∈F(m)

ξ
(i)
j∗ (s) φ

(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m

+ κ ‖w‖U−1
m

≤

∥∥∥∥∥∥
m−1∑
s=1

N̄(s)∑
i=1

ξ
(i)
j∗ (s) φ

(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m

+

∥∥∥∥∥∥
∑

(s,i,j∗)∈Fc(m)

ξ
(i)
j∗ (s) φ

(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m

+ cσ,

where the first equality holds by (3.20). The first inequality holds by the triangle inequality

and having ξ
(i)
j∗ (m) = R(i)

j∗ (m) − σ(〈φ(i)
j∗ (m), w〉). The last inequality holds by the triangle

inequality and having ‖w‖2
U−1
m
≤ ρ−1

min(Um) ‖w‖2 ≤ γ−1 ‖w‖2 ≤ γ−1.

Plugging the above inequality in (3.19), we have:

‖hm(ŵ(m))− hm(w)‖U−1
m
≤

∥∥∥∥∥∥
m−1∑
s=1

N̄(s)∑
i=1

ξ
(i)
j∗ (s) φ

(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m

+ cσ

︸ ︷︷ ︸
Term I

+

∥∥∥∥∥∥
∑

(s,i,j∗)∈Fc(m)

(
σ
(
〈φ(i)

j∗ (s), ŵ(m)〉
)
− σ

(
〈φ(i)

j∗ (s), w〉
))
φ

(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m︸ ︷︷ ︸

Term II

+

∥∥∥∥∥∥
∑

(s,i,j∗)∈Fc(m)

ξ
(i)
j∗ (s) φ

(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m︸ ︷︷ ︸

Term III

.

In the following, we bound each term.

Term I: Let H0
m be a sigma algebra generated by the feature vectors and the noise values

of the patients who arrived by the end of interval m − 1. Note that ξ
(i)
j∗ (m) can be viewed

as a 1-sub-Gaussian random variable and the sequence {
∑m−1

s=1

∑N̄(s)
i=1 ξ

(i)
j∗ (s)φ

(i)
j∗ (s)}m∈M is a

martingale adapted to {H0
m}m∈M. This martingale can be bounded with a high probability

(see Theorem 1 in [1]). Accordingly, for any i, m, and δ > 0, the following holds with
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probability at least 1− δ:∥∥∥∥∥∥
m−1∑
s=1

N̄(s)∑
i=1

ξ
(i)
j∗ (s) φ

(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m

≤

√
2 log

(
det(Um)1/2 det(γI)−1/2

δ

)
.

Note that Um is a positive definite matrix, tr(Um) is equal to the summation of its

eigenvalues, and det(Um) is equal to the product of its eigenvalues. Therefore, by tr(Um) ≤
tr(γI)+

∑m−1
s=1 N̄(s) and using the inequality of arithmetic and geometric, we have det(Um) ≤(

1
d

tr(Um)
)d ≤ (γ +

∑m−1
s=1 N̄(s)

d

)d
. Thus, the root-squared term in the above inequality can

be further simplified as:

2 log

(
det(Um)1/2 det(γI)−1/2

δ

)
= 2 log

(
det(Um)1/2

)
+ 2 log

(
det(γI)−1/2

δ

)
≤ d log

(
γ +

∑m−1
s=1 N̄(s)

d

)
+ 2 log

(
det(γI)−1/2

)
+ 2 log

(
1

δ

)

= d log

(
γ +

∑m−1
s=1 N̄(s)

d

)
+ d log

(
1

γ

)
+ 2 log

(
1

δ

)

= d log

(
1 +

∑m−1
s=1 N̄(s)

γd

)
+ log

(
1

δ2

)
.

Terms II & III: First, we bound Term II. Recall that σ(·) is the logistic function. The

absolute value of the difference of two logistic functions is upper bounded by one. Then, we

have the following by the triangle inequality:∥∥∥∥∥∥
∑

(s,i,j∗)∈Fc(m)

(
σ
(
〈φ(i)

j∗ (s), ŵ(m)〉
)
− σ

(
〈φ(i)

j∗ (s), w〉
))

φ
(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m

≤
∑

(s,i,j∗)∈Fc(m)

∥∥∥∥(σ(〈φ(i)
j∗ (s), ŵ(m)〉

)
− σ

(
〈φ(i)

j∗ (s), w〉
))

φ
(i)
j∗ (s)

∥∥∥∥
U−1
m

≤
∑

(s,i,j∗)∈Fc(m)

∥∥∥φ(i)
j∗ (s)

∥∥∥
U−1
m

.

Recall that Dmax is the maximum number of intervals required for a feedback to be

realized. Then, the feedback outcomes of all patients who arrived before interval m −
Dmax are realized by the end of interval m − 1. However, we do not know whether the

feedback outcomes of other patients, who arrived on interval m−Dmax or subsequent intervals

including interval m − 1, are realized or not by the end of interval m − 1. Then, it is not
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hard to see that the number of such patients or the cardinality of set F c(m) can be upper

bounded by
∑m−1

s=max{1,m−Dmax} N̄(s) where N̄(s) =
∑K

k=1Nk(s). Then, we have:

∑
(s,i,j∗)∈Fc(m)

∥∥∥φ(i)
j∗ (s)

∥∥∥
U−1
m

≤
m−1∑

s=max{1,m−Dmax}

N̄(s)∑
i=1

∥∥∥φ(i)
j∗ (s)

∥∥∥
U−1
m

.

Noting that the absolute value of the noise is upper bounded by one, Term III can be

similarly upper bounded as follows:∥∥∥∥∥∥
∑

(s,i,j∗)∈Fc(m)

ξ
(i)
j∗ (s) φ

(i)
j∗ (s)

∥∥∥∥∥∥
U−1
m

≤
m−1∑

s=max{1,m−Dmax}

N̄(s)∑
i=1

∥∥∥φ(i)
j∗ (s)

∥∥∥
U−1
m

.

Putting the results derived for three terms together, we have:

‖hm(ŵ(m))− hm(w)‖U−1
m
≤ Υm, (3.21)

where Υm is defined as:√√√√d log

(
1 +

∑m−1
s=1 N̄(s)

γd

)
+ log

(
1

δ2

)
+ 2

m−1∑
s=max{1,m−Dmax}

N̄(s)∑
i=1

∥∥∥φ(i)
j∗ (s)

∥∥∥
U−1
m

+ cσ.

Finally, the proof is completed by (3.18) and (3.21).

∣∣σ(〈φ(i)
j∗ (m), w〉

)
− σ

(
〈φ(i)

j∗ (m), ŵ(m)〉
)∣∣ ≤ Rad

(i)
j∗ (m),

where Rad
(i)
j∗ (m) = 1

4cσ

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

Υm.
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Lemma III.3 (Bound on Nested Summation of Feature Vectors). Let {φ(i)
j∗ (m)}m∈M,i∈N̄(m)

be a sequence of feature vectors in Rd. Then, the following holds almost surely:

M∑
m=1

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

 m−1∑
s=max{1,m−Dmax}

N̄(s)∑
n=1

∥∥∥φ(n)
j∗ (s)

∥∥∥
U−1
m


≤ 10 dDmaxN̄max

(
1 +

N̄max

γ

)
log

(
γ + T

γ

)
.

Proof. The proof consists of two main steps.

Step 1. Using ab ≤ (a2 + b2)/2 for a, b ∈ R, we have:

M∑
m=1

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

 m−1∑
s=max{1,m−Dmax}

N̄(s)∑
n=1

∥∥∥φ(n)
j∗ (s)

∥∥∥
U−1
m


≤ 1

2

M∑
m=1

N̄(m)∑
i=1

m−1∑
s=max{1,m−Dmax}

N̄(s)∑
n=1

(∥∥∥φ(i)
j∗ (m)

∥∥∥2

U−1
m

+
∥∥∥φ(n)

j∗ (s)
∥∥∥2

U−1
m

)
.

Next, by the Sherman-Morrison formula, we have
∥∥∥φ(n)

j∗ (s)
∥∥∥
U−1
m

≤
∥∥∥φ(n)

j∗ (s)
∥∥∥
U−1
s

for all

s ≤ m. Accordingly, the following holds:

M∑
m=1

N̄(m)∑
i=1

m−1∑
s=max{1,m−Dmax}

N̄(s)∑
n=1

(∥∥∥φ(i)
j∗ (m)

∥∥∥2

U−1
m

+
∥∥∥φ(n)

j∗ (s)
∥∥∥2

U−1
m

)

≤
M∑
m=1

N̄(m)∑
i=1

m−1∑
s=max{1,m−Dmax}

N̄(s)∑
n=1

(∥∥∥φ(i)
j∗ (m)

∥∥∥2

U−1
m

+
∥∥∥φ(n)

j∗ (s)
∥∥∥2

U−1
s

)

≤ N̄maxDmax

M∑
m=1

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥2

U−1
m

+
M∑
m=1

N̄(m)∑
i=1

m−1∑
s=max{1,m−Dmax}

N̄(s)∑
n=1

∥∥∥φ(n)
j∗ (s)

∥∥∥2

U−1
s

≤ 2 N̄maxDmax

M∑
m=1

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥2

U−1
m

,

where the last inequality holds because
∑M

m=1

∑N̄(m)
i=1

∑m−1
s=max{1,m−Dmax}

∑N̄(s)
n=1

∥∥∥φ(n)
j∗ (s)

∥∥∥2

U−1
s

≤

N̄maxDmax

∑M
m=1

∑N̄(m)
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥2

U−1
m

.

Step 2. In the second step, we upper bound the summation of the weighted norms of feature

vectors.
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Let Em =
∑N̄(m)

i=1 φ
(i)
j∗ (m) φ

′(i)
j∗ (m). Then, we have:

M∑
m=1

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥2

U−1
m

=
M∑
m=1

tr
(
U−1
m Em

)
.

Let νm,j for all j ∈ {1, . . . , d} be the eigenvalues of Um. By Lemma 11 of [8] and using a

recursion technique, we have:

M∑
m=1

tr
(
U−1
m Em

)
≤ 10

M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm,j

,

where we have νm+1,j ≥ νm,j and ν1,j = γ for all m and j.

To upper bound the above term, we establish the following decomposition:

M∑
m=1

tr
(
U−1
m Em

)
≤ 10

M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm+1,j

+ 10

(
M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm,j

−
M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm+1,j

)
.

Similar to the technique used in Lemma 3 of [58], we bound the first term as follows:

M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm+1,j

≤
d∑
j=1

νM+1,j∫
ν1,j

1

t
dt =

d∑
j=1

log

(
νM+1,j

ν1,j

)
≤ d log

(
γ + T

γ

)
,

where the last inequality holds since for any z ∈ Rd, we have:

z′ UM+1 z = z′

 M∑
m=1

N̄(m)∑
i=1

φ
(i)
j∗ (m) φ

′(i)
j∗ (m) + γI

 z

= γ ‖z‖2 +
M∑
m=1

N̄(m)∑
i=1

〈φ(i)
j∗ (m), z〉2 ≤ γ ‖z‖2 + T ‖z‖2 .

This implies that νM+1,j ≤ γ + T for all j ∈ {1, . . . , d}.
Next, we upper bound the second term. By a simple algebra, we have:

M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm,j

−
M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm+1,j

=
M∑
m=1

d∑
j=1

(νm+1,j − νm,j)2

νm,j νm+1,j

.
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Note that νm,j ≥ ν1,j = γ. Also, tr(Um+1) = tr(Um) + tr(Em), then we have:

νm+1,j − νm,j ≤ tr(Em) =

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥2

≤ N̄max.

Accordingly, the second term can be upper bounded as follows:

M∑
m=1

d∑
j=1

(νm+1,j − νm,j)2

νm,j νm+1,j

≤ N̄max

γ

M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm+1,j

≤ d N̄max

γ
log

(
γ + T

γ

)
.

Thus, we have:

M∑
m=1

tr
(
U−1
m Em

)
≤ 10

M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm+1,j

+ 10

(
M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm,j

−
M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm+1,j

)

≤ 10 d

(
1 +

N̄max

γ

)
log

(
γ + T

γ

)
.

Finally, putting the results obtained by the two steps together completes the proof.

Now, we state Proposition III.2 and Lemma III.4, which establish high-probability bounds

on two main terms that are essential for calculating the batch learning loss in the next step

(see Proposition III.3).

Proposition III.2 (Bound on Difference between Upper and Lower Bounds of

Expected Reward). For any δ > 0, the following holds with probability at least 1− δ.

E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
UB

(i)
j (m) x

(i),Alg∗

j (m)− LB(i)
j (m) x

(i),Alg∗

j (m)
)

≤ 1

2cσ

(
√

10 d
(√

ζ T + N̄max

)
log

(
1 +

T

d

)(√
d log

(
1 +

T

d2

)
+ log

(
1

δ2

)
+ cσ

)

+ 20 dDmaxN̄max

(
1 +

N̄max

d

)
log

(
1 +

T

d

))
,

where UB
(i)
j (m) and LB

(i)
j (m) are the largest and smallest possible estimated values for the

expected reward of the ith patient who arrived at interval m and was assigned to care unit

j, respectively. Also, N̄max and T can be upper bounded with a high probability (see Lemma
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III.7).

Proof. Let UB
(i)
j (m) and LB

(i)
j (m) be the sequences of real-valued functions which can be

defined as:

UB
(i)
j (m) = min

{
1,max

τ∈Γm
σ
(
〈φ(i)

j (m), τ〉
)}

; LB
(i)
j (m) = max

{
0, min

τ∈Γm
σ
(
〈φ(i)

j (m), τ〉
)}

,

where set Γm can be defined as follows:

Γm =
{
w ∈ Rd

∣∣ ‖hm(ŵ(m))− hm(w)‖U−1
m
≤ Υm

}
. (3.22)

Since we cannot assign a patient to more than one care unit, we have:

E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
UB

(i)
j (m) x

(i),Alg∗

j (m)− LB(i)
j (m) x

(i),Alg∗

j (m)
)

= E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
UB

(i)
j (m)− LB(i)

j (m)
)
1{j(i),Alg∗(m) = j}


= E

 M∑
m=1

N̄(m)∑
i=1

(
UB

(i)
j∗ (m)− LB(i)

j∗ (m)
) .

By Proposition III.1, we established the following bound for any i, m, and δ > 0, which

holds with probability at least 1− δ:

∣∣σ(〈φ(i)
j∗ (m), w〉

)
− σ

(
〈φ(i)

j∗ (m), ŵ(m)〉
)∣∣ ≤ Rad

(i)
j∗ (m).

Next, we define ŨB
(i)

j (m) and L̃B
(i)

j (m) as follows:

ŨB
(i)

j (m) = σ
(
〈φ(i)

j (m), ŵ(m)〉
)

+ Rad
(i)
j (m),

L̃B
(i)

j (m) = σ
(
〈φ(i)

j (m), ŵ(m)〉
)
− Rad

(i)
j (m).

Since UB
(i)
j∗ (m) ≤ ŨB

(i)

j∗ (m) and LB
(i)
j∗ (m) ≥ L̃B

(i)

j∗ (m), we have:

UB
(i)
j∗ (m)− LB(i)

j∗ (m) ≤ ŨB
(i)

j∗ (m)− L̃B
(i)

j∗ (m) ≤ 2 Rad
(i)
j∗ (m).

Summing over all patients and taking expectation on both sides of the above inequality
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yield the following:

E

 M∑
m=1

N̄(m)∑
i=1

(
UB

(i)
j∗ (m)− LB(i)

j∗ (m)
)

≤ 2E

 M∑
m=1

N̄(m)∑
i=1

Rad
(i)
j∗ (m)

 = E

 M∑
m=1

N̄(m)∑
i=1

1

2cσ

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

Υm

 , (3.23)

where,

Υm =

√√√√d log

(
1 +

∑m−1
s=1 N̄(s)

γd

)
+ log

(
1

δ2

)
+ 2

m−1∑
s=max{1,m−Dmax}

N̄(s)∑
n=1

∥∥∥φ(n)
j∗ (s)

∥∥∥
U−1
m

+ cσ.

By Lemma III.6 (Appendix D), the following holds when γ = d:

M∑
m=1

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

≤
√

10 d
(√

MN̄max + N̄max

)
log

(
1 +

T

d

)
.

Next, by Lemma III.3, the following holds when γ = d:

M∑
m=1

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

 m−1∑
s=max{1,m−Dmax}

N̄(s)∑
n=1

∥∥∥φ(n)
j∗ (s)

∥∥∥
U−1
m


≤ 10 dDmaxN̄max

(
1 +

N̄max

d

)
log

(
1 +

T

d

)
.

Finally, the proof is completed by replacing the above results into (3.23).

M∑
m=1

N̄(m)∑
i=1

1

2cσ

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

Υm ≤

1

2cσ

(
√

10 d
(√

ζ T + N̄max

)
log

(
1 +

T

d

)(√
d log

(
1 +

T

d2

)
+ log

(
1

δ2

)
+ cσ

)

+ 20 dDmaxN̄max

(
1 +

N̄max

d

)
log

(
1 +

T

d

))
,

where N̄max ≤ ζ
∑M
m=1 N̄(m)

M
.
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Lemma III.4 (Bound on Difference between Expected Reward and its Upper

Bound). For any δ > 0, the following bound holds with probability at least 1− δ.

E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
r

(i)
j (m) x

(i),Aux∗

j (m)− UB(i)
j (m) x

(i),Aux∗

j (m)
) ≤ δT̄ .

Proof. Since we cannot assign a patient to more than one care unit, we have:

E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
r

(i)
j (m) x

(i),Aux∗

j (m)− UB(i)
j (m) x

(i),Aux∗

j (m)
)

= E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
r

(i)
j (m)− UB(i)

j (m)
)
1{j(i),Aux∗(m) = j}


= E

 M∑
m=1

N̄(m)∑
i=1

(
r

(i)
j∗ (m)− UB(i)

j∗ (m)
) .

Note that we have r
(i)
j (m) ∈ (0, 1) and UB

(i)
j (m) ≥ 0 for any i, j, and m. Thus, the

following holds:

r
(i)
j∗ (m)− UB(i)

j∗ (m) ≤ 1
{
r

(i)
j∗ (m) > UB

(i)
j∗ (m)

}
.

By taking expectation on both sides of the above inequality, we have:

E
[
r

(i)
j∗ (m)− UB(i)

j∗ (m)
]
≤ P

(
r

(i)
j∗ (m) > UB

(i)
j∗ (m)

)
.

By Proposition III.1, the following holds for any i, m, and δ > 0 with probability at least

1− δ:

∣∣σ(〈φ(i)
j∗ (m), w〉

)
− σ

(
〈φ(i)

j∗ (m), ŵ(m)〉
)∣∣ ≤ Rad

(i)
j∗ (m).

This confidence bound implies that:

P
(
L̃B

(i)

j∗ (m) ≤ r
(i)
j∗ (m) ≤ ŨB

(i)

j∗ (m)
)
≥ 1− δ. (3.24)

Then, we have:

E
[
r

(i)
j∗ (m)− UB(i)

j∗ (m)
]
≤ P

(
r

(i)
j∗ (m) > UB

(i)
j∗ (m)

)
= P

(
r

(i)
j∗ (m) > ŨB

(i)

j∗ (m)
)
≤ δ.
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Note that if UB
(i)
j∗ (m) < 1, we have UB

(i)
j∗ (m) = ŨB

(i)

j∗ (m) by definition. The equality holds

because when r
(i)
j∗ (m) > UB

(i)
j∗ (m), we have UB

(i)
j∗ (m) < 1 which implies that UB

(i)
j∗ (m) =

ŨB
(i)

j∗ (m). The last inequality holds by (3.24).

Finally, the proof is completed by the following:

E

 M∑
m=1

N̄(m)∑
i=1

(
r

(i)
j∗ (m)− UB(i)

j∗ (m)
) ≤ δ

M∑
m=1

λ̄(m) = δ T̄ .

Next, we provide a high-probability bound on the difference between the true expected

rewards obtained by the care unit placement decisions made by the auxiliary algorithm and

the PAC algorithm. This term is E
[
V Aux − V Alg] which measures the batch learning loss.

Proposition III.3 (Batch Learning Loss). For any δ > 0, the following holds with

probability at least 1− δ.

M∑
m=1

K∑
k=1

J∑
j=1

E
[
rkj λk(m)xAux

∗

kj (m)− rkj λk(m)xAlg
∗

kj (m)
]

≤ 1

2cσ

(
√

10 d
(√

ζ T + N̄max

)
log

(
1 +

T

d

)(√
d log

(
1 +

T

d2

)
+ log

(
1

δ2

)
+ cσ

)

+ 20 dDmaxN̄max

(
1 +

N̄max

d

)
log

(
1 +

T

d

))
+ δT̄ ,

where N̄max and T can be upper bounded with a high probability (see Lemma III.7).

Proof. In the PAC algorithm, we assume a prior distribution over the unknown model pa-

rameter w and we update the posterior distribution as new information is received after each

interval. At the beginning of each interval, we take a random sample w̃(m) from the poste-

rior distribution to estimate the expected rewards and solve an LP to update the assignment

probabilities. Recall that xAlg
∗

k (m) = {xAlg
∗

kj (m)}j∈J and xAux
∗

k (m) = {xAux∗kj (m)}j∈J are the

optimal solutions of the PAC algorithm and the auxiliary algorithm, respectively. Let Hm

be the history available by the end of interval m− 1, which can be defined as:

Hm =
{(
ϕ(i)(s), j(i)(s), xkj(s)

)∣∣s ≤ m− 1, ∀ k ∈ K, ∀ j ∈ J , i ∈ {1, . . . , N̄(s)}
}
∪{

R(i)
j∗ (s)

∣∣s+D(i)(s) ≤ m− 1, i ∈ {1, . . . , N̄(s)}
}
,

where ϕ(i)(s) is the context vector of the ith patient who arrived at interval s.
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Note that the assignment probabilities for interval m are updated at the beginning of

the interval using the estimations obtained by the history Hm. To upper bound the batch

learning loss, we need to argue that xAlg
∗

k (m) and xAux
∗

k (m) are identically distributed con-

ditional on history Hm, that is, P(xAlg
∗

k (m)|Hm) = P(xAux
∗

k (m)|Hm). First, in the PAC

algorithm, assigning a patient of type k who arrived at interval m to a care unit depends on

the expected reward under w̃(m) (i.e., r̃kj(m)) and the assignment probabilities for intervals

{1, . . . ,m− 1} obtained by the PAC algorithm. Second, because w̃(m) is sampled from the

posterior distribution P(w|Hm), vector parameters w and w̃(m) are identically distributed

conditional on history Hm, that is, P(w̃(m)|Hm) = P(w|Hm). Also, conditional on history

Hm, the assignment probabilities for intervals {1, . . . ,m− 1} are the same for both the PAC

and auxiliary algorithms. Thus, we conclude that P(xAlg
∗

k (m)|Hm) = P(xAux
∗

k (m)|Hm).

Accordingly, we can derive the following decomposition:

M∑
m=1

K∑
k=1

J∑
j=1

E
[
rkj λk(m)xAux

∗

kj (m)− rkj λk(m)xAlg
∗

kj (m)
]

=
M∑
m=1

K∑
k=1

J∑
j=1

E
[
E
[
rkj λk(m)xAux

∗

kj (m)− rkj λk(m)xAlg
∗

kj (m)
∣∣Hm

]]
=

M∑
m=1

K∑
k=1

J∑
j=1

E
[
E
[
UBkj(m)λk(m)xAlg

∗

kj (m)− rkj λk(m)xAlg
∗

kj (m)
∣∣Hm

]]
+

M∑
m=1

K∑
k=1

J∑
j=1

E
[
E
[
rkj λk(m)xAux

∗

kj (m)− UBkj(m)λk(m)xAux
∗

kj (m)
∣∣Hm

]]

= E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
UB

(i)
j (m) x

(i),Alg∗

j (m)− r(i)
j (m) x

(i),Alg∗

j (m)
)

+ E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
r

(i)
j (m) x

(i),Aux∗

j (m)− UB(i)
j (m) x

(i),Aux∗

j (m)
) , (3.25)

where UBkj(m) = min

{
1,max

τ∈Γm
σ
(
〈φkj, τ〉

)}
. The first equality holds by the law of iter-

ated expectation. The second equality holds because P(xAlg
∗

k (m)|Hm) = P(xAux
∗

k (m)|Hm)

and UBkj(m) is a deterministic function given the history Hm. The above decomposition

let us leverage the connection between the posterior sampling-based algorithms and UCB

algorithms ([95]).
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By Proposition III.1, the following confidence bound holds with probability at least 1−δ:

∣∣σ(〈φ(i)
j∗ (m), w〉

)
− σ

(
〈φ(i)

j∗ (m), ŵ(m)〉
)∣∣ ≤ Rad

(i)
j∗ (m).

Accordingly, when the above confidence bound holds, the two terms in (??) can be upper

bounded using Proposition III.2 and Lemma III.4.

Recall that we defined UB
(i)
j (m) and LB

(i)
j (m) as sequences of real-valued functions of

Hm and feature vector φ
(i)
j (m):

UB
(i)
j (m) = min

{
1,max

τ∈Γm
σ
(
〈φ(i)

j (m), τ〉
)}

; LB
(i)
j (m) = max

{
0, min

τ∈Γm
σ
(
〈φ(i)

j (m), τ〉
)}

.

Using the above definitions, we have the following for the first term in (??):

E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
UB

(i)
j (m) x

(i),Alg∗

j (m)− r(i)
j (m) x

(i),Alg∗

j (m)
)

≤ E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
UB

(i)
j (m) x

(i),Alg∗

j (m)− LB(i)
j (m) x

(i),Alg∗

j (m)
) .

By Proposition III.2, we have:

E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
UB

(i)
j (m) x

(i),Alg∗

j (m)− LB(i)
j (m) x

(i),Alg∗

j (m)
)

≤ 1

2cσ

(
√

10 d
(√

ζ T + N̄max

)
log

(
1 +

T

d

)(√
d log

(
1 +

T

d2

)
+ log

(
1

δ2

)
+ cσ

)

+ 20 dDmaxN̄max

(
1 +

N̄max

d

)
log

(
1 +

T

d

))
.

By Lemma III.4, the second term in (??) can be upper bounded as:

E

 M∑
m=1

N̄(m)∑
i=1

J∑
j=1

(
r

(i)
j (m) x

(i),Aux∗

j (m)− UB(i)
j (m) x

(i),Aux∗

j (m)
) ≤ δT̄ .

Finally, putting the last two results together completes the proof.
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3.7.3 Appendix C. Technical Result on Blocking Loss

Recall that the PAC algorithm provides care unit placement decisions by following a pol-

icy guide that takes into account the average lengths of stay and generates state-independent

care unit assignment probabilities. Therefore, a patient assigned to a care unit may get

blocked because the selected care unit is being utilized at capacity. Accordingly, the algo-

rithm may incur a certain loss because of the possibility of blocking. In this section, we

derive an upper bound on this blocking loss. Note that we assume zero rewards for the

blocked patients. In practice, they can be sent to GB where hospitals often have sufficient

beds.

Proposition III.4 (Blocking Loss). Given the model parameter w, let V Alg denote the

total reward obtained by the PAC algorithm excluding the loss due to blocking, also let V BL

denote the loss due to blocking. Then, the following holds:

E[V BL|w] ≤

1−min
j∈J


Cj−1∑
n=0

Cn
j e
−Cj

n!


E[V Alg|w].

Proof. Recall that for an admissible policy π, the average number of type k patients who

arrived to care unit j during interval m can be calculated by β̄πkj(m) = λk(m)xπkj(m). How-

ever, this does not hold for the PAC algorithm because some patients assigned to a care unit

by the algorithm may get blocked. Thus, we should make a distinction between the number

of patients assigned to a care unit and the number of patients successfully accepted to the

care unit. We define Zkj(m) as the number of type k patients assigned to care unit j, and we

denote its mean value by Z̄kj(m) = λk(m)xAlg
∗

kj (m). We also define βkj(m) as the number of

type k patients successfully accepted to care unit j, and we denote its mean value by β̄kj(m),

where β̄kj(m) ≤ Z̄kj(m).

For our analysis, we need to implicitly model βkj(m) which is a function of Θkj(m)

and Zkj(m). The current Θkj(m) is a complex function of the number of arrivals in the

prior intervals and the number of available beds in the corresponding care unit. Due to

this complexity, we work with an upper bound on Θkj(m) with a better structure. To do

so, similar to [88], we define a relaxed system for which we assume (i) arriving patients

are not subjected to limited capacity Cj, and (ii) patient arrivals occur at the end of the

intervals, which implies that patients cannot depart in the same interval they arrive. We

define Θ
(R)
kj (m) as the number of type k patients in care unit j at the beginning of interval m

in the relaxed system, where Θ
(R)
kj (m) ≥ Θkj(m). Note that Zkj(m) is following a Poisson

distribution with mean Z̄kj(m) = λk(m) xAlg
∗

kj (m). Then, the number of admitted patients
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from each prior interval is also following a Poisson distribution that has been thinned by the

probability of patients’ departure. Therefore, it is easy to see that Θ
(R)
kj (m) is also following

a Poisson distribution with the following mean:

Θ̄
(R)
kj (m) =

m−1∑
s=1

e−(m−s−1)µkj Z̄kj(s)

= e2µkj

m−1∑
s=1

e−(m−s+1)µkj Z̄kj(s)

= e2µkj

(
m∑
s=1

ψkj(s,m) Z̄kj(s)− e−µkj Z̄kj(m)

)
. (3.26)

Let β
(R)
kj (m) denote the number of type k patients who arrived to care unit j during

interval m and were successfully accepted into the care unit when we use Θ
(R)
kj (m) rather

than Θkj(m) in the main system. We also define Zj(m) with mean Z̄j(m) =
∑K

k=1 Z̄kj(m),

and Θ
(R)
j (m) with mean Θ̄

(R)
j (m) =

∑K
k=1 Θ̄

(R)
kj (m). Now, we are ready to derive an upper

bound on the actual expected (total) reward of the algorithm.

E[V Alg − V BL|w]

= E

[
M∑
m=1

K∑
k=1

J∑
j=1

rkj βkj(m)|w

]

≥ E

[
M∑
m=1

K∑
k=1

J∑
j=1

rkj β
(R)
kj (m)|w

]

≥
M∑
m=1

J∑
j=1

Cj−1∑
n=0

∞∑
u=0

E
[∑K

k=1 rkj β
(R)
kj (m) | w, Θ

(R)
j (m) = n, Zj(m) = u

]
P(Θ

(R)
j (m) = n) P(Zj(m) = u)

≥
M∑
m=1

J∑
j=1

Cj−1∑
n=0

Cj−n∑
u=0

E
[∑K

k=1 rkj β
(R)
kj (m) | w, Θ

(R)
j (m) = n, Zj(m) = u

]
P(Θ

(R)
j (m) = n) P(Zj(m) = u)

=
M∑
m=1

J∑
j=1

Cj−1∑
n=0

Cj−n∑
u=0

E
[∑K

k=1 rkj Zkj(m) | w, Θ
(R)
j (m) = n, Zj(m) = u

]
P(Θ

(R)
j (m) = n) P(Zj(m) = u),

(3.27)

where the first inequality holds since β
(R)
kj (m) ≤ βkj(m). The second inequality holds by the

law of total probability and removing all terms in which the number of patients in a care

unit at the beginning of an interval is equal or greater than the total capacity of the care

unit. In the third inequality, we removed all terms in which the number of arrivals is more
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than the available number of beds in a care unit at the beginning of an interval. Note that

in the the last equality, we replaced β
(R)
kj (m) by Zkj(m) since there is no rejection when the

number of arrivals is equal or less then the available number of beds.

Let r̆j(m) =
∑K
k=1 rkj Z̄kj(m)∑K
k=1 Z̄kj(m)

. By multiplying r̆j(m) by Zj(m) =
∑K

k=1 Zkj(m) and taking

expectation, we obtain E [r̆j(m)Zj(m) | w] = E
[∑K

k=1 rkj Zkj(m) | w
]
. Accordingly, we

have the following by (3.27):

E[V Alg − V BL|w]

≥
M∑
m=1

J∑
j=1

Cj−1∑
n=0

Cj−n∑
u=0

E
[∑K

k=1 rkj Zkj(m) | Θ(R)
j (m) = n, Zj(m) = u

]
P(Θ

(R)
j (m) = n) P(Zj(m) = u)

=
M∑
m=1

J∑
j=1

Cj−1∑
n=0

Cj−n∑
u=0

r̆j(m) u P(Θ
(R)
j (m) = n) P(Zj(m) = u)

=
M∑
m=1

J∑
j=1

Cj−1∑
n=0

Cj−n∑
u=0

r̆j(m) u


(

Θ̄
(R)
j (m)

)n
e−Θ̄

(R)
j (m)

n!

((Z̄j(m)
)u
e−Z̄j(m)

u!

)
. (3.28)

Next, we show that Z̄j(m) + Θ̄
(R)
j (m) can be upper bounded for all j ∈ J .

Z̄j(m) + Θ̄
(R)
j (m) =

K∑
k=1

Z̄kj(m) +
K∑
k=1

e2µkj

(
m∑
s=1

ψkj(s,m) Z̄kj(s)− e−µkj Z̄kj(m)

)

=
K∑
k=1

e2µkj

(
m∑
s=1

ψkj(s,m) Z̄kj(s)− e−µkj Z̄kj(m) + e−2µkj Z̄kj(m)

)

≤
m∑
s=1

K∑
k=1

e2µkj ψkj(s,m) Z̄kj(s)

≤ e
2 max
k,j

(µkj)
m∑
s=1

K∑
k=1

ψkj(s,m) Z̄kj(s)

≤ Cj,

where the first equality holds by (3.26). The first inequality holds since −e−µkj Z̄kj(m) +

e−2µkj Z̄kj(m) is less than zero. The last inequality holds by having Z̄kj(m) = λk(m) xAlg
∗

kj (m)

and the capacity constraint.
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According to the above inequality and (3.28), the proof is completed by the following:

E[V Alg − V BL|w]

≥
M∑
m=1

J∑
j=1

Cj−1∑
n=0

Cj−n∑
u=0

r̆j(m) u

((
Cj − Z̄j(m)

)n
e−(Cj−Z̄j(m))

n!

)((
Z̄j(m)

)u
e−Z̄j(m)

u!

)

≥
M∑
m=1

J∑
j=1

r̆j(m) Z̄j(m)

Cj−1∑
n=0

Cn
j e
−Cj

n!


≥ min

j∈J


Cj−1∑
n=0

Cn
j e
−Cj

n!


M∑
m=1

J∑
j=1

r̆j(m) Z̄j(m)

= min
j∈J


Cj−1∑
n=0

Cn
j e
−Cj

n!

E[V Alg|w],

where the second inequality follows by a simple algebra. The equality holds because we have:

M∑
m=1

J∑
j=1

r̆j(m) Z̄j(m) =
M∑
m=1

K∑
k=1

J∑
j=1

rkj Z̄kj(m) = E[V Alg|w].

3.7.4 Appendix D. Standard Known Results

We provide some known results from the existing literature. For completeness, we provide

self-contained and more expository versions of the original proofs.

Lemma III.5 (Initial Confidence Bound on Expected Reward). For any i and m,

the following holds almost surely:

∣∣σ(〈φ(i)
j∗ (m), w〉

)
− σ

(
〈φ(i)

j∗ (m), ŵ(m)〉
)∣∣ ≤ 1

4cσ

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

‖hm(w)− hm(ŵ(m))‖U−1
m
.

Proof. We adapt the proof proposed by [50] for our regularized setting. Let w0 = ε w+ (1−
ε) ŵ(m) with 0 < ε < 1. According to the mean value theorem for vector-valued functions,

we have:

hm(w)− hm(ŵ(m)) =

( 1∫
0

Jhm(w0) dε

)
(w − ŵ(m)) ,

139



where Jacobian of hm(w0) can be calculated as follows:

Jhm(w0) =
m−1∑
s=1

N̄(s)∑
i=1

φ
(i)
j∗ (s)φ

′ (i)
j∗ (s) σ̇

(
〈φ(i)

j∗ (s), w0〉
)

+ κI.

Let Gm(w0) =
∫ 1

0
Jhm(w0) dε and recall that cσ = inf

w,φkj
σ̇
(
〈φkj, w〉

)
. Then, we have

Gm(w0) � cσ Um � cσ(γI) � 0, where Um is the design matrix and κ = cσγ > 0. This

implies that the matrix Gm(w0) is positive definite and non-singular. Then, we have:

w − ŵ(m) = G−1
m (w0)

(
hm(w)− hm(ŵ(m))

)
.

The proof is completed by the following:

∣∣σ(〈φ(i)
j∗ (m), w〉

)
− σ

(
〈φ(i)

j∗ (m), ŵ(m)〉
)∣∣ ≤ 1

4

∣∣∣〈φ(i)
j∗ (m), w − ŵ(m)

〉∣∣∣
=

1

4

∣∣∣〈φ(i)
j∗ (m), G−1

m (w0)
(
hm(w)− hm(ŵ(m))

)〉∣∣∣
≤ 1

4

∥∥∥φ(i)
j∗ (m)

∥∥∥
G−1
m (w0)

‖hm(w)− hm(ŵ(m))‖G−1
m (w0)

≤ 1

4cσ

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

‖hm(w)− hm(ŵ(m))‖U−1
m
,

where the first inequality holds by the Lipschitz property of the logistic function for which

the Lipschitz constant is 1/4. The equality holds by the mean value theorem. The last

inequality holds by G−1
m (w0) � c−1

σ U−1
m , which implies that ‖x‖G−1

m (w0) ≤
1√
cσ
‖x‖U−1

m
for

any vector x ∈ Rd.

Lemma III.6 (Bound on Summation of Feature Vectors). Let {φ(i)
j∗ (m)}m∈M,i∈N̄(m)

be a sequence of feature vectors in Rd. Then, the following holds:

M∑
m=1

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

≤
√

10

(√
dMN̄max + N̄max

d
√
γ

)
log

(
γ + T

γ

)
.

Proof. We adapt the proof proposed by [58] for our regularized setting with varying batch

size.
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Using the Cauchy-Schwarz inequality, we have:

M∑
m=1

N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥
U−1
m

≤
√
N̄max

M∑
m=1

√√√√N̄(m)∑
i=1

∥∥∥φ(i)
j∗ (m)

∥∥∥2

U−1
m

=
√
N̄max

M∑
m=1

√
tr(U−1

m Em),

(3.29)

where Em =
∑N̄(m)

i=1 φ
(i)
j∗ (m) φ

′(i)
j∗ (m).

Similar to Step 2 of Lemma III.3, we have:

M∑
m=1

√
tr (U−1

m Em)

≤
√

10
M∑
m=1

√√√√ d∑
j=1

νm+1,j − νm,j
νm+1,j

+
√

10

 M∑
m=1

√√√√ d∑
j=1

νm+1,j − νm,j
νm,j

−
M∑
m=1

√√√√ d∑
j=1

νm+1,j − νm,j
νm+1,j

 ,

(3.30)

where νm,j is the jth eigenvalue of Um.

First, we upper bound the first term in (3.30). Using the Cauchy-Schwarz inequality, we

have:

M∑
m=1

√√√√ d∑
j=1

νm+1,j − νm,j
νm+1,j

≤

√√√√M
M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm+1,j

≤

√
dM log

(
γ + T

γ

)
, (3.31)

where the last inequality holds by Step 2 of Lemma III.3.

Next, we upper bound the second term in (3.30) as follows:

M∑
m=1

√√√√ d∑
j=1

νm+1,j − νm,j
νm,j

−
M∑
m=1

√√√√ d∑
j=1

νm+1,j − νm,j
νm+1,j

≤
M∑
m=1

∑d
j=1

(νm+1,j−νm,j)2

νm,j νm+1,j√∑d
j=1

νm+1,j−νm,j
νm,j

=
M∑
m=1

∑d
j=1

(νm+1,j−νm,j)1/2

ν
1/2
m,j

(νm+1,j−νm,j)3/2

ν
1/2
m,j νm+1,j√∑d

j=1
νm+1,j−νm,j

νm,j

≤
M∑
m=1

√∑d
j=1

νm+1,j−νm,j
νm,j

√∑d
j=1

(νm+1,j−νm,j)3

νm,j ν2m+1,j√∑d
j=1

νm+1,j−νm,j
νm,j

=
M∑
m=1

√√√√ d∑
j=1

(νm+1,j − νm,j)3

νm,j ν2
m+1,j

≤

√
N̄max

γ

M∑
m=1

d∑
j=1

νm+1,j − νm,j
νm+1,j

≤

√
N̄max

γ
d log

(
γ + T

γ

)
, (3.32)
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where the first inequality holds by
√
a−
√
b ≤ a−b√

a
for a, b ∈ R. The second inequality holds

by the Cauchy-Schwarz inequality. The third inequality holds by having νm,j ≥ ν1,j = γ and

νm+1,j − νm,j ≤ N̄max.

Replacing the results obtained by (3.31) and (3.32) into (3.30) yields the following:

M∑
m=1

√
tr (U−1

m Em) ≤
√

10

√dM log

(
γ + T

γ

)
+

√
N̄max

γ
d log

(
γ + T

γ

)
≤
√

10

√dM +

√
N̄max

γ
d

 log

(
γ + T

γ

)
.

Finally, plugging the above result into (3.29), completes the proof.

The following Lemma is stated without the proof. We refer interested readers to Theorem

2.1 in [61] for details.

Lemma III.7 (A Tail Bound for Poisson Random Variables). Let X be a Poisson

random variable with mean θ > 0. Then, for any x > 0, we have:

P (X ≥ θ + x) ≤ e−
x2

2θ
g(x
θ

),

where g : [−1,∞]→ R is a function defined by g(u) = 2 (1+u) log(1+u)−u
u2

.

As g(x
θ
) ≥ 1

1+x
θ

for every x > 0, we have:

P (X ≥ θ + x) ≤ e−
x2

2(θ+x) .

Remark. Let T be a Poisson random variable with mean T̄ . Then, it is upper bounded by

T̄ − log(δ) +
√

(log(δ))2 − 2T̄ log(δ) with probability at least 1− δ.
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CHAPTER IV

Conclusions and Future Research

4.1 Summary and Conclusions

This dissertation introduced a new approach to solve problems for which there is a need

of joint contextual learning and resource allocation under different types of limited resources.

We developed data-driven and personalized decision-making frameworks to address practical

OR/OM problems. We focused on cutting edge problems in healthcare delivery and hospital

operations, each of which has its own nuance structure that spurred several innovations and

tailored methods.

Chapter II focused on addressing the problem of online resource allocation with learning

under single-use resources. In this problem, a decision-maker needs to assign arbitrary

sequentially arriving users to a resource, where the reward of each assignment and resource

consumption are unknown, and feedback is received with delay. This problem structure

can be frequently observed in a broad range of OR/OM problems. We introduced a new

framework that judiciously synergizes online learning theory with a broad class of online

resource allocation mechanisms when the system has single-use resources. We designed online

algorithms with a performance guarantee in terms of the notion of regret that bridges the gap

between online learning and resource allocation. Our analysis demonstrates the possibility

of bounding the performance of this class of online algorithms by a seamless integration

of competitive ratio bounds for online resource allocation algorithms and Bayesian regret

bounds for contextual learning algorithms. We showed that a bridging technique allows

decomposing the regret into two types of loss. The first type stems from learning with delayed

feedback, which scales sub-linearly in the number of arrivals over the planning horizon. A

useful facet of our analysis is that the cost of learning under delayed feedback is an additive

term in the contextual learning loss, which goes to zero as the delay time goes to zero. The

second type stems from resource allocation under no information on future arrivals, where it

is bounded by a fixed fraction of the expected reward obtained by the clairvoyant benchmark.
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We also investigated the advance scheduling problem, which can be viewed as an appli-

cation of our generic framework. A major difference between our general resource allocation

and advance scheduling problems is that the latter provides multi-day scheduling and cap-

tures the no-show behavior of customers. In this problem, customers may not show up for

the scheduled service after being assigned to a server and a service date. This adds on an ad-

ditional layer of complexity in learning the match quality because the match quality feedback

of a customer cannot be observed at all if the customer does not show up on the service date.

We addressed this additional complexity by constructing a new confidence bound with an

extra additive logarithmic term in the number of arrivals. This additive term can be viewed

as the cost of learning in this setting. We used the advance scheduling algorithm to provide

an appointment scheduling platform taking into account the patient-provider match quality,

visit time, possibility of no-show, and the availability of providers. The empirical perfor-

mance of our methodology was assessed using the data set from our partner hospital. The

results demonstrate that our algorithm achieves near-optimal performance. We find that the

greedy and the commonly used first-come-first-served policies have poor performance when

there are scarce resources. In our case study, the difference in performance is up to 30%.

The results also demonstrate that our advance scheduling algorithm can handle no-shows

and delayed feedback very well. As a key insight, we highlight the importance of capturing

the delayed feedback both in modeling and theoretical analysis as it clearly impacts both

the empirical and theoretical results.

Motivated by our successful methodology for the joint learning and resource allocation

under single-use resources, in Chapter III, we extended it to handle reusable resources. In

particular, we studied the problem of optimizing care unit placement decisions in hospitals.

We designed an online learning algorithm that addressed the high variability in patients’

health and high utilization of hospital beds. We proposed a mechanism for batch learning

under delayed feedback. We also designed and included a policy guide model which strikes

a trade-off between the (i) benefits of assigning acute patients to high-level beds and (ii)

sub-optimal use of such limited resources for patients who may not benefit sufficiently to

warrant having them. Using the assumption of known arrival rates, our modeling induces

a loss network system. A key part of our theoretical analysis is showing that this loss can

be bounded as a fraction of the total expected reward obtained by our algorithm. Another

part of our theoretical analysis demonstrates that the batch learning loss with delay is again

sub-linear and vanishes as the delay goes to zero.

Our results indicate that implementing our algorithm with the sole aim of reducing

readmissions has the potential to improve the hospital’s admission policy via decreasing the

readmission rate (up to 10%), managing congestion in different care units, and judiciously
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prioritizing the critical beds. We note that the current hospital’s policy is designed with the

aim of reducing the mortality risk. Our focus on hospital readmission was a way to identify

the limits to which an online algorithm for care unit placement can improve the readmission

rate. Future research is needed to appropriately blend the readmission reduction objective

with other objectives and constraints that the hospital may have. A key insight of our case

study is that the revealed information on prior patient responses can be used to improve

care unit placement decisions by reducing the patient exposure to less effective decisions and

exploring promising care unit placements. This is partly due to the distinctive feature of our

approach (on the fly strategy), which is effective to learn fast when the feedback of prior care

unit assignments is delayed in time. Our results suggest several underlying reasons for the

high success rate of decisions provided by our algorithm compared to the hospital’s policy.

Apart from estimating the risk of readmission adaptively, one reason is very likely that the

current policy of the hospital is not able to properly account for the opportunity cost of

using each bed type. Our approach accounts for the opportunity cost of using an available

bed or saving it for complex patient arrivals in the future. This is done by providing a time

interval- and type-dependent admission policy by leveraging the estimated congestion in the

network of units and the future patient arrival pattern.

4.2 Future Research

In summary, this dissertation addressed the fundamental question of how to design online

decision-making algorithms that operate under limited resources; however, several avenues

of research remain that can expand on this dissertation. We believe these future research

questions can significantly contribute to both methodological and practical aspects of this

area.

With the advancement of artificial intelligence, decision-making for numerous aspects of

our daily lives is being outsourced to artificial intelligence algorithms. These algorithms can

make a significant number of decisions over a short period, where a small disparity in most

applications may lead to discrimination that can have a huge impact on society. Policy-

makers and regulators have recently expressed fears about the potentially discriminatory

impact of these algorithms. This calls for fairness considerations to avoid the danger of

inadvertently encoding bias into automated decisions.

It is well-known that exploration is a key ingredient of online decision-making algorithms.

Of course, exploration is associated with a cost relevant to making decisions that may even-

tually reveal to be sub-optimal. It has been shown that the commonly used mechanisms to

encourage exploration, such as posterior sampling and upper confidence bound methods, are
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effective in reducing the overall regret. However, these methods lack a systematic procedure

to ensure their exploration will be fair for users/patients. In Chapters II and III, incorpo-

rating fairness into our learning algorithm will be a promising future research avenue. To

do so, we need to clearly define the notion of fairness. Although several notions of fairness

and explainability have been introduced in the machine learning literature, we believe solv-

ing healthcare problems necessitates careful thought when defining a fairness measure. For

example, one can define a fairness notion to ensure that the cost of exploration is evenly

distributed to different groups of patients. An interesting avenue for future research could

be around identifying an appropriate fairness notion that is also explainable, and designing

algorithms capable of including such fairness considerations. Designing fair algorithms to

effectively capture the trade-off between fairness and achieving overall low regret is another

promising direction for future research.

In Chapter II, we studied a problem that requires online sequential decision-making

under single-use resources. We designed two algorithms to make online resource allocation

without any information on future arrivals. Chapter III focused on a problem that requires

online sequential decision-making under reusable resources. Assuming that the number of

arrivals follows Poisson distributions with known arrival rates, we incorporated a policy

guide into our algorithm to allocate limited resources to hedge against future arrivals who

potentially can benefit more from those resources. The assumption of the stochastic arrival

process is shown to be a valid assumption for many applications under normal situations.

However, there are some other situations in which the historical data on future arrivals can

become obsolete because of the rapid changes in a system. That is, the sequence of future

arrivals becomes arbitrary and even possibly chosen adversarially. For example, the historical

hospital demand data might become obsolete when an unexpected crisis hits, and the health

care system must adjust accordingly. Thus, the following natural question arises: how to

design an algorithm to sequentially allocate limited reusable resources when there is a lack

of information on future demand? Relaxing the assumption of known arrival rates could be

an interesting frontier for future research to explore.
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linear stochastic bandits. In Advances in Neural Information Processing Systems, pages
2312–2320, 2011.

[2] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert
Schapire. Taming the monster: A fast and simple algorithm for contextual bandits. In
International Conference on Machine Learning, pages 1638–1646, 2014.

[3] Shipra Agrawal and Nikhil Devanur. Linear contextual bandits with knapsacks. In
Advances in Neural Information Processing Systems, pages 3450–3458, 2016.

[4] Shipra Agrawal and Nikhil R Devanur. Bandits with concave rewards and convex knap-
sacks. In Proceedings of the fifteenth ACM conference on Economics and computation,
pages 989–1006, 2014.

[5] Shipra Agrawal, Nikhil R Devanur, and Lihong Li. An efficient algorithm for contextual
bandits with knapsacks, and an extension to concave objectives. In Conference on
Learning Theory, pages 4–18, 2016.

[6] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with
linear payoffs. In International Conference on Machine Learning, pages 127–135, 2013.

[7] Vishal Ahuja and John R Birge. Response-adaptive designs for clinical trials: Simul-
taneous learning from multiple patients. European Journal of Operational Research,
248(2):619–633, 2016.

[8] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal
of Machine Learning Research, 3(Nov):397–422, 2002.

[9] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2):235–256, 2002.

[10] A. Badanidiyuru, R. Kleinberg, and A. Slivkins. Bandits with knapsacks. In 2013
IEEE 54th Annual Symposium on Foundations of Computer Science, pages 207–216,
2013.

[11] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with
knapsacks. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Sci-
ence, pages 207–216. IEEE, 2013.

147



[12] Ashwinkumar Badanidiyuru, John Langford, and Aleksandrs Slivkins. Resourceful
contextual bandits. In Conference on Learning Theory, pages 1109–1134, 2014.

[13] Santiago Balseiro, Negin Golrezaei, Mohammad Mahdian, Vahab Mirrokni, and Jon
Schneider. Contextual bandits with cross-learning. Working Paper, Columbia Univer-
sity, New York, NY, arXiv preprint arXiv:1809.09582, 2018.

[14] Hamsa Bastani and Mohsen Bayati. Online decision making with high-dimensional
covariates. Operations Research, 68(1):276–294, 2020.

[15] Hamsa Bastani, Mohsen Bayati, and Khashayar Khosravi. Mostly exploration-free
algorithms for contextual bandits. arXiv preprint arXiv:1704.09011, 2017.
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bandits: The generalized linear case. In Advances in Neural Information Processing
Systems, pages 586–594, 2010.

[51] Guillermo Gallego, Garud Iyengar, Robert Phillips, and Abhay Dubey. Managing
flexible products on a network. Available at SSRN 3567371, 2004.

[52] Geoffrey Gerhardt, A Yemane, P Hickman, A Oelschlaeger, E Rollins, and N Brennan.
Data shows reduction in medicare hospital readmission rates during 2012. Medicare
Medicaid Res Rev, 3(2):E1–E11, 2013.

[53] Negin Golrezaei, Hamid Nazerzadeh, and Paat Rusmevichientong. Real-time optimiza-
tion of personalized assortments. Management Science, 60(6):1532–1551, 2014.

150



[54] Xiao-Yue Gong, Vineet Goyal, Garud N Iyengar, David Simchi-Levi, Rajan Udwani,
and Shuangyu Wang. Online assortment optimization with reusable resources. Man-
agement Science, 2021.

[55] Diwakar Gupta and Brian Denton. Appointment scheduling in health care: Challenges
and opportunities. IIE transactions, 40(9):800–819, 2008.

[56] Diwakar Gupta and Lei Wang. Revenue management for a primary-care clinic in the
presence of patient choice. Operations Research, 56(3):576–592, 2008.

[57] Neil A Halpern, Stephen M Pastores, Howard T Thaler, and Robert J Greenstein.
Critical care medicine use and cost among medicare beneficiaries 1995–2000: Ma-
jor discrepancies between two united states federal medicare databases. Critical care
medicine, 35(3):692–699, 2007.

[58] Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose Blanchet, Peter W Glynn, and
Yinyu Ye. Sequential batch learning in finite-action linear contextual bandits. arXiv
preprint arXiv:2004.06321, 2020.

[59] Jonathan E Helm, Adel Alaeddini, Jon M Stauffer, Kurt M Bretthauer, and Ted A
Skolarus. Reducing hospital readmissions by integrating empirical prediction with
resource optimization. Production and Operations Management, 25(2):233–257, 2016.

[60] Jonathan E Helm and Mark P Van Oyen. Design and optimization methods for elective
hospital admissions. Operations Research, 62(6):1265–1282, 2014.

[61] Svante Janson, Andrzej Rucinski, and Tomasz Luczak. Random graphs. John Wiley
& Sons, 2011.

[62] Ramesh Johari, Vijay Kamble, and Yash Kanoria. Know your customer: Multi-armed
bandits with capacity constraints. arXiv preprint arXiv:1603.04549, 2016.

[63] Ramesh Johari, Vijay Kamble, and Yash Kanoria. Matching while learning. Operations
Research, 69(2):655–681, 2021.

[64] Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Online learning under delayed
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