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Abstract 

 
 Metabolomics is the systematic study of small molecule metabolites that are substrates, 

intermediates, and products of cellular metabolism. Metabolomics assays performed using liquid 

chromatography- mass spectrometry (LC-MS) typically detect thousands of analytes, or features 

characterized by mass-to-charge (m/z) ratio and retention time (RT). The objective of untargeted 

metabolomics is to detect, quantify, and identify as many compounds as possible and to relate 

their abundances with phenotypic outcomes. Metabolite identification is a major bottleneck in 

metabolite profiling studies, with only a small percentage of observed features unambiguously 

identified in a typical experiment. A substantial proportion of the detected features consists of in-

source adducts, fragments, isotopologues, complexes, chemical and computational artifacts. 

Detecting and removing these redundancies is essential for improving statistical power in 

downstream analysis, as many metabolomics studies have limited sample sizes. LC-MS assays 

can be performed using a wide range of chromatographic conditions, instruments, and other 

analytical techniques. Differences in protocols between and within laboratories create numerous 

challenges for information transfer and meta-analysis, especially for unidentified compounds. 

 This dissertation is focused on developing computational methods for enabling 

disparately acquired LC-MS metabolomics data analysis and demonstrating their benefits in 

compound identification and biomedical investigations. First, I describe Binner, a standalone 

application for annotating in-source adducts, fragments, complexes, and isotopologues derived 

from a common metabolite, thus facilitating the reduction of feature tables to a parsimonious 



 

 

 

 

xviii 

 

expression of the detected metabolome. I highlight the unique capabilities of Binner, including 

its superior annotation performance compared to existing programs and its modules for 

facilitating the discovery of complex annotations. Second, I describe metabCombiner, a software 

package for aligning metabolomics measurements acquired under similar, but non-identical, 

conditions, concatenating their values to generate merged feature tables. metabCombiner uses a 

spline-based modeling approach to project across substantial gaps in retention times and a 

weighted similarity score to match features corresponding to identical analytes. This package 

forms the basis for expanded sample size analyses as well as information transfer between 

protocols, instruments, and laboratories. I detail multiple applications in which compound 

identification rates in plasma, urine, and other specimens are improved by coupling disparate 

LC-MS alignment to novel experimental and computational elucidation approaches. A 

framework consisting of alignment and normalization steps for the removal of intra-batch, inter-

batch, and inter-experiment variation in retention times and acquired signal was developed and 

applied to metabolomics studies of ALS and pregnancy. Subsequent statistical and 

bioinformatics approaches using partial correlation networks performed on the aligned, 

normalized datasets illustrate the benefits of combining datasets, despite major differences in 

experimental conditions. Together, these computational methods address numerous data analysis 

challenges and unlock new opportunities in the metabolomics field as well as other fields that 

utilize LC-MS for high-throughput measurements. 
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Chapter 1 

 

Introduction to Computational Metabolomics 
 

1.1 General Introduction to Metabolomics 
  

 Metabolites are small (<1500 Da) molecules that constitute the reactants or byproducts of 

chemical reactions in biological systems. Metabolites exhibit a wide range of properties and 

belong to diverse biochemical classes, including lipids, nucleotides, carbohydrates, amino acids, 

short-length peptides, steroids, organic acids, and so forth.1–3 Metabolomics is the systematic 

study of metabolites, or the "metabolome", with the goals of (i) providing (semi)quantitative 

information about each metabolite present in a sample; (ii) determining the structure, function, 

and interactions of each small compound present; and (iii) to infer the metabolic responses of 

living systems to physiological stimuli.4,5 The metabolome consists of compounds endogenous to 

the studied organism and those derived from exogeneous sources, such as dietary, 

environmental, and microbiotic exposures.6 The total size of the metabolome differs between 

species and is difficult to pinpoint, with estimates of 3800 metabolites in E. Coli7 to over 

100,000 entries currently listed in the Human Metabolome Database8 and more than 200,000 for 

the plant kingdom.9  

 Advances in analytical chemistry, instrumentation technologies, hardware and 

informatics have enabled the large-scale detection and quantification of metabolites within cells, 

tissues, fluids, and organisms, establishing metabolomics as a powerful and widely used tool in 

biological and clinical investigations. Currently, there are two major analytical platforms used to 
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detect and quantify metabolites: Nuclear Magnetic Resonance (NMR) and Mass Spectrometry 

(MS). NMR spectroscopy obtains structural information by measuring the interactions of an 

oscillating radiofrequency electromagnetic field with nuclei in an external magnetic field. NMR 

spectra consist of peaks whose positions are determined by chemical shifts, or differences in the 

intrinsic frequency of nuclear spinning (largely determined by the electronegativity of nearby 

atoms) relative to a reference compound.4,10,11 NMR spectroscopy has numerous advantages in 

metabolomics research, such as ease of sample preparation, sample preservation and rapid 

analysis speed. Its cross-lab reproducibility makes this technique a gold standard in compound 

identification. The principal weakness of NMR is its lack of sensitivity as the technique is largely 

incapable of quantitation for compounds of extremely low concentration (~10-9 M or below); the 

relatively inferior coverage achieved by NMR makes it less suitable for performing high-

throughput untargeted metabolomics.10  

 By contrast, mass spectrometry (MS) is a highly sensitive and versatile method that 

measures mass-to-charge (m/z) ratios of ionized molecules. A mass spectrometer consists of an 

ion source to convert compounds into ions; a mass analyzer to resolve these ions by time-of-

flight or in an electromagnetic field; and a detector, to detect the ions and output signal 

corresponding to their m/z and abundance.12 Mass spectrometry is usually coupled with 

chromatography or other techniques used to separate complex mixtures  into their components, 

facilitating the analysis of different metabolite classes. The most common separation methods 

are the following: 1) Gas chromatography (GC), in which volatile molecules are vaporized and 

partition between a solid or liquid stationary phase coated onto and an inert carrier gas at 

elevated temperatures before introduction to the mass spectrometer13 2) Liquid chromatography 

(LC), in which compounds are typically separated by partitioning between a stationary phase 
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bonded to stationary particles in a column and a mobile phase consisting of liquid solvent.  The 

extent of retention is determined by differential affinity for the solvent or the stationary phase.14 

3) Capillary Electrophoresis, suited for analysis of charged compound where specimens travel at 

different through an electric-field stimulated capillary, separating compounds by charge & 

molecular size.15 Of these separation techniques, liquid chromatography is the most versatile and 

achieves the greatest coverage, establishing it as the method of choice for untargeted 

metabolomics.15 While other analytical approaches described here have uses and advantages in 

metabolite profiling, the work presented here focuses on analyzing LC-MS data. 

 Metabolomics experiments typically employ one of two approaches to determine the 

range and throughput of assayed metabolites: targeted and untargeted. Targeted metabolomics 

approaches are designed to measure a specified list of known metabolites or metabolite classes. 

Protocols for sample preparation, metabolite extraction and data acquisition are optimized to 

achieve quantitatively accurate measurements for a limited subset of the metabolome.1,16 These 

experiments are typically hypothesis-driven, utilizing knowledge of biochemical pathways and 

metabolic enzymes to answer specific questions pertaining to phenotypic perturbations and 

physiological states. Recent examples include studies detecting decreased levels of pantothenic 

acid in brain tissues of Alzheimer's and Huntington's Disease patients17 and finding a panel of 

serum bile acids whose levels reliably discriminate the presence or absence of nonalcoholic fatty 

liver disease in Type 2 Diabetes patients.18 By contrast, the aim of untargeted metabolomics 

(alternatively, metabolite profiling) is to achieve a holistic view of the metabolome in a 

population of specimens by measuring as many metabolites as possible. The complexity of 

biological samples and the wide range of physicochemical properties of metabolites preclude a 

comprehensive read-out of the entire metabolome by any single analytical method, therefore 
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requiring multiple assays to achieve a global metabolic profile.19 Untargeted metabolomics is an 

invaluable hypothesis-generating approach typically used to detect biomarkers and explore large-

scale metabolic shifts. The breadth of coverage by untargeted metabolomics techniques comes at 

the expense of quantitation accuracy as experimental protocols are not optimized for the 

measurement of any specific metabolite class. Furthermore, untargeted metabolomics assays 

detect many unknown metabolites as well as contaminants and other signals not derived from the 

underlying samples, providing a central challenge to metabolomics data analysis. Untargeted 

metabolomics analyses are the central focus of the research presented in this document. 

 Untargeted metabolomics studies routinely produce large and complex datasets that 

require computers for storage, deconvolution, analysis, interpretation, and sharing of results. The 

growing capabilities of analytical techniques and instrumental technologies, coupled with the 

increasingly widespread use of metabolomics in academic, industrial, clinical, and other settings, 

has necessitated the development of computational resources to extract knowledge from complex 

data in an efficient manner. Computational metabolomics denotes the collective set of software, 

algorithms, databases, and other resources developed for the study of metabolomics. Three major 

challenges underlie the pursuit of computational solutions in metabolomics analyses. The first is 

detection and quantitation, consisting of methods to uncover metabolite-associated signals across 

analyzed samples and assign them a quantity that accurately reflects their comparative 

abundances across experimental samples. The second is annotation, consisting of all steps that 

assign chemical information, such as structural identity, molecular formulas, or biochemical 

class, to detected analytes. The third is interpretation, signifying the use of statistical and 
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informatics approaches to derive useful and meaningful information from metabolite identities 

and quantities. Subsequent sections discuss these individual problems in detail.  

1.2  LC-MS Experimentation, Instrumentation & Data Acquisition 

 High performance liquid chromatography coupled with mass spectrometry (HPLC-MS) 

is an analytical technique of choice for metabolite profiling.21 An understanding of LC-MS 

experimental design and instrumentation is a prerequisite to developing effective computational 

resources for metabolomics data analysis. Here, basic ideas about study design, sample 

collection and preparation, liquid chromatography and mass spectrometry are briefly described 

as they relate to untargeted metabolomics. 

1.2.1  Experimental Design 

 The crucial first step to every metabolomics endeavor is to consider an appropriate study 

and experimental design. This begins with a specific aim or question that the researcher seeks to 

answer, ranging from characterizing the metabolome of specific specimens or phenotypes of 

interest to more complex queries involving a range of analytical or biological factors.1 

Depending on the study aims, the researcher must consider the appropriate population to obtain 

data from and ensure that enough samples can be obtained to draw appropriate conclusions. 

Next, the manner of sample collection, storage, and stabilization must be carefully planned. 

Fresh samples from clinical, animal, or cellular culture studies provide the most control over 

sample collection and storage, with procedures such as snap freezing utilized to cease enzymatic 

Figure 1.1 Metabolomics Workflow Brief overview of experimental and computational procedures 

routinely performed in metabolomics studies, adapted from Sas et al. (2015).20 
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activity and preserve the metabolic state to the greatest extent possible.22 The dynamic, 

fluctuating levels of metabolites means that several factors must be considered to mitigate 

unintended sources of variation, such as diets, time of day at sample collection, and excessive 

variation in clinical covariates related to the outcome of interest. The choices of sample 

preparation and analytical technology are the next considerations, followed by the computational 

and statistical methodologies necessary to answer the underlying study question. 

1.2.2  Sample Preparation 

 The goal of sample preparation in untargeted metabolomics studies is to maintain the 

original metabolite composition of samples as much as possible while converting the samples 

into a compatible medium for MS analysis.23 Commonly applied steps include metabolite 

extraction, centrifugation, precipitation (e.g. to remove proteins), evaporation, reconstitution, or 

dilution, depending on the biological specimen of interest. Various metabolite extraction 

techniques are routinely applied, especially liquid-liquid extraction (LLE) by which metabolites 

are partitioned based on their relative solubilities in immiscible liquids, and solid phase 

extraction (SPE) where analytes are partitioned based on their affinity for a solid phase over a 

liquid.24 Due to the challenges of surveying the chemically diverse metabolome, researchers may 

prioritize certain classes of metabolites based on physicochemical properties.23  

 It is standard practice in metabolomics studies to include quality controls in the 

experimental design. Most commonly, pooled aliquots of all study samples are inserted at 

intermittent points of experimental runs and measurements on negative control or "blank" 

samples derived from extraction solvents enable the assignment and elimination of experimental 

artifacts in post-processing steps. In addition, purified internal standard compounds are 

frequently mixed with biological samples before or after metabolite extraction to monitor and 
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remove systematic biases in measured intensities. Together, these procedures aid in the 

comprehensive detection of metabolites, improve the data quality, and facilitate biological 

interpretation of the results. 

1.2.3 Liquid Chromatography 

 Chromatographic methods are designed to separate complex mixtures into their 

components.  When coupled with mass spectrometry, this allows for improved detection 

sensitivity and data quality. High Performance Liquid Chromatography (HPLC) is an analytical 

technique for separating mixtures based on the differential affinity of molecules for liquid 

solvents versus a stationary phase.  The stationary phase is a porous solid (e.g. polymers or 

silica) contained within a column which the solvent passes through. Compounds are introduced 

onto the column and partition between the stationary phase and solvent many times as they move 

through its length, eventually eluting (emerging) from the column outlet where they may be 

sensed by a detector. The output of HPLC is a chromatogram, which represents signal in relation 

to how long each compound was retained in the column before detection. The time taken for an 

analyte to be detected after its initial injection is the retention time (RT), a property that strongly 

depends on the compound's interactions with the chromatographic system composed of the liquid 

mobile phase and the stationary phase of the column. RTs are of central importance to LC-MS 

metabolomics as they play a crucial role in characterizing detected metabolites. Assigning, 

correcting for, and predicting chromatographic retention behavior is an important goal in 

computational metabolomics. 

 HPLC methods separate compounds based on certain physiochemical properties, 

including polarity, charge (Ion Exchange Chromatography (IEC)), or size (Size Exclusion 

Chromatography (SEC)).25 LC approaches can be combined to attain a multidimensional 
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separation to increase the separation capacity.26 However, one-dimensional separations by 

polarity are the most used for metabolomics, with two complementary approaches accounting for 

most applications: Reversed Phase Liquid Chromatography (RPLC) and Hydrophilic Interaction 

Chromatography (HILIC).21,27 RPLC uses a stationary phase modified with nonpolar groups, 

such as aliphatic hydrocarbon chains (C18), and a mixture of aqueous and organic (e.g. 

acetonitrile, methanol) solvents. Most applications of RPLC utilize gradient elution, by which 

the liquid mobile phase gradually transitions from a predominantly aqueous to an organic 

solvent, which favors longer retention of metabolites with greater hydrophobicity. Non-polar & 

semi-polar substances are therefore well-resolved by RPLC, whereas highly polar and ionic 

analytes are poorly retained and often elute in the void volume. By contrast, HILIC, a variant of 

Normal Phase Liquid Chromatography, uses columns containing hydrophilic, anionic, cationic, 

or zwitterionic ligands for the improved separation hydrophilic compounds.21 In HILIC, the 

solvent is initially mostly a non-polar organic solvent before gradually assuming a more polar 

composition, which results in the increasingly polar metabolites being retained longer and with 

enhanced resolution, at the expense of poor retention for nonpolar compounds. HILIC is 

commonly used as an orthogonal method to RPLC, though it suffers from reduced retention time 

reproducibility and requires more time for stabilization between runs, among other disadvantages 

that hinder its widespread adoption.28,29 Most metabolomics studies discussed in this document 

use RPLC-MS, with some applications involving HILIC-MS. 

 Aside from polarity, numerous factors affect the retention of compounds on the column 

in liquid chromatography. These include the choice of solvents, the type of column, column 

dimensions, the age of the column, gradient slope, flow rate, and total chromatography time.30 

Additionally, minor imperfections or changes in chromatographic conditions between LC runs, 



 

 

 

 

9 

 

such as gradient delay, solvent mis-apportioning, changes in pressure and pH may introduce 

minor changes between LC runs.30 In standard practice, experimental variables and analytical 

conditions are maintained and replicated to the greatest extent possible across all samples to 

obtain consistent retention time values. Importantly, measured retention times are specific to a 

metabolite's interactions with a particular chromatographic system and are not easily 

extrapolated to other systems. Retention indices, calculated linearly based on the elution patterns 

relative to internal standards of a particular class (such as nitroalkanes or alkyl ketones), are 

sometimes used as a dimensionless substitute for retention times, though their utility is 

uncommon for LC as compared to Gas Chromatography.31–33 

1.2.4  Mass Spectrometry  

 Invented near the turn of the 20th century, mass spectrometry has become a primary 

means of chemical detection and characterization with wide-ranging academic and industrial 

applications.34 Mass spectrometry can detect substances at extremely small concentrations and, 

when coupled with chromatographic separation, provides the most comprehensive metabolomic 

profile of any existing technique. Innovations and enhancements continue to improve the 

sensitivity, efficiency, versatility, and affordability of mass spectrometers. Important concepts 

are discussed as they relate to structure elucidation and quantitation in untargeted metabolomics.  

 Mass spectrometry measures the mass-to-charge ratios (m/z) of compounds, which 

requires that analytes be ionized before detection. The ion source is an essential component of 

the mass spectrometer where neutral metabolites preferentially form positively or negatively 

charged ions, depending on their physicochemical properties. Hard ionization refers to 

techniques that impart excess energy onto molecules, frequently fragmenting the analyte; chief 

among these is electron impact ionization (EI), where beams of electrons are emitted at a specific 
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voltage (typically 70eV) to cause the ejection of a single electron from gas-phase compounds, 

producing a radical cation (and resultant fragments) for mass analysis.35 EI is the primary 

method in GC-MS and lacks compatibility with liquid chromatography applications. By contrast, 

soft ionization approaches impart small amounts of energy, minimizing fragmentation and 

allowing for accurate measurement of the mass of intact ions. Among these are Matrix-Assisted 

Laser Desorption Ionization (MALDI), whereby samples are entrapped with an energy-absorbent 

organic matrix and ionized by a laser beam; atmospheric pressure chemical ionization (APCI), 

where the sample is vaporized, then ionized in aerosol form via corona discharge using a needle 

electrode upon which a high voltage is applied;36 and Electrospray Ionization (ESI), where mist-

like electrically-charged droplets of a particular charge disperse and disintegrate, inducing charge 

upon the sample, then analytes are ionized and transferred to the gas phase either via evaporation 

from the surface of microdroplets (ion evaporation model)37 or by successive Coulombic fissions 

due to the excessive build-up of similar charges (charged-residue model).38 Of these methods, 

electrospray ionization is the most widely used ionization method for untargeted LC-MS 

metabolomics, largely due to its applicability to a wider range of metabolites. Most metabolites 

are singly charged (z = 1) when subjected to ESI, though some take on multiple charges. One 

notable disadvantage is that electrospray ionization is subject to matrix effects, particularly ion 

suppression whereby an analyte's ionization efficiency is reduced due to the presence of co-

eluting compounds in the same matrix.36,39 Moreover, certain compounds such as thermally 

stable, low-polarity metabolites are either inaccessible or better measured by APCI, which often 

serves as a complementary approach.27,40 Nevertheless, in LC-MS metabolomics applications, 

ESI is the primary ionization method and all studies described herein use this technique. 
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 Following ionization, compounds are propelled via a strong magnetic field towards the 

mass analyzer, which comprises the next component of the mass spectrometry workflow. A 

variety of commercially available instruments exist for high resolution mass analysis, with most 

based on Time of Flight (TOF) or Orbitrap technologies.27  In TOF-MS, an electric field of a 

fixed potential accelerates ions through a flight tube and the time taken to traverse the tube is 

then mathematically related to the accurate mass of the ions.41 Generally, ions of lower mass and 

higher charge travel faster through the flight tube. To facilitate the selection of low molecular 

weight compounds, a quadrupole is usually paired to TOF analysis and filters ions based on the 

trajectory of their oscillations between the rods such that only compounds of a specific m/z range 

will arrive at the detector. By contrast, Orbitraps consist of devices with inner and center 

electrodes, between which an electric field is generated such that ions oscillate harmonically 

around the central electrode. The resulting frequencies of these orbits are obtained through 

Fourier transformation, which are then converted to a mass spectrum.42 Both QTOF and Orbitrap 

instruments are capable of high mass resolution, with QTOF achieving resolutions around 35000 

and Orbitrap more than 200,000.43 Orbitrap mass spectrometers typically have higher dynamic 

ranges, defined as the ratio of the most abundant ion to the least abundant detectable ion, while 

QTOF possess higher scan rates, facilitating their coupling with high-throughput 

chromatographic techniques.27 Both QTOF & Orbitrap mass analyzers enable untargeted 

metabolomics analysis, and most laboratories use one or a combination of these instruments. 

 Depending on the application, an additional fragmentation step may be pursued in mass 

spectrometry analysis to reveal structural information about the detected compounds. The most 

widely used method is collision-induced dissociation (CID),44 where selected ions are forced to 

collide with a neutral buffer gas, imparting internal energy that breaks molecular bonds and 
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forming product ions which can similarly be measured by m/z. In certain mass spectrometers, 

this process can be repeated multiple times when studying specific metabolites, with a single 

fragmentation denotated as MS/MS and multiple dissociations termed MSn. The spectral output 

of these fragmentation workflows can be compared to spectra of known chemicals, and thus used 

to deduce the identity of the underlying compounds. More information on these workflows is 

contained in Section 1.4. 

1.3  Metabolomics Preprocessing & Normalization 

 LC-MS assays generate files containing abundant and complex mass spectral information 

detected for each sample which provide the entry point to computational metabolomics data 

analyses. LC-MS preprocessing workflows extract quantitative values from raw signal, 

transforming raw spectral information in these files into a matrix of features, where each feature 

represents an analyte that is commonly detected across experimental files represented by an 

averaged m/z, retention time (RT), and per-sample signal abundance values. Various commercial 

solutions exist for preprocessing data from specific vendors; however, this discussion pertains to 

open-source data analysis software and methods, particularly the popular XCMS45 and 

MZMine246 programs. The main steps in a preprocessing workflow typically consist of file 

conversion, peak detection and deconvolution, retention time correction, alignment, gap filling, 

imputation, filtering, and normalization. 

1.3.1  File Conversion 

 Initially, mass spectral data is presented in a variety of proprietary formats depending on 

the instrument supplier, such as .d by Agilent (Santa Clara, CA) or .raw by Thermo Fisher 

Scientific (Waltham, MA). Though commercial software to extract information from these 

specific file types are widely used, most open-source software cannot operate on these intricate 
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files, motivating the development of various XML-based common formats to achieve platform-

independence and ease of data exchange. Early efforts include the .mzData and .mzXML47 

formats, developed by the Human Proteomics Organization Protein Standards Initiative (HUPO 

PSI) and Systems Biology Institute (SBI) respectively, before the two philosophies were unified 

in 2006-2008 to create the .mzML format.48 .mzML is designed to be simple, stable with some 

flexibility to encode new information, and is compatible with a wide range of open-source mass 

spectrometry software. To make use of these formats, files must first be converted from their 

native format to .mzML, .mzXML, or a related file type. The most prominent conversion tool is 

the MSConvert utility of Proteowizard,49,50 which can be used to apply various filters and 

perform useful operations such as centroiding of profile data to reduce its complexity. Once 

converted, the files are compatible with open-source pre-processing software. Conversion 

therefore represents the first step in many computational metabolomics protocols. 

1.3.2  Peak Detection 

  Mass spectral data are represented as a series of sequential scans ordered by retention 

time, with each scan containing a series of detected masses and their associated intensities. Peak 

detection algorithms identify robust signal arising from true metabolites, while excluding noisy 

signal from contaminants and chemicals of non-sample origin. A common first step is to 

determine “Regions of Interest (ROI)”, or m/z traces in consecutive scans that meet thresholds 

for intensity and can thus be considered for modeling of peak-like behavior. For the original 

XCMS matchedFilter algorithm, the full m/z region is arbitrarily segmented into slices (by 

default 0.1 Da wide) and a second-derivative Gaussian peak model is fit through the highest 

signals within these slices.45 The more widely used centWave method for high resolution MS 

data constructs ROIs by iteratively agglomerating nearby mass traces within set m/z distances 
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and updating the average mass of the ROI with each addition; then continuous wavelet transform 

(CWT) is applied to detect peaks from the signal, using the Mexican Hat wavelet with multiple 

scales to account for varying widths of the peaks.51 In both methods, a signal to noise ratio 

eliminates low-lying peaks, where noise is estimated as the average signal in the m/z slice 

containing the signal. Similarly, MZmine2 determines extracted ion chromatograms (EIC) from 

detected mass traces, followed by one of multiple chromatogram deconvolution options, such as 

noise amplitude, Savitzky-Golay filter, and local minimum search.46 

 Despite setting the standard for LC-MS preprocessing, XCMS & MZMine2 peak-picking 

methods have been reported to generate many false positive peaks as part of their outputs.52 

Examples of false positives may include partial integrations of signal that do not encompass the 

full peak, the integration of noise and flat plateaus often originating from LC solvent ions. These 

signals inflate the number of metabolite peaks and without further post-processing or inspection, 

the problem is hidden from the user. Efforts have been made in recent years to improve CWT-

based methods for reduced false positive peak detection. These include the Automated Data 

Analysis Pipeline (ADAP) implemented in MZMine2, which adds a coefficient/area filter 

parameter to limit non-Gaussian peak shapes.53 Others have proposed deep learning methods for 

detecting and eliminating false positive peaks as a post-processing step.54–56 Another simple 

method for eliminating background solvent ions is to remove peaks whose levels are comparable 

between negative control "blanks" and normal samples. Deconvoluting LC-MS signal remains a 

complex task with tradeoffs between identifying signal from true metabolites (including low 

abundance compounds) and reducing the presence of false positives in peak lists.  

1.3.3 Retention Time Correction and Alignment 
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 Most untargeted LC-MS metabolomics studies acquire data from multiple samples 

sequentially by the same instrument under nominally identical settings. After performing peak 

detection in each of the samples individually, the next step is to match peaks corresponding to 

the same metabolite across samples and assemble their values into a matrix, exemplified by  

Table 1.1. Each row of the table represents a "feature", or a consistently detected peak in m/z 

and retention time (RT) space. The weighted average of these values across the samples in which  

the analyte is detected is assigned as the feature's m/z and RT. 

 Simple alignment strategies, such as density-based grouping in XCMS or the join aligner 

in MZMine2, construct features by performing a matching of at most one peak per sample 

subject to constraints in m/z & RT distance. However, nonlinear shifts in RTs are often observed 

from sample to sample, due to slight variability in chromatographic mobile phase composition, 

column conditions, gradient, and temperature (47,48).57,58 Accounting for these chromatographic 

perturbations is necessary to generate an accurate and comprehensive correspondence between 

peaks arising from the same analyte. Dozens of methods have been devised for simultaneous RT 

correction and peak matching, including independent software packages and implemented 

algorithms within LC-MS preprocessing software. A 2015 review of alignment approaches lists 

several commonalities, such as the use of monotonic time warping functions modeled after 

"landmark" or "anchor" features and/or representative samples, followed by direct peak 

m/z RT samp1 samp2 samp2 samp3 samp4 samp5 

278.9167 0.494 3799   28183 13478  

428.8893 0.495 4903 5248 13878 6716 4971 4011 

360.9008 0.496 12322 11911 20954 19893 22657 11354 

454.8415 0.497 8867 8723 8239 7571 7363 8036 

162.9556 0.497  17943    15940 

Table 1.1 Metabolomics Feature Table Each row represents an individual feature, with columns 

displaying the averaged mass-to-charge (m/z), retention time (RT), and individual sample values. 
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matching.59 In XCMS, two methods have been implemented for RT correction: locally weighted 

smoothing spline (LOESS) of retention time shifts modelled after coarsely pre-defined peak 

groups;45 and Ordered Bijective Interpolated Warping (Obiwarp), a derivative of dynamic time 

warping (DTW) which computes a warping function between chromatograms and a single 

reference chromatogram.60 In MZMine2, the RANSAC aligner iteratively generates and updates 

a master list of features and their candidate alignment RTs, using LOESS to map between master 

list RTs and those of the next chromatogram, followed by joining.46 These methods are designed 

for relatively small retention drifts between samples within the same assay. More significant 

shifts are observed between samples in separate batches or experiments requiring specialized 

methods. More details about alignment are contained in Chapter 3. 

1.3.4 Gap-Filling and Imputation 

 Following alignment, the feature matrix typically contains missing abundance values. 

These may result from a failure to align peaks corresponding to the same metabolite or to detect 

peaks due to insufficient signal-to-noise ratios or poor peak-like behavior. Since many statistical 

methods require complete data, imputation of missing values is often necessary after feature 

alignment. It is common practice to filter the feature list to exclude features whose percentage of 

missingness across samples exceeds some threshold. By default, features not present in more 

than 50% of detected samples are excluded in XCMS during the peak grouping step.45 The "80% 

rule" is commonly applied in studies, limiting analyses to features that have values for at least 

80% of the samples.61 After choosing which features to retain, a variety of imputation methods 

can be applied to eliminate missingness in metabolomics data. 

 One imputation approach with supported functionality in XCMS & MZMine2 is to fill 

missing feature values by the detected signal in the m/z & RT space, either indiscriminately or 
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with minor constraints on spectral behavior. This can often detect true peaks that may have been 

missed due to sub-optimal parameters in the peak-picking and alignment steps. Gap-filling 

approaches are admittedly controversial as they may be susceptible to incorporating noise or 

signal from other compounds distinct from the represented analyte.62 Generalized approaches 

may be used for pre-processed data from pipelines lacking gap-filling functions. These range 

from simple approaches such as zero, minimum, half-minimum value imputation to machine-

learning imputation strategies, such as Random Forest (RF) or Singular Vector Decomposition 

(SVD)-based imputation.63,64 Comparative reviews have examined the strengths and weaknesses 

of imputation strategies for data that is "missing at random" (e.g. peaks missed due to sub-

optimal preprocessing) or "not missing at random" (peaks not present or at insufficient 

abundance), with RF imputation cited as the most accurate.65,66  

1.3.5 Normalization 

 Normalization is a post-processing step with the goal of reducing between-sample 

variability resulting from pre-analytical and analytical factors, such as sample quantity or volume 

differences, sample handling, instrument variation, sample run order, and batch effects, while 

retaining biological information. Some normalization methods are specific to the biological 

specimen, such as normalization by creatinine levels for urine metabolomics67 or cell/ DNA/ 

protein count for cell culture studies.68,69 Some methods employ one or multiple internal standard 

(IS) compounds for normalization, such as the NOMIS70 & CCMN71 methods. The main 

drawback of these methods is that the IS compounds selected may not sufficiently represent the 

diversity of the metabolome chemical space; moreover, compounds may be subject to matrix 

effects, introducing biases during normalization. Another strategy involves fitting nonlinear 

regression models of quality control sample metabolite values as a function of run order.72,73 
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More generalized location-scale methods include normalization by total signal or total "useful" 

signal, autoscaling or pareto scaling. A more detailed look at normalization and removal of batch 

effects can be found in Chapter 5. 

1.4 Compound Identification 

 Annotation of LC-MS features is crucial to biological interpretation and represents a 

challenging area of ongoing metabolomics research. LC-MS provides a wealth of information 

about metabolites present in biological samples, including retention behavior (which is indicative 

of various physicochemical properties) and accurate masses of ionized small molecules. The 

isotopic distributions coupled to accurate mass can facilitate deduction of molecular formulas.74 

However, this knowledge is rarely sufficient to accurately deduce the structural identities of 

metabolites. Retention times are specific to the chromatography system measuring the analytes 

and cannot be informative by themselves to other systems. A given mass or molecular formula 

may correspond with numerous isomers with a variety of connectivities between the atoms. 

Furthermore, unlike nucleic acids and proteins, the metabolome encompasses a broad structural 

and physicochemical range that cannot be simplified to a polymeric sequence of known 

monomers75. As a result, most detected features lack unambiguous characterization in metabolite 

profiling studies,76 underlying many challenges described throughout this work.  

 

Table 1.2 Metabolite Identification Levels 

Level Name Minimum Requirements 

1 Identified compounds Comparison of two or more orthogonal properties with an authentic chemical standard 

analysed under identical analytical conditions 

2 Putatively annotated 

compounds 

Based upon physicochemical properties or spectral similarity with public/commercial 

spectral libraries, without reference to authentic standards 

3 Putatively characterized 

compound classes 

Based upon characteristic physicochemical properties of a chemical class of 

compounds, or by spectral similarity to known compounds of a chemical class 

4 Unknown compounds Although unidentified and unclassified, these metabolites can still be differentiated and 

quantified based upon spectral data 
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1.4.1  Identification Confidence Levels 

 In 2007, the Chemical Analysis Working Group of the Metabolomics Standards Initiative 

(MSI) listed four distinct levels of identification confidence for small compounds, as listed in 

Table 1.2 below.77,78 Identifications at level 1 (the highest confidence level) require matching 

two orthogonal measurements (such as retention time, mass spectrum, isotope pattern) to that of 

a pure standard for authentication. Laboratories typically maintain and grow libraries of 

compound standards and databases documenting their properties for ease of identifications in 

routine metabolite profiling experiments. However, authentic standards do not exist for every 

metabolite and obtaining every standard compound for experimentation is impractical. 

Therefore, computational strategies towards structural elucidation over the past decades have 

pursued ways of annotating features at levels 2 or 3, obtaining spectral similarity or property 

matches to entries in small compound databases or ascribing chemical class characteristics to 

unknown features. Two prominent classes of tools are briefly discussed here: LC-MS/MS 

spectral matching and RT prediction models. 

1.4.2  LC-MS/MS Spectral Matching 

 For selected analytes of a given precursor mass and retention time, LC-CID-MS/MS 

reveals 

Figure 1.2 Example LC-MS/MS Spectrum Match Adapted from Dunn et al. (2013).78  
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favorable fragmentation reaction product masses and their relative abundances. Fragment masses 

can be useful for deducing molecular substructures, sometimes sufficient to determine the 

chemical class to which a particular compound belongs.3 More importantly, tandem mass spectra 

are characteristic fingerprints of analytes that can be directly compared to experimentally derived 

MS/MS readouts collected in mass spectral databases. Library searching is a fast and accurate 

means of obtaining a set of compound annotations from MS/MS data, with numerous existing 

public or commercially available compound spectral databases such as the NIST, METLIN,79 

MoNA, and GNPS80 databases. Tools for database search, including the prominent NIST MS 

Search and MSPepSearch utilities,81 compare and score matches between library and observed 

spectra using dot product, hybrid, and other similarity measures. Hits from identity searches 

match the precursor ion of the collected spectra, while in-source hits ignore the precursor ion and 

score matches based on fragment ions alone. Hybrid searches combine direct peak matching and 

neutral-loss matching, where the mass difference between collected precursor ions and database 

entries is calculated before fragment ions are conditionally shifted by the same mass difference. 

Compound matches for each parent ion can be filtered based on composite scores and manually 

reviewed to confirm matches between library and empirically measured spectral peaks. 

 Despite these advantages, mass spectral library searching is limited by several factors. 

Scoring algorithms can give inaccurate results for spectra that contain very few fragments. 

Experimentally obtained MS/MS spectra may contain chemical noise and other compounds, 

complicating spectral comparisons with library spectra measured from pure standards. Databases 

of experimentally derived MS/MS spectra are incomplete and cover only a small fraction of the 

metabolome. In recent years, in silico fragmentation tools have emerged to supplement 

experimentally derived MS/MS spectra with computationally predicted spectra of compounds 



 

 

 

 

21 

 

whose spectra are not present in databases.82–85 The accurate prediction and validation of in-

silico MS/MS spectra is the subject of much on-going research, employing techniques and 

concepts from computational chemistry and machine learning.  

1.4.3  Retention Time Prediction 

 Retention time is an orthogonal measurement to the mass spectrum that is indicative of an 

analyte's physicochemical properties. Many studies over the past decade have sought to 

accurately predict compound retention times, with the goal of increasing annotation rates and 

minimizing false positive annotations. The predominant method for RT prediction is Quantitative 

Structure Retention Relationship (QSRR) modeling, a cheminformatics approach in which a 

series of molecular descriptors, or numeric values that represent the structural composition and 

properties of molecules, are calculated from analytes as features for machine learning model 

construction. Creek et al. (2011) first employed multiple linear regression to model the retention 

factor of 120 compounds in a HILIC system using six calculated properties, most prominently 

the log octanol-water partition coefficient (a measure of compound hydrophilicity).86 A similar 

effort by Cao et al (2015) used Random Forest regression and calculated 346 molecular 

descriptors with the rcdk package, again finding log partition coefficient to be most predictive, 

along with other polarity and electrostatics descriptors.87 Both studies applied their respective 

models to predict the expected retention times for thousands of compounds, showing that QSRR 

models can limit the pool of possible identities for a given m/z, making annotation more feasible. 

Some studies combine retention time prediction with mass spectrum or fragmentation property 

modeling.88,89 Other notable studies include Aicheler et al. (2015) where support vector 

regression (SVR) is used to model lipidomics retention times;90 Wen et al. (2018) modeled 

retention indices with Partial Least Squares combined with Genetic Algorithms;91 the Retip R 
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package implements five different algorithms for QSRR model construction and is embedded in 

various mass spectrometry software packages.92 An important consideration for QSRR modeling 

is the applicability domain, or the structural space of compounds used to design models. A large 

and diverse set of compounds is necessary to build robust models applicable to a wide range of 

possible metabolites.93,94    

 QSRR models have the limitation of being locked to predicting retention behavior within 

specific chromatography systems, with limited transferability to other systems. To be useful for 

other experimental set-ups, retention projection models are necessary to transfer retention times 

from one system to the other. To address this, an alternative retention time modelling approach 

derives predictions based on measured retention times in separate chromatography systems. The 

most prominent of these is the PredRet database which stores known compound retention times 

for multiple chromatography systems with routinely updated generalized additive model (GAM) 

fits between the shared compounds of similar systems to predict where new compounds may 

elute, along with prediction intervals.95 More recently, the CALLC tool unites the QSRR & 

prediction across chromatography systems to achieve a generalized calibration for improved 

retention prediction over either modeling technique alone.96 Overall, these approaches make 

great use of retention properties for compound annotation purposes, and when combined with 

MS/MS spectral matching, provide orthogonal information for narrowing down the list of 

potential identities for metabolomics features.   

1.4.4  LC-MS Isotopes, Adducts and In-Source Fragments 

 When LC-MS preprocessing outputs report thousands of commonly detected <m/z, RT> 

features, it is important to recognize that these features do not all correspond to unique 

metabolites. During the electrospray ionization process, metabolites may give rise to multiple 
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features corresponding to adduct ions, in-source fragments, isotopologues and cluster ions.97 The 

presence of these ion multiplicities creates multiple problems in metabolomics data analysis. 

They contribute a significant proportion of the overall feature count, exaggerating the total 

number of detected metabolites and complicating downstream statistical analysis. For biological 

interpretation, it is desirable to reduce data redundancy and obtain a parsimonious representation 

of the detected metabolome, i.e. through a single representative feature per metabolite. For 

metabolite identification workflows, "degenerate" features obfuscate the neutral mass of the 

underlying compound, and by extension its identity, unless the chemical transformation type is 

correctly assigned. Given these concerns, computationally assisted annotation of ion species is a 

prerequisite to compound identification as well as statistical analysis. A detailed description of 

algorithms for metabolomics feature annotation is contained in chapter 2. 

1.5 Statistical & Bioinformatics Methods 

 For most metabolite profiling studies, the aim is to interrogate biological systems and 

correlate metabolite measurements with phenotype. The levels of metabolites are constantly 

changing in biological systems due to turnover from reactions, often mediated by specific 

enzymes, and the influence of environmental factors such as diet, temperature, and 

microorganisms.98 As a result, metabolomics is thought to be the most direct signature of 

biochemical activity and the best indicator of many phenotypic perturbations.1 Many statistical 

and bioinformatics approaches have been designed and adapted to extract patterns and 

contextualize information from metabolomics datasets. Metabolomics shares much in common 

with other high-throughput biological data types, such as transcriptomics and proteomics. 

Numerous approaches can be commonly applied to any of these data types, regardless of the 

biological entity, and many methods originally designed for these molecular analyses can be 
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similarly applied to metabolomics data.99 Moreover, like genes and proteins, metabolites have 

been organized into functional biochemical pathways curated over many decades of biochemical 

research. Metabolomics is frequently integrated with genomics, transcriptomics, and proteomics 

to obtain a holistic systems-level view of biological phenomena.100–103 However, several 

distinctions make metabolomics data more challenging to interpret. The first is the previously 

discussed problem of unknown and unidentified metabolites. Observations concerning unnamed 

compounds are difficult to contextualize and they prevent untargeted metabolomics datasets 

from being used to their full potential. Unlike transcripts and proteins, metabolites cannot be 

inferred from mapped genomic sequences and the true size of the metabolome is not fully 

understood.104 Furthermore, various classes of metabolites, especially lipids, have not been 

unambiguously mapped to biochemical pathways as knowledge of substrate-enzyme 

relationships in biological systems remains incomplete.105 Metabolomics assays are not yet 

capable of detecting the full metabolome, with many reaction intermediates missing or present at 

very low levels.106 These challenges must be taken into consideration when designing and 

adapting statistical and bioinformatics approaches to metabolomics data analysis. This section 

briefly surveys the methods relevant to the research described in this thesis. 

1.5.1 Statistical Approaches in Metabolomics 

 Depending on the study design and the factors of interest, a variety of statistical 

approaches can be employed to uncover patterns in metabolomics data, a few of which are 

discussed here. Classic analytical techniques commonly applied to metabolomics data include 

univariate, multivariate, supervised, and unsupervised approaches. Univariate analyses determine 

individual variables that have the strongest responses to the investigated conditions, such as 

differentially abundant metabolites. Student's t-tests & analysis of variance (ANOVA) are typical 
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univariate approaches for performing differential analysis. Generally, an approach to differential 

analysis is fitting linear regression models of the form, 

𝑌𝑚×𝑛=𝑋𝑚×𝑝𝛾𝑝×𝑛+𝑊𝑚×𝑞𝑎𝑞×𝑛+𝑒𝑚×𝑛, 

where Y represents the matrix of metabolite abundances, X represents observed factors of 

interest, W represents factors of corresponding to unwanted variation, γ and α are unobserved 

coefficients that weigh individual factors on the metabolite abundances, and 𝑒 is an unobserved 

error matrix.107 This method determines the influence of the observed factor on the metabolite 

outcome while accounting for potential confounding factors. Differential analyses yield a test 

statistic and associated p-value for each metabolite which may include many false positive 

results given the large number of tests. Multiple testing corrections like the Bonferroni correction 

or Benjamini-Hochberg correction are necessary to limit the number of false positives.108 

 Multivariate analysis expands on univariate approaches by examining dependencies and 

correlations between groups of metabolites. Principal Component Analysis (PCA) is an 

unsupervised multivariate approach used to explain sources of variation in a dataset through a 

projection onto "principal components" or a series of orthogonal vectors. PCA is often used as an 

exploratory step to determine primary sources of variability, such as experimental group, 

population factors such as gender, or batch effects. Likewise, cluster analysis techniques- most 

prominently hierarchical and k-means clustering- are unsupervised approaches to grouping 

observations or variables according to a predefined similarity metric, such as Euclidean distance 

between pairwise correlation vectors. On the other hand, Partial Least Squares (PLS) and its 

variant Partial Least Squares Discriminant Analysis (PLS-DA) are supervised approaches that 

seek to determine groups of metabolites associated with a response structure and infer which 

variables maximize the discrimination between experimental conditions.99 Classification models, 
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such as logistic regression, support vector machines, and random forests are widely used in 

metabolomics to determine biomarkers of disease and other biological states.109   

1.5.2 Bioinformatics Methods in Metabolomics 

 Bioinformatics methods facilitate interpretation of metabolomics information through 

knowledge-based or data-driven approaches. Central to these methods is functional enrichment 

testing, where sets of biochemically or functionally related metabolites that are overrepresented 

or "enriched" in their statistical association with some phenotypic trait. Frequently, these 

metabolite sets are represented as networks containing nodes representing metabolites and edges 

representing either enzyme-mediated reactions or a high degree of similarity. Known metabolic 

pathways are one such grouping, with each pathway serving a defined biological role as defined 

by prior research. Databases of curated pathways, including KEGG,110,111 MetaCyc112,113,114, 

HMDB,8 and LipidMaps115 are instrumental in storing and retrieving information about 

metabolite pathways, though pathway boundaries, the inclusion of certain metabolites in 

pathways, and the pathway designations are not fully consistent across databases as these are 

manually defined by researchers.116 Pathway-based interpretations are the dominant paradigm in 

metabolomics research, with numerous tools for both enrichment analysis and visualization, such 

as IMPaLa,117 MetaboAnalyst,118 MPEA,119 MetScape,120 MetaMapp,106 Paintomics,121 

3Omics,122 and MetExplore.123 The main statistical methods for enrichment analysis are Fisher's 

Exact, Kolmogorov-Smirnov, or hypergeometric tests.124  

 The limitations of pathway-based metabolite groupings have led to alternative metabolite 

set definitions. A notable example is the Chemical Similarity Enrichment Analysis implemented 

in ChemRICH, where compounds are organized into non-overlapping sets based on their 

Tanimoto chemical similarity followed by Kolmogorov-Smirnov enrichment analysis.105 
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Grouping by chemical similarity facilitates the inclusion of metabolites that are poorly mapped 

by metabolic pathways, including important compound classes, resulting in greater utilization of 

metabolomics datasets than pathway-based methods. However, in its present state, ChemRICH is 

strictly limited to known, identified compounds with PubChem database identifiers and defined 

chemical structures.  

 A more generalized concept independent of biochemical domain knowledge is to 

construct data-driven metabolic networks using correlation similarities. Since metabolites 

involved in chemical reactions undergo concerted fluctuations due to factors such as changes in 

enzyme levels (i.e. due to different regulatory states), temperature and pH, high correlations may 

be an indicator of chemical relatedness.98,99 The correlation network can then be clustered, 

generating a series of subnetworks or modules of metabolites that hypothetically serve a 

common biological function. A notable example of this methodology is the Weighted Gene Co-

expression Network Analysis (WGCNA), which constructs networks by first relating variables 

by correlation raised to a power followed by module detection via hierarchical clustering.125 

WGCNA has been used in many contexts to determine modules of metabolites (as well as genes 

and proteins) associated with multiple traits.126 The principal drawback of most correlation-based 

networks using Pearson's correlation is the inability to distinguish between direct and indirect 

associations between metabolites.127 Two metabolites may be correlated with each other due to 

confounding factors as opposed to direct biochemical relationships, leading to dense networks of 

edges between directly and indirectly associated metabolites.  

 Partial correlations serve as an alternative similarity metric in which the relationship 

between two variables is conditioned against all remaining variables, thereby controlling for 

potential confounding relationships that may explain an association. Gaussian Graphical Models 
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(GGM) are networks connecting functionally related metabolites with high partial correlations 

and have seen much usage in metabolomics studies.127,128 The recently developed Differential 

Network Enrichment Analysis (DNEA) method extends the idea of functional enrichment testing 

to partial correlation networks to assess modules of individual metabolites whose abundance 

levels and pairwise partial correlations may be altered between two conditions (e.g. disease and 

control groups).129,130 First, a partial correlation network is jointly estimated between metabolites 

for multiple conditions, followed by a consensus clustering to determine densely connected  

subnetworks, each a self-contained module of the detected metabolome. Then Network Gene Set 

Analysis (NetGSA) topology-based enrichment method identifies biologically relevant 

subnetworks that are altered significantly between conditions.1 DNEA has been shown to 

generate biologically relevant metabolomics subnetworks associated with disease conditions 

without a priori knowledge of metabolic reactions.  

 A major limitation of partial correlations is the requirement of a high sample to variable 

count ratio, a property that is rarely met in the context of untargeted metabolomics experiments 

which typically contain thousands of features and at most several hundred samples. Certain 

modifications to partial correlation estimations have been proposed, such as debiased sparse 

Figure 1.3 Example Partial Correlation Network Adapted from Basu et al. (2017).131 
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partial correlations (DSPC) to partially overcome this limitation.131 Ultimately, applications of 

partial correlation networks have been limited to targeted metabolomics analyses, datasets with a 

manageable or reduced metabolite count or in large-scale metabolomics studies where an 

acceptable sample to metabolite count ratio can be attained. 

1.6  Disparate LC-MS Metabolomics Data Analysis 

 Currently, there are two major repositories in which published metabolomics study data 

can be deposited: the National Metabolomics Data Repository, also known as Metabolomics 

Workbench,132 and Metabolights.133 These databases contain metabolomics data acquired from 

diverse species, specimens, disease states, technologies, assay types and contributing institutions. 

The meta-data for these studies vary in terms of information completeness, but may include both 

raw and processed data files, lists of identified compounds (with their respective m/z and RT 

values), and detailed experimental protocols listing instrumentation and parameters used to 

obtain the underlying data.  

 A brief look at these databases reveals a lack of standardization of untargeted LC-MS 

protocols across institutions, even for experiments performed on biologically similar specimens. 

For example, consider two untargeted RPLC-MS metabolomics studies of human plasma with 

Metabolomics Workbench identifiers ST000292 and ST000992 by the Southeast Center for 

Integrated Metabolomics (SECIM) and the Michigan Regional Comprehensive Metabolomics 

Resource Core (MRC2), respectively. Apart from study aims and design, there are differences in 

chromatography columns (ACE Excel 2 C18-PFP vs Waters Acquity HSS T3), column 

dimensions (100 x 2.1mm, 2um vs 50 x 2.1mm, 1.8um), total chromatography time (20 vs 30 

minutes), organic solvents (acetonitrile vs methanol), gradients, MS instrument type (Orbitrap vs 

QTOF), and other important analytical parameters. Both institutions list identified metabolites 
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found in their respective data, with some commonalities as well as numerous non-overlapping 

compound annotations.  

 These two studies exemplify the current state of metabolomics in which laboratories 

independently develop their own standard operating procedures for metabolite profiling and 

generate data that cannot be easily harmonized due to m/z, RT, and metabolome coverage 

disparities.30 Many cross-laboratory studies have examined the reproducibility and consistency 

of metabolomics assays across differences in instrumentation, protocols, and processing 

software.134–140 To date, however, few tools or resources have been developed for the purpose of 

aligning and merging LC-MS metabolomics data acquired under disparate LC-MS conditions, 

defined as experiments in which major chromatographic, spectrometric, and other analytical 

parameters have been altered. The ability to align data from different laboratories, instruments, 

and protocols could unlock many opportunities for the metabolomics field, such as intersecting 

identified and unidentified compound measurements between assays, validating compound 

annotations, enabling reproducibility assessments, and performing expanded sample analyses. 

With respect to the latter goal, the integration of data from multiple sources presents an 

additional layer of technical variability in the form of inter-experimental effects that must be 

harmonized before further analysis. Addressing these gaps is a central goal of this dissertation.  

1.7 Research Objectives 

 
 This chapter provides a brief overview of computational metabolomics, highlighting 

important methods and considerations for relative LC-MS metabolomics quantification, 

compound identification, and biological interpretation. Abundant tools and resources have been 

developed to further metabolomics research, though many daunting obstacles remain before 

untargeted metabolomics can be used to its full potential. Some key issues identified in this 
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chapter are: 1) high confidence compound identification is achieved for a small proportion of the 

detected metabolome, yielding a largely uncharacterized list of features; 2) inflated feature 

counts (due to the presence of redundant ion species) coupled to low sample sizes in untargeted 

metabolomics datasets, hindering the efficacy of statistical and bioinformatics approaches; 3) the 

limitation of computational workflows to metabolite profiling experiments performed within a 

single laboratory, instrument and protocol.  

 The research described herein was pursued with the following objectives: 1) develop new 

software and methods for the annotation and subsequent elimination of redundant ion species; 2) 

develop and implement a novel algorithm for the alignment of metabolomics features acquired 

from biologically similar specimens under disparate analytical and instrumental conditions; 3) 

design a comprehensive workflow for merging and normalizing disparately acquired 

metabolomics datasets, with applications in compound annotation and bioinformatics analysis.   

 To address objective #1, a standalone Java application called Binner, a tool that 

implements a workflow for the annotation of isotopologues, adducts, in-source fragments, and 

complexes for metabolomics studies has been developed. Binner takes pre-processed and aligned 

LC-MS metabolomics feature tables and generates a multi-tab report organizing features into 

retention time and correlation coefficient clusters, with associated pairwise correlation heatmaps 

and m/z differences displayed in separate tabs. Hypothesized annotations are provided for 

features combining traditional charge carrying adduct ions with neutral addition or loss groups. 

Binner provides additional resources for the determination of complex adducts and neutral losses 

that may be prevalent in the data but not defined in adduct rule tables. Binner facilitates 

investigations of metabolomics feature relationships and data reduction via the removal of 

degenerate features, maintaining features that represent unique analytes.    
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 To address objective #2, the metabCombiner software package written in the R statistical 

programming language for feature matching and concatenation of non-identically acquired 

untargeted LC-MS metabolomics datasets was developed. The package workflow takes a pair of 

conventionally processed and aligned feature tables pertaining to biologically similar specimens 

in the same ionization mode as input and reports all possible matches (constrained by m/z 

distance) between features as output. metabCombiner uses a weighted similarity score metric to 

determine likely matches between features representing identical analytes in the corresponding 

tables and filtering unlikely and inferior matches. Multiple examples illustrating the performance 

of this package, along with applications for facilitating compound identification efforts.  

 To address objective #3, two population metabolomics studies are presented, each 

containing two experimental subsets acquired under disparate conditions that require data 

merging. The first study consists of plasma samples from amyotrophic lateral sclerosis (ALS) 

patients and healthy controls analyzed as two separate cohorts more than a year apart. The 

second study consists of women recruited during pregnancy, with maternal plasma collected at 

the first and third trimesters along with the umbilical cord plasma. Samples were analyzed in two 

subsets by untargeted LC-MS metabolomics more than three years apart with important 

chromatographic, instrumental, and experimental design factors altered between the assays. 

Workflows for the feature data concatenation, harmonization of measured spectral abundances, 

and statistical and bioinformatics analysis of the combined datasets are presented for each study. 

These serve as the blueprints for a new type of analysis that shifts the paradigm from the 

requirement of single-instrument, single-laboratory, common protocol studies towards the 

integration and analysis of disparately acquired LC-MS metabolomics datasets.  
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Chapter 2 

 

Deep Annotation and Reduction of Untargeted LC-MS 

Metabolomics Data with Binner 
 

2.1 Introduction 
 

 In LC-ESI-MS metabolomics applications, thousands of features are detected as m/z and 

retention time value pairs. A single metabolite can give rise to multiple mass spectral features 

corresponding to multiple ion species eluting at roughly the same retention time but with 

different m/z values. These include isotopologues, adducts, in-source fragments, complexes (e.g. 

homodimers and trimers), contaminant compounds of non-sample origin, and other artifacts. The 

ion species that appear and their relative abundances depend on the chemical properties of the 

metabolite as well as the sample matrix, solvents, mass spectrometer, and other properties.78 An 

example mass spectrum is shown in Figure 2.1 where the metabolite tryptophan generates at 

least seven peaks corresponding to different positively charged ionic species of distinct mass.  

 The most common ion types encountered in positive and negative ionization modes are 

protonated [M+H]+ and de-protonated [M-H]- ions, respectively. These are often considered to 

be the representative or "principal" metabolite ions as their m/z differs from the neutral mass by 

approximately one Dalton and they are generally found in high abundances for most metabolites 

in their respective ionization modes. Other cationic or anionic species, including sodium (Na+), 

potassium (K+), ammonium (NH4+), and chlorine (Cl-), may carry excess surface charge 

imparted by electrospray nanodroplets and form non-covalent interactions with metabolites.141 
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Solvent impurities, glassware, and high salt concentrations in sample matrices (such as plasma or 

urine) contribute to the presence of these ions.142,143 In addition, the use of mobile phase 

additives for enhanced ESI efficiency, such as formic acid or ammonium acetate, contribute 

significantly to the formation of adducts in metabolomics, e.g. the formation of [M+HCOO-] and 

[M+CH3COO-] adduct ions in the negative ionization mode.144  

  Isotopologues, compounds with differing numbers of neutrons for at least one of the 

constituent atoms, are often reported as separate features with distinct m/z values. Some LC-MS 

preprocessing programs collapse isotopic envelopes automatically, while others such as XCMS 

report all isotopologues, requiring a post-processing step for their annotation and removal. The 

most common naturally occurring polyisotopic elements encountered in mass spectrometry-

based metabolomics are hydrogen (H), carbon (C), oxygen (O), nitrogen (N), sulfur (S), and 

chlorine (Cl).78 Of these, carbon is the most common with roughly 1.11% of natural carbon 

observed to be the heavier 13C isotope compared to the lighter, more common 12C variant.145 The 

two isotopic variants have an observed difference of 1.00335 Da, which combined with the 

[M+2Na-H]+

[M+H-NH3]+

[M+H-HCOOH]+

Figure 2.1 L-Tryptophan Mass Spectrum Detected peaks include the protonated form [M+H]+,  a 13C 

isotopologue, two sodium adducts [M+Na]+ & [M+2Na-H]+, two fragments [M+H-NH3]+ & [M+H-

HCOOH]+, and a Fourier Transform artifact peak. Adapted from Dunn et al. (2013). 
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observed proportions makes 13C isotopologues relatively simple to detect. Accounting for 

charge, this difference becomes 1.00335/z, where differences between isotopologue m/z values 

enables the detection of the metabolite's charge state. Sulfur and Chlorine both have stable 

isotopes differing by close to 1.996 Da (32S vs 34S and 35Cl vs 37Cl), with the heavier isotopes 

having observed proportions of 4.77% and 24.2%, respectively.146 Natural isotopes of Nitrogen, 

Hydrogen, and Oxygen all differ by close to one Dalton and their lesser isotopic forms do not 

feature as prominently in metabolomics data outside of isotope labeling experiments. 

 Despite being one of the softest ionization methods, some fragmentation does occur in 

ESI-MS as metabolite ions readily dissociate between the atmospheric pressure region of the ion 

source and the vacuum chamber of the mass spectrometer.147 In source fragmentation patterns 

are characteristic of the structural make-up of the metabolite and bear many similarities to 

fragments observed when metabolites are subjected to low collision energy MS/MS.148 Many 

prominent fragments correspond to losses of common neutral groups, such as that of H2O, NH3, 

and HCOOH, which can be predicted through the m/z distance between the parent and the 

fragment ions.149 Other fragments are more difficult to identify from the data alone and require 

more advanced strategies, such as matching to knowledge bases of experimental MS/MS 

spectra.148 In some cases, fragment ion features observed in metabolomics datasets can often be 

mistaken for distinct compounds, especially when the fragment ions mimic the m/z and 

chromatographic retention of common metabolites.147 

 A large proportion of metabolomics features may originate from solvents or contaminants 

of non-sample origin. A key example are salt complexes consisting of sodium, potassium, 

chloride, formate, acetate, or other ions that typically elute very early in the chromatogram in 

reversed phase liquid chromatography assays.150 Since these clusters are mostly composed of 
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elements that contribute to high mass defect (defined by the decimal number after the nominal 

mass), one of the ways used to recognize them is to use filters based on a linear association 

between mass defect and measured m/z.150 For background solvent ions detected as features, 

using negative control samples, robust peak-picking, or excising the early and late retention 

regions can help eliminate these signals which have little to no value for the analysis.  

 In many cases, the presence of adducts, fragments, and isotopologues can provide 

beneficial information for metabolite structure elucidation. Isotopic abundances can be used to 

deduce molecular formulas and their m/z distances are regularly used to determine charge states. 

Adduct formation with alkali metals (e.g. Na, K) enables the ionization of metabolites that 

cannot otherwise be protonated, allowing for more unique metabolites to be detected. Neutral 

losses point to sub-structures present in the molecule, and their masses may match compounds 

present in MS/MS fragmentation spectra. Together, adducts, fragments, and isotopologue 

features enable the triangulation of a common underlying neutral mass.  

 However, ion multiplicities pose many problems in metabolomics data analysis. Their 

presence in the dataset artificially increases the number of univariate statistical tests, leading to 

decreased power following multiple test corrections. In one study by Mahieu & Patti, some 

25000 peaks detected in an untargeted metabolomics assay of an Escherichia coli extract could 

be systematically reduced to fewer than 1000 compounds.151 Without accurate recognition of the 

ion species, the neutral mass of the compound giving rise to the features is obscured, potentially 

leading to misidentifications. Furthermore, the high spectral abundance correlation across 

samples for features arising from the same metabolite hampers searches for biologically 

meaningful correlations between distinct metabolites, which poses problems for building data-

driven networks, such as demonstrated Figure 2.2 below.131 Thus, annotating ion species in LC- 
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ESI-MS metabolomics data and performing feature reduction is a critically important task that 

requires a deep understanding of the complexities present in these datasets.    

    

Figure 2.2 Partial Correlation Network with Degenerate Features Nodes enclosed in circles are adducts and 

fragments for the amino acids Proline, Valine, and Tyrosine. Adapted from Basu et al. (2018).131  

2.2 Current Tools & Methods  

 A growing list of tools and strategies have been developed to perform feature annotation 

and reduction in untargeted LC-MS metabolomics datasets. Most tools follow a similar process 

in which features arising from the same compound are grouped together in an unsupervised 

manner, followed by annotation of features using mass relationship rules corresponding to 

known adducts and neutral losses. Related metabolite ion multiplicities are expected to co-elute, 

that is, their measured retention times should fall within a very small window. Depending on the 

software, chromatographic peak shape similarity or correlation of spectral abundances across 

experimental samples are used as a second similarity measure to detect features from the same 

metabolite. Major differences between the methods stem from how these tools determine feature 

groupings and how the peak annotation proceeds within these feature groups.  

2.2.1 Pairwise Thresholding Methods 
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 One of the earliest software tools developed for feature annotation is the AStream R 

package by Alonso et al. (2011).152 The tool first identifies and eliminates samples harboring 

systematic differences in their metabolomic profile compared to other samples. Then pairwise 

correlations between all pairs of features are computed, and only feature pairs within retention 

time and correlation thresholds are retained for further analysis. Annotation of isotopologues 

follows based on the m/z differences of 13C isotopes versus the more abundant 12C. Finally, 

adduct and fragment annotations are annotated based on known m/z differences with respect to 

[M+H]+ and [M-H]- ions. AStream is a template for the simplest annotation workflow in which 

ion multiplicities are recognized based on simple thresholds of correlation, retention time and 

m/z difference tolerances. Isotopologues are typically recognized first to simplify the eventual 

workflow of adduct and fragment ion detection. 

 A similar workflow to AStream is implemented in the web-based Mass Spectral Feature 

List Optimizer (MS-FLO).153 Along with isotopologue recognition, MS-FLO allows for a list of 

defined mass differences and has capabilities for outright removal of rows satisfying strict 

correlation cutoffs (if retention time and m/z difference tolerances are also met) or annotation 

flags if a soft correlation threshold is met. MS-FLO can also flag or remove duplicates and 

features deemed to be contaminants based on a list of m/z values. Unfortunately, MS-FLO 

cannot be used for the recognition of complexes (e.g. dimers) or multiply-charged species which 

cannot be detected by simple m/z distances. PUTMED-LCMS, a trio of workflows for LC-MS 

feature annotation implemented for Taverna Workbench, also uses simple tolerances for the 

detection of features arising from the same metabolite and additionally attempts to perform 

formula and metabolite library matches following data reduction.154 

2.2.2 Unsupervised Clustering Methods  
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 More sophisticated programs use clustering or generative algorithms for grouping similar 

metabolomics features. A case in point is the MSClust program, which implements subtractive 

fuzzy clustering, a technique that allows for multiple feature cluster memberships, each cluster 

defined by a feature "centrotype".155 The authors of the RAMClust R package combined pairwise 

retention time distances and abundance correlations across samples into a single similarity 

metric.156 RAMClust calculates this pairwise similarity between all features and performs a fast 

hierarchical clustering, separating features into clusters by cutting the resulting dendrogram at a 

specific height. The results of both MSClust and RAMClust are spectral clusters (assumed to 

belong to the same compound) that can be supplied to mass spectral search library tools for 

putative compound annotation. As published, these programs do not annotate ion multiplicities, 

though a later release of RAMClust makes use of an auxiliary R package, 

InterpretMSSpectrum.157 The "findMain" function in InterpretMSSpectrum is a heuristic method 

that successively assigns neutral mass hypotheses to non-isotopologue "major" peaks whose 

measured intensities are above some specified threshold. The hypothesis that yields the highest 

weighted sum of explained intensity for the cluster is assigned by the program.  

2.2.3 Chromatographic Peak Similarity Methods 

 One of the most prominent software tools for feature annotation is the CAMERA R 

package, a collection of annotation related methods for mass spectrometry data.158 CAMERA 

groups ions by iteratively assigning each to the largest, most abundant overlapping peaks 

(groupFWHM). Subsequently, correlation-based grouping using chromatographic peak shape 

similarity within samples or Pearson correlation of spectral intensities across samples (or both) 

proceeds, with a graph connecting highly related features within the compound spectra 

(groupCorr). CAMERA applies one of two algorithms for graph separation to obtain the final set 
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of pseudospectra within which features are annotated. Isotopologues annotated within these 

spectra must conform to plausible abundance ratios applying the assumed ~1% natural 

abundance of 13C (findIsotopes). Finally, CAMERA computes adduct, fragment, and multimer 

annotations based on a dynamic ruleset based on different ion types with pre-assigned score 

weights; the molecular mass hypothesis that maximizes the sum of scores determines the set of 

assigned annotations (findAdducts). Due to its flexible correlation grouping algorithm, 

CAMERA is one of the few tools that can handle annotation tasks for single and multiple sample 

experiments. Chromatographic peak shape correlations require access to the raw spectral data 

and is generally more computationally intensive to compute than spectral abundance 

correlations. CAMERA is therefore designed to be paired with XCMS package object inputs.  

 CAMERA is frequently cited as a benchmark for comparison to other annotation 

programs in terms of its functionality and performance. CliqueMS is a similar program that 

computes chromatographic peak shape similarities between peaks, using a cosine measure as 

opposed to Pearson correlations.159 With a probabilistic generative model, CliqueMS identifies 

network cliques of related signals, assigning group labels until a customized likelihood function 

has been maximized. Subsequent adduct and fragment ion annotations are based on summing log 

plausibility scores, where default plausibility weights are based on observed ion type frequencies 

in the NIST MS library compound spectra. The performance of CliqueMS compares favorably 

with CAMERA for internal standard mixtures; however, it is designed for single sample analyses 

only as opposed to aligned multi-sample datasets. 

2.2.4 Bayesian Probabilistic Methods 

 Bayesian probabilistic models have been explored in the context of feature annotation. 

Rogers et al. (2009) provided the basis for these efforts by showing that multiple sources of 
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information (especially isotopic distributions) can be used to generate probabilistic models 

assigning mass spectral peaks to molecular formulas.160 MetAssign by Daly et al. (2014) is a 

software implementation that assigns related features to clusters centered around a common 

molecular formula, using a Bayesian Markov Chain Monte Carlo sampling approach that 

integrates m/z, RT, and the inter-peak dependency structure.161 This method requires a list of 

formulas whose isotopic profiles and possible adduct m/z values are computed, with a prior 

probability distribution assigning to formulas based on m/z distance; a posterior probability is 

computed for cluster and formula assignments, giving some measure of confidence in the 

program-computed annotation. The Integrated Probabilistic Annotation (IPA) software package 

further modifies this formulation by inclusion of prior information, such as which adducts and 

fragments may potentially form for each metabolite (including the most abundant form), the RT 

range where the compound is most likely to be present, and biological connectivities.162 One 

disadvantage is that methods utilizing Gibbs Sampling are more computationally intensive and 

slower to complete than typical annotation programs.   

2.2.5 xMSannotator  

 A deterministic variant of these simultaneous adduct and compound assignment strategies 

is implemented in xMSannotator.163 This software package annotates features through a six-step 

process which includes pairwise correlation calculations between abundance vectors, applying 

WGCNA for module detection of highly correlated features,125 kernel density estimation for RT 

grouping, and subsequent matching to a database of compounds selected by the user (such as 

HMDB, KEGG, or LipidMaps). A score is assigned to compound and adduct matches based on 

the number of matched adducts and isotopes, correlations, sum of adduct weights (pre-assigned 

or user-defined), retention time range, and isotope distribution. As an added refinement, 
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biological network information may be incorporated to improve the scores of adduct and 

compound matches grouped in the same module as biochemically related molecules. Like with 

MetAssign and IPA, the computational burden of xMSannotator grows rapidly with the size of 

the compound database, the number of adduct and fragment annotations, and the feature count, 

leading to slow overall processing times compared to other methods. 

2.2.6 mz.unity  

 The mz.unity R package contains a unique approach to enumerating all possible mass 

relationships in a list of metabolomics peaks.164 Its foundation is an algorithm called mz.sum 

which enumerates peak relationships as the gain or loss of multiple charged formulas. mz.unity 

pursues many classes of relationships that are often not covered by most annotation methods, 

such as heteromers (complexes involving multiple metabolites), distal fragments, and complexes 

with background ions. It also provides graph-like structures to enable the visualization of mass 

relationships as a network. However, mz.unity does not attempt to group or cluster related 

features, leaving multiple potential interpretations for many of the assigned annotations that 

cannot be resolved without further information. 

2.2.7 Credentialing Approaches 

 Credentialing is an experimental method for validating features derived from sample 

origin as opposed to chemical noise and contaminants.165 This technique involves harvesting 

cellular cultures in different isotopically labeled media (e.g. 12C and 13C) and examining the 

resulting m/z spacing and intensity ratios. Isotopologue products must pass an expected ratio 

criterion to be deemed "credentialed", sample-derived metabolites. Mahieu et al. demonstrated 

its utility for optimizing preprocessing parameters using credentialed peaks as the primary 

criterion as opposed to total feature count.165 The Peak Annotation and Verification Engine 
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(PAVE) method incorporates credentialing into its workflow.166 The method requires four 

separate cultures (unlabeled, 13C, 15N, and 13C + 15N) which it uses to estimate the carbon and 

nitrogen counts of labeled compounds. The atom counts serve as an additional criterion for 

adduct detection, which PAVE performs through common m/z-based relationship rules. While 

credentialing has its benefits, it is limited to sample types conducive to isotopic labeling. For a 

more generalizable experimental method, the authors of PAVE introduced the Buffer 

Modification Workflow (BMW) consisting of assays swapping mobile phase additives (e.g. 

14NH3 acetate and 15NH3 formate) to credential metabolites.167 

2.2.8 Miscellaneous Methods 

 Some recently developed tools consist of scripts or modular implementations within 

larger workflows. CROP (Correlation-based Reduction Of multiPlicities) is an R script in which 

features are clustered by pairwise feature intensity correlations as well as retention time.168 

Analytic Correlation Filtration,169 a stand-alone tool as well as a module within the 

Workflow4Metabolomics,170 uses thresholds of pairwise correlation (Pearson, Spearman, or 

partial) similarities, RT and m/z difference tolerances like other previously described tools. Both 

tools then choose a single representative feature among those that have been clustered or linked 

together, which is usually the feature with the highest mean abundance. 

2.2.9 Limitations of Current Approaches  

 The proliferation of feature annotation and reduction methods reflects the significance of 

the problem of data redundancy and the need for automated approaches in routine untargeted 

metabolomics datasets. Still, many shortcomings of existing tools must be addressed. Some 

methods are limited to individual sample analyses, whereas most untargeted metabolomics 

datasets contain multiple samples with aligned spectral features. Visualizations of feature 
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relationships is another key aspect missing from all but a handful of programs. Metabolomics 

annotation programs frequently come with a packaged table of mass relationship rules, with no 

clear way of exploring if additional unannotated adducts or fragments may be present. Formation 

of in-source adducts and fragments may differ between LC-MS metabolomics protocols, and 

tailoring annotation rules to discover all possible multiplicities in specific LC-MS systems is an 

arduous process. Thus, many ion multiplicities are either left unannotated or are misannotated 

due to the unexpected feature relationships present in the data. Many methods have strict 

thresholds for correlation that are difficult to set objectively and hinder the discovery of true 

relationships if strict cutoffs are not met. Lastly, many software packages have time consuming 

processes and are difficult to operate for users without advanced computational training. Ideally, 

feature annotation should be fast, reproducible, informative, accurate, and easy to use to 

accommodate the routine nature of this task in metabolomics data analysis pipelines. 

2.3 Methods  

2.3.1 Overview of Binner 

 Binner is a standalone, platform-independent 

application for LC-MS metabolomics  feature 

annotation written in Java.171 The input for Binner is a 

table of aligned metabolomics features consistent with 

data generated by metabolomics pre-processing 

programs, where each row represents an individual 

analyte. The table must have columns containing the 

measured m/z, RT, and per-sample feature abundance 

values for at least three samples. A column of 
Figure 2.3 Binner Workflow Overview 
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character identifiers is also required for each feature as well. Additional columns in the input file 

may be included in the results. The main workflow for Binner is illustrated in Figure 2.3. After 

data cleaning and value transformation steps, features are organized into retention time bins, 

isotopologue groups and correlation clusters, before adduct and neutral loss fragment labels are 

assigned based on a user-defined annotation file. The output of Binner is a spreadsheet with 

multiple tabs consisting of summary analysis information, feature groupings, raw and adjusted 

abundance values, and separate sheets with the designated ion types. Each step is described in 

detail here. 

2.3.2 Data Processing 

   Multiple processing steps are undertaken to aid subsequent analysis. First, missing 

feature abundance values must be appropriately handled as they may bias correlation estimates 

between features. As a preliminary step, features with abundance values missing above some 

proportion of samples (by default 30%) are filtered and thus excluded from further processing. 

Remaining missing values are imputed with the median abundance of the pertinent feature. Since 

correlation estimates are susceptible to outliers, these points are detected as values more than 'n' 

standard deviations from the mean (n = 4 by default) and treated similarly to missing values. As 

an optional, but recommended step, intensity values are log-transformed to correct for potential 

heteroscedasticity and obtain symmetric value distributions. Untransformed and transformed 

values are provided as output tabs in the output file, with detected outliers and their replacement 

values highlighted wherever they have been corrected.  

  2.3.3 Retention Time Binning 

 The central workflow step is the grouping of features by chromatographic RTs through a 

binning step. Binning segments the feature list into self-contained units or "bins", which greatly 
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simplifies subsequent clustering computations. Features are first sorted in RT order and a new 

bin is formed whenever the difference in RTs between consecutive analytes exceeds some user-

defined gap parameter (by default 0.03 minutes). The gap parameter value should be chosen to 

exceed the expected difference in RT between features derived from a common metabolite, while 

simultaneously accounting for the density and separation of features. Pairwise Pearson or 

Spearman correlations are calculated between all pairs of features contained within the bins.  

2.3.4 Isotopologue Detection 

 Isotopologue detection is an optional and highly recommended step for datasets where 

isotopes have not been pre-filtered. Since most isotopologue features in LC-MS metabolomics 

feature lists occur due to the presence of 13C isotopes, the detection is performed based on the 

observed behavior of these isotopes. Binner searches for pairs of features within bins whose m/z 

values differ by 1.0033 / z Daltons (i.e.. 1.0033, 0.5016, and 0.3344 for singly, doubly, and triply 

charged compounds, respectively). Such features are considered as potential isotopologues. 

Additional criteria are imposed on these features, such as RT distance (0.1 minutes by default) 

and abundance correlation threshold (default 0.6). In addition, due to the lower abundance of 13C 

relative to 12C, isotopologues must decrease in median intensity with increasing mass, a 

condition met by all low mass compounds. The mass spacing of the detected isotopologues 

allows for the assignment of charge states to features at this stage, without which features are 

assumed to have charge state z = 1. Moreover, isotopologues apart from the parent monoisotopic 

mass feature are grouped together and temporarily removed from processing until the eventual 

output stage. This facilitates correlation clustering by size and complexity of bins. Isotopologues 

not detected at this stage may be detected as part of the downstream annotation process. 

2.3.5 Correlation Clustering  
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  Correlation clustering is a common problem in bioinformatics with numerous 

approaches for grouping together similar objects separately from those that are dissimilar. In this 

workflow, correlation clustering follows retention time binning to determine collections of 

tightly related features arising from a common parent metabolite. A key challenge is to 

determine the optimal number of clusters comprising each bin, accounting for the underlying 

correlation structure of the features. For each bin, Binner performs an average linkage 

hierarchical clustering using the Euclidean distances between pairwise correlation vectors, 

deriving the structure of pairwise dissimilarities between features. Then the hierarchical 

clustering dendrogram is cut at a height that produces the cluster number (k) that maximizes the 

average silhouette coefficient among all bin features. Silhouette coefficients are evaluated as the 

relative difference between intra-cluster and inter-cluster dissimilarities, with higher silhouette 

coefficient values (close to 1) reflecting high inter-cluster to intra-cluster dissimilarity ratios.172  

 An example of this binning and clustering formulation is shown in Figure 2.4. Three 

distinct bins form in the range (RT = 7.31 - 7.61 min) due to gaps between the retention times of 

consecutive ordered features exceeding 0.05 min. From there, Bin B, the largest of the three bins, 

Figure 2.4 Example Bins and Correlation Clusters (A) Three bins displayed from RT = 7.31 to 7.61 

min, separated by 0.05 min bin gaps. (B) Silhouette plot of the optimal cluster number (6) for Bin B. 

A B 
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contains six easily identifiable clusters characterized by highly correlated submatrices located 

along the matrix diagonal. The choice of six clusters maximizes the average silhouette 

coefficient, as illustrated by the silhouette value plot.   

 A few additional heuristics have been implemented to refine the clustering formulation 

described here. In the trivial case of small bins entirely composed of highly correlated, tightly 

eluting feature elements where no further clustering is necessary, a score is computed linking 

together average correlation, retention time range, and the total number of features (n) as  

𝑆𝑐𝑜𝑟𝑒 =  
(𝐶𝑜𝑟𝑟𝑎𝑣𝑔)2

𝑙𝑜𝑔2(𝑛) √𝑟𝑡𝑚𝑎𝑥 −  𝑟𝑡𝑚𝑖𝑛

 

Higher scores imply greater cohesiveness of the bin, implying that it should not be clustered. A 

threshold value of 2 is set by default to prevent clustering of high-scoring bins. In many bins, the 

cluster number chosen by maximizing average silhouette value is often observed to select k = 2, 

leading to an under-clustered solution containing dissimilar elements. To address this, a weighted 

silhouette variant includes a multiplicative term to the silhouette coefficient that imposes a 

penalty to the within-cluster dissimilarity. Finally, as clusters are first determined purely through 

correlations, it is possible to have a wide RT spread among the cluster elements. To counter this, 

correlation clusters with excessive RT spreads are subdivided by a further clustering by pairwise 

RT distances (which proceeds similarly to correlation clustering), or alternatively, a re-binning of 

features occurs using the RT gap parameter. The resulting subclusters serve as the final, most 

refined grouping of metabolomics features prior to the annotation step. 

2.3.6 Annotation Process 

 Binner requires a customized annotation file listing the possible "charge carrier" 

element(s) and neutral gain / loss groups that may be observed. Common charge carriers include 

+H, +Na,+ K, and combinations of these elements in the positive mode, as well as -H, +Cl, or 
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+COOH in the negative mode. Binner annotations may consist of these charge carriers alone 

(e.g. [M+H]+, [M+Na]+, [M-H]-, etc...) or a combination of charge carriers with neutral groups 

like H2O or NaCOOH (e.g. [M+H-H2O]+, [M+Na+NaCOOH]+). Dimers and trimers may also 

be considered in this formulation (e.g. [2M+H]+, [3M+2Na]2+), granting Binner a wide 

annotation search space. Unless isotopic evidence points to the existence of multiply charged (|z| 

> 1) species, features are assumed to be singly charged. Given a specific neutral mass M, total 

multiplicity n, and total charges of the associated charge carriers, z, an annotation is assigned to a 

feature if its m/z value falls within some error of the formula: 

𝑚/𝑧 ≈  
𝑛𝑀 ±  𝑚𝑎𝑠𝑠(𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠)  ±  𝑚𝑎𝑠𝑠(𝑛𝑒𝑢𝑡𝑟𝑎𝑙) 

𝑧
 

The m/z search error parameter is set to 0.002Da by default. Increasing this value increases the 

total number of annotations, but typically at the expense of more frequent misannotations.   

 The central premise of the Binner annotation method is that the in-source formation of 

certain ion types are generally favored over others, leading to higher relative abundances. 

Protonated [M+H]+ and de-protonated [M-H]- forms are common and highly abundant in the 

positive and negative ionization modes, respectively, however it is possible for sodium 

[M+Na]+, chloride [M-Cl]-, or other forms to be the dominant form depending on the metabolite 

properties. It is also possible for protonated and deprotonated ions to be absent entirely, or for 

multiply charged ions to dominate. The idea is therefore to determine the most abundant ion 

form in the spectrum, denoted as the "principal ion", which can then be used to calculate the 

corresponding neutral mass that generates the most annotations within the clustered spectra.  

 In each cluster, Binner finds the feature with the highest median abundance across the 

experimental samples. This feature is iteratively assigned an adduct hypothesis corresponding to 

the most frequent ion types (M+H, M+Na, etc...), which are obtained from the charge carriers for 
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the given feature's charge state.  For each hypothesis, an underlying neutral mass is calculated 

from the m/z value for the feature along with the mass and charge of the hypothesized 

adduct. Binner then uses each neutral mass to search for annotations that account for the reported 

m/z values of other features in the cluster. The hypothesis that optimizes the number of 

putatively annotated features determines the assignment of the principal ion, associated neutral 

mass, and related features annotated with respect to the neutral mass. These steps are repeated 

with remaining unannotated features in the cluster until the process has been attempted at least 

once for every feature. In the final output, features are categorized as principal ions, degenerate 

features, or unannotated features, with degenerates deemed removable for downstream analysis.   

2.3.7 Evaluation Dataset 

 The main dataset used to evaluate Binner is a metabolite profiling study of plasma from 

80 individuals in a population-based study of myocardial infarction in Costa Rican adults. 

Briefly, plasma samples were thawed on ice, deproteinized, and analyzed on an Agilent 1290 LC 

/ 6530 qTOF MS system (Agilent Technologies, Inc., Santa Clara, CA USA) using the Waters 

Acquity HSST3 1.8 uL 2.1 x 100 mm column (Waters Corporation, Milford, MA).  Each sample 

was analyzed twice, once in positive and once in negative ion mode.  For both ion mode runs, 

mobile phase A was 100% water with 0.1% formic acid and mobile phase B was 100% methanol 

with 0.1% formic acid, with a gradient that proceeds as follows: 0-2 min 2% B, 2-20 minutes 2-

75% B (linear), 20-22 min 75-98% B (linear), followed by a 7 minute reequilibration at starting 

conditions. The flow rate was 0.46 mL/min and the column temperature was 40°C.  The injection 

volumes for positive and negative mode were 5 µL and 8 µL, respectively.  Electrospray 

ionization is performed with an Agilent Jetstream ion source, with full-scan mass spectra 

acquired over the m/z range 50-1500 Da. Source parameters were: drying gas temperature 
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350°C, drying gas flow rate 10 L/min, nebulizer pressure 30 psig, sheath gas temp 350°C and 

flow 11 l/min, and capillary voltage 3500V, with internal reference mass correction. 

 Raw spectral files for all samples were converted to .mzXML format using the 

MSConvert tool of ProteoWizard 3.0. Positive and negative mode samples were processed using 

the XCMS R package Version 3.0.0. Peak picking was performed with the CentWave method, 

with peakwidth from 10-40s, ppm = 30, mzdiff = 0.01 and snthresh = 6. The obiwarp method 

was used to perform RT correction, with profStep = 0.5. Features were grouped across samples 

with the default density method, with bw = 5, mzwid = 0.033, and minfrac = 0.5. Missing 

spectral information was imputed with the fillPeaks() method. PCA revealed one sample to be an 

outlier and it was excluded from further processing, leaving 79 samples. Features were arranged 

in RT order and assigned generic compound labels (C1, C2, ...).  

 The resulting XCMS feature table was processed with Binner. Putative principal ions and 

other non-annotated ions were searched against the Michigan Regional Comprehensive 

Metabolomics Resource Core’s (MRC2) in house RT-MS/MS library using 0.005 Da mass 

accuracy, 0.01 Da MS/MS fragment mass accuracy and 0.1 min RT as matching 

criteria.  MS/MS data were processed using the Find by Targeted MS/MS algorithm (Agilent) 

and library search (default weighting) with a score of at least 50 to be considered a match.  

Metabolites not in the MRC2 library were searched against the NIST17 MS/MS library and 

required a reverse dot product score of 700 to be considered a match.   

2.4 Results 

2.4.1 Implementation and Output 

 Binner is implemented as a user-friendly Graphical User Interface containing five 

separate tabs ("Input", "Output Options", "Data Cleaning", "Feature Grouping", and 
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"Annotation") for loading data and adjusting parameters for the analysis. The output is an excel 

spreadsheet providing summary analysis information and multiple tabs containing organized and 

formatted feature summaries that facilitate further data exploration. Figure 2.5 depicts an 

example output for two annotated clusters of closely eluting features. The first three columns 

contain the user-provided feature name, m/z and RT for every feature as read from the input file. 

The remaining columns show Binner-generated information, such as the retention time bin and 

correlation cluster to which the features belong, and pairwise abundance correlation coefficient 

matrices that are useful for validating feature relationships.  The two clusters each contain seven 

features. In the first cluster, Binner annotated C908 and C909 as [M+Na] and [M+H], 

respectively, which have a correlation coefficient of 0.45. It is not uncommon for commonly 

occurring adduct pairs to have relatively low correlations that could easily be missed by a 

method that imposes a rigid correlation threshold. Binner was able to annotate these features as 

likely representing a single metabolite based on close RTs and the mass relationship with a 

common neutral mass (345.0022).  

 By contrast, the second cluster contains highly correlated features. C930 and C934 are 

identified as isotopologues of C931 and C935, respectively. The subsequent annotation process 

identified C931 and C925 as the [M+H] and [M+Na] adducts, respectively, and C935 as a loss of 

NH3 fragment. These five features and isotopes belong to the feature group for kynurenine, 

Figure 2.5 Example Annotated Binner Clusters 
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which was identified by accurate mass, RT and MS/MS compared against an authentic standard 

in our compound library. Two remaining unannotated features, C926 and C929, are highly 

correlated with the rest of the features within the cluster and elute at an identical RT. Referring to 

an in-house MS/MS library shows that these features matched fragment ions observed in low-

energy CID fragmentation of kynurenine. This demonstrates the utility of correlation matrices in 

manually uncovering feature relationships that are not pre-specified or easily described, 

facilitating the discovery of additional degenerate features.  

2.4.2 Mass Differences 

 In addition to annotations and correlation heatmaps, Binner generates pairwise mass 

difference matrices that can provide guidance for further discovery of feature relationships and 

new annotations within a cluster. An example is depicted in Figure 2.6 of a cluster from the 

negative mode data containing LysoPC 16:0. The matrix of observed mass differences in panel C 

shows multiple instances of 67.987 and 57.958, which equate to the masses of NaCOOH and 

NaCl, respectively. There are linear combinations of these values, such as 135.974 (= 2 x 

NaCOOH), 193.933 (= 3 x NaCOOH), and 125.945 (= NaCOOH + NaCl), which when 

Figure 2.6 Complex Annotations of LysoPC 16:0 (A) Feature annotations of clustered ions derived from 

metabolite "M423" consisting of COOH-, Cl-, and Na+ combinations. (B) MS/MS performed on m/z = 812.266, 

indicating spacings of 67.98 (NaCOOH), validating annotations. (C) Associated mass difference matrix. 
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considered with respect to the neutral mass of the LPC 16:0 principal ion enables the annotation 

of all features as complex adducts consisting of multiple Na, COOH, and Cl additions. 

Additional MS/MS experimental evidence was obtained for this group of features, with multiple 

fragments in the resulting spectra that corroborate the existence of sodium and formate cluster 

ions, as shown in panel B of Figure 2.6. 

 Binner also builds a histogram highlighting the most frequent mass differences observed 

throughout the dataset to enable the discovery of additional neutral mass gains and losses that 

may not have been considered or included in the annotation file. This concept is illustrated in 

Figure 2.7 below for a cluster containing the Leucine metabolite detected in the positive 

ionization mode. Panel A shows the tabulated mass differences between features, with common 

mass differences highlighted in different colors, and Panel B shows part of the mass difference 

distribution computed for the full dataset. Column 3 in Panel A shows a mass difference between 

Figure 2.7 Deriving Complex Annotations from Mass Differences (A) matrix showing common 

pairwise m/z differences that can explain a cluster containing Leucine in HILIC-POS dataset. (B) 

Mass difference distribution output showing common pairwise differences (with known and unknown 

annotation explanations). (C) Flow chart showing the complex chemical additions of Leucine 
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feature 176.066 and Leucine M+H (132.1021) of 43.9639 that corresponds to +2Na-2H, and 

Column 4 shows a mass difference of 67.9877 between features 244.0537 and 176.066 that can 

be annotated as +NaCOOH. It can therefore be concluded that the frequently observed mass 

difference 111.952 shown in Panel B results from the combination of two masses: 43.9636 and 

67.987. Based on these findings, the mass 111.952 was added to the annotation library as +2Na-

2H+NaCOOH. In this way, Binner allows users to explicitly define series of combinations of 

smaller neutral gain/loss groups (complex adducts) that are observed in the data. 

2.5 Evaluation 

2.5.1 Criteria and Procedure  

 To evaluate Binner, the accuracy and thoroughness of its main annotation workflow were 

compared to those of three feature annotation programs: CAMERA158, MS-FLO153, and 

xMSannotator163. These tools were selected as they have a similar scope of operations to Binner 

in that they accept aligned spectral features as input and generate annotations as part of their 

automated processes. For this evaluation, 75 identified known compounds were detected in the 

positive ionization mode within the dataset described in Section 2.3.7. These 75 compounds are 

well distributed throughout the chromatogram, range in relative abundance in human plasma 

analyzed by RPLC-QTOF, and their principal ion annotations have been verified by accurate 

mass, retention time, and MS/MS matches to reference spectra. Each tool was equipped with a 

comparable, non-exhaustive set of adducts and neutral losses to search for. In addition, common 

parameter settings were used for each program, wherever applicable: annotation RT tolerances 

are set to 0.05 min, mass tolerances set to 0.005 Da (10 ppm for xMSannotator), and all 

correlation thresholds are set to 0.7. 
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 The performance of each program was evaluated according to four different criteria. The 

first is the ability to correctly annotate the principal ions for the 75 known compounds, where 

principal ions are defined as the most abundant representative feature of each metabolite. The 

second is the total number of adducts, neutral losses, and multimers annotated by each program 

for the 75 compounds. For this, the union of these ion types grouped together with the identified 

principal ion across all four tools was used as the benchmark, with the restriction that only 

annotations explicitly labeled in annotation rule files may count towards this score. The third is 

the number of correctly assigned isotopologues, which was similarly benchmarked by the union 

of isotopologues found by all programs with respect to the 75 compounds and their multiple ion 

types. Isotopologues must be labeled exactly (i.e. M+3 isotopes labeled as M+1 do not count), 

have plausible relative abundances, and second (M+2) isotopes must have a mass difference 

between 1.995 to 2.011 to count for this analysis. Finally, the programs were evaluated in terms 

of how well they could group together features arising from a common metabolite within the 

same cluster. This criterion counts the total number of cluster groups encompassing the set of 

annotated adducts, in-source fragments, and multimers, penalizing instances in which these ion 

forms are placed into separate feature clusters. The features need not be annotated correctly to 

count for this final criterion. 

2.5.2 Evaluation Results 

 The results of the evaluation are contained in Table 2.1 and Figure 2.8 below. Binner 

correctly annotated the principal ions for 64 out of the 75 selected compounds, compared to 51, 

49, and 47 PIs for xMSannotator, MS-FLO, and CAMERA respectively. Only 32 principal ions 

were correctly annotated by all four annotation programs. Binner also outperformed the other 

programs in terms of accurate adduct/NL/multimer annotations, with 225 annotated consistently 
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with the correct principal ions compared to 184, 152, and 155 for CAMERA, MS-FLO, and 

xMSannotator, respectively. CAMERA and Binner are the closest in terms of their clustering 

performance, with a nearly identical number of total clusters containing the union of all ion types 

considered for this evaluation. One of the major advantages of Binner is that it takes relative 

abundances into consideration, particularly as most in source fragments and adducts tend to form 

at lower abundances in electrospray ionization in comparison to [M+H]+ and [M+Na]+ ions. On 

the other hand, CAMERA utilizes user-specified weights for each ion type and chooses the 

annotation set that maximizes the sum of weights without consideration of relative abundances, 

leading to the mis-annotation of many principal ion-fragment pairs.  

 The fixed mass difference approach used by MS-FLO fails to annotate any multimers or 

multiply charged adducts, which make up a large proportion of all potential annotations. While 

the number of annotations identified by MS-FLO could have been increased by explicitly 

defining certain fragment/parent ion pairs (e.g. M+H-H2O/M+H, mass diff = ∼18.01), some 

neutral groups (such as NH3) can be either added or lost (e.g. M+H/M+NH3 and M+H/M+NH4) 

and these cannot be defined simultaneously within MS-FLO. The formula-based matching 

strategy employed by xMSannotator also had many limitations. The program assigns incorrect 

  Binner CAMERA MS-FLO xMSannotator 

No. of correctly 

annotated PIs 

64 47 49 51 

Total no. of 

adduct/NL /multimer 

annotations** 

225 184 152 155 

Total no. of isotope 
annotations** 

201 220 157 86 

Total no. of feature 

groups 

87 86 N/A* 133 

 *MS-FLO not included in this comparison because it does not explicitly define feature groups.  
**Isotopes and adducts only counted if consistent with the correct PI interpretation 

Table 2.1.  Summary of Annotation Evaluation Results 

Figure 2.8 Annotation Results Venn Diagrams Overlap of annotations generated by different programs. (A) Principal Ion 

annotations; (B) Adduct and neutral loss fragment annotations 
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formulas to many features, mostly due to incidental mass matches. Further, although isotopes 

(including non-carbon isotopes) can be detected and used to enhance confidence in the assigned 

formulas, isotope detection in xMSannotator is largely limited to M+H as the charge carrier, 

which results in fewer annotations. One unique feature of xMSannotator is the use of database 

searching coupled with pathway information, which might provide an advantage in situations 

where feature annotations cannot be identified solely based on pairwise correlation and mass 

relationships. xMSannotator was the only program that could annotate metabolites with only one 

feature, which account for most principal ion annotations that Binner and other programs missed. 

Despite this advantage, there were much fewer confident assignments compared to the number of 

low confidence assignments. 

 Overall, this evaluation demonstrates that Binner has comparable clustering and 

isotopologue annotation performance with existing programs, and superior principal ion and 

adduct/fragment/ multimer annotation performance. 

2.6 Limitations and Potential Improvements 

 There are several limitations to the Binner annotation workflow that are discussed here, 

along with suggestions for potential improvements to overcome these issues. 

2.6.1 Large Bins 

  One of the most import problems with the current Binner formulation is dealing with 

feature-dense regions of the chromatogram that produce excessively large bins. In human plasma 

applications, it is common to see thousands of features associated with non-polar lipids elute 

very late (for RPLC-MS) or very early (HILIC-MS). In LC-MS metabolomics studies with 

inadequate separation between features, Binner typically amasses a single collection that 

encompasses 90-100% of the features, even with exceedingly small binning gap parameter 
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values. This has several negative implications for the analysis. The first is the excessive memory 

and computational time required to process large bins, with clustering analysis and output file 

writing serving as the principal bottlenecks. Depending on the computing environment, the issue 

may render Binner or the results files it produces unusable. Large bins can stretch for multiple 

minutes in RT, harboring analytes that elute much further apart than the plausible distance 

between ions derived from a common parent metabolite. Consequently, large clusters with wide 

RT spans form, despite post-processing steps designed to generate manageable sub-clusters. The 

visualizations of pairwise matrices are considerably less useful given their overwhelming size. 

Finally, the resulting complexity of the clustering problem in larger bins results in suboptimal 

groupings that erroneously separate features derived from a common parent or group together 

highly correlated features from non-identical analytes, leading to many mis-annotations. 

 In the current implementation, Binner processing halts whenever it encounters a bin 

containing more than 4000 features. With the growing ion detection capabilities of mass 

spectrometers, this failsafe proves insufficient to accommodate most metabolite profiling 

experiments. A solution to reduce bins to a manageable size is necessary for the continued utility 

of this tool. One potential solution is to set a maximum size value, K, such that whenever a bin 

exceeds this maximum size, the program excises the K consecutive features within the bin that 

harbors the smallest RT span. This process would then be repeated with remaining bins until 

every bin has less than or equal to K elements. The principal drawback of a bin size reduction 

approach is the potential to arbitrarily split related ion species into separate bins. Nonetheless, it 

is useful to explore how this proposed approach could alleviate the problems associated with 

excessive bin sizes and its effect on annotation accuracy. 

2.6.2 Isotopologue Annotation 
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 Isotopologue annotation is pursued separately from other ion species due to the ease with 

which most of these can be detected and to reduce the complexity of the clustering problem. 

However, while Binner accounts for the 1.003/z Da mass spacings of 13C isotopologues, this 

workflow fails to annotate 34S and 37Cl isotopes. One reason is that the roughly 1.997 Da 

spacings fall outside the specified m/z window ([M+2] for 13C have an expected mass spacing of 

2.006/z) and, in many cases, the lack of an expected [M+1] in between the [M] & [M+2] 

isotopologue. In some cases, the assumption that higher mass isotopologue are less abundant 

may be violated, such as in compounds containing multiple chlorides (e.g. salt complexes). This 

partly accounts for the shortcomings of isotopologue detection performance compared to 

CAMERA in the evaluation. While it is possible to include a neutral mass difference of 1.997 in 

the annotation file, this will only work for suspected charge carriers (e.g. [M+Cl+isotope(+2)]-) 

and not with charge carrier/ neutral group combinations. It is therefore necessary to include an 

additional search for the mass difference of 1.997/z after accounting for 13C isotopes in the 

isotopologue detection step, along with binomial distribution checks to facilitate annotation in 

cases for which the assumption of decreasing abundance is violated.  

 2.6.3 Need for Annotation Restrictions 

 Binner generates a list of potential annotations by combining one charge carrier with one 

neutral gain or loss mass, as specified in the annotation file. Dimer and trimer versions of each 

annotation is also included in this list. If, for example, the annotation file contains two charge 

carriers H & Na, and one neutral loss, H2O, the list of annotations consists of {[M+H], [2M+H], 

[3M+H], [M+Na], [2M+Na], [3M+Na], [M+H-H2O], [2M+H-H2O], [3M+H-H2O], [M+Na-

H2O], [2M+Na-H2O], and [3M+Na-H2O]}. With more chemical groups in the annotation file, 

the search space becomes exceedingly large with a high chance of making spurious annotations 
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based on incidental mass matches. Complex multimer and neutral gain/ loss combinations are not 

expected to be as highly prevalent, but Binner arbitrarily searches for these with no possibility of 

restricting this behavior beyond removing chemical groups from the annotation file entirely, 

losing many desirable combinations. Under the default settings, all annotations - including less 

common and complex types- are weighted equally in the determination of principal ion adduct 

types, potentially resulting in mis-annotations. While the current annotation file format has the 

advantage of forming combinations without explicitly listing all possible adduct and fragment 

types, the annotation process could be greatly improved with greater customization control. The 

new alternative file format would lay each combination on separate lines with columns 

indicating the total mass, charge, and maximum multiplicity allowed. Thus, combinations that 

are likely to be spurious can be removed without the complete removal of chemical groups. 

Additional restrictions could be applied to condition certain annotations on the presence of a 

prerequisite ion type (e.g. [3M+Na+NaCOOH]+ requires [3M+Na]+) or to certain RT ranges. 

2.6.4 Charge States 

 Given the relatively unrestricted nature of adduct & fragment annotation, it is appropriate 

that program behavior is restricted to annotations with charge of z = 1, unless isotopic evidence 

demonstrates the existence of higher order charge states. However, many datasets have 

isotopologues removed prior to Binner analysis, removing the possibility of correctly annotating 

features with charge states greater than 1. In some cases, the charge state is pre-calculated and is 

available as a column in the input file, though this information cannot be accessed or used by 

Binner in its current form. An optional input column field for charge could overcome this issue, 

with associated annotations conforming to these charge states. In addition, the highest charge 

state currently searched by Binner is hard coded to 3, though higher charge states (+4, +5, ...) 
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may be observed. A separate maximum charge parameter could facilitate the detection of these 

additional isotopologues. 

 2.6.5 Semi-Supervised Annotation 

 Like most programs, the annotation process within Binner is largely unsupervised, with 

the only prior information introduced into this process coming from the file of likely chemical 

additions or losses. While this generalizes the method's applications and minimizes bias, user 

knowledge of known compounds and their respective ion types represents an opportunity for 

further refinement, as was shown previously.162 Introducing limited supervision to the algorithm 

may hold many benefits to improve the annotation method. In many instances, incorrect 

annotations of known identified features can be averted through prioritizing pre-labeled 

annotations and using these to inform co-clustered features. Prior knowledge may be used to 

inform which annotations may be more likely or unlikely for certain metabolites or metabolite 

classes. These strategies may prove beneficial in a variety of cases, such as metabolites which 

tend to form single ions that cannot be accurately labeled through mass relationships or the 

labeling of lower-order fragment ions whose masses match up to peaks in low collision energy 

MS/MS spectra. The latter is exemplified by the two unlabeled Kynurenine fragment features in 

the second cluster previously shown in Figure 2.5. 

2.7 Conclusion 

 Among the thousands of consistently detected signals in high throughput LC-MS 

metabolomics assays, a significant proportion correspond to redundant ions, artifacts, or 

chemical entities of non-sample origin. Their presence in data has many undesirable 

consequences, particularly if they are not accurately recognized. Binner can facilitate the 

determination of experiment-specific chemical additions and losses, whose formation may be 
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dependent on experimental factors, such as instruments, sample matrices, solvents, and mobile 

phase additives. Its automated workflow performs on par with or superior to existing methods, as 

evaluated in a complex human plasma metabolomics dataset. As acquisition of MS/MS data is 

widely considered an essential step in unknown compound identification for untargeted 

studies, using Binner to reduce data complexity can lead to a more thorough understanding of 

unmatched MS/MS spectra typically produced in comprehensive MS/MS analyses.  
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Chapter 3 

 

metabCombiner: Alignment of Disparately Acquired 

Metabolomics Datasets 
 

3.1 Introduction 
 

 Alignment of mass spectral peaks, characterized as commonly detected m/z and RT 

features, across a set of experimental samples is a crucial step in LC-MS data processing 

pipelines. The goal is to maximize the discovery of shared constituent analytes and assemble 

their respective abundance measurements into a unified table of spectral features to be used for 

further downstream analyses. Accurate and comprehensive alignment approaches must properly 

account for shifts in measured m/z and especially RTs due to changes in chromatographic 

conditions and sample matrices between runs. Depending on the application, analytical 

variations may be slight (within experimental batches), moderate (between batches), or 

significant (disparate experimental conditions). Each case is carefully examined here.   

3.1.1 Conventional LC-MS Alignment 

 Most LC-MS metabolomics alignments are performed between samples acquired under 

replicated conditions, typically within one experimental batch. In single batch analyses, precise 

m/z and RT values may exhibit slight variation slightly from sample to sample. Typical methods 

for conventional LC-MS alignment consist of piecewise or spline-based warping functions 

modeling retention time shifts as a systematic function of chromatographic region; following 

correction, these methods perform a direct matching of two-dimensional peaks between raw 

chromatograms to obtain the resulting feature list. Numerous variations on this formula have 
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been implemented, including methods that use a reference sample as a basis for constructing or 

warp functions (50, 167),60,173 while others use anchor points that are either randomly 

determined,46 present in all samples,45,174 or chosen by MS/MS matching.175,176 Alignment steps 

in popular open-source metabolomics preprocessing software, such as XCMS, MZMine2, and 

OpenMS177 typically use extracted ion chromatograms (EIC) constructed in chromatogram 

deconvolution steps as the alignment dimension, whereas many methods and standalone tools 

operate on the total ion chromatogram (TIC), reduced isotopic envelopes (RIE), or related peak 

(e.g. adduct) features.59  

3.1.2 Inter-Batch LC-MS Alignment 
 

 Large scale metabolomics studies contain more samples than can be run in a single batch, 

requiring that they be divided into multiple analytical batches, which may be acquired over long 

time periods. Systematic and random variation in m/z and RT measurements are frequently 

observed between samples from different batches, posing significant challenges for data 

processing pipelines. A growing list of studies have highlighted shortcomings of existing 

conventional LC-MS alignment approaches in performing inter-batch alignment tasks. This has 

motivated the development of new tools for correcting mis-alignments due to errors in existing 

pre-processing methods or implementing novel alignment methods accounting for the batch 

membership of each sample. One example is the BatchCorr R package, which applies a 

misalignment correction to data pre-processed with XCMS.178 BatchCorr requires features to be 

present in at least 80% of quality control samples for multiple batches, and subsequently features 

within user-defined m/z and RT windows between clusters are matched using a recursive sub-

clustering algorithm. Another notable package is neighbor-wise compound-specific Graphical 

Time Warping (ncGTW), an XCMS plugin that devises RT warping functions in m/z slices as a 

function of sample run order, with the premise that adjacent samples are more alike than distant 
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samples.179 Finally, the apLCMS 2.0 pre-processing package handles multiple sample batch 

inputs through a two-step process in which retention time drifts are first corrected within-

batches, then between-batches with nonlinear kernel smoothing functions.180 Subsequently, weak 

signals missed in peak picking stages are recovered based on the retention time corrections. With 

the growing sizes of experimental studies, the development of these methods is increasingly 

necessary to overcome chromatographic drift between distally acquired samples. 

3.1.3 Disparate LC-MS Alignment 
 

 By contrast, fewer methods have previously been designed for aligning disparate LC-MS 

metabolite profiling data, defined as studies in which samples are analyzed under different 

instruments or experimental protocols, often by different laboratories, or with significant 

intervals between data acquisitions. Under these conditions, RTs for identical analytes may differ 

by multiple minutes between samples, far beyond the thresholds of conventional pre-processing 

tools and multi-batch correction upgrades. While some approaches to retention projection have 

been described previously (see Section 1.4.3), few have been incorporated into alignment 

algorithms due to the difficulty of matching between unknown features. One method was 

implemented in DIMEDR (Disparate Metabolomics Data Reassembler), which links multiple 

experimental datasets to create a unified matrix, employing a universal retention correction based 

on commonly detected "endogenous anchors".181 Another method is PAIR-UP MS, which 

effectively bypasses RT comparisons by leveraging the correlation structure of biologically 

similar specimens to compare and match analytes of similar m/z in input datasets.182 This method 

requires sufficient numbers of shared known identified metabolites and large sample sizes to 

work optimally. Finally, Mitra el al. (2014) reported a method for uncovering elution order 

distortions in LC-MS proteomics data generated by different laboratories using LOESS to model 

RTs of peaks with similar m/z and ranked abundances, followed by peak matching of peptides.183 
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3.1.4 Motivation  

 This work is primarily focused on computational methods for the third, most intricate 

case of alignment between non-identical LC-MS metabolomics assays. A versatile method that 

requires no prior knowledge of known compounds, no sample size minimums, pre-processing 

software independence and has the capability to bridge substantial RT shifts between samples 

collected from different assays would provide a powerful new approach for disparate LC-MS 

data analysis. This would provide three major benefits to computational metabolomics research. 

First, disparate LC-MS alignment facilitates the mapping of information between non-identically 

acquired metabolomics data, allowing for validation of annotated metabolites, determining 

intersecting entities lacking structural characterization, and providing putative identification 

hypotheses or other chemical characteristics (such as adduct or formula labels) whenever this is 

determined for at least one of the input datasets. Second, it enables reproducibility calculations, 

such as intra-class correlation coefficients, for both known and unknown metabolites, a common 

pursuit in multi-laboratory and multi-instrument studies. Third, aligning feature data generates 

merged sets of intersecting experimental measurements, with the expanded sample sizes 

providing increased statistical power to detect significant results that may otherwise be missed 

from the constituent datasets alone. Thus, alignment is the crucial first step to analysis of 

disparately acquired metabolomics datasets and its benefits extend to metabolomics quantitation, 

annotation, and interpretation, the three major goals of computational metabolomics. 

3.2 Methods 

3.2.1 metabCombiner Overview  

 metabCombiner is a software package written in the R statistical programming language. 

The methods and applications of this tool have been described previously.184 In its simplest form, 
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metabCombiner aligns a pair of peak-picked and conventionally aligned feature tables generated 

by common LC-MS pre-processing programs, where each row represents a unique analyte. The 

datasets must be acquired in the same ionization mode, with no prior scaling or normalization 

that may distort their ranked abundance order. The datasets used as inputs must be acquired from 

biologically similar specimens with a strong expected overlap in their metabolic composition. 

Finally, chromatographic protocols used to acquire datasets must be similar enough that the 

elution order of compounds is comparable, if not identical. Post-processing steps for removal of 

features of non-sample origin (background ions, noise, processing artifacts) and isotopologues 

are desirable, but not required. Users may include feature identifiers, as well as adduct, fragment 

or formula labels for validation and parameter optimization purposes. Other dataset columns may 

be included as “extra” non-analyzed columns in the output table. 

3.2.2 metabCombiner Workflow  

 The basic workflow for metabCombiner is depicted in Figure 3.1. For a pair of input 

datasets, one is designated as the projection (X) dataset, whose RTs will be mapped to the 

chromatogram of its complement, denoted as the reference (Y) dataset. In practice, the dataset 

with the shorter retention time range is usually designated as the reference since smaller absolute 

prediction errors are observed when mapping from a chromatogram with highly resolved peaks 

to one a less-resolved one than vice versa. The metabCombiner method is constructed around 

key observations for shared compounds in datasets that conform to the previously listed 

assumptions. The first is that m/z deviations for identical compounds are generally small, rarely  
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exceeding 5-10 mDa even if measured by 

different high-resolution mass analyzers, as 

long as proper instrument calibration is 

maintained throughout the analyses. The 

second is that while raw spectral abundances 

are generally not comparable between 

experiments, relative abundance (Q)- 

calculated as ranked median or mean intensity 

quantile values between 0 & 1 – serve as an 

additional dimension for comparison besides m/z & rt. Finally, a number of highly abundant 

common endogenous metabolites (e.g. creatinine and L-Carnitine in urine, saturated lipids and 

amino acids in plasma, etc...) are expected to be present in both datasets, due to the biological 

sample similarity requirement. These abundant compounds can be used to anchor a non-linear 

mapping between RTs. Each step of the workflow is described in detail in the following sections. 

3.2.3 Package Objects and Terminology 

 There are two major object classes formulated in this package: metabData and 

metabCombiner. metabData objects are single dataset representation classes, containing a 

specially formatted representation of the data, as well as the names of analyzed samples and 

'extra' columns, and feature statistics. metabCombiner objects are multi-dataset representation 

classes that serve as the main framework for executing the package workflow steps. 

metabCombiner classes contain a combinedTable, a data frame containing the set of possible 

feature pair alignments (FPAs), their associated per-sample abundances, and package-generated 

alignment information; featdata, a data frame closely linked to the combinedTable containing all 

Figure 3.1 Basic metabCombiner Workflow 
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feature meta-data with special utility for alignment tasks involving more than two datasets; a 

datasets field storing identifiers of constituent datasets that are used to organize the meta-data, 

sample & extra column names; samples and extra lists merging the respective lists from input 

datasets (each with an associated unique dataset identifier); anchors and model fields for storing 

the results of retention time projection steps; xy, storing the character identifiers of the X and Y 

datasets, respectively; and stats, storing various object statistics.  

3.2.4 Data Processing 

 Input feature tables are initially processed and formatted as separate metabData objects. 

First, the package checks for all required (m/z, RT, sample abundances) and optional (identifiers, 

adduct labels, and 'extra') feature meta-data. Subsequently, multiple filters are applied to reduce 

input feature lists. A RT range filter can limit the analysis to features between a start and end RT, 

eliminating the head and/or tail of the chromatogram which are often sparse and contain mostly 

background ions. Eliminating these chromatographic regions improves the quality of the RT 

fitting steps, at the expense of some features that cannot be accurately matched. The second filter 

eliminates features that are missing in more than a certain percentage (default: 50%) of analyzed 

samples, since relative abundance is difficult to estimate for overly missing features. Finally, 

pairs of features within specified m/z & RT tolerance values are discarded as duplicates, with 

one copy retained. Ranked relative abundance quantile (Q) values are then calculated from the 

mean or median abundances of the remaining features. 

3.2.5 Feature Grouping by m/z   

 All features from a pair of input objects are pooled, sorted and binned in the m/z 

dimension. Distinct feature groups form whenever the difference between consecutive m/z 

values is less than a user-specified binGap argument (by default 5 mDa). Each group initially 
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contains m features from dataset X & n features from dataset Y (m > 0 & n > 0), with m * n total 

FPAs. Direct feature matching occurs exclusively within these groups and no features from 

distinct groups may be aligned. The metabCombiner object and its associated combinedTable is 

constructed in this step, assembling all FPAs arranged by m/z groups in increasing order and 

datasets given identifiers to facilitate organization of information. Subsequent steps assess which 

FPAs correspond to matching metabolite entities. 

3.2.6 Feature Pair Anchor Selection 

 A set of ordered pair features is required to construct map between dataset RTs. 

Confidently identified compounds shared between datasets would be useful for this purpose, 

however sufficient chromatographic coverage of known metabolites cannot be assumed in 

general. Therefore, the ordered pairs are selected among all possible FPAs using the process 

illustrated in Figure 3.2A. First, the most abundant feature (with the largest Q value) from the X 

dataset is selected and denoted as x1. The most abundant Y dataset feature in the same m/z group 

containing x1 is selected as the corresponding y-ordinate, y1. Together, the RTs of x1 & y1 serve 

as the first anchor. All features within a small RT window (0.03 minutes by default) of x1 and y1 

in their respective datasets are excluded from consideration as potential anchors. This selection 

approach is iterated for the remaining features, until all feature pairs have been either included or 

excluded as anchors, providing an initial list of ordered pairs (x1, y1), (x2, y2), ..., (xn,yn) which 

we denote as Set A). This process is repeated, this time choosing the most abundant features of 

dataset Y and their counterparts in dataset X, deriving a second anchor list, Set B. The final 

anchor set is obtained from the intersection of sets A & B and is expected to provide a rough 

outline of the nonlinear smooth curve between two sets of chromatographic retention times 

through which a spline may be fit. This largely unsupervised process may select a few 
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mismatching compounds that manifest as outliers from the outlined curve. Constraints can be 

placed on m/z, Q, and RT quantile differences of anchoring X & Y features to increase the 

robustness of anchor selection. Users may also incorporate features with shared identities as 

anchors, which the program selects first as ordered pairs before performing the unsupervised 

process. Incorporating prior knowledge improves and refines the RT mapping steps.   

3.2.7 Spline-Based RT Mapping  

 Basis splines, implemented in the mgcv R package, is the main method for RT mapping 

in this workflow.185,186 Basis splines are a type of generalized additive model (GAM), where a 

smooth curve is computed based on the sum of low-order polynomial basis functions joined at k 

control points. k determines the flexibility of the smooth curve and must be optimized from the 

underlying data. The RT mapping process is illustrated in Figure 3.2B. First, multiple GAMs 

with different values of k (e.g. 5, 7, 10, ...). are fit to the ordered pairs computed in the anchor 

selection step, modeling Y-ordinates as a function of the X-ordinates, i.e.  

𝒓𝒕𝒚 ~ 𝒇(𝒓𝒕𝒙) + 𝝐 

Figure 3.2 metabCombiner RT mapping procedure In (A), RT ordered pairs are selected from shared 

abundant (or identified) features, generating two lists that are subsequently intersected to obtain a final set 

of anchors. Features within a close retention time window of anchors are excluded. In (B), multiple GAM 
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In each individual model, the function calculates the absolute value of the fitted vs observed 

residual for each ordered pair (rtx, rty). Anchors with consistently high residuals, defined by 

default as twice the mean absolute model error in over half of the model fits (or alternatively 

twice the interquartile range plus the third quartile) are excluded as outliers. This is repeated for 

a specified number of iterations, removing anchors that deviate significantly from the outlined 

curve. Anchors selected by matching identities are a key exception as they are never filtered, 

even if high errors are observed. With the remaining points, the optimal k value is selected from 

among the provided options using ten-fold cross validation, minimizing mean absolute deviation. 

The final model is computed with this k value, which then maps RTs between datasets.  

3.2.8 Feature Pair Similarity Scoring  

 Each feature may have one or multiple candidate matches in its counterpart dataset. To 

determine the most plausible FPAs, we assign to all pairs of grouped features Fx & Fy a similarity 

score between 0 and 1 according to the expression  

𝑺(𝑭𝒙, 𝑭𝒚) = 𝐞𝐱𝐩(−𝑨| 𝒎𝒛𝒚 − 𝒎𝒛𝒙| − 𝑩 
|𝒓𝒕𝒚 − 𝒇(𝒓𝒕𝒙)|

𝒓𝒂𝒏𝒈𝒆(𝒓𝒕𝒚)
− 𝑪 |𝑸𝒚 − 𝑸𝒙|) 

where mzx, rtx, & Qx are the respective m/z, RT, and Q values of feature Fx; mzy, rty, & Qy are the 

respective m/z, RT, and Q values of feature Fy ; f denotes the computed RT mapping function, 

with prediction errors normalized by the range of Y dataset RT values. A, B, C are positive 

weight parameters penalizing differences in feature m/z, rt, and Q, respectively. The choice of 

weight values should account for instrument mass accuracy, model fit, chromatographic range, 

and sample similarity. The most effective range of values used in testing for A, B, C are 50 - 120, 

5 - 20, & 0 - 1, respectively. If the datasets contain a sufficiently representative set of shared 

identified compounds, the package method evaluateParams() finds the set of A, B, C weight 

values that optimize an objective function maximizing the positive difference between scores of 
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FPAs of true known matches from their respective misaligned pairings. A similarity score of 1 

implies perfect concordance of m/z, RT prediction, and relative abundance of a pair of 

complementary features from the input datasets, implying a likely aligned compound match, 

whereas scores closer to 0 may be disregarded as misaligned compound pairs. Each feature’s 

potential matches from the complementary dataset are ranked in reverse score order, with best 

matches (rankX = 1 & rankY = 1) displayed first.  

3.2.9 Combined Table Reduction  

 An automated method reduces the combinedTable report by eliminating rows 

corresponding to misaligned pairs, as indicated by the similarity scores and ranked similarities 

computed from the previous step. Ideally, every feature should be aligned with at most one 

feature from the counterpart dataset, though in some cases multiple matches may need to be 

considered. The labelRows() package method facilitates this process by first placing thresholds 

on score, pairwise ranking, and retention time error, then flagging lower-ranked FPAs for review 

if the delta scores relative to the top-scoring FPA are below a user-defined threshold. Features 

failing to meet any of these thresholds are designated by the program as removable rows. 

labelRows() is useful for facilitating user inspection of all alignment results between a pair of 

datasets and visualizing all possibilities alongside the package row designations. The alternative 

reduceTable() method takes this approach further by automatically reducing the list of FPAs to 

contain only one-to-one compound matches. Conflicting FPAs are resolved by selection of rows 

lacking shared features (and subject to retention time order constraints) with the maximum sum 

of scores. This method is used more often in routine applications of metabCombiner.  

3.2.10 Recovering Non-matched Features  
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 By default, metabCombiner generates the intersection of features jointly detected 

between non-identically acquired metabolomics datasets. The new feature count of this 

intersected table is smaller than the inputs supplied to the program. There are three steps in the 

workflow in which features are removed and not included in the final combinedTable: 1) the 

filtering steps during the pre-processing of input feature lists in metabData construction; 2) 

during m/z grouping, where many features can be excluded due to the lack of signals with close 

m/z values in the complementary dataset, and 3) In the table reduction stage, where automated 

and/or manual removal of FPAs may leave features with no compound matches. In many 

applications, it is desirable to account for the union of input features, including those that are not 

part of the intersection. The updateTables() package method takes the metabCombiner object 

result of the previous steps and the original input X dataset and Y dataset objects used for its 

initial instruction as input and searches for features that are not present in the combinedTable. 

Features present in the X dataset but not in the program results are appended to the table as 

separate rows containing their respective m/z, RT, Q, id, adduct, sample abundance and extra 

column values, while their respective Y columns are filled in with missing values. A similar 

process is performed for missing Y dataset features, with missing values in X columns. This 

process accounts for the second and third criteria listed above since these features are part of 

package objects, whereas features filtered in the early analysis stages are eliminated altogether. 

3.3 Methods Extensions: Multiple Disparate LC-MS Dataset Alignment 

 The package methodology presented in Section 3.2 defines the process of aligning 

metabolomics data in pairs of conventionally pre-processed LC-MS tables. Large-scale 

metabolomics studies or multi-laboratory investigations may require aligning more than two 

datasets. The metabCombiner approach can be extended to more than two datasets in a stepwise 
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manner, augmenting the results of an alignment task with additional single or multiple dataset 

objects. A straightforward extension of the multi-dataset alignment analysis approach called 

batchCombine is implemented for aligning batches of the same experiment.   

3.3.1 Stepwise Disparate Multi-Dataset Alignment Workflow  

 As in the basic paired alignment workflow, multiple dataset alignment requires that all 

input tables be filtered and formatted as single dataset metabData objects. The main difference is 

that either the X, Y, or both datasets are themselves metabCombiner objects. Hence, the results 

of an alignment task can be supplied as input for further alignment with a new single dataset 

(metabData) or combined dataset (metabCombiner). Figure 3.3 illustrates an example of this 

approach, starting with two datasets and merging the results with additional single datasets after 

performing the six metabCombiner alignment steps. 

 At the beginning of each metabCombiner alignment task, a featdata table is constructed 

and updated in each alignment task to contain all observed feature descriptors from the 

Figure 3.3 Stepwise Multi-Dataset Alignment Workflow metabCombiner steps with associated function 

names are the same as the basic workflow (Figure 3.1), but with the addition of updateTables for including 

non-intersected features and additional arrows implying the workflow's cyclic nature in which the result of 

one alignment analysis is supplied as input along with another single or multiple dataset object 
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constituent datasets that have been aligned together. The program draws the essential feature 

meta-data {m/z, RT, Q, id, adduct} from one selected dataset of a metabCombiner input 

(designated by its unique identifier) stored in the featdata table, and uses that to form the X or Y 

meta-data columns in the combinedTable. For quantitative descriptors, the mean value across all 

 datasets can also be used to represent features as an alternative to selection from a single dataset, 

although averaging of RTs is not recommended for datasets acquired with major 

chromatographic differences. Once the new set of possible alignments are generated, the 

workflow steps proceed in the same manner as previously described.  

 A complication arises when accounting for features that are absent in the constituent 

dataset selected to represent the metabCombiner object. These features will contain missing 

quantitative descriptors {m/z, RT, and Q} essential to their alignment with a new feature list. 

One possible workaround is to have this information imputed with guidance from other 

constituent datasets for which the feature is present. Currently, only mean {m/z, RT, Q} 

imputation is implemented, which is not recommended for disparate LC-MS alignment 

applications. Future iterations of metabCombiner will explore appropriate imputation methods 

for RTs in non-identically acquired datasets.  

3.3.2 batchCombine: Application to Multi-Batch Alignment   

 While originally designed for aligning non-identically acquired LC-MS metabolomics 

data, the process of feature-matching and data concatenation has useful applications in multi-

batch LC-MS metabolomics experiments. As previously noted, retention behavior of compounds 

may shift between samples in large-scale experiments, despite efforts to closely replicate 

experimental variables from batch to batch. 178–180 These differences are especially pronounced 

between distally analyzed samples (in run order) compared to proximal samples. batchCombine 
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applies the metabCombiner process between batches of the same experiment, where each batch 

of samples is separately pre-processed using conventional tools such as XCMS or MZMine2.  

 The pre-processed batches should be arranged in acquisition order {1, 2, ..., n}, where n 

is the total number of batches, and formatted as metabData classes. The batchCombine workflow 

proceeds in a nearly identical manner to that previously shown in Figure 3.3. The first two 

batches are aligned in one metabCombiner cycle, and the results are aligned with the third batch, 

followed by the fourth, and so forth with a total of n-1 cycles. In each cycle, feature meta-data 

are drawn from the latter batch of the previous alignment step to be used for comparison with the 

next batch (i.e. batch 2 feature meta-data is aligned to batch 3, batch 3 is aligned to batch 4, and 

so forth) since retention behavior is more similar between proximal batches. m/z, RT, Q or a 

combination of these descriptors may be averaged prior to each alignment step, an option that 

could control for random shifts. Identical parameters for the six main metabCombiner functions 

are applied for all tasks, facilitating automation of batch alignment processes. It is expected that 

the overall chromatographic dimension (total run time and observed RTs) should be roughly 

similar between samples within a multi-batch experiment; therefore, imputing the average RT for 

features not detected within a specific batch is acceptable, unlike in disparate LC-MS alignment. 

batchCombine can determine either the union or the intersection of all features found across n 

input batch tables.  

3.4 Evaluation 

  
3.4.1 Evaluation with Plasma Metabolomics Datasets 

 

 Untargeted RPLC metabolomics data were acquired twice in the positive ionization mode 

for ten human plasma samples, five from a pooled plasma obtained from deidentified Red Cross 

(RC) donors and five from pooled plasma purchased from a commercial supplier for the NIH 
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Children’s Health Exposure Analysis Resource (CHEAR) consortium. Samples and process 

blanks were analyzed using the same instrumentation and column, but with two different water-

methanol gradient elution methods, with total run times of 30 and 20 minutes. Both datasets were 

processed with XCMS (39) and reduced by isotopologue and blank sample feature ratio filtering. 

A total of 137 common metabolites were identified according to Metabolomics Standards 

Initiative (MSI) criteria 1 or 2,77 with 532 in-source adducts, fragments, and multimers of these 

metabolites annotated using a custom R script and Binner.171  

 For this pair of datasets, RT fitting and score-based matching of compounds was 

evaluated, using identified compounds as a benchmark. Known metabolites were partitioned into 

50% training, 50% test sets. RT fitting was both semi-supervised (with all training set 

compounds included as anchors) or unsupervised (rt fitting without prior knowledge), with mean 

absolute deviation (MAD) of the fit calculated for the test set compounds. The evaluateParams 

package method was used to guide A, B, C weight value selection on the training set compounds. 

An “accurate match” is defined to be a best-scoring FPA (rankX = 1 & rankY = 1) between two 

identically annotated features with a score greater than 0.5. Feature matching accuracy is 

assessed “per-variant”- that is, weighing each adduct/fragment feature equally- and “per-

compound” – summing the fractions of accurately matched adducts and fragments for each 

compound over the total number of test compounds. Different sample subsets (CHEAR or RC) 

analyzed in the 30-minute analysis are designated as dataset X, with the opposite set in the 20-

minute analysis designated as dataset Y.  

3.4.2 Exploration with Muscle Metabolomics Datasets 

 Muscle tissue from 10 sedentary and 10 exercised rats were analyzed in the Michigan 

Regional Comprehensive Metabolomics Resource Core (‘MiSE10’) as well as by the Broad 
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Institute (‘BrSE10’) in the negative ionization mode. Data were processed using XCMS and 

Progenesis QI (nonlinear dynamics), detecting 5335 & 8573 features respectively. There were 

greater differences in the experimental methods used in this case, including column type (Waters 

H3 TSS modified C18 vs unmodified C18), mobile phase solvents (methanol vs acetonitrile), 

mass analyzer (QTOF vs Orbitrap), and m/z scan range (50-1000 vs 70-850). Of the named 

identified compounds (200 in MiSE10 & 80 in BrSE10), there were only 14 mostly non-polar 

overlapping compound identities. These compounds including their annotated adducts, are used 

to evaluate the efficacy of alignment under highly disparate conditions by metabCombiner. 

3.4.3 Application of Multi-batch Alignment to ELEMENT Study 

 To test the capabilities of batchCombine, metabolomics data from the ELEMENT (Early 

Life Exposure to ENvironmental Toxicants) cohort were aligned to form a single cohesive batch-

merged table.187 A total of 402 individual plasma samples from adolescent subjects were 

partitioned into eight total batches and analyzed by LC-MS within the same laboratory, 

instrument, and protocol. Nine pooled QC samples were analyzed alongside fifty biological 

replicates in each batch. The raw spectral files of each batch were separately pre-processed with 

XCMS using identical peak-picking and alignment parameters, generating tables containing 

between 11100 and 13800 features for the eight batches. 

3.5 Results 

 
3.5.1 Program Output 

 The main output of metabCombiner is the combined table containing FPAs organized 

into separate m/z groups in order of increasing m/z. The signal abundance values of each feature 

are concatenated to form a combined table. An example m/z group from the plasma evaluation is 

shown in Figure 3.4A, consisting of 3 features from dataset X (30-minute analysis) and 3 from 
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dataset Y (20-minute analysis), all within the m/z range 426.3205 - 426.3223. Two features each 

from the two complimentary datasets are unidentified isomers (X7710 & X7753, Y7385 & 

Y7434) while the third previously identified in both datasets as Cholate [M+NH4]+. A pairwise 

top match (rankX = 1 & rankY = 1) is assigned between [X7710, Y7385] and [X7785, Y7434],  

respectively, with alignment scores very close to 1. Alternative possible alignments for this pair 

of compounds are displayed as separate rows which can be quickly dismissed as misalignments. 

The alignment score of cholate [M+NH4]+ with itself is lower due to a higher retention time 

prediction error and a slight difference in the relative abundance of this compound between 

assays; nevertheless, it is correctly assigned the top-scoring FPA with its counterpart, and all 

other pairs score very poorly. Thus, three FPAs corresponding to three separate compounds 

remain in the final table, and six rows defined as misalignments are eliminated. A visual  

inspection of the peaks shown in Figure 3.4B & Figure 3.4C confirms this matching. 

3.5.2 m/z Grouping  

 The size of the initial combined table is a function of input dataset feature counts, their 

degree of m/z overlap, and the binGap parameter in the m/z grouping step. In the plasma 

datasets, the number of FPAs is comparable to the initial dataset sizes and grows steadily with 

Figure 3.4 Example metabCombiner m/z Group (A) X and Y features associated meta-data, and alignment 

scores. Peaks of the same color are matched analytes. (B) X dataset EIC. (C) Y dataset EIC. 
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increased gap values. On the other hand, a smaller FPA list between the muscle datasets, likely 

due to differences in m/z ranges surveyed by the respective analyses. In other surveyed datasets, 

the row count rapidly increases where there are high numbers of compounds in specific mass 

ranges (e.g. 100-200Da). While most matching known compounds display small (< 1mDa) m/z 

differences, larger errors (>5 mDa) may be observed in some cases due to instrumental and pre-

processing software factors. The value of binGap reflects a tradeoff between compactness of the 

combined table and the ability to detect all true compound matches. binGap value is set to 5 mDa 

by default and can be altered as necessary. 

3.5.3 Retention Time Mapping  

 The plot package method is useful for visualizing results of anchor selection and GAM-

fitting.  Plots for plasma and muscle datasets are displayed in Figure 3.5. In both cases, a 

moderate to high degree of fluctuation in the center of the chromatogram along the gradient 

slope is observed, indicating that these regions are generally more difficult to model accurately 

with low prediction errors. Moreover, there are differences in how well-represented each 

chromatographic region is in terms of ordered pair anchor selection. In the plasma case, all  

Figure 3.5 Example metabCombiner Model Fits Model points are selected from highly abundant feature 

pairs and (optionally) feature pairs with matching compound identities 
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regions (from polar to non-polar) are well-represented in anchor coverage whereas the muscle 

case contains noticeable gaps along the gradient. The plot serves as a useful tool for tuning 

parameters associated with model fitting and determining an appropriate RT penalty weight. 

3.5.4 metabCombiner Evaluation with Plasma Datasets  

 CHEAR and Red Cross plasma aliquots were analyzed together in the same laboratory 

using two different RPLC protocols with 20 and 30-minute total chromatography run times. Of 

the 137 identified compounds common to both plasma datasets, all but three could be grouped by 

m/z using the default 5mDa binGap value. The principal ions of caffeine, glutamyl-

phenylalanine, and creatine deviated by 0.006, 0.0088, and 0.02 daltons, respectively. When the 

binGap was increased to 0.0075, all metabolite ions could be successfully grouped except for 

creatine. Therefore 136 compounds were used for this analysis, with 68 each randomly  

 partitioned into training and test sets. The choices of sample subset (CHEAR vs Red Cross) and 

the option to use known identity information affects the selection of anchors and the subsequent 

modeling & feature matching accuracy. The results of the evaluation are displayed in Table 3.1. 

The mean absolute error of each model is consistently around 0.06 min, with a slight advantage 

observed in semi-supervised models in which training set compounds are selected as anchors. In 

each model, more than 50 out of the 68 compounds could be predicted within 0.1 minutes. 

Prediction errors vs observed retention times for selected test set compounds are shown in 

Figure 3.6. Polar and very nonpolar metabolite RTs are mostly well-predicted, whereas 

Table 3.1 Plasma Datasets Alignment Evaluation Results 
Mode X Dataset Y Dataset RT M.A.D Accuracy (per Variant) Weighted Accuracy 

(per Compound) 

Semi-Supervised 
(including identities) 

30 MIN CHEAR 20 MIN Red Cross 0.056 259/270 0.91 

Unsupervised 30 MIN CHEAR 20 MIN Red Cross 0.066 254/270 0.88 

Semi-Supervised 
(including identities) 

30 MIN Red Cross  20 MIN CHEAR 0.054 254/270 0.88 

Unsupervised 30 MIN Red Cross 20 MIN CHEAR 0.07 250/270 0.86 
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 compounds of intermediate polarity were less 

predictable due to alterations in gradient 

slopes, with the highest retention time errors 

between 0.25-0.35 min. The inclusion of prior 

information provides a distinct advantage in 

predicting metabolite RTs, especially in 

sparse chromatographic regions. The fitted 

models were used to evaluate similarity 

scoring, using 270 annotated variants (adducts, in-source fragments, and multimers) of the test 

set metabolites as points of comparison. Score parameter arguments were chosen to be to be A = 

100, B = 15, C = 0.3, as guided by evaluateParams on training set compounds. Most compounds 

accurately achieve the highest alignment score for all their adduct and fragment variants, with 

weighted per-compound average scores higher than 0.85 in all analyses. Four compounds scored 

at or below the threshold 0.5 level, mostly due to penalization of high m/z differences. In cases 

for which the correct alignment is not the top-ranked match, at least one feature may be more 

similar in m/z, Q, or fitted RT. The feature(s) may arise from closely eluting structural isomers, 

or peaks incorrectly divided due to pre-processing errors. No accurate FPA ranked poorer than 

3rd best for the respective compounds, and the scores of all but one compound were within 0.2 

from the top scoring FPA. Proceeding with table reduction, score, rankX, rankY, and delta score 

tolerance values were set to 0.5, 3, 2, 0.2 reducing the set of 14024 FPAs by 6765; further 

inspection reduces an additional 400, leaving roughly 6900 rows.  

3.5.5 Alignment Analysis of Muscle Metabolomics Datasets 

Figure 3.6 Retention Time vs Model Prediction Error 
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 Experimental variables varied more for this pair of datasets compared to the plasma 

analysis. The protocols used to acquire BrSE10 are optimized for the measuring metabolites of 

intermediate polarity (such as bile acids and free fatty acids), whereas MiSE10 is acquired with a 

generalized metabolomics assay. This has several implications when aligning this pair of 

datasets. First, owing to different column types (Waters HSS T3 C18 for MiSE10, which has an 

embedded polar retention functionality, vs Waters BEH unmodified C18 for BrSE10), polar 

compounds were difficult to map and differentiate properly as they eluted very rapidly in 

BrSE10. Second, coverage of highly nonpolar metabolites differed, causing major distortions in 

initial model fitting attempts. To correct this, the late chromatographic portions where highly 

nonpolar compounds elute was excised by setting a maximum retention time of 24 & 17 min for 

MiSE10 & BrSE10, respectively. These constraints remove 10-20% of the input features in each 

dataset. Third, numerous fatty acids observed to be present at high abundances in BrSE10 were 

barely or not at all detectable in MiSE10 samples, likely due to differences in sample extraction 

protocols between the two assays; therefore, quantile Q comparisons are less reliable in some 

cases. Finally, while there were few significant mass errors for shared compounds in preliminary 

analysis, the overall mean m/z for these two datasets differed by more than 200 Da (549.3 vs 

316.1 in MiSE10 & BrSE10, respectively). With the binGap parameter kept to its default value 

of 5 mDa, this generated a small initial set of only 3247 possible FPAs, indicating a limited 

coverage overlap between the assays.  

 Parameters for anchor selection and GAM-fitting were optimized using a grid search of 

potential values, using the mean absolute RT deviation for fourteen shared identified compounds 

as the error metric. The final model mapped five compounds accurately to within 0.1 minutes; 

two additional compounds were predicted within 0.25 minutes; five had errors between 0.4-0.6 
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minutes; two (cholate & glycocholate) could not be predicted by any of the models to within 

1.25 minutes. Given these factors, scoring parameters were chosen as A = 100, B = 7, C = 0.2. 

Of the shared known compounds, cholate (0.35) & glycocholate (0.39) score the lowest due to 

the high RT fitting errors. Ten out of fourteen compounds accurately achieved the highest 

alignment score in all their respective adduct forms; the remaining metabolites have one 

misaligned variant each and only one variant ranked worse than the 5th best. On this basis, FPAs 

with scores below 0.35 and ranking worse than 5th were removed, eliminating 1765 alignments; 

further inspection of conflicting alignments removed an additional 400-450 rows, reducing to 

under 1000 of the original 3247 FPAs.  

3.5.6 Multi-batch Alignment of ELEMENT study with batchCombine 

 Initial processing with metabCombiner removes less than 20 features from each batch 

each due to missingness and duplicate feature filtering. For batchCombine parameters, a 

common m/z binGap value of 0.0075 for initial feature grouping; anchor selection and RT fitting 

parameters were kept close to the default values. m/z, RT, and Q score weight values were set to 

70, 35, and 0.8, respectively, and table reduction parameters were kept at default values. All 

quantitative descriptors were averaged after each step and the union option enabled, imputing 

missing feature information with the mean value of features when absent.  

 In total, 23701 rows appear in the final table, of which a little over one-fourth (6493) are 

present in all eight batches and those present in only batch account for 5453 rows. Table 3.2 

summarizes the frequency with which features are present in batches across the aligned dataset.  

 Sparsely detected features appear to have unique m/z values or lacking a close RT counterpart in 

the other pre-processed batches. For most features, RTs were highly consistent from batch to 

Table 3.2 ELEMENT Study Batch-Aligned Feature Results 
Batch Presence 1 batch 2 batches 3 batches 4 batches 5 batches 6 batches 7 batches 8 batches 

# Features 5453 2914 2659 2288 1692 1072 1129 6493 
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batch, with more than 92% of the features having a standard deviation of batch RT 

measurements (listed in the constructed featdata) of less than 0.05 minutes. Higher retention 

time drifting occurred later in the chromatogram and for some sparse feature matches. Two 

notable examples were closely examined and depicted in Figure 3.7. Figure 3.7A shows three 

isomers with m/z value = 332.332, all three of which have been detected in all 8 batches between 

RT = 19.2 and 20.5 minutes. There is a notable shift in the RTs of all three isomers in batch 4, 

which could lead to misalignments between compounds in traditional correspondence 

algorithms. Figure 3.7B shows the drifting of peaks with m/z = 650.6453 from 29.49 to 28.92 

min, a differential of over half a minute from the first to the eighth batch. The gradual drift from 

between adjacent batches validates the batchCombine approach of arranging and concatenating 

batches in sequential order. The compound characterizing this feature has an -H2O loss fragment 

with an identical drift pattern, providing additional confidence in this feature matching. The 

feature meta-data that is reported alongside the array of spectral abundances is useful for 

inspecting alignments between consistently measured peaks, peaks with plausible drifting 

patterns, or spuriously matched signal across batches.  

Figure 3.7 Retention Time Drifts Between Batches (A) Batch 4 exhibits a major shift for three isomer peaks 

(m/z = 332.332); (B) Gradual drifting in RT observed from batch 1 to 8, depicted for this analyte (m/z = 650.645)  
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3.6 Limitations 

 metabCombiner is one of the first computational methods specifically designed for 

disparate LC-MS data alignment. There are some limitations to the methodology that are 

addressed in this section. 

3.6.1 Use of Pre-Processed Feature Tables 

 Unlike most LC-MS feature alignment tools that operate on raw spectral files for each 

individual sample, metabCombiner uses traditionally peak-picked and aligned metabolomics data 

as input. This simplifies the process by generating tables of similarly acquired experimental 

samples, where each aligned feature is represented by a single m/z and RT value, as opposed to 

separate m/z and RT values for every peak across all similar and disparately acquired samples. 

Furthermore, this allows for identically acquired spectral data to be peak-picked and aligned 

using any method, as opposed to being designed for a single tool, such as XCMS. However, it is 

important to acknowledge that important spectral information could be lost in translation from 

raw MS data to the required tabular format. This method assumes that spectral patterns and 

spectral deconvolution performance is similar between all samples in single datasets that are 

initially supplied as input, which may not hold for all detected compounds. Different 

preprocessing software tools were used in this study to determine potential sources of error 

resulting from dataset generation. Similar errors to those reported previously, such as incomplete 

or multi-peak integration, low signal-to-noise peaks, and non-extraction of true peaks. Such 

errors complicate the one-to-one alignment of features, as illustrated in Figure 3.8. Factors 

affecting the accurate estimation of m/z, central RT, peak area calculation as well as overall 

quantity of features have important ramifications for this analysis. Therefore, the preprocessing 
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method and choice of parameters should be considered carefully for each dataset. Future 

improvements in disparate LC-MS alignment methods may draw information from the raw 

spectral dimension to ascertain the validity of assigned spectral matches. 

3.6.2 Union of Disparately Acquired Features 

 As previously discussed, imputation methods for missing features within a constituent 

dataset chosen as representative are limited to estimating the mean of {m/z, RT, and Q} values 

of the feature where they may exist in other datasets. This option is sensible for typical multi-

batch alignment tasks, but not for disparate data alignment analyses. Consequently, the tool is 

not yet capable of generating an accurate union of features since signal missing from the dataset 

representative cannot be brought forth in the given metabCombiner cycle. Instead, one "primary" 

dataset can be selected as the X or Y feature list in all n-1 alignment tasks with the other datasets 

serving as "target" sets to be aligned with it. The only way to overcome this limitation under the 

current framework is to impute RT values for the features absent in the chosen representative 

dataset using information from datasets in which the feature is present, using RT projection 

models. The alternative is to explore a framework for simultaneous multi-dataset alignment as 

opposed to stepwise paired alignments.  

A

D

CBA

E F

Figure 3.8 Common Peak Detection Errors. The top row (A-C) displays correctly integrated peaks, whereas the 

second row (D-F) display errors. In (A), two isomers are integrated as separate peaks, but in (D) they are fused as 

one feature. In (B), a wide peak is integrated as one feature, but in (E) it is split into two features. In (F), one peak is 

compared to multiple low signal/noise features, with only the abundant peak representing the true compound match. 

These errors complicate 1-1 matching between features. 
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3.6.3 Stepwise vs Simultaneous Alignment  

 metabCombiner was originally designed for aligning two LC-MS metabolomics feature 

tables and generating their intersection. While it was expanded to facilitate the alignment of 

more than two datasets, the workflow still proceeds as a stepwise pairwise merging task. Apart 

from the batchCombine functionality for multi-batch alignment tasks, simultaneous one-step 

alignment of three or more datasets has not been implemented. The primary reason stems from 

the need to carefully refine parameters in alignment tasks, especially those for anchor selection, 

RT modeling, and pairwise feature similarity scoring. Haphazardly applying identical or default 

parameters in every application often leads to suboptimal results. Future developments must 

focus on automating the process to a greater extent to allow for a hands-off approach compatible 

with non-expert users.  

3.6.4 Gap Filling for Missing Feature Abundances 

 Related to the previous limitations, metabCombiner lacks a dedicated capability to re-

extract signal that may have been missed in the initial peak-picking phases, such as performed by 

fillPeaks() in XCMS or Gap Filling in MZMine2. In theory, computed RT projection models can 

estimate the RT location of missed peaks, which can then be useful for extracting signal present 

at the <m/z, RT> coordinates in raw spectral LC-MS files, though this could inevitably lead to 

complications if the absolute RT fitting errors of the models are high. For now, features entirely 

absent from input feature tables are left with missing signal abundance values.  

3.6.5 The Use of Relative Abundance  

 metabCombiner uses relative abundance (Q) in a unique manner compared to other 

alignment tools. It is first utilized when selecting ordered pair anchors for RT mapping and then 

it is incorporated alongside RT and m/z in pairwise alignment scoring. While useful for 
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contrasting high and low-abundance compounds, disparities in relative abundance may occur due 

to experimental factors, such as differences in sample preparation and in-source ionization. In 

many cases, formation and relative abundances of in-source adducts and fragments may differ 

for the same compounds between datasets. metabCombiner can be configured to give relative 

abundance a less prominent role than RT and m/z by setting the specific weight parameter in the 

similarity scoring step to 0.  

3.6.6 RT Projection Error 

 metabCombiner is not the first tool to use a GAM for the purposes of RT-mapping 

between chromatograms. GAMs have distinct advantages over local regression (LOESS) and 

regression tree ensemble approaches. Their simplicity, versatility, and robustness to overfitting 

have been noted.95 Setting the default “family” argument to scat (scaled t-family for heavy-tailed 

data) helps to eliminate the influence of outlier points, which may cause other overfitting in other 

approaches. One limitation of the workflow is that the RT mapping approach does not yet 

provide prediction intervals and only point estimates are used to weigh pairwise alignment 

scores. Prediction intervals may provide great utility due to the non-uniformity of RT mapping 

errors throughout the chromatogram. The influence of chromatographic variables was examined 

in testing, such as gradients, column types and dimensions, and mobile phase solvents, yet 

numerous other variables have yet to be fully explored. In general, datasets acquired from HILIC 

methods were more difficult to align than those by RPLC, a difficulty shared with previous 

studies attempting to predict compound retention in HILIC assays.188 

3.6.7 Incorporating Additional Information for Feature Alignment  

 metabCombiner is designed for flexibility to accommodate as many LC-MS alignment 

cases as possible. Only m/z, RT, and sample abundances, all expected components of 
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conventionally pre-processed feature tables, are required to use the program. Feature identifiers 

can enhance the process by improving RT modeling steps and adduct labels can be compared 

between assigned feature matches, though neither is required for the overall procedure. In 

difficult alignment cases, e.g. between groups of isomers or features at the score threshold 

borderline (i.e. with relatively high m/z, Q, or predicted RT deviations), these measures are often 

insufficient to confidently and accurately determine feature correspondence. Additional 

parameters could increase confidence or point to alternative hypotheses in ambiguous cases that 

are not resolved by the five required and optional descriptors. MS/MS fragmentation, 

chromatographic peak shapes,189 or isotopic envelope190 information may serve as useful bases 

of comparison wherever such data exists. 

3.7 Conclusion 

 LC-MS metabolomics has long been constrained by the requirement of replicated 

protocols and the incompatibility of data acquired under disparate analytical conditions. 

metabCombiner is a computational method for comprehensively mapping features from distinct 

untargeted metabolomics experiments and generating aligned datasets in an automated manner. 

This provides opportunities to build bridges between previously incomparable metabolomics 

data and increase the utility of studies beyond their initial uses. metabCombiner is a versatile 

approach with wide applicability to a variety of metabolomics datasets, without requiring prior 

knowledge of shared metabolite coverage. This tool has numerous applications, such as 

facilitating inter-laboratory comparisons, reproducibility assessments, collaborative compound 

annotation efforts, and generating expanded datasets suitable for meta-analysis. While it is 

designed for metabolomics data, the methods may be adapted to other untargeted LC-MS 

analyses of complex mixtures, provided that input datasets meet the core assumptions. 
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Chapter 4 

 

Applications of Disparate LC-MS Alignment to 

Compound Identification 
 

4.1 Introduction 

 Assigning unambiguous compound identities to detected LC-MS features is one of the 

most significant bottlenecks in computational metabolomics data analysis, with only a small 

portion readily identified in most studies.191–193 Improving compound identification rates would 

facilitate a more complete mapping of data to biochemical pathways and gaining deeper 

biological insight. Currently, no single method can comprehensively detect and identify all 

metabolites in a complex mixture. A combination of chromatographic techniques (RPLC & 

HILIC), compound class-specific approaches (most notably lipidomics), and ionization modes 

are required to survey the diverse chemical space occupied by the metabolome.194 As previously 

described in Section 1.4, numerous tools and algorithms have been developed to facilitate and 

expand upon structure elucidation capabilities in metabolomics studies, such as compound 

databases, mass spectral database search tools, in silico fragmentation modeling approaches, and 

RT prediction models.94 Purified standards are required for fully authenticated compound 

identities, which is generally not feasible to obtain for most compounds; therefore, identifications 

assigned by computational tools are generally at levels 2 ("probable") or 3 ("possible"), 

according to the Metabolomics Standards Initiative Compound Identification Working Group.195 
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 As an alignment approach designed for disparate LC-MS data, metabCombiner falls into 

the category of RT modeling tools. Specifically, it belongs to the class consisting of RT 

projection models in which information is mapped between similar but non-identical LC 

systems, estimating where identified compounds may fall in a different separation space. By 

itself, metabCombiner cannot be used to infer the structural characteristics of unknown 

compounds, perform spectral library matching or generate de novo identifications of novel 

metabolites. Instead, its primary utility in compound identification is information sharing and 

establishing consensus annotations between confidently matched metabolomics features. 

metabCombiner can be paired to traditional and novel identification methods to map compounds 

beyond the limited chromatographic spaces in which they are assigned. 

 In this chapter, three separate applications of disparate LC-MS alignment using 

metabCombiner are described in furtherance of the goal of increasing identification rates in 

untargeted LC-MS metabolomics studies. First, data from a published large-scale identification 

study of human urine samples acquired using HILIC-MS were aligned to a data acquisition of 

stock urine samples from a different laboratory, and resulting annotations were compared. 

Second, an expanded gradient LC-MS analysis of plasma designed to achieve substantially 

higher identification rates is mapped to conventional length LC-MS data of the same samples. 

Finally, metabCombiner was used to align datasets from a multi-institutional untargeted 

lipidomics study, where known and unknown lipids have been detected and annotated across 

multiple specimens using separate protocols from each laboratory.  

4.2 Alignment of Urine Mass Spectral Features Analyzed by HILIC-MS 
  

4.2.1 Background 

 Human urine is among the most widely studied biofluids as it provides a rich source of 

biomarkers reflecting excretory processes influence by various physiological conditions and 
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stimuli. The urinary metabolome has been associated with health-related conditions such as 

urological and non-urological cancers, asthma, hepatitis, liver cirrhosis, metabolic syndrome, and 

a wide range of toxicities, exposures, treatments, and substance uses.196 The National 

Metabolomics Data Repository132 and Metabolights133 repository contain dozens of human urine 

metabolomics studies. Comprehensive characterization of the full urinary metabolome was the 

subject of numerous endeavors, using library searches,194 literature-mining,197 molecular 

networking,198 and recurrent cross-laboratory mass spectral signature curation.199       

 In one study, Blaženović et al attempted the comprehensive characterization of all mass 

spectra in a dataset consisting of 43 human urine samples from interstitial cystitis patients.194 

Biphasic extraction performed on separated urinary metabolomes into their lipid and polar 

fractions, and separately analyzed with two chromatographic methods: charged-surface hybrid 

chromatography (CSH) for lipidomics and hydrophilic interaction chromatography (HILIC) for 

profiling polar metabolites. Of the thousands of signals extracted and aligned, roughly 42% 

triggered MS/MS fragmentation spectra in Data Dependent Acquisition (DDA) mode. Using 

over 1000 authentic compound standards, various mass spectral fragmentation and retention time 

libraries, and tools such as NIST Hybrid Mass Spectral Search,200 CSI FingerID for in-silico 

spectral prediction,201 and ClassyFire for chemical ontology assignment,3 features were 

annotated at MSI levels 1, 2, 3, or 4. The overwhelming majority were classified at level 3 or 4, 

but more than 500 could be identified at more confident MSI levels 1 (1-2%) and 2 (10-15%), 

higher annotation counts than can be found in most routine LC-MS metabolite profiling studies. 

 To take advantage of these efforts performed on a specific sample set within one 

laboratory, untargeted HILIC-MS metabolomics measurements were acquired from stock human 

urine samples under disparate conditions and were aligned to the published study data using 
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metabCombiner. Pre-processing and simple compound identification efforts were performed on 

the new dataset. Confident alignments from the two datasets provide information about 

consistently (and inconsistently) named compounds as well as hypothesized annotations for 

features named in one dataset but not its complement.  

4.2.2 Experimental Methods 

 Data from 3 pooled replicates of healthy human urine obtained from BioIVT (Westbury, 

NY) and NIST Standard Reference Material SRM3673 (together called ‘B3N3’) were aligned to 

the study data published by Blaženović et al consisting of 43 samples from interstitial cystitis 

patients (hereafter referred to as ‘IC43’). B3N3 samples were thawed and extracted using a 

biphasic aqueous / methanol tert-butyl ether solvent system, exactly as previously described for 

IC43; only the aqueous layer was used for subsequent HILIC-MS analysis. Samples were 

analyzed using an Agilent 6545 LC-qTOF mass spectrometer (as opposed to a Thermo Q-

Exactive LC-MS as in IC43). The chromatographic approach used for B3N3, including gradient 

length and mobile phase composition, were replicated from the IC43 methods, but with a shorter 

column (Waters Xbridge Amide 1.7 um, 2.1 mm ID, 100 mm in length as opposed to the 150 

mm length columns used for IC43), inducing major RT shifts.  

 For MS1 analyses, MS source conditions were as follows: Agilent Dual Jetstream ESI, 

positive ion mode, source gas temp 275 C, drying gas 12 L/min, nebulizer 45psi, sheath gas temp 

325 C, sheath gas flow 12 L/min, capillary voltage 4000, MS scan range 50-1200 Da, 2 

spectra/sec, reference mass correction enabled. For MS2 analysis in B3N3, all parameters were 

the same as IC43 except the MS2 scan range was 25-1200 Da with a rate of 2 spectra/sec. The 

isolation width was narrow, collision energy was 20, 3 precursor ions were allowed per cycle 

with active exclusion enabled after 2 spectra for 0.5 minutes.  Four runs of iterative MS/MS 



 

 

 

 

97 

 

(rolling-precursor ion exclusion between replicate LC injections of a sample) were used with a 

mass error tolerance of 20ppm and RT tolerance of +/- 0.5 min.  

4.2.3 Data Pre-Processing & Feature Identification 

 Raw MS1 mass spectral files from B3N3 and IC43 (the latter downloaded from 

Metabolomics Workbench Study ID ST001122) were both processed by MZMine2 using the 

ADAP pipeline,53 extracting 10624 & 22313 features respectively. MS2 data for B3N3 were 

loaded into Masshunter Qualitative Workflows (Agilent) and features were detected using the 

"Find by Auto MS/MS" tool and resulting MS/MS spectra was exported in MGF format. These 

data were simultaneously searched against the NIST 2017 tandem MS library and the MoNA 

LC-MS/MS positive mode library (http://massbank.us, downloaded 12/2019), using the NIST 

MSPepSearch software tool. Resulting MS/MS hits were considered “identified” (MSI level 2) if 

the NIST score was >650, the dot product score was >750, and visual review confirmed that 

spectra were good matches with multiple well-aligned fragment ions. 

 For both datasets, custom R scripts were deployed for the purposes of matching 

compound information to pre-processed MS1 features. For B3N3, the associated m/z and RT 

values were searched with tolerances of 0.007 Da and 0.25 min. In addition to the main adduct 

form, a list of adduct and fragment variants of these metabolites were searched using their 

associated mass-based rules, including [M]+, [M+H]+, [M+Na]+, [M+2Na-H]+, [M+NH4]+, 

[M+K]+, [2M+H]+, [2M+Na]+, [M+H-H2O]+, [M+H-NH3]+ and [M+H-HCOOH]+. 

Compound and adduct annotations were examined for consistency and validity (small RT & m/z 

deviations from with respect to other variants). This process yielded 123 assigned compound 

identities with at least one annotated variant, all at MSI level 2. A similar process was employed 

for IC43, using identities drawn from Table S2 of the published manuscript which were labeled 

http://massbank.us/
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as either mzrt or MS2 matches. An in-house spectral library (uclib) was also used in this search. 

For feature identity assignments, mzrt named matches were prioritized, followed by MS2, and 

lastly uclib, with 101, 199, and 144 respective compound matches. 

 In the initial data processing steps of metabCombiner, RT ranges were set to 0.5 to 10.5 

min (B3N3) and 0.5 to 11 min (IC43), excising sparse head and tail regions, and reducing by 213 

and 268 features, respectively. The default missingness threshold 50% reduced B3N3 by an 

additional 88 features and by over 11000 features in IC43. The final feature count was 10320 and 

11014 for B3N3 and IC43. 

4.2.4 Results and Discussion 

 A preliminary survey of the datasets revealed subpar mass accuracy, particularly for the 

B3N3 dataset, due to errors related to instrumental or pre-processing software factors. Therefore, 

a wider m/z grouping binGap tolerance value of 0.01 was used, despite a substantial enlargement 

to 95898 rows in the initial FPA table (compared to 31248 and 55224 rows for binGap values of 

0.005 and 0.0075 Da, respectively). This large initial table size is attributable to the density of 

detected features in the low m/z range (especially between 100-200Da). metabCombiner analysis 

for these datasets was conducted in two stages. First, an unsupervised analysis was conducted 

without relying on named features and assessing the validity of alignments. This was followed 

by a semi-supervised analysis using consistently named compound identities to obtain a more 

accurate RT mapping and aligned table reduction.  

 The anchor selection step produced 66 ordered pairs for mapping between RTs in both 

datasets, using B3N3 as dataset X and IC43 as dataset Y. Scoring parameter values were set to A 

= 60, B = 8, C = 0.3. Forty-one consistently named compounds between both datasets achieved 

the highest-scoring alignments among their respective groups. Three more best-scoring 
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alignments were between features named as positional isomers, e.g. 4- and 3-hydroxypyridine, 

which were counted among the consistent set. The computed GAM mapped RTs accurately for 

most compounds, with 28 and 33 fitted within 0.1 and 0.2 min (1-2% error) of the observed RT, 

respectively. One named compound, Ornithine, eluted 0.67 min later than predicted as its elution 

order changed considerably between the two datasets. Seven identically named features did not 

score highly, mainly due to excessive RT fit deviations. In fourteen cases, high-scoring 

alignments were observed between features with mismatched identities; six of these could be 

resolved through manual review of MS/MS or correcting adduct annotations of these features. 

Many assigned features had no probable match in the counterpart dataset (particularly among 

drug-related metabolites) and a few others could not be definitively assigned as a match due to 

low scores or the presence of conflicting feature(s). On the other hand, aligning B3N3 to the 

well-annotated IC43 provides moderate-to-high scoring alignments to 167 distinct features that 

were named in IC43 but not B3N3. These alignments provide a list of putative identities which 

can be subsequently verified with authentic standards. 

Figure 4.1 Unsupervised vs Semi-Supervised RT Fits No prior information was used in the unsupervised 

fit (left), whereas features with identity agreement were incorporated as anchors in the semi-supervised 

analysis (right). IDs refine the RT mapping, especially in sparsely-anchored chromatographic regions. 
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 In the second stage, semi-supervised alignment analysis was performed with the aid of 

the 44 consistently named metabolites. With this adjustment, 98 ordered pairs were selected for 

anchoring the updated RT mapping. A visual of the two model fits is shown in Figure 4.1. The 

greatest differences in the model-predicted RTs are observed in the early to middle 

chromatographic regions. Score parameters, as guided by the evaluateParams method, were 

similar to those used in the first stage, with only B changed to 7. The table was then reduced 

from 95898 to 3265 FPA rows, or roughly 3% of the original table size. 

 This analysis demonstrates that large-scale compound identification results within data 

generated by other laboratories are transferrable and usable by other laboratories for generating 

many putative annotations, even for similar but non-identical specimens. This generates 

identification hypotheses that laboratories can test without excessive duplication of efforts as 

well as focusing deeper efforts on mutually detected unknowns. This application demonstrates 

that the use of shared known identified features as anchors can be useful for increasing the 

modeling and feature matching performance of metabCombiner, leading to further discovery of 

accurate named compound matches.  

4.3 Modifying Chromatography Conditions for Improved Unknown Feature 

Identification in Untargeted Metabolomics 
 

4.3.1 Background 

 

 Compound identification efforts for unknown features usually focus on acquiring MS/MS 

data that can be searched against experimental and in silico spectral databases. Due to the 

incompleteness of spectral libraries, many high-quality MS/MS spectra cannot be matched until 

new compound standards are acquired. In addition, features may be difficult to identify because 

MS/MS spectra they produce contain few unique product ions202 or due their low abundances 

where minor fragments may fall below noise thresholds. Multiple experimental approaches can 
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be employed to increase LC-MS/MS coverage and, by extension, compound identification rates. 

One such approach is to improve the peak capacity, or the number of separate peaks within a 

retention window, by using longer columns and/or extended gradients.203 Another approach is to 

perform consecutive data-directed LC–MS/MS runs with rolling precursor ion exclusion, which 

reduces the collection of redundant spectra and allows for annotation of more low-abundance 

features. Finally, studies show that increasing sample concentrations or injection volumes 

improve identification rates slightly, even with degraded chromatographic performance.204  

 This section outlines an application of metabCombiner exploring how modified 

chromatographic and MS/MS variables coupled to disparate LC-MS alignment can improve 

compound identification rates.205 The first goal of this study was to explore the potential for 

improving feature identification rates in untargeted metabolomics substantially by altering 

chromatographic parameters, such as gradient length and mass loading, and employing rolling 

precursor ion exclusion. The second goal was to determine a procedure for categorizing features 

as "high-priority unknowns" (HPUs), or spectra that have a higher likelihood of being 

identifiable to follow-up structural elucidation analyses. Finally, this study aimed to map 

putatively identified features and HPUs identified in modified chromatographic conditions data 

to features detected within conventional length LC–MS runs, transferring the beneficial 

properties of conditions optimized for compound identification to routine, high-throughput 

untargeted metabolomics analyses. Modified chromatographic conditions yielded a substantial 

improvement of confident compound identifications over conventional LC-MS/MS analysis in a 

human plasma sample, based on data from automated spectral searching aided by manual review.  

4.3.2 Experimental Methods 
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 Pooled human plasma was obtained from the Red Cross of Michigan and metabolites 

extracted using a 1:1:1:1 methanol:acetonitrile:acetone:ethanol solution.206 Depending on the 

concentration and volume required, one to several aliquots were pooled for analysis. 

Concentrations of extract samples injected for LC–MS analysis are reported relative to undiluted 

human plasma (e.g., 0.4× plasma signifies a reconstituted extract with 40% concentration of pre-

extraction plasma, assuming full recovery of metabolites) 

 LC–MS was performed on an Agilent (Santa Clara, CA) 1290 Infinity II LC system 

coupled to an Agilent 6545 QTOF mass spectrometer. RPLC separations were performed using a 

Waters (Milford, MA) Acquity UPLC HSS T3 column (2.1 × 100 mm; 1.8 μm). The flow rate 

was set to 0.4 mL/min and mobile phases consisted of (A) water with 0.1% formic acid and (B) 

methanol with 0.1% formic acid. HILIC separations were performed on a Waters Acquity UPLC 

BEH amide column (2.1 × 100 mm 1.7 μm). The flow rate was set to 0.3 mL/min, and mobile 

phases consisted of (A) 95:5 acetonitrile/water with 0.125% v/v formic acid and 10 mM 

ammonium formate (with a 10-minute sonication to ensure that the ammonium formate 

thoroughly dissolves) and (B) 95:5 water/acetonitrile with 0.125% v/v formic acid and 10 mM 

ammonium formate. Both columns were maintained at 55 °C for separations. Different gradients 

and total chromatography times were compared for this analysis. In RPLC-MS and HILIC-MS 

methods, 21-22 minutes represents a conventional length LC-MS analysis. 

 Instrument settings for positive mode ESI were: Sheath gas flow rate, 11 L/min; drying 

gas, 8 L/min; drying gas temperature, 320 °C; nebulizer, 35 psi; capillary voltage, 3500 V; 

nozzle voltage, 1000 V; fragmentor, 175 V; skimmer, 65 V; Octupole 1 RF Vpp, 750 V; 

collision energy, 20; iterative MS/MS mass error tolerance, ± 20 ppm; iterative MS/MS retention 

time (RT) exclusion tolerance, ± 0.5 min (0.1 min also evaluated); spectrum data type, centroid. 
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Data-dependent MS/MS parameters were: mass range, 25–1200 m/z; rate, 2 spectra/s; max 

precursor ions per cycle, 3; absolute precursor threshold, 5000 counts; relative precursor 

threshold, 0.001%; active exclusion enabled after 2 spectra and released after 0.5 min; isolation 

width, narrow (∼1.3 m/z).  

4.3.3 Compound Identification Methods 

 Briefly, LC–MS/MS data were loaded into an interface for the input and output of the 

NIST MSPepSearch (www.chemdata.nist.gov), searching against NIST20, LipidBlast,207  

Metlin,79 and Massbank of North America (MONA, massbank.us) spectral libraries and results 

were reviewed. Spectral search hits were ranked by score values and visualized with head-to-tail 

plots, and pattern recognition entropy (PRE) and total intensity were calculated for all spectra.208 

Compound matches must meet multiple criteria (mass accuracy within 20 ppm, at least two 

fragments, EICs must resemble metabolite peaks and not background ions) and must not be 

degenerate feature per Binner171 analysis to be considered for this workflow. Compound class 

annotations (MSI level 3) were assigned to features with search results that demonstrate good 

fragmentation alignment without acceptable precursor ion agreement, as determined in manual 

review. Remaining features were considered MSI level 4 (unknowns). 

 After reviewing MS2 spectra, a subset of the annotated and unknown compounds (MSI3 

and MSI4) was classified as High Priority Unknowns through a linear discriminant analysis- k-

nearest neighbors (LDA-KNN) method. Identified metabolites (MSI2) are distinguished from 

annotated (MSI3) or unknown (MSI4) compounds, using Z-transformed RT, precursor m/z, PRE, 

and total intensity values as predictors. Then, unknown spectral features surrounded by 

neighbors in 4D space consisting of more identified MSI2 than unidentified spectra for a 

majority of iterations were designated as HPUs.  

http://massbank.us/
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4.3.4 LC-MS Pre-processing & Disparate Alignment Methods 

 Metabolite identifications and HPUs uncovered by the previous steps within modified 

(longer run, higher sample loading) RPLC and HILIC conditions were mapped to extracted 

features in conventional (i.e., ∼20-minute run time) LC-MS metabolomics data. First, MS1 

feature detection was performed with MZmine2 v. 2.42 for modified and conventional LC-MS 

conditions.46 The targeted peak detection module was used to extract features in modified LC-

MS conditions data (consisting of one RPLC and four HILIC samples), based on the m/z and RT 

values of identified compounds and HPUs. MSI2 identifications HPU features from the RPLC 

and HILIC experiments were filtered such that only the feature with the highest database 

score/match factor for a given compound identification was maintained for metabCombiner 

alignment. Untargeted data analysis modules, consisting of chromatogram deconvolution, 

isotopic peaks grouping, join alignment and gap filling steps, were performed for the 

conventional LC-MS data (four RPLC and five HILIC samples). For the conventional conditions 

datasets, features with an average sample to average blank peak area ratio less than two were 

removed, leaving total feature counts of 35,878 (RPLC) and 10,715 (HILIC). 

 The resulting feature lists were then aligned using metabCombiner. In both analyses, 

features were grouped by m/z with a binning gap (binGap) value of 0.01 Da. Alignment of all 

feature pairs was scored from 0 (poor alignment) to 1 (excellent alignment) based on differences 

in m/z, RT fitting error, and relative abundance, with specific weights 60, 10, and 0.1 

respectively. Scores above 0.75 were classified as high-confidence alignments, while scores 

below 0.5 were rejected. Alignment scores between 0.5 and 0.75 were classified as moderate-

confidence matches, for which manual validation is recommended. 

4.3.5 Compound Identification Results 
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 Identifications were evaluated based upon library match score values and spectral 

characteristic thresholds from a summary of manually reviewed features. Generally, features 

assigned at MSI3 and MSI4 had lower MS/MS database search scores, total intensity, and/or 

spectral entropy than MSI2 identifications. Thresholds and criteria selected for NIST MS/MS 

database search score, intensity, and entropy removed more low-quality spectra compared to 

thresholds based on spectral agreement alone,94,199 while retaining valid identifications. 

 The impact of sample loading, gradient length, and iterative acquisition on compound 

identification performance was assessed by the number of unique MSI2 identifications from LC–

MS/MS features searched against each of the libraries. Total chromatography times ranged from 

21 to 360 min, with total uncovered compound identities displayed in Figure 4.2. For HILIC, the 

modified gradient length and sample loadings selected for improved compound ID was 120 min  

(10 μL of 0.4x plasma), above which no substantial increase in unique, identified (MSI2) 

features was observed. Though slight improvements were observed with longer runs, 180 min 

runs was selected for RPLC (30 μL of 4× plasma) to complete the iterative MS/MS acquisitions 

in a reasonable 24 hour timeframe. 

 Increasing the sample injection volume alone resulted in a plateau in the number of 

unique identifications, whereas increasing sample concentration slightly increases the compound 

Figure 4.2 Effect of Total Gradient Time on Compound Identification (A) HILIC-MS; (B) RPLC-MS 
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ID count. At low sample concentrations and sample volumes, low-abundance compounds are 

difficult to detect and often produce too few fragments to be confidently identified by spectral 

database searches. Increases in identification rates with higher column loading can be attributed 

to improvements in MS/MS spectral data quality for low abundance features and acquisition of 

spectra for compounds whose levels were too low to trigger MS/MS acquisition under 

conventional conditions. There were tradeoffs observed between sample loading and 

chromatographic resolution, with detector saturation observed for excessive sample loads. 

Nevertheless, the results show that increasing sample loading improves compound identification 

rates, especially when coupled to longer LC-MS analyses.  

 In the HILIC data set, 449 unique compounds were assigned at MSI level 2 or better to 

30.4% of collected MS/MS features, verified by manual review. RPLC data were assessed in a 

semi-automated fashion, with limited manual review of a subset of spectra. 1885 unique 

identifications were made with the modified RPLC conditions, corresponding to 9.5% of 

collected MS/MS features. Equivalent semi-automated analyses of both conventional HILIC and 

RPLC conditions were also performed. In total, 2052 unique compounds were identified (MSI2) 

by the two modified methods, compared to 214 which could be identified using a single 

conventional LC–MS/MS run on both HILIC and RPLC. LDA-KNN analysis, using k = 7 as the 

most accurate with respect to feature classification, selected 576 HILIC and 749 RPLC features 

in the modified conditions datasets as HPUs, or spectra likely to be identifiable by MS/MS 

matching when the underlying compound is present in a database. Identified spectra in the kNN 

space were typically more abundant than unidentified ones and had midrange entropy values; 

HPUs were thus found to be abundant and produced multiple key fragment ions in common with 

nearby identified features (in m/z and RT). 



 

 

 

 

107 

 

4.3.6 Disparate LC-MS Alignment Results 

 Increasing sample loading and gradient duration achieves superior data-dependent 

MS/MS spectral quality and compound identification performance. However, it is impractical to 

employ these conditions for every sample in routine metabolomics studies. Therefore, 

identifications made using modified LC-MS conditions were mapped to unidentified features in 

data with shorter, conventional length LC-MS assays with lower sample loading, using 

metabCombiner. Spectral peaks were extracted for the list of MSI2 compounds (1885 RPLC & 

449 HILIC) and HPUs (749 RPLC & 576 HILIC) detected under modified conditions and 

aligned to data from conventional ∼20-min LC–MS methods.  

 Peak-picking with MZMine2 was more challenging in the modified LC-MS conditions 

for multiple reasons. The raw mass spectral files were significantly larger than conventional LC-

MS raw files, demanding more computational resources and time to process using untargeted 

analysis modules, particularly for the ADAP chromatogram deconvolution step.53 The degraded 

chromatographic performance led to challenges with assigning accurate RT values for MS1 

peaks, particularly for elongated peaks and peaks with low signal-to-noise ratios. Using targeted 

peak detection for the modified conditions is significantly faster than using the untargeted 

detection modules and it enables more assignments of identified compounds to MS1 peaks, 

though this comes with several tradeoffs. Features are detected by integrating signal located at 

the supplied m/z and RT values, with minimal peak quality assurance. Many extracted signals 

exhibit poor peak-like characteristics, including signal resembling background or noise. Targeted 

detection only uncovers features associated with identified metabolites or HPUs, leaving out 

thousands of peaks not associated with these compounds. Consequently, percentile-based relative 

quantitation (Q) values will be less informative within metabCombiner and alternative alignment 
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hypotheses involving these undetected features will be missed the process. Finally, this targeted 

detection process must achieve sufficient coverage to span the breadth of the chromatogram as a 

prerequisite to disparate LC-MS alignment.  

 Chromatographic mapping steps in metabCombiner projected the highly separated 

modified conditions retention space onto the narrower conventional conditions RTs. To improve 

RT mapping performance, identifications from the modified separation feature lists were capped 

at 99 and 64 min for RPLC & HILIC data, respectively, since highly retained compounds could 

not be effectively mapped to features under conventional conditions without spline fit distortions 

in the tail chromatographic region. Conventional conditions feature lists were capped at 19 and  

15 minutes for RPLC & HILIC, respectively, and features eluting before 0.5 min were removed. 

Images of the mappings for the RPLC and HILIC experiments are shown in Figure 4.3. 

 Using the weighted scoring metric which considers m/z, RT alignment, and relative 

abundance differences, metabCombiner determines the most likely feature matches between the 

long and short length LC-MS conditions. Table 4.1 summarizes the number of identified 

compounds mapped to the shorter method for the RPLC and HILIC experiments.  

(A)  (B)  

Figure 4.3 Modified and Conventional Conditions LC-MS RT Mapping (A) RPLC (B) HILIC 

fitted 
 

excluded 
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High-to-moderate-confidence alignments were achieved for 68.0% of the newly identified MSI2 

features (calculated as HILIC high and moderate-confidence features + RPLC high and 

moderate-confidence features / total feature count).  Many HPU features from the HILIC and  

RPLC data sets were also successfully mapped to the high-throughput MS1 runs (63.8 and 

65.8%), allowing for quantification of these compounds using conventional LC-MS conditions 

while orthogonal identification approaches are considered. Identified compounds and HPUs that 

could not be accurately aligned to a feature in the conventional length LC-MS dataset either 

lacked any features within close m/z proximity, had all alignments rejected due to weighted 

scores lower than 0.5 and/or pairwise score ranks higher than 3, falling into filtered 

chromatographic regions, missing from two or three samples (HILIC only), or the compound 

could not be detected by MZMine2 at the given m/z and RT within MS1 data. 

 Figure 4.4 below shows an example pair of EICs from the conventional and modified 

RPLC-MS conditions. metabCombiner accurately matched two peaks eluting at 11.7 and 76.5 

minutes, respectively, which were eventually confirmed to be 2-acetyl-1-alkyl-sn-glycero-3-

phosphocholine through manual spectral review. This showcases how exhaustively curated 

identities can be extrapolated between datasets with as much as five-to-ten-fold differences in 

Table 4.1 Modified to Conventional LC-MS Conditions Alignment Results 
HILIC RPLC

Description Total Known HQU Total Known HQU

Initial List of Unique IDs 1025 449 576 2634 1885 749

Unique IDs not assigned to any MS1 peak 25 9 16 32 21 11

Unique IDs Filtered by RT 2 2 0 296 196 100

Unique IDs filtered by Missingness (HILIC only) 11 3 8 N/A N/A N/A

Unique IDs Present after initial filters 987 435 552 2306 1668 638

Unique IDs with no m/z matches 101 37 64 135 93 42

Unique IDs with rejected alignments 190 55 135 434 331 103

Unique IDs with moderate-confidence alignments 202 91 111 543 379 164

Unique IDs with at least one high-scoring match 494 252 242 1194 865 329

HPU HPU 
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total liquid chromatography lengths. However, it is notable that the effects of increased sample 

loading or reduced ionization suppression from better separation resulted in intensity shifts 

between modified and conventional conditions, which is demonstrated by the leftmost peaks (11 

- 11.5 minutes in conventional LC, 70-75 minutes in modified LC). This suggests further 

weaknesses in relative abundance comparisons as differences in LC variables may result in 

substantial changes in the quantitation of various metabolite species. 

4.3.7 Discussion 

 

 This study demonstrates the potential to substantially improve identification rates in 

routine metabolomics studies using altered chromatographic protocols coupled to disparate LC-

MS alignment. As this study shows, major differences exist between LC parameters favoring 

quantification versus compound identification. Quantification requires moderate-to-fast run 

times and adequate specimen amounts to permit large scale biological sample analysis without 

saturating the detector, whereas greater sample amounts, longer total chromatography times, and 

iterative acquisition yielded a roughly nine-fold increase in identifications over conventional 

conditions. Disparate LC-MS alignment is essential for translating the benefits of optimized LC-

MS conditions to routine metabolite profiling experiments, with the majority of identified 

compounds matching unknown features in conventional conditions data with moderate to high 

confidence. This generates hundreds of new annotation hypotheses for subsequent validation in 

follow-up experimentation. 

Figure 4.4 Example Conventional vs Modified Conditions EIC Comparison m/z ~ 546.35 for (A) 

conventional & (B) modified conditions. 
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4.4 Inter-laboratory Study of Unknown Lipids in Untargeted Lipidomics Data 
 

4.4.1 Background 
 

 Lipids are among the most complex and structurally diverse compound classes found in 

organisms. According to some estimates, the number of distinct lipid structures in mammalian 

cells may number in the hundreds of thousands,209 more than the endogenous metabolome 

(consisting of amino acids, carbohydrates, and nucleic acids) combined.210 The Lipid Maps 

classification system divides lipids into eight categories, each with their own subclassifications: 

fatty acyls, fatty acyls, glycerolipids, sphingolipids glycerophospholipids, saccharolipids; and 

sterol lipids and prenol lipids.211,212 Lipids are crucial components of cellular membranes and 

play essential roles in signaling and energy storage, among other critical functions.213 

Concentrations of lipids are wide-ranging and highly dynamic, changing with physiological, 

pathological, and environmental conditions. Given their significance, efforts are underway to 

comprehensively map the lipidome, or all lipids that may be present in biological specimens. 

 Multiple software tools, databases and other resources have been developed for assisting 

lipidomics identification. LipidMaps contains a structure database with 47454 known lipid 

entities in total (as of 04/22), as well as tools for aiding mass spectrometry-focused identification 

and statistical analysis.115 The LipidBlast in-silico mass spectral library contains computer-

generated fragmentation spectra for over 100,000 lipids, spanning dozens of classes and 

belonging to mammalian, plant, bacterial and other organisms.207 Software packages such as 

Lipid Annotator,214 LipidMS,215 Greazy,216 Lipidex,217 and LipidHunter218 apply algorithms for 

confident identification in experimental LC-MS/MS spectral data. Several inter-laboratory and 

multi-instrument investigations have been reported for harmonizing lipidomics datasets or 

determining the consistency of lipidomics measurements. For example, Bowden et al. (2017) 
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details a study among 31 laboratories of NIST SRM 1950, a plasma reference material, 

identifying 1527 unique lipids in total across all laboratories, with measurement estimates and 

uncertainties assigned for a subset of commonly detected lipids.219 Cajka et al. (2017) 

investigated the quantitative performance of nine mass spectrometers in measuring human 

plasma lipids220 and Spanier et al. (2021) compared lipid profiles of C. elegans in four separate 

laboratories.221 The focus of these investigations was lipid quantitation, with an exclusive focus 

on shared known compounds and with identical samples, sample preparation procedures, 

chromatography conditions, and data processing steps. No inter-laboratory collaborative 

identification efforts for unknown and unidentified lipids have been reported to date. 

 This section describes the results of an inter-laboratory study conducted by four NIH 

Compound Identification Development Cores (CIDC), assessing the reproducibility of 

lipidomics measurements in multiple specimens (plasma, liver, brain, heart, and muscle). The 

primary goals of this consortium-wide investigation are to determine the extent of detected 

compound overlap between different laboratories, as well as consensus annotations and common 

unidentified features to prioritize for in-depth lipid identification efforts. Accomplishing these 

tasks required the disparate multi-dataset alignment functionality of metabCombiner to compare 

datasets that were acquired using distinct lipidomics protocols employed by each institution. 

After aligning the datasets, the extent of feature overlap and annotation agreement was assessed 

between the four institutional participants. 

4.4.2 Methods 

 Hereafter, the four institutions taking part in this inter-laboratory study and their 

respective datasets are designated as "I", "II", "III", and "IV". Each received NIST1950 reference 

human plasma along with three additional pooled plasma samples representing diverse 
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populations; human skeletal muscle extract prepared from a bulk pool of frozen tissues from 

deidentified human donors; bovine heart and liver total lipid extracts, porcine brain total lipid 

extracts, and UltimateSplash ONE lipid internal standard mixture from Avanti Polar Lipids 

(Alabaster, AL). Plasma and muscle samples prepared by liquid-liquid extraction and tissue total 

lipid extracts (heart, liver, brain) were mixed with the internal standard compounds and 

transferred to autosampler vials.  

 Each laboratory performed untargeted LC-MS/MS analyses on all samples, once using a 

"common method" protocol and once using individualized "in-house" standard operating 

procedures that each laboratory typically performs for untargeted lipidomics. The analysis 

described here focuses on the in-house data in the positive and negative ionization modes, which 

harbor greater between-dataset disparities than the common pipeline data. Laboratories 

employed different plasma lipid extraction methods, mass spectrometers, liquid chromatographic 

columns, instruments, and gradient elution methods to profile lipids from the five specimen 

types. In addition, each laboratory separately performed data pre-processing and compound 

identification workflows, with a focus on MS1 peaks that yielded MS/MS spectra.  

 The four preprocessed tables per ionization mode were aligned with metabCombiner, 

using the stepwise multi-dataset alignment framework. Sample measurement columns 

corresponding to one chosen specimen type (plasma) were used for relative quantitation (Q) 

comparisons between datasets, with the remaining sample columns designated as "extra" in the 

initial data processing step. Each table was filtered based on RT constraints, percent missingness, 

and duplicate m/z & RT criteria. Datasets I and II were aligned and merged first, then the result 

of this process is aligned to dataset III, followed by IV. In each cycle, 'primary' dataset I was the 

designated "X" data counterpart and its numerical feature descriptors (m/z, RT, Q) were selected 
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for pairwise comparisons with features of 'target' datasets II, III, and IV. At the start of each 

alignment cycle, the m/z grouping step generated lists of potential feature matches using a 

common binGap value of 0.0075 Da. Different parameter values for anchor selection, RT 

projection model fitting, feature pair scoring, and table reduction were used in each cycle, with 

guidance from the fit images. Features lacking complementary matches in pairwise alignments 

were recovered at the end of every metabCombiner workflow cycle and joined with the 

remaining matched features. Only features present in I could be aligned across multiple datasets 

under this formulation; features absent in I and detected in one of the target datasets are 

displayed in the results as unmatched entities 

 Once aligned, the extent of overlap between the four tables is assessed for all features and 

the subset of matching compound identities. Full aligned feature overlap counts are based on 

analytes detected in primary dataset I. Features present in the target datasets but not I are counted 

as found in one dataset only. Identities were considered equivalent if the lipid class, number of 

carbons, and double bonds matched between tables (e.g. TG 56:2), although multiple isomers 

may be detected in the datasets with the same annotation. Intermediate results generated after 

every alignment step were inspected to determine the degree of overlap between dataset pairs. 

4.4.3 Results 

 Initial and processed feature counts for all four datasets in both ionization modes are 

displayed in Table 4.2. Initial table sizes range from 3819 to 29900 features in the positive mode 

and 2262 to 14865 in the negative mode. Dataset I contains a long chromatographic tail region 

between 14 and 20 minutes consisting of features that couldn't be mapped to other target dataset 

features, thus a RT filter was set with a cutoff of 14 minutes to obtain better RT projection 

results. The missingness filter excised a considerable fraction of datasets I and IV, and at most 
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hundreds of duplicates were detected and removed. The remaining counts were 3809 to 24905 

and 2247 to 8935 for positive and negative mode datasets, respectively. Pre-processing software 

and associated parameters used by each laboratory is a significant determinant of resulting table 

sizes, with open-source software, such as MZMine2 and XCMS, generating higher initial feature 

counts than vendor software (Agilent Profinder).  

 Chromatographic RT mapping images computed by metabCombiner are illustrated in 

Figure 4.5 for both ionization modes. Three stepwise alignments were performed between 

primary dataset I and targets II (Figure 4.5 A and D), III (Figure 4.5 B and E), and IV (Figure 

4.5 C and F). Generally, the early portions of the gradient are well-mapped based on the 

locations of the anchors with respect to the computed curves, whereas ordered pair selection and 

spline fitting appears to be less informative in the later chromatogram. Inspection of features in 

the later chromatogram of dataset I reveals mostly poorly resolved and excessively wide peaks 

resembling background ions, which is the likely cause of these observations. 

  Table 4.3 summarizes the total count of features found in one, two, three, or all four 

datasets in this analysis. Surprisingly, only 470 positive mode and 186 negative mode features 

were discovered in common across all four lipidomics assays. In the pairwise alignment, a total 

of 1208, 2090, and 2215 features were found in common between I & II, I & III, and I & IV, 

respectively, in the positive mode; in the negative mode, the totals come to 603, 1219, and 1537 

Table 4.2 Inter-laboratory Lipidomics Study Initial and Processed Feature Counts 

Mode Dataset Initial Feature Count RT Filter Missingness Filter Duplicate Feature Filter Final Feature Count

POS

I 15004 320 4088 211 10385

II 3819 0 0 10 3809

III 27289 0 2278 106 24905

IV 29900 17 10508 6 19369

NEG

I 10962 1224 2774 161 6799

II 2262 0 0 15 2247

III 7643 0 315 20 7308

IV 14865 155 5774 1 8935



 

 

 

 

116 

 

matched features. A closer inspection reveals that 60% or more features in each of the target 

datasets lacked a counterpart within close m/z proximity to primary dataset I, which is a major 

contributor to the lower than anticipated intersection rate. Differences in experimental and pre-

processing parameters, imbalances in the separation of isomers and high m/z or RT fitting errors 

for some compounds may also contribute to these findings.  

 Comparisons of annotations for aligned features revealed mostly commonalities with 

very few mismatched identities. Figure 4.6 shows Venn diagrams of shared and unique lipid 

identifications for positive and negative mode features. The list of 55 aligned positive mode 

features with identity agreement across all datasets includes 16 Phosphatidylcholines (PC), 5 

triacylglycerides (TAG), 12 sphingomyelins (SM), and 6 phosphoethanolamines (PE) in the 

positive mode; 11 out of 16 identically named aligned features in the negative mode were PEs.  

Figure 4.5 RT Projection Model Fits for Inter-laboratory Lipidomics Study Pairwise mappings in both 

ionization modes for I vs II (A & D), I vs III (B & E), and I vs IV (C & F).  
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The four laboratories had varying annotation rates, with laboratory II assigning at higher rates 

(per total feature count) and IV identifying the fewest. Those found in only one target dataset 

include features with no alignments to dataset I features as well as features that are mapped to 

other unidentified features. Based on the alignment results, at least 159 positive mode and 70 

negative mode unannotated dataset I features can be putatively assigned using identifications 

shared by two or more target datasets outside of I. In terms of mismatched identities, most were 

annotated as the same lipid class but with differing carbon numbers (negative mode) or they 

conflicted in assigning PC and PE lipids of similar mass (positive mode). For many features 

whose identities are mismatched between pairs of laboratory datasets, a consensus annotation 

could be imposed if two or three of the other laboratories came to the same conclusion. 

4.4.4 Discussion  

 This study demonstrates that differences in analytical and computational parameters 

between laboratories drive substantial disparities in coverage of detected lipids. At most 5-10% 

of all primary dataset features could be found across the three target datasets, with most analytes 

Table 4.3 Inter-laboratory Lipidomics Study Aligned Feature Summary

Positive Negative

Detected across 4 Datasets 470 186

Detected in I, II, & III 148 39

Detected in I, II, and IV 335 140

Detected in I, III, and IV 507 503

Detected in I and II 255 238

Detected in I and III 965 491

Detected in I & IV 903 708

Detected in I only 6802 4494

Total II III IV Total II III IV

Detected Outside I 42570 2601 22815 17154 15131 1644 6089 7398
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lacking any corresponding matches. Whether these non-aligned features are derived from unique  

lipids, non-biological artifacts or shared lipids that failed to meet metabCombiner cut-offs 

requires further investigation. Nevertheless, coupling multiple structure elucidation methods 

performed by multiple institutions and disparate LC-MS alignment with metabCombiner is a 

powerful strategy to improving identification rates in lipidomics studies. Merging inter-

laboratory study data derives plentiful information, including the generation of hundreds of 

consensus lipid annotations, hypothesized identifications for unidentified features in both 

ionization modes, and a short list of aligned unknown features for further investigation.  

4.5 Conclusion 

 Structure elucidation is the most significant obstacle to obtaining a full understanding of 

large-scale metabolic changes in organisms. Differences in experimental protocols between 

institutions and the relatively poor reproducibility of LC-MS magnify this problem by forming a 

critical barrier to information transferability between acquired datasets. In this chapter, the 

benefits of disparate LC-MS alignment are explored in three studies where computational and 

experimental approaches, such as MS/MS library searches, authentic compound standards, in 

silico databases, LC gradient and sample loading optimizations, and inter-laboratory 

Figure 4.6 Venn Diagrams of Identified Lipids Intersections imply the numbers of features that are both 

aligned and named identically (class and double bond definition) in (A) positive and (B) negative mode datasets. 
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comparisons were applied with the aim of increasing metabolite identification rates in diverse 

specimens. In all three scenarios, metabCombiner mapped hundreds of identifications to 

unidentified features in a new dataset, with minimal duplication of exhaustive, time-consuming 

efforts. While comprehensive identification of all detectable metabolites remains a daunting 

challenge for the field, incorporating alignment for the discovery of common analytes acquired 

under non-identical conditions can efficiently determine "known unknowns" and prioritize true 

unknowns for additional follow-up experimental investigation. 
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Chapter 5 

 

Applications of Disparate LC-MS Alignment to 

Bioinformatics Analysis 
 

5.1 Introduction 
 

 For most metabolomics studies, the ultimate objective is to discover metabolites that 

distinguish samples from two or more experimental groups or populations, define novel 

diagnostic and prognostic biomarkers of specific phenotypes, and elucidate mechanisms 

underlying complex physiological events. Like other high-throughput -omics assays, metabolite 

profiling generates datasets containing thousands of measured variables, and therefore require 

sufficient sample sizes to perform well-powered statistical analyses.222 For large-scale 

experiments involving hundreds or thousands of samples, the data must be acquired in multiple 

batches, preferably within a short period of time to minimize differences in analytical conditions 

between batch runs. In some cases, long time intervals may elapse between batch analyses or 

protocols may be altered between experimental subsets analyzed within one or multiple 

laboratories. Non-biological systematic and random variations are routinely observed in signal 

acquisition and chromatographic RT measurements in large-scale metabolomics studies;178 this 

unwanted variability is compounded when the data are acquired under non-identical conditions. 

The consequences for measured RTs were discussed previously in section 3.1.  

 Overcoming signal intensity variation in the form of intra-batch, inter-batch, and inter-

experiment effects is critical for obtaining accurate results from statistical and bioinformatics 

analyses applied to LC-MS metabolomics datasets. Signal drift is observed within LC-MS 
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batches due to changes in instrumental response throughout the course of a batch analysis 

resulting from the build-up of residues that cannot be fully removed during the detection 

process.223 Additionally, inter-batch and inter-experiment effects may be caused by temperature 

changes, reagents lots, experimental operators, the condition of the LC column, differences in 

batch preparation, sample handling, and other latent environmental or technical factors.224  

 Common strategies for managing sample to sample variation within a batch typically 

involve nonlinear modeling of signal drift within quality control (QC) samples as a function of 

the order in which samples are analyzed. Quality controls have similar matrix compositions to 

biological samples as they are usually obtained by pooling aliquots from all subjects, and 

theoretically their feature abundance measurements should be the same regardless of run order or 

batch.178 Modeling approaches used for these analyses include LOESS,72 support vector 

regression,73 and Random Forests,225 after which experimental sample intensities are normalized 

to interpolated values predicted by the model. Inter-batch effects correction would then 

normalize to the median or mean QC sample values of each batch, bringing the values to a 

common scale. The principal drawback of these methods is that overfitting may occur if QCs do 

not sufficiently represent subject samples,226 which may be observed for many metabolites.  

 Well-known batch effects removal methods designed for other high-throughput omics 

data have been adapted to metabolomics with reasonable results. Location-scale methods, such 

as centering, scaling, and quantile normalization, assume that metabolite abundances in different 

batches follow a similar distribution. The popular ComBat method for batch effects removal 

based on Empirical Bayes is a standard approach that has been used for many multi-batch 

metabolomics studies.227 These methods are not recommended for use in multi-batch 

metabolomics studies in which sample groups are not evenly distributed between the batches. 
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Since they are not specifically designed for the intricacies of metabolomics data, such as 

variation due to sample order, they should be combined with methods for intra-batch corrections. 

Another class of methods uses matrix factorization approaches, such as Independent Component 

Analysis (ICA)228 or singular vector decomposition.229 A notable method called WaveICA 

performs Discrete Wavelet Transforms (DWT) to decompose sample metabolomics values 

(arranged by run order) into different frequencies based on biological and technical variability, 

followed by Independent Component Analysis to eliminate components associated with batch 

effects, then inverse DWT to return to the original scale.223 This method is attuned to the specific 

design of metabolomics experiments and performs superior to most methods for batch 

normalization; one drawback is that the method assumes lower-frequency signal between 

samples is due to temporal drifts, whereas some biological variation may be represented (i.e. if 

metabolite sample groups are analyzed in a non-random order) and thus lost if the low 

frequencies are removed. Other emerging methods, such as TIGER230 and NormAE,231 use 

neural network architectures for batch effects removal. Batch effect removal approaches are 

typically designed for and applied to multi-batch experiments where practitioners attempt to 

replicate conditions as much as possible between batches. Since few tools have been previously 

developed for aligning disparately acquired data, problems associated with untargeted LC-MS 

metabolomics datasets merged from multiple experiments have not been fully explored.  

 This chapter describes two studies for which experimental sample subsets were obtained 

under non-identical conditions. In the first study, the plasma metabolome of volunteers with 

amyotrophic lateral sclerosis (ALS) was compared to healthy controls to identify significant 

metabolic dysregulation associated with the disease. Second, maternal plasma metabolite levels 

were measured at the first and third trimesters of gestation, as well as those of umbilical cord 
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blood. Data analysis for these studies outlines a procedure for extracting biological insights from 

the multiple merged experimental datasets, where strategies for normalization to overcome 

significant non-biological variation were addressed, followed by differential and partial 

correlation network analyses. 

5.2 Metabolomics Identifies Dysregulation in Amyotrophic Lateral Sclerosis 

Cohorts 
 

5.2.1 Background 

 Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease,232 

with no known effective cure or treatments. Its pathogenesis is complex and influenced by 

genetic,233 epigenetic,234 and environmental235,236 factors. Metabolomics provides a readout of 

metabolic dysregulation caused by internal and external factors, is useful for investigating 

complex diseases arising in ALS and other diseases. For example, studies of oxidized 

metabolites, such as nitric oxide, its toxic metabolite, peroxynitrite,237 and oxidized lipids238 in 

ALS patients identified oxidative stress as a disease characteristic. Multiple studies have 

employed untargeted metabolomics to identify metabolic differences between ALS versus 

control subjects, uncovering dysregulated pathways,239–241 such as lipid,240,242,243 amino 

acid,240,244–246 and polyamine244 metabolism. However, most previous studies were limited in 

sample size or metabolite count.  

 This section describes a study employing a commercial untargeted metabolomics 

platform to yield insights into ALS mechanisms.247 Plasma metabolite profiles were obtained 

roughly one year apart from two independent cohorts consisting of ALS and healthy control 

subjects, with the goal of identifying consistent disease biomarkers and mechanisms between the 

cohorts. Measurements of metabolites common to both datasets were combined to perform 

differential network enrichment analysis (DNEA) with sufficient statistical power, uncovering 
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data-driven modules of correlated metabolites associated with the disease. Multiple data filtering 

and normalization steps were necessary to remove non-biological variation arising from latent 

experimental factors and confounding variables. This study serves to illustrate the benefits and 

challenges of analyzing metabolomics datasets merged from separate cohorts. 

5.2.2 Methods 

 ALS patients older than 18 years were recruited at the University of Michigan Pranger 

ALS Clinic.236,248 Control participants were also recruited through the University of Michigan 

Institute for Clinical and Health Research. Participants' age, sex, height, and weight were 

recorded, and ALS features were obtained from medical records. Participants' plasma was 

obtained through peripheral venipuncture, centrifuged at 2000g for 10 min at 4ºC, aliquoted into 

cryovials, and stored at -80 ºC. Metabolomics profiling of plasma samples was performed by 

Metabolon (Durham, North Carolina), using multiple semi-untargeted LC-MS/MS assays.249 

Metabolites were extracted and analyzed by RPLC, in both negative and positive ion modes, and 

HILIC. Metabolites were identified by Metabolon by comparing retention time/index, m/z, and 

fragmentation spectra with authentic standards. Importantly, only named metabolites are 

provided in data reports, with no m/z, RT, or unknown compound information that could be used 

for disparate LC-MS alignment analysis with metabCombiner.  

 For this analysis, only controls and case subjects whose diagnoses are listed as ALS or 

ALS/FTD (frontotemporal dementia) are included for analysis. This retains 196 subjects from 

cohort 1 (71 controls, 125 cases) and 328 subjects from cohort 2 (104 controls, 224 cases). For 

ALS patients, only the plasma sample from the initial visit is included, excluding additional 

measurements for subjects who participated in follow-up visits. Alignment between datasets is 

achieved trivially by matching features from the two cohort datasets based on matching 
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compound identifiers, as defined by Metabolon. A total of 954 compounds were found in 

common between the datasets, 101 of which were removed as drug-related metabolites not of 

interest to this workflow. Metabolites missing in over >20% of samples in one or both cohort 

datasets were excluded from further analysis, leaving a total of 640 remaining metabolites. 

Remaining missing abundance values were imputed with the cohort-specific minimum for the 

respective metabolites, followed by log-transformation of all quantities. 

 Inter-cohort batch effects were assessed using principal components analysis (PCA). For 

each dataset separately, metabolites were linearly adjusted for age, sex, and BMI. Fifteen 

missing BMI values were imputed using linear models based on the top 13 and 23 metabolites 

from cohort 1 and cohort 2, respectively, which correlated most strongly with BMI. After 

adjustment, metabolomics values from the two cohorts were separately Z-scaled (mean centered 

and scaled by the standard deviation) to obtain N(0,1) distributions for each metabolite. The 

adjusted and normalized datasets from the two original and replication cohorts were then re-

assembled into the merged dataset. 

 DNEA was employed to identify metabolite subnetworks that differentiate ALS from 

control samples.129,130 Due to an imbalance in the number of samples in ALS versus control 

groups, a subsampling procedure coupled with PCN estimation to obtain robust network edges 

was used, as previously described.130 The network was then clustered into densely-connected 

metabolite subnetworks, followed by enrichment analysis using NetGSA250 which takes into 

account differential metabolite abundances and differences in network structure between cases 

and controls. The results of DNEA consist of subnetworks and their respective p-values and false 

discovery rate (FDR)-adjusted q-values, corresponding to the significance of subnetwork 

changes between ALS versus control groups.  
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5.2.3 Results 

 Figure 5.1 illustrates plots of the combined dataset projected onto the first two principal 

components before and after normalization steps. Panel A shows two homogeneous clouds 

consisting of sample observations from each cohort separately, indicating substantial inter- 

experiment variability. This technical variation is due to latent experimental factors that were 

intentionally or unintentionally changed in the interval between data acquisitions. Without 

additional normalization steps, non-biological batch effects would obscure differences in 

metabolite levels between sample groups. Following covariate adjustment and Z-scaling, PCA 

on the transformed dataset appears to show that the cohort-specific differences are successfully 

resolved, with samples from both cohorts mixed in a non-uniform manner. 

 Differential Network Enrichment Analysis of the merged and normalized multi-cohort 

dataset identified metabolite subnetworks that differentiate ALS from control samples. A total of 

15 different metabolite subnetworks, 9 of which were significantly enriched at the 0.01 FDR 

cutoff. Xenobiotics-related pathways, such as “benzoate metabolism”, “food component/plant 

metabolism”, and “xanthine metabolism”, contributed the greatest number of metabolites to the 

A B 

Figure 5.1 Combined ALS Dataset PCA Plots (A) Pre-normalization (B) Post-Normalization 
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two most significant subnetworks. Energy-related metabolites, including TCA cycle, amino acid 

metabolism, and purine/pyrimidine metabolism, featured in subnetwork 7. It also features 

creatine and its breakdown product creatinine, the two most significantly altered metabolites  

between cases and controls, with creatine elevated in ALS subjects at the expense of creatinine. 

Subnetworks S8 and S9, depicted in Figure 5.2, encompass multiple complex lipid species and 

reveal important sources of metabolic dysregulation, including impairment in sphingomyelin 

metabolism; increases in ceramides and glucosylceramides; higher fatty acid levels; and 

decreases in various phospholipids, including phosphoethanolamines and phosphotidylcholines, 

both of which have roles in signaling, membrane formation, and mitochondrial function. These 

highlight the continued need for research into the complex role played by lipids in ALS 

pathogenesis and progression. Other subnetworks are described in Goutman et al (2022).247 

5.2.4 Discussion 

 A workflow for the merging, normalization, and meta-analysis of two ALS and control 

patient cohorts is performed for extracting deeper biological insights from the combined sample 

set over individual cohort datasets. The framework involves simple data correction approaches 

applied to the two datasets individually, followed by Z-transformation and re-assembly, to obtain 

Figure 5.2 Overview of Lipid Subnetworks Nodes are colored according to the sub-pathways, as shown in the 

figure legends. Node sizes correspond to the directional changes of metabolites in ALS compared to controls. 
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a normalized dataset amenable to statistical approaches. The increased sample size and reduction 

of metabolite count provided a manageable sample to metabolite ratio, amenable to DNEA. The 

results of DNEA show substantial changes in lipid metabolism, xenobiotic, primary metabolism, 

and creatine/creatinine along with other large-scale metabolic changes associated with ALS. 

Limitations of this analysis include the inability to assess the effect of sample order or the m/z 

and RTs of unknown compounds as this information was not available; a noted sex imbalance 

between the two cohorts, featuring disproportionately more female controls in the second cohort; 

and non-fasting ALS individuals may have introduced confounding factors that cannot be 

accounted for. Overall, this study shows that merging metabolomics datasets could shed 

additional light on clinical applications, provided that appropriate measures are taken to 

overcome sources of technical variability from inter-cohort effects.    

5.3 Alignment and Analysis of a Disparately Acquired Multi-Batch 

Metabolomics Study of Maternal Pregnancy Samples 
 

5.3.1 Background  

 

 Major metabolic changes occur throughout pregnancy to enable mothers adequate 

nutrients to support infant development, affecting the long-term health of the newborn.251 In 

recent years, profiling of small molecular weight compounds in a biological sample by 

metabolomics has been used to obtain an objective measurement of the metabolic environment to 

which the developing fetus is exposed. Metabolomics has been applied in multiple 

developmental studies to identify changes in nutrient availability across pregnancy.252–255 For 

example, a targeted metabolomics study showed increases in long-chain fatty acids (FFA) and 

long-chain acylcarnitines (AC) in maternal plasma from the first trimester to term,254 reflecting 

increases in lipolysis in late-gestation to fuel fetal growth. Maternal metabolite levels, placental 

transfer, and metabolite interactions can affect the relative levels of the umbilical cord blood 
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(CB) metabolome.256,257  Using a lipidomics platform, changes in 573 lipid species, including 

phospholipid, ceramide (CER), cholesteryl ester (CE), and triglyceride (TG) levels, were 

recorded for 106 mother-infant pairs throughout pregnancy.251 DNEA revealed fluctuating 

correlations among lipid groups and compound class-specific associations with infant 

birthweight at different time points.130 An untargeted metabolomics study was performed on the 

first trimester maternal plasma (M1), delivery maternal plasma (M3), and umbilical cord blood 

(CB) for the same mother-infant pairs as the lipidomics. A subset of these samples was analyzed 

in 2016, whereas the remaining data was acquired by the same laboratory in 2019, but with a 

different chromatography system, mass spectrometer, and experimental protocol, introducing 

many challenges to joint analysis of the full sample set.  Here, a framework is presented for 

enabling disparately acquired multi-batch data analysis which consists of alignment steps to 

assemble the two experimental subsets into a single table and normalization steps to correct for 

significant inter-experiment and inter-batch variation. Subsequent analysis of the aligned and 

normalized data demonstrated enhanced statistical power to uncover significant changes in 

maternal plasma metabolome between the first trimester (M1) and third trimester (M3), and 

between maternal plasma (M3) and infant umbilical cord plasma (CB).  

5.3.2 Experimental Methods 

 Pregnant women were recruited at the first prenatal appointment to the Michigan Mother 

Infant Pairs (MMIP) cohort. Eligibility criteria for MMIP includes age between 18 and 42 years 

old, had a spontaneously conceived singleton pregnancy, and intended to deliver at the 

University of Michigan Hospital. A subset of mother-infant dyads was selected for untargeted 

metabolomics measures. The initial study visits occurred at 8-14 weeks gestation (M1), where 

participants provided blood samples. Women were recontacted prior to delivery and maternal 
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blood samples (M3) and umbilical cord blood samples (CB) were collected at delivery. 

Characteristics of the study population can be found in Table 1 of the previously published work 

on the lipidomics analysis.1 Mothers were on average 32.1 years at baseline with an average BMI  

of 25.8 kg/m2. The average birth weight was 3.51 kilograms with 51 male and 55 female infants.  

 Two different experimental protocols were performed in this study on distinct sample 

sets, referred to as exp616 & exp946, with most important parameter differences listed in Table 

5.1. ex616 is composed of M1, M3, and CB timepoint samples form 56 mother-infant pairs, 

divided into three batches, whereas ex946 is partitioned into 2 batches consisting of data from 48 

individuals. Sample preparation procedures were largely the same for ex616 & ex946. 100 µL of 

each plasma sample was combined with 400µL Methanol: Acetonitrile: Acetone (1:1:1) 

extraction solvent containing 20 µM of internal standards (L-15N-Anthranalic acid, L-15N2-

Tryptophan, Gibberelic acid, and L-Epibrassinolide) in micro-centrifuge tubes. Samples were 

vortexed for 5 minutes and centrifuged for 10 min at 15000 rpm. 250 µL supernatant was 

transferred to another clean vial, dried under N2 stream, and reconstituted with addition of 100 

µL Methanol: H2O (2:98) containing Zeatin. QCs were prepared differently between 

experiments, with batch-specific pools employed for ex616 versus master pooled aliquots of all 

samples in ex946. Importantly, sample run order was not fully randomized across ex616 as M1  

Table 5.1 Major Experimental Parameter Differences between MMIP Subsets 
Experiment ex616 ex946 

Year of Acquisition 2016 2019 

Number of Subjects (M1, 

M3, CB samples) 

56 48 

Batch Counts 3 2 

Pooled QCs per Batch 10 14 

Pooled QC type batch-specific pools full-experiment pools 

Gradient (min) 

%solvent B 

0-2   2-20  20-22  22-30 1-16 16-20 20 

2%  2 to 75%  75 to 98% 98% 0-99% 99% 1% 

Mass Spectrometer Agilent QTOF 6530  Agilent QTOF 6545 

Ion-source gas temp 325 350 

nebulizer pressure 45 psi 30 psi 

sheath gas temperature 400oC 350oC 

sheath gas flow 12L/min 10L/min 

capillary voltage 4000V 3000V 
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 samples were run as a group towards the beginning or the end of each batch, separately from M3 

and CB samples; by contrast, sample order arrangement was appropriately randomized in ex946.  

 For both experiments, a 1290 Infinity Binary LC system from Agilent is used for LC 

separation together with a Water Acquity UPLC HSS T3 1.8 µm x 100mm column. Mobile 

phase A was 100% water with 0.1% formic acid and mobile phase B was 100% methanol with 

0.1% formic acid. The gradients and total chromatography times differ substantially between 

experiments, as listed in Table 1. An upgraded, more sensitive QTOF mass spectrometer was 

used for ex946, and several spectrometric parameters were altered, but in both experiments full- 

 scan mass spectra were acquired over the range 50-1000 m/z with an acquisition rate 2 spectra/s 

and internal mass correction. Iterative Data Dependent (iDDA) MS/MS analysis was performed 

on pooled plasma in ex946 only. iDDA captures MS/MS in stepwise fashion, with precursor ions 

excluded from MS/MS acquisition at the same RT during subsequent replicate runs. For our 

untargeted platforms, we collect 8 rounds of iDDA at 3 different collision energies (10, 20, and 

40 eV).  Analysis of iDDA spectra using msPepSearch and NIST20 spectral library was 

performed to provide MSI Level II & III identifications for statistically significant features. 

5.3.3 Data Analysis Methods 

 

 The main computational workflow for this study is shown in Figure 5.3. Disparate LC-

MS metabolomics data analysis must first correct for variations in retention times and acquired 

signal abundance values. The alignment steps merge the batch feature lists of each experiment 

into a single cohesive table. The normalization procedure consisted of data filtering, imputation, 

batch effects removal and scaling within each experimental set before re-assembly into the final 

matrix. Data from both experiments were first pre-processed using Agilent Profinder software 

creating separate feature tables for each batch in both ionization modes. Adducts, in-source 
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fragments, and multimer labels were annotated on a representative batch using Binner 1.1.0,171 

and known metabolites were annotated using in-house m/z and RT libraries obtained from 

authentic standards run on either chromatography system. 

 Alignment of metabolomics features between batches and experiments was performed 

using the metabCombiner R package.184 Within metabCombiner, the quality control (QC) 

samples of each batch were selected for relative quantitation comparisons, with normal M1, M3, 

and CB samples designated as "extra" columns. The program filters features missing in over 

50% of each set of batch QC samples before analysis. In each experiment separately, feature 

tables corresponding to each batch were aligned in an iterative and stepwise manner to construct 

batch-merged tables. Subsequently, features from the two non-identically acquired experimental 

tables were overlapped to construct a single table of sample measurements consisting of features 

detected in all batches from the two experiments. Any features missing from over 50% of all 

Figure 5.3 MMIP Study Analytical Workflow (A) alignment steps for merging batch and experimental data, (B) 

normalization steps for removing technical variation including within-experiment missing value handling, batch 

effects correction, Z-transformation, and re-assembly.  
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experimental samples from either ex616 or ex946 were eliminated. For the remaining features, 

the data were log-transformed and missing data imputation applied to feature quantities from the 

two experiments separately, using random-forest based imputation implemented in the 

MissForest R package.63 

 To address the significant technical variation brought on by changes in instrumentation 

and other analytical factors between the experiments, separate approaches for batch effects 

correction were applied to the experimental subsets, attuned to their specific study designs. For 

ex616, which lacks uniform QC samples and contains non-randomness in its sample run order 

assignment, the QC-RLSC method corrects for intra-batch effects by normalizing to LOESS 

curves of feature values from batch QC samples for each individual batch72; then ComBat 

implemented in the sva R package is applied for the removal of inter-batch effects.258 On the 

other hand, intra- & inter-batch effects are simultaneously handled in ex946 with the WaveICA 

method.223 Subsequently, abundance values in both experiments were Z-transformed, followed 

by re-assembly based on the previously determined feature matches. To determine the efficacy of 

this approach, Principal Components Analyses (PCA) and Principal Components Partial R-

Square (PC-PR2)259 analyses were performed. PC-PR2 method combines PCA with multivariate 

linear regressions to express a measure of the proportion of variability explained by variables, 

which are chosen to be experiment, batch, and sample type variables in this application.259  

 Following normalization and re-assembly of aligned datasets, annotations from pre-

alignment steps were harmonized to obtain a list of known and unknown compounds for 

analysis. Metabolites were named when annotated in ex616 or ex946. Annotated adducts, 

fragments, and features derived from internal standard compounds were removed at this stage.  
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 Differential analyses were conducted to compare the metabolite levels of maternal 

plasma at the first and third trimesters (M1 & M3) and the umbilical cord blood (CB). Paired t-

test statistics, p-values, and Bonferroni-adjusted p-values were obtained for the merged 

experimental data as well as ex616 & ex946 separately to determine the consistency of the 

differential features. Thresholds for nominal and statistical significance were set to 0.05 for both 

unadjusted and adjusted p-values. Partial correlation networks were generated with the 

Correlation Calculator program.131 Due  to sample size constraints, only annotated compound 

from aligned negative and positive mode datasets together were included. The resulting networks 

were visualized in Cytoscape260 using Metscape.120 Network nodes represent metabolites, while 

edges represent significant (padj < 0.05) partial correlations.    

5.3.4 Alignment and Normalization Results 

 Experimental alignment consisted of within-batch pre-processing, merging between 

batches of the same experiment, and disparate alignment between experiments using 

Figure 5.4 MMIP Study RT Mapping and Feature Matching (A) Plotted spline fit generated by 

metabCombiner mapping ex616 (30-minute total chromatography) RTs to ex946 (20-minute). (B) 

Selected EIC for the two experiments in m/z range 365.1-365.11 (negative mode), with matching colors 

for identical compounds, as assigned by metabCombiner. 
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metabCombiner. RTs of ex616 (30-minute run) were mapped to ex946 (20-minute run) by 

selecting m/z and abundance quantile (Q)-matched ordered pair anchors through which basis 

splines curves are fit.  RT mapping is shown in Figure 5.4A, alongside a visual confirmation of 

matched features for an example pair of EICs from both experiments (Figure 5.4B). Features 

were reduced in positive and negative ionization mode, beginning with the signal extraction and 

alignment within each batch to the final set of intersected analytes found across all experimental 

batches (Table 5.2). Metabolite alignment steps consisting of initial processing, inter-batch, and 

inter-experimental merging derived 2343 positive and 1583 negative mode features in common. 

These lists were subsequently reduced to 1489 and 1054, respectively, after applying missing 

value and degenerate feature filters.  

 Figure 5.5 illustrates the pre- and post-normalization of features projected onto the first 

two principal components, colored by experimental batch (Figure 5.5A, 5.5C) or sample type 

(Figure 5.5B, 5.5D). PC-PR2 bar plots represent the proportion of overall metabolomics 

variability explained by experiment, batch, and sample type, along with the total variation 

explained by these covariates (R2) (Figure 5.5E-F). In the pre-normalized data, inter-

experimental effects constitute the most significant source of variability, followed by sample 

type and within-experiment batch effects (Figure 5.5E). In the post-normalization data, 

Table 5.2 MMIP Feature Counts from Alignment and Filtering Steps

Ionization Mode Positive Negative

Experiment ex616 ex946 ex616 ex946

Batch number 1 2 3 1 2 1 2 3 1 2

Batch feature counts 8254 7474 7149 16216 13391 4830 4905 5135 9549 8773

Batch-merged feature 
counts

3971 10466
2616

5643

Experiment-merged 
feature counts

2343 1583

Filtered by Missingness 342 202

Degenerate Features 512 327

Annotated and 
Unannotated Features

1489 1054

Annotated Features 199 129
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metabolomics variability arising from experiment and batch effects is eliminated, whereas 

variation due to sample types is largely preserved (Figure 5.5F). After normalization, separation 

is observed between the maternal (M1 and M3) and the CB metabolite levels (Figure 5.5D), 

indicating substantial metabolic differences between mother and infants. These visuals highlight 

the success of the normalization procedure in significantly reducing the influences of non-

biological study variables, while retaining biological differences. 

5.3.5 Bioinformatics Analysis Results 

Using the aligned and normalized data, differential metabolites were identified between 

M1 and M3, which represents the change in the metabolome during gestation, and M3 and CB, 

representing the transfer of metabolites to support fetal development in late gestation and 

maternal-child metabolic differences. Comparing M1 and M3 samples across both experiments, 

32% of aligned positive mode features and 47% of aligned negative mode features changed 

significantly (adjusted p-value < 0.05). Overall, 72% of the significant features increased from 

M1 to M3, demonstrating an increase of metabolite availability later in gestation to support fetal 

Figure 5.5 MMIP Study Pre- & Post-Normalization Plots (A-B) Pre-normalized aligned negative 

mode dataset projected onto the first two principal components, colored by experimental batch and 

sample type. (C-D) PC plot of the post-normalized dataset colored by (c) experimental batch and (D) 

sample type (E-F) PC-PR2 plots generated (E) before and (F) after normalization. 
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growth.261 Of the 968 significantly differential features in both ionization modes, 158 were 

annotated compounds. In a similar comparison M3 and CB timepoints, 64% of aligned positive 

mode features and 73% of aligned negative mode features exhibited significant changes 

(adjusted p-value < 0.05). Overall, 58% of the significant features were higher in CB compared 

to M3. Only 215 of the 1718 differential features were annotated compounds.  

Differential analysis results were compared for the merged metabolomics dataset with 

those obtained from experiment ex616 and ex946 separately. There was an increase in the 

number of significant features in both M3 vs M1 and CB vs M3 for the merged metabolomics 

dataset vs. the experiments separately (Table 5.3A). This illustrates the advantage of increased 

sample sizes obtained by merging experimental data, even when acquired under disparate 

conditions. Among significant differential features found in common between ex616 and ex946, 

the majority changed in the same direction, with 99-100% consistency in M1 vs. M3 and 96-97% 

consistency in CB vs M3 (Table 5.3B).   

 To further analyze observed metabolite changes, a partial correlation network of all 

known compounds was constructed (Figure 5.6) to enable visualization and biological 

interpretation of the data. Long chain free fatty acids (FFA) and lipid species containing long 

chain fatty acids, including diacylglycerides (DG), ceramides (CER), and sphingomyelins (SM) 

Table 5.3 MMIP Differential Analysis Summary (A) number of significantly differential features (Bonferroni adjusted padj< 

0.05) for both timepoint comparisons (M3 vs M1 & CB vs M3) and ionization modes for the combined dataset and subsets 

ex616 & ex946. (B) Comparison of differential results between experimental subsets.  
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largely increased from M1 to M3. The increase of lipid species containing long chain fatty acids 

from M1 to M3 is consistent with previous analyses by using a lipidomics platform,251 

suggesting the mobilization of FFA to support fetal brain development late in gestation.262 

On the other hand, 41% of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipids 

decreased between M1 and M3, most of them polyunsaturated with very-long chains. Many 

medium and long chain acylcarnitines increased between M1 and M3 (AC 10:3, 11:1. 12:1, 14:0, 

14:1, 16:2), consistent with a targeted analysis conducted for a subset of these women254, 

indicating increased reliance on fat metabolism for energy later in gestation.263 Decreases in 

essential amino acids were observed across pregnancy, including tryptophan and BCAA 

metabolites (ketoleucine, AC 4:0, and AC 5:1), consistent with other cohorts,253 as protein 

anabolism is favored during pregnancy.264  Cortisol and 11-deoxycortisol increased between M1 

and M3, probably due to collection of M3 samples during parturition.251 MS/MS library searches 

applied to the top 50 most significantly differential unnamed features between M1 and M3 in 

both ionization modes, using NIST Hybrid Search200 and the NIST20 library. Top matches for 

Figure 5.6 Partial Correlation Network Constructed from MMIP Metabolomics Data Nodes represent 

metabolites and edges represent computed partial correlations. Significant metabolites (q-value <0.05) have 

bold borders and node colors are based on t-statistics (A. M3 vs. M1. B. CB vs M3).  The dotted lines outline 

subnetworks that include metabolites from different chemical classes. 
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most of these searches consisted of steroids and their associated sulfidated and glucuronidated 

modifications. The top feature (adjusted p = 3.3e-52) in the negative ionization mode, (m/z = 

463.1967 Da, RT = 6.64 min in ex946) returns a match to estriol-16-glucoronide, a 

glucosiduronic acid metabolite of estriol that has been previously isolated in the urine and 

amniotic fluid of mothers during pregnancy.265,266 Other matches include epiandrosterone sulfate, 

testosterone glucoronide, 7,17-dimethyl-5-androstane-3,17-diol glucuronide, and 5α-

pregnane-3α,17α-diol-20-one 3-sulfate. Increases in steroids were previously demonstrated 

during pregnancy to promote fetal and placenta development and ultimately parturition.267   

 Limited trends were observed from phospholipids, lysophospholipids, and 

diacylglycerols, apart from several long-chain monounsaturated and polyunsaturated PCs and 

PEs being elevated in CB. Cord blood levels of amino acids were consistently higher than M3, 

including branched chain amino acid metabolites, which is consistent with previous studies268 

and with high levels of branched-chain aminotranferases in human placenta tissue.269. 

Methionine, a major contributor to one carbon metabolism and DNA methylation, is higher in 

CB. Fluctuations in bile acids were observed with lower levels in CB of glycochenodeoxycholate 

(primary bile acid), deoxycholate, glycodeoxycholate, glycoursodeoxycholate, ursodeoxycholate 

(secondary bile acids) and higher levels of CB of glycocholate alpha-muricholate (primary bile 

acids), and taurocholate and taurodeoxycholate (secondary bile acids). Hormonal differences 

were observed with higher levels of androsterone sulfate, 11-deoxycortisol, and cortisol in M3 

and higher levels of dehydroepiandrosterone sulfate (DHEA-S), pregnenolone sulfate, 11 beta-

hydroxyandrost-4-ene-3-17-dione, and 17 alpha-20-alpha-dihydroxypregn-4-en-3-one in CB.  

5.3.6 Discussion 
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 This study presents a framework for merging LC-MS metabolomics data and overcoming 

substantial technical variation due to changes in protocols, instrumentation, and analytical 

conditions. Strategies are outlined for the alignment of known and unknown features and 

normalization to remove inter-batch and inter-experiment variation between disparately acquired 

datasets. Multiple analytical factors differed between, ex616 and ex946, two metabolite profiling 

experiments staged 3 years apart. First, a more sensitive QTOF instrument derived substantially 

more extracted features in ex946, hence most extracted signals inevitably lacked one-to-one 

matches within the smaller ex616 table. Second, the shorter total chromatography time in ex946 

caused gaps of up to 13 minutes in measured RTs for identical compounds between experiments. 

Alignment of these extracted feature matrices required mapping between chromatographic RTs 

or bypassing RT comparisons altogether.182 LC-MS metabolomics meta-analysis studies270–272 

and methods273,274 typically require replicated experimental conditions or limit their scope to 

shared known compounds, whereas metabCombiner overcomes this barrier and enables the joint 

analysis of LC-MS data of known and unknown compounds. 

 To normalize the expanded dataset, conventional intra-batch and inter-batch effects 

correction approaches were applied to two untargeted metabolomics experimental sets acquired 

by the same laboratory through different protocols, followed by Z-transformation and re-

assembly of the matched features. This framework requires a similarly balanced study design 

between experimental sets as Z-transform normalization assumes similar abundance 

distributions.223 The composition of M1, M3, CB, and quality control samples is proportionally 

similar between the experiments, though differences in how QC samples were prepared (per-

batch pooled plasma in ex616 vs all ex946 sample pooled plasma) led to the use of alternative 

batch effects correction approaches. Recently, a linear mixed model approach was presented for 
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reducing inter-study variation, demonstrating higher ICC values for shared quantified sample 

measurements among eight pooled targeted metabolomics studies.275 Successfully adapting 

normalization approaches to untargeted metabolomics data pooled from disparate sources may 

require the consideration of additional factors beyond those in targeted metabolomics. 

 Differences in the maternal plasma metabolome (M3 vs. M1) were assessed between the 

maternal and infant plasma (CB vs M3). Given the analytical differences between ex616 and 

ex946, it was important to assess whether merging would enhance differential signal between 

sample groups or dilute it. The results show that the number of significant results increased with 

sample count, and that 96-100% significant changes shared between the two experiments 

occurred in the same direction (increasing or decreasing). Changes that occur in inconsistent 

directions could be indicative of inaccurate alignment between non-identical analytes, improper 

normalization between or within batches, or quantitation inconsistencies arising in the 

experimental or computational pre-processing stages. Statistical analysis of the aligned dataset 

revealed significant metabolic alterations between M1, M3, and CB, including coordinated 

changes observed between the first and third trimesters of gestation as well as infant cord blood 

consistent with previous studies.   

5.4 Conclusion 

 Pooling experimental data between study batches or distinct studies is an emerging area 

of metabolomics research with the goal of increasing sample sizes and, by extension, statistical 

power. The major obstacles to data merging are the high inter-experiment variations in 

chromatographic RTs and signal acquisition. In the two examples described in this chapter, a 

common workflow consisting of alignment, missing value handling, within-experiment batch 

effects removal, and Z-transformation steps was applied to overcome these obstacles. In the ALS 



 

 

 

 

142 

 

study, data merging was achieved through straightforward metabolite ID matching, whereas 

merging the mother-infant pairs experimental data required the disparate LC-MS alignment 

capabilities of metabCombiner. The normalization steps performed in each study reduced inter-

experiment variation in measured signal intensities, enabling analyses of the full sample set using 

statistical and bioinformatics techniques. These studies have similar objectives to differentiate 

between the metabolomes of population groups or timepoints, and in both cases increases in 

significant findings were reported over analyses of individual subsets. These studies benefit from 

having similarly proportional sample group distributions among the merged experiments, a 

requirement for location-scale batch effects removal techniques. It remains to be seen whether 

this framework can enhance metabolomics studies with alternative objectives, such as 

determining statistical associations between metabolite levels and numeric phenotypic outcomes. 

In summary, these studies establish the viability and utility of disparately acquired metabolomics 

data analyses, which have the potential to unlock many opportunities for the field of 

metabolomics that would otherwise be inaccessible through the traditional requirement of 

replicated experimental conditions. 
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Chapter 6 

 

General Conclusions and Future Perspectives 
 

6.1 General Conclusions  

 This dissertation has focused on three specific challenges in the field of computational 

metabolomics - 1) the annotation and reduction of redundant ion species present in pre-processed 

data as distinct features, 2) the alignment of metabolomics measurements corresponding to 

identical compounds measured under non-identical chromatographic and instrumental 

conditions, and 3) the harmonization of merged pooled disparately acquired multi-experimental 

datasets. As previously highlighted, tackling these issues would significantly reduce data 

redundancy, improve compound identification rates, minimize technical variation in compound 

measurements, and generate expanded feature tables with increased sample sizes for increased 

statistical power. To address the first two computational challenges, two new programs were 

developed, namely Binner and metabCombiner. The third challenge was addressed using a 

workflow of alignment and normalization steps designed for merged experiments based on 

study-specific properties. This chapter briefly summarizes the novel features of these new tools 

and the main findings of their applications in compound identification and bioinformatics. 

6.1.1 Deep Annotation and Reduction of Untargeted Metabolomics Data with Binner 

 The standalone application Binner was developed to address the problem of data 

redundancy characterized by the multiplicity of detected ions derived from a common 

metabolite, as described in chapter 2. Binner takes pre-processed metabolomics features and 
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performs retention time binning, pairwise correlation hierarchical clustering, and annotation of 

isotopologues, adducts, fragments, and complexes based on mass relationships centered around 

principal ions. The program computes a distribution of common pairwise mass differences 

among binned features to facilitate the discovery of frequent mass relationships unexplained by 

user-supplied chemical addition or loss groups. Binner outperformed three existing tools in terms 

of adduct and fragment annotation accuracy, with comparable isotopologue annotation and 

metabolite ion grouping performance to CAMERA. With Binner, metabolomics datasets can be 

substantially reduced to the set of features that represent unique metabolites, eliminating 

potential false positive hits in statistical tests. Simultaneously, Binner calculates the underlying 

neutral masses, narrowing the list of possible metabolite identifications. Finally, annotated 

chemical modifications can be useful for validating correspondences between features in 

disparate LC-MS alignment results.  

6.1.2 metabCombiner: Alignment of Disparately Acquired Metabolomics Datasets 

 metabCombiner is a software package implementing a method for aligning metabolomics 

features detected and measured in biologically similar specimens by non-identical LC-MS 

assays. The workflow steps are individual dataset filtering and formatting, grouping possible 

complementary feature matches by m/z proximity, selection of feature pair anchors based on 

high relative abundance or shared identities, retention time projection through spline-fitting, 

pairwise similarity scoring penalizing m/z, projected RT, and abundance quantile (Q) 

differences, and reduction to one-to-one feature matches. The method can be extended to 

multiple experimental results tables, including batches of a single experiment and inter-

laboratory studies, concatenating abundance values of matched features found in each constituent 

dataset to generate a unified table with an augmented sample size. metabCombiner serves as the 
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cornerstone for disparate LC-MS metabolomics data analysis, making it possible to pool data 

from multiple experiments or studies for meta-analysis and enabling feature information transfer 

for known and unknown compounds. 

6.1.3 Applications of Disparate LC-MS Metabolomics Data Analysis 

  Five different applications of disparate LC-MS data alignment were explored in this 

dissertation, the first three aimed to improve metabolite annotation rates and the latter two to 

enhance statistical power in biomedical studies. In each of the first three applications, 

experimental and computational approaches, such as MS/MS library searching, the use of 

authentic standards, in silico database searching, elongated LC gradients, increased sample 

loading, and in-house laboratory methods were applied to one or multiple experimental datasets, 

exhaustively characterizing as many features as possible. Well-characterized target dataset(s) 

were then aligned with data generated in the reference laboratory using metabCombiner, 

transferring hundreds of putative compound identities with considerably less time and effort. In 

the latter two applications, a common framework for correcting inter-batch and inter-

experimental variation in RTs and acquired signal intensities was applied in two studies where 

subsets of samples were separately analyzed at least one year apart. The datasets were merged, 

normalized, and subjected to univariate differential and partial correlation network analyses, 

demonstrating more statistically significant results than with separate experimental subsets alone. 

These applications demonstrate the considerable potential of disparate LC-MS alignment and 

data analysis to augment chemical and biological knowledge, with many untapped opportunities 

from the vast expanse of publicly available metabolomics data.   
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6.2 Future Perspectives 

 The methods described in the preceding chapters for feature table reduction, dataset 

merging, and inter-experimental normalization represent important contributions to the field of 

computational metabolomics.  They were designed to be versatile, accounting for specific 

properties observed in a wide range of LC-MS metabolomics datasets, and with numerous 

options for obtaining the most accurate results depending on data-specific properties and user 

preferences. However, there is considerable room for improvement. Here are some ideas that 

could be explored to improve the quality and performance of these methods. 

6.2.1 Binner   

 One potential area of improvement for Binner is in the RT binning step, which currently 

cannot operate on tightly packed chromatographic regions without reducing the bin gap to a 

value near zero or manually breaking up the feature table into separate files for analysis. A 

heuristic method for accommodating excessively large bins is needed for the tool to handle the 

challenge of increasingly sensitive mass spectrometers and datasets with insufficient separation 

between features. Another area of improvement is the annotation method, which lacks any 

restrictions in terms combining neutral mass multiplicity, charge carriers, and neutral gain or loss 

groups, leading to many questionable annotations based on coincidental mass relationships. A 

procedure for annotating M+2 isotopologues without an M+1 prerequisite (e.g. 37Cl or 34S 

isotopes) should be added to the tool. Addition of prior information, such as compound 

identities, ion charge states, fragmentation information or RT range restrictions can prove useful 

for further improvements of annotation accuracy and reducing inaccurate annotations. 

6.2.2 metabCombiner 
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 Two drawbacks in metabCombiner in its current implementation are its detachment from 

the raw signal and the dependence of its feature matching on specific weights for the three 

parameters (m/z, RT, Q distances). While taking pre-processed tables rather than raw files 

simplifies the process by allowing conventional pre-processing to handle within-experiment 

alignment, the program cannot discern the quality of extracted peaks, often leading to problems 

in determining one-to-one alignments between incongruent spectra. Currently, no uncertainty 

estimates are provided for calculated scores or predicted RTs, and consequently thresholds for 

accepting feature pair alignments are difficult to set for balancing true and false matches. The 

current metabCombiner workflow supports the alignment of two datasets at a time, which 

precludes correspondence determinations for features absent from the chosen projection (X) or 

reference (Y) datasets when applying stepwise alignment procedure. Overcoming this requires an 

appropriate imputation procedure for missing features or otherwise re-designing the workflow to 

handle multiple dataset alignments simultaneously as opposed to dataset pairs. 

6.2.3 Applications of Disparately Aligned LC-MS Metabolomics Data Analysis 

 For metabolite identification studies, similarity scores calculated from m/z, RT, and Q 

differences cannot be considered sufficient evidence of a confident compound identity. 

Incorporation of additional information into the algorithm, such as fragmentation spectra, ion 

mobility collisional cross sections (CCS), isotopic envelopes, or chromatographic shapes may be 

useful for improving confidence in assigned alignments. It is important to perform experimental 

validation of compound annotations, even on a limited scale, to assess the efficacy of 

information transfer.  

 The biomedical studies discussed in this work were similar in that they sought to 

differentiate metabolite levels between groups of samples, and their respective experimental 
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subsets were analyzed within one institution with appropriately balanced sample group 

proportions. Metabolomics applications involving data from multiple studies, acquired in 

separate institutions, using distinct experimental or study designs, measured within subjects 

drawn from dissimilar populations, or planned for statistical investigations other than differential 

analysis may require a different strategy to the ones used in this work. Linear mixed modeling 

approaches may provide an alternative framework for studies in which location-scale methods 

cannot be applied. Research into computational methods for harmonizing untargeted 

metabolomics data pooled from multiple experiments or studies is still in its infancy and must 

evolve with applications of disparate LC-MS data analysis. 

6.3 Final Words 

 Metabolomics is a unique branch in the study of high throughput molecular phenotyping 

with its own opportunities and challenges distinct from the more established genomics and 

proteomics fields. As analytical technologies continue to improve their molecular detection 

capabilities and databases cataloguing known and theoretical metabolites grow alongside public 

data repositories, the field is well-positioned to enrich the collective functional understanding of 

living organisms. The way forward for metabolomics must consist of efforts to close the gap 

between the detected and known metabolome, to discern unique sample-derived metabolites 

from experimental and computational artifacts, and to harmonize data from incongruent 

metabolite profiling assays. This will help generate reproducible conclusions and maximize the 

use of available datasets, tapping into the field's unrealized potential. The work described in this 

dissertation provides important contributions towards achieving this goal, with the hope that they 

will be find wide-ranging applications in metabolomics and related scientific disciplines.  
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