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ABSTRACT

Post-translational modifications (PTMs) govern many processes within cells and understanding 

their function is critical to both the basic and biomedical sciences. However, identifying 

modified peptides, particularly unexpected and rare modifications, remains a challenge to 

proteomics researchers. Recent advances in proteomics search tools have expanded the capacity 

to identify the entire modification landscape in an unbiased way, but the modifications identified 

in this manner—called “open searching”—require extensive post-processing to elucidate their 

identities. In this dissertation, I develop computational methods to characterize and identify 

modifications derived from open searches. 

 

In Chapter Two, I develop a method for comprehensively characterizing open search results, 

PTM-Shepherd, enabling new applications for unbiased PTM discovery. PTM-Shepherd 

automates characterization of PTM profiles detected in open searches based on attributes such as 

amino acid localization, fragmentation spectra similarity, retention time shifts, and relative 

modification rates. I show how open searches can be used to profile experimental artifacts by 

identifying a set of PTMs common across several formalin-fixed paraffin-embedded datasets that 

researchers can include in future analyses, identifying a range of Cys-specific artifacts in a 

commonly used high-quality dataset, finding two previously undescribed PTMs in synthetic 

peptide data and TMT data, and tracing major site-specific PTM batch effects in a multi-

university consortium’s proteomics data back to sample processing. In Chapter Three, I extend 

the algorithm developed in Chapter Two, introducing additional metrics that allow researchers to 

peer into the spectra of PTMs and extract PTM-specific fragmentation patterns and diagnostic 

ions. I find new diagnostic for multiple common PTMs, including identifying new fragmentation 

patterns for glycopeptides under high energy fragmentation, new diagnostic ions for sialic acid 

under high energy fragmentation, and new diagnostic ions and peptide remainder masses for 

ADP-ribosylation, as well as examining general trends in the utility of PTM-specific diagnostic 

features such as the inverse relationship between an ion’s average intensity and its specificity to 
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the modification. In Chapter Four, I expound my methods’ utility by applying it in multiple 

settings to characterize synthetic and chemical PTMs. In each case, I show how these methods 

aid in interpretation of results or increase coverage of the proteome by recovering additional 

modified peptides. For chemoproteomics probes, I demonstrate how expensive isotopic labeling 

to identify fragmentation patterns can be avoided, finding multiple novel diagnostic ions for a 

Cys-specific triazole biotin probe. For RNA crosslinked data, I show how the number of 

recovered identifications increases by up to 50% over existing state of the art methods when 

incorporating fragmentation information discovered by PTM-Shepherd. Finally, for protein-

protein crosslinking, I show how PTM-Shepherd can derive fragmentation patterns for non-

cleavable crosslinkers without computationally expensive or custom workflows, discovering that 

auto crosslinks can be used to identify fragment remainder masses for that can reduce 

computational complexity during searching. 

 

The ability to survey the entire post-translational modification landscape has major implications 

across proteomics subdisciplines. In total, the work described herein represents a major 

milestone in the interpretation of open search results and opens the door to better understandings 

of cellular processes and disease by facilitating new modes of analysis.
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CHAPTER I

Introduction to the Analysis of Post-translational Modifications in Proteomics 

 

1.1 The importance of post-translational modifications 

The central dogma of biology presents a triumvirate of biological molecules that govern all 

aspects of cellular function: DNA is transcribed to RNA which is then translated to proteins1. But 

the regulation of cellular processes is much more complicated than this model suggests. Proteins, 

the workhorses of cells that perform nearly all cellular functions, can undergo extensive co- and 

post-translational modification (PTM) to regulate their activity. Hundreds of biological PTMs 

govern many dynamic interactions between proteins and genomes, transcriptomes, and 

proteomes2, resulting in a vast number of potential proteoforms3. In other words, they play an 

important role at every stage of the protein lifecycle4,5. 

 

For example, N-linked glycosylation, one of the most abundant covalent PTMs in eukaryotic 

organisms, has be found to modify nascent proteins as they are translated. facilitating the 

fundamental process of protein folding6. Most eukaryotic proteins are immediately processed to 

remove their initiator Met7, a PTM correlated with protein half-life8, effectively starting the 

clock on their lifespans. After translation some proteins will sit in an inactive form waiting to be 

triggered--such as by a phosphorylation event--causing events ranging from being transported to 

a different area of the cell9 to starting an oncogenic signal cascade10. Their purpose fulfilled, they 

can then be recycled for parts. The time on the clock that was begun by PTM-induced cleavage 

of the initiator Met, runs out via PTM-induced degradation. The transferring of ubiquitin, a 

protein in its own right, as a PTM can induce a protein’s passage to the proteasome for its 

degradation11. But even as a peptide degrades its modifications play a role; remaining peptides 

from its degradation are sent to cell surface markers, where they interact with immune cells. In 

some cases, the immune system will specifically recognize peptides containing PTMs as markers 

of disease, targeting the host cell for death 12,13.  
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Figure 1-1: Examples of PTMs occurring in bacteria. The diversity of PTMs found in bacteria 

is mirrored in many other organisms. Residues can be subjected to many types of PTMs that 

radically alter their chemistry. Similarly, the same modifications can appear on a variety of 

amino acids. This phenomenon motivates localization algorithms for PTMs. Reprinted by 

permission from Springer Nature Customer Service Centre GmbH: Nature, Nature Microbiology, 

Macek et al. (2019)20, Copyright © 2019, Springer Nature Limited. 

 

PTMs are a fundamental and integral part of the protein lifecycle that participate in protein 

synthesis, folding, signaling, trafficking, degradation and processing, and immune response. 

Characterizing the state of PTMs in proteins across the proteome is thus essential to a wide range 

of basic and translational research. To this end, recent years have seen large-scale efforts to 

augment our ability to identify modified peptides and proteins14-19. Despite this study of PTMs 

still presents challenges to proteomics researchers, with incorporating PTMs into proteome-wide 

analyses remaining a significant obstacle in understanding cell function and disease. In 

particular, the diversity of PTMs (Fig 1-1). that participate in cellular regulation adds 

complications to proteomics analyses. 
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1.2 LC-MS/MS in proteomics 

Mass spectrometry (MS) has emerged as the most popular way to identify proteins at whole-

proteome scales in complex mixtures, such as biological fluids or tissues21. Its workflow is laid 

out in Figure 1-2. The basic principle of MS is that the masses of analytes can be deduced by 

 

Figure 1-2: Outline of a proteomics experiment. Proteomics experiments begin with the extraction 

of proteins from the sample of interest, most commonly a biological tissue. Proteins are digested into 

peptides that generally have basic terminal residues to facilitate ionization. Following this, they might 

be fractionated before being separated using an LC-MS instrument. Ionization and entrance into the 

MS occur after being eluted from the LC. Two layers of mass analysis are done: MS1 on the full 

peptide and MS2 on its characteristic fragments after it has gone through the collision cell. Resultant 

data can be searched with a variety of algorithms to extract peptide sequence, but these methods 

generally fall under either database search or de novo search algorithms. Reprinted with permission 

from Yates (2013)22. Copyright © 2013 American Chemical Society. 
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manipulating ions using electric and/or magnetic fields in a vacuum to determine their mass. 

Analytes’ masses can be measured in many ways, including for example, by observing the 

oscillating image current induced by ions orbiting in an electrostatic trap (for Orbitrap-type 

analyzers) or the time taken for an ion to travel a precisely known distance (for time-of-flight 

mass analyzers), values which depend only on the mass-to-charge ratio (m/z) of the ion23. An 

analyte’s m/z is not always specific enough to identify it, however. Tandem mass spectrometry 

(MS/MS or MS2) solves this by performing multiple rounds of mass analysis to obtain additional 

information about the analyte. After analyzing an intact analyte, the analyte is fragmented, most 

commonly by deliberately colliding the analyte with inert gas molecules, and the resulting 

fragments of the molecule are then mass analyzed themselves. The MS/MS spectrum is a 

molecular fingerprint that provides information about a molecule's substructures24.  

 

Tandem MS facilitates peptide identification by providing sequence information in the MS/MS 

spectrum. Peptides primarily fragment along their backbone, producing fragment ions that can 

indicate the sequence of amino acids in the peptide25. Breakage at the peptide backbone produces 

two complementary molecules corresponding to each terminus of a peptide. When at least one of 

the molecules is charged, it appears as an ion. The repeating structure of the peptide backbone 

means that this process takes place at multiple points in the peptide, with differences between the 

resultant ions corresponding to amino acid masses. Predictable fragmentation pathways therefore 

allow peptide sequence deconvolution, as copies of the peptide will break at different locations26. 

These sequence-informative pathways compete with other fragmentation pathways that do not 

produce sequence information, and peptide sequencing errors can occur due to resulting gaps in 

the sequence ladder or false ions existing at the same (within a tolerance) m/z as predicted ones. 

Ions from secondary fragmentation pathways and co-fragmented peptides can both contribute 

peaks that can be mistakenly interpreted as coming from the peptide sequence, requiring 

advanced processing methods for automated interpretation of peptide tandem mass spectra, 

which will be discussed below. 

 



5 
 
 

 

MS-based proteomics begins with the digestion of proteins into peptides21. Despite losing 

information about a peptide’s proteoform-of-origin, this provides two critical advantages. First, 

smaller analytes are typically easier to ionize and, by choosing proteases that cleave the peptide 

at Lys and Arg, peptides are left with basic C-termini that further enhance ionization21,27. 

Second, it reduces the number of possible peptides to only those with termini corresponding to 

the enzyme used. After digestion, other sample preparation procedures can be done to facilitate 

downstream analysis. These include peptide barcoding such as the addition of isobaric tandem 

mass tags (TMT)28 or chemical proteomics reagents29.  

 

Following this, peptides are typically separated by physicochemical characteristics to reduce 

sample complexity30. In some cases, multiple rounds of separation are employed. A second type 

of separation is done online, connected to the mass spectrometer. Liquid chromatography (LC) 

separates peptides21 based on polarity, with non-polar peptides having the longest retention 

times. Peptides are eluted from the LC directly into the MS via electrospray ionization (ESI), 

giving rise to the term LC-MS. Front-end separation of peptides, and especially multi-step 

fractionation and separation, reduces the number of peptides entering the instrument at once, 

decreasing ion suppression31 and co-fragmentation and increasing sequencing depth. 

 

As peptides are eluted from the LC column, ESI aerosolizes them into charged droplets. The 

droplets enter a vacuum chamber where they evaporate, concentrating the charge into a smaller 

space until the droplet bursts. This continues happening until peptide ions are in the gas phase 

devoid of any solvent. ESI is a “soft ionization” technique, so peptides can take on a range of 

charge states without fragmenting32. Since multiple peptides are often eluted into the mass 

spectrometer at a time, the MS separates ions first based on their m/z and measures the intact 

peptide (MS1). Many copies of the same peptide are also eluted into the MS simultaneously. 

 

At this point, typical proteomics workflows diverge into two groups: data-dependent acquisition 

(DDA) and data-independent acquisition. In the case of DDA, instrument control software will 

check to see if a peptide ion has been analyzed recently, selecting it for MS/MS if it has not33. 



6 
 
 

 

Ion selection for MS/MS is typically performed by an intermediate, low resolution mass 

analyzer, and is less precise than typical MS1 measurements. This leads to multiple peptides 

being selected for fragmentation at the same time if their m/z values are close to each other. 

Depending on the density of peptides in the sample and separation and MS settings, it is possible 

for many, if not most, MS2 spectra to contain multiple co-fragmented peptides. Selecting and 

fragmenting individual peptide ions is a time-consuming process that leads to some peptide ions 

being skipped. DIA analysis remedies this by embracing co-fragmentation34. DIA workflows use 

wide isolation windows to allow many peptides to be fragmented simultaneously. By not 

selecting ions in a data-dependent manner and increasing the ion isolation width, the number of 

ionized peptides fragmented and detected in a DIA MS2 spectrum goes up. Theoretically, this 

allows the recovery of less abundant peptides, but at the cost of increased complexity in the MS2 

spectrum that must be handled computationally. 

 

1.3 Peptide sequencing algorithms identifying modified peptides 

The core of peptide identification is the search algorithm which searches MS/MS spectra for 

peptide sequences. These can be segregated into two camps, although many algorithms 

incorporate elements from both: de novo search algorithms and database search algorithms. De 

novo algorithms, such as SHERENGA35 and PEAKS36, look at the peaks in the spectrum, 

calculate distances between peaks that may correspond to amino acid masses, and compute a 

score for how well a spectrum matches a theoretical peptide. Database search algorithms, such as 

Sequest26 and Comet37, rely on a reference database of protein sequences expected to be in the 

sample. Search engines produce similar outputs regardless of their algorithm38. This is primarily 

a score that measures how well the top peptide hit for a spectrum corresponds to a theoretical 

peptide spectrum derived from the digested reference database spectrum, and a calibrated version 

of that score that is used to compare peptide hits between spectra39. To score peptides from a 

theoretical set of proteins, anything done to the in vitro sample needs to be mirrored in the in 

silico sample. The most obvious of these is digestion of proteins into peptides to create an in 

silico peptide reference database from the protein database. But PTMs must also be included in 
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the search space in order for modified peptides to be recovered. How different algorithms deal 

with this challenge will be the focus of this section. 

 

The most straightforward approach to incorporating PTMs into the search space is including that 

as either fixed or variable (also known as dynamic) modifications during a database search 

(Figure 1-3a). Fixed modifications amount to replacing any amino acid mass with a different 

mass, or adding a mass to any residue of a particular type in the database. Any peptide fragments 

containing the modification site are searched for in the spectrum at a mass equal to the fragment 

plus the modification mass. Only modifications which occur with very high fidelity are generally 

included in this manner—examples include isobaric tags or Cys alkylation—because any peptide 

containing unmodified residues will be missed. Variable modifications function the same way as 

fixed modifications, i.e, shifting peptide fragment ions by the mass of the modification. 

However, this is done in a way such that the reference database contains both modified and 

unmodified versions of the peptide. It has the unfortunate side effect of increasing the size of the 

reference peptide database in a combinatorial manner. When considering a peptide with 10 

possible modification sites and a maximum of 3 modifications per peptide, the database will 

contain (10C3 + 10C2 +10C1 =) 175 copies of the original peptide. Inflating the search space 

like this increases the time complexity of the search and increases the likelihood of matching a 

spectrum by chance, which makes it harder to separate true from false peptide matches40. It is 

also unable to identify peptides bearing modifications that were not specified, creating a 

fundamental trade-off between identifying uncommon modifications and maintaining a 

reasonable search space. 

 

De novo approaches work without a reference database. The MS1 mass is used to generate a list 

of all possible peptide sequences the spectrum could correspond to. They then identify candidate 

fragment ions from the spectrum by looking for common losses from peaks. Once fragment ions 

have been identified, the peptide is sequenced by looking at the distances between peaks in the 

spectrum and checking for corresponding amino acid masses. In some cases, modifications can 

be included in the amino acid list as well41.  
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Tag-based approaches, such as TagRecon42 and PIPI 43, and  have also become increasingly 

popular. This approach straddles the line between de novo searches and database searches. 

Similar to the de novo approach, distances between peaks inform the search engine about the 

amino acids candidate peptides can contain. Rather than trying to directly extract sequence 

information from the spectrum itself, sequence tags spanning multiple residues are used to 

restrict the database search space to only peptides containing those tags. Plus, since the tags 

encode information about the positions of fragment ions relative to each other, they are not 

sensitive to shifts induced by upstream modification sites and are thus modification agnostic. 

 
Figure 1-3: Database search strategies pre- and post-ion indexing. a) Traditional database 

search strategy. Reference proteins are digested in silico, then each spectrum is matched to a 

list of peptides with a potential matching mass before being score individually. b) Ion index 

search strategy. In this strategy, the reference peptide database is indexed for fast access. c) 

Spectra are queried ion-by-ion against the reference database, which is dramatically sped up 

by the indexing process. All peptides with matching precursor masses are queried and 

incremented simultaneously. d) Similarity scores are calculated for each potential PSM for a 

spectrum, then the top hit undergoes score calibration to enable comparisons between scans. 

Reprinted with permission Springer Nature Customer Service Centre GmbH: Nature, Nature 

Methods, Kong et al. (2017)15, Copyright © 2017, Springer Nature Limited. 
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Open searches, or mass-tolerant searches, are a variant of the database search strategy that 

relaxes the error tolerances around peptide masses, producing a mass shift corresponding to the 

deviation between a peptide’s experimental and theoretical masses44. That deviation amounts to 

the sum of all modifications and mutations contained by the peptide. Programs with the ability to 

perform open searches include MSFragger15  and Sequest26. This strategy has increased in 

popularity thanks to improvements in algorithms that have dramatically reduced the computing 

time for database searches by orders of magnitude (Fig 1-3b-d). Because the search space in 

open searches includes “chemically unlikely” space, or spaces that are unlikely to contain any 

modifications, peptides are more likely to be incorrect hits. Mass offset or multi-notch searches45 

rectify this by restricting possible mass deviations to a subset of the modification space that is 

most likely, such as the masses of commonly occurring modifications. 

 

Although the strategies discussed thus far treat modifications as static molecules attached to 

fragmenting peptides, they can also undergo fragmentation themselves. One such example is 

phosphorylation. It can dissociate from the peptide as a neutral species during fragmentation--a 

neutral loss46. Phosphorylation is commonly lost during fragmentation and consequently fails to 

produce intense fragment ions shifted by the mass of the modification that can be identified 

during a standard variable modification search. Some search engines allow modification-specific 

neutral losses to be searched as an additional ion series alongside standard peptide fragments. 

 

In other cases, PTMs undergo much more complex fragmentation than can be captured with this 

method. N-glycosylation exemplifies this, spawning an entire ecosystem of tools designed 

around finding glycopeptide-specific fragmentation patterns47-49. It can produce three distinct 

fragmentation types in addition to fragmentation of the peptide itself, that frustrate traditional 

search algorithms: intact peptide ions with partial glycan attached, peptide fragment ions with 

partial glycans attached, diagnostic ions from the glycan chain with no sequence specificity50. 

Glycopeptide search engines utilize these to score glycopeptides, evaluate glycan composition 

and structure, identify spectra containing glycopeptides, and more. Other modifications, such as 
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ADP-Ribosylation (ADPR), can exhibit the same types of complex modification fragmentation 

and are amenable to similar search techniques51. MSFragger’s labile search mode is general 

enough to accommodate other labile PTMs such as these. This application involves a modified 

mass offset search, wherein additional ion series encode partial modifications attached to intact 

and fragmented peptide ions. 

 

While all these techniques produce roughly the same output about the peptide backbone 

fragments, they do not all provide the same information about the modifications on them. De 

novo and database searches rely on prior knowledge of PTMs before the search, and as a result 

produce output that includes the modification identity and localization (although these can be 

inaccurate). Contrarily, open searches do not. A peptide’s open search excess mass contains no 

information about modification identity or localization. Derivatives of the open search such as 

the mass offset or labile search provide slightly more information about modification identity 

due to the constrained search space, but still no localization information. Open searches are a 

powerful tool for PTM discovery, but interpreting their results can still be challenging. Shedding 

light on PTMs derived from open searches will be the focus of this dissertation. 

 

1.4 Validation of modified peptides 

Peptide sequencing is an error prone process, so post processing is done to control the False 

Discovery Rate (FDR) among peptide candidates38. Empirical null distributions of false peptide 

hits can be estimated by searching decoy peptides alongside a reference database52. The decoy 

peptides consist of reversed peptide sequences to maintain theoretical fragmentation 

characteristics of true peptides. By constructing a ranked list of all peptide-spectrum-matches 

(PSMs), the local FDR can be estimated and controlled via examination of the local proportion 

of decoys. Search engine scores alone do a poor job of separating true from false PSMs, so tools 

have been developed to better model these distributions and increase the sensitivity of analyses. 

 

The first such tool is PeptideProphet53. PeptideProphet fits a mixture model of two distributions 

to the search engine scores. At a given score, the probability that a PSM corresponds to a true hit 
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is the portion of the mixture model contributed by the higher-scoring (true positive) component. 

By accounting for other peptide properties such as length and number of enzymatic termini, 

PeptideProphet better captures the complexity of PSM assignment than a single search engine 

score. It can also explicitly take open search mass shifts into account by independently modeling 

mass errors within 1 Da bins spanning the search range. It also supports mass offset and labile 

searches by modeling mass errors as deviations from the closest mass shift in the mass shift list 

rather than from the unmodified peptide15. 

 

Percolator54 can also perform flexible PSM post-processing. Percolator implements a support 

vector machine to find characteristics that best separate target from decoy PSMs. Unlike 

PeptideProphet, Percolator takes a table of scores as input and is flexible enough to include any 

numeric score. This leaves the door open for supporting any search method, including mass 

offset and open searches. Despite its success, Percolator is restricted to linear models, so 

nonlinear variants have been introduced to capture additional complexity55. 

 

1.5 Characteristics of modified peptides 

The wide array of effects PTMs can have on mass spectra means that the same algorithm may 

not be appropriate for all cases, and spectrum interpretation can remain difficult regardless of 

which approach is used. In these cases, secondary characteristics of PTMs can augment search 

engines and increase PTM recovery. 

 

Unequivocally, the most sought-after information about a PTM is its localization within a 

peptide sequence and ultimately the corresponding protein sequence. Search engines with 

variable modifications enabled provide some information about where the PTMs present on a 

peptide but rarely a measure of confidence about the recovered residues for it. This is 

problematic in cases where gaps in peptide ion series overlap multiple possible modification sites 

and a PTM’s localization is ambiguous. Many scores and tools have been developed to perform 

post-hoc localization of PTMs after peptide identification56-59. Some rely on decoy amino acids 

to calculate local False Localization Rates on arbitrary scores (FLRs)59 while others attempt to 
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calculate the probability of true hits directly56. Localization algorithms tend to be geared toward 

relocalizing variable modifications after peptide identification based on a handful of possible 

amino acids that can be modified. But open searches are residue-agnostic and considering every 

residue on a peptide as a potential localization site can violate the assumptions of localization 

algorithms and scores. 

 

Peptide retention time is another such characteristic. Liquid chromatography separates peptides 

based on their polarity prior to entering the mass spectrometer, and the amount of time they are 

retained in the column before exiting is referred to as their retention time. Modifications affect 

peptide retention times by changing a peptide’s polarity, for example by adding highly polar or 

nonpolar moieties or changing the peptide’s conformation, and their effects on retention time can 

be gathered by comparing modified and unmodified versions of the same peptide14. Some 

analyses, such as DIA peptide identification, rely on peptide retention time60,61 to restrict the 

search space because spectra containing dozens of cofragmented peptides would otherwise be 

too noisy to extract reliable identifications. This principle can also be extended to DDA analyses. 

Percolator can rescore peptide identifications by incorporating additional features--such as a 

deviation from the predicted retention time--to better separate true from false peptide hits62. 

Advances in RT prediction with deep learning have extended peptide RT prediction to 

modification-bearing peptides. Indeed, some clever formulations have even been developed to 

predict peptide RTs for open search-derived peptides bearing unknown modifications by first 

learning the effect of atomic composition on RT from the peptide backbone then transferring that 

to predict the effect of atomic composition on RT from the modification63. 

 

We previously discussed the effect that modifications can have on peptide fragment ions by 

shifting their location in the spectrum, i.e., by adding mass to the ions. However, modifications 

can also change the characteristics of the ions themselves, even ions that do not bear the 

modification64. Isobaric tandem mass tags (TMT) are commonly used to reduce batch effects in 

proteomics experiments. Proton mobility, one of the factors affecting peptide backbone ion 

formation, is reduced in TMT-labeled peptides, which has the effect of increasing the number of 
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neutral losses from peptides65. Spectrum prediction tools such as Prosit 66 and DIA-NN67 have 

developed PTM-specific models to overcome this problem rather than shifting the ions of 

unmodified peptides by the mass of the modification. 

 

When these features are incorporated into mainstream proteomics platforms, they tend to be 

specific to a handful of common PTMs. Their lack of generalizability across PTM types means 

most modifications are suboptimally identified, so incorporating general models into modified 

peptide identification is still a fertile field of research with many open questions. 

 

1.6 Outline 

Comprehensive PTM searches have many underappreciated benefits. For one, samples can 

contain unexpected sample specific PTMs that dramatically lower sensitivity when unaccounted 

for. Additionally, multiple classes of PTMs can interact with each other in ways that are 

obfuscated from traditional searches. Open searches, a strategy for the unbiased assessment of 

PTMs, have shown great promise in these regards and have the potential to both facilitate a 

deeper understanding of the sample and unlock new modes of analysis. Hence, generalizable 

solutions to characterizing modifications derived from open searches have tremendous potential 

to augment search engines and increase PTM recovery to better understand the proteome at 

large. 

 

Open search analysis still presents challenges to proteomics experiments. It provides no 

information on the identity or localization of modifications. Mass shifts can even correspond to 

concurrent modification events on the same peptide or be within the range of multiple ambiguous 

modifications, further frustrating analysis. Furthermore, its inability to identify shifted peptide 

fragment ions reduces its sensitivity by suppressing the scores of most modification-bearing 

peptides. Even looking for ions shifted by the supposed modification mass may miss the mark; 

labile modifications produce unexpected fragment mass shifts and concurrent modifications will 

produce partially shifted ion series. All these challenges hamstring sensitivity and 

interpretability. 
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The goal of this dissertation is to begin addressing some of these shortfalls in PTM analysis 

using shotgun proteomics with a focus on open search characterization. In Chapter Two, I 

develop a method for comprehensively characterizing open search results, enabling new 

applications for unbiased PTM discovery. In Chapter Three, I extend the algorithm developed in 

Chapter Two, introducing additional metrics that allow researchers to peer into the spectra of 

PTMs and extract PTM-specific fragmentation patterns and diagnostic ions as well as examining 

for the first time the general characteristics of PTM-specific diagnostic features. In Chapter Four, 

I expound my methods’ utility by applying it in multiple settings to characterize synthetic and 

chemical PTMs. 
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CHAPTER II

PTM-Shepherd: Analysis and Summarization of Post-translational and Chemical 

Modifications from Open Search Results 

 

 

2.1 Introduction 

Database searching of shotgun proteomics data is a commonly used strategy for identification of 

peptides and proteins from complex protein mixtures 30,68. Peptide identification in this strategy 

most commonly relies on matching tandem mass spectrometry (MS/MS)-derived peptide spectra 

to their theoretical counterparts using MS/MS database search tools, which requires prior 

knowledge of the potential modifications that might be present in a sample. This is problematic, 

as proteins can exist in myriad forms outside of their canonical sequences. For example, protein 

function is commonly modulated by post-translational modifications (PTMs), and additional 

chemical modifications from sample processing can hinder identification. Because the search 

space of all potential peptides including their modifications is so large, when using conventional 

database search strategies, researchers are forced to limit the modifications considered by their 

searches, leading to large number of unexplained spectra 44,69-71.  

 

Open searching, or mass-tolerant searching, is one strategy that allows researchers to expand 

their search space and reduce the number of unexplained MS/MS spectra. It has proven to be an 

effective strategy for identifying both known and unknown modifications in shotgun proteomics 

experiments 44,45,69,72,73. Rather than being limited to user-specified modifications, open searches 

identify peptides with mass shifts corresponding to potential modifications or sequence variants. 

These mass shifts do not, however, contain the same information present in closed searches, most 

importantly the identity of the modification and what amino acids within the peptide sequence 

This chapter was published in its entirety as PTM-Shepherd: Analysis and Summarization of 

Post-Translational and Chemical Modifications from Open Search Results in Molecular & 

Cellular Proteomics 
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may contain it. Deciphering open search results thus requires subsequent computational 

characterization to recover this information 42,69,74,75. 

 

Existing tools for open search postprocessing perform a limited set of analyses on a spectrum-

level basis. PTM-Prophet 76, for example, is limited to localizing mass differences for each PSM 

but does not provide data summaries that can inform subsequent searches nor does it provide 

identities for mass differences. Philosopher 77 only provides mappings of mass differences to 

UniMod and generates a basic mass shift histogram. Here we present PTM-Shepherd, an 

automated tool that calls modifications from open search peptide-spectrum match (PSM) lists 

and characterizes them based on attributes such as amino acid localization, fragmentation spectra 

similarity, effect on retention time, and relative modification rates. PTM-Shepherd can also 

perform multi-experiment comparisons for studying changes in modification profiles under 

differing conditions. We utilize these profiles in a wide array of situations to show how 

additional metrics, interexperiment comparisons, and bulk analytical profiles can be helpful in 

PTM analysis. Overall, we expect that PTM profiles produced by PTM-Shepherd will greatly 

enhance understanding of the data at both the macro level for quality control and the micro level 

for specific PTM identification. 

 

2.2 Materials and methods 

2.2.1 The PTM-Shepherd algorithm 

Mass shift histogram construction 

A histogram of identified mass shifts is constructed using all PSMs from the PSM.tsv file (or 

multiple PSM.tsv files in the case of multi-experiment analysis) generated by the 

MSFragger/Philosopher pipeline (Figure 1). These PSM.tsv files are typically (by default) 

filtered to 1% PSM-level and 1% protein level FDR using target-decoy counts, as determined by 

the Philosopher filter command. The widths of each bin the histogram is 0.0002 Da (by default). 

This histogram is extended by 5 Da on either side of the most extreme values in order to prevent 

peaks at the maximum and minimum of the histogram from being truncated after smoothing. 

Random noise between -0.005 Da and 0.005 Da is added to break ties occurring between bin 
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boundaries and mass shifts. After bin assignment, the histogram is smoothed to make peaks more 

monotonic. Bin weight is distributed across 5 bins (by default), with the weights assigned to each 

bin being determined by a Gaussian distribution centered at the bin to be smoothed such that 

95% of the bin’s weight is distributed between them. Peaks, representing mass shifts of observed 

modifications, are called from this histogram. 

 

Peak picking  

PTM-Shepherd picks peaks based on a mixture of peak prominence and signal-to-noise 

remainder (SNR) as measures of quality and quantification, respectively. A peak’s prominence is 

calculated as the ratio of its apex to the more intense of either its left or right shoulder, found by 

following a peak downward monotonically (Figure 1). To improve monotonicity for this 

procedure, adjacent histogram bins are temporarily grouped into small sets and flattened to the 

minimum bin height within the set, with set size internally calculated based on the total number 

of histogram bins. Peaks are called when their prominence exceeds 0.3 (by default). A peak’s 

SNR is calculated with a 0.004 Da sliding window (by default) against a background of 0.005 Da 

on either side (scaling linearly with peak picking width). The average height per histogram bin is 

computed for the signal and noise regions, then the signal remainder is calculated by subtracting 

off the noise. From this list of peaks, the top 500 by SNR (by default) are sent to downstream 

processing. Peak boundaries are considered to be either the observed peak boundary or the 

defined precursor tolerance, whichever is closer to the apex. PSMs are assigned to the peak if 

their mass shift falls within the reported peak boundary. 

 

Mass shift annotation 

Detected peaks are iteratively annotated using entries from the Unimod (retrieved: 2 Oct 2019)2 

modification database (including single residue insertions and deletions and isotopic error 

peaks), supplemented with a user-specified list of mass shifts. Each peak is allowed to be 

decomposed into at most two modifications. Some exceptionally rare or protocol-based 

modifications (e.g., O18 labeling, N15 labeling) that regularly confounded annotation were 

removed. Mass differences within 0.01 Da (by default) of a known mass shift are annotated 
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immediately. If a mass shift does not meet this condition, it is then tested against combinations of 

user-defined mass shifts and known annotations before being checked against combinations of 

two modifications identified at the previous step above. Failing both of these assignments, mass 

differences are marked as "Unannotated" and appended to the list of potential modification 

combinations. 

 

Mass shift localization 

PTM-Shepherd constructs localization profiles for each mass shift peak. Localization profiles are 

constructed for each experiment, reporting an N-terminal localization rate and a normalized 

amino acid propensity for each peak. The localization step is performed for every PSM by 

placing the mass shift at each amino acid in turn and re-scoring the PSM (with the original 

spectrum) using the same scoring function as in MSFragger. PSMs are considered localizable if 

there is a position(s) within the peptide sequence that, when the mass shift is placed there, results 

in more matched fragment ions than using unshifted fragment ions only (i.e. without adding the 

mass shift anywhere). Localizable PSMs corresponding to the same peak in the mass shift 

histogram are aggregated, and their characteristics are analyzed. The localization rate for a peak 

is calculated by counting the number of instances a mass shift was localized to a particular amino 

acid. If the localization is ambiguous (i.e. several sites scored equally high), the weight of the 

localization is distributed among all localized residues. Counts are normalized to the rate of 

localization for a given residue, then divided by each residue’s background content. Background 

residue content is computed by counting the number of occurrences of each residue in every 

localizable PSM in the entire dataset (by default). Options for experiment-level normalization at 

the unique peptide level, and bin-wise normalization at the PSM and unique peptide level are 

also available. 

 

Modified-unmodified comparisons 

Cosine spectral similarity between modified and unmodified peptides is used to determine how 

mass shifts affect MS/MS spectra. Unmodified PSMs, i.e. PSMs with a mass shift less than 0.001 

Da (by default), are aggregated based on their identified peptide sequence and charge state. If 
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there are more than 50 unmodified spectra for a peptide, 50 are randomly selected for 

downstream comparisons. Then, for every mass shifted PSM at a given charge state, the average 

cosine similarity score between this PSM and its corresponding unmodified PSMs at the same 

charge state is recorded. These similarity scores are aggregated for all PSMs for each mass shift 

peak, then averaged and reported as that peak’s spectral similarity profile. Retention time effects 

are also examined. Peptide retention times are extracted from Philosopher’s PSM.tsv output. For 

every PSM with a mass shift, the average difference in retention time between that PSM and all 

its corresponding unmodified PSM is calculated. These average retention time differences are 

aggregated for each mass shift peak, then averaged across all peptides in that peak and reported 

as that peak’s retention time difference profile. 

 

2.2.2 Experimental datasets 

Four formalin-fixed, paraffin-embedded (FFPE) datasets were used for identifying modifications 

associated with the fixing process and storage as selected by Tabb et al. for their study 78. Two of 

these datasets, titled "Nielsen" (PXD000743) and "Buthelezi" (PXD013107), were acquired on 

SCIEX TripleTOFs 79. The Nielsen dataset was acquired on a TripleTOF 5600+ and consists of 

218449 scans across 20 SCIEX .wiff files, and the Buthelezi dataset was acquired on a 

TripleTOF 6600 and consists of 474726 scans across 12 SCIEX .wiff files. Two other datasets, 

titled "Zimmerman" (PXD001651) and "Nair" (PXD013528), were acquired on Thermo Q-

Exactive instruments 80. The Zimmerman dataset consists of 79803 scans across 5 .raw files, and 

the Nair dataset consists of 245589 scans across 10 .raw files. Files were acquired as .raw or 

.wiff files and converted to mzML using ProteoWizard’s MSConvert version 3.0.18208. 

 

The synthetic peptide dataset was obtained from ProteomeXchange (PXD004732) in mzML 

format 81. Only MS runs with the 3xHCD label were included in our analysis. Peptide pools 

labeled as "SRM" were also excluded. This synthetic peptide dataset consists of unmodified 

proteotypic human peptides fragmented on a Thermo Fisher Orbitrap Fusion Lumos instrument. 

Cysteines were incorporated as alkylated cysteines during synthesis. 
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Additional datasets used in this work were obtained from the Clinical Proteomics Tumor 

Analysis Consortium (CPTAC) Data Portal in mzML format 82. These were limited to MS runs 

generated from the CompRef samples, a CPTAC reference material created using breast cancer 

xenograft pools for quality control and data harmonization purposes. The samples were analyzed 

using TMT-10 labeling based technology. The first cohort of six experiments (TMT 10-plexes) 

consists of samples processed at three sites (2 experiments from each site) - the Broad Institute 

(BI), Johns Hopkins University (JHU), and Pacific Northwest National Laboratory (PNNL) - 

acquired on an Orbitrap Fusion Lumos as part of the CPTAC harmonization study 83. The second 

cohort consists of the same CompRef samples processed as longitudinal QC samples as part of 

three CPTAC datasets: the Clear Cell Renal Cell Carcinoma (CCRCC) dataset generated at JHU 

(three experiments), the Lung Adenocarcinoma (LUAD) dataset generated at BI (four 

experiments), and the Uterine Corpus Endometrial Carcinoma (UCEC) dataset generated at 

PNNL (four experiments). All these data, at all sites, were generated using the CPTAC 

harmonized data generation protocol 83. These data were processed together using PTM-

Shepherd’s multi-experiment setting to generate a single report.  

 

2.2.3 Database search and statistical validation 

All analysis was performed using a database constructed from all human entries in the 

UniProtKB protein database (retrieved 29 July 2016). Reversed protein sequences were added as 

decoys and common contaminants from were appended (total targets and decoys: 141,585). 

Unless specified otherwise, all datasets were processed with the following parameters. Data was 

searched using MSFragger v2.169 with a precursor mass tolerance of +/- 500 Da. Isotope error 

correction was disabled, and one missed tryptic cleavage was allowed for peptides of 7 to 50 

residues in length. Oxidation of methionine was included as a variable modification and cysteine 

carbamidomethylation was included as a fixed modification. MSFragger mass calibration and 

parameter optimization was performed for all datasets 84, including fragment ion tolerance. 

Shifted ions were not used in scoring. 

 

FFPE data was processed using a -200 to 500 Da mass range to match that used in the original 
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publication 78. CPTAC data was processed with protein N-terminal acetylation and peptide N-

terminal TMT mass of 229.1629 Da as variable modifications (TMT was also specified as fixed 

modification on Lys). In addition, CPTAC data was searched against combined UniProtKB 

mouse plus human protein database (retrieved 10 February 2020), with its respective reversed 

decoys appended to the database, resulting in 252,401 total target and decoy proteins.  

 

PSMs identified using MSFragger were processed using PeptideProphet 85 via the Philosopher 

v2.0.0 toolkit 77. All processing and filtering was performed on a per-experiment basis. The four 

FFPE datasets were processed as four experiments. The chloroacetamide-labeled HeLa cells 

dataset was processed as one experiment containing all 39 fractions. CPTAC samples were 

grouped experiment-wise, with each experiment containing all 24 fractions. Due to large size, the 

ProteomeTools synthetic peptide dataset was processed as 11 subsets split based on the five-digit 

identifier at the beginning of each filename. PeptideProphet parameters for all analyses were 

default open search parameters: semi-parametric modeling, clevel value set to -2, high accuracy 

mass mode disabled, masswidth of 1000, and using expectation value for modeling. Resulting 

PSM matches were filtered to 1% FDR using target-decoy strategy with the help of Philosopher 

filter command. 

 

2.3 Results 

2.3.1 Overview of PTM-Shepherd 

The overview of PTM-Shepherd computational workflow is shown in Figure 2-1.  The process 

starts with PTM-Shepherd reading FDR-filtered PSM lists (produced by MSFragger and 

Philosopher, optionally with open search artifacts removed using Crystal-C 86), and the mass 

shift for each PSM, to construct a mass shift histogram 74. After smoothing the histogram, PTM-

Shepherd picks peaks based on a mixture of peak prominence and signal-to-noise ratio. From 

this list of detected peaks, the top 500 (by default) are selected for downstream processing. Basic 

abundance statistics are then calculated for this list of detected peaks. PSMs are assigned to a 

particular peak if their mass shift falls within the reported peak boundary, and abundance of the 

peak is calculated based on spectral counts. PTM-Shepherd can also operate in a multi-
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experiment mode. In this mode, peak detection is performed on an aggregate mass shift 

histogram from all experiments, generated from the mass shifts of each experiment weighted 

according to the proportion of the total PSMs they comprise. The use of a combined histogram 

for peak detection can greatly simplify comparisons between modifications detected in different 

conditions and experiments. In this multi-experiment mode, the summary attributes for each 

detected peak are generated separately for each experiment, and for all data combined. 

Once peaks in the mass shift histogram have been called, PTM-Shepherd attempts to determine 

their identities. Mass shifts are iteratively annotated using entries from the Unimod 2 

modification database, isotopic error peaks, and user-specified mass shifts, allowing the mass 

difference to be decomposed into at most two modifications. PTM-Shepherd also constructs 

localization profiles for each peak. Localization profiles are constructed for each experiment, 

reporting an N-terminal localization rate and a normalized amino acid propensity for each 

modification. This analysis is performed for every PSM by placing the mass shift at each amino 

acid in turn and re-scoring the PSM (with the original spectrum) using the scoring function 

presented in MSFragger (see Methods).  

 

 

Figure 2-1: PTM-Shepherd workflow. Data processing begins by aggregating the mass shifts across all datasets into a 

common histogram. Peaks are determined based on their prominence. The 500 most intense peaks in aggregate are then 

quantified for each dataset and normalized to size. Peptides with each mass shift are iteratively rescored with the modification at 

each position, producing localization scores for each peptide and an aggregate localization enrichment for each mass shift. 

Finally, modified peptides and their unmodified counterparts are analyzed to have their pairwise cosine spectral similarity and 

change in retention time calculated. 
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PTM-Shepherd also computes several metrics that are useful for gaining a better understanding 

of the nature of those detected mass shifts. For each peak, PSMs containing that mass shift are 

compared to their unmodified counterparts if present within the same run. First, cosine spectral 

similarity between modified and unmodified peptides is computed, which is useful for 

determining how the modifications affect spectra. Then retention time effects are examined, and 

the average difference in retention time between the peptide with and without modification are 

reported. 

 

2.3.2 PTM-palette discovery: analysis of FFPE samples 

Understanding how sample processing and storage affect proteins is critical to maximizing their 

identification. Analysis of tissue samples preserved using formalin-fixing paraffin-embedding   

 (FFPE) technique warrant the inclusion of additional modifications to reflect changes in proteins 

following formalin fixation. FFPE samples are also typically analyzed after long-term storage, 

during which they could be exposed to high temperatures and sunlight 87. Although previous 

studies have examined which modifications should be included when analyzing proteins from 

FFPE samples 87, this was revisited recently by Tabb et al. 78 using a two-pass search. First, an 

open search was used to identify prevalent mass shifts. Second, they performed a traditional  

search and informed the localization of their mass shifts with chemical knowledge. We sought to 

investigate how PTM-Shepherd could be used to validate their findings and streamline this 

analysis for other datasets and sample preparation protocols.  

 

After their first pass open search, Tabb et al. 78 found five modifications that were consistently 

present across the four datasets analyzed: methylation, di-methylation, single oxidation, double 

oxidation, and variable carbamidomethylation. Automated processing with PTM-Shepherd 

replicates most of these findings. Based on PSM counts and using the same criteria, we find mass 

shifts of methylation, mono-oxidation, and di-oxidation within the top 10 mass shifts (excluding 

isotopic error peaks) for every dataset (Table A-1A). Interestingly, PTM-Shepherd also finds a  

notable discrepancy with respect to di-methylation levels. PTM-Shepherd identifies two peaks in 
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close proximity: 27.9954 Da (corresponding to formylation) and 28.0320 (corresponding to di-

methylation). Di-methylation is only higher than formylation in one dataset (Nielsen, Figure 2-

2a), while the others have formylation between three- and nine-fold higher than di-methylation. 

To confirm that this was not an artefact of PTM-Shepherd’s signal-to-noise peak picking, we 

reanalyzed these results with the DeltaMass software that implements an alternative (Gaussian 

mixture modeling) strategy for  peak picking 74. For all these four datasets, DeltaMass found that 

the region of mass shifts from 27.90 to 28.10 contained two peaks (Figure I-1). For Nielsen, 

Nair, and Zimmerman, these are easily visible. Even the Buthelezi dataset, while not exhibiting 

as clear of a separation as the others, places the more abundant peak apex closer to the mass shift 

value corresponding to formylation. The presence of formylation within a list of most abundant 

PTMs also makes logical sense given the nature of preservation method. 

 

Tabb and colleagues relied on chemical knowledge and other tools 42,72 to arrive at the final search 

configuration that included oxidation of Met to methionine sulfone. We chose to investigate this 

further using PTM-Shepherd. Because a single oxidation of Met was already included as a variable 

modification in our open search, a Met oxidation to methionine sulfone may appear as either a 

variable modification and a +15.9949 Da mass shift localized to Met or a +31.9898 Da mass shift 

localized to Met. However, we do not observe enrichment of Met (Table A-1A) localization in 

either of these instances. In contrast, the enrichment scores for Pro were 9.3 and 5.6 for mono- and 

di-oxidation, respectively. Tabb and colleagues’ gain in the number of PSMs when adding Met 

sulfone and dihydroxy Pro in the search may be explained by the diffuse nature of oxidation. When 

using a closed search strategy with a dynamic +31.9898 Da modification on Met, any occurrence 

of two +15.9949 Da events - for example on two alternative oxidation sites - might be interpreted 

as a Met sulfone because peptide ions will converge downstream of the theoretical and 

experimental oxidation sites. The same phenomenon can occur with multiple instances of 

hydroxyproline. Collagen is known to contain massive amounts of hydroxyproline, and as such is 

likely to produce peptides with multiple hydroxyprolines 88. To determine whether the +31.9898 

Da mass shift was attributable to multiple hydroxyprolines co-occurring on the same peptide, we 

checked whether PSMs containing it were more likely to map to collagen proteins than non-
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collagen proteins. This mass shift was overwhelmingly more likely to occur on collagen proteins 

(OR = 43.5, p < 10-5 by Fisher’s exact test), confirming that it is a combination of multiple 

hydroxyprolines and can be captured via including hydroxyproline in a PTM palette. Overall, in 

 

 
Figure 2-2: Basic PTM-Shepherd applications. A: PTM-Shepherd identifies two peaks in 

close proximity for Tabb et al.’s four datasets. All four datasets (Zimmerman, Nair, Nielsen, 

and Buthelezi) show a mixture of two Gaussian peaks about 28 Da. The consistently more 

intense peak is at 27.9949, formylation. Only in the Nielsen dataset does di-methylation 

(28.0313) approach formylation’s intensity. B: PTM-Shepherd identifies more failed 

alkylation than other common modifications such as deamidation and not-Met oxidation. C: 

PTM-Shepherd modification decomposition identifies six times as much failed alkylation as 

is identifiable based on the -57 Da mass shift alone, in total accounting for a quarter of all 

Cys-containing peptides. 
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our experience in this and other datasets, PTM-Shepherd provides a very reasonable estimate of 

the most likely modification sites for a particular mass shift. 

 

Formaldehyde adduct (+30.0106 Da, annotated as methylol in Unimod) is a known modification 

observed on peptides from FFPE samples, and it was detected at high levels in the Nair and 

Zimmerman datasets (in the top 10).  According to PTM-Shepherd analysis, this mass shift lacks 

any significant localization characteristics (localized less than 10% of the time), indicative of a 

non-covalent adduct. In general, identification of labile modifications is one of the advantages of 

open database searching with MSFragger compared to other PTM-focused tools or closed 

searches with variable modifications, all of which are less effective at finding labile 

modifications that cannot be localized. Summarizing our observations, PTM-Shepherd suggests 

a slightly modified version of the PTM palette from FFPE samples proposed by Tabb et al.: 

oxidation of Met (+15.9949 Da),  hydroxyproline (+15.9949 Da on Pro; ideally, specified for 

collagens only), formylation on Lys and N-termini (+27.9949 Da), and methylation of Lys and 

N-termini (+14.0157 Da). It may also be beneficial to include the methylol (+30.0106) adduct, 

but using the mass offset search option of MSFragger that allows both shifted and non-shifted 

fragment ions in scoring rather than as variable modification 45,84,89. 

 

2.3.3 Detection of Cysteine artefacts following underalkylation 

Cysteine is an extremely reactive amino acid, frequently picking up an array of chemical 

modifications when exposed 90. Unspecified mass shifts, such as those resulting from chemical 

modifications of Cys, confound peptide identifications and lead to lower recovery rates. Cys 

alkylation restricts the number of chemical derivatives it can form and prevents interference from 

disulfide bonds, and as such has been a mainstay of proteomics processing for decades 91. 

Chloroacetamide (CAA) and iodoacetamide (IAA) are the two most common alkylating reagents 

used in proteomics workflows. Previous comparisons of these reagents found that IAA generally 

has a higher rate of cysteine alkylation than CAA when applied at the same concentration, but 

with the caveat of higher rates of off-target effects 92. Here, we have tested the ability of PTM-

Shepherd to uncover cysteine artefacts in proteomic datasets. Bekker-Jensen et al. 93 rigorously 
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tested shotgun proteomics protocols to determine an optimal strategy for rapidly generating a 

comprehensive profile of human proteomes, ultimately producing a valuable repository of high-

quality, deep proteomics data. Their protocol also included a 10 mM treatment with the 

alkylating agent CAA, which, per Schnatbaum et al. 92, only achieved two-thirds the alkylating 

efficiency of 10 mM IAA in complex mixtures. Unlike the other samples we analyzed for this 

manuscript, this protocol also did not denature protein samples before adding the alkylating 

agent. This likely contributes heavily to underalkylation as well. As such, it presents an 

exceptional opportunity to examine these cysteine artefacts. 

 

Open search analysis followed by PTM-Shepherd shows a number of prevalent mass shifts 

enriched on Cys, consistent with what we expect from underalkylated samples. Note that because 

Cys alkylation was searched as a fixed modification, in order to elucidate the identity of 

modifications occurring on unalkylated Cys residues the mass shift must be decomposed into 

two components: a failed alkylation event (∆m = -57.0215 Da from the theoretical mass of the 

identified peptide) and the modification itself. Consider the mass shift -9.03680 Da detected in 

this dataset. PTM-Shepherd decomposes this mass shift into a failed alkylation event (-57.0215 

Da) and a triple oxidation of Cys to cysteic acid (∆m = +47.9847 Da). This becomes particularly 

important when trying to directly assess the number of failed alkylations in a sample. Strictly 

counting the number of -57.0215 Da mass shifts will severely under count their total occurrences 

because it ignores cases where it is found in conjunction with another modification, which are 

very likely given Cys’s reactivity. We implemented an additional parameter in PTM-Shepherd to 

account for this that prioritizes user-defined modifications and allows them to identify mass 

shifts that do not directly correspond to entries in Unimod 2. On its own, failed alkylation was the 

sixth most abundant mass shift and was more prevalent than other common events that are often 

accounted for in closed searches, such as pyroglutamate formation, and accounted for 3.9% 

(3450 PSMs) of the 89281 total Cys-containing PSMs (Table A-2A). However, because it 

frequently occurs with other mass shifts as demonstrated above, we also pooled the instances in 

which it was annotated as one of two mass shifts on a peptide. Remarkably, the total number of 

failed alkylation events jumps to 20.5% (18343 PSMs) when considering all instances of failed 
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alkylation annotations (Figure 2-2c). When considering decomposed mass shifts, failed 

alkylation is nearly twice as common as deamidation and four times as common as non-Met 

oxidation events (Figure 2-2b, Table A-2B).  

 

After applying an abundance cutoff of 0.01% of total spectra, we detected 10 mass shifts 

exhibiting strong Cys localization (>10-fold enrichment) that were also annotated with a failed 

alkylation of Cys. These were a large portion of the broadly occurring Cys-enriched PTMs in the 

samples (Table A-2A). The most abundant of these modifications correlate with what would be 

expected in a poorly alkylated sample. The +1 and +2 isotopic error peaks in conjunction with 

unalkylated Cys were particularly abundant, accounting for 1601 combined spectra. The 

aforementioned -9.0368 Da - triple oxidation on Cys without alkylation - was most prevalent 

aside from these. Its heavily enriched localization to Cys (48.5-fold) lends credence to this 

compound identification that would be missed by other annotation tools and, consequently, a 

count of total failed alkylation events. Surprisingly, failed alkylation combined with a 

"formaldehyde adduct" (+12.0000 Da) was also common. The combined mass shift of -45.0216 

Da was heavily localized to Cys and had a 96% N-terminal localization rate, pointing to potential 

thiazoladine formation via N-terminal Cys cyclization. These are known to occur in 

formaldehyde treated data, however the authors did not report the use of formaldehyde 94. A lone 

"formaldehyde adduct" mass shift accounting for 305 PSMs and heavily localized to Trp (42.5-

fold enrichment) was also detected in the dataset, however. Taken together, these indicate that 

the thiazoladine was probably an artifact of formaldehyde exposure rather than underalkylation, 

though the latter may be required for there to be available Cys to react with formaldehyde. Failed 

alkylation of Cys and the subsequent triple and double oxidations conform to our chemical 

knowledge of Cys artefacts and, along with glutathione disulfide as a biological modification, 

comprise 8.7% of all Cys-containing PSMs. Including these modifications should increase Cys-

peptide recovery in underalkylated samples. 

 

 

2.3.4 PTM-Shepherd computed metrics facilitate granular PTM identification 
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Open searches are inherently limited in the information they provide, providing only peptide lists 

and their associated mass shifts 69. Data interpretation efforts are further complicated by the 

ambiguity of mass shifts. Two methylation events and an ethylation event, for instance, would be 

indistinguishable from each other based on mass. However, more granular identities can be 

discerned by incorporating additional metrics: changes in retention time (RT), spectral similarity 

(SS), and localization. To demonstrate that these additional metrics improve open search result 

comprehension, we analyzed the synthetic unmodified tryptic peptide dataset generated as part of 

the ProteomeTools project 81. This dataset allows us to examine and characterize instrumental 

artefacts apart from confounding biological factors. 

 

In-source losses from peptides result from low-energy fragmentation pathways that can occur 

during tandem MS as well as during ionization and transmission, resulting in artefactual changes 

to the observed precursor mass 95. Because in-source losses occur after column elution and 

consequent retention time recording, they have no effect on peptide retention time. This property 

can be used to distinguish them from sample modifications 96. We used PTM-Shepherd to 

elucidate the origins of two of this dataset’s most common mass shifts attributable to both in-

source losses and real modifications: loss of H2O and loss of NH3 (Table A-3). Peptides with 

multiple spectra corresponding to each loss had their RT shifts pooled and collapsed to their 

median. Interestingly, both losses of H2O and NH3 exhibited bimodal changes in retention time 

(Figure 2-3).  

 

For peptides presenting losses of H2O (∆m = -18.0104 Da; 2961 peptides), both composite RT 

distributions were approximately Gaussian with approximate means of 0 and 450 s. As 

anticipated, many peptides (16.7%) fall within the mean 0 distribution, indicating that they do 

not experience increases in column RT despite the loss of a highly polar group. This is 

characteristic of in-source losses and indicates that peptides within this distribution are exhibiting 

in-source loss of H2O in the mass spectrometer prior to precursor selection. Peptides presenting 

losses of NH3 (∆m = -17.0270 Da, n = 1094) showed a similar pattern. Note that H2O and NH3 

are only two examples of in-source loss and, in some cases, entire residues can be lost via this 
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mechanism. As a significant source of instrumental bias, it is important to be able to classify in-

source losses properly and remove them from experimental sample pools. In fact, for researchers 

studying the isobaric biological forms of these mass shifts, it is critical to exclude these. 

The second population of peptides with H2O and NH3  loss exhibited a RT-shift consistent with a 

pre-elution modification - the loss of a polar group increased retention time by an average of 450 

s. H2O losses are known to manifest as a conversion to pyroglutamic acid from Glu 97 as well as 

on Asn, Gln, Ser, Thr, Tyr, Asp, and Cys as sample-derived modifications 2. NH3 losses are 

known to manifest as a conversion to pyroglutamic acid, but from Gln rather than Glu 98. Other 

losses of NH3 are known to occur on some N-termini occupied by Thr, Ser, and Cys and on any 

Asn 2. While RT shifts alone do not contain enough information to fully identify these 

modifications, additional metrics calculated by PTM-Shepherd - localization propensity and 

modified-to-unmodified peptide similarity - allowed us to delineate the primary sources of this 

mass shifts. 

 
Figure 2-3: Retention time profiles for peptides with losses of H2O and NH3. Modified 

peptides are compared to their homologous unmodified peptides, with multiple retention time 

changes being collapsed to their median. The effect on retention time for losses of H2O (top) 

and NH3 (bottom) are distributed bimodally. These mass shifts are known to correspond to 

both in-source losses and spontaneous conversions. In-source losses should not have an effect 

on retention time, and as such are suspected to fall within a Gaussian distribution centered at 

zero. 
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In the case of a loss of NH3, two primary sources (in addition to the in-source losses) were 

identified:  a spontaneous conversion of Gln to pyroglutamate, and a cyclization of Cys. Cys 

cyclization is expected to be present in peptides being synthesized with carbamidomethylated 

 

Figure 2-4: Analytical profiles for losses of H2O and NH3. A,B: Localization profiles 

reveal a non homogeneous landscape with specific residues showing enrichment. C,D: Select 

modifications are distinguishable from background in-source decays in their effect on 

retention time. E,F: Similarity scores show lower profiles for C-terminal modifications on 

Lys, whereas N-terminal modifications on Glu, Cys, and Gln have higher similarity. 
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Cys, as the reaction is known to occur after alkylation 99. Localization analysis showed that Cys 

(enrichment score = 10.4) and Gln (enrichment score = 4.7) were the two most enriched residues 

for this mass shift (Figure 2-4a). In-source losses localized to Cys are rare and in-source losses 

localized to Gln are relatively common 100, which is reflected in the number of peptides each 

residues produces with ∆RT = 0. To illustrate, Cys has an RT profile very different from other 

residues in aggregate, while Gln has a similar distribution (Figure 2-4c); none of those containing 

Cys localized NH3 losses were in-source losses, as compared to 19.6% of other residues in 

aggregate. 

 

Unlike NH3, we expected losses of H2O to only be heavily enriched in glutamate. Glutamate is 

known to have two sources for loss of H2O; it is known to be a source of water in-source loss but 

can also spontaneously undergo N-terminal cyclization in vitro to produce the same mass shift 

101. The localization enrichment profile for loss of H2O (Figure 2-4b), however, revealed that two 

residues were exceptional contributors to this PTM’s prevalence: Glu (enrichment score = 2.2) 

and Lys (enrichment score = 7.6). We identified populations of peptides with losses of H2O 

corresponding to both of these populations based on ∆RT as described above (Figure 2-4b, red). 

An intense peak near ∆RT = 0s indicates that many unique peptides are capable of producing in-

source losses of H2O (22.8%) on Glu, consistent with the conclusions of Sun et al. 100 Another 

peak near ∆RT = 300s indicates that the remainder of the peptides had a loss of H2O that was 

present before column elution, and as such is likely to be an N-terminal cyclization of glutamate 

occurring in vitro. 

 

Even more so than glutamate, lysine was the largest contributor to losses of H2O (example 

spectrum at Figure I-2). Puzzlingly, lysine’s side chain does not have a hydroxyl group that it can 

readily lose, and as such any H2O losses attributable to lysine must be derived from the C-

terminal hydroxyl group of tryptic peptides. It is worth noting that this phenomenon is unique to 

lysine, as Arg had the lowest localization enrichment score (0.2) of all 20 residues (Figure 2-4b). 

Based on retention times, there were also no appreciable H2O in-source losses attributable to 

lysine - consistent with previous findings 100 - indicating that these lysines were being dehydrated 
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prior to elution (Figure 2-4d). We believe this is most likely due to a C-terminal lysine 

cyclization event. Though undescribed in proteomics, lysine derivative cyclization has been 

induced in other settings102. This theory is supported by spectral similarity calculations between 

peptides with and without this lysine-localized mass shift (Figure 2-4f). There is exceptionally 

low spectral similarity between the spectra of modified and unmodified peptides. Peptides 

containing non-labile modifications and modifications near the C-terminus both result in low 

spectral similarity; non-labile modifications are likely to be retained in the MS/MS spectra rather 

than being removed during MS1 analysis, and C-terminal modifications shift the intense y-ion 

series. A covalently bound lysine ring structure on peptide C-termini fits both of these criteria 

and may be the underlying cause of low spectral similarity. 

 

The similarity profiles for losses on Glu, Cys, and Gln were distinct from Lys in that they were 

not enriched for peptides with MS/MS showing low similarity to their unmodified counterparts. 

This may be accounted for by the fact that Glu cyclization, like Cys and Gln, occurs at the N-

terminus; shifting the b-ion series has less of an effect on the MS/MS spectra than shifting the y-

ion series. Unsurprisingly, all three of these have similarity profiles roughly corresponding to the 

proportion of their spectra experiencing in vitro modifications, which are the only modifications 

we can be sure are occurring at the N-terminus. 

 

Overall, by including metrics beyond mass shifts in PTM identification, we show that much more 

information beyond the chemical composition of a mass shift can be deduced. Retention times 

can be used to discriminate between in-source losses and sample modifications, localization 

profiles can be used to deduce biological or chemical origins, and spectral similarity provides 

additional localization and lability metrics. Incorporating all of these, we found, to our 

knowledge, a previously unknown or at least underappreciated modification (C-terminal lysine 

cyclization) in a deeply consequential synthetic peptide library. 

 

2.3.5 PTM-Shepherd in multi-experiment settings 

PTM-Shepherd can be run in a multi-experiment mode to analyze modification profile across a 
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large number of experiments. Such an analysis could be performed for visualization of 

interesting biological trends and in search of experiment-specific biological modifications. It 

could also be useful for quality control and detection of batch effects – a common source of 

variation in high throughput data 103. Previous efforts have been made to identify MS 

performance metrics 104, and some groups have shown how these can be leveraged to identify 

quality control issues 105 and better understand intra- and inter-laboratory variability 106,107. We 

posited that open-search derived modification profiles could be used to determine 

interexperiment variation while simultaneously providing insight into its origins. 

 

To evaluate PTM profiling in multi-experiment settings we used CPTAC CompRef reference 

material data (pooled tumor xenografts comprising ten samples each from two different breast 

cancer subtypes, cryopulverized and shipped to different processing locations) obtained from the 

CPTAC Data Portal (see Methods). The samples were processed at three different locations 

(PNNL, JHU, BI), and analyzed using TMT 10-plex labeling technology as part of the CPTAC3 

Harmonization study 83. The same CompRef samples were also analyzed as longitudinal QC 

samples as part of the three large cancer profiling studies, CCRCC 108 (MS data collected at  

JHU; UCEC 109 (MS data collected at PNNL), and LUAD 110 (MS data collected at BI).  

 

We first investigated the most abundant mass shifts identified by MSFragger and PTM-Shepherd 

in these data (Table 2-1, see Table A-4A for the full list), which revealed several interesting 

observations. In general, PTM-Shepherd accurately reconstructed expected trends including the 

localization profiles of the most abundant modifications. For example, carbamylation and 

formylation were most highly enriched on N-terminus, phosphorylation on Ser, and oxidation on 

Trp. Not considering isotope errors, the mass shift of 229.1629 Da (TMT overlabeling) was the 

most common modification, localized predominantly to Ser (enrichment factor of 5.6). Of note, 

only 74.5% percent of peptides found with TMT on Ser were also found in “unmodified” form 

(i.e., with unlabeled Ser). In contrast, many other abundant modifications, such as formylation 
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Table 2-1: Top mass shifts from CPTAC quality control samples. Assigned modifications 

correspond to automated Unimod matches, with * indicating a partially manually reannotated 

mass shift. The “% in Unmodified” column corresponds to the percent of PSMs with a 

matching unmodified PSM in the unmodified bin. Top two enriched amino acid localizations 

are shown in columns denoted “AA.” 

 
Mass 

Shift 

 
PSMs Assigned Modification 

% in 

Unmodified 
Similarity 

Delta 

RT 

N-term 

rate (%) 
AA_1 AA_2 

0.000  4372080 None 100.00 0.98 0 0 
  

1.002  913405 +1 isotopic error 79.43 0.81 5 3 
  

229.163  312295 TMT 74.52 0.38 -70 6 S (5.6) T (2.4) 

2.005  177121 +2 isotopic error 75.95 0.74 4 1 
  

-0.984 

(15.011*)  

 156315 NH addition to M * 90.25 0.71 -173 1 M (15.8) 
 

230.166  141498 +1 isotopic error + 

TMT 

72.51 0.42 -153 6 S (3.8)  
 

0.017  117922 +1 isotopic error +  

NH addition to M * 

69.97 0.78 1 1 M (5.8) 
 

0.984  110967 Deamidation 68.84 0.68 53 6 N (12.7) R (5.3) 

17.026  92862 Deuterated methyl  

ester 

94.96 0.76 -50 1 
  

15.011  87013 Conversion of 

carboxylic acid to 

hydroxamic acid 

95.22 0.54 -434 4 E (5.5) D (3.5) 

-1.002  72465 -1 isotopic error/ 

+1 isotopic error + 

Half of a disulfide 

bridge * 

81.40 0.78 16 1 C (4.8) W (4.5) 

15.995  59846 Oxidation 91.19 0.49 -342 21 W (24.0) M (11.7) 

100.016  59070 Succinic anhydride  

labeling reagent 

95.76 0.55 596 77 P (3.6) S (2.1) 

27.995  52323 Formylation 93.22 0.61 265 61 S (2.7) 
 

79.967  48379 Phosphorylation 55.30 0.64 569 4 S (6.2) 
 

21.981  47471 Sodium adduct 98.72 0.25 -148 2 
  

115.027  47022 Cleavage product of 

EGS protein crosslinks 

by hydroxylamine 

97.81 0.58 610 86 H (2.5) 
 

43.010  45450 Carbamylation 97.10 0.64 640 70 
  

-18.010  45445 Dehydration/Pyro-glu  

from E 

97.48 0.64 -175 12 D (3.2) T (2.5) 

1.987  42988 +1 isotopic error +  

Deamidation 

69.08 0.66 45 4 N (11.9) R (3.0) 
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and carbamylation, were found in both modified and unmodified forms in almost all cases. 

Interestingly, the second most abundant modification was a mass shift of 15.0107, predominantly  

 

localized to Met (that was indistinguishable in MSFragger output from a combination of 

oxidation and -0.9842 Da loss on Met). This mass shift may represent the addition of an NH 

group to Met due to exposure to hydroxylamine, a reagent used in TMT labeling. At present, 

UniMod database annotates a 15.0107 Da mass shift only as conversion of carboxylic acid to 

hydroxamic acid, with Asp and Glu as only possible sites (which were observed in these data, but 

at a lower frequency than on Met, see Table 2-1).  

  

The PTM profiles resulting from PTM-Shepherd analysis of these data are presented in Figure 2-

5. Sample-wise K-means clustering revealed distinct sample clusters, and mass shift-wise 

clustering on correlation between columns (transposed PTM-Shepherd output) revealed some 

highly similar modifications. Sample clustering precisely reconstitutes sample processing 

location . For example, Cluster 4 in Figure 2-5 shows a series of mass shifts related to TMT 

overlabeling, or TMT labeling that was not captured by fixed sequence expansion on Lys and 

dynamic sequence expansion on peptide N-termini. PNNL data consistently shows lower TMT 

overlabeling than BI and JHU for every mass shift in this cluster, and PSMs corresponding to a 

single additional TMT are 5-8 times lower than at the other two locations. BI and JHU also show 

enrichments of TMT labeling on Ser and, to lesser degree, Thr. 

 

Though we expect to see differences in TMT labeling fidelity, PTM-Shepherd also allows us to 

explore unexpected batch effects. Lenčo et al. recently raised concerns about the use of formic 

acid in sample preparation, specifically stating that an excess of Ser, Thr, and N-terminal 

formylation events are present in samples reconstituted with it 111. Within the CPTAC 

harmonization study, the localization profile did exactly match that described by Lenčo and 

colleagues: Ser enrichment of 2.7, Thr enrichment of 1.9, and a 61% potential N-terminal rate 

(Table A-4A). Interestingly, this formylation peak appears to disproportionately high in the first 

of the two BI replicates from the harmonization studies (Figure 2-5, Cluster 5). BI01 replicate 
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had formylation 10- to 20-fold higher than JHU01 or PNNL01 and was even 4-fold higher than 

BI02. Ser and Thr also exhibit inflated formylation localization for this sample, consistent with  

Lenčo et al.’s results (Table A-4B,C). Overall, a deeper analysis may be warranted in future 

studies to reduce batch effects caused by formic acid use. These analyses could be extended to 

other sample handling artifacts, e.g. potassium adducts (Cluster 1) and sodium adducts (Cluster 

 

Figure 2-5: Clustered heatmap representation of CPTAC3 quality control samples 

transposed from PTM-Shepherd output. Values shown are column-wise z-scores of 

spectral counts. Column clustering shows highly related modifications, and row clustering 

shows experiments clustering by processing location. Mass shift clusters discussed in the text 

are numbered, and their corresponding mass shifts are shown left-to-right in the bottom of the 

figure. Samples processed longitudinally throughout their respective studies are indicated 

using tumor type label (LUAD, UCEC, or CCRCC). Samples with no tumor type label were 

processed as part of the CPTAC harmonization study. Mass shifts in Cluster 2 corresponds to 

negative mass shifts. *This annotation was constructed manually. **-14 Da can correspond to 

a large number of modifications and single residue mutations. 
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6), which also exhibit marked longitudinal variability. 

 

PTM-Shepherd also reveals how instrument parameters might be playing a role in lab-specific 

batch effects. We noted four large, negative mass shifts that were differentially identified across 

labs (Figure 2-5, cluster 2). Retention time profiling showed that these mass shifts were likely to 

be in-source losses (Figure 2-3). Their profiles were similar to loss of ammonia, a known in-

source loss, and dissimilar to formylation, a known pre-elution modification (Figure I-3). 

Sequence analysis facilitated manual decomposition, revealing that three of the mass shifts were 

composed of a hydrophobic residue (Iso, Leu, Pro, or Gly), a C-terminal Lys, a TMT tag, and a 

water. The final mass shift was the loss of a C-terminal Lys, a TMT tag, and a water. It is 

possible that slight differences in fragmentation or ionization energies between labs may be 

manifesting as disparities in precursor charge states and proton mobility, however determining 

the mechanism through which these are occurring is outside the scope of this work.  

 

Aside from analyzing how samples cluster together, there is also useful information to be 

gleaned from analyzing how mass shifts cluster together. We expect that related modifications 

should have highly correlated abundances between experiments, with co-clustering of isotopic 

error peaks as the most obvious example (e.g., potassium and sodium adducts and their related 

+1 isotopic error peaks, Figure 2-5, Clusters 1 and 6). Using a Z-score normalization to coerce 

PTMs derived from related sources across experiments to cluster together and clustering on the 

correlation between columns, we were able to identify some unknown mass shifts based on their 

co-clustering with other (known) modifications. In the TMT-related cluster noted above (Figure 

2-5, Cluster 4), we observed three mass shifts that were missed by automatic annotation. Of the 

six that were annotated, five of the mass shifts are directly attributable to TMT overlabeling, and 

one to a missed tryptic cleavage or additional Arg at one end of the peptide sequence. This 

knowledge allowed us to explain one of the unannotated mass shifts as combinations of missed 

cleavages and TMT labeling. One modification (+357.2584 Da) is precisely the mass of a TMT-

labeled Lys residue. This was missed by automatic annotation because both "Addition of Lys" 

and "TMT10 Plex" would have to be more abundant than the combination of the two during 
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PTM-Shepherd analysis. The other unexplained mass shift (+213.1680 Da) can be explained by a 

combination of TMT overlabeling and a dehydration event or a misattributed Met oxidation 

included as a variable modification. Overall, this analysis demonstrates the utility of multi-

experimental analysis with PTM-Shepherd to better identify the mass shifts are not amenable to 

automatic annotation.  

 

Finally, while our analysis above focused mostly on modifications introduced due to labeling and 

other sample handling steps, clustering of mass shifts may also be useful for uncovering 

correlated biological modifications. Of note, clustering of PTM-Shepherd results shows that 

phosphorylation (+79.9663 Da) is most correlated with HexNAc (+203.0794 Da) (Figure 2-5, 

Cluster 3). Interestingly, co-enrichment of glycopeptides was recently observed in datasets 

experimentally enriched for phosphopeptides 112, however, no phosphopeptide enrichment steps 

were applied to generate the data used in this work.   

 

2.4 Discussion 

Despite advancements in computational proteomics, many MS/MS spectra remain unexplained. 

Open searching with tools like MSFragger has proven to be an effective way to overcome the 

limitations of traditional database searches by removing the requirement of having prior 

knowledge of the peptide modifications present in the sample. The modifications elucidated by 

open searches, however, lack many of the metrics necessary to make proper determinations about 

their identities and origins. We addressed these challenges in PTM-Shepherd, which produces 

comprehensive PTM profiles for open search derived mass shifts, including multiple Unimod 

annotations, retention time changes, spectral similarity, and localization profiles.  

 

We demonstrated the utility of PTM-Shepherd in four examples, providing a broadly applicable 

guide for others interested in utilizing open searches for PTM analysis in their own research. 

First, in the development of an FFPE-treatment PTM palette, we showed how PTM-Shepherd 

disambiguated two overlapping peaks: formylation and demethylation. We also demonstrated 

how PTM palettes can be easily constructed for other sample preparation methods without 
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extensive postprocessing. Second, we showed how PTM-Shepherd’s unique ability to decompose 

mass shifts into multiple Unimod modifications allows us to identify and quantify the degree of 

failed alkylation, though this is easily extensible to other scenarios, e.g., identifying mass shifts 

corresponding to an absent variable modification and another co-occurring modification. We also 

demonstrated how incorporating additional metrics into PTM identification provides researchers 

with more granular, high confidence PTM identities, including the ability to distinguish between 

sample-derived and instrument-derived artefacts. Finally, when applied to data from a large, 

multi-center proteomics study, PTM-Shepherd helped us to visualize batch effects and the effect 

of sample processing location, as well as elucidate the identities of unannotated mass shifts. We 

believe PTM-Shepherd will become a widely used component in our MSFragger-based pipeline 

for comprehensive analysis of post-translational and chemical modifications, including searches 

for rare and even novel modifications, across a wide range of biological applications. 

 

2.5 Data and software availability 

All raw mass spectrometry data used in the manuscript can be found from the ProteomeXchange 

Consortium via the PRIDE partner repository, or (CPTAC data) from the CPTAC Data Portal, 

using specific dataset identifiers cited in the text. PSM lists can be accessed at 

10.5281/zenodo.4042962. PTM-Shepherd is available as a standalone JAR executable 

(https://github.com/Nesvilab/PTM-Shepherd) and also fully integrated into the FragPipe 

Graphical User Interface (http://fragpipe.nesvilab.org/). 
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CHAPTER III

Mining for Ions:  

Diagnostic Feature Detection in MS/M Spectra of 

 Post-translationally Modified Peptides 

 

3.1 Introduction 

Post-translational modifications (PTMs) have long been of interest to proteomics researchers 

because of their central role in regulating cellular functions. Processes to maximize their 

recovery run the gamut of proteomics techniques, from sample preparation 1 to instrumental 

acquisition 2 and computational analysis 3-5. At the computational level, proteomics search 

engines have grown tremendously in their capacity to identify PTMs. For PTMs with complex 

fragmentation patterns like glycosylation that exhibit multiple modes of fragmentation, entire 

search engines specific to the modification class have been developed 4,6,7. Despite this work, 

many modifications continue to suffer from low recall in standard high-throughput workflows 

due to their behavior during tandem mass spectrometry (MS) analysis, producing unexpected or 

difficult fragmentation patterns that frustrate search engines 8. Even small changes to 

workflows—such as the addition of isobaric labels—can alter fragmentation patterns and reduce 

or preclude identification of even the best-studied PTMs 9. Recent work with synthetic peptides 

carrying less well-studied PTMs demonstrated that many diagnostic ions and neutral losses have 

yet to be identified 10. 

 

With the proliferation of synthetic PTMs 11—particularly ones that alter fragmentation patterns 

9—and  new instrumental methods 2,12, keeping search engines up to date with knowledge of how 

an analyte will fragment in a particular setting is a herculean task. To overcome this, 

computational tools are being developed to identify modification fragmentation patterns without 

prior knowledge. The first such tools only identified diagnostic ions 13, but newer tools have 

incorporated additional features. Unfortunately, they are designed to work with a narrow subset 

of chemoproteomics probes, requiring isotopic labeling signatures to be present at the MS1 and 
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MS2 levels 17. This limits their applications to chemical probes that are labeled non-isobarically, 

thus they cannot be used for some PTM probes 18, biological PTMs, or the development of 

isobaric mass tags 19. Other approaches to score PSMs from modified peptides are trained for 

specific PTMs 20 or perform model refinement that focuses on distances between experimental 

peaks, ignoring diagnostic ions and discarding information about matched ions from the peptide 

backbone 21.  

 

We present a novel diagnostic feature extraction algorithm to study and score the fragmentation 

patterns of modifications. Our approach detects three separate types of diagnostic features—

diagnostic ions, peptide remainder masses, and fragment remainder masses—and can be used in 

any experimental setting, including simultaneous characterization of multiple modifications and 

when only a handful of PSMs are present for a modification. We demonstrate the robustness of 

our technique by applying it at both massive and small scale, and across synthetic and biological 

PTMs. Finally, we perform a meta-analysis of diagnostic features and discuss how these can be 

used to further PTM discovery in diverse settings.  

 

3.2 Methods 

3.2.1 Diagnostic feature detection algorithm 

Spectral feature calculation  

The first MS/MS spectral feature we analyze is raw spectral ions, such as immonium and 

oxonium ions, which we will refer to simply as diagnostic ions. All spectra from PSMs 

containing a given delta mass are stripped of matched a-ions, b-ions, and y-ions (by default). 

Spectra are also stripped of a-, b-, and y-ions that are found to be shifted by the PSM’s delta 

mass, preventing backbone fragments containing the modification from being counted as 

diagnostic ions. At this point, a spectrum can be thought of as a vector composed of m ions, 

where each ioni has a corresponding mzi and inti corresponding to the ion’s mass at charge state 

one and its intensity. All remaining ions are considered potential diagnostic ions and stored in a 

vector U of length m. This can be represented as U = [(mz1, int1), ⋯ , (mzm, 𝑖𝑛𝑡𝑚)]. 
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The second MS/MS spectral feature we analyze in the MS/MS spectra is peptide remainder 

masses. All spectra from PSMs containing a given delta mass are stripped of shifted and 

unshifted a-, b-, and y-ions, as described above, before precursor remainder mass calculation. A 

theoretical peptide mass P of charge state one is calculated based on the peptide sequence and 

variable modifications identified for the PSM during spectral searching but excluding any MS1 

mass shift. Then, the pairwise distance d between each remaining ion in the MS/MS spectrum 

and the theoretical peptide mass P is calculated and stored in a vector V of length m, where m is 

the number of ions remaining in the spectrum after filtering. Each component Vi contains the 

pairwise distance between P and mzi as well as the intensity inti. This can be represented as V =

[V1, ⋯ , V𝑘] with each component V𝑖 = (mz𝑖 − P, int𝑖). Intuitively, each component can be 

interpreted as what the precursor remainder mass and intensity would be if the ith ion were a 

shifted precursor in the spectrum. 

 

The third MS/MS spectral feature we analyze is fragment remainder masses. All spectra from 

PSMs containing a given delta mass are stripped of unshifted a-, b-, and y-ions only, allowing us 

to identify instances where the entire delta mass remains on the fragment ions. We reasoned that 

understanding how modifications affect individual ion series would provide insight into 

fragmentation patterns, so fragment remainder masses for b- and y-ions are calculated 

independently. For each fragment ion series, the peptide’s theoretical fragment ions of charge 

state one are calculated based on the peptide sequence and modifications identified for the PSM 

during spectral searching; the vector F holds each of n theoretical fragment ions, where n is the 

length of the peptide minus one and Fj corresponds to the jth fragment ion. Then, the pairwise 

distance between each remaining ion in the MS/MS spectrum and each theoretical fragment ion 

Fj is calculated and stored in a matrix W of size m by n, where m is the number of ions 

remaining in the spectrum. This can be represented as  

𝑊 = [
𝑊11 ⋯ 𝑊1𝑛

⋮ ⋱ ⋮
𝑊𝑚1 … 𝑊𝑚𝑛

] 

with each component 𝑊𝑖𝑗 = (𝑚𝑧𝑖 − 𝐹𝑗 , 𝑖𝑛𝑡𝑖). Intuitively, each matrix component can be 

interpreted as what the jth fragment’s remainder mass and intensity would be if the ith ion in the 
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spectrum were the jth theoretical fragment’s shifted counterpart. 

 

Identifying recurring features 

 We then determine which features represent the most intensity and are thus worthy of 

undergoing testing for enrichment. To do this, we place every value in a histogram with a bin 

width of 0.2 mDa spanning the range of possible features. For peptide and fragment remainder 

masses, the left tail of the histogram is truncated at -250 Da because values smaller than that 

would necessitate the losses of multiple residues. To account for uncertainty of ion position and 

smooth the histogram, the intensity of each ion is placed uniformly over an area equal to the 

MS/MS spectrum tolerance for the average ion in the histogram, i.e., the average inserted peptide 

or fragment mass. For diagnostic ions, a mass of 150 Da is used as the mass for smoothing. 

Furthermore, insertions into the histogram are normalized by the number of PSMs matching a 

particular peptide ion—that is, a grouping based on sequence, modification state, and precursor 

charge state—to prevent the inflation of features from abundant peptide ions. 

 

Peaks in the histogram are defined by descending each side of a local maximum bin until a bin 

with zero intensity or a higher value is reached. Manual calibration found that a bin-to-bin 

tolerance of 1% was enough to prevent noisy bins from splitting peaks in two. Peaks are then 

integrated by summing histogram bins within the MS/MS tolerance without regard for adjacent 

peak boundaries. Any peak with an integrated area greater than 0.1% (by default), representing 

an average intensity greater than 0.1% of the base peak, is selected for downstream analysis. A 

final check is performed to remove redundant peaks where the least intense of any two histogram 

peaks that cannot be resolved under the provided MS/MS tolerance is removed. 

 

Identifying significant features 

To find features specific to a particular mass shift, the full feature set—every major peak from 

the feature histograms above—needs to have features pruned from it that are not specific to the 

mass shift. We reasoned that peptides without mass shifts would be a good representative of a 

dataset’s noise, and as such testing whether features are more likely to appear among peptides 
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with a particular mass shift than those without any mass shift would filter out non-modification-

specific features. 

 

Rather than using every PSM for what is inherently a noisy process, we select only those that are 

most likely to have the cleanest spectra. To do this, PSMs are first grouped by their peptide ion 

(sequence, modification state, and precursor charge state), then each group of PSMs has its 

lowest E-value representative selected for all downstream processing. The number of 

representative PSMs for each mass shifts is then capped at 1000 as we found that these gave 

reliable values across iterations. The 1000 representative PSMs are selected randomly, but 

internally a seed is provided for reproducibility.  

 

Representative PSMs for every peptide ion with a particular mass shift and representative PSMs 

with no mass shift are first assembled, then every feature from the list of diagnostic ions, 

precursor remainder masses, and fragment remainder masses is quantified for each PSM in both 

lists. For spectra that do not have the diagnostic feature, the intensity is coded as a zero. 

Fragment remainder masses are likely to appear by chance solely based on the number of 

theoretical-to-experimental ion offsets calculated, so PSMs are considered to be missing a 

fragment remainder mass if there are fewer than two shifted ions of the ion type in the spectrum, 

i.e., fewer than two matching fragment remainder masses within feature matrix W for any ion 

type.  

 

For every diagnostic feature tested, a series of metrics are produced for filtering noise peaks from 

real peaks. First, the lists of feature intensities from the unmodified and mass shifted PSMs are 

compared via a two-sided Mann-Whitney-U test with tie and continuity correction (adapted from 

the Hipparchus statistics library for Java, v1.8). E-values for each diagnostic feature are 

calculated by multiplying by the number of tests performed within the feature class for the 

current mass shift. By default, any feature with an E-value less than 0.05 is filtered out. A second 

metric to quantitatively assess the strength of the feature is included in PTM-Shepherd’s output: 

Area Under the Curve (AUC). This is commonly used as a measure of effect size for the Mann-
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Whitney U test and can be directly interpreted as the probability that a mass shifted PSM will 

have a higher intensity for this feature than an unmodified PSM. Second, we calculate a feature’s 

fold change of average intensity across all PSMs. Any features with fold change of less than 3.0 

is filtered out by default. This metric primarily helps to identify diagnostic ions and non-specific 

but increased neutral losses for peptide and fragment remainders. Third, we filter out any 

features that are not sensitive for the modification, occurring in less than 25% of representative 

PSMs for diagnostic ions and peptide remainder masses. Owing to the multiple ion requirement 

for fragment remainder masses, this filter is reduced to 15% but is accompanied by an ion 

propensity filter required at least 12.5% of the identified ions within that series having the mass 

shift. 

 

Fragment ions undergo an additional post-filtering processing step. Because a theoretical-

experimental peak offset Wij is created for n theoretical ions in the theoretical ion series, a single 

peak in the experimental MS/MS spectrum produces a sequence specific pattern. For example, if 

the jth residue produces an offset with fragment Fj from the experimental ion i, the same 

experimental ion responsible for that offset will also produce an “echo” offset from fragment Fj-1 

equal to the original offset plus the mass of the residue at position j. Similarly, it will produce an 

“echo” offset from fragment Fj+1 equal to the mass of residue j+1 minus the original offset. 

Depending on the fragment ions containing the mass shift, some modifications can produce very 

weak signals for their primary mass shift but strong signals from shifted fragment ions upstream 

or downstream of the modification site. To correct for this, we check for residue enrichment both 

on and adjacent to the peptide site responsible for producing the mass shift. If any residue is 

found at position j+1 for a modification more than 50% of the time, the fragment remainder mass 

is adjusted by subtracting that residue’s weight from the fragment remainder mass. If any residue 

is found at position j more than 50% of the time, the mass of residue j is added to the fragment 

remainder mass. With all fragments downstream of a peptide’s modification site carrying the 

mass shift, the residues responsible for these shifts should be roughly uniformly distributed 

across all 20 amino acids. Thus, any mass shift that is less prevalent than one of these adjusted 
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offsets is unlikely to be a real peak, and reporting for fragment remainder masses is truncated 

after the first adjustment. 

 

3.2.2 Calculation of classification metrics from PTM-Shepherd 

PTM-Shepherd internally calculates a series of metrics to characterize diagnostic features. One 

of these is the Area Under the Curve of the Receiver Operating Characteristic Curve (AUC-

ROC, or just AUC). This metric can be computed directly from the U-statistic of the test group 

computed as part of the Mann-Whitney U test. The formula for this statistic is: 

𝐴𝑈𝐶𝑡 =  
𝑈𝑡

𝑛𝑡𝑛𝑐
 

where t and c stand for test and control groups and n is the respective groups sample sizes. This 

metric has a useful interpretation as a rank probability statistic, i.e., it can be directly interpreted 

as the probability that a randomly chosen value from group t will be higher a randomly chosen 

value from group c 113.  Importantly, when calculated from the U-statistic, AUC is not sensitive 

to class imbalances. This allows comparisons between diagnostic ions for mass shifts that have 

different numbers of PSMs, as in Figure 3-5b. The second metric calculated in the manuscript is 

precision, also known as positive predictive power. In classification problems, this metric is the 

inverse of FDR. Whereas FDR can be interpreted as the probability that a hit is a false positive 

given that it is positive, precision can be interpreted as the probability that a hit is a true positive 

given that it is positive. When using the presence of a particular feature to classify whether the 

spectrum contains the PTM of interest, this can be calculated easily from PTM-Shepherd output 

by the equation: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑚

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑢 + 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑚
 

where u and m correspond to unmodified and modified PSMs and proportion is the proportion 

of spectra containing the ion. Again, this metric is not sensitive to class imbalances when 

calculated this way, enabling direct comparisons between mass shifts with different numbers of 

PSMs. 
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3.2.3 Efficient data access and storage 

This process was refined after encountering computational bottlenecks for large datasets in 

several places. In one approach, the delta mass bins are processed one-by-one (Fig B-3). Because 

spectral files can be very large and it is not reasonable to keep all of them open at once, spectral 

files would need to be parsed for every delta mass bin. Parsing spectral files is computationally 

expensive due to IO limitations and may also be CPU intensive based on the file format. 

Redundantly parsing files for every delta mass bin, potentially hundreds of times, is too wasteful. 

Another approach would be to pre-initialize histograms for every mass bin, then loop through 

spectral files one-by-one and parse and process them (Fig B-4). However, pre-initializing 

hundreds to thousands of histograms at the resolution required for MS fragment analysis would 

be extremely memory intensive. The volume of insertions going into these histograms may 

preclude the use of sparse arrays to save memory due to speed, and for large consortium-level 

datasets adequate sparsity cannot be assumed. A third option is to do this in two passes (Fig B-

5). In the first pass, spectral features for all PSMs are calculated and cached in intermediate files 

that can be accessed more quickly, allowing them to be parse and opened hundreds of times 

throughout sample processing.  

 

This also solves a second issue. Storing spectral features from the prior step in memory for use in 

the statistical testing step is also not feasible. This is because each PSM’s features requires a 

space in memory equal to roughly 

𝑛 ∗ [(𝑘 − 1) ∗  2] + 2𝑛  

peaks, where n equals the number of peaks in a spectrum and k equals the length of the peptide, 

primarily because each fragment ion series produces k – 1 arrays for every ion in the 

experimental spectrum. By storing them in intermediate files, we can take advantage of storage 

rather than RAM.  

 

To facilitate fast file access, we store precalculated spectral features as binary arrays, with each 

PSM’s position in the file indexed in a manifest (Fig B-6). Scans can be located by loading the 

small manifest, then selectively accessed rather than loading the whole file. This strategy cuts 
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loading time from seconds to single digit milliseconds. Because it is so much faster (~6 orders of 

magnitude) than recalculating diagnostic features for the statistical testing (Fig B-7), and because 

calculating diagnostic features is one of the more computationally demanding portions of this 

algorithm, it also cuts processing time. 

 

3.2.4 Data processing 

Three datasets were used throughout this manuscript. The first dataset consists of the Clinical 

Proteomics Tumor Analysis Consortium (CPTAC) phosphorylation-enriched clear cell renal cell 

carcinoma (ccRCC) samples 25 from the CPTAC data portal 46. These 299 files represent TMT-

labeled solid tumor or adjacent normal tissue from 110 human ccRCC patients. Samples were 

acquired on a Thermo Fisher Fusion Lumos in data-dependent acquisition (DDA) mode using 

high-collision dissociation (HCD). Thermo Fisher raw files were converted to mzML format 

using Proteowizard v3.0.11392 47 with vendor peakpicking enabled. The 23 TMT-plexes were 

separated into separate experiment folders and processed using FragPipe v18.0. For the primary 

analysis, the default “glyco-N-TMT” workflow was used with minor changes to account for the 

goals of the analysis and experimental setup. Data was searched against the Uniprot reviewed 

protein sequences database retrieved on 13 June 2021 with decoys and common contaminants 

appended. During the MSFragger 5 search, two variable phosphorylation modifications were 

allowed on the residues STY due to the expected enrichment of phosphorylated peptides and 

“Write calibrated MGF” 37 was turned on for the PTM-Shepherd 22 diagnostic feature mining 

module. In PTM-Shepherd, “Assign Glycans with FDR” was disabled, and “Diagnostic Feature 

Discovery” was enabled with default parameters. Finally, “Isobaric Labeling-Based 

Quantification” with TMT-Integrator was disabled. Filtering to 1% PSM, peptide, and protein 

levels was performed by Philosopher. PTM-Shepherd was then run via command line to enable 

the reporting of isotopic peaks. For the secondary analysis wherein known and discovered 

diagnostic ions were quantified, PTM-Shepherd’s “Diagnostic Feature Extraction” module was 

used with the ion list presented in Figure 3-3. This was performed using the mzMLs rather than 

the deneutrallossed and deisotoped 23 mgf files from MSFragger to prevent neutral losses that 

would be correlated under normal conditions from being anticorrelated in the analysis. For the 
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tertiary analysis wherein the landscape of diagnostic features was explored, PTM-Shepherd was 

rerun, but with the filtering parameters for diagnostic ions and peptide ions set to 0 for “Min. % 

of spectra with ion” and 1 for “Min. intensity fold change.” 

 

The second dataset consists of a novel protocol for photoactivatable ribonucleoside-crosslinking 

from the ProteomeXchange repository PXD023401 33. Only the two 4SU nucleotide-specific raw 

files from this repository were used. Samples were acquired on a Thermo Fisher Orbitrap Fusion 

Lumos using HCD fragmentation. Only the two 4SU-specific raw files from the repository were 

using in this analysis, and both samples were processing using FragPipe v18.0 directly without 

conversion to mzML. Samples were processed three times. The first, to find diagnostic features, 

was a standard open search using the FragPipe default “Open” workflow but with “Write 

calibrated MGF” and PTM-Shepherd’s “Diagnostic Feature Discovery” enabled with default 

settings. The second, to validate fragment remainder masses, was adapted from the default 

“Mass-Offset-CommonPTMs” workflow but with the mass offsets limited to 0, 226.0594, and 

94.0168; “Labile modification search mode” enabled; “Y ion masses” and “Diagnostic fragment 

masses” removed; “Remainder masses” set to 94.0168 and 76.9903; “Write calibrated MGF” 

enabled; and PTM-Shepherd’s “Diagnostic Feature Discovery” enabled with default settings. 

The settings for the third analysis to validate an ammonium loss were identical to the second but 

without the 76.9903 fragment remainder mass. All analyses were run against the Uniprot 

database described above. Crystal-C 48 was used to clean up open search results. Filtering to 1% 

PSM, peptide, and protein levels was performed by Philosopher 49. 

 

The third dataset consists of two samples from the ProteomeXchange repository PXD004245 

corresponding to ADPR -enriched samples of mouse and HeLa origin 40. The former is derived 

from mouse liver, processed in triplicate, and was acquired on a Thermo Fisher Orbitrap Q-

Exactive Plus instrument in DDA mode using HCD. The latter was treated with H2O2 to induce 

oxidative stress, then collected in the same manner described above. Raw files were converted to 

mzML using Proteowizard v3.0.19296 with vendor peakpicking enabled. Both datasets were 

searched against their respective Uniprot reviewed sequence databased with decoys and common 
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contaminants appended, with the mouse database retrieved on 27 September 2021 and the human 

database described above. Both datasets were searched separately in FragPipe v18.0 using the 

default “Labile_ADPR-ribosylation workflow with a few changes. During the MSFragger 

search, “Report mass shift as variable mod” was set to “No” so that PTM-Shepherd would 

register these ADPRs as mass shifts and “Write calibrated MGF” was enabled for the PTM-

Shepherd diagnostic feature mining module. PeptideProphet 50 and ProteinProphet defaults for 

“Offset search” were loaded, then PTM-Shepherd and its “Diagnostic Feature Discovery” 

Module were enabled. 

 

We attempted to do searches for ADP-Ribosylated (ADPR) peptides using parameters as close to 

FragPipe defaults as possible to make them reproducible for other users. The default ADPR 

workflow includes both a labile and variable modification search for ADPR, allowing 

competition between fragmented and intact forms of the modification. Because the zero bin is 

defined as peptides with no mass shift and PTMs identified as variable mods have no mass shift, 

some ADPR-containing peptides are also present in the unmodified peptide bin. However, these 

only account for roughly 1 in 7 PSMs in the unmodified bin, and as such cannot be driving the 

trends discussed here. 

 

3.3 Results 

3.3.1 Algorithm overview  

The PTM-Shepherd diagnostic feature mining module aims to perform high throughput 

identification of spectral features that can be used to identify post-translational modifications 

(PTMs), facilitating the validation or discovery of PTM-specific signals. Probable modifications 

from an experiment are identified by passing the results of open or mass offset search to PTM-

Shepherd. For each MS1 mass shift, PTM-Shepherd identifies enriched diagnostic features 

across three categories: diagnostic ions; mass shifts from the unmodified, intact peptide ions 

(peptide remainder masses); and mass shifts from unmodified fragment ions (fragment remainder 

masses). This module operates in three steps: calculating all possible spectral features for every 

peptide-spectrum match (PSM) with a particular mass shift, identifying the most abundant 



52 
 
 

 

spectral features for every identified mass shift within each category, then finally performing 

statistical tests and filtering to see whether those features can be used to infer the presence of the 

modification via comparison to unmodified peptides. This module uses as input decharged and 

deisotoped MGF spectra produced by MSFragger 23, so the maximum charge state for all ions in 

MS/MS spectra is assumed to be one. Spectral ions are normalized to the base peak and only the 

top 150 peaks are considered (by default).  

 

The first step in our strategy is to calculate all possible diagnostic spectral features for each PSM 

within a mass shift identified by PTM-Shepherd. Any ions from experimental spectra that do not 

belong to the peptide are considered potential diagnostic features for the mass shift. To identify 

recurring features for the mass shift, calculated features for every spectrum from the mass shift 

are sent to a common histogram. Peaks are identified from here and shuttled to downstream 

analysis. For diagnostic ions, the unannotated ions from the experimental spectrum are sent to 

their histogram as they are. Peptide remainder masses are calculated by computing mass 

differences between the theoretical, unshifted peptide ion and all ions in the spectrum. Fragment 

remainder masses are calculated by iteratively computing mass differences between every 

theoretical ion from the peptide backbone and all ions in the spectrum. 

 

Finding recurring ions does not mean that they are useful for identifying a mass shift. Our ion set 

contains features that might be abundance across the entire dataset, so it is necessary to remove 

baseline noise. We do this by comparing the recovered features from all spectra bearing the mass 

shift to those of unmodified peptides in bulk as a proxy for dataset background (Figure 3-1).  For 

every feature detected in the prior step, it is quantified across modified and unmodified PSMs, 

with missing ions or offsets encoded as zeroes. The result is two lists of intensities, from which 

we can perform statistical tests. Encoding missing ions as zeroes is necessary for this step, but it 

can also produce a range of non-normal distributions, calling for the non-parametric Mann-

Whitney-U test. Features that are significantly different between the modified and unmodified 

lists are then filtered for sensitivity criteria (minimum prevalence in the modified bin) and mean 
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intensity fold-change between the two bins. Fragment remainder ions undergo an additional layer 

of filtering for ion formation propensity, where they are required to represent a minimum 

percentage of the number of ions in their series. True fragment remainder ions can also create 

“echoes” of their masses that are combinations of the original mass and adjacent amino acids, 

multiple of which can pass filtering for a mass shift. We correct these by checking for 

enrichment of adjacent amino acids from the residues the remainder mass is derived from and 

adjusting the mass accordingly. Because the adjacent residues are pseudo-random in most cases, 

we also reasoned that any fragment remainder mass less intense than the first correct mass is 

likely to be noise. These are also filtered from the result. Additional details about this process 

can be found in the Methods section. 

 

Figure 3-1: Workflow for diagnostic feature selection. First, all possible diagnostic 

features are calculated for every PSM. PSMs are then grouped by mass shift, and features that 

recur across PSMs are identified. For every recurring feature, the feature’s intensity is 

extracted from every representative PSM within the mass shift bin and within the unmodified 

bin. These intensities are statistically compared between modified and unmodified spectra, 

then filtered based on statistical significance and different abundance metrics. 
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3.3.2 Data-driven discovery of diagnostic features 

Glycopeptides contain labile modifications that produce rich sequences of diagnostic ions and 

peptide and fragment remainder masses 24. We reasoned that detecting known glycopeptide 

fragmentation patterns would a good way to validate our algorithm’s performance given the 

extensive literature characterizing glycopeptide fragmentation. To this end, we searched for 

glycopeptides in a large phosphorylation-enriched, TMT-labeled clear cell Renal Cell Carcinoma 

(CCRCC) dataset 25. Phosphorylation enrichment by IMAC, the method employed in this 

publication, has been shown to simultaneously enrich glycopeptides, particularly those bearing 

sialic acids 26,27, so the data should be rich in glycan signals. This dataset also presents two 

challenges: TMT-labeling is known to affect PTM fragmentation patterns due to reduced proton 

mobility 9 and the relatively high collision energies used in this experiment cause extensive 

fragmentation of glycans, reducing the signal strength of typical glycan fragment ions.  

 

We first wanted to verify that we could detect diagnostic ions associated with glycopeptides. 

After discarding any mass shifts less than 50 Da we were left with 493 likely glycan mass shifts, 

 

Figure 3-2: Diagnostic features of IMAC-enriched glycopeptides under high energy 

conditions. (a) Scatterplot of recovered diagnostic ions across glyco mass shifts. Ions 

occurring in >50% of mass shifts are considered recurring and are included in Fig 4-3. Color 

schemes for Fig 4-4c,d are consistent with Fig 2-2a. (c) Histogram of peptide remainder ions 

across glyco mass shifts. (d) Histogram of fragment remainder b-ions across mass shifts. 

Recovered features are generally explained by preexisting knowledge, and in cases where 

new features were found could be overwhelming determined empirically. 
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each of which should be enriched for diagnostic ions associated with the N-glycan core structure 

12 and other monosaccharide(s) present, including sialic acid. Indeed, PTM-Shepherd 

successfully identifies many of the expected diagnostic ions used in glycopeptide searches and 

glycan identification 7,28, including three known sialic-acid related oxonium ions at 274, 292, and 

657 m/z (Figure 3-2a, Table B-1). In addition to these, we found 12 additional ions that were 

diagnostic for more than 50% of glycan mass shifts. We hypothesized that these might be 

diagnostic ions specific to a high-collision energy environment and attempted to identify them in 

a data-driven manner. We used PTM-Shepherd’s diagnostic feature extraction module, which 

extracts intensities for user-specified ions of interest, to quantify these alongside the set of 

common diagnostic ions used in the MSFragger-Glyco, identifying clusters of highly correlated 

ions (Figure 3-3). Known ions clustered together meaningfully, with annotated GalNac, Hex, 

HexNac, and PhosphoHex ions being highly correlated with others from the same residue, 

lending credence to this approach’s validity. Perhaps unsurprisingly given the nature of the 

enrichment method, most unannotated diagnostic ions formed a large cluster with the two 

monomeric sialic acid oxonium ions found at 274 and 292 m/z. We selected the diagnostic ions 

from a subcluster (Figure 3-3, cluster 5) that was highly correlated with both oxonium ions 

(Table B-2) to validate individually. These ions formed a potential neutral loss series from the 

annotated 292 and 274 m/z oxonium ions, with successive losses of 42, 17, 18, and 30 Da. 

Recent manuscripts make no mention of these as diagnostic ions 12,29,30, so their presence in 

spectra acquired at high collision energies may be of interest to other researchers when assigning 

sialic acids to glycan composition. 

 

Aside from diagnostic ions, glycopeptides also produce an intense series of peptide remainder 

ions, called Y-ions in glycopeptide fragmentation nomenclature, where the peptide is intact while 

the modification has fragmented 12. Mammalian N-glycans have a common core structure. When 

the core structure fragments, it produces a pattern of Y-ions with peptide remainder masses that 

are identical irrespective of the peptide’s or glycan’s mass and can even be used to diagnose the 

presence of glycopeptides 6. Like the diagnostic ions discussed above, we find an expected 

pattern of peptide reminder masses corresponding to the N-glycan’s core’s Y-ion series (Figure 
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3-2b). Aside from these, two peptide remainder masses that are not considered in the 

MSFragger-Glyco search recurred across mass shifts: +83 Da and -17 Da. The smallest glycan 

mass from the N-glycan core, corresponding to a single GlcNAc retained on the peptide, is 203 

Da, so seeing masses smaller than that being as diagnostic for glycopeptides as the complete loss 

of glycan (+0 Da) or a single GlcNAc (+203 Da) was surprising. This pattern—consisting of a 

cross-ring fragmentation event at the core GlcNAc and a loss of an ammonium, respectively—

has previously been identified as a conserved fragmentation pattern for glycopeptides 31, but 

appears not to be used in current state-of-the-art tools 6,7,32. This indicates that even for very well 

characterized modifications, gaps can exist between knowledge of fragmentation patterns and 

their use in computational tools, a disconnect that PTM-Shepherd’s automated fragmentation 

analysis can correct. 

 

The final diagnostic feature we assessed for this glycan dataset is shifted fragment ion series. 

When the peptide and glycan have both fragmented, the glycan can leave a signature +203 

fragment remainder mass on the peptide ion series 12. PTM-Shepherd recovered this fragment 

remainder mass exactly (Figure 3-2c, y-ion series at Figure II-1) and with little interference from 

artefactual mass shifts despite the noisy nature of pairwise ion differences.  

 

Some of the identified ions, particularly the Y-ion series of peptide remainder masses, appeared 

to taper off very quickly at larger masses, which is a known issue when identifying labile 

modifications at relatively high collision energies. We reasoned that using for these extra ions in 

our search when they can be low-abundance or absent injects additional noise into the search 

results and suppresses real glycopeptide identifications. To test this, we used the fragmentation 

information provided by PTM-Shepherd and reduced our fragment and peptide remainder 

masses to only the four Y-ions appearing in >50% of glycan mass shifts. Though more 

considered analysis would surely yield better results, even the incorporation of a crude cutoff 

from a subset of the data resulted in a 4.5% increase in glyco-PSMs, proving that the 

fragmentation information provided by PTM-Shepherd enables researchers to tune search 

parameters to best suit their individual experiments. 
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To conclude, we showed that PTM-Shepherd was sensitive to known diagnostic features for 

glycopeptides. New features detected by PTM-Shepherd had chemical meaning relevant to the 

experimental setting, and PTM-Shepherd was able to identify unannotated sialic acid diagnostic 

ions for high-energy TMT experiments in a data-driven manner. Finally, we proved that the 

 

Figure 3-3: Clustering between known and unknown diagnostic ions for sialic acid 

enriched TMT-glycopeptides. Spearman correlation clustering between diagnostic ions 

across all glyco spectra. Previously annotated ions are labeled blue, unannotated ions are 

labeled green. Identifiable clusters are as follows: 1: GalNac, 2: Hex, 3: PhosphoHex, 4: 

NeuAc, 5: sialic acid, 6: HexNac monomers; 7: HexNac including non-monomers. (c) 

Histogram of peptide remainder ions across glyco mass shifts. (d) Histogram of fragment 

remainder b-ions across mass shifts. 
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information provided by PTM-Shepherd can be incorporated into subsequent searches to 

increase to fine-tune parameters for different experimental settings. 

 

3.3.3 Fragmentation of complex post-translational modifications 

ADP-ribosylation (ADPR) has seen a surge of interest in recent years, with many enrichment 

methods 38,39, and instrumental techniques 40 developed over the last decade to aid in its study. 

Despite this, specialized computation techniques have lagged behind. Fragmentation studies—

necessary to design tools or workflows for the analysis of PTMs—require painstaking analysis 

and examination of individual spectra 41. We believed that PTM-Shepherd’s diagnostic feature 

mining module could expedite fragmentation studies and reveal new, useful insights to their 

behavior. To demonstrate this, we reanalyzed ADPR-enriched data from Martello et al. 40 from 

peroxide-treated HeLa cells, rich in Ser-directed ADPR, and mouse liver, rich in Arg-directed 

ADPR.  

 

To validate the fragmentation patterns we detected, we first cross-checked them against 

published ones 41. As expected, we found previously annotated diagnostic ions (Figure 3-4a, 

Table B-3a,b) corresponding to almost every expected breakpoint on the ADPR side chain 

(Figure 3-4b). These were all found at relatively high levels among ADPRylated spectra (78-

100%). Interestingly, the most intense of these ions—e.g., the adenine-derived ion at 136—was 

also found at high levels in unmodified spectra (73%), meaning its presence was not specific to 

PSMs with ADPR. This speaks to the robustness of PTM-Shepherd’s algorithm; even features 

whose presence alone is not specific to a particular mass shift can be recovered because our 

scoring and filtering utilizes intensity information. We also recovered additional ions that 

correspond to derivatives of annotated ions: an oxidized 428 m/z ion (+16 Da), a 348 m/z ion that 

has undergone a loss of water (-18 Da), and a 250 m/z ion that has undergone a loss of water (-18 

Da). These ions were all far more specific to the ADPR PTM than 
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their annotated counterparts and thus may be of interest to other studying ADPR. A final 

diagnostic ion of interest did not correspond to a common mass offset from an annotated ion. At 

137.0458 m/z, we could not identify this ion as being a secondary product of any annotated ions. 

Its exact mass is strongly suggestive of a deamidation event occurring on the adenine ion at 

136.0618 m/z (+0.9840 Da). 

 

We also observed a strikingly strong relationship between an ion’s average intensity and its 

presence in unmodified spectra across both ADPR datasets analyzed (Figure 3-5, Spearman’s R2: 

mouse = 0.857; HeLa = 0.884). We have previously commented on this phenomenon when 

 

Figure 3-4: Analysis of ADPR fragmentation patterns. (a) ADPR diagnostic ions. Colored 

bars show the percentage of ADPR PSMs containing the diagnostic ion, while gray bars show 

the percentage of unmodified PSMs containing the diagnostic ion. Ions detected in both 

datasets were averaged across all values. A “*” denotes novel features discovered by PTM-

Shepherd. (b) Structure of ADPR. Dashed lines correspond to breakpoints in the molecule, 

and color corresponds to the diagnostic features produced during fragmentation. (c) ADPR 

peptide remainder masses. PTM-Shepherd revealed many derivatives of known diagnostic 

ions that were more specific to ADPR as well as a series of unreported successive neutral 

losses from the peptide backbone. 
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looking at biotin-derived Cysteine probes 16. In that case, reducing the isolation window and 

employing ion mobility gave a modest boost to diagnostic ion specificity, an effect that was 

presumed to be caused by reduced co-fragmentation of peptides. It is worth noting that the issue 

of co-fragmented ions has been well-studied in the context of isobaric tandem mass tags 42. But, 

to our knowledge, there has been little discussion of parallel issues when using diagnostic ions 

for ADPR analysis. 

 

PTM-Shepherd also identified both types of remainder ions in this dataset, peptide (Figure 3-4c) 

and fragment. Of note was PTM-Shepherd’s recovery of a -42 Da peptide remainder mass from 

the Arg-directed ADPR dataset (Table B-3b). When Arg-linked ADPR dissociates from the 

peptide, it appears to frequently take a portion of the Arg side chain with it. The result is a 

 

Figure 3-5: Correlation between diagnostic ions’ average intensities and their 

presence in unmodified PSMs. Across both HeLa and mouse datasets, there is a strong 

correlation between an ion’s intensity and its lack of specificity for the modification. This 

is caused by it being more likely to cross the detection threshold in unmodified PSMs when 

the ADPR is the minor product in a spectrum. Confidence intervals for Pearson’s 

correlation are highlighted.  
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negative peptide remainder mass corresponding to the loss of the Arg reactive group that is both 

prevalent (66% of PSMs) and distinguishes ADPR on Arg from other residues. This is also 

reflected in the fragment remainder masses. The b- and y-ion series were found to consist of 40% 

and 26% ions shifted by -42, respectively (Table B-3b). Since only ions downstream of the 

modification site are expected to be shifted, we only expect to find half of all ions containing 

PTM-related mass shifts. The abundance of the Arg-specific fragment ions indicates that the 

modification itself should be easily localizable. We also found a noteworthy number of neutral 

loss-associated peptide remainder ions. When ADPR fragments after the primary ribose (Figure 

3-4b, green), we would expect a peptide remainder mass of 114 Da if it were to remain intact. 

We do not find that mass, but instead find five sequential neutral losses of water from that mass. 

Equally of interest is that the neutral loss peaks—despite neutral losses not being unique to 

ADPRylated peptides—are found in no unmodified spectra. Though counterintuitive, even 

common losses can produce PTM-specific peaks. By thinking of them as losses of almost the 

entire modification and a common neutral loss, it is easier to reconcile their uniqueness to 

specific modifications. In other words, a -17 peptide remainder mass (Fig 3-4b, red) will appear 

at the precursor m/z - 17 for unmodified peptides, but at precursor m/z – 558 from modified 

peptides. 

 

3.3.4 Use cases and applicability of diagnostic features 

To investigate the extent to which co-fragmentation affects diagnostic feature characteristics, we 

leveraged our ability to identify them in large numbers from the CPTAC phosphorylation-

enriched glycosylation dataset. This dataset represents 117 unique diagnostic ions, each found to 

be diagnostic for between 1 and 493 mass shifts, for a total of 13707 data points (Table B-1). 

Every diagnostic ion was evaluated individually for its ability to separate glyco and unmodified 

spectra based on its precision and AUC. This was repeated for the 64 unique peptide remainder 

masses observed between 1 and 344 times, totaling 2261 data points. 

 

Here, precision can be interpreted as the probability y that a spectrum is a glyco spectrum given 

that the diagnostic ion is present in the spectrum at intensity x (Figure 3-6a). Diagnostic ion 
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precision attenuates rapidly as the intensity increases, losing more than a third of its usefulness 

when it becomes the spectral base peak (average intensity 100.0). Because there is a detection 

limit for ions in mass spectrometers, less intense ions are also less likely to show up in spectra. 

For co-fragmented spectra, the presence of the ions from the minor product is inversely 

proportional to the spectral purity and proportional to the ion’s intensity when its peptide is the 

major product. In other words, more intense diagnostic ions are more likely to appear in 

unmodified spectra because they can exceed the lower detection limit even for relatively pure 

unmodified PSMs. This has profound implications for researchers using diagnostic ions for PTM 

research. First, the most intense diagnostic ion for a PTM, a typical choice for diagnostic-ion 

triggered methods, might not be the optimal one. Second, less intense versions of the same ion—

such as neutral losses or isotopic peaks—might have better statistical properties. 

 

But this is a trend can be reversed by taking intensity information into account rather than only 

checking for the presence or absence of the ion (Figure 3-6b). The AUC statistic here can be 

directly interpreted as the probability y that a diagnostic ion of intensity x drawn from a random 

modified PSM will be greater than the intensity of the same diagnostic ion drawn from a random 

 

Figure 3-6: Trends in diagnostic and peptide remainder ions. Dotted red lines track a 

LOESS fit. (a) Relationship between diagnostic ions’ observed intensity and the precision of 

their presence.  (b) Relationship between diagnostic ions’ observed intensity and the 

classification strength of their intensity as measured by AUC. (c) Relationship between 

peptide ions’ observed intensity and the precision of their presence. 
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unmodified PSM. After including intensity information, an ion’s ability to separate glyco and 

non-glyco spectra increases with intensity. Incorporating this feature into PTM-Shepherd allows 

us to detect diagnostic ions that are as ubiquitous as ADPR’s adenine ion, in 92.9% of off-target 

spectra in the HeLa dataset (Table B-3a). It also shows that researchers can effectively use 

intense diagnostic ions for scoring PTMs, but only if they empirically learn the distribution of 

intensities among unmodified PSMs beforehand. 

 

For peptide remainder masses, unlike diagnostic ions, precision does not attenuate with intensity 

(Figure 3-6c). As mentioned above, peptide remainder masses are mass- (although not sequence) 

specific. Co-fragmented peptides can only share peptide remainder masses if they share a mass 

that is indistinguishable at MS/MS mass accuracy, which is not guaranteed even for co-

fragmented peptides with the same charge state. Excluding noise peaks that happen to fall within 

the tolerance of a theoretical peptide remainder ion, there should few erroneously matched 

peptide remainder masses. The result is a very specific feature that does not attenuate as it gets 

more intense. Accordingly, peptide remainder ions discovered by PTM-Shepherd have many 

applications. Experiments performed with data-independent acquisition (DIA) have many co-

fragmented peptides by design and present a prime opportunity for their use. Plus, with the 

advent of real-time searching, peptide remainder ions can also be used for instrumental 

enrichment 43. 

 

3.4 Discussion 

Our analyses show that PTM-Shepherd can be used to reliably identify diagnostic features for 

any modification of interest. In high-energy glycopeptide fragmentation, we showed that 

diagnostic ions for sialic acid could be identified without prior knowledge in a data-driven way, 

as well as finding two peptide remainder masses that had been described by experimentalists but 

neglected by cutting-edge glycopeptide search tools. In our discussion of a novel RNA-

crosslinking workflow, we showed that painstaking experimental characterization could be 

recreated with ease in the FragPipe/PTM-Shepherd environment. Finally, our discussion of 

ADPR fragmentation demonstrated that fragmentation studies—traditionally done by hand with 
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manual annotation of spectra—could be automated and democratized to reach a broader 

audience. We even found meaningful fragmentation patterns that would have been missed by 

annotation focused on modification structure alone. Although our analysis focused on 

demonstrating PTM-Shepherd capabilities, we also used our ability to generate diagnostic 

features in large numbers to better understand their nature. We showed that co-fragmentation of 

peptides presents a major issue for the precision of diagnostic ions in PTM analysis and explored 

ways to overcome it, as well as interrogating the utility of peptide and fragment remainder 

masses. 

 

Automated diagnostic feature detection has wide-ranging applications across proteomics fields. 

Chemical probes can be characterized instantly, facilitating their development 16. It could be 

advantageous to develop custom modification scores for localization-by-proxy strategies 44 or as 

rescoring features in Percolator 45. Furthermore, for enriched datasets or DIA-studies, the 

remainder masses identified by PTM-Shepherd might be the only reliable way to definitively 

identify labile modifications. There are myriad ways in which understanding modification 

behavior aids researchers, and thus we believe that the diagnostic feature detection enabled by 

PTM-Shepherd will be an invaluable tool in the analysis of proteomics data. 

 

3.5 Data availability 

Raw mass spectrometry files are available from public repositories. Our method has been 

implemented within PTM-Shepherd 22 and is freely available as part of the FragPipe suite of 

tools (https://fragpipe.nesvilab.org/). 
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CHAPTER IV

Open Search Modification Characterization: Applications in Synthetic 

Modifications  

 

 

4.1 Introduction 

One of the benefits of mass spectrometry is its versatility. By changing the sample input, existing 

proteomics workflows can sometimes be adapted to answer manifold experimental questions. 

Answering some biological questions can be as simple as enriching for a particular PTM112,114-

117. Other biological questions, however, require specialized techniques. Researchers have shown 

extraordinary ingenuity in designing synthetic modifications to unlock new modes of analysis. 

 

One such example is found in the field chemoproteomics. Chemoproteomics deals with building 

chemical probes that attack specific functional groups inside cells, covalently labeling them29. 

These can be used a few ways, such as by adding drug-like chemical probes to a sample to 

identify druggable residues118. Alternatively, probes that structurally mimic a hard-to-study 

biological PTM of interest can also be used to increase their signal119,120. Another example is 

found in studying the interactions between RNA and proteins121-124. Synthetic nucleotide analogs 

that crosslink proteins and RNA fix their interactions in place and can be used to map how the 

RNA-binding proteome changes across conditions. Finally, protein-protein crosslinking can be 

used to study protein-protein interactions at proteome scale or even to study protein structure 

dynamics125-129. 

 

The diversity of methods employed above underscores a major point: the number of PTMs 

researchers have access to is exploding and techniques to analyze them are in short supply. Here 

The portion of this chapter dealing with the characterization of a cysteine-specific probe was 

adapted from Enhancing Cysteine Chemoproteomic Coverage through Systematic Assessment 

of Click Chemistry Product Fragmentation published in Analytical Chemistry 
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we show that the PTM characterization techniques developed in Chapters Two and Three are 

generalizable, widely applicable, and fill important voids in the proteomics toolkit. 

 

4.2 Methods 

Cysteine click chemistry probe 

Samples collected at high resolution using a Thermo Scientific Orbitrap mass spectrometer in 

DDA mode were processed using FragPipe v15, including MSFragger15 v3.2 and Philosopher49 

v3.4.13. Mass spectrometry data from this experiment has been uploaded to ProteomeXchange 

under the identifiers PXD028853 and PXD030737131. Files were processed without conversion 

to mzML. Several modifications to the default “Mass-Offset-Common-PTMs” workflow were 

made to facilitate diagnostic feature extraction from the probe. The default list of mass offsets 

was replaced with 0 and 463.2364, the mass of the probe, and “Write calibrated MGF” was 

enabled to enable diagnostic feature extraction. Files were searched against the Uniprot132 

reviewed human sequence databased with decoys and common contaminants appended retrieved 

on 13 June 2021. Filtering to 1% PSM, peptide, and protein levels was performed by 

Philosopher130. Following this, an early version of the diagnostic feature extraction algorithm 

described in Chapter III was used to identify characteristic features.  

 

RNA crosslinking 

The second dataset consists of a novel protocol for photoactivatable ribonucleoside-crosslinking 

from the ProteomeXchange repository PXD02340133. Samples were acquired on a Thermo 

Fisher Orbitrap Fusion Lumos using HCD fragmentation in DDA mode. Only the two 4SU-

specific raw files from the repository were used in this analysis, and both samples were 

processing using FragPipe v18.0 directly without conversion to mzML. Samples were processed 

three times. The first, to find diagnostic features, was a standard open search using the FragPipe 

default “Open” workflow but with “Write calibrated MGF” and PTM-Shepherd’s “Diagnostic 

Feature Discovery” enabled with default settings. The second, to validate fragment remainder 

masses, was adapted from the default “Mass-Offset-CommonPTMs” workflow but with the mass 

offsets limited to 0, 226.0594, and 94.0168; “Labile modification search mode” enabled; “Y ion 
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masses” and “Diagnostic fragment masses” removed; “Remainder masses” set to 94.0168 and 

76.9903; “Write calibrated MGF” enabled; and PTM-Shepherd’s “Diagnostic Feature 

Discovery” enabled with default settings. The settings for the third analysis to validate an 

ammonium loss were identical to the second but without the 76.9903 fragment remainder mass. 

All analyses were run against the Uniprot132 database described above. Crystal-C48 was used to 

clean up open search results. Filtering to 1% PSM, peptide, and protein levels was performed by 

Philosopher 49.  

 

Protein crosslinking 

The third dataset consists of protein crosslinking data retrieved from the ProteomeXchange 

repository PXD020704133. Data was collected on a Thermo Fisher Q-Exactive Plus in DDA 

mode. Three replicates each from the No_XL, FoAl, and DSS groups were run as three separate 

experiments in FragPipe v18.0. The “Diagnostic-Ion-Mining” workflow was used with default 

parameters to process the data. Files were searched against the Uniprot132 reviewed human 

sequence databased with decoys and common contaminants appended retrieved on 25 June 2022 

as background. Sequences for BSA, ovotransferrin, and alpha-amylase were appended. Filtering 

to 1% PSM, peptide, and protein levels was performed by Philosopher130. 

 

4.3 Results 

4.3.1 Applications in chemoproteomics 

Chemoproteomics probes are designed to covalently bind to specific functional groups such as 

those found on amino acid side chains29. This platform enables small molecule screening for 

drugs at proteome scale in multiple ways. In one use case, probes are mixed into a sample in two 

conditions: alongside a pharmaceutical agent or alone. When the drug is bound to a protein, it 

prevents the probe from binding to residues that are blocked. By quantifying the change in probe 

abundance for a particular site, binding efficiency and off-target hits can be determined. In 

another use case, the covalent probe acts as a proto-drug and provides a straightforward approach 

to perform structure-guided drug design even for proteins with structures that cannot be 

determined by crystallography134. While one end of the chemical probe contains a warhead 
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specific to a residue, the other end commonly contains a click chemistry tag, to which enrichable 

moieties such as biotin can be attached127,135,136. Chemical probes frequently form diagnostic ions 

and other diagnostic fragmentation patterns, which has led to an interest in tools that characterize 

them to increase peptide recovery137. Indeed, the tool that comes closest to identifying diagnostic 

features in the manner of PTM-Shepherd is pChem138, a program designed specifically for 

chemoproteomics experiments, although it requires isotopic labeling signatures to be present at 

the MS1 and M2 level. 

 

Cysteine’s unique chemistry has made it a target for chemoproteomics139. Prior studies have 

identified swaths of probed cysteines, but proteome-wide coverage has yet to be achieved140. 

 

Figure 4-1: Identified diagnostic features for a Cys-biotin probe. A model spectrum 

shows how features are calculated, with potential diagnostic ions in green, theoretical 

fragment and peptide ions in purple, potential peptide remainder masses in blue, and potential 

fragment remainder masses in red.  
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One possible cause is that the probes employed are labile, leading to a mismatch between search 

parameters and experimental spectra. With the goal of increasing coverage of the ligandable 

cysteine proteome, we comprehensively characterized the fragmentation behavior of a 

biotinylated azide-alkyl cysteine probe (BAAC)131. 

 

Table 4-1: Diagnostic features of a biotintyl azide-alkyl cysteine probe 

Ion type Adjusted mass P-value AUC 

Porportion of 

modified spectra 

Proportion of modified 

spectra 

diagnostic 284.1428 2.29E-184 0.894745 1 0.85 

diagnostic 301.1694 3.35E-171 0.866078 0.81 0.1 

diagnostic 327.185 5.38E-165 0.866029 0.86 0.16 

diagnostic 424.2488 8.00E-139 0.827486 0.78 0.12 

diagnostic 227.0846 5.42E-129 0.819819 0.79 0.17 

Y 152.0994 2.80E-105 0.737092 0.47 0 

Y 180.1038 4.96E-96 0.720232 0.44 0 

b 463.2362 3.24E-106 0.749554 0.52 0.03 

y 463.2364 2.06E-133 0.790352 0.59 0.02 

 

The first feature I investigated was diagnostic ions. Some search engines use diagnostic ions 

during the search47,141, but they can also be used during data acquisition142. PTM-Shepherd 

identified eight diagnostic ions. One was discarded due to its mass being larger than the mass of 

the modification, which we initially believed was improbable, and another two were discarded 

due to their comparatively low statistical significance. The other five (Fig 4-1) were subjected to 

additional scrutiny. The most abundant ion was found at an m/z of 284. It was deduced to be a 

biotin-oxonium ion (Fig III-1) unique to the probe’s structure. Another ion at 227 is commonly 

observed as a product of biotinylation fragmentation and was expected due to the presence of 

biotin on the probe137. Three additional ions at 424, 327, and 301 were not expected, however, 

and had not been observed for this class of chemical probe before. It was determined that the 

most likely structures for two of these ions, 327 and 301, correspond to fragmentation within the 

triazole ring, which was previously assumed to be mostly stable under fragmentation 

conditions128. I also observed a striking lack of specificity for the most intense fragment, the 

biotin oxonium ion. Although it was present in 100% of PSMs containing a probe, it was also 

present in 85% of unmodified spectra. This is another example of the phenomenon from Chapter 
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III where intense ions can become major products in co-fragmented spectra, and as such are poor 

diagnostic ions in most circumstances (Table 4-1, full table can be found at Table C-1). 

 

I then explored mass shifts that remained on the peptide or fragment ions. Two peptide 

remainder masses were particularly abundant: 152 and 180 (Table 4-1). These masses map once 

again to breakpoints within the triazole reagent within the linking arm, providing additional 

evidence for the lability of the group in the gas phase. These masses were uniquely found as 

peptide remainder masses and were not identified as fragment remainder masses. Useful 

fragment remainders were restricted to those that appeared for both b- and y-ions, ultimately 

limiting fragment remainder masses to the mass of the mod itself. In other words, the probe is 

found in the intact form when identifying fragment ions. Although the peptide remainder masses 

can be included in a labile search, modifications that remain intact during fragmentation see little 

benefit from this mode. Accordingly, the BAAC probe saw minimal increase in cysteine 

coverage when incorporating them into the search. 

 

While it was expected that a labile modification yielding intense diagnostic ions would also leave 

intense peptide and fragment remainder masses that would benefit from labile mass offset 

searches, this was proven to not be the case. Failure to improve cysteine coverage 

notwithstanding, this study revealed new insights about common click chemistry tags that will 

find utility in other fora.  

 

4.3.2 Applications in RNA crosslinking 

RNA crosslinking studies also feature labile modifications that are hard to characterize. RNA 

crosslinking studies aim to characterize the RNA-bound proteome. This is done using a 

combination of synthetic nucleotide analogs and UV treatment123,124; a phosphate group normally 

present in the nucleotide is replaced by a sulfur and is incorporated into RNA polymers, and 

when exposed to UV light reacts with nearby molecules. When this happens in vitro, proteins 

that normally transiently interact with RNA are lashed to them. The RNA can then be detected as 

a PTM using LC-MS. Of course, this introduces complexity to proteomics analyses. Repeating 
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sugar molecules can fragment in myriad ways, frustrating attempts to localize or even identify 

RNA moieties. Furthermore, the crosslinking can occur on several amino acids. Bae et al. 

recently developed pRBS-ID, an RNA crosslinking workflow utilizing photoactivatable 

nucleotides and chemical RNA cleavage to overcome these challenges122. Alongside the 

development of their bench technique, they needed to develop a bespoke computational 

workflow to identify RNA fragment remainder masses and identify and quantify their host 

peptides. We believed that this process could be recapitulated by PTM-Shepherd without the 

need for time-intensive custom workflows, and as such we struck a course to replicate their 

results for the commonly used 4-thiouridine (4SU) nucleotide analog34. 

 

Table 4-2: Open search of pRBS-ID data 

Peak Apex PSMs Mapped mass 

Localized 

PSMs 

N-term  

localization AA 

AA 

enrichment  

AA psm 

count 

0.0002 7751   291         

226.0594 4241 226.0594 mass shift 1343   R 2 160 

1.0032 2378 First isotopic peak 658   F 1.6 65 

57.0216 945 Iodoacetamide 806 38.94 H 11.9 184 

94.0168 830 94.0168 mass shift 799 7.47 H 9.2 140 

-48.0032 568 Homoserine lactone 559 26.23 M 53 373 

227.0634  1204  

First isotopic peak  

+ 226.0594 mass-shift 252    H  2.5  12  

41.0266 450 Amidination 124   M 16.4 26 

283.0806  486  

226.0594 mass-shift 

+ Iodoacetamide 128  5.56  H  2  5  

 

First, we performed an open search using the default diagnostic ion mining setting available in 

FragPipe. As expected in any open search, PTM-Shepherd identified many mass shifts for 

biological and chemical PTMs, but two unannotated mass shifts of 226 Da and 94 Da at high 

amounts likely corresponding to the modification of interest (Table 4-2). These mass shifts 

localized only 32% of the time. This can be explained by the lability of the 226 modification. 

Notably, the fragment remainder masses PTM-Shepherd identified for both mass shifts were 

nearly identical, indicating with a high degree of likelihood that they had the same source. In this 

case, fragment remainder masses of 94 Da were identified from both mass shifts’ b- and y-ion 

series, and an additional fragment remainder mass of 77 Da (the prior remainder with a loss of 
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ammonia) was identified from both mass shifts’ b-ions (Fig 3ab, Table 4-3). Like the loss of 

ammonia described from glycopeptide’s Y-ion series described in Chapter III, this mass shift 

appeared to be diagnostic for RNA-crosslinked peptides (226 mass shift AUC = 0.57, 94 mass 

The localization rates for these two mass shifts differ markedly, with the 94 Da mass shift being 

localized 96% of the time but the 226 mass shift being 

 

Table 4-3: Diagnostic fragmentation patterns for pARS-ID products 

Peak 

apex 

Ion 

type Mass 

Remainder 

propensity 

Delta Mod 

Mass 

Percent 

Mod 

PSMs 

Percent 

Unmod 

PSMs 

Avg 

Intensity 

Mod 

Avg 

Intensity 

Unmod 

Intensity 

Fold 

Change 

226.059 diag 133.050     39 12.9 7.81 4.76 5.0 

226.059 diag 115.040     31.1 10.4 6.04 3.84 4.7 

226.059 b 94.029 31.7 -132.031 36.9 1 47.65 24.91 70.6 

226.059 b 77.005 18.5 -149.054 17.9 1 29.43 13.13 40.1 

226.059 y 94.030 22.2 -132.029 35.7 1 46.95 24.91 67.3 

226.059 y 77.007 15.1 -149.053 17.4 0.9 28.81 13.05 42.7 

94.017 diag 215.058     30.62 16.5 14.28 7.01 3.8 

94.017 b 94.017 36.7 0.000 39.53 0.9 38.37 26.18 64.4 

94.017 b 77.002 22.5 -17.015 21.71 1 34.51 12.29 61.0 

94.017 b -19.064 20.8 -113.081 15.89 0.6 36.8 21.02 46.4 

94.017 b 66.027 20.1 -27.990 15.89 1.3 19.82 23.58 10.3 

94.017 y 94.017 23.8 0.000 39.53 0.9 38 26.18 63.8 

94.017 y 77.006 14.4 -17.011 19.38 0.9 30.34 13.05 50.1 

 

ammonia) was identified from both mass shifts’ b-ions (Fig 3ab, Table 4-3). Like the loss of 

ammonia described from glycopeptide’s Y-ion series described in Chapter III, this mass shift 

appeared to be diagnostic for RNA-crosslinked peptides (226 mass shift AUC = 0.57, 94 mass 

shift AUC = 0.58). Utilizing the 77 Da and 94 Da fragment remainder masses together results in  

a 3.8% increase in crosslinked PSMs, and a remarkable 47.4% increase over a standard mass 

offset search. With this fragmentation information in hand, we reprocessed the data using 
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FragPipe’s labile search mode, which is fully compatible with built-in tools for quantitation 35 

and localization 36,37 and fills the requirements of their workflow.  

 

After a more targeted search, we also wondered whether any additional diagnostic features might 

appear for the RNA-crosslinked peptides and performed a second pass at diagnostic feature 

 

Figure 4-2: Characterization of 4SU fragmentation from a pRBS-ID experiment. A) All 

possible fragment remainder masses for y-ions from the 226 Da mass shift. Remainder 

masses that passed PTM-Shepherd’s filtering are highlighted in dark red, corresponding to 

the retention of the 94 Da fragment on the peptide. Figure 4-3b,c,d use the same color scheme 

as Fig 3a. (B) Diagnostic ions derived from the fragmentation of the nucleoside analog from 

the 226 Da mass shift. (C) All possible remainder masses for y-ions from the 94 Da mass 

shift. (D) All possible diagnostic ions from the 94 Da mass shift. 



75 
 
 

 

mining (Table C-2). Diagnostic ions can be of particular interest for future analyses, such as the 

ion-triggered instrument routines mentioned above, even if they are left unused at the present. 

We found two easily explicable diagnostic ions for the intact nucleoside (Fig 4-2b): an ion at 133 

m/z corresponding to a dissociated ribose, the other half of the 94 Da fragment remainder mass, 

and an associated neutral loss of water. Accordingly, these ions were not diagnostic for the MS1 

mass shift corresponding the nucleoside without the ribose (Fig 4-2d), as with the ribose already 

dissociated there is nothing left to form the diagnostic ion. 

 

Figure 4-3: Improvements in RNA crosslinked PSMs with different parameter settings. 

Comparisons between traditional offset searches, labile searches with the partial nucleotide 

mass shift, and the partial nucleotide mass shift with a loss of 17 Da discovered by PTM-

Shepherd showed an increase in cross-linked PSMs when including additional information. 
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4.3.3 Applications in protein-protein crosslinking 

Proteins can interact in various ways, but direct protein-protein interactions (PPIs) require them 

to be in close proximity. PPI experiments have traditionally been done using one protein as bait, 

fixed in place, while other proteins from the sample flow over it. The idea behind this strategy, 

called affinity purification (AP), is that proteins interacting with bait proteins will be enriched in 

the sample and identifiable by MS143,144. Protein crosslinking can also be used for interactome 

studies by capturing which proteins are found in close proximity when the crosslinkers are 

added125. This has the added benefit of being able to characterize the entire protein interactome at 

once with simple sample preparation. 

 

This technique introduces quite a bit of computational complexity into the database search. For 

one, peptide precursors now correspond to the mass of two peptides plus the crosslinker mass. 

Searching the MS/MS spectra for combinations of peptides increases the search space 

exponentially. Furthermore, individual MS/MS spectra contain fragments not just from two 

peptides, but peptide fragments ions that are shifted by unknown masses when the crosslinked 

peptide fragments. When using non-cleavable crosslinkers, a peptide p1 of length 5 crosslinked 

to a peptide p2 of length 7 could produce 4 y-ions, each of which could be shifted by the masses 

of 6 p2 y-ions or 6 p2 b-ions. Cross linking search engines assume that only the intact peptide p2 

exists as a PTM on peptide p1’s fragments145, but the likelihood of one peptide remaining intact 

while the other fragments is small. Cross linking search engines thus rely primarily on unshifted 

fragments to identify two peptides, each of which is present in a noisy spectrum with a large 

search space. Better computational strategies are needed to deal with this challenge. 

 

Recent work by Slavin et al. (2020)133 identified open searches as a way to find the mass of a 

crosslinker. The approach involves a series of expensive computations, including open searching, 

identifying multiple peptides per spectrum, then checking for recurring offsets in the spectra as 
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combinations of the two peptides. The result is the mass of the crosslinking portion of the 

reagent. I reasoned that our pipeline could reproduce their results while providing additional 

information on the fragmentation characteristics of crosslinked peptides. 

 

Rather than looking at peptides crosslinked to other peptides, I reasoned that the same 

information about crosslinker masses and fragmentation patterns could be garnered from 

monolinks and auto crosslinks. To extract diagnostic fragmentation patterns from a PTM, PTM- 

Figure 4-4: Crosslinking options and the ions they lead to. A) Monolinked peptide. The 

dead end crosslink produces a consistent and analyzable delta mass. Diagnostic ions and 

fragment remainder masses show a linker that does not fragment well. B) Crosslinked 

peptides. The delta mass produced by crosslinked peptides is dependent on the linker mass 

and the mass of the distal peptide. Because the distal peptide is not a constant mass, PTM-

Shepherd cannot bin these observations in order to extract diagnostic information. C) Auto 

crosslinked peptide. Peptides crosslinked to themselves present a consistent mass of the linker 

alone. Their fragmentation patterns mimic those of true crosslinked peptides and can act as 

their proxy, but auto crosslinked peptides can be identified more easily. 
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Table 4-4 Open search mass shifts from a DSS crosslinking experiment 

Peak apex PSMs Mapped mass 

Localized 

PSMs 

N-term 

localization 

rate AA1 

AA1 

enrichment 

score 

AA1 

PSM 

count 

-0.0002 1498   20         

26.016 129 Acetaldehyde 129 92.25 R 2.2 6 

57.0216 180 Iodoacetamide 147 27.22 K 5 57 

40.031 69 Propionaldehyde 69 95.65 F 2.2 7 

-14.0154 96 -14.0154 mass-shift 93   I 22 67 

155.095  156  

Monolink (ammonia) of 

 DSS/BS3 crosslinker 153  10.26  K  10.9  130  

-17.0274 69 Loss of ammonia 68 49.28 C 7.5 26 

-91.0092 62  -91.0092 mass-shift 61   C 15.4 48 

0.9844 80 Deamidation 70 9.88 N 19.5 54 

43.0054 44 Carbamylation 24 47.73 K 2.9 6 

27.9938 31 Formylation 31 12.9 K 11.5 28 

53.917 50 

Replacement of 2 protons 

 by iron 43   D 2 7 

11.999 35 formaldehyde adduct 35 68.57 H 8.4 8 

1.0032 67 First isotopic peak 17         

156.079  46  

Monolink (water) of DSS/BS3 

crosslinker 46  13.04  K  11.1  40  

28.0246 66 di-Methylation 65   A 10.3 58 

-31.0442  24  

-14.0154 mass-shift + Loss of 

ammonia 21  20.83        

162.0504 17 Hexose 3 5.88       

138.0674 35 Intact DSS/BS3 crosslinker 33 20 K 7.3 19 

 

Shepherd requires the PTM to produce consistent MS1 delta masses. Monolinks are crosslinkers 

that only reacted with a single residue, so the mass shift detected on a monolinked peptide 

corresponds to the mass of the linker and the mass of the reagent used to quench the crosslinking 

reaction (Fig 4-4A). Autolinks, being crosslinks between two residues of the same peptide, also 

produce a consistent mass of just the linking arm (Fig 4-4 4C). Finally, the case of two 

crosslinked peptides produces a mass shift of the combined linker arm and secondary peptide. 

Since the secondary peptides are not consistent masses, PTM-Shepherd cannot detect them as a 

single modification (Fig 4-4B). However, we can use the fragmentation patterns of monolinks 

and auto crosslinks to deduce the fragmentation patterns of peptide-peptide crosslinks. 
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One of the most abundant mass shifts detected by PTM-Shepherd was a mass of 155.0950 Da, 

the expected combined mass of the monolinker and the quenching reagent. Interestingly, I found 

several diagnostic ions associated with this mass shift. The top diagnostic ion (239.1752 m/z) 

corresponded to a Lys immonium ion (84.0814 m/z, Fig 4-4A) with the monolink intact and was 

highly specific to the monolink mass shift (96.60% of monolink spectra compared to 12.06% of 

unmodified spectra, AUC = 0.98). I also detected the mass of the monolink on b- and y-ions. 

Taken together, these indicate that the linker arm is not prone to breakage. 

 

Table 4-5 Diagnostic features from a DSS crosslinking experiment 

Peak apex 

Ion 

type Mass 

Remainder 

propensity 

Delta mod 

mass 

Percent 

mod 

Percent 

unmod 

Avg 

intensity 

mod 

Avg 

intensity 

unmod 

Intensity 

fold 

change 

155.095 diag 239.175     96.9 12.06 46.35 3.35 100.0 

155.095 diag 256.202     48.8 0.23 2.39 0.27 100.0 

155.095 diag 312.192     55.8 5.80 5.5 2.6 20.3 

155.095 diag 174.112     38.0 0.23 1.41 2.82 82.2 

155.095 diag 267.170     35.7 0.70 3.88 2.96 67.2 

155.095 diag 156.102     44.2 3.71 2.96 3.13 11.3 

155.095 b 155.095 37.7 0 55.8 1.16 67.9 4.87 100.0 

155.095 y 155.095 35.2 0 55.0 0.70 57.21 4.26 100.0 

138.067 diag 305.222     71.0 0.70 8.97 3.38 100.0 

138.067 diag 222.149     51.6 0.93 5.2 2.69 100.0 

138.067 diag 239.175     51.6 12.06 23.92 3.35 30.6 

138.067 b 138.067 49.2 0 61.3 2.09 43.64 7.83 100.0 

138.067 y 138.067 32.2 0 67.7 2.09 44.7 4.87 100.0 

138.067 y 221.142 17.3 83.075 45.2 1.39 23.86 7.65 100.0 

 

Because the mass of the quenching agent is known beforehand, the mass of crosslinker can be 

deduced from the monolink mass. It was also detected automatically at the correct mass of 

138.0674 Da (Table 4-4). Like the monolink mass shift, a series of diagnostic ions (Table 4-5) 

was detected. The top hit corresponds to a double Lys immonium ion structure (Fig 4-4C), where 

a Lys immonium ion is attached to each side of the linking arm.  This was highly specific to the 

crosslinked spectra (70.97% of crosslink spectra compared to 0.70% of unmodified spectra) and 

might be useable for the detection of crosslinked peptides. More interesting were the masses 

detected as fragment ion remainders. The mass of the linking arm was detected as a remainder 
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mass from fragments, although this would not be the case in true peptide-peptide crosslinks. 

More interestingly was another fragment remainder mass corresponding to the mass of the linker 

arm retaining a single Lys immonium ion as a mass on the fragment ions. To produce this, the 

distal peptide would need to have undergone two fragmentation events on either side of the 

linked Lys. The proximal peptide then fragments with the distal peptide’s remnants grimly  

attached (Fig 4-4C). This is powerful, because it should allow us to identify additional ions for 

crosslinked peptides and boost their identification rate as well as localize the crosslink to the 

appropriate residue. 

 

Steigenberger et al. (2019)146 have previously reported the detection of these diagnostic ions 

from synthetic crosslinked peptides and commented on their abundance and utility, confirming 

that auto crosslinks can be used to determine fragmentation characteristics of peptide-peptide 

crosslinks. Although the authors above explored the conditions leading to the fragment 

remainder masses as well, there are holes in their applications that fit into this thesis. This 

crosslinker, despite being non-cleavable, produces consistent remainder masses that can be 

searched for during peptide identification and localization. Their addition into a crosslink-

compatible search engine should dramatically boost the recovery of crosslinked peptides over 

attempting to identify the mass of the entre secondary peptide as a PTM. Similar to the 

aforementioned study, Slavin et al.’s (2020)133 work in finding the crosslinker mass can also be 

easily performed using PTM-Shepherd.  

 

In conclusion, I have demonstrated a novel technique for elucidating fragmentation pathways for 

protein-protein crosslinkers without the need for bespoke tools or synthetic peptides. Rather, 

monolinks and auto crosslinks facilitate the analysis of protein-protein crosslinked molecules. 

 

4.4 Discussion 

I showed that open searches coupled with diagnostic feature extraction have broad applicability 

across a range of PTMs that extends well beyond previously observed biological ones. With a 

mix of clever strategies and diagnostic ion mining, I characterized a Cys-specific 
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chemoproteomic probe and provided a roadmap for others to better understand future probes, 

finding five new diagnostic ions and two new peptide remainder masses. In the RNA-binding 

proteome experiment, I was able to recapitulate the results of their hand-crafted pipeline and 

found additional features that improved the number of PSMs identified by 47.4% over the prior 

state-of-the-art and by 3.8% over the strategy from the published analysis. Finally, I developed a 

novel approach to identifying characteristic fragmentation patterns for crosslinkers, patterns 

which can be deduced directly from the data in a straightforward manner rather than relying on 

heuristics or synthetic peptides. 

 

4.5 Data availability 

Mass spectrometry data generated for the chemical probe experiments has been uploaded to 

ProteomeXchange under the identifiers PXD028853 and PXD030737131. RNA crosslinking data 

was retrieved from the ProteomeXchange repository PXD02340133. Protein crosslinking data 

was retrieved from the ProteomeXchange repository PXD020704133.  
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CHAPTER V

The Future of Open Searches 

 

5.1 Conclusions 

Many aspects of the proteome are dynamic, governed by post-translational modifications (PTMs) 

rather than transcription or translation. Understanding the proteome and realizing the promises of 

the post-genomics era requires a comprehensive understanding of the interplay between a 

protein’s PTMs and the rest of the cell. Mass spectrometry-based proteomics coupled to open 

searches is currently the only method available for the comprehensive analysis of post-

translational modifications (PTMs) at proteome scale. Unfortunately, open searches can have 

lower sensitivity than traditional searches for known modifications. Plus, the interpretation of 

open searches is a fraught and opaque exercise. In this dissertation, I presented computational 

methods to characterize open search-derived PTMs, aiding researchers in interpreting and 

utilizing open search results. 

 

In Chapter Two of the dissertation, I developed a software platform called PTM-Shepherd for the 

analysis and summarization of open search results. PTM-Shepherd provides researchers with 

intuitive information about their open search-derived PTMs, including their identities, 

prevalence, localization profiles, and changes in retention time and spectral similarity. We then 

applied PTM-Shepherd to several different scenarios to demonstrate its utility. First, we 

examined chemical artifacts produced by FFPE, a common tissue preservation method, wherein 

PTM-Shepherd was able to distinguish between two isobaric PTMs to correct previous 

recommendations about which of these two modifications should be included when searching 

FFPE data. Second, we examined a frequently reprocessed, high-quality dataset and found their 

sample processing to contain an experimental error that introduced a huge variety of Cys-specific 

PTMs. Third, we examined a “gold standard” synthetic peptide dataset and found a novel PTM 

by combining PTM secondary metrics. Finally, we examined a large, multi-university 
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proteomics consortium’s data and found massive, site-dependent batch effects in PTM profiles 

across experiments. 

 

In our analyses we found that this information, while useful, was not sufficient to characterize all 

PTMs. Labile PTMs in particular could not be localized based on their delta mass and their 

recovery lagged other PTMs when using shifted ions in database searches. Some cases of 

isobaric PTMs also remained indistinguishable due to having similar retention time and spectral 

similarities. In Chapter Three of the dissertation, I extended PTM-Shepherd to characterize the 

fragmentation spectra of PTMs by identifying diagnostic features specific to individual PTMs. 

To do this, we calculate three features for each PTM-Shepherd mass shift: diagnostic ions, 

fragment remainder masses, and peptide remainder masses. The novelty of this technique was 

grounded in the realization that unmodified peptides can act as an empirically derived null 

distribution of spectral features and are used as a synthetic control when identifying PTM-

specific diagnostic features. We applied our technique to two well-studied sets of PTMs to 

validate it and showcase how it could be used to discover new ions. Studying glycopeptides 

labeled with tandem mass tags (TMT) is particularly challenging due to incompatibility in 

fragmentation energies between glycans and the TMT moiety. We identified many expected 

ions, but we were able to identify a series of sialic acid-related ions in a data-driven manner that 

had not been previously described. We then turned our attention to another labile modification, 

ADP-ribosylation (ADPR). Once again, we recovered many of the known fragmentation patterns 

as well as new ones that had not previously been described. We hoped these analyses provide a 

roadmap for other researchers to streamline the traditionally painstaking work of fragmentation 

analyses in different contexts and for other PTMs. Finally, with our ability to identify diagnostic 

features in mass, we sought to understand their general characteristics. Importantly, we found 

that the most abundant diagnostic ions were often the least diagnostic due to co-fragmentation. 

Diagnostic ions are commonly used to validate the presence of PTMs, so this has major 

implications for studies utilizing them. 

 

In Chapter Four, I applied PTM-Shepherd to several different synthetic PTMs and show that it is 
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broadly applicable across proteomics subdisciplines. Covalent chemoproteomics probes have 

gained popularity in recent years as a method to interrogate druggable protein active sites 

without crystallization. Rapid development of probes runs counter to thoroughly understanding 

their fragmentation patterns, an issue we address by completely characterizing the fragmentation 

of a Cys-specific chemoproteomic probe automatically with PTM-Shepherd. We also studied 

synthetic RNA analogs used in protein-RNA crosslinking, finding a fragment remainder that 

increased PSM recovery by a staggering 25% over the existing state of the art. Finally, I looked 

at protein-protein crosslinkers and showed how to identify a series of crosslinker-specific ions 

that have the potential to greatly increase recovery in protein crosslinking studies. 

 

5.2 Future directions 

5.2.1 Multiple localization 

The principle of open searches is that a peptide can be identified based on ions that do not bear 

the modification. One of the benefits of this logic is that open searches have the capacity to 

identify peptides containing multiple modifications at once44. As others have shown, localization 

programs and algorithms designed for closed searches produce less than ideal results when 

confronted with the dramatically expanded localization possibilities required to annotate open 

search results75. Recent advancements in this area have led to tremendous improvements in 

localization fidelity, but they still fail to take advantage of open search’s ability to identify 

multiple PTMs in tandem75. This has gained prominence alongside the study of PTMs--

particularly the study of PTM crosstalk147. Localizing PTMs derived from open searches is 

challenging because the search space can include multiple possible modifications, every residue 

on the peptide, and comparisons between different numbers of modifications. The last presents a 

currently unanswered problem: when deciding to attribute a mass shift to a single PTM versus 

multiple PTMs, the configuration with multiple PTMs is overwhelmingly favored. The volume 

of possible configurations is so much larger when considering multiple PTMs that the chance of 

a random hit with no evidence is correspondingly inflated. In theory, this could be fixed by 

controlling for the number of peptide isoforms tested when calculating localization probabilities 

or potentially by treating each isoform as a hypothesis test and correcting resultant p-values 
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accordingly. 

 

Discriminating between isobaric combinations of modifications is critical in at least three areas: 

pyrophosphorylation148, histone proteins149, and glycoproteomics142. Pyrophosphorylation is a 

PTM involved in a wide range of cellular processes such as bacterial toxicity and viral infection. 

It is isobaric to two separate phosphorylation (or sulfation) events and will consequently be 

outcompeted by two separate phosphorylation events when compared head-to-head. This means 

that many pyrophosphorylation events may be misattributed to multiple phosphorylations when 

analyzed via open search. Histone proteins suffer from a different problem: a wide variety of 

possible PTMs and high incidence rate motivates the need for a tool that can assign 

modifications and their potential combinations in an unbiased manner. Lacking this, the histone 

code and DNA regulation may prove to be puzzles impossible to crack. It is also common for O-

glycans to appear in clusters, or to appear alongside N-glycans, but tools only exist for the 

analysis of O-glycans alone and even then do not correct for multiple occurrences on the same 

peptide142,150. Ultimately, putting the ability to study these issues into the hands of researchers 

has the potential to make seismic changes in the biological and medical landscape. 

 

5.2.2 Open search modification rescoring with semi-supervised learning 

Like other omics technologies, proteomics has benefitted from the surge in novel deep learning 

algorithms151,152. Spectrum prediction from peptide sequences is one of the most widely used 

applications for deep learning models in proteomics153-155. Predicted spectra are used to better 

distinguish correct and incorrect peptide matches to spectra, and have been shown to provide 

substantial benefits, especially when the size of the search space increases156, as is often the case 

when searching for modified peptides. Predicting spectra for modified peptides requires building 

training sets for each modification of interest separately66,67, however, and as such runs afoul of 

the “curse of generalizability.” Even if this were possible, there is a dearth of spectrum 

prediction tools that do full spectrum prediction153 rather than limiting the predictions to just a 

subset of the most common backbone ions. For modifications that produce intense secondary 
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series of ions (like neutral losses or remainder masses) or have diagnostic ions, skipping over 

these misses PTM-specific signals. 

 

Others have taken it upon themselves to develop algorithms that will predict whether a spectrum 

contains a peptide of a particular modification class a priori without even identifying the peptide 

in the first place. PhoStar157, for example, predicts whether a peptide contains a phosphorylation 

event before any search is performed. An ad hoc learning approach158 (Fig 5-1) to the same 

problem was recently developed that was shown to increase the number of phosphorylated 

peptides recovered when included as a feature in Percolator. However, both algorithms can be 

improved.  

PhoStar specifically and solely can detect phosphorylation. It encodes chemical features specific 

to phosphorylated residues, so it is ungeneralizable157. For researchers interested in examining 

the entire PTM space, this is insufficient. The ad hoc learning approach158, while generalizable in 

theory, also has issues. When relying on distances between experimental peaks as it does, the 

input space becomes polluted with noise. Where false signifies an ion not attributable to a PTM 

  

Figure 5-1: Ad hoc learning of peptide fragmentation. Schematic of deep learning 

architecture for ad hoc learning of peptide fragmentation. Long range associations between 

peaks are captured as the size of dilation increases with successive layers. Reprinted from  Ad 

hoc learning of peptide fragmentation from mass spectra enables an interpretable detection 

of phosphorylated and cross-linked peptides, Altenburg et al. (2022)158 under the Creeative 

Commons license. 
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and true signifies an ion that is, pairwise computations between peaks in the spectrum can 

produce three classes of features: false-false, false-true, and true-true. Only true-true features 

can encode useful information. Because only a portion of the peaks in a spectrum are true, the 

signal-to-noise ratio drops off exponentially. Mathematically, this can be represented as (true / 

total)2. By reframing pairwise distances as being between the theoretical peptide peaks and the 

experimental spectrum peaks, as we do in Chapter Three, the signal-to-noise ratio becomes (true 

/ total). An algorithm implementing pairwise calculations as described should thus be able to 

identify meaningful features with many fewer data points. 

 

A deep learning architecture resembling ad hoc learning with several tweaks should be able to 

rescore most modifications from open searches without prior knowledge. First, rather than 

learning which features are associated with PTMs from a generic training dataset, general 

peptide fragmentation patterns can be learned from a generic dataset, then PTM-specific features 

can be identified in a semi-supervised way 54,159 via transfer learning by seeing which features 

separate a spectrum’s top hits from its lower scoring hits. Second, using pairwise distances 

between theoretical and experimental peaks rather than pairwise experimental peaks should 

allow learning with much less data and reduce the number of PSMs required for model 

convergence. 

 

5.2.3 Open search modification rescoring with PTM spectral libraries 

Another area where PTMs are underutilized is in spectral library generation160. Spectral libraries 

are used to create a definitive fragmentation pattern for peptides, which allows them to be more 

confidently identified than by standard experimental-theoretical spectrum correlation scores. One 

common approach is to do DDA and DIA experiments in tandem161. Since DDA experiments 

have higher identification rates while DIA experiments have better quantitative accuracy, DDA 

experiments are used to build spectral libraries that increase the number of identifiable peptides 

in DIA experiments160. Another approach is to use pregenerated spectral libraries to rescore 

DDA search results to improve confidence in PSMs13. One key point is that DDA spectral 

libraries are designed to reidentify the same peptide in another context (a paired DIA experiment, 
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for example), whereas pregenerated libraries can also be used to rescore PSMs from DDA 

experiments13. These approaches are both peptide-centric in that model spectra are produced for 

every peptide. However, a PTM-centric approach incorporating aspects from each is likely to 

provide additional, complementary value. 

 

I propose a PTM-centric spectral library generated from DDA data that can be used to rescore 

search results in the fashion of pregenerated spectral libraries. As I have shown throughout this 

dissertation, PTM fragmentation patterns are partially dataset dependent. Peptides follow the 

same logic, and DDA-generated spectral libraries for peptides are considered the gold standard 

for the same reason. By creating a list of spectral features—a spectral library—for each PTM, 

then checking for a correlation between the spectral features of a PSM with a matched mass, we 

would be creating a modification-agnostic score. The score could then be used for PSM 

rescoring in the same manner as pregenerated libraries. This would essentially bifurcate a PSM 

into two components: a measure of peptide confidence and a measure of PTM confidence. PSM 

hits that might have been filtered out due to low peptide scores would instead be boosted by 

knowing that their mass shift is likely to be correct. Ultimately, this enables identification of new 

peptides bearing old modifications. 

 

Importantly, we have already shown that this works in practice. The prime example can be seen 

in Chapter Four. Diagnostic patterns were mined from the RNA crosslinking dataset before being 

reapplied in a second pass search. The result was a staggering nearly 50% increase in the number 

of cross-linked peptides identified. Rather than mining fragmentation patterns from filtered data 

and incorporating them into second pass search scores, they can be mined from high-confidence 

PSMs and fed into Percolator immediately following the primary search. 
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Appendix A

SUPPLEMENTARY MATERIALS FOR CHAPTER II 

 

  

 

Figure A-1: DeltaMass mass shift profiles around 28 Da for FFPE treated data. Two 

peaks representing formylation (+27.9949 Da) and di-methylation (+28.0314 Da) are clearly 

visible for the Nielsen, Nair, and Zimmerman datasets. For the lower resolution Buthelezi 

dataset, the composite gaussian mixture (red outline) is still composed of two distributions 

centered at the expected values (purple squares). 
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Figure A-2: PDV view of spectrum with Lys water loss. 01717a_BE3-

TUM_second_pool33_01_01-3xHCD-1h-R1.6388.6388.2. Placing the loss of water (-

18.0106 Da) on C-terminal K aligns the y-ion series. All discriminating ions to confirm 

localization are visible. 
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Figure A-3: Retention time profiles of presumed whole-residue in-source losses from all 

combined CPTAC reference samples. Retention time profiles for losses of ammonia (A) 

and formylation (B) are shown for comparison. Losses of ammonia can be both in-source or 

pre-elution; the distinct peak at delta RT = 0 is characteristic of an in-source loss. We observe 

that pre-elution modifications such as formylation (B) present with broader profiles and have 

an effect on retention time. All four presumed whole-residue in-source losses exhibit narrow 

peaks near delta RT = 0, indicating that they are occurring in-source. 
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Tables A-1, A-2, A-3, and A-4 can be found at 10.5281/zenodo.6975737. 

Table A-1: PTM-Shepherd results for reanalysis of four Tabb et al. (2020) datasets. See 

“Chapter_2/Table_A-1.xlsx”. 

• global.profile.tsv table from PTM-Shepherd containing summary statistics across all four 

datasets 

Table A-2: PTM-Shepherd results for reanalysis of Bekker-Jensen et al. (2017) dataset. See 

“Chapter_2/Table_A-2.xlsx”. 

• A: global.profile.tsv table from PTM-Shepherd containing summary statistics across the 

dataset 

• B: global.modsummary.tsv table from PTM-Shepherd containing abundance information 

for annotated modifications rather than mass shifts 

Table A-3: PTM-Shepherd results for reanalysis of Zolg et al. (2017) dataset. See 

“Chapter_2/Table_A-3.xlsx”. 

• global.profile.tsv table from PTM-Shepherd containing summary statistics across the 

dataset 

Table A-4: PTM-Shepherd results for reanalysis of CPTAC3 quality control samples. See 

“Chapter_2/Table_A-4.xlsx”. 

• A: global.profile.tsv table from PTM-Shepherd containing summary statistics across the 

datasets 

• B: 01BI.profile.tsv report from PTM-Shepherd containing summary statistics for this 

dataset 

• C: 02BI.profile.tsv report from PTM-Shepherd containing summary statistics for this 

dataset 
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Appendix B

Supplementary Materials for Chapter III 

 

 

 

 

 

 

 

 

Figure B-1: Histogram of fragment remainder y-ions across mass shifts. Like b-ions, y-ions 

also show the expected fragment remainder mass pattern. 
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Figure B-2: Algorithm for processing delta mass bins individually with 

reloading/reprocessing every spectral file for every mass bin. 
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Figure B-3: Single-pass algorithm for processing delta mass bins in parallel that 

requires storing every mass bin in memory at once. 
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Figure B-4: Two-pass algorithm where spectral features are precomputed and 

selectively re-accessed for each mass shift bin. 
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Figure B-5: Implementation of fast-access indexed binary spectral feature intermediate 

file for two-pass feature extraction. 
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Figure B-6: Speed comparison for indexed loading vs. reprocessing spectral features at 

each stage where they are needed. 
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Tables B-1, B-2, and B-3 can be found at 10.5281/zenodo.6975737. 

Table B-1: PTM-Shepherd diagnostic features for analysis of CCRCC phospho-glyco data. See 

“Chapter_3/Table_B-1.xlsx”. 

• global.diagmine.tsv table from PTM-Shepherd containing diagnostic feature information 

Table B-2: Spearman correlation matrix between ion intensities across spectra for the analysis of 

CPTAC CCRCC phospho-glyco data. See “Chapter_3/Table_B-2.xlsx”. 

• correlation matrix of ion intensities extracted using PTM-Shepherd glyco mode 

Table B-3: PTM-Shepherd diagnostic features for the analysis of ADPR data. See 

“Chapter_3/Table_B-3.xlsx”. 

• A: global.diagmine.tsv table from PTM-Shepherd containing diagnostic feature 

information for the HeLa dataset 

• B: global.diagmine.tsv table from PTM-Shepherd containing diagnostic feature 

information for the mouse dataset 
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Supplementary Materials for Chapter IV 

  

 

 

Figure C-1: Schematic for proposed fragmentation patterns of cysteine chemical probe. 

Reprinted with permission from Yan et al. (2022)131. Copyright © 2022 American Chemical 

Society. 
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Tables C-1 and C-2 can be found at 10.5281/zenodo.6975737. 

Table C-1: PTM-Shepherd diagnostic features for the analysis of a cysteine probe. See 

“Chapter_4/C1_cysprobe_diagnostic.xlsx”. 

• global.diagmine.tsv table from PTM-Shepherd containing diagnostic feature information 

Table C-2: PTM-Shepherd diagnostic features for the analysis of RNA crosslinking data. See 

“Chapter_4/C2_rnax_diagnostic.xlsx”. 

• correlation matrix of ion intensities extracted using PTM-Shepherd glyco mode 
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Appendix D

PTM-Shepherd Output Files 

 

global.profile.tsv 

global.profile.tsv reports the most prominent features from PTM-Shepherd analysis of mass 

shifts observed from FDR-filtered open search results. Each row corresponds to a different 

detected mass shift, thus not all PSMs will be represented in this table. Please note that mass 

shifts are annotated based on UniMod mapping, thus they are not definitive chemical identities 

and should be used as a starting point along with localization and amino acid enrichment 

information. Unless otherwise indicated, values are summed from all datasets in the analysis. 

Column contents are listed below. 

• peak_apex apex of the detected delta mass peak (in Da) 

• peak_lower lower bound of the detected peak (Da), determined by precursor tolerance or 

the detection of an adjacent peak 

• peak_upper upper bound of the detected peak (Da), determined by precursor tolerance 

or the detection of an adjacent peak 

• PSMs the number of PSMs contained within the peak boundary (bin), reported for each 

dataset if multiple datasets are used as input 

• peak_signal relative measure of peak prominence/quality. In noisy regions of the delta 

mass histogram, values are penalized 

• percent_also_in_unmodified the percentage of PSMs in this mass bin with a 

corresponding PSM in the unmodified bin 

• mapped_mass_1 primary modification annotation derived from Unimod, all isobaric 

modifications listed and separated by “/” 

• mapped_mass_2 if the delta mass peak is a combination of two masses, a second 

modification annotation is listed here. As with mapped_mass_1, all isobaric 

modifications are listed and separated by “/” 
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• similarity MS/MS spectral similarity of modified peptides compared to their unmodified 

counterparts. When multiple modified-unmodified comparisons are done for a single 

peptide, these cosine similarity scores are averaged for the peptide. The peptide scores 

are then averaged across all peptides in the mass shift bin. These comparisons are only 

done for peptides of the same charge state. 

• rt_shift retention time shift comparing modified peptides to their unmodified 

counterparts. When multiple modified-unmodified comparisons are done for a single 

peptide, the retention time shifts are averaged for the peptide. The peptide shifts are then 

averaged across all peptides in the mass shift bin. Individual comparisons are only done 

for peptides in the same LC-MS run. Units are usually seconds but can vary by 

instrument type 

• int_log2fc log2 fold-change of average intensity for matched shifted/unshifted peptides, 

computed as described above. Peptides affect by sample preparation artifacts tend to be 

lower abundance than their unshifted counterparts, thus this value will be low in these 

cases 

• localized_PSMs number of PSMs for this delta mass that showed at least one additional 

matched ion when the mass shift is placed on a residue 

• n-term_localization_rate percentage of PSMs with an uninterrupted string of localized 

residues from the N-terminus. This is calculated differently from other enrichment scores 

due to the difference in assumptions underlying N-terminal and residue-specific 

localization, so these values cannot be directly compared to the amino acid enrichment 

scores. 

• AA1 amino acid/residue most enriched (most likely to harbor the mass shift) compared to 

other residues 

• AA1_enrichment_score equivalent to the odds the delta mass is localized to AA1 

compared to other residues 

• AA1_psm_count weighted number of PSMs where the mass shift localized to AA1. 

Shifts localizing to multiple residues are divided by the number of localized residues in 

the spectra, so this is an estimated number of PSMs localized to a particular residue 
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• (same enrichment_score and psm_count columns for AA2 and AA3 if multiple amino 

acids are likely to harbor the mass shift) 

• [experiment]_PSMs number of PSMs with a mass shift in this bin 

• [experiment]_percent_PSMs number of PSMs from the previous column as a 

percentage of total PSMs 

• [experiment]_peptides number of unique peptide sequences with a mass shift in this bin 

• [experiment]_percent_also_in_unmodified percentage of peptide sequences with a 

mass shift in this bin that are also found in the zero mass shift bin 

global.modsummary.tsv 

global.modsummary.tsv is a modification-centric table generated from PTM-Shepherd 

summarization of mass shifts observed in open search workflows. Please note that mass shifts 

are annotated based on UniMod mapping, thus they are not definitive chemical identities and 

should be used as a starting point along with localization and amino acid enrichment 

information. Contents of each column are listed below. 

• Modification Name/annotation of the modification (as found in the global.profile.tsv 

file) 

• Theoretical Mass Shift The theoretical mass (in Da) of the modification from Unimod if 

annotated, or the peak apex of an unannotated modification 

• [experiment]_PSMs Number of PSMs with the modification, including any row from 

the global.profile.tsv file where the modification appears (e.g., a ‘Methylation’ entry in 

the will include PSMs corresponding to both ‘Methylation’ and ‘Methylation + First 

isotopic peak’) 

• [experiment]_percent_PSMs The number of PSMs from the previous column as a 

percentage of the total PSMs 

global.diagmine.tsv 

global.diagmine.tsv is a mass shift-centric table that contains the diagnostic features identified 

for every mass shift. Please note that only mass shifts with diagnostic features detected are 

reported in the table. Contents of each column are listen below. 
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• peak_apex This field contains the apex of the detected MS1 peak (Da) present in the 

global.profile.tsv file from PTM-Shepherd. 

• mod_annotation This field contains the mass shift annotations present in the 

global.profile.tsv file from PTM-Shepherd. When a mass shift is found to be the 

combination of two mass shifts, the “Potential Modification 1” and “Potential 

Modification 2” columns are merged with a semicolon. 

• type This field can take one of several values. “diagnostic” refers to diagnostic ions, the 

ions that can be located directly in the spectrum. “peptide” refers to peptide remainder 

masses, mass shifts that indicate an ion’s presence at a particular distance from an 

unshifted peptide. Six other values are possible based on parameter setting, each 

corresponding to one of the major ion series. 

• mass This field contains the mass of the diagnostic feature. Peptide and fragment 

remainder masses will have the mass shift away from the theoretical ion. Diagnostic ions 

will have the m/z of the observed ion, so a non-neutral mass. 

• delta_mod_mass This field contains the mass that was lost from the original mass shift 

to arrive at the remainder mass. (Note: only present for peptide and fragment remainder 

masses.) 

• remainder_propensity This field contains the average percentage of ions from a 

particular series that are shifted. For example, a peptide capable of producing 10 b-ions 

with 2 ions identified ions shifted by the remainder mass and 2 identified ions unshifted 

would have a propensity of 50%. The propensity score for every representative PSM 

within a mass shift bin is averaged. (Note: only present for fragment remainder masses.) 

• percent_mod This field contains the percentage of representative mass shifted PSMs that 

contain the ion at any intensity. 

• percent_unmod This field contains the percentage of representative unshifted PSMs that 

contain the ion at any intensity. 

• avg_intensity_mod This field contains the average intensity of the ion among 

representative mass shifted PSMs where the ion is present. To calculate the average 

across all representative mass shifted spectra, calculate (avg_intensity_mod * 
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percent_mod / 100). Because multiple ions can be matched for fragment remainder ions, 

this contains the average of the summed intensity of matched ions for each representative 

PSM. 

• avg_intensity_unmod This field contains the average intensity of the ions among 

representative unshifted PSMs where the ion is present. To calculate the average across 

all representative mass shifted spectra, calculate (avg_intensity_mod * percent_mod / 

100). Because multiple ions can be matched for fragment remainder ions, this contains 

the average of the summed intensity of matched ions for each representative PSM. 

• intensity_fold_change This field contains the fold change in intensity when comparing 

the modified to unmodified peptides. This uses intensity across all spectra and can be 

calculated via (avg_intensity_mod * percent_mod ) /  (avg_intensity_unmod * 

percent_unmod). 

• auc This column contains the AUC-ROC statistic for the intensity-based classification of 

this ion. It is calculated from the U statistic from the Mann-Whitney U Test. This statistic 

adjusts the two groups such that they are assumed to be of equal size. 
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