
Learning General and Correct Procedural Knowledge in a
Cognitive Architecture

by

Mazin Assanie

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2022

Doctoral Committee:

Emeritus Professor John E. Laird, Chair
Professor Benjamin Kuipers
Professor Thad Polk
Dr. Robert E. Wray III, Center for Integrated Cognition

Mazin Assanie

mazina@umich.edu

ORCID iD: 0000-0002-1690-8932

© Mazin Assanie 2022

mailto:mazina@umich.edu
https://orcid.org/0000-0002-1690-8932

This work is dedicated to all the people who supported me when
I needed it most, most notably my parents, Mohammed As-Sanie
and Fatimah Barazi, my sisters, Suzie, Abir and Rudi, and my
advisor and mentor, John Laird.

ii

Acknowledgments

I would like to express my sincere gratitude to all my fellow Soar group mem-
bers who helped me learn so much along the way: Nathan Derbinsky, Joseph
Xu, Bob Marinier, Bob Wray, Alex Turner, Karen Coulter and, most of all,
John Laird, whose kindness, sincerity and patience knows no bounds. I’d like
to thank Karen Liska, Dawn Freysinger, Kelly Cormier and Cindy Watts for
their indefatigable kindness and helpfulness navigating the program, and Bill
Birmingham for giving me a chance my first semester by letting me GSI a
class that I had no business doing. I’d like to thank Steven Jones for his friend-
ship and being someone I can vent to and bounce ideas off of. I’d like to
thank Bryan Stearns for his collaboration and showing me that people still act
ethically. Finally, I would like to acknowledge some of my fellow graduate
students that made the journey much more enjoyable: Dmitry Kalinchenko,
Bradley Clement, Lukasz Opyrchal, Tom Bersano, Peter Lindes, Jule Schatz,
Preeti Ramaraj and Elizabeth Mamatov. Thank you all.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . ix

List of Acronyms . xiv

Abstract . xv

Chapter

1 Introduction . 1

1.1 Online Procedural Knowledge Learning . 2

1.2 Contributions of This Thesis . 5

1.3 Structure of Remainder of Thesis . 6

2 Evaluating Online Procedural Knowledge Learning 8

2.1 Correct Behavior Summarization . 8

2.2 Necessary Conditions for Correct Behavior Summarization 8

2.3 Capturing Generality of Summarized Reasoning 10

2.4 Generality’s Relationship to Correctness . 12

2.5 Computational Benefits of Optimal Generality 12

2.6 Desiderata for An Online Procedural Learning Algorithm 14

3 Soar’s Online Procedural Knowledge Learning Algorithm 17

3.1 Soar’s Problem Space Computational Model . 17

3.2 Chunking: Soar’s Online Procedural Learning Algorithm 21

iv

3.3 Chunking’s Strengths . 23

3.4 Relationship to Explanation-Based Learning . 27

3.5 A Taxonomy of Chunking’s Correctness Issues 30

3.6 Problems with Generality . 32

3.6.1 Problems Capturing Generality of Underlying Reasoning 34

3.6.2 Mitigating Problems with Generality 35

3.7 Problems Supporting Higher-Level, Deliberate Learning Strategies 37

3.8 Conclusions . 39

4 Our Approach to Online Procedural Knowledge Learning 41

4.1 Strategy 1: Acquire and Integrate Missing Knowledge 42

4.2 Strategy 2: Selective Specialization . 44

4.3 Strategy 3: Selective Unification . 45

4.4 Strategy 4: Modify Architecture . 45

4.5 Strategy 5: Detect and Optionally Prevent . 48

4.6 Applying the Five Strategies of EBBS . 49

5 Learning Optimally General Procedural Knowledge 51

5.1 Capturing the Generality of a Reasoning Trace 51

5.2 Challenges of Using Classical EBL Unification 53

5.3 Distributed Identity Graph Unification . 55

5.3.1 Identity: A Common Formalism Across EBBS Strategies 55

5.3.2 The Identity Graph . 56

5.3.3 Summary of DIGU Algorithm . 58

5.4 EBBS Processing Overview . 60

5.5 The Behavior Trace . 62

5.6 Integrating Identity into the Behavior Trace . 63

5.6.1 Identity Analysis Phase 1: Identity Creation and Propagation 64

5.6.2 Adding Identity-Based Constraints . 66

5.7 The Learning Episode . 67

5.7.1 Calculating the Full Set of Inferences 67

v

5.7.2 Backtracing and the Three Types of Analysis Performed 68

5.7.3 Dependency Analysis . 68

5.7.4 Identity Analysis Phase 2: Identity Resolution 69

5.7.5 Constraint Collection . 71

5.7.6 Rule Formation . 71

5.8 Unnecessary Generality . 75

5.8.1 Applying Strategy 3: Selective Unification of the SUPERSTATE feature . 77

5.8.2 Domain-Specific Unnecessary Generality 78

5.9 Learning from Non-Learning Subgoals . 78

5.9.1 Applying Strategy 1: Explanatory Justifications 79

5.10 Concluding Comments On Generality . 80

6 Learning Correct Procedural Knowledge . 81

6.1 Strategy 1: Acquire Missing Knowledge and Integrate 82

6.1.1 Case 1: Dynamically-Generated Knowledge 83

6.1.2 Case 2: Operator Selection Knowledge 92

6.1.3 Case 3: Promoted Knowledge . 98

6.1.4 Case 4: Implicit Knowledge . 100

6.1.5 Case 5: Learning from Non-Learning Subgoals 102

6.2 Strategy 2: Selective Specialization . 103

6.2.1 Case 1: Behavior Traces with Constraints on Intermediate Results 103

6.2.2 Comments on Selective Specialization 104

6.3 Strategy 4: Modify Architecture to Ensure Correct Learning 105

6.3.1 Long-term Memory Elements and Long-Term Identifiers 105

6.3.2 Case 1: LTM Knowledge Structures Interacting Across Subgoals 106

6.3.3 Case 2: Subgoal Results Based on Long-Term Memory Structures 110

6.4 Strategy 5: Detect and Prevent Incorrect Rules 111

6.4.1 Case 1: Unreliable Knowledge from Operators Chosen Probabilistically . 111

6.4.2 Case 2: Unreliable Knowledge from LTM 112

6.4.3 Case 3: Reasoning that Conflates a Conjunction of Contexts 113

vi

6.5 Final Comments on Improving Correctness . 114

7 Evaluation . 116

7.1 Evaluation Overview and Experiment Setup . 116

7.1.1 Experiments . 117

7.1.2 Controlling for Randomness . 118

7.1.3 Conventions Used in Figures . 119

7.2 Agents and Tasks Used in Evaluation . 119

7.2.1 Task 1: Solving Multi-column Arithmetic Problems 120

7.2.2 Task 2: Finding a Path in a Graph using A* Search 121

7.2.3 Task 3: Solving a Kenken Puzzle . 121

7.2.4 Task 4: Parsing Natural Language . 122

7.2.5 Task 5: BlocksWorld . 122

7.2.6 Task 6: Water-Jug Puzzle . 123

7.2.7 Task 7: Eight Puzzle . 124

7.2.8 Task 8: Mouse and Cats . 124

7.2.9 Special Allowances for Some Agents 124

7.3 Evaluating Task Performance Improvements (E1) 126

7.3.1 Task Success . 126

7.3.2 Number of Decisions Cycles Needed to Solve Task 128

7.3.3 Conclusions on our Evaluation of Task Performance 133

7.4 Evaluation of Optimal Generality (E2) . 133

7.4.1 Types of Knowledge That Learned Rules Reason Over 133

7.4.2 Number of Rules Learned . 138

7.4.3 Impasses Encountered . 143

7.4.4 Firing Count of Learned Rules Per Decision Cycle 148

7.4.5 Conclusions on our Evaluation of Optimal Generality 152

7.5 Evaluating the Computational Cost of EBBS Approach (E3) 152

7.5.1 Computational Costs of Determining Which Rules Match 153

7.5.2 Computational Costs of Analyzing Subgoals and Building Rules 158

vii

7.5.3 Average and Maximum Decision Cycle Time 166

7.5.4 Conclusions on our Evaluation of Computational Cost 168

7.6 Evaluating Correctness (E4) . 168

7.6.1 Empirical Evaluation of Correctness . 168

7.6.2 Correctness Regression Test Agents . 170

7.6.3 More Complex Regression Tests . 180

7.6.4 Additional Comments on Correctness 182

7.6.5 Conclusions on our Evaluation of Correctness 183

7.7 Evaluation Conclusions . 184

8 Conclusion . 185

Appendix . 188

Bibliography . 190

viii

LIST OF FIGURES

2.1 A graphical depiction of the generality of rules. 11

2.2 Situations when undergeneral rules don’t offer computational benefits. 13

3.1 Working memory contents of an agent solving the waterjug problem after a subgoal
is created. 18

3.2 How rules specify which subgoals their reasoning applies to. 19

3.3 Goal nodes in WM allows chunking to demarcate the knowledge accessible to each
goal. 20

3.4 A simplified overview of chunking. 21

3.5 Simple behavior trace from an agent that solves the waterjug problem. 22

3.6 Data structures used and created when chunking learns a rule in a waterjug agent. . . . 23

3.7 Computational benefits of chunking in agent solving blocks world problems. 24

3.8 Computational benefits of chunking in agent performing graph search. 25

3.9 Chunking learns reinforcement learning value functions that incorporate domain knowl-
edge. 25

3.10 Reactivity of agent performing graph search is not hindered by chunking. 26

3.11 Overview of taxonomy of reasoning that chunking cannot always correctly summarize. 30

3.12 A preview of how various correctness issues share common mitigation strategies. . . . 31

3.13 A taxonomy of reasoning that chunking cannot always correctly summarize. 31

3.14 Trivial example in which chunking should learn the same rule as it is summarizing. . . 33

3.15 Undergenerality in an agent that performs arithmetic. 34

3.16 An example of heuristic-based variablization. 34

3.17 Previous example re-engineered so that chunking can learn an optimally general rule. . 36

3.18 Reformulated example that cannot be re-engineered easily because a rule action copies
a feature value. 37

ix

3.19 Situations in which chunking can learn undergeneral, unnecessarily general or incor-
rect rules. 39

4.1 The Five Strategies of EBBS. 41

4.2 Correctness issues mitigated by strategy 1. 42

4.3 Mechanisms to acquire missing knowledge and integrate into learning process. 43

4.4 Issues mitigated by strategy 2. 44

4.5 Issues mitigated by strategy 3. 45

4.6 Correctness issues mitigated by strategy 4. 46

4.7 Issues mitigated by strategy 5. 48

4.8 Strategies used to mitigate generality and correctness issues. 50

5.1 Three similar rules, each with increasingly more generality that can be captured. . . . 51

5.2 Two simple rules that matched in a substate. 52

5.3 Two simple rules that matched in a substate where second rule adds a constraint. . . . 53

5.4 An identity graph before a learning episode. 57

5.5 An identity graph after learning a rule. 58

5.6 Overview of processing that EBBS performs to learn a rule. 60

5.7 A behavior trace of a subgoal in an agent that solves the Mouse and Cats puzzle. The
rule that returned a result and gave rise to a chunk is magnified. 63

5.8 All types of tests that can be specified for an element of a Soar condition. 66

5.9 An identity graph before identity resolution. 70

5.10 An identity graph after identity resolution. 71

5.11 A learned rule with unnecessary overgenerality. 76

5.12 A simple chunk with and without selective unification. 77

5.13 Three strategies applied to the generality issues of chunking. 80

6.1 Applying the Five Strategies of EBBS to the 12 Correctness Issues. 82

6.2 Architectural instantiations that explain subgoal meta-knowledge. 85

6.3 A rule with a dynamic action and the instantiation it leads to. 89

6.4 EBBS adds conditions to an instantiation with dynamic actions. 89

6.5 How EBBS provides the capability to learn rules that use RHS math functions. 90

x

6.6 The new tests in the middle pane can be used in rule conditions to test how a short-term
WME is linked to a LTM. 109

6.7 Applying the Five Strategies of EBBS to the 12 Correctness Issues. 114

7.1 Sample figure used in this chapter. 119

7.2 Examples of multi-column arithmetic problems. 120

7.3 A representation of a graph search problem. 121

7.4 A Kenken puzzle. 121

7.5 An example of a parsed sentence. 122

7.6 The blocks-world task. 122

7.7 The water-jug puzzle. 123

7.8 The 8-puzzle task. 124

7.9 The mouse and cats task. 124

7.10 Percentage of runs in which agents from group one achieve their task goal. 126

7.11 Percentage of runs in which an agent from group two achieves its task goal. 127

7.12 The number of decision cycles needed to solve the tasks of the agents in group one
shows that EBBS reduces the number of decision cycles needed to solve a problem
more than classic chunking does. 128

7.13 How the number of practice problems solved (1-200) affects number of decision cy-
cles needed to solve 1000 problems. 130

7.14 How the number of practice problems solved (1-25000) affects number of decision
cycles needed to solve 1000 problems. 131

7.15 The number of decision cycles needed to solve classic AI problems show that both
EBBS and classical chunking decrease the number of decision cycles to solve a task
by approximately the same amount. 132

7.16 This figure shows the number of decision cycles needed to solve a task for both the
learning and post-learning runs. EBBS reduces the number of decision cycles to solve
a problem during the learning run more than classical chunking does for these two
agents. 133

7.17 The types of knowledge that chunks and EBBS rules match against. When chunks
fire, they match only against Soar identifiers; when EBBS rules fire, their variables
match against multiple types of knowledge, evidence that EBBS captures and uses
generality from an agent trace that chunking does not. 135

7.18 The EBBS rule on the left captures generality of the agent’s reasoning, shown in green,
that the chunk on the right does not. 136

xi

7.19 The types of knowledge that chunks and EBBS rules match against in seven of the
agents of group two. We see evidence that EBBS captures and uses generality that
chunking cannot in . 137

7.20 The types of knowledge that chunks and EBBS rules match against are the same in
these three agents; both EBBS rules and classic chunks only reason generally about
Soar identifiers. 138

7.21 The number of hand-written rules and the number of rules learned using classical
chunking and EBBS for each of the four agents of group one. 139

7.22 The number of rules learned for seven of the agents in group two. EBBS summarizes
the reasoning performed by these agents in fewer rules than classical chunking. 140

7.23 The number of rules learned for the final three agents of group two. EBBS learns the
same number of rules from the reasoning of these agents. 141

7.24 The number of rules learned by each learning approach after practicing a 1-200 prob-
lems. EBBS quickly learns all rules necessary to represents the reasoning of the arith-
metic agent while classic chunking continually learns more rules. 142

7.25 The number of rules learned by each learning approach after practicing 1-25k prob-
lems. Even after 25k practice problems, classic chunking continues to learn new rules. 143

7.26 The number of impasses encountered by the agents of group one under each learning
approach. EBBS prevents more knowledge impasses than classical chunking in all
four agents. 144

7.27 The number of impasses encountered by the arithmetic agent after practicing 1-200
problems. EBBS eliminates the vast majority of impasses encountered after only a
few practice problems. 145

7.28 The number of impasses encountered by the arithmetic agent after practicing 1-25k
problems. Classical chunking requires thousands of practice problems to eliminate as
many impasses as EBBS. 146

7.29 The number of impasses encountered by the agents of group two. EBBS and classical
chunking both decrease the number of impasses encountered by these agent faces by
roughly the same amount. 147

7.30 The number of impasses encountered in both the learning run and post-learning run.
In these two agents, EBBS reduces the number of impasses encountered during the
learning run more than classical chunking does. 148

7.31 The firing count per decision cycle of the agents of group one. EBBS rules find more
opportunities to fire every decision cycle than classic chunks in the arithmetic, A* and
NLP agents. 149

7.32 The firing count per decision cycle metric shows that the effectiveness of EBBS
chunks has little to no relation with the number of practice problems. In contrast,
the effectiveness of classic chunks gradually increases with more practice problems. . 150

xii

7.33 The firing count per decision cycle metric shows that, for these 7 agents, EBBS rules
do not fire significantly more often than classic chunks. 151

7.34 The firing count per decision cycle metric shows that, for these three agents, EBBS
rules find more opportunities to fire than classic chunks. 151

7.35 The amount of time spent matching rules each decision cycle and the percentage in-
crease in match cost that occurs when that agent uses EBBS rules instead of classic
chunks. 154

7.36 Execution time and the number of decision cycles to solve a task for the Arithmetic
agent. The additional computational costs of EBBS outweigh the amount saved by
decreases in decision times. 156

7.37 The amount of time spent to solve 1000 math problems after practicing 1-25k practice
problems. 157

7.38 With the inclusion of minimal percept processing time (0.001 ms/dc), the relative
amount of time needed for the arithmetic agent to solve 1000 problems under each
learning approach changes dramatically. It now mirrors how the number of decision
cycles to solve the problem decreases with number of practice problems. 158

7.39 A breakdown of how the agents of group one spend their time. 161

7.40 A breakdown of how the BlocksWorld Hierarchical, BlocksWorld Look-Ahead State
Evaluation and BlocksWorld Look-Ahead agents spend their time. 162

7.41 A breakdown of how the BlocksWorld Hierarchical Look-ahead and BlocksWorld
Operator Subgoaling agents spend their time. 163

7.42 A breakdown of how the Mouse and Cats and Eight-Puzzle agents spend their time. . . 164

7.43 How the Water-Jug agents spend their time. 165

7.44 The average duration of a decision cycle. All agents are well below our target level of
50 ms/decision. 166

7.45 The duration of the longest decision cycle during a run. All agents are well below our
target level of 50 ms/decision. 167

7.46 Regression test agent were designed for most of these correctness issues. 170

7.47 Initial state of WM of regression test agent C1-1(a). 171

7.48 The dynamic rule (top) and the rule that produces a result in the supergoal (bottom.) . 172

7.49 The correct rule that should be learned by regression test agent C1-1(a). 172

7.50 The EBBS rule learned from regression test agent C1-1(c). 172

7.51 The classic chunk learned from regression test agent C1-1(c). 173

7.52 The results of regression tests with classic chunking and EBBS. 183

xiii

LIST OF ACRONYMS

EBBS Explanation-Based Behavior Summarization

DIGU Distributed Identity Graph Unification

OSK Operator Selection Knowledge

ROSK Relevant Operator Selection Knowledge

SI Soar Identifier

LTI Long-term Identifier

LTM Long-term Memory

LTME Long-term Memory Element

STM Short-term Memory (= Working Memory)

WM Working Memory

WME Working Memory Element

xiv

ABSTRACT

For cognitive architectures that encode procedural knowledge as rules, online procedural learn-
ing algorithms exist that can analyze an agent’s experiences to acquire additional procedural rule
knowledge. Without careful engineering, agents using existing algorithms can learn large numbers
of overly-specific rules that apply in limited situations. Moreover, these algorithms have difficul-
ties summarizing some types of agent reasoning, producing rules that generate incorrect behavior.
The limited generality of the rules learned, the uncertainty of correct behavior, and the amount of
engineering required has limited the effectiveness of online procedural learning algorithms.

To better understand this problem, this work defines the two key qualities of online procedural
learning: (1) correctness, whether the procedural knowledge generates the same inferences as the
reasoning learned from, and (2) optimal generality, whether the procedural knowledge learned
captures the generality of the reasoning learned from. These concepts are used to provide a de-
tailed analysis of the underlying deficiencies of the most advanced procedural learning algorithm
currently found in a cognitive architecture, Soar’s chunking mechanism.

This work also provides an architecture-agnostic analytical framework to understand issues with
online procedural learning. First, it provided four necessary conditions for correct behavior sum-
marization, which can be used to organize the correctness issues of an online procedural learning
algorithm into a taxonomy. Second, it provides four architecture-agnostic strategies that can be
used to remedy issues with online procedural knowledge learning. Third, this work defines four
desiderata for an online procedural learning algorithm that can be used to evaluate systems.

This work also describes a robust implementation of this approach. It describes how the four strate-
gies were applied to Soar’s chunking algorithm to create a new implementation of dependency-
based procedural learning called explanation-based behavior summarization (EBBS), which in-
cludes algorithmic mechanisms that remedy or detect each of the 12 correctness issues identified.
This work also describes how EBBS uses a novel unification algorithm called Distributed Iden-
tity Graph Unification (DIGU) that captures the generality in the reasoning being summarized,
interfaces with the various mechanisms that improve correctness by using the formalism of object
“identity,” and is uniquely designed to handle the computational demands that arise from online

xv

procedural learning in a cognitive architecture.

This work concludes with an evaluation that uses data generated from 14 agents across seven
different domains. These experiments show that EBBS learns more optimally general rules that
capture reasoning that previously could not be captured, effects correct behavior and improves
agent performance without sacrificing agent reactivity.

xvi

CHAPTER 1

Introduction

Building general AI agents that learn from their own experiences in the world poses many chal-
lenges. To achieve generality and functionality, these agents must be implemented in architectures
that support a wide range of cognitive capabilities (problem solving, perception, action, planning,
language processing). To maintain the reactivity that their environments or embodiments require,
these agents must efficiently reason using task-specific knowledge. To maintain task performance
in novel situations, they need to deliberate and use general, robust problem-solving capabilities to
determine the best course of action (Laird and Rosenbloom, 1990). But, in future similar situa-
tions, these agents should use previous experiences without sacrificing reactivity. Our challenge
is to develop a general cognitive architecture that supports the transition from using deliberate,
general, internal problem-solving knowledge to efficient, reactive, task-specific knowledge (Laird
and Mohan, 2018).

For cognitive architectures that encode procedural knowledge as rules, online learning algorithms
exist that can analyze an agent’s experiences to acquire additional procedural rule knowledge. Even
though these algorithms have been successful in some applications (Zhong et al., 2012; Mohan and
Laird, 2014), their use has been limited. For reasons we discuss in this thesis, they require care-
ful agent design and task knowledge encoding to ensure correct, general, and high performance
learning. Without such careful engineering, agents can learn large numbers of overly-specific rules
that apply in limited situations. Moreover, existing algorithms have difficulties summarizing some
types of agent reasoning, producing rules that generate incorrect behavior. In summary, the limited
generality of the rules learned, the uncertainty of correct behavior, and the amount of engineering
required has limited their effectiveness, as reflected in a 2008 paper that considered using proce-
dural learning to improve the performance of autonomous agents that populated a simulation of
unmanned aerial vehicles:

“There is a drawback though; in fact such a characteristic would drastically de-
crease the predictability of the system, especially if new rules are to be added auto-
matically. This would certainly lead to certification issues. For this reason, the learn-

1

ing capabilities of Soar have not been used at this stage of the project.” (Gunetti and
Thompson, 2008)

Robust procedural learning could be invaluable for the many projects that are attempting to use
cognitive architectures to build increasingly complex autonomous agents that interactively learn
their own task knowledge, encoded in procedural rules, from instruction and exploration (Laird
et al., 2017). To provide the capabilities needed to achieve that type of dynamic learning, we need
a more complete understanding of the procedural learning process and the limitations that have
hampered progress in this area. This thesis attempts to provide such an explication, proposes an
approach that addresses the need for a robust, computationally efficient, online procedural learning
mechanism with increased generality and reliable correctness, presents a working implementation
and evaluates that implementation’s effectiveness.

1.1 Online Procedural Knowledge Learning

In this thesis, we limit our discussion to automatic, online algorithms that learn new procedural
knowledge based on an agent’s problem-solving and task execution. To facilitate the discussion,
we will use the shorter term online procedural learning to describe computational systems that
provide such capabilities. Examples of modern systems that do this are ACT-R (Anderson, 1987)
and Soar (Laird et al., 1986).

In general, an online procedural learning algorithm uses a history of step-by-step procedural rea-
soning (a behavior or execution trace) to deductively construct rules that summarize the necessary
aspects of the reasoning described by the trace. In future similar situations, the learned rule fires
and adds knowledge in a single step, eliminating the need for multi-step problem-solving. In other
words, rather than contemplating and figuring out what to do, the agent immediately knows what
to do. Speed-up learning occurs because the learned rule can be applied in one step, which can
be significantly less costly than repeating the original problem-solving. Thus, online procedural

learning converts deliberate reasoning into memory retrieval. Transfer learning occurs when the
procedural knowledge learned in one situation applies to other situations that the agent has not
reasoned about before.

There are several different ways that an online procedural learning system can learn a rule. The
simplest mechanism is memoization, a dynamic programming optimization technique that caches
calculations performed and reuses them when the same situation reoccurs. For online procedural
learning, a memoization mechanism would learn new rules by storing mappings from the complete,
specific state of the agent when reasoning began to the inference made at the end of the chain of
reasoning. While such a system is unlikely to be tractable in a cognitive architecture, it is a simple

2

form of dynamic procedural knowledge learning.

Online procedural learning systems found in state of the art cognitive architectures are more com-
plex. For example, ACT-R’s online procedural learning mechanism, production composition,
learns new rules when it detects that two rules have repeatedly fired in sequence. Production
composition performs simple variable unification across the two rules to learn a single rule that
combines them. Over time, this process can chain together learned rules to summarize longer se-
quences of rule applications (Taatgen and Lee, 2003). Production composition also incorporates
a memoization mechanism that caches retrievals from ACT-R’s long-term memory. If one of the
rules being combined both retrieves information from long-term declarative memory and performs
a problem-solving step, a process called proceduralization performs the same step without the
retrieval by embedding the retrieved information directly into the learned rule.

In contrast, Soar’s online procedural learning algorithm, chunking, leverages the architecture’s au-
tomatic subgoaling mechanism to learn a rule. Whenever an agent does not know how to proceed
(an impasse), Soar creates a subgoal to generate knowledge that allows progress in the parent goal.
For example, ROSIE, a Soar-based robotic agent that learns new tasks using a combination of
problem-solving and interaction with an instructor, enters a subgoal whenever it encounters an in-
struction that references a concept it is not familiar with (Mohan and Laird, 2014). In that subgoal,
ROSIE initiates an interaction with the instructor to define the missing concept. For example, con-
sider a situation in which ROSIE is instructed to “put the red block on a clear block” but does not
know what the concept “clear” means. Because Rosie cannot determine which blocks are “clear,”
it impasses, which generates a subgoal to acquire the concept that it does not understand. In the
subgoal, rules fire that initiate an interaction with the instructor. For example, these rules may
cause ROSIE to say, “I do not know what the concept ’clear’ means. Please define.” The instructor
tells ROSIE that “if an object is not on top of a block then it is clear.” Using that instruction, rules
fire in the subgoal that create a new knowledge structure in the supergoal that provides the knowl-
edge needed for the agent to proceed. Armed with this new information, the impasse is resolved
and ROSIE then proceeds to put the red block on a clear block. This is when procedural learning

occurs. Whenever a subgoal returns a knowledge structure, or result, to a supergoal, chunking
analyzes the trace of rules that fired in the subgoal to creates a rule that summarizes the reasoning
that led to that result. In future situations, the learned rule will fire, automatically providing the
definition of the concept, so that ROSIE does not need to ask again.

There are additional rule-based architectures that learn procedural knowledge dynamically, but
they are not good candidates for our research. One reason is that many systems claim online pro-
cedural learning but provide neither descriptions of their algorithms nor source code. For example,
Polyscheme (Cassimatis, 2002) alludes to a rule learning specialist that is capable of learning new

3

procedural knowledge, but the system is not publicly available and no description of either how
it learns rules or how well it learns rules is provided. Another reason is that some systems con-
strain how knowledge is represented. For example, the PRIMS model (Taatgen, 2013) requires
that procedural knowledge is broken down into what Taatgen calls primitive information process-
ing elements, which are small rules that perform the most fundamental operations of a cognitive
architecture. While PRIMS is a compelling model of transfer learning, we do not consider it as a
viable approach because it would limit the representational flexibility that a general cognitive ar-
chitecture provides. We also do not consider online procedural learning techniques that learn rules
using inductive algorithms. For example, CHREST learns rules that associate long-term memo-
ries with patterns in short-term memory by performing statistical analysis of changes in working
memory (Gobet and Lane, 2017). Similarly, inductive logic programming generates theories of
domain knowledge by considering all possible hypotheses that a set of negative and positive train-
ing examples support and choosing the ones that it calculates are most likely to be useful. While
important, it is not clear whether these approaches lend themselves to the correctness and real-time
requirements of an online procedural learning system in a cognitive architecture and, thus, they fall
outside the scope of our examination.

In this work, we study online procedural learning by returning to research on Soar’s general learn-
ing mechanism, chunking, an approach which has roots in over 30 years of research on cognitive
architecture. Soar is a general cognitive architecture for developing systems that exhibit intelligent
behavior that strives to be a unified theory of cognition (Laird et al., 1987; Newell, 1992; Laird
and Rosenbloom, 1996). It is a mature, well-understood, architecture that possesses multiple addi-
tional general learning mechanisms (reinforcement, semantic and episodic), and is actively being
used by a community of over 20 research institutions world-wide on a broad range of tasks. While
a significant body of work has used Soar to create detailed cognitive models that describe and
predict aspects of human behavior in the performance of a task, much of the active work in Soar,
both academic and commercial, involves building intelligent agents that encode significant expert
knowledge to effect autonomous, capable task-execution in real-world environments, precisely the
types of agents that could benefit from a robust and effective online procedural learning system.

Note that ACT-R’s production composition algorithm is also a viable candidate for such research,
but both the architecture and its online procedural learning algorithm have qualities that suggest
chunking is a better fit for the types of agents that we are interested in building. One of the main
reasons is that ACT-R is used purely for cognitive modeling, which focuses on simpler behavior
and leads to agents that encode less complex forms of reasoning. In contrast, the agents whose
performance we are interested in improving execute tasks in demanding, real-world domains that
often require complex reasoning, such as hierarchical task decomposition and planning, to achieve
desired task performance. Examining this problem in the context of ACT-R may not reveal all the

4

challenges that need to be overcome in a more general architecture.

It is important to point out that there are numerous cognitive architectures in existence today. Kot-
seruba and Tsotsos (2016) surveyed the last 40 years of research across multiple disciplines, most
notably AI, cognitive science and neuroscience, and identifies over 195 different cognitive archi-
tectures. Of those, 96 are currently active and nearly all of them have some form of procedural
memory. While many of them do not yet have the ability to learn new procedural knowledge, they
could one day benefit from online procedural learning. Even some researchers who are explor-
ing neural network based approaches to cognition have identified online procedural learning as
a potential, promising capability; for example, Lake et al. (2016) suggests that recent neural net
approaches could use an explanation-based learning capability to explain how people are rapidly
able to understand the world well:

“Although neural networks are usually aiming at pattern recognition rather than
model-building, we will discuss ways in which these ’model-free’ methods can accel-
erate slow model-based inferences in perception and cognition. By learning to rec-
ognize patterns in these inferences, the outputs of inference can be predicted without
having to go through costly intermediate steps. Integrating neural networks that ’learn
to do inference’ with rich model-building learning mechanisms offers a promising way
to explain how human minds can understand the world so well, so quickly.”

Having a deep understanding of the strengths and weaknesses of online procedural learning, both
theoretical and practical, and how that can be improved over the current state of the art could be
useful to the entire community. Moreover, an actual implementation of a general and robust on-
line procedural learning algorithm in a modern cognitive architecture affords immediate concrete
benefits. Research in autonomous agents can use our work to achieve exciting new learning re-
sults, a benefit that is already happening (Kirk and Laird, 2014, 2016; Mininger and Laird, 2016,
2018), while research in cognitive architectures can use this work as a basis to explore further
improvements to online procedural learning.

1.2 Contributions of This Thesis

In this thesis, we make the following contributions:

1. We explicate 14 underlying deficiencies in the original implementations of chunking that
arose from many of its core assumptions. Specifically, we provide detailed descriptions of
two issues that underlie why chunking does not always learn general rules and 12 scenarios
in which chunking may learn incorrect behavior summarizations.

5

2. We provide four architecture-agnostic necessary conditions for correct behavior summariza-
tion when performing online procedural learning. These four requirements can be used to
organize the varied correctness issues of an online procedural learning algorithm into a tax-
onomy whose categories correspond to mitigation strategies.

3. We present a general approach to improving online procedural knowledge learning that uses
five architecture-agnostic strategies. We demonstrate this approach by applying the five
strategies to chunking’s generality and correctness issues.

4. To evaluate the effectiveness of our proposed approach, we have developed mechanisms
that implement the five strategies of (3) to the problems described in (1). We use these
mechanisms as the basis for a completely new implementation of procedural learning called
explanation-based behavior summarization (EBBS).

• We describe a novel unification algorithm called Distributed Identity Graph Unifica-
tion (DIGU) that is informed by insights we’ve had on the tight relationship between
generality and correctness in online procedural learning systems within cognitive ar-
chitectures. We show how DIGU can capture more of the generality in the reasoning
being summarized, interfaces with the various mechanisms that improve correctness by
using the formalism of semantic “identity,” and is designed to handle the computational
demands that arise from online procedural learning in a cognitive architecture.

• For each of the 14 deficiencies described in our chunking analysis (12 correctness and
2 generality issues), we describe the new algorithmic mechanisms that implement our
aforementioned strategies. For example, we describe how correctness issues can be
avoided by creating missing dependencies in a behavior trace, selectively specializing
problematic aspect of an agent’s reasoning, rule repair or modifying the architecture.

5. We define four desiderata for an ideal online procedural learning algorithm that are architecture-
agnostic and can be used to evaluate an online procedural learning system.

6. Finally, we examine how well our approach performs against the desiderata by empirically
evaluating our implementation to determine its impact on correctness, generality and per-
formance. Specifically, we examine how well EBBS ameliorates Soar’s online procedural
learning deficiencies by performing experiments in seven different domains.

1.3 Structure of Remainder of Thesis

In Chapter 2, we lay the groundwork of our evaluation by defining correctness and generality, two
key concepts needed to explore online procedural learning. We also describe four requirements

6

that must be met for correct online procedural knowledge learning. We conclude the chapter by
providing a list of desiderata for an ideal online procedural learning system.

In Chapter 3, we describe the problem this thesis tackles by evaluating Soar’s online procedural
learning algorithm, chunking. We first provide a quick overview of how Soar works and how
chunking learns rules. Then, to illustrate chunking’s strength, we describe several past projects
that have successfully used chunking to improve agent performance. Finally, we present the core
arguments of the chapter by explicating the deficiencies chunking has with generality and correct-
ness and showing how those deficiencies have hampered the effectiveness and adoption of Soar’s
online procedural learning capabilities.

In Chapter 4, we present our approach. We detail five general strategies that our proposed system
uses to eliminate or mitigate the problematic issues that were described in Chapter 3.

In Chapter 5, we explain how we apply our strategies to learns rules that capture more of the
underlying generality in an agent’s reasoning. We explain our semantic identity formalism, provide
an overview of the EBBS’s implementation and describe in detail how the Distributed Identity
Graph Unification algorithm works.

In Chapter 6, we discuss the twelve types of reasoning that we have identified that can lead to
chunking learning incorrect rules. For each of these twelve correctness issues, we show how EBBS
applies one of our five strategies to mitigate the underlying problem to learn rules that are correct
summaries of an agent’s reasoning.

In Chapter 7, we evaluate our implemented system using experiments in 8 different domains. This
evaluation includes metrics that correspond to each of the desiderata described in Chapter 2, which
are used to measure the effectiveness of our approach.

In Chapter 8, we summarize our work and conclude the thesis.

7

CHAPTER 2

Evaluating Online Procedural Knowledge Learning

To discuss the strengths and limitations of any online procedural learning algorithm, this chapter
first defines and the discusses two key metrics of the quality of procedural summarization: correct-
ness and generality.

2.1 Correct Behavior Summarization

Correctness describes whether a learned rule accurately summarizes the reasoning that was learned
from.

A learned rule is a correct summarization if it always generates the same knowledge structures

that the original, deliberate reasoning would have in the same situation. In other words, if the
learned rule were not available, the agent would fall back to reasoning deliberately and produce
the same exact knowledge structures that the learned rule would create.

Our definition of correctness is completely unrelated to whether the original reasoning produces
optimal or even beneficial behavior in a particular task or domain. Correctness in this work only
refers to whether the learned rules accurately summarize the inferences that the original reasoning
would perform in the same situation.

In an ideal algorithm, learned rules are always correct. Ensuring correctness is critically important
because, when an incorrect rule is used, the agent may make unjustified inferences, which could
lead to behavior not intended by the agent engineer. This may disrupt or prevent successful task
execution.

2.2 Necessary Conditions for Correct Behavior Summarization

One of insights that we have gained in this work is that correctness issues occur when an algo-
rithm attempts to summarize a trace of behavior that is either deficient on some dimension or
describes behavior that cannot be recreated by a single rule firing. Specifically, we have found

8

four architecture-agnostic types of violations that lead to incorrect rules, and we use as them as
the basis of the following four necessary conditions that reasoning must meet for it to be correctly

summarized:

1. Feasible: Reasoning Must be Logically Consistent and Contemporaneously Possible

Unless the architecture provides a mechanism to prevent it, a behavior trace could include a
rule whose conditions logically conflict with those of another rule in the trace. For example,
a behavior trace may include both a rule that matches when a feature has a particular value
and another rule that matches after the feature changes and has a different value. If an online
procedural learning algorithm summarizes a trace that includes both of these rules, it will
learn a rule that has two conditions that can never be simultaneously satisfied. Similarly, a
trace can have a rule whose conditions can never co-occur with the conditions of another
rule because of the nature of the domain. For example, consider a trace that includes both
a rule that tests the agent’s location before the agent issues a command to move and a rule
that tests the agent’s location after the move. If an online procedural learning algorithm
summarizes a trace with those two rules, it will learn a rule that requires the agent to be at
both the starting and ending location at the same time. In summary, any explanation-based
approach that attempts to learn from a trace whose reasoning is not logically consistent and
contemporaneously possible can learn rules that will never match and are incorrect (Wray
and Laird, 2003).

2. Complete: Reasoning Must Be Described By a Behavior Trace That Explains All De-
pendencies

An online procedural learning algorithm can only learn a correct rule if it analyzes a be-
havior trace that describes all knowledge structures that the reasoning is dependent on. As
previously discussed, dependencies may be missing from a behavior trace because the trace
is only an approximation of the processing that underlies an agent’s reasoning in a cognitive
architecture. Describing all causal dependencies is a basic requirement of any explanation-
based approach. If an online procedural learning algorithm does not include an aspect of
the problem solving context that was required for the problem solving to occur, it learns a
rule that may match in situations where that necessary aspect does not exist. Such rules are
overgeneral and hence incorrect.

3. Expressible: Reasoning Must be Expressible in a Single Rule

An online procedural learning system that summarizes reasoning into a single rule can only
summarize reasoning that can be expressed in a single rule using the architecture’s rule

syntax. This is a tautological requirement that is a result of the fact that limitations in an

9

architecture’s rule syntax can make it possible for multiple rules to describe reasoning that a
single rule cannot. In short, an online procedural learning system cannot summarize some-
thing that it does not have the language to describe.

4. Repeatable: Reasoning Must be Reliably Repeatable

The reasoning that an online procedural learning algorithm summarizes must be reliably
repeatable. For example, in Soar, declarative knowledge is propositional and rules fire de-
terministically, so a chunk will always fire if all of its conditions match against working
memory. This means that the behavior that the rule summarized must be equally reliable.
This may not be the case if subgoal reasoning involved uncertain knowledge or probabilistic
decision-making, both of which can exist in Soar and are common capabilities in cognitive
architectures.

2.3 Capturing Generality of Summarized Reasoning

Generality describes when a learned rule can be used.

We are not using a definition of generality that implies that a general rule applies in a broad
range of situations, another common notion of generality. Because an online procedural learning
algorithm attempts to summarize a historical trace of an agent’s reasoning, its goal is to learn a rule
that applies to the same space of situations that the agent’s existing procedural knowledge applies
to. So, the optimal level of generality is that space of situations. Consequently, our work uses a
relative definition of generality that compares the space of situations a learned rule applies to, to
the space of situations the original reasoning applies to.

Pane A of Figure 2.1 depicts this space of situations graphically. The point in the middle represents
the situation in which learning occurred, while the dotted circle represents all similar situations in
which the same original reasoning would also apply.

10

Situation Space

Overgeneral Rule

This rule is
both

overgeneral
and

undergeneral

Situation Space

Overgeneral Rule This rule is
Overgeneral

Situation Space

This rule is
optimally
general

This rule is
minimally
general

This rule is
undergeneral

Situation Space

Training
instance

Space of situations in
which original
reasoning applies

Learned Rule

Space of situations in
which original
reasoning WOULD
NOT apply

A B

C D

Space of
situations in

which original
reasoning

applies

Figure 2.1: A graphical depiction of the generality of rules.

• A learned rule is optimally general if it can apply in all situations that the original domain
knowledge would have applied in and no others. In pane B of Figure 2.1, the optimally
general rule is the region with the thick border that covers the same space of situations as the
original reasoning did in pane A.

• A learned rule is minimally general if it can only apply in the exact same situation that
occurred when learning. In pane B of Figure 2.1, the minimally general rule covers one
situation, which is the same one as the training instance in the left pane.

• A learned rule is undergeneral if it can only apply in a subset of the situations that the
original domain knowledge would have applied in and no others. In pane B of Figure 2.1,
the undergeneral rule is the smaller, circular region that covers a subset of the situations that
the original reasoning can apply to.

• A learned rule is overgeneral if it can apply in situations beyond those that are supported by
the reasoning in the original domain knowledge that applied. In pane C of Figure 2.1, the
overgeneral rule is the region with the thick border that covers a larger space of situations
than the original reasoning does.

11

In an ideal algorithm, all learned rules are optimally general. In practice, though, online procedural
learning algorithms often learn rules that apply only in a subset of the situations that the original
domain knowledge would have applied in.

2.4 Generality’s Relationship to Correctness

We classify overgeneral rules as incorrect rules because they can make unjustified inferences when
they are applied in the situations denoted by the region colored red in Figure 2.1. They are consid-
ered incorrect because they produce inferences in situations in which the original reasoning would
produce no inferences at all. Similarly, an undergeneral rule is considered incorrect because, in
some situations, it is not able to generate the same inferences that the original reasoning would.

In terms of task performance, an overgeneral rule is typically a more important problem for an
agent than an undergeneral one because an overgeneral rule can change an agent’s behavior ad-
versely by producing inferences that may not be justified. In contrast, an undergeneral rule would
simply not fire in some situations, which would lead the agent to fall back to using its original,
deliberate reasons.

Note that a rule can be both overgeneral and undergeneral, as shown in pane D of Figure 2.1.
Because overgenerality is more problematic for agents, we treat and refer to such rules simply as
overgeneral.

2.5 Computational Benefits of Optimal Generality

As previously discussed, our definition of generality does not imply that a general rule applies in
a broad range of situations. The size of the space of applicable situations that a rule can apply
in, i.e. the absolute size of the region in the dotted circle, could be small or large depending on
how abstract the reasoning being summarized. As a result, we use a limited, relative definition of
generality that is relative to the space of situations that the original reasoning applies to. This allows
us to assert that an online procedural learning system should always attempt to learn optimally
general rules. This is a fairly trivial statement and is equivalent to other explanation-based learning
systems saying that unification algorithms should always return the most general unification of
variables (MGU) that an explanation supports. And, that is indeed the case; the only example of
an EBL unification algorithm that does not return the MGU was one that was considered buggy
(Dejong and Mooney, 1986).

We can visualize why we can always prefer optimal generality by considering Figure 2.2, which
depicts four undergeneral rules that came out of the same reasoning. But first, we must define what
we mean when we say that a learned rule provides computational benefits to an agent.

12

Training
Instances

Space of
situations in
which agent

would not use
learned rules
and fall back

to original
summarized
reasoning

Space of possible situations

Undergeneral
Rules

Figure 2.2: Situations when undergeneral rules
don’t offer computational benefits.

There are several ways that a rule can provide
a computational benefit to an agent. One way
is when it allows the agent to replace multiple
rule firings with a single rule firing. Assuming
the cost of learning, matching and executing a
single rule is less than the cost of matching and
executing the set of rules being summarized,1

the computational benefit gained is faster ex-
ecution time. Learned rules can also improve
execution time by eliminating the cost of cre-
ating the subgoal and any rules that fired in the
subgoal that did not participate in the chunk’s
summarized reasoning. Moreover, if the chunk summarizes reasoning that retrieves knowledge
from a long-term memory store, it provides the additional computational benefit of eliminating the
cost of the memory retrieval. Finally, if the learned rule summarizes reasoning that spanned mul-
tiple primitive cognitive decision cycles, it also eliminates other types of processing that cognitive
architectures often perform every decision cycle, for example perception and output, which can
require significant computational processing.

Figure 2.2 illustrates why optimally general rules provide computational benefits and are desirable.
The dotted line again indicates the space of all situations that the original reasoning can apply in.
The key thing to notice is the colored region, which denotes all situations in which a rule from the
set of undergeneral learned rules cannot apply. Whenever the agent is in a situation in the colored
region, the rules in the original deliberate reasoning would fire and produce the appropriate infer-
ences. Note that an optimally general rule could also make the same inferences in the situations
denoted by the colored regions. So, an optimally general rule could produce the same inferences
as a combination of the less general rule and original reasoning would have. The difference is that,
when in situations from the colored region, the optimally general rule generates the correct results
in a single rule firing. Thus, in this analysis, the optimally-general rule is computationally more
desirable than an undergeneral rule.

1For the moment, we ignore the utility problem (Mooney, 1989), i.e. situations in which our assumption is violated
and the persistent cost of matching a learned rule outweighs the periodic performance improvements that occur when
the learned rule fires and deliberate reasoning is avoided. Whether these “expensive chunks” arise and how overall
match cost changes with an improved online procedural learning algorithm is discussed when we evaluate our system
in Chapter 7. We also ignore the average growth issue (Doorenbos, 1995), i.e. the performance decrease that occurs as
procedural memory grows. Not only is it not currently a problem — modern rule matchers like RETE can efficiently
detect matches in procedural memories with millions of rules — we expect that this issue should be less problematic
with an improved online procedural learning system that learns fewer, more general rules. We also evaluate whether
this is true in Chapter 7.

13

2.6 Desiderata for An Online Procedural Learning Algorithm

Before we explore the specifics of online procedural learning in a particular cognitive architec-
ture, we first establish what qualities we want an ideal algorithm to have. We posit the following
desiderata, which we use to compare online procedural learning algorithms and evaluate improve-
ments:

D1. Learns Only Correct Rules

Algorithm learns rules that produce the same knowledge structures that the original, deliberate

reasoning would have in the same situations, from all types of reasoning supported by the archi-

tecture and from all sources of knowledge available to the agent

In other words, if the agent inhibits the firing of a learned, correct rule, the agent would reason
deliberately and produce the same exact knowledge structures that the inhibited learned rule would
have added. This criterion is critically important because an incorrect rule can produce effects that
were not intended by the agent engineer and may hinder or prevent task execution. Moreover, an
online procedural learning system in a cognitive architecture must support all of the cognitive capa-
bilities and knowledge sources that the architecture makes available to the agent. Learning correct
rules should not be limited to easily summarized reasoning or a subset of available knowledge
sources.

D2. Learns Only Optimally General Rules

The algorithm learns optimally general rules regardless of how an agent represents or processes
knowledge.

This desideratum favors algorithms that always learn optimally general rules. This is important
because an optimally general rule is more likely to match future situations than an undergeneral
one, and hence more likely to replace slower, deliberate reasoning with the immediate execution
of a chunk. Moreover, an ideal online procedural learning system automatically learns optimally
general rules from any agent, regardless of its design; it should not be limited to knowledge repre-
sentations and reasoning that can accommodate the limitations of the learning algorithm.

D3. Learns Rules that Improve Future Performance

In future situations, learned rules replace deliberate reasoning over multiple rule firings with im-

mediate inferences from a single rule firing.

14

This desideratum favors algorithms that learn rules which produce these replacements earlier
and/or more often. It also favors algorithms that can provide computational benefits for agents
designs and learning strategies that cannot use existing online procedural learning algorithms.

D4. Learns Without Negatively Affecting Reactivity

The algorithm must not incur computational costs that prevents the agent from responding with

the reactivity that their embodiment or domain requires. This includes both the cost of initially

learning rules and the cost of using that learned knowledge.

In Soar, we define reactivity as the duration of an agent’s primitive decision cycle and required

reactivity as the maximum amount of time that an agent’s embodiment or domain allows between
decisions. For example, cognitive architectures often strive to ensure that their decision cycles take
less than approximately 50ms, the primitive cycle time that psychologists hypothesize occurs in
the human brain (Newell, 1994). Similarly, agents embodied in robotics applications often have a
requirement that the maximum duration of its primitive cycle time is less than 100ms (Laird et al.,
2012b).

This desideratum favors algorithms that can learn procedural knowledge from task execution while
maintaining the reactivity that their agent’s embodiment or domain requires. These criteria are im-
portant because we are interested in improving the performance of real-world agents that operate
in environments with real-time constraints. The computational cost of the learning algorithm in-
cludes both the overhead that occurs when the algorithm analyzes behavior and learn rules and the
increased match cost that occurs as a result of the additional learned rules being added to produc-
tion memory. These costs must not hinder the agent’s required reactivity.2

There are trade-offs between these desiderata – techniques that improve how well the algorithm
does on one desideratum may hurt how well the algorithm does on another desideratum – so we
do not expect our proposed system to achieve complete success on every dimension. An obvi-
ous example is that adding new mechanisms to improve D1 and D2 will almost certainly add
computational overhead and degrade D3. Similarly, we have found that we can improve D2 by
slightly degrading D1. Specifically, we have found that we can sometimes repair an incorrect rule
by specializing problematic aspects of the reasoning, which decreases the generality of the rule
but ensures correctness. How well a particular agent does against the desiderata will be highly
dependent on an agent’s knowledge representation, problem-solving strategies and the nature of
its environment. For some representations and types of reasoning, improving the generality of the

2Note that previous work has examined the algorithmic complexity of both chunking and the mechanisms uti-
lized by our proposed algorithm (Kim and Rosenbloom, 2000; Mooney et al., 1986). In Chapter 7, we discuss the
applicability of their work but do not provide a similar worst-case complexity analysis.

15

rules that an online procedural learning algorithm learns might not improve performance; a simpler
mechanism may suffice.

16

CHAPTER 3

Soar’s Online Procedural Knowledge Learning
Algorithm

To facilitate a discussion of the issues that have hampered the effectiveness and adoption of chunk-
ing, this section provides a quick overview of the philosophy behind Soar and how it learns proce-
dural knowledge.1 While the following discussion is obviously Soar-centric, it focuses specifically
on the aspects of Soar’s philosophy and implementation that are necessary for chunking to work,
most notably universal subgoaling and its goal-centric working memory design. The fact that
there are 96 actively maintained cognitive architectures currently available (Kotseruba and Tsot-
sos, 2016), many of which share similar principles, suggests that other architectures may be able
to use the lessons we learned in this project to build or at least inform their own online procedural
learning systems.

3.1 Soar’s Problem Space Computational Model

Soar is predicated on Allen Newell’s problem space hypothesis, which states that any goal-oriented
problem can be formulated as a search in a problem space, and, thus, problem spaces are a critical
component of reasoning, problem solving and decision-making (Newell, 1980). A problem space
is the set of all possible states along with a set of operators that transform a particular state within
the problem space to another state. Given an initial state and a desired state, operators are iteratively
selected and applied in an attempt to reach the goal state. The series of steps from the initial state
to a desired state forms the solution or behavior path.

Soar incorporates a problem-space computational model (PSCM) that was implemented specif-
ically to explore and refine Newell’s problem-state hypothesis (Newell, 1980). A PSCM is any
computational model designed around the concept of problem spaces. A spectrum of architectures

1An optional primer on Soar terminology is also provided in Appendix A. For a thorough treatment of the philos-
ophy behind Soar, please see chapters 2-4 of The Soar Cognitive Architecture (Laird, 2012).

17

exists that can be described as PSCMs; they range in complexity from early production systems,
like Ops5 and STRIPS, to modern cognitive architectures like Soar (Laird, 2012).

Soar’s working memory (WM) is a declar-
ative representation of all knowledge that is
immediately available for an agent’s problem
solving and can be represented as a directed
graph as shown in Figure 3.1. WM is com-
posed of primitive representational units of
knowledge called working memory elements
(WMEs). Each WME consists of three sym-
bols: an identifier, which references a node
in the graph by using a special symbol called
a “Soar identifier” (denoted as circles in the
figure), an attribute, which specifies a feature
label (denoted as edges), and a value, which
specifies either a constant value (denoted as
rectangles) or a Soar identifier (SI), i.e. an-
other node in the graph (denoted as circles).

S1

O2

O3
water-jug

fill

fill

J1
5

5

0

I4

yes

yes

3 3 0

jug

fill-jug

empty

empty

volume

volume

contents

contents

filled-jug

fill-jug

picked-up

name

name

operator

operator name

jug
S2

O6 fill

put-down

nameoperator

name

fill-jug

superstate

(S1 ^name water-jug)
(S1 ^operator O3)
(S1 ^jug J1)
(S1 ^operator O2)
(S1 ^jug I4)
(O3 ^name fill)
(O3 ^fill-jug J1)
(J1 ^empty 5)
(J1 ^volume 5)
(J1 ^contents 0)
(O2 ^name fill)
(O2 ^fill-jug I4)
(I4 ^empty 3)
(I4 ^volume 3)
(I4 ^contents 0)
(I4 ^filled-jug yes)
(I4 ^picked-up yes)
(S2 ^name fill-jug)
(S2 ^superstate S1)
(S2 ^operator O6)
(S2 ^fill-jug I4)
(O6 ^name put-down)

Goal
Object
Constant

Working Memory ElementsWorking Memory

Figure 3.1: Working memory contents of an
agent solving the waterjug problem after a sub-
goal is created.

Soar identifiers serve to organize a set of features into an object. So, the set of WMEs that share
the same identifier constitute a description of an object, with each WME specifying either a feature
or a link to another object. Soar’s working memory is rooted in a Soar identifier that represents the
agent’s top-level goal (denoted as the filled circle S1).

For clarity, please be aware that goals are also referred to as states in Soar. Given the emphasis on
learning from subgoaling, we will use the term goal in our discussion. We point this out because
some examples that use real Soar syntax will still use the term state and superstate instead of goal
and supergoal.

Chunking is designed around one of the key features of Soar’s PSCM: universal subgoaling (Laird,
1983). Whenever knowledge is not sufficient to make a decision for the current goal, the agent
reaches an “impasse.” Soar’s response to an impasse is to create a new subgoal, which is subordi-
nate to the first goal, to remedy the lack of knowledge that instigated the impasse, for example if
the agent did not know how to implement an operator. Specifically, when a new subgoal is created,
Soar adds a new node to working memory to represent that subgoal. Soar then adds features to the
subgoal that provide meta-information to describe the impasse.2 Finally, Soar connects the subgoal

2For clarity, Figure 3.1 does not include any of this meta-information except for the superstate link.

18

to its parent by adding a superstate feature to the subgoal. In our example, the superstate link
that connects S2 to S1 is provided by the WME (S2 ^superstate S1).

Soar requires that all rules specify which goal or class of goals that its reasoning applies to. Specif-
ically, Soar requires that a rule provides a specification of the subgoal it can apply in by including
at least one condition that tests a goal node. Figure 3.2 shows how a rule specifies which subgoal
it is reasoning within.

sp {supergoal-rule
 (state <s> ^superstate nil)
-->
 (write |Hello world. I am a top state rule.|)
}

sp {subgoal-rule
 (state <s> ^superstate <ss>)
 (<ss> ^superstate nil)
-->
 (write |Hello world. I am a subgoal rule.|)
}

Conditions

Actions

Conditions that begin with the state
keyword can only match goal nodes in
working memory.

Each rule must have at least one such
condition. A rule is considered part
of the reasoning of the lowest such
goal node matched.

And, this rule can only match a
subgoal immediately below the top
goal

So, this rule can
only match the top

goal.

(The top goal is the
only goal with a nil

superstate.)

Figure 3.2: How rules specify which subgoals their reasoning applies to.

The goal-centric design of Soar’s procedural memory, specifically how the conditions of all
rules are rooted in a test of a goal node, allows Soar to demarcate reasoning by subgoals and
create separate behavior traces for each subgoal. It does this by defining reasoning in a subgoal
as all rule firings that have a condition that matched against that subgoal and no subgoal below that
subgoal. Using this definition, Soar incrementally generates behavior traces. So, whenever a rule
matches, Soar determines the lowest goal node tested by a condition and records the rule firing in
the behavior trace of that subgoal. Figure 3.5 shows a simple behavior trace that was created from
four rules that all tested the same subgoal identifier S2.

19

S1

O2

O3
water-jug

fill

fill

J1
5

5

0

I4

yes

yes

3 3 0

jug

fill-jug

empty

empty

volume

volume

contents

contents

filled-jug

fill-jug

picked-up

name

name

operator

operator name

jug
S2

O6 fill

put-down

nameoperator

name

fill-jug

superstate

Working Memory

Goal
Object
Constant

(S1 ^name water-jug)
(S1 ^operator O3)
(S1 ^jug J1)
(S1 ^operator O2)
(S1 ^jug I4)
(O3 ^name fill)
(O3 ^fill-jug J1)
(J1 ^empty 5)
(J1 ^volume 5)
(J1 ^contents 0)
(O2 ^name fill)
(O2 ^fill-jug I4)
(I4 ^empty 3)
(I4 ^volume 3)
(I4 ^contents 0)
(I4 ^filled-jug yes)
(I4 ^picked-up yes)
(S2 ^name fill-jug)
(S2 ^superstate S1)
(S2 ^operator O6)
(S2 ^fill-jug I4)
(O6 ^name put-down)

Working Memory Elements

Superstate link that
rules in the subgoal
can use to access

supergoal knowledge

Subgoal knowledge

Supergoal knowledge

Figure 3.3: Goal nodes in WM allows chunking to demarcate the knowledge accessible to each
goal.

Similarly, the goal-centric design of Soar’s working memory, specifically how all knowledge is
rooted in a stack of goal nodes, allows Soar to demarcate exactly which knowledge structures
are available to each goal. Soar defines a knowledge structure’s subgoal as the highest goal for
which there is a path from its goal node to the knowledge structure. For example, in Figure 3.3,
Soar would consider O6 “subgoal knowledge” with respect to goal S2 because a path of WMEs
exists from S2 to O6 but no path exists from any higher-level goal to O6. In contrast, Soar would
consider I4 “supergoal knowledge” (in respect to S2) because a path exists from higher-level goal,
S1, to I4. Note that it does not matter that a path also exists from S2 directly to I4.

For clarity, we use the following terms interchangeably to refer to knowledge structures that are
accessible to a subgoal: subgoal knowledge, local knowledge or, idiomatically, “knowledge in a
subgoal.” Similarly, we use the following terms interchangeably to refer to reasoning that matched
a subgoal and no lower subgoal: subgoal reasoning, local reasoning or, idiomatically, “reasoning
in a subgoal.”

Note that subgoal rules are not limited to testing subgoal knowledge. They can still access knowl-
edge in higher goal states by referencing a special architectural feature of every subgoal, the super-

20

state link, which provides a way to reference the supergoal node. Because supergoal knowledge is
all linked to the supergoal node, this link allows subgoal rules to access supergoal knowledge.3

In the next section, we show how chunking builds the framework for a new rule by using these
demarcations. Specifically, we describe how chunking builds the framework for the rule by deter-
mining how knowledge in a supergoal relates to reasoning in a subgoal.

3.2 Chunking: Soar’s Online Procedural Learning Algorithm

To learn new procedural knowledge, Soar performs the following five basics steps, each of which
is labeled in Figure 3.4. A full-page version of the same figure that includes the data structures
tested and generated by each step is provided immediately after in Figure 3.6.

1. Rule match detected: The learning process begins
whenever a rule matches in a subgoal. Soar creates
an instantiation of the rule and adds it to a behavior
trace for that subgoal. The instantiation is a record of

the rule match and contains all of the working mem-

ory elements that matched the rule along with the new

working memory elements that the rule adds.
2. Find changes to supergoal knowledge: The next
thing chunking must do is detect whether there is
an opportunity to learn at all, i.e. it must determine
whether problem solving in the subgoal has led to new
knowledge structures accessible to the supergoal. To
use Soar terminology, chunking detects when a sub-
goal returns a result to a supergoal. To do this, chunk-
ing uses the goal demarcation provided by Soar’s
working memory design to collect all working mem-
ory elements of the rule’s actions that will be acces-
sible to a supergoal. (If the rule only adds subgoal
knowledge, chunking takes no further action.)

Match
Detected

Analyze
Reasoning’s
Knowledge

Dependencies

Generalize

Find Changes to
Supergoal

Working Memory

Behavior
Trace

Working
Memory

Supergoal
Knowledge

Structures Tested

Instance of a
Rule Match Supergoal

Knowledge
Structures Added

Chunk
Conditions

Chunk Actions

Rule

Add New Rule to
Production Memory

1

2

3

4

5

OutputInput Operation

Figure 3.4: A simplified overview of
chunking.

3. Analyze reasoning’s knowledge dependencies: If chunking determines that a result has been
generated, it analyzes the training instance in the form of a behavior trace of all rules that fired in the
subgoal and played a role in the supergoal knowledge structure that was added to the supergoal.
Figure 3.5 shows a simple behavior trace of reasoning that consists of four rules that fired in a

3Note that Soar does not add a similar substate feature to a goal when it spawns a subgoal for it. Rules that
fire in a goal never directly access knowledge in their subgoals.

21

subgoal for an agent solving the waterjug problem.

 S1
O2
 fill

 S2 superstate
 S1 operator
O2 name

——>
 S2 name fill +

 S2 name fill
 S2 jug I4
 I4 filled-jug yes
 I4 picked-up yes

——>
 S2 operator O6 +
 O6 name put-down +

 S2 superstate S1
 S1 operator O2
 O2 fill-jug I4

——>
 S2 jug I4 +

 S2 ^operator O6
 O6 ^name put-down

 S2 ^jug I4

 I4 ^volume 3
 I4 ^contents 0

——>
 I4 picked-up yes -
 I4 filled-jug yes -
 I4 contents 3 +
 I4 contents 0 -

Knowledge
structures

that matched
conditions

of rule

Knowledge
structures

created by
actions of rule

Each box is a
record of a rule
that matched

Figure 3.5: Simple behavior trace from an agent that solves the waterjug problem.

An instantiation describes the exact knowledge structure that matched each condition of its corre-
sponding rule in procedural memory. In other words, each box in Figure 3.5 is an instance of a rule
firing, not the original rule itself.

To determine which aspects of the supergoal were necessary for the reasoning to occur, chunking
uses the goal demarcation provided by working memory to collect all working memory elements
in the trace that are supergoal knowledge structures. This portion of the algorithm, which we call
dependency analysis, takes an instantiation that creates a result and examines every WME that
matched each of its condition. If a WME is supergoal knowledge, the algorithm adds it to the
chunk’s condition list. If the WME is subgoal knowledge, chunking does not add it but instead ex-
amines the rule that created that WME in the subgoal. By recursively backtracing through all such
rules, the dependency analysis component produces a description of the features of the supergoal
that were necessary for the problem solving to occur.

4. Generalize: At this point, chunking possesses both a list of the specific working memory ele-
ments that were tested from the supergoal, which will ultimately be transformed into the conditions
of the rule, and a list of the specific working memory elements that will be added to the supergoal,
which will be transformed into the actions of the rule. To generalize the rule and allow it to apply
to a broader range of situations, the fourth step of chunking replaces some elements in both of the
WME lists with variables. We will skip how the generalization step works for now and revisit this
example in Section 3.6, which discussing issues with generality.

5. Add new rule to production memory: Chunking adds a new rule to long-term procedural
memory that uses the generalized description of the problem-solving context as the conditions and
the generalized description of the knowledge structures added to the supergoal as the actions.

22

Supergoal Knowledge
Structures Tested

Chunk Conditions

Chunk Actions

Supergoal Knowledge
Structures Added

Instance of Rule Match

 S2 ^operator O6
 O6 ^name put-down

 S2 ^jug I4

 I4 ^volume 3
 I4 ^contents 0

——>
 I4 picked-up yes -
 I4 filled-jug yes -
 I4 contents 3 +
 I4 contents 0 -

 S1 operator O2
 O2 name fill
 O2 fill-jug I4
 I4 filled-jug yes
 I4 picked-up yes
 I4 volume 3
 I4 contents 0

 I4 picked-up yes -
 I4 filled-jug yes -
 I4 contents 3 +
 I4 contents 0 -

 <s> operator <o>
 <o> name fill
 <o> fill-jug <f>
 <f> filled-jug yes
 <f> picked-up yes
 <f> volume 3
 <f> contents 0

Behavior Trace

 S1
O2
 fill

 S2 superstate
 S1 operator
O2 name

——>
 S2 name fill +

 S2 name fill
 S2 jug I4
 I4 filled-jug yes
 I4 picked-up yes

——>
 S2 operator O6 +
 O6 name put-down +

 S2 superstate S1
 S1 operator O2
 O2 fill-jug I4

——>
 S2 jug I4 +

 S2 ^operator O6
 O6 ^name put-down

 S2 ^jug I4

 I4 ^volume 3
 I4 ^contents 0

——>
 I4 picked-up yes -
 I4 filled-jug yes -
 I4 contents 3 +
 I4 contents 0 -

 <f> picked-up yes -

 <f> filled-jug yes -

 <f> contents 3 +

 <f> contents 0 -

Analyze
Reasoning’s
Knowledge

Dependencies

Generalize

Find Changes to
Supergoal

Working Memory

Add to
Production
Memory

1 2

3

4

5

OutputInput Operation

Agent’s Working Memory

S1

O2

O3
water-jug

fill

fill

jug J1
5

5

0

I4

yes

yes

3 3 0

empty

empty

volume

volume

contents

contents

filled-jug

fill-jug

picked-up

name

name

operator

operator name

jug
S2

O6 fill

put-down

nameoperator

name

fill-jug

superstate

Figure 3.6: Data structures used and created when chunking learns a rule in a waterjug agent.

3.3 Chunking’s Strengths

Because the majority of this work will naturally focus on the deficiencies of chunking that need to
be improved, we must point out that the chunking has many strengths.

Chunking is a general mechanism that is task-independent and can be used for a wide variety
of problem-solving strategies (Rosenbloom et al., 1993). It can learn knowledge from all PSCM
functions: state elaborations, operator proposal, operator evaluation, and operator application. It
can learn from any type of reasoning that can be encoded in Soar and processed in a subgoal, for
example analogy, look-ahead search, task decomposition or planning (Steier et al., 1987). Chunk-
ing can transform any of these methods from deliberate reasoning into an efficient, compiled rule.

23

Chunking can also be combined with other learning mechanisms. For example, chunking can con-
vert deliberate retrievals from long-term memory stores into automatic retrieval from procedural
memory. Chunking can even be used to inductively learn new categories (Miller and Laird, 1996).

By replacing a set of rule firings with a single rule firing, chunking allows an agent to dramatically
decrease the amount of time it takes to solve problems that are similar to ones that it has seen in the
past. This can produce an exponential collapse in the reasoning required to solve a problem, which,
for some agents, can be necessary to achieve the reactivity required by an environment. Figure 3.7
shows how chunking decreases the number of processing cycles required by an agent that uses
depth-first look-ahead search with two different heuristics to solve a blocks-world problem(Laird,
2012).

0

5

10

15

20

25

30

35

Base Base	+	P6	 Base	+	P7	 Base	+	P6	&	P7

Pr
oc
es
sin

g	
Cy
cle

s

Depth-first	 w/o	chunking

Depth-first	 w/	chunking

Depth-first	 after	chunking

Figure 3.7: Computational benefits of chunking in agent solving blocks world problems.

Figure 3.8 shows an even more dramatic decrease in an agent that performs a graph search using
an A* heuristic.(Laird, 2012) These results suggest that learned procedural knowledge is re-used
and provides benefits.

24

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Without chunking During chunking After chunking

Pr
oc

es
sin

g
Cy

cle
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Without chunking During chunking After chunking

Se
co

nd
s

Figure 3.8: Computational benefits of chunking in agent performing graph search.

Another strength of chunking is that it compiles knowledge into a form that other learning algo-
rithms can use. For example, in 2011, Laird et al. (2012a) used chunking as a component of a
Soar agent that performs extensive probabilistic reasoning to play the game Liar’s Dice.4 What
is interesting about this agent is that it used chunking to learn value functions that incorporated
domain knowledge that were then tuned by reinforcement learning. Two examples of these rules
are shown in Figure 3.9. This learning strategy was effective and resulted in a novel contribution
that was not possible without chunking.

Figure 3.9: Chunking learns reinforcement learning value functions that incorporate domain
knowledge.

In another recent project that shows how chunking can compile knowledge into a form that another

4The game, which includes the aforementioned Soar agent, is available as a multi-player game on the App Store.

25

learning algorithm can use, Zhong et al. (2012) used Soar agents to populate a city traffic simu-
lator to explore how variations in driver traffic law compliance affect traffic patterns. Each agent
modeled a driver’s decision-making identically, differing only by how they evaluate the expected
utility of a route. As the agents explore the city, they learn chunks that evaluate the desirability of a
route, which vary based on the agent’s compliance level; these chunks allow each agent to choose
the route with the highest expected utility, which would then be tuned by reinforcement learning
using rewards that were based on how fast the route turned out to be. The resulting simulation was
then analyzed to explore traffic phenomenon that the researchers were interested in.

Chunking achieves these results with little computational overhead. Because of its commitment
to learning from an instantiated trace of behavior using a simple generalization mechanism that
does not require analysis of the underlying reasoning, chunking learns rules quite efficiently. Pre-
vious evaluations have shown that the computational cost of enabling chunking in every subgoal
increases execution time by 20-30 percent in agents that use subgoals to decompose problems. And
after an agent has built chunks, reactivity can even improve because the agent no longer performs
as much deliberate reasoning. For example, Figure 3.10 shows that the reactivity of the Dice agent
is minimally affected during learning and improved after learning.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Without	 chunking During	chunking After	chunking

M
se
c.
	p
er
	C
yc
le

Figure 3.10: Reactivity of agent performing graph search is not hindered by chunking.

Despite its efficiency and potential to provide computational benefits, chunking is nonetheless
seldom used outside of research on procedural learning. To understand the reasons why, we must
first understand some key limitations of chunking and their real-world implications. Section 3.5
discusses situations where chunking can learn incorrect rules and presents a taxonomy of 12 types
of reasoning that can lead to incorrect chunks. Section 3.6.1 explores why chunking has problems

26

learning optimally general rules from some types of reasoning. Finally, Section 3.7 describes why
chunking cannot be used by current research projects that are building agents who learn using
higher-level, intentional strategies, like learning by instruction.

3.4 Relationship to Explanation-Based Learning

We postpone exploring chunking’s limitations to briefly discuss some key similarities and differ-
ences between a behavioral summarization algorithm like chunking and classic explanation-based
learning (EBL) techniques, since the two have often been compared in past literature.

Classic explanation-based learning algorithms use a single training example of a goal concept to
create a rule that can be applied in one step to determine if another instance matches the goal
concept (Mitchell, 1983). They do this by using domain knowledge to generate an explanation of
why that instance matches the goal concept and then generalizing that explanation to learn a rule.
Most EBL systems learn by performing the following four steps:

1. Explanation Generation: EBL systems typically have a proof generation or planning com-
ponent that uses domain knowledge to create a causal model, or explanation, for why an
instance is an example of a goal concept.

2. Pruning: EBL traverses the explanation and removes non-operational aspects of the expla-
nation, which are concepts in trace that cannot be efficiently used to recognize instances of
the concept it denotes (Keller, 1988). One challenge EBL systems face is that definitions
of operationality can vary from system to system and may be expensive to determine. How
operationality is defined in an EBL system is a critical question that has significant implica-
tions in terms of whether the rule will improve the agent’s performance (Gratch and Gerald,
1991). For example, some of the challenges of operational pruning can be seen in Mooney’s
GENESIS system (Mooney, 1988), which used EBL to learn schemata for achieving goals
in a narrative. Mooney’s system, which learned from a training example that describes a
specific example story of people carrying out plans, performed three different forms of non-
operational pruning:

a Remove parts of the network that do not causally support the achievement of the main
thematic goal;

b Remove nominal instantiations of known schemata;

c Remove actions and states that only support inferences to more abstract actions or
states.

27

3. Generalization: EBL creates a generalized explanation by determining the weakest set of
preconditions that supports the pruned explanation. To do this, EBL analyzing the structure
of the rules in the explanation and how they interconnect using variable unification algo-
rithms, for example variable regression (Waldinger, 1977) or EGGS (Mooney et al., 1986).

4. Rule Formation: EBL uses the generalized explanation to create a rule that can identify
instances of the concept.

Chunking is also an analytical, one-shot, deductive learning algorithm that learns by generaliz-
ing a causal explanation. Clearly, there are some key similarities. But, while chunking is an
explanation-based approach, it was developed independently of EBL algorithms and has some sig-
nificant differences. The original motivation for chunking was to model the power law of learning
(Newell and Rosenbloom, 1981) and was inspired by a psychological theory of memory in which
a chunk is a symbol that designates a pattern of other symbols (Miller, 1956). If we compare the
four steps of EBL, we find that there are some similarities but many differences; only step 4, rule
formation, is the same:

1. Explanation Generation: This does not exist as an explicit step in chunking. Because
chunking’s goal is fundamentally different – it is attempting to summarize behavior gen-
erated in a subgoal – it does not need to generate explanations and simply analyzes the
historical record of all rules that fired in a subgoal. With chunking, the explanation genera-
tion step is one of the least expensive steps. This contrasts with typical EBL systems, where
explanation generation is the most expensive step of the learning process because it typically
performs some form of search through the entire space of possible explanations to generate
one or more from which to learn rules from. Moreover, the explanations that the two sys-
tems generate, a behavior trace and a logical proof, have differences that lead to important
implications which are discussed below.

2. Pruning: While chunking does traverse the explanation, it does not try to determine anything
akin to operationality and instead performs the straightforward task of analyzing knowledge
dependencies. In contrast to the types of operationality pruning that an EBL system per-
forms, chunking’s dependency analysis chooses the aspects of an explanation to include in
the learned rule using a simple, task-agnostic, unambiguous mechanism: it simply collects
all nodes in the explanation that matched supergoal knowledge.

3. Generalization: Chunking does not determine the weakest set of preconditions like EBL
does; instead, it uses a Soar-specific, heuristic-based generalization mechanism.

4. Rule Formation: This step is roughly equivalent.

28

We have found that learning from a behavior trace introduces challenges not found when learning
from an explanation generated by the types of planners or theorem-provers that EBL systems
typically employ. The most problematic aspect is that a behavior trace is only an approximation
of all of the processing that occurred in a cognitive architecture and is not guaranteed to be a
complete explanation of the agents reasoning. In contrast, the trace used in an EBL system is
built specifically to explain the training instance and always justifies all knowledge structures. In a
cognitive architecture, there are other processes that occur during agent reasoning that may not be
reflected in a trace of how rules changed working memory. For example, a behavior trace does not
explain what knowledge was used to choose amongst candidate operators or whether a probabilistic
decision was made when choosing an operator. If a behavior trace does not provide a complete
explanation, an online procedural learning algorithm will be unaware of necessary dependencies,
which can then lead to overgeneral, incorrect rules. In fact, half of chunking’s correctness issues
are the result of such missing dependencies. To make things more complicated, it’s also possible
for a knowledge structure to have multiple rules that support it. This too can lead to learning
incorrect rules or at least rules that are not optimally general. A complete list of the sources of
incomplete explanations are discussed in Section 3.5.

Another problematic difference is that a cognitive architecture often provides rules with powerful,
dynamic capabilities that are not found in the rules that EBL uses to generate its proofs. For
example, rules can contain actions which perform arbitrary functions (math calculations, string
manipulation, random number generation, etc.), which are effectively black boxes to the online
procedural learning algorithm. An online procedural learning algorithm that attempts to summarize
a trace with reasoning that includes such rules can learn an incorrect rule or at least have difficulty
learning an optimally general rule.

There are also several differences between a behavior trace and a proof that impact efficiency. For
example, because there is no limit on the amount of processing that can occur in a subgoal or the
amount of time that a subgoal can exist, a behavior trace can be arbitrarily large. The behavior
trace previously used as an example is intentionally simple. Figure 5.7 shows a more complex
trace from an agent that solves the Mouse and Cats problem. Despite being a far more complex
trace than the water jug example from Section 3.2, the behavior described is still from an agent
reasoning about an easily-solvable toy problem. Real-world agents can have far more complex
traces; to give a feel for the amount of reasoning involved in such agents, a trace of a recent natural
language understanding agent (Lindes et al., 2017) is so large that a visualization of one particular
subgoal covered 16 pages and was barely readable. We leave the efficiency-related differences for
Section 5.3, where we present a novel unification algorithm that can handle the challenges of those
differences.

29

3.5 A Taxonomy of Chunking’s Correctness Issues

One significant limitation of Soar’s chunking algorithm is that it cannot correctly summarize cer-
tain types of problem solving. In other words, chunking can learn incorrect rules that do not always
produce the same inferences that the original subgoal would have generated in the same situation.
Correctness issues are numerous and particularly difficult to explicate because they have disparate
underlying issues, many of which require a deep, technical understanding of how Soar works to
understand. To date, no systematic exploration of correctness issues has been performed. We
present a first attempt in this work.

We use the four necessary conditions for correct behavior summary to organize Soar’s correctness
issues into a taxonomy. Figure 3.11 shows 12 types of reasoning that can lead to incorrect rules
in Soar’s chunking algorithm. A category for reasoning that is not logically consistent or not
contemporaneously possible is not included because no correctness issues currently exist for that
requirement. Previous research work eliminated that problem in Soar by adding a consistency
enforcement mechanism to universal subgoaling (Wray and Laird, 2003).

Reasoning That Can Lead to
Correctness Issues

C1. Reasoning With a Behavior Trace That
Does Not Explain All Dependencies

C1-2C1-1 C1-3 C1-4 C1-5 C1-6

C1-1CC1-1BC1-1A

C3. Reasoning That Is
Not Reliably Repeatable

C3-1 C3-2 C3-3

C2. Reasoning That Is
Not Expressible in a Single Rule

C2-1 C2-2 C2-3

Figure 3.11: Overview of taxonomy of reasoning that chunking cannot always correctly summa-
rize.

30

While some issues are specific to the Soar architecture
– we will discuss which ones are and which ones are
not – the requirements and categories are architecture
agnostic and can help other architectures that attempt
online procedural learning determine why their prob-
lems are occurring. Moreover, how we approach the
individual problems in each category offers lessons on
how this work can be translated to other cognitive ar-
chitectures. Specifically, these categories share com-
monality in their mitigation strategies. Figure 3.12
provides a preview of how the 12 correctness and 2
generality issues map to the five mitigation strategies
that our approach uses, which are described in Chapter
4.

Strategy 1 C1-3

Strategy 3

Strategy 4

C1-5

Fallback
Strategy

C2-3

G1

C1-1

C1-2

C1-4

C3-3

C2-2

C3-1

C3-2

C1-6

Strategy 2

G2

C2-1

Figure 3.12: A preview of how various
correctness issues share common miti-
gation strategies.

C1. Reasoning With a Behavior Trace That
Does Not Explain All Dependencies

C1-1. Dependent on dynamically-generated knowledge
 1 - Architectural meta-knowledge
 2 - Semantic or episodic memories
 3 - Rules with dynamic actions
C1-2. Dependent on knowledge that helps
 choose between candidate operators
C1-3. Dependent on promoted knowledge
C1-4. Dependent on implicit knowledge
C1-5. Dependent on knowledge from subgoals that do
 not explain results
C1-6. Dependent on knowledge recalled from LTM that
 was also recalled in another subgoal

C2. Reasoning That Is
Not Expressible in a Single Rule

C2-1. Requires that an intermediate calculation
 meets a constraint
C2-2. Conflates a disjunction of contexts
C2-3. Generates new knowledge structures that
 are linked to knowledge structures in LTM

C3. Reasoning That Is
Not Reliably Repeatable

C3-1. Dependent on an operator selected
 probabilistically
C3-2. Dependent on knowledge recalled from
 a memory system using an opaque
 retrieval mechanism
C3-3. Dependent on knowledge recalled from
 memory system that can be changed

Reasoning That Can Lead to
Correctness Issues

Figure 3.13: A taxonomy of reasoning that chunking cannot always correctly summarize.

Figure 3.13 shows a more complete picture of our correctness issue taxonomy. While we believe
this list is exhaustive, please note that historically many of these correctness issues arose when
Soar gained additional capabilities; in earlier, simpler versions of Soar, many of the specific issues
did not exist. While we currently cannot conceive of other correctness issues, we also cannot rule
out them out.

Although the twelve correctness issues described may seem like a debilitating number of problems,

31

it should be noted that, in practice, the problems can often be managed. In some cases, correctness
issues can be avoided by altering the agent’s reasoning. For example, for issue C2-1, summarizing
reasoning that requires that an intermediate calculation meets a constraint, the problematic rules
that involve mathematical calculations can be modified so that the intermediate result is stored in
the supergoal rather than the subgoal. With this alteration, the agent learns two chunks, both of
which are correct. Moreover, some correctness issues do not actually produce incorrect behavior
in practice. For example, knowledge sources that are considered unreliable, like semantic memory,
can safely be used if the designer knows that the queries the agent performs will always retrieve
the same knowledge structures in the future.

Despite the existence of work-arounds, agent engineers cannot be confident that their agents will
learn correct rules unless they have a high-degree of Soar expertise; they must know when each
correctness issue can occur, how each issue would manifest itself during execution and how to
modify their agent’s reasoning to work around the issues. The chance for correctness-related task
failure coupled with the level of expertise needed to avoid the underlying issues has caused Soar’s
online procedural learning capabilities to seem risky and not worth the effort for many projects.

In any case, many of the correctness issues in Figure 3.13 require a deeper understanding of Soar
and all of its various components than we can assume the reader has, so we expect that they may be
challenging to unpack at this point. To avoid overwhelming the reader, we move on to generality.
We return to describe Soar’s twelve correctness issues and the mechanisms used to mitigate in
Chapter 6.

3.6 Problems with Generality

Chunking’s second problem is that it only learns optimally general rules for some types of agent
reasoning. When chunking was first developed, the hypothesis was that using an instantiated trace
of agent behavior was sufficient to create a general learning algorithm that was both highly efficient
and able to provide computational benefits to an intelligent agent. To some degree, it proved true.
The computational overhead of building new rules is low and chunking does indeed learn rules
that improve performance for some agents. But for many agents that utilize a fairly common type
of reasoning, chunking’s early commitments prevent it from learning general rules that provide
computational benefits.

The underlying reason for this Soar-specific limitation is that chunking cannot capture the gener-
ality of rules that reason about the specific values of features and/or the relationships between the
values of features (Rosenbloom and Laird, 1986; Zerr and Ganascia, 1991). For example, consider
the trivially simple example depicted in Figure 3.14, in which chunking must summarize a single

32

rule which tests whether the value of an object’s size feature in working memory is greater than
five.

Undergeneral Rule Learned by ChunkingSubgoal Reasoning

object S1.<x> exists

THEN

Add a Knowledge
Structure to Supergoal

IF

<x>.size > 5

object S1.<x> exists

THEN

Add a Knowledge
Structure to Supergoal

IF

<x>.size == 6

Supergoal Knowledge

Object O2
name = bar

size = 3

Object O1
name = foo

size = 6

S1
A B C

Figure 3.14: Trivial example in which chunking should learn the same rule as it is summarizing.

If chunking is summarizing a single rule firing that only tests supergoal knowledge, for example
the rule in pane B of Figure 3.14, it should learn the exact same rule that it was given to analyze.
In this case, it does not because it cannot capture the generality in the original rule; instead, as
shown in pane C, it learns an undergeneral rule that only applies when that feature has the specific
value that existed when the rule was learned, which, in this case, is six. (If the agent should later
encounter other objects with different sized that are also greater than 5, it will learn additional
undergeneral chunks for each new value.)

In practice, the degree of undergenerality varies depending on how the agent represents its knowl-
edge and the type of reasoning the agent performs. To provide a real-world example, we can exam-
ine a classic Soar demo agent that solves arithmetic problems. This is an agent that reasons about
feature values and was not specially engineered to learn optimally general rules with chunking, so
it should show some signs of undergenerality. If we task this agent with solving 1000 multi-column
addition and subtraction problems using both chunking and the new online procedural learning al-
gorithm described later in this paper, we see a stark difference in the generality of rules learned.
In Figure 3.15, pane A represents the space of situations in which a set of process-column
rules can perform subtraction on the digits in one particular column. Since these rules match in a
subgoal and return the calculation to the supergoal, chunking attempts to learn a new rule every
time the process-column rules perform their calculations. After each agent solves the same
1000 problems, we examine how many chunks each agent learned using the process-column
rules. As shown in pane B, our new system learns 8 optimally general rules, after which all delib-
erate process-column reasoning is replaced by chunks firing. In contrast, as shown in pane C,
chunking learns 1263 undergeneral rules based on the process-column reasoning before it is
able to cover the same space of situations. (Samples of the actual rules learned by the two systems

33

can be compared in Figure 7.18 of Chapter 7.)

Space of
situations in

which original
summarized
reasoning

would apply

Space of possible situations

Original Subgoal Reasoning

Space of possible situations

Proposed DPKL algorithm learns 8 optimally general
rules that cover entire desired space of situations

Rule
1

Rule
2

Rule
3

Rule
4

Rule
5

Rule
6

Rule
7

Rule
8

Space of possible situations

Chunking learns 1263 undergeneral rules to
cover same desired space of situations

A B C

Figure 3.15: Undergenerality in an agent that performs arithmetic.

Reasoning about feature values and/or the relationships between them is common in many domains
and agent designs, which means that it is also common that chunking learns undergeneral rules.

3.6.1 Problems Capturing Generality of Underlying Reasoning

Chunking cannot capture all of the generality underlying an agent’s reasoning because, frankly,
it doesn’t try to analyze the underlying reasoning. Instead, it uses a heuristic that only applies
to aspects represented that it knows are always reasoned about generally: Soar identifiers.5 To
explain how it works, we briefly revisit the example from Section 3.2, in which we described how
a chunk is learned in an agent that solves the water jug problem. Specifically, we return to the
point immediately after the dependency analysis component has traversed the behavior trace and
collected all matched knowledge structures that were accessible to the supergoal. The list of WMEs
collected, as shown in pane A of Figure 3.16, is a description of the context that was necessary for
that problem solving to occur.

Generalization

Supergoal Knowledge Structures Tested

 S1 operator O2
 O2 name fill
 O2 fill-jug I4
 I4 filled-jug yes
 I4 picked-up yes
 I4 volume 3
 I4 contents 0

Generalized Conditions of Chunk

 <s> operator <o>
 <o> name fill
 <o> fill-jug <f>
 <f> filled-jug yes
 <f> picked-up yes
 <f> volume 3
 <f> contents 0

Dependency Analysis

A B

Elements in bold are
Soar identifiers

Soar identifiers have been
replaced with variables

Figure 3.16: An example of heuristic-based variablization.

5Soar identifiers are transient symbols generated at run-time, so rules cannot reference them directly and must use
variables to reason about the objects they represent. This means chunking can always safely assume that elements that
match Soar identifiers were reasoned about generally.

34

At this point, the context description is a list of specific working memory values and can only
match the same situation that was learned from. To allow the context described by the rule to
apply to more than the same situation, chunking generalizes the conditions by replacing some of
the matched values with variables, a process in Soar called variablization. To do this, it uses a
heuristic that does not require any analysis of the original, underlying rules that matched. This
heuristic replaces all Soar identifiers (SI), which again are special architecturally-assigned symbol
that are used to organize sets of features into objects, with corresponding variables.6 In pane A of
Figure 3.16, all of the Soar identifiers, denoted in bold, are replaced with variables, as shown in
pane B.

Since the heuristic-based variablization mechanism cannot be used on any aspect of the problem-
solving context that didn’t match a SI, Soar cannot capture the generality of any reasoning that
matches features of the context with specific values. As a result, chunking can learn undergeneral
rules that require the exact features that existed when the original learning occurred.

3.6.2 Mitigating Problems with Generality

While problems from lack of generality may seem widespread as described, one of the reasons that
this issue has not been addressed is that undergenerality can sometimes be mitigated by modifying
an agent’s representation and reasoning so that chunking can learn optimally general rules. In this
section, we will demonstrate how this can be done by revisiting the example from Figure 3.14 and
re-engineering its reasoning so that chunking can learn an optimally general rule. We will then
discuss when such mitigation strategies are impossible or become impractical.

In our original example, as shown again in panes A and B of Figure 3.17, chunking is summarizing
a single rule firing and should ideally learn an identical rule that applies whenever an object has
a size feature greater than 5. As previously discussed, chunking instead learns a rule that applies
only when objects have a size of 6, the specific value encountered when learning.

To allow it to apply whenever the original reasoning would have, one could “move” that feature
test out of an element that chunking can’t capture the generality of, namely a numerical feature,
into something it can capture the generality of, namely a Soar identifier. Pane C of the figure
shows how two modifications can be made to our original example so that chunking does that and

6At this point in the discussion, it may not be easy to understand why this heuristic variablization mechanism
works, but for those who are curious, there are two reasons. Because SIs are transient and not allowed in any rules,
we know that any rule that matched an SI did so by using a variable, so chunking knows any SI element in the context
description must also be replaced with a variable. And because all references to an SI are guaranteed to point to the
same structure in working memory, chunking knows that systematically replacing all instances of an SI with the same
corresponding variable cannot introduce overgenerality.

35

is indeed able to summarize the reasoning at the same level of generality as the original reasoning.
The first modification is the addition of a second rule that automatically annotates every object
with a size greater than 5 with a new feature whose label is “MoreThanFive” and whose value
is a newly created Soar identifier. The second modification alters the conditions of the original
rule to test for this new Soar identifier feature rather than the original numeric one; this “moves
the reasoning” into an aspect of the representation that chunking can generalize. With these two
changes, chunking learns the rule described in pane D, which applies in all of the same situations
as the original rule.

Modified Reasoning

object S1.<x> exists

THEN

Add a Knowledge Structure to
Supergoal

IF

<x>. MoreThanFive.<f> exists

Chunk with Same Level of
Generality as Original Reasoning

object S1.<x> exists

THEN

Add a Knowledge Structure to
Supergoal

IF

<x>. MoreThanFive.<f> exists

object S1.<x> exists

THEN

add object <f>

IF

<x>.size > 5

<x>.MoreThanFive = <f>

Supergoal Knowledge

Object O2
name = bar

size = 3

Object O1
name = foo

size = 6

S1

Original Reasoning

object S1.<x> exists

THEN

Add a Knowledge
Structure to Supergoal

IF

<x>.size > 5

A B C D

Figure 3.17: Previous example re-engineered so that chunking can learn an optimally general rule.

For some agent reasoning, tricks like this can work. For many agents, though, this approach is
impractical, since it doesn’t scale well if the agent needs to reason about a large set of features or
complex combinations of features. And for some agents, this workaround cannot be used at all,
such as in the case where an agent that does not know a priori what combination of features it will
need to reason about.

Most importantly, though, this workaround cannot be used to capture the generality of reason-
ing that actually does something meaningful with the feature values, for example performing a
calculation or simply adding it to another knowledge structure. To demonstrate this, Figure 3.18
describes how the workaround cannot be used if the agent attempts to return one of the tested val-
ues as a result. In the original example, the agent creates a WME in the supergoal that consisted
completely of literal elements and was not dependent on any of the WMEs tested in the supergoal;
in the new example, the agent instead creates a result based on the specific value of the feature that
matched. Because chunking cannot generalize elements of conditions that test feature values, it
cannot capture the generality of the agent’s reasoning in this case. Consequently, chunking learns
the undergeneral rule described in pane D.

36

Supergoal Knowledge

Object O2
name = bar

size = 3

Object O1
name = foo

size = 6

S1

Original Reasoning

object S1.<x> exists

THEN

Add a Knowledge
Structure to Supergoal

IF

<x>.size > 5

New Reasoning

object S1.<x> exists

THEN

add object S1.<y>

IF

<x>.size > 5

<y>.size = <x>.size

object S1.<x> exists

THEN

add object S1.<y>

IF

<x>.size == 6

<y>.size = 6

Undergeneral Rule

A B C D

Figure 3.18: Reformulated example that cannot be re-engineered easily because a rule action
copies a feature value.

3.7 Problems Supporting Higher-Level,
Deliberate Learning Strategies

The deficiencies described above place limits on which agents can use chunking to learn new
procedural knowledge. Obviously, any agent that cannot change its reasoning to avoid correctness
issues would not be able to use chunking. Similarly, any agent that reasons about values of features
but does not benefit from undergeneral rules would not use chunking. Until the generality and
robustness of Soar’s online procedural learning algorithm is improved, these agents must always
re-deliberate.

An interesting class of learning agents that face significant difficulties using chunking’s capabilities
are agents that learn by instruction. There are currently several projects that are pursuing this
avenue of research. For example, the ROSIE group at the University of Michigan is exploring
interactive task learning (ITL) by building robots that learn procedural knowledge based on natural
language interaction with a human (Mininger and Laird, 2016; Kirk et al., 2016; Lindes et al., 2017;
Kirk and Laird, 2016). (You may remember that ITL and ROSIE were used as an early example in
Section 1.1.) In some sense, these agents are attempting to use online procedural learning within
ITL to achieve what DeJong theorized could improve a similar problem in classical explanation-
based learning systems:

“Another interesting direction is to explore a human in the learning loop. In this
regard, a human teacher might collaboratively help to build or to choose explanations.
Human interaction has proven to be effective in theorem proving, which is similar to
explanation building. Alternatively, the human might select or suggest elements for
(the explanation).” (Dejong, 2014)

37

ITL agents have not been able to fully utilize chunking as the basis for interactive task learning for
three main reasons:

• ITL agents cannot tolerate undergenerality. Other agents can compensate for undergeneral
rules with extra training, i.e. they learn multiple rules that are equivalent to an optimally gen-
eral rule. Agents that learn by instruction cannot repeatedly ask a human the same question.
So, these agents need to learn optimally general rules from a single instruction (Laird et al.,
2017), a capability chunking cannot currently provide.

• ITL agents utilize many of the types of reasoning that leads chunking to learn incorrect
rules. In terms of our correctness taxonomy, our current ITL agents utilize nearly every
type of problematic reasoning we have described: C1-1 (1-3), C1-3, C1-4, C1-5, C1-6 C2-1,
C2-2, C3-2 and C3-3. The most problematic issue for these agents is C1-6, which occurs
as result of unexpected interactions between different subgoals that retrieve the same long-
term semantic memories. For these agents to use chunking as the basis for their higher-
level, deliberate learning strategies, many of chunking’s correctness issues would need to be
ameliorated.

• ITL agents must learn rules that encode the knowledge acquired from the instruction without
being directly dependent on a declarative representation of the instructor’s utterance. (A rule
that was dependent on the words of the instructor would have little utility since those instruc-
tions are only available during the interaction with the instructor.) Previous Soar systems that
learned by instructions would force learned knowledge to be independent of declarative in-
structions by using a technique that takes advantage of one of chunking’s correctness issues
that leads to overgeneral rules: C1-2, reasoning that is dependent on knowledge that helps
choose between candidate operators (Huffman and Laird, 1995). Specifically, those systems
would put tests of declarative instructions in operator selection rules that chunking ignores,
thus producing rules that do not rely on the original instructions. Regardless of whether our
proposed system successfully mitigates C1-2, which it does do, ITL agents should have a
formal mechanism that allows them to make their subgoal reasoning cleanly independent of
the instruction.

Until the generality and robustness of Soar’s online procedural learning algorithm is improved,
ITL agents will have difficulty incorporating what they learn from human instructions into their
procedural knowledge in a way that is general and will transfer to similar problems.

38

3.8 Conclusions

In summary, compiling an agent’s deliberate prob-
lem solving into efficient, reactive, task-specific
knowledge is not simply a matter of turning on
chunking. For the agents that can use chunking, a
multitude of reasons, summarized in Figure 3.19,
exist that can result in undergeneral or incorrect
rules.

Because Soar’s ability to achieve general and cor-
rect online procedural learning is dependent on
having representations and processing that accom-
modate its limitations, agent engineers need to ei-
ther carefully design their agents to mitigate poten-
tial problems or be willing to accept the risk that
their agents learn undergeneral rules that do not
provide computational benefits or incorrect rules
that can hinder/prevent task execution. We argue
that this requirement coupled with the fact that
chunking could not be used at all for some impor-
tant types of reasoning is why online procedural
learning systems have never reached their potential
and are seldom utilized, as reflected in the follow-
ing:

C1-1. Dependent on dynamically-generated knowledge (multiple)

C1-2. Dependent on operator selection knowledge

C1-3. Dependent on promoted knowledge

C1-4. Dependent on implicit knowledge

C1-5. Dependent on knowledge from subgoals that do not explain results

C1-6. Dependent on knowledge retrieved from LTM multiple times

C1. Behavior Trace Does Not Explain All Dependencies

C2-1. Requires that a calculation meets a constraint

C2-2. Conflates a disjunction of contexts

C2-3. Generates knowledge structures linked to long-term memory structures

C2. Reasoning That Is Not Expressible in a Single Rule

C3-1. Dependent on an operator selected probabilistically

C3-2. Dependent on knowledge recalled from LTM using opaque mechanism

C3-3. Dependent on knowledge recalled from a changing LTM

C3. Reasoning That Is Not Reliably Repeatable

Correctness Issues

G2-1. Reasoning leverages implicit knowledge of constraints on knowledge representation

G2-2. Reasoning leverages implicit knowledge of domain-specific uniqueness

G2. Learns Unnecessarily General Rules

G1-1. Reasons Generally Over Features Names or Feature Values

G1-2. Dependent on knowledge from subgoals that don't explain results

G1. Learns Undergeneral Rules

Generality Issues

Figure 3.19: Situations in which chunking
can learn undergeneral, unnecessarily general
or incorrect rules.

“In order to prevent these problems, the authors of SOAR propose that the use of
restriction tests on variables and the use of evaluation instructions be avoided. This
restriction is considerable, since it reduces the programming language to a much im-
poverished minimal subset, which is unlikely to be used in industry. The generality of
rules is controlled by means of the data representation. [...] Chunking is correct only
if considered as a process for memorizing results. When asked to learn more general
rules, the loss of variable bindings or restriction tests leads to inconsistencies in the
knowledge base. We may prevent these weaknesses by creating intermediate subgoals
or using a heavier data representation. Unfortunately, in using a heavier data repre-
sentation, more conditions are included in production rules, whose pattern matching
time will increase immediately. This affects system performance and knowledge base

39

legibility.” (Zerr and Ganascia, 1991)

Now that the nature of Soar’s online procedural learning deficiencies have been discussed, Chap-
ter 4 presents a comprehensive strategy to address those deficiencies and achieve the qualities
described by our desiderata in Section 2.6.

40

CHAPTER 4

Our Approach to Online Procedural Knowledge
Learning

In this chapter, we discuss our approach to mitigating the deficiencies we’ve described to provide
the capabilities necessary for an efficient online procedural learning algorithm that is robust to
correctness issues and can learn optimally general rules. We name this approach explanation-

based behavior summarization (EBBS).1

As we alluded to in Section 3.5, EBBS uses five strategies to mitigate correctness and generality
issues.

C1. Behavior Trace Does Not Explain All Dependencies

C2. Reasoning That Is Not Expressible in a Single Rule

C3. Reasoning That Is Not Reliably Repeatable

Correctness Issues

G2. Learns Unnecessarily General Rules

G1. Learns Undergeneral Rules

Generality IssuesStrategies

1. Acquire and Integrate Missing Knowledge

2. Selective Specialization

3. Selective Unification

4. Modify Architecture to
 Achieve Necessary Condition of OPL

5. Detect and Prevent

Figure 4.1: The Five Strategies of EBBS.

The five strategies, which will be explained in the next few sections, are as follows:2

1. Acquire and integrate missing knowledge into the online procedural learning algorithm (7)
1We include explanation-based because our new generalization algorithm performs analysis similar to that found

in the generalization algorithms of classic EBL systems. We use the term behavior summarization to highlight how
learning correct rules from an imperfect approximation of an agent’s reasoning over time poses challenges that learning
a rule from a proof does not.

2The number in parentheses indicate how many correctness and generality issues a strategy helps mitigate.

41

2. Selectively specialize some elements of learned rules (2)

3. Selectively unify some elements of learned rules (2)

4. Modify the architecture to guarantee that the assumptions the online procedural learning
algorithm makes are met (3)

5. Detect learning scenarios that can result in incorrect rules and avoid learning rules in those
scenarios (5)

4.1 Strategy 1: Acquire and Integrate Missing Knowledge

Our diagnosis is that the main reason for many of the problems that chunking has summarizing
problem-solving is that it does not capture and utilize all of the knowledge available about the
problem-solving that occurs in the subgoal. The importance of implementing this strategy is shown
in Figure 4.2, which lists the 7 issues it mitigates from our 14.

1. Acquire

and

Integrate

Missing

Knowledge
C1-1. Dependent on dynamically-generated knowledge (multiple)

C1-2. Dependent on operator selection knowledge

C1-3. Dependent on promoted knowledge

C1-4. Dependent on implicit knowledge

C1-5. Dependent on knowledge from subgoals that do not explain results

C1-6. Dependent on knowledge retrieved from LTM multiple times

C1. Behavior Trace Does Not Explain All Dependencies

Correctness Issues

G1-1. Reasons Generally Over Features Names or Feature Values

G1-2. Dependent on knowledge from subgoals that don't explain results

G1. Learns Undergeneral Rules

Generality Issues

Figure 4.2: Correctness issues mitigated by strategy 1.

The obvious general solution to this problem is to find a way to integrate that missing knowledge
into the online procedural learning algorithm. To this end, this strategy provides both acquisitional

mechanisms to describe missing knowledge and integrative mechanisms to incorporate it into the
algorithm’s analysis. Specifically, the acquisitional mechanisms build data structures that describe

42

the missing knowledge. For some issues, this is straightforward and simply requires that the in-
formation is encoded in a way that the online procedural learning algorithm can use. For other
issues, though, the acquisitional mechanism performs specialized analysis of the agent’s problem
solving, for example searching through working memory or analyzing reasoning in other subgoals.
After the missing knowledge is acquired, the integrative mechanisms provide ways to incorporate
it into the online procedural learning process. Figure 4.3, provides a preview of the acquisitional
and integrative mechanisms that our new online procedural learning algorithm uses to address un-
dergenerality and six different correctness issues. Each of these mechanisms is described in detail
in Chapters 5 and 6.

Issue Missing Knowledge Acquisitional Mechanism Integrative Mechanism
G1-1 Generality of reasoning and value constraints in original rules Identity analysis Identity-based generalization
G1-2 Explanation of reasoning behind non-learning subgoal inference Identity analysis in non-learning subgoals Identity-based generalization

C1-1A Dependencies to operators in supergoal Build "architectural rules” and add to trace Dependency analysis
C1-1B Dependency on the reasoning that led to query Build "architectural rules” and add to trace Dependency analysis

C1-1C
Dependency on the function args, knowledge structures being
copied

Dynamically add conditions for dependencies Dependency analysis

C1-2 Dependencies to operator selection knowledge Analyze operator preferences used and dynamically
add relevant ones to trace Dependency analysis

C1-3 Dependency on promoted knowledge (previous result) Search working memory for dependency path Rule repair
C1-4 Dependency on implicit knowledge Add explicit representation, other Dependency analysis

C1-5 Explanation of reasoning behind non-learning subgoal inference Enable correctness mechanisms in non-learning
subgoal

Dependency analysis

C1-6 Dependent on a LTM also recalled in another subgoal (1) Search working memory for dependency path
(2) Architecture modified to prevent

(1) Rule repair
(2) N/A

Figure 4.3: Mechanisms to acquire missing knowledge and integrate into learning process.

For example, consider G1, the issue that can lead to undergeneral rules. As previously discussed,
Soar’s early commitment to learning from an instantiated trace led to a heuristic-based variabliza-
tion mechanism that can only generalize those aspects of the reasoning that are encoded in Soar
identifiers. For the most part, chunking ignores the underlying rules that describe why each con-
dition of a rule matched a WME. This is valuable and easily accessible missing information that
can allow chunking to determine what is generalizable, what limits there are on those generaliza-
tions, and which variables in a behavior trace refer to the same concept or object in the underlying
reasoning. For example, an agent that uses a variable with a constraint in a rule is reasoning gen-
erally about the class of objects that has that same feature with a value that meets that constraint.
This is generality that the online procedural learning algorithm should capture. Similarly, when
one rule matches knowledge structures that another rule creates, any corresponding variables then
share common semantics within the chain of reasoning. This information is also missing from the
behavior trace that chunking analyzes. A trace of the original rules that matched, on the other hand,
reveals the underlying semantics of the agent’s reasoning by describing exactly which elements of
a rule match involve generalizable reasoning and how elements in different rule firings are related.
An online procedural learning algorithm can use this information to learn more general rules.

43

4.2 Strategy 2: Selective Specialization

We have found that correctness issues can sometimes be remedied by decreasing the generality
of the rule learned in a specific, controlled way. Specifically, an incorrect rule can sometimes be
fixed by selectively specializing only the problematic elements that were reasoned about. While
the rule loses some generality, it gains correctness. Figure 4.4 shows the two issues that selective
specialization is applied to.

2. Selective
Specialization

C2-1. Requires that a calculation meets a constraint

C2-2. Conflates a disjunction of contexts

C2-3. Generates knowledge structures linked to long-term memory structures

C2. Reasoning That Is Not Expressible in a Single Rule

Correctness Issues

G1-1. Reasons Generally Over Features Names or Feature Values

G1-2. Dependent on knowledge from subgoals that don't explain results

G1. Learns Undergeneral Rules

Generality Issues

Figure 4.4: Issues mitigated by strategy 2.

One situation in which this strategy is used is when summarizing reasoning that requires that an
intermediate calculation satisfies a constraint. For the correctness issue to occur, one rule fires
and performs a function calculation and another rule later fires that tests whether the first rule’s
function output meets a constraint. Because the second rule placed a constraint on the interme-
diate results, any learned rule must only match when the calculation returns a value that meets
the constraint. Unfortunately, Soar’s production syntax and matcher cannot currently perform an
arbitrary calculation and test that it matches a constraint within a single rule. EBBS handles this

situation by selectively specializing the identities associated with both the elements that appear as

arguments to the intermediate function and the elements in any conditions that test the output of

the function. This fixes the value of the intermediate calculation and any other numbers based on it
and guarantees that any constraints in conditions that test the output of that RHS function will be
met. While this will make the learned rule more specific, it will also ensure that the rule is correct.

44

4.3 Strategy 3: Selective Unification

If constraints on the structure of working memory exist and the agent’s procedural knowledge im-
plicitly assumes those constraints, an online procedural learning algorithm can learn rules with
unnecessary generality that are computationally expensive to match. For example, our initial ex-
perimental version of EBBS, which used only EBL-style generalization of the reasoning without
any selective unification, learned chunks that were so general that they could handle the situation
where every reference to a supergoal in the trace could refer to an independent supergoal; techni-
cally there is nothing in the logic of the rules that says otherwise. These rules had an exorbitant
number of similar conditions and slowed Soar’s production matcher significantly. A rule that ab-
stract is not only expensive to match but also completely unnecessary, because, as discussed in
Section 3.2, Soar constrains working memory so that structures are rooted in goal nodes connected
by unique superstate links, with each subgoal having exactly one parent supergoal.

To avoid building rules with unnecessary generality, EBBS uses a technique called selective uni-
fication. We will explain how the technique works after we explain how EBBS analyzes the gen-
erality of the rules that led to a behavior trace in Section 5.3. For now, we can say that EBBS
uses selective unification to produce rules that also assume those implicit, architecturally-enforced
representational constraints.

G2-1. Reasoning leverages implicit knowledge of constraints on knowledge representation

G2-2. Reasoning leverages implicit knowledge of domain-specific uniqueness

G2. Learns Unnecessarily General Rules

Generality Issues

3. Selective
Unification

Figure 4.5: Issues mitigated by strategy 3.

4.4 Strategy 4: Modify Architecture

In Section 2.2, we described four necessary conditions for an online procedural learning algorithm
to learn correct rules.

1. Reasoning must be logically consistent and contemporaneously possible.

2. Reasoning must be described by a behavior trace that explains all dependencies.

3. Reasoning must be expressible in a single rule.

4. Reasoning must be repeatable.

45

All four conditions involve a violation of one of the basic assumptions underlying an explanation-
based online procedural learning algorithm. Our fourth strategy is to address such violations by
changing the basic mechanisms of the cognitive architecture to ensure that they do not occur and
that the online procedural learning algorithm’s assumptions are always met. If the change succeeds
in making the processing of the cognitive architecture parsimonious with the online procedural
learning algorithm, the correctness issue can be avoided entirely.

Figure 4.6 shows the three correctness issues that this strategy is applied to.

4. Modify

Architecture

To Achieve a

Necessary

Condition of OPL

C1-1. Dependent on dynamically-generated knowledge (multiple)

C1-2. Dependent on operator selection knowledge

C1-3. Dependent on promoted knowledge

C1-4. Dependent on implicit knowledge

C1-5. Dependent on knowledge from subgoals that do not explain results

C1-6. Dependent on knowledge retrieved from LTM multiple times

C1. Behavior Trace Does Not Explain All Dependencies

C2-1. Requires that a calculation meets a constraint

C2-2. Conflates a disjunction of contexts

C2-3. Generates knowledge structures linked to long-term memory structures

C2. Reasoning That Is Not Expressible in a Single Rule

C3-1. Dependent on an operator selected probabilistically

C3-2. Dependent on knowledge recalled from LTM using opaque mechanism

C3-3. Dependent on knowledge recalled from a changing LTM

C3. Reasoning That Is Not Reliably Repeatable

Correctness Issues

Figure 4.6: Correctness issues mitigated by strategy 4.

An excellent example of how correctness issues can be remedied by a major architectural change
is Robert Wray’s 1998 thesis on ensuring consistency in hierarchical architectures (Wray et al.,
1996). In his thesis, Wray identified a significant correctness issue that chunking had when it was
first applied to agents that operate in changing domains. Specifically, he described how changes
to the environment that occurred during problem-solving could lead to learning incorrect, logi-

46

cally inconsistent rules, which he called non-contemporaneous chunks. In these cases, chunking
attempted to summarize reasoning that involved two rules that could never match at the same time
as each other. For example, consider an agent that moves locations while in a subgoal. Before the
agent moves, a rule that tests the agent’s location fires in the subgoal and creates a persistent local
knowledge structure. The agent moves and then another rule matches, which also tests the agent’s
location as well as the structure created by the first rule. This second rule returns a result to the
supergoal, causing a chunk to be learned. The version of chunking from that era would try to sum-
marize this chain of reasoning and learn an impossible chunk that required that the agent is at both
the starting and ending locations at the same time. Wray realized that the underlying issue was not
a consequence of the online procedural learning algorithm, but, rather, a consequence of the Soar’s
model of subgoaling. To eliminate this source of incorrect rules, Wray improved one of the core
aspects of Soar PSCM by adding a new architectural mechanism called the Goal Dependency Set
(GDS) (Wray and Laird, 2003). The GDS monitors knowledge dependence in every subgoal to
ensure that the reasoning in each is always consistent with higher level knowledge structures. If a
change occurs in a knowledge structure that have persistent working memory elements in a lower
subgoal dependent on it, the GDS removes the lower subgoal. Because the impasse was never
resolved, a new subgoal is immediately created to resolve it again. This forces some reasoning
to be repeated but ensures that reasoning in a subgoal is always consistent with the current state
of the world. Consequently, any rules learned from that reasoning is temporally consistent. In
summary, the GDS was able to eliminate one of chunking’s correctness issues by ensuring that one
of the online procedural learning algorithm’s assumptions were met, namely that all reasoning in
a subgoal is contemporaneously possible.

In this thesis, we eliminate two additional correctness issues. One of these problems, C1-6, was
a particularly difficult and widespread problem that arose when retrievals of the same knowledge
structures from semantic memory were retrieved in multiple subgoals. In our case, our solution
was to fundamentally change how Soar represents semantic memories in working memory, which
required a significant re-formulation of Soar’s semantic memory system and how agents interact
with it. This change was successful and allowed us to completely eliminate all unexpected interac-
tions between memory retrievals and the incorrect rules they gave rise to. We revisit this problem
in Section 6.3.2, after Section 6.3.1 provides the necessary background of how Soar represents
long-term semantic memories using special long-term Soar identifiers, that have qualities of both
a Soar identifier and a constant.

47

4.5 Strategy 5: Detect and Optionally Prevent

If the issues leading to potential incorrectness cannot be mitigated, an online procedural learning
algorithm should not learn an incorrect rule that could produce unjustified inferences that interfere
with task execution. To avoid this, EBBS detects reasoning that it cannot summarize correctly and
aborts learning a rule in those situations. EBBS uses this detect-and-prevent strategy to handle four
issues, as shown in Figure 4.7.3

5. Detect and
Optionally Prevent

C1-1. Dependent on dynamically-generated knowledge (multiple)

C1-2. Dependent on operator selection knowledge

C1-3. Dependent on promoted knowledge

C1-4. Dependent on implicit knowledge

C1-5. Dependent on knowledge from subgoals that do not explain results

C1-6. Dependent on knowledge retrieved from LTM multiple times

C1. Behavior Trace Does Not Explain All Dependencies

C2-1. Requires that a calculation meets a constraint

C2-2. Conflates a disjunction of contexts

C2-3. Generates knowledge structures linked to long-term memory structures

C2. Reasoning That Is Not Expressible in a Single Rule

C3-1. Dependent on an operator selected probabilistically

C3-2. Dependent on knowledge recalled from LTM using opaque mechanism

C3-3. Dependent on knowledge recalled from a changing LTM

C3. Reasoning That Is Not Reliably Repeatable

Correctness Issues

Figure 4.7: Issues mitigated by strategy 5.

While this fallback strategy may seem superficial, it does make an important contribution. As
described in Section 3.5, one of the reasons that classical chunking was not used frequently was
that it was difficult to determine which situations an agent may learn incorrect knowledge until you

3We did not count its use in the implicit knowledge correctness issue because that particular mechanism is limited
and is not used for all forms of implicit knowledge.

48

actually saw problematic behavior. While classical chunking did have a limited implementation of
detect and prevent – it was able to detect local negations and disconnected conditions – it generally
relied on the agent engineer to design the agent’s reasoning in a way that incorrect rules would
not be learned. And to do that, the engineer would need a deep understanding of many of the
issues discussed in this chapter. So, while the detect and prevent strategy may seem superficial,
adding algorithmic detection of the problematic situations eliminates an important reason behind
why procedural learning is not often used.

EBBS also includes the option to “detect but not prevent.” This may seem odd given how we
describe the problems in this thesis. While our focus on where procedural learning can go wrong
may make it seem like an incorrect rule will always result in a catastrophe, in practice, some
correctness issues are not as problematic as they may seem. For example, the problem may involve
an edge case that the designer is not worried about. Or, the designer may know that the knowledge
source that the agent is using will return the same knowledge structures every time it is used, so it
can be considered reliable. In cases like those, the agent designer may want to allow the system
to learn rules despite the theoretically possibility that it may learn an incorrect rule. If that is the
case, the designer can instead tell EBBS to flag the rules as potentially problematic but still add it
to procedural memory, i.e. “detect but not prevent”.

4.6 Applying the Five Strategies of EBBS

Now that we have described the five strategies at a high level, we can see how they map to every
one of our correctness and generality issues, as shown in Figure 4.8. Chapter 5 will explain how
the core EBBS algorithm uses the first three strategies to learn rules that are optimally generality,
while Chapter 6 will discuss how EBBS uses the strategies to mitigate each of the 12 correctness
issue.

49

1. Acquire

and

Integrate

Missing

Knowledge

2. Selective
Specialization

4. Modify

Architecture

To Achieve a

Necessary

Condition of OPL

5. Detect and
Optionally Prevent

C1-1. Dependent on dynamically-generated knowledge (multiple)

C1-2. Dependent on operator selection knowledge

C1-3. Dependent on promoted knowledge

C1-4. Dependent on implicit knowledge

C1-5. Dependent on knowledge from subgoals that do not explain results

C1-6. Dependent on knowledge retrieved from LTM multiple times

C1. Behavior Trace Does Not Explain All Dependencies

C2-1. Requires that a calculation meets a constraint

C2-2. Conflates a disjunction of contexts

C2-3. Generates knowledge structures linked to long-term memory structures

C2. Reasoning That Is Not Expressible in a Single Rule

C3-1. Dependent on an operator selected probabilistically

C3-2. Dependent on knowledge recalled from LTM using opaque mechanism

C3-3. Dependent on knowledge recalled from a changing LTM

C3. Reasoning That Is Not Reliably Repeatable

Correctness Issues

G2-1. Reasoning leverages implicit knowledge of constraints on knowledge representation

G2-2. Reasoning leverages implicit knowledge of domain-specific uniqueness

G2. Learns Unnecessarily General Rules

G1-1. Reasons Generally Over Features Names or Feature Values

G1-2. Dependent on knowledge from subgoals that don't explain results

G1. Learns Undergeneral Rules

Generality Issues

3. Selective
Unification

Strategies

Figure 4.8: Strategies used to mitigate generality and correctness issues.

50

CHAPTER 5

Learning Optimally General Procedural Knowledge

In this chapter, we provide an explanation of how EBBS learns rules that capture the underlying
generality of an agent’s reasoning by altering the core components of classical chunking and cou-
pling it with a novel, two-stage unification algorithm that we call the “Distributed Identity Graph
Unification” (DIGU).

5.1 Capturing the Generality of a Reasoning Trace

To understand how a rule captures the gen-
erality of an agent’s original reasoning, we
first examine how a rule’s structure influences
its generality. Even though it may seem ex-
tremely basic, consider the three rules in Fig-
ure 5.1, each of which compares a feature rep-
resenting the agent’s size with a feature repre-
senting an object’s size and then prints out a
message if the object is bigger than the agent.
Production-1 can only match in a very specific
situation, namely one where the agent’s size
feature is exactly 5 and the object’s size fea-
ture is exactly 6. Production-2, on the other

sp {production-1
 (state <s> ^my-size 5
 ^object-detected <obj>)
 (<obj> ^size 6)
 -->
 (write (crlf) | I have detected an object bigger than me!|}

sp {production-2
 (state <s> ^my-size 5
 ^object-detected <obj>)
 (<obj> ^size {> 5 <object-size>})
 -->
 (write (crlf) | I have detected an object bigger than me!|}

sp {production-3
 (state <s> ^my-size <my-size>
 ^object-detected <obj>)
 (<obj> ^size {> <my-size> <object-size>})
 -->
 (write (crlf) | I have detected an object bigger than me!|}

Figure 5.1: Three similar rules, each with in-
creasingly more generality that can be captured.

hand, can match a broader range of situations because it uses a variable and a constraint for the
object size, which allows it to match for any object whose size feature is greater than 5. So, by
using variables and constraints instead of literals, a rule can include representation of a class of
objects, which allows it to apply to a broader range of situations. This is generality that an online
procedural learning algorithm can capture. Similarly, the third rule applies to an even broader
range of situations because it uses a variable for the agent’s size, which allows it to apply to agents
of all sizes. So, production-3 has even more generalizable aspects that can be captured.

51

Now that we have established how generality is encoded in a single rule, we examine how the
generality of classes of objects described by two rules interact when one rule matches based on the
output of the other rule. For example, consider the relationships between the variables in the two
rule matches of Figure 5.2:

<s> ^superstate <ss>

Rule-A

——>

<ss> ^number <x>

<ss> ^number
<y>

< <x>

<s> ^intermediate1 <x>

<s> ^intermediate2 <y>

<s> ^superstate <ss>

Rule-B

——>

<s> ^intermediate1 <x>

<ss> ^number
<y>

<> <x>

<ss> ^result <x>

<s> ^intermediate2 <y2>
Working Memory

How The Two Rules Interact

(S1 ^number 2)
(S1 ^number 3)
(S2 ^superstate S1)

Figure 5.2: Two simple rules that matched in a substate.

The left pane of Figure 5.2 shows two rules and a set of working memory elements that would
cause them to match, while the right pane shows the relationship between the two rules after they
match. The arrows indicate how WMEs that are created by the first matched rule are then tested
by the second matched rule.

Note that the actual symbol used for a variable isn’t meaningful across rules. It doesn’t matter that
the <y> in rule-a uses the same variable name as the <y> in rule-b. It also doesn’t matter that both
conditions with <y> happen to match the same working memory element, (S1 ˆnumber 3).
In terms of sharing an identity, the only thing that matters is how the rules interact, namely whether
there’s a connection between elements in the condition of one rule and elements in the actions of
another rule.

To facilitate describing elements in a behavior trace that refer to the same underlying object or

feature, we say that such elements have a shared semantic identity. The most trivial example of a
shared identities are how all instances of a variable within a rule, by definition, must refer to the
same underlying object or concept. For example, we know all of the <y>’s in rule-a must refer to
the same number. A more interesting example is how, when two rules have a connection like the
one described in 5.2, the elements in the condition of the second rule that matched the elements
of the actions of the first rule represent the same underlying object. For example, the connection
between rule-a and rule-b implies that the elements that matched variables on the right-hand side
of rule-a, <s>, <x> and <y>, refer to the same objects/features as the elements that matched the
corresponding conditions in rule-b, <s>, <x> and <y2>. So, the <x> in rule-b shares the same
identity as the <x> in rule-a. Similarly, the <y2> in rule-b shares the same identity as <y> in

52

rule-a. In contrast, the <y> in rule-b does not share the same identity as the <y> in rule-a.

In the example shown in Figure 5.2, neither rule placed any constraints on the values that could
match, so they both specified the underlying objects at the same level of generality. But that is not
always the case. Rules that are connected in this way often reason about the underlying classes
of objects at different levels of generality. For example, consider what happens if the second
rule adds a constraint on <x>, as shown in red in Figure 5.3. While the rule-a will create an
intermediate1 feature based on any two number features that its conditions matched, rule-b
will only match and fire if the intermediate1 feature the first rule created is less than 4. So,
the combined reasoning from these rules only applies if two numbers exist and the larger number
one is less than 4. Since working memory contained the numbers 2 and 3, all of the constraints of
the two rules were met. But, if working memory contained the numbers 3 and 4 instead, the first
rules would still match but the sequence of two rules would no longer match.

Working Memory

How The Two Rules Interact

(S1 ^number 2)
(S1 ^number 3)
(S2 ^superstate S1)

<s> ^superstate <ss>

Rule-A

——>

<ss> ^number <x>

<ss> ^number
<y>

< <x>

<s> ^intermediate1 <x>

<s> ^intermediate2 <y>

<s> ^superstate <ss>

Rule-B

——>

<ss> ^number
<y>

> <x>

<ss> ^result <x>

<s> ^intermediate2 <y2>

<ss> ^intermediate1
<x>

< 4

Figure 5.3: Two simple rules that matched in a substate where second rule adds a constraint.

Consequently, to build a rule that summarizes multiple connected rule firings and applies only
in the same contexts, an online procedural learning algorithm must describe any elements with
a shared identity in a way that the constraints of each of the individual rules of the trace placed
upon that shared identity are also satisfied. To do that, an online procedural learning algorithm
must extend this analysis to all connections in a behavior trace to determine which elements in
the overall trace share an identity and what constraints must be met to support the entire trace of
reasoning.

5.2 Challenges of Using Classical EBL Unification

The identity formalism that we have begun to describe is related to the analysis that classic EBL
algorithms perform to generalize rules. As described in Section 3.4, EBL algorithms are able to

53

learn general rules by using unification algorithms such as variable regression (Waldinger, 1977)
or EGGS (Mooney et al., 1986) to determine the most general unification of variables that an
explanation can support. To do that, those unification algorithms analyze the generality of an
explanation trace by traversing it and examining exactly what we described in the last section: how
the variables in the actions of one rule match up with the variables in the conditions of other rules.
They use these pair-wise comparisons in different ways. For example, when regression analyzes
two connected rules, it directly replaces the variables in the rule that created a working memory
element with the variables names used in the rule that used the working memory element.1 The
EGGS algorithm, on the other hand, builds a table of variable pairs that indicate when two variables
in a trace were connected by two rule firings. Note that all unifications algorithms have been shown
to produce the same most general unification (Mooney et al., 1986).

Early versions of EBBS implemented versions of both of these classic unification algorithms. The
more successful of the two versions implemented a particular extension of Mooney’s EGGS algo-
rithm as described in (Mooney, 1989). While that system did provide the generality that our online
procedural learning algorithm needs, some agent designs had debilitating issues with efficiency.
We argue that the reason for this inefficiency is that summarizing a behavior trace in a cognitive
architecture introduces computational challenges more demanding than those faced in the EBL
systems for which EGGS was developed.

One reason for this computational challenge is that a behavior trace can describe algorithmic-like
processing. For example, it is not uncommon for an agent to use a few rules to maintain a counter in
a subgoal, i.e. a working memory element with a numeric value element that is repeatedly replaced
with another WME with an incremented value. Every time the counter is incremented, at least
one new instantiation is created that is dependent on the instantiation that created the previous
value. So, a simple counter that did nothing but increment a value every decision cycle would
quickly produce a trace with thousands of chained instantiations. Analyzing such traces requires a
prohibitively expensive number of variable mappings in the lookup table that EGGS uses, so much
so that, in our initial EGGS-based implementation of EBBS, agents would lose reactivity when
they tried to learn new rules from such algorithmic-style reasoning.

Another reason for the computational challenges of analyzing a behavior trace is that it is a histori-
cal account of processing, which can be arbitrarily long. In some sense, there is no learning cost to
building large traces since it is built prior to the learning episode. In contrast, classic EBL systems
would require computation during the learning episode to build similarly complex explanations;
this is because those systems built the explanation on demand using a means-ends search through

1To do this, both regression and EGGS must “uniquify” the variables in the trace to ensure that the same variable
name is not used in two different rules.

54

a knowledge base of domain rules. Because brute-force search is inherently expensive and many
(possibly unbounded) explanations for a training example may exist, EBL systems tend to favor
simpler explanations, which are easier for a search algorithm to find.

Finally, these problems are compounded by the fact that this learning algorithm exists in a cognitive
architecture as an automatic mechanism that is continually occurring each time knowledge is added
to a supergoal. Such integrated, automatic online procedural learning algorithms may be tasked
with analyzing dozens or even hundreds of these large traces every decision cycle. Since each
decision cycle must be under 50 ms to meet our performance desideratum, an algorithm that is
reliably efficient is essential.

5.3 Distributed Identity Graph Unification

Because the challenges described in the last section made it difficult to ensure the reactivity re-
quired by desideratum D4 and facilitate the type of operations needed to mitigate correctness is-
sues, we developed a new unification algorithm that we call the “Distributed Identity Graph Uni-

fication” (DIGU) algorithm, which successfully eliminates the inefficiencies we have encountered
with our initial versions of EBBS and provides the framework for our other mechanisms.

5.3.1 Identity: A Common Formalism Across EBBS Strategies

One of the key insights that we have had in this work is that there is a tight relationship between
generality and correctness: adding mechanics that capture more of the generality of the underlying
reasoning revealed new correctness issues that could often be mitigated by selectively decreasing
generality. This suggests that the mechanisms that capture generality must work closely with
the mechanisms that prevent correctness issues. To allow the various mechanisms of EBBS to
contribute to the analysis of the learning episode, our approach adopts a common formalism that
all mechanisms use, which is based on the concept of “shared semantic identity” that we previously
discussed.

While classic EBL unification algorithms perform a syntactic analysis of a behavior trace to deter-
mine which variables to substitute, what they are really doing is determining semantic identity. As
we previously described, different algorithms build the mappings in different ways – some build
tables, some propagate variables substitutions in place – but they all use them in the same way:
they use the mappings to replace original elements in the explanation trace with the unified vari-
ables that they are mapped to. To translate to our formalism, all variables in the EGGS unification
table that map to the same variable refer to the same underlying object or feature and, hence, share

55

the same semantic identity.2

Readers may wonder whether identity is just a convenient term to facilitate discussion or just an-
other way to describe a substituted variable or set of them, but that is not the case. In our approach,
identities are explicit first-class objects that the EBBS algorithm creates and manipulates. Each
identity has its own identity data structure, which is created to explicitly represent that EBBS has
detected a potential new underlying object or feature that is referred to by one or more variables in
the trace. Identities are composed into what we call the identity graph, which essentially describes
what EBBS knows about the overall generality of reasoning in a subgoal. While the EBBS algo-
rithm does use the variables in the original rules to inform how it creates identities, the identity
structures themselves are an independent system and do not contain any references to variables or
any other elements in the behavior trace. They simply describe what EBBS has learned about the
underlying object or feature. So, when EBBS map another variable to an existing identity, because
it is not making any new claims about the underlying object or concept, it does not need to alter
the identity data structure at all. The only thing EBBS is asserting when it maps a variable to an
existing identity is that the variable in question is guaranteed to refer to the same underlying object
as all other variables mapped to that identity.

One of the benefits of this design is that it allows the various mechanisms of EBBS to alter the
identity graph as needed to influence how EBBS generalizes the rule in the final step. For example,
if one of EBBS’s mechanisms determines that two different variables refer to the same underlying
object or feature, it can temporarily join the two identities by forcing one to refer to the other.
Similarly, if one of the mechanisms needs to specialize an element to ensure correctness, it can
map that identity to a special non-generalizing identity, which we call the null identity. In short,
identity is not simply syntactic sugar; it is the central currency of our approach.

5.3.2 The Identity Graph

In this section, we provide an overview of how the identity graph works. The particulars of how
identities are created, manipulated and used will be discussed in the remainder of Chapters 5 and
6, alongside the various mechanisms of EBBS in which they happen.

An identity represents an underlying object or feature that is being reasoned about in a subgoal.
Each identity is represented as a node in an identity graph. Whenever an instantiation is created
for a rule firing, EBBS examines the elements in the underlying rules and, as it detects potentially
new underlying objects or features, adds new identity nodes as needed to the identity graph. How

2This argument can also be extended to variable regression; one could simply collect all of the variable substitu-
tions that a regression algorithm eventually makes into a unification table that would similarly show which concepts
and objects shared the same semantic identity.

56

EBBS creates the mapping between elements in a rule and identities is explained in greater detail
in Section 5.6.1. Note that EBBS does not create a new identity for every single element in a rule
that matched a variable. Multiple elements in the behavior trace, even those from different rule
instantiations, can be initially mapped to the same identity. Identities do not contain links back to
the variables in the behavior trace.

To provide a mechanism to merge identities, each identity has one outgoing edge, which is called
its super-join. Initially, though, the graph is unconnected, i.e. each identity’s super-join edge points
back to itself. Note that each subgoal has its own identity graph that exists as long as the subgoal
exists.

Figure 5.4: An identity graph before a learning episode.

During a learning episode, EBBS may determine that two identities refer to the same underlying
object or feature. If so, it sets the edge of one identity to point to the other. Figure 5.4 shows
a visualization of an identity graph after 10 rules have fired in a blocks-world subgoal. Each
block in the figure represents an identity.3 While all of the constituent identities are the same as
those in Figure 5.4, the super-join edges are different and indicate which identities are shared. For
example, the edges of Figure 5.5 indicate that all of the elements in a particular behavior trace
that were mapped to Identity_774, Identity_2018 and Identity_2017 referenced
the same object or feature.

3The text within each block, for example Identity_777, reflects is an identification number that EBBS assigns
to each identity to facilitate debugging.

57

Figure 5.5: An identity graph after learning a rule.

Every identity graph also includes the NULL identity, which is a special identity that indicates that
an element cannot be generalized and must contain a specific value. All elements in the original
rule that reference specific constant values are trivially mapped to the NULL identity, but elements
in a trace that match a variable can also be mapped to the null identity. When an identity is mapped
to the null identity, we say the identity has been literalized. (This is because such elements will
produce a literal value in the final learned rule.) The NULL identity is a special node in the graph
and has no outgoing edge.

While not visually depicted in the figure, an identity can also be temporarily annotated with any
constraints that a behavior trace imposes on the values that the underlying object/concept can
have. These constraints may be relational and may even reference other identities. For example, a
constraint may indicate that the value of one identity must be less than the value of another.

After a learning episode is complete, all super-join links and constraint annotations are reset back
to the state shown in Figure 5.4. This allows additional learning episodes in that subgoal to re-use
the identity graph.

5.3.3 Summary of DIGU Algorithm

There are four novel aspects to our DIGU algorithm:4

1. Instead of framing the problem syntactically in terms of variable substitutions and mappings,
EBBS frames the problem around the underlying objects and features by adopting the for-
malism of object and feature identity. Two variables share an identity if they both refer to
the same underlying object or feature, and an identity represents that underlying object or
feature. Treating “sameness” as a first-order object facilitates performing operations on and

4The first item has been discussed extensively, but we include it in this list for completeness.

58

storing data related to a group of generalizable elements in a trace at any point during the
learning episode, even before the set is fully determined.

2. DIGU takes advantage of the fact that a cognitive architecture generates its behavior trace
differently than other explanation-based systems. In contrast to EBL systems which typi-
cally have a proof-generation component that uses domain knowledge to build explanations
on demand for a particular training example (Dejong and Mooney, 1986), in a cognitive ar-
chitecture, a history of task execution is incrementally created and can be re-used repeatedly

by multiple learning episodes. For example, consider a single subgoal that has multiple rules
fire in it, each of which creates supergoal knowledge. In such a case, multiple chunks are
learned from the same set of subgoal instantiations, albeit different subsets of them. DIGU
leverages the persistence of a behavior trace across learning episodes by splitting its identity

analysis component into two distinct mechanisms that occur at different times:

(a) The first mechanism, forward identity propagation, performs partial (and potentially
incomplete) unification every time a rule matches and is added to a behavior trace.
This amortizes the cost of the majority of EBBS’s unifications and, more importantly,
allows the computation performed by this mechanism to be re-used across multiple
learning episodes.

(b) The second mechanism, identity resolution, refines the initial identity mappings based
on the subset of rule firings that played a role in a result. This phase refines the unifi-
cations provided by forward identity propagation by doing things that can only happen
after the full trace is determined (joining identities, specializing identities, determining
overall constraints) to determine the most general unification that a behavior trace will
support.

3. To avoid problems with expensive look-ups and redundancies, DIGU builds an explicit, iden-

tity graph for each subgoal incrementally as it builds the behavior trace. Like the instantia-
tion graph, the identity graph is a persistent data structure that exists as long as the subgoal
exists. During instantiation creation, when the forward identity propagation phase occurs,
DIGU adds new identities to the identity graph for any new generalizable elements it en-
counters in the instantiation being added. Prior to a learning episode, the identities in the
graph are completely unconnected as shown earlier in Figure 5.4. During a learning episode,
i.e. when EBBS analyzes the behavior trace, the identity resolution mechanism manipulates
the identity graph by joining identities and adding constraints. Figure 5.5 shows an identity
graph after EBBS has analyzed a trace and performed identity resolution. This representation
allows EBBS to perform efficient operations on identities.

4. To allow unifications to be reused across multiple learning episodes in a subgoal, the identity

59

graph operations performed are reset so that it can be re-used in future learning episodes. In
other words, the identity graph is reset back to the unconnected state shown in Figure 5.4.

5.4 EBBS Processing Overview

Now that we have discussed identity and defined our core terminology, we show an overview of
the processing EBBS performs.

While most of the work that EBBS performs occurs after a rule in a subgoal fires and adds knowl-
edge to the superstate, some critical aspects of the analysis it performs occur during the agent’s task
execution prior to learning. In Figure 5.6, the mechanisms of EBBS are split up into two groups.
The first group encompasses all mechanisms that occur during the routine decision-making pro-
cesses of the cognitive architecture. The second group of mechanisms is those involved specifically
in the learning episode, which occurs immediately after a subgoal rule fires and creates knowledge
in the supergoal. This is when the EBBS algorithm analyzes the behavior trace, modifies the
identity graph and builds a new rule to add to an agent’s production memory.

To highlight the differences between EBBS and Soar’s existing online procedural learning system,
the items in bold indicate new mechanisms that EBBS introduces.5

1. Operator
Selection

Knowledge
Analysis

Analysis Shared Across Learning Episodes

4. Constraint
Tracking

3. Identity
Assignment

and
Propagation

2. Instantiation
Creation

When
an operator is

selected

When
a rule fires

While Problem-Solving

Behavior Trace
Analysis

Learning Episode

When a rule fires and returns a result

6. Dependency
Analysis

7. Identity
Graph

Manipulation
8. Constraint

Collection

5. Collect Full
Set of Inferences

Behavior Trace
Creation

Conditions and Action Creation

Identity-based Constraint Enforcement

Identity-based Generalization

Condition Merging

Condition Simplification

Rule Validation and Repair

Condition Re-ordering

Add and Recursively Learn Additional Rules

9. Rule Formation

Figure 5.6: Overview of processing that EBBS performs to learn a rule.

5The other mechanisms all have some modifications, mostly related to supporting identity-based analysis, but they
generally work the same as they did under classical chunking.

60

1. Operator selection knowledge analysis
Analysis of the knowledge that contributed to operator selection occurs immediately after a
new operator is selected in any subgoal. In Soar, operators are selected based on the content
of preference memory, which is separate from working memory and only contains operator
preferences. There are several types of preferences; some examples are preferences that in-
dicate that an operator is required, desirable, better or worse than another operator. As Soar
decides which operator to select, EBBS monitors Soar’s preference resolution algorithm to
determine which operator selection preferences were necessary for that particular operator
to be selected. Preferences, like working memory elements, are created by rules, so, any
time an operator is selected, EBBS stores references to the instantiations that created the
necessary preferences for it. If another instantiation is later created that tests that selected

operator, EBBS creates a link between that new instantiation and the set of instantiations
that contributed preferences for the selected operator. This process effectively expands the
behavior trace to also include operator selection reasoning. This mechanism has some com-
plexity and is discussed in greater detail in Section 6.1.2.

2. Instantiation Creation
Whenever a rule matches during agent execution, EBBS creates an internal record of the
rule that fired that contains instance information about what matched (the specific working
memory elements) along with some extra explanatory information about how the underlying
rule matched. This is discussed in Section 5.5.

3. Identity Assignment and Propagation
Whenever a rule matches during execution, this component creates the data structures needed
to determine which elements in a behavior trace are generalizable and which ones share the
same identity. To make this determination, this component does two things: (1) it annotates
elements of the behavior trace with initial identity mappings and (2) it builds a persistent
identity graph for the subgoal that will later be manipulated in individual learning episodes.
This component will be discussed in Section 5.6.1.

4. Constraint tracking
Whenever a rule fires, this component stores within the instantiation any value or relational
constraint (e.g. <> <x>, >= 3.14, « disjunction of constants ») placed on
the variables in the original rule. Constraint tracking is discussed in Section 5.6.2.

5. Calculate Full Set of Inferences
When a rule creates results that includes a Soar identifier, it indirectly connects any another
local working memory structures that are rooted at that identifier. In other words, when a

61

working memory structure becomes a result, all of its children also become results. Conse-
quently, one of the first tasks that must be performed is determining exactly which working
memory elements become accessible to the supergoal. Calculating the full set of inferences
is discussed in Section 5.7.1.

6. Dependency Analysis
This component is the first step of an actual learning episode, i.e. the processing that oc-
curs after a subgoal produces a result for a supergoal. The dependency analysis component
backtraces through the behavior trace to determine which conditions in matched rules test
working memory elements in a supergoal. The rule formation mechanism will later use all
the conditions that dependency analysis collects as the basis for the conditions of the learned
rule. This is the step that is most similar to classic chunking, though it does have a couple
key new differences, which are discussed in Section 5.7.3.

7. Identity Graph Manipulation
As the dependency analysis component backtraces through the behavior trace, this compo-
nent performs some basic graph operations on the identity graph. These operations allow
EBBS to both mitigate correctness issues and build rules that are more optimally general.
This is discussed in Section 5.7.4.

8. Constraint Collection
Any constraints encountered during backtracing, which were previously recorded during
constraint tracking, are copied to the relevant nodes of the identity graph. These constraints
will be enforced during the rule formation phase to make sure that the learned rule only fires
in situations that have the necessary qualities of the situation that was learned from. This is
discussed in Section 5.7.5.

9. Rule Formation
Mechanisms 1-8 perform the analysis that EBBS needs to form a general and correct rule.
The ninth mechanism, rule formation, uses the results of that analysis to build the new rule.
Rule formation has eight different stages of its own, all of which are discussed in greater
detail in Section 5.7.6. If a valid rule is created, Soar immediately adds the rule to production
memory.

5.5 The Behavior Trace

Like classical chunking, EBBS incrementally builds a behavior trace that describes the agent’s
reasoning. Every time a rule matches during agent processing, EBBS stores a copy of the instan-
tiated rule. As first described in Section 3.2, the instantiation of each rule consists of the set of

62

working memory elements that matched each condition of the rule and the set of working memory
elements created by the rule. The algorithm also stores a link from each matched WME in the
new instantiation to a right-hand side action of the existing instantiation that created the matched
WME. This allows it to later analyze the relationship between elements in one matched rule with

those in another.

We call the set of instantiations that were created in a subgoal the instantiation graph of that
subgoal. The behavior trace is a subgraph of the instantiation graph. To calculate the behavior
trace, EBBS backtraces through the instantiation graph from the rule that creates a result. This
allows it to determine which instantiations in the graph participated in the reasoning that produced
the result. The behavior trace is that set of instantiations and the connections among them. Figure
5.7 shows an example of a behavior trace.

Figure 5.7: A behavior trace of a subgoal in an agent that solves the Mouse and Cats puzzle. The
rule that returned a result and gave rise to a chunk is magnified.

5.6 Integrating Identity into the Behavior Trace

If we stopped at this point in the description, EBBS’s instantiation graph would be equivalent to
the one created by classical chunking. Each instantiation describes the working memory elements
that matched each condition and the working memory elements that are created by each action.

To create rules that summarize behavior at the same level of generality as the agent’s underlying
reasoning, DIGU needs to understand the generality of the rules that led to the behavior trace.
Specifically, it needs to determine which elements in conditions are variables and which ones are
literal constants, which variables are the same variables, what constraints must be met on the values
of each variable and what relationships there are between variables within a rule and between rules.

While none of this information is contained in the behavior trace that chunking analyzes, it is avail-
able in the agent’s production memory. So, EBBS applies strategy 1, acquire and integrate missing

63

knowledge, to take advantage of this missing information. As described in Section 4.1, this strategy
can be described in terms of an acquisitional mechanism to provide the missing knowledge and an
integrative mechanism that incorporates that missing knowledge into the algorithm’s analysis. For
generality issues, DIGU acquires the needed missing information by examining the logic within
each rule that led to a match in the behavior trace. Specifically, every time a rule’s conditions
match and EBBS creates an instantiation to document it, DIGU iterates through the conditions and
actions of the matched rule and annotates every element, which is a literal matched value, with a

pointer that maps it to either a new or existing identity in the identity graph. The following section
describes this process in detail, including how DIGU chooses whether to create a new identity or
use an existing identity for the mapping.

5.6.1 Identity Analysis Phase 1: Identity Creation and Propagation

EBBS uses the rules underlying a behavior trace to determine how objects and features are reasoned
about during the problem solving. When an instantiation is created, EBBS maps all elements of

every condition and action to an identity, creating new identities as necessary. The goal of this
phase is neither to assign every variable with its own identity nor to perform every unification
needed to learn a rule. Rather, the goal of this phase is to perform a set of common unifications
that all learning episodes in this subgoal will share.

Identities are created and propagated using the following rules:

1. Any element in an instantiation that matched a literal value in the original rule is mapped to
the NULL identity.

2. Any element in an instantiation that matched a variable must be mapped to the same identity
as other elements in the same rule that use the same variable.

This is the trivial case. The semantics of rules implies that two identical variables must
match the same underlying object or feature. DIGU always maps these elements to the same
identity.

3. If an element in an instantiation matches a variable, DIGU creates a new identity in two
cases:

(a) The element is a variable that is in a condition that matches a supergoal WME.6

6Note that if two conditions match the same supergoal WME, EBBS will consider them separately and give the
elements of each condition their own identities. (In classic chunking, the second condition would be ignored since its
generalization heuristic would always produce a duplicate condition.)

64

Because Soar’s online procedural learning approach is about determining how subgoal
reasoning relates to supergoal knowledge, we assign new identities to references to
supergoal knowledge.

(b) The element is a variable that is used in a RHS action but does not appear in any
condition of the rule.

In these cases, the variable is being used to create a new Soar identifier, so a new
identity is created for that new object. (These elements are also known as unbound
RHS variables.)

4. If an element in an instantiation matches a variable, DIGU propagates an existing identity
into it when both of the following two properties hold:

(a) The element is in a condition that matched a subgoal WME, i.e. one created by an
existing instantiation in the subgoal.

(b) The corresponding element from the existing instantiation is also a variable.

This is one of the basic cases of shared identity described in Section 5.6. If a RHS action of
one rule creates a subgoal WME and a LHS condition of another rule tests that same WME,
then we know the variable in the condition refers to the same object as the variable in the
action of the other rule. As a result, those elements will be mapped to the same identity. This
effectively propagates some of the identities forward through the behavior trace.

The careful reader may notice that rule 2 may conflict with other rules. For example, consider
the case when the same variable appears in two different conditions, but they both match different
subgoal WMEs. While rule 2 insists that both variables must be mapped to the same identity,
rule 4 says that each one should be mapped to the different propagated identities from the two
different subgoal WMEs. In such conflicts, which are fairly common, rule 1 is always enforced
and propagation is ignored. This is why we said that only some identities are propagated forward.

During the second phase of identity analysis, which is called identity resolution and occurs during
the learning episode, EBBS performs a backward traversal of a behavior trace, re-examining all of
the condition-action pairs. As it performs this traversal, ignored propagations will be enforced by
manipulating the identity graph. (Note that an element’s identity never changes after it is initially
assigned. Its effective identity may be changed if the identity graph is manipulated, but it will
always be mapped to the same identity node.)

65

5.6.2 Adding Identity-Based Constraints

The rules underlying a behavior trace may impose constraints on the values that the variable within
the rules can hold. Figure 5.8 shows all legal constraints that can be specified in Soar and their
syntax.

Test Syntax Example Explanation
Equality: <variable> <s> ^foo <x> Feature foo is bound to <x> (and unconstrained)
Literal constraint: literal-value <s> ^foo 3 Feature foo must be 3
Disjunction constraint: << list of literals >> <s> ^foo << 2 3 >> Feature foo must be 2 or 3
Relative constraint: <>, >, >= <, <= Feature has relationship to either a literal-value or a variable

<s> ^foo <> <y> Feature foo must not have same value as <y> (bound elsewhere in rule)
<s> ^foo > 3 Feature foo must be greater than 3
<s> ^foo <= <y> Feature foo must be less than or equal to the value bound to <y>

<=> <variable> <s> ^foo <=> <y> Feature foo must not have same type as <y>

Conjunctions of Constraints:

Syntax: { (test1) ... (test-n) }
Example: <s> ^foo { <> <y> > 3 << 4 6 >> <x> }
Explanation: Feature foo is bound to <x>, must not be equal to the value bound to <y>, must be greater than 3 and must be 4 or 6.

Figure 5.8: All types of tests that can be specified for an element of a Soar condition.

Our learning algorithm must consider these constraints in its analysis of the trace. Otherwise, it
may generate rules that can apply to situations where those constraints are not met. Since such
rules could fire in situations in which previous sub-state reasoning could not have occurred, they
are overgeneral. The obvious solution is to track those constraints and make sure they are enforced
in the learned rule. To this end, EBBS stores within each instantiation all constraints that were
required for the underlying rule to match.

These constraints are stored relative to the identities used within the instantiation. For example,
if a variable <x>, which was mapped to identity node 1 in some condition, had the constraint <
7, then EBBS would record an annotation in that rule that says it requires that identity 1 must
always have a value less than 7. Similarly, if a rule required that a variable <x> mapped to identity
node 1 had the constraint <> <y>, which is mapped to identity node 2, EBBS would record that
this instantiation requires that the identity node 1 cannot have the same value as identity node 2.
Assuming that our generalization algorithm properly determines the most general unification of
the trace, these constraints are guaranteed not to conflict. (If a logical conflict truly existed in
the trace, then the WME that matched the rule would not have matched. Moreover, if EBBS did
learn a rule with such a conflict because of some flaw in the algorithm, the RETE algorithm would
immediately tell EBBS that it learned a rule that does not currently match despite being based on
the current contents of working memory.)

This concludes our discussion of the two acquisitional components that arose from applying strat-
egy 1 to the behavior trace. How EBBS integrates the identity and constraint information into its

66

summary of the behavior trace is discussed in subsequent sections. Specifically, Sections 5.7.4
and 5.7.6 discuss identity analysis and identity-based variablization, the integrative components
of identity generation and propagation, while Section 5.7.5 and 5.7.6 discuss constraint collection
and constraint enforcement, the integrative components of identity-based constraints.

5.7 The Learning Episode

Learning opportunities occur immediately after a rule matches in a subgoal. So, any time EBBS
records an instantiation of a rule match, it checks to see whether it should learn a new rule. If
all the working memory structures created by the match are only accessible to the subgoal, then
normal Soar processing continues and no rule is learned. But, if the match creates results – it
makes working memory structures accessible to the supergoal – EBBS attempts to learn a rule,
and the learning episode begins.

5.7.1 Calculating the Full Set of Inferences

Since the core goal of Soar’s online procedural learning algorithm is to summarize how subgoal
reasoning produces new inferences in the supergoal, it must first determine which inferences were
created in the supergoal. In all the of the examples discussed so far, this determination is straight-
forward because all supergoal data structures were generated by a single rule. Consequently, the
algorithm can simply collect any right-hand side actions of the rule that generate supergoal data
structures.

While the data structures produced by a single rule firing are the initial basis for creating the
actions of a chunk, other subgoal knowledge may also become accessible to the supergoal as a
consequence of that rule firing. This occurs when subgoal reasoning incrementally builds a data
structure in the subgoal. For example, consider a case where a set of subgoal rule firings create a
complex working memory structure that is accessible only to its subgoal. Afterwards, another rule
fires that links only the top element of that structure to another working memory element that is
accessible to the supergoal. Obviously, all of its children also become accessible to the supergoal
even though they are not explicitly referenced in the rule that linked the knowledge to the supergoal.

To handle this, chunking must first determine the entire structure that becomes accessible after
the rule finishes firing. It does this by examining each of the working memory elements that will
be created by the right-hand side of the rule. If any of them contain a reference to an existing
object in the subgoal, i.e. their value element is a Soar identifier, the algorithm collects all children
working memory elements rooted at that Soar identifier. This process is recursively repeated until
a complete description of the knowledge structure that the matched rule makes accessible to the

67

supergoal is built.

5.7.2 Backtracing and the Three Types of Analysis Performed

When learning a new rule, EBBS performs an analysis of a subgoal behavior trace using a process
called backtracing. Backtracing works as follows. Starting with the instantiated rule that creates a
subgoal result, backtracing iterates through each working memory element that matched a condi-
tion. If the working memory element is local to the subgoal, then backtracing recursively examines
the instantiation that created that WME. If the working memory element is a supergoal WME, then
that path of backtracing’s exploration terminates. Thus, backtracing examines the behavior trace
by traversing the instantiation graph backwards through all subgoal rules that contributed to a su-
pergoal inference.

This description is a bit of a simplification. As described in Section 5.7.1, there may be additional
structures created by previous rule firings that are also indirectly results. So, while it may seem
that backtracing starts its traversal of the behavior trace only through the conditions of the single

rule that created the initial result, it must also consider the rules that created the children results. In
other words, backtracing may have multiple starting points: the conditions of the initial rule firing
and the conditions of each rule that previously fired and created children substructures.

The following three sections will discuss the three core aspects of the EBBS’s analysis that occur
during backtracing: dependency analysis, identity resolution and constraint collection.

(Please note that an important mechanism to handle overgenerality, selective unification, also oc-
curs during backtracing but will not be discussed until Section 5.8. Moreover, several of the mech-
anisms that mitigate correctness issues also occur during backtracing, but, for the sake of clarity,
we will leave those aspects out until Chapter 6.)

5.7.3 Dependency Analysis

The goal of dependency analysis is to determine which conditions in the behavior trace tested
working memory elements accessible to the supergoal. As EBBS is backtracing through each
rule that fired in the subgoal, it collects all supergoal WMEs that the rule tested. Once the entire
behavior trace is traversed, EBBS has determined exactly what supergoal knowledge was tested
during the reasoning in the subgoal.

The manner in which EBBS backtraces through a trace to determine supergoal knowledge depen-
dency has not changed much from classical chunking, but there is one key aspect that is different.
In classical chunking, if the algorithm encounters more than one condition that matches a super-
goal WME, it would only add the first one it encountered, ignoring all others. This made sense

68

for classical chunking because it knew that its heuristic for generalization would always generate
two identical, conditions based on the same WME. In contrast, EBBS generalizes by capturing the
generality in the underlying reasoning, so, if the reasoning behind each of the two conditions is
different, EBBS must consider them separately, despite the fact that they both matched the same
WME. Consequently, EBBS adds an additional copy of the supergoal WME each additional time
it is tested in the trace.

If the underlying rule has a negated condition that tests the absence of supergoal knowledge, they
must also be collected in the dependency analysis. This can be problematic to determine because
they do not have corresponding matching WMEs; they are obviously testing that a WME does not
exist. To incorporate the constraints imposed by these conditions and avoid overgenerality, both
classical chunking and EBBS incorporates them into the online procedural learning process in
the following way. As the algorithm backtraces through the trace, it collects the set of all negated
conditions seen in the underlying rules. It takes those negated conditions and replaces any variables
that also appear in a positive condition with their matched values. In other words, it instantiates as
much of the negative conditions as possible. This allows it to determine which negative conditions
it encounters are testing lack of knowledge in the supergoal. If the negative condition tests lack
of knowledge in the subgoal, it is not included in the chunk. If the negative condition tests lack
of knowledge in the supergoal, EBBS records it and then adds it to the chunk during the rule
formation step.

5.7.4 Identity Analysis Phase 2: Identity Resolution

To review, identity analysis, the process of determining which elements in a trace share the same
identity, occurs in two phases. Section 5.6.1 describes how the first phase, identity creation and
propagation, is performed when rules fire and instantiations are recorded. As discussed in that
section, propagation provides only partial unification and may lead to overgeneral rules. One
reason already mentioned is that conditions may have conflicting identities propagated forward,
one of which was ignored. But there are other, more complicated interactions between multiple
rules that forward propagation also cannot handle.

To refine the partial unification performed by the initial forward propagation phase, a second phase
of identity analysis, which we call identity resolution, is performed during backtracing. To do this,
EBBS traverses the behavior trace backwards and re-examines each condition-action pair between
instantiations. Just like it did when creating the instantiation, it compares the elements of each
condition with the corresponding element in the action that produced the WME that matched the
condition. EBBS then manipulates the identity graph based on whether the corresponding elements
are mapped to the same identity.

69

Figure 5.9 shows how the identity graph initially contains a node of each identity used in the
behavior trace. Each node has a single directed super-join edge that initially points back to itself.

Figure 5.9: An identity graph before identity resolution.

EBBS chooses one of three options when it compares corresponding elements:

1. Ignore
If the identities are already the same, propagation has already done the work and no identity
graph manipulation is necessary. This is the most common case.

2. Join
If the identities of corresponding elements in condition-action pair are both variables but are
mapped to different identities, EBBS performs a join operation between the two identities.
This assigns one identity as the joined identity and points the super-join edges of the other
identity and any previously joined identities to the new joined identity.

3. Specialize
If a behavior trace has a condition-action pair with one element that is a variable and one
that is a literal, the reasoning described could not have occurred unless that variable matched
that specific value. As a result, EBBS selectively specializes the identity associated with
that variable element by pointing its super join edge to the NULL identity. This means that
any conditions in the final chunk that have elements mapped to that identity will be treated
like a constant and will not be variablized. Instead, the matched value will be used for that
element. To differentiate this specific operation on an identity from a more general notion of
specialization, we call this form of selective specialization literalizing an identity.

70

After the behavior trace is traversed, all necessary unification will have been performed. Even
though the initial identity mappings in the instantiation do not change, the identity graph indicates
exactly which identities are always reasoned about generally and which identities are shared for
that behavior trace. Figure 5.10 shows a visualization of Figure 5.9’s identity graph after a learning
episode:

Figure 5.10: An identity graph after identity resolution.

5.7.5 Constraint Collection

Section 5.6.2 described how EBBS annotates instantiations with a list of all variables constraints
that were met when the rule matched. While backtracing, EBBS collects all of the constraints it
encounters in each rule.

Some of these constraints may not be necessary in the learned rule being built. EBBS only needs
a constraint if it involves identities that appear in the learned rule. Unfortunately, EBBS cannot
determine which identities are needed until backtracing is complete, so it must collect all of them.
Once backtracing is complete, EBBS iterates through the constraint list and prunes any that do not
involve identities that appear in the conditions of the new rule.

The identity-based nature of this system allows EBBS to record constraints without worrying about
which identities will eventually be unified. It also allows it to handle tricky aspect like conditions

that constrain subgoal knowledge which then transitively place constraints on supergoal knowl-

edge matched. This occurs when the identity of a constrained element matching a subgoal WME
is later joined with the identity of one matching a supergoal WME.

5.7.6 Rule Formation

At this point, DIGU has completed both phases of identity analysis and collected all constraints
required by a behavior trace. This section provides a brief overview of how EBBS uses that in-
formation to build a rule that captures the generality of the underlying reasoning. Note that, in all

71

steps of rule formation, EBBS takes advantage of identity resolution by always using an element’s
effective identity, which is quickly referenced through its super-join edge.

The rule formation component consists of eight distinct, sequential stages:

Step 1. Condition and Action Creation

This stage creates the initial basis for the condition and actions of the rule.

To form the conditions of the learned rule, EBBS creates copies of all supergoal WMEs that were
collected during dependency analysis of the behavior trace. Each element in these copied WMEs
is a literal value along and an annotation that map the element to an initial identity.

To form the actions of the learned rule, EBBS creates copies of the actions that produced each of
the result and all children of those results that came along for the ride. Like conditions, all elements
in an action are literal values along and an annotation that map the element to an initial identity.

Initially, all elements of both the conditions and actions are literal values.

Step 2. Identity-Based Constraint Enforcement

This stage adds all constraints that were collected during backtracing. As previously described,
each constraint is indexed in terms of the identity it constrains. So, if the identity being constrained

exists in one of the conditions of the learned rule, EBBS will enforce the constraint by adding a
new constraint to that condition.

This component replaces chunking’s limited constraint tracking mechanism. While classical chunk-
ing did not annotate the rule instantiations with any constraints, it did keep a log of all cases of
one specific type of constraint it found while backtracing: inequalities between Soar identifiers.
Because chunking only variablizes Soar identifiers, it only needs to enforce constraints that can
be placed on Soar identifiers, which are inequalities. In contrast, EBBS’s new constraint tracking
system is much more comprehensive and tracks all types of constraints on all types of matched
values. This includes literal constraints on the value a single identity, for example >= 0, < 23,
relational constraints between two identities, for example > <min>, < <max> or <> <other>

and conjunctions of constraints.

This does introduce some new challenges; for example, one situation in which attaching a con-
straint can be tricky occurs when the constrained identity has been literalized but the constraint

itself refers to an identity that has not been literalized, for example { > <x> = 3 }, which says
that a feature must be greater than <x> and equal to 3. Even though the constraint references an
element that can only match a value of 3, EBBS cannot simply throw the constraint out. The re-
lationship between 3 and the identity of <x> must still hold (assuming <x> appears in a different

72

test somewhere else in the rule). Since this constraint needs to be enforced to ensure a correct rule,
EBBS inverts the constraint and attaches it to a variable in another condition. In this example, it
would add a < 3 to some other condition with an element that had <x>’s identity.

Step 3. Identity-Based Generalization

To build rules that can match a range of situations, some of the literal elements in the conditions
and actions must be replaced by variables; otherwise, the new rule will only ever fire when the
exact same objects and features are matched.

Because both phases of identity analysis are complete at this point, all of the real work needed
to determine the generality of the underlying reasoning has already been performed. So, this step
replaces the elements in the rule that the agent always reasoned about generally with a variable.
Specifically, this step iterates through each condition and action of the rule and examines the ef-
fective identity that each element is mapped to. Based on that identity mapping, EBBS does one
of two actions:

• If the element is mapped to the NULL identity, its literal value is left intact.

• If the element is mapped to an identity, EBBS replaces the element with the variable asso-
ciated with that identity. (It creates new variables and assigns them to identities as needed
during rule formation.)

This process is also applied to both the negative conditions and the constraint tests that were at-
tached to conditions in step 2.

Step 4. Condition Merging

If two conditions in the learned rule share the same identities in their identifier, attribute and value
elements, they can be combined. In such cases, it is logically impossible for those two conditions
to match two different WMEs and cause the same rules to match and same conditions to unify in
the subgoal. As a result, EBBS can safely merge those two conditions without losing generality.

Note that the two conditions may have different constraints, in which case the constraints are
merged. These constraints are guaranteed not to conflict for the same reasons cited in 5.6.2.

Step 5. Condition Simplification

EBBS refines the conditions of the learned rule by pruning unnecessary constraints on literalized
elements and replacing multiple disjunction constraints with a single simplified disjunction.

1. Merge disjunction constraints: If an element in a condition has two disjunction tests, the
constraints will be merged into a single disjunction that contains only the shared values. { «

73

a b c » « b c d » <x>} becomes { « b c » <x> }, because it is impossible
for <x> to be either a or d. This will also eliminate any duplicate disjunctions.

2. Eliminate unnecessary constraints on literals: If an element in a condition has been liter-
alized but also has a literal constraint on its value, then the constraint is unnecessary and will
be discarded. For example, <s> ˆvalue { < 33 23 } becomes <s> ˆvalue

23.

This step also eliminates duplicate constraints.

Step 6. Rule Validation and Repair

At this point, the rule is formed. EBBS must now make sure that the learned rule can be legally
added to production memory. Specifically, this step looks for malformed rules that have one or
more dangling conditions or actions, i.e. ones that are not linked to a goal state in the rule. Rule
validation was first developed as a way to avoid a number of correctness issues that could result in
malformed rules. Since those issues were not well-understood, the validation step was added as a
failsafe to prevent bad rules from being added to production memory. It was also used as a way
to alert the agent designer that they might be facing one of the chunking issues that were known
about at the time.

While the rule validation algorithm is essentially unchanged from classic chunking, what hap-
pens as a result of that validation has indeed changed. Classical chunking throws out any learned
rules that cannot be validated. In contrast, EBBS instead repairs the malformed rule by searching
working memory for missing dependencies that could link the dangling conditions or actions. We
describe the details of rule repair in Section 6.1.3.1.

While rule validation is now essentially a way to detect when rule repair is needed, we still call it
rule validation. This is because online procedural learning problems often manifest as rules with
one or more conditions or actions that are not properly connected to a goal. If new correctness
issues are discovered or introduced in the future (we are wrong about existing correctness issues),
this rule validation step is still the most likely way the problem will be detected. In that sense,
it still serves as validation. If repair fails7, EBBS does indeed discard the invalid rule just like
classical chunking.

Step 7. Condition Re-ordering

Since the efficiency of Soar’s RETE rule matching algorithm depends heavily upon the order of
a production’s conditions, both classical chunking and EBBS attempt to greedily sort the chunk’s

7There are no known situations where repair currently fails.

74

conditions. At each stage, the condition-ordering algorithm tries to determine which eligible con-
dition, if placed next, will lead to the fewest number of partial matches. For example, a condition
that matches an object with a multi-valued attribute will lead to multiple partial matches, so it is
generally more efficient to place these conditions later in the ordering.

Step 8. Add Rule to Agent’s Procedural Knowledge and Recursively Learn Additional Rules

Now that the rule has been built, validated, and optimized, it is added to the agent’s production
memory. This only fails if the new rule is a duplicate of an existing rule.

It is quite common that a learned rule will immediately generate another learned rule. When a
problem has been decomposed into two or more subgoals, a single result can produce a chunk
for every intermediate subgoal. The reason for this process is a bit complex. Once the rule is in
production memory, it is treated like any other. Because it was just learned and is based on the
current state of working memory, its conditions are guaranteed to immediately match in the super-
goal. Moreover, the chunk has made new data structures accessible to the goal it matches in, so it
needs to also record which knowledge structures in that goal that those results are dependent on.
Otherwise, future learning episodes will not be able to backtrace through the newly created struc-
tures. So, EBBS creates an instantiation for the chunk match that includes new identity mappings
relative to the identity graph of the supergoal. This provides that explanatory knowledge necessary
to learn new chunks based on the chunk just added.

This process occurs whenever the goal that the instantiation was added to is itself a subgoal. If
the chunk has at least one action that makes WMEs accessible to an even higher-level goal, EBBS
will backtrace through the chunk match and learn a second chunk based on the reasoning in the
subgoal that the chunk matched in, which was the supergoal of the subgoal it was learned from.
This process stops when a chunk’s instantiation is only generating working memory elements in
the same state that it matches in.

5.8 Unnecessary Generality

Our initial implementations of this algorithm generated surprisingly convoluted rules that were
expensive to match. This even occurred when summarizing simple, almost trivial behavior traces.
For example, the chunk in Figure 5.11 summarizes a behavior trace that consists of three rule
firings, each of which tests a single feature in the supergoal. Instead of learning a rule that also
tests three features in its supergoal, our system instead learned a rule that tests three features in
three, possibly different, supergoals.

75

sp {chunk*substate-result-rule*t1-1
 (state <s1> ^superstate nil)
 (state <s2> ^foo <f1>)
 (state <s3> ^foo { <f2> <> <f1> })
 -->
 (<s1> ^result |Two foos!|)
}

Figure 5.11: A learned rule with unnecessary overgenerality.

These unexpected rules led to a surprising insight about the generality of an agent’s underlying
rules: determining the most general unification of a trace always produced unnecessarily general

rules.8

This unnecessary generality arose from the fact that the initial EBBS implementation did not con-
sider in its analysis an implicit constraint that the architecture imposes on working memory. As
discussed in Section 3.1, one of the few constraints on Soar’s working memory is that all knowl-
edge is linked to goals and those goals are organized in a stack linked by a ˆsuperstate feature.
Consequently, every subgoal can only have one supergoal at a time in Soar; in other words, if
we have (S5 ˆsuperstate S3), we cannot also have (S5 ˆsuperstate S1) at the same
time. We call features that are guaranteed to always have a single value singletons. In contrast,
non-singletons can have multiple values for a feature, for example (S5 ˆblock A ˆblock B).

This problem we describe in this section is the first example of a learning issue that arises from the
use of implicit knowledge in the design of an agent’s rules. The singleton nature of Soar’s super-
state link allows agent engineers to safely design simpler rules, each of which assumes it is working
in the service of the same supergoal as the other rules in that subgoal.9 There is no reason for the
agent engineer to include constraints in their rules for knowledge structures that are guaranteed not
to exist. An online procedural learning algorithm that is unaware of this uniqueness property and
generalizes based purely on the underlying rules, like our initial implementation, learns rules that
are so flexible that every independent reference to a supergoal could be a reference to a different
supergoal, something that cannot occur in the Soar architecture. Since these rules become more
complex with every reference to a singleton feature, they quickly become prohibitively expensive
to match.

8For this section, we are not using our relative definition of generality. Rather, we mean a rule that is more abstract
and covers a larger space of situations.

9In contrast, if a subgoal could have multiple supergoals, engineers would need to add extra logic in each rule to
ensure that it is making an inference on the same supergoal knowledge as another rule in the subgoal.)

76

5.8.1 Applying Strategy 3: Selective Unification of the SUPERSTATE fea-
ture

EBBS eliminates this inherent overgenerality by incorporating the uniqueness of each subgoal’s
superstate feature into its analysis using a technique we call selective unification.

Selective unification works as follows: while backtracing, if EBBS encounters two conditions
in a trace that test the same working memory element and that WME involves a feature that is
guaranteed to have a single unique value, it will join the corresponding identities of any variables
in the two conditions. This forces all references to the feature to be considered as references to
the same feature, despite the fact that the underlying rules do not actually test that sameness. With
the addition of the singleton mechanism, EBBS eliminates the inherent overgenerality of Section
5.8 by flagging every subgoal’s superstate feature as a singleton. Figure 5.12 shows the effect that
selective unification has on a chunk learned.

sp {chunk*substate-result-rule*t1-1
 (state <s1> ^superstate nil)
 (<s1> ^foo <f1>)
 (<s1> ^foo { <f2> <> <f1> })
 -->
 (<s1> ^result |Two foos!|)
}

sp {chunk*substate-result-rule*t1-1
 (state <s1> ^superstate nil)
 (state <s2> ^foo <f1>)
 (state <s3> ^foo { <f2> <> <f1> })
 -->
 (<s1> ^result |Two foos!|)
}

With Selective UnificationWithout Selective Unification

Figure 5.12: A simple chunk with and without selective unification.

The superstate singleton is arguable the only one that the algorithm absolutely must handle, EBBS
also treats several other architecturally created features as singletons:

(<goal> ^superstate <any>)

(<goal> ^operator <operator>)

(<goal> ^type <constant>)

(<goal> ^impasse <constant>)

(<goal> ^smem <identifier>)

(<goal> ^epmem <identifier>)

77

5.8.2 Domain-Specific Unnecessary Generality

It is often the case that agent reasoning also assumes domain-specific object or feature uniqueness
that is not reflected in the rules. This can also lead to learned rules with unnecessary generality.
For example, in an agent that solves a BlocksWorld puzzle, the agent has rules for manipulating a
gripper that picks up and places the blocks. The rules of the agent assume there is only one gripper
and references it accordingly. When EBBS attempts to learn rules from this agent’s reasoning, it
is not aware of the implicit knowledge that the designer had and generates unnecessarily complex
rules where each reference to a gripper could be a different gripper.

EBBS handles such learning situations by providing a mechanism to specify domain-specific sin-
gletons. Since we cannot determine a priori which objects or features in a particular domain can
have multiple values and which ones are singletons, EBBS allows the agent designer to specify
it themselves. In other words, if an agent designer knows that certain features are guaranteed to
never have more than one value, they can give EBBS the meta-knowledge that it must always treat
references to those features as singleton.

For example, to improve the gripper-related rules learned in the BlocksWorld agent, we specify
that any WME of the form [goal] ˆgripper [soar identifier] is a singleton. This
unifies the identities of any conditions that reference a gripper in a behavior trace. Consequently,
any rules learned by summarizing that trace will only reference a single gripper.

This mechanism is an application of both the strategy 1, acquiring and integrating missing knowl-
edge into the online procedural learning algorithm, and strategy 3, selective unification. Specifi-
cally, EBBS uses user-defined singletons to allow agent engineers to provide a specification of one
form of implicit knowledge they used in their rules, namely that a feature of this task can only hold
one value at a time. Practically speaking, this feature has proven to be powerful if not essential. In
many agents, we find that we must define domain-specific singletons to achieve efficient matching
of rules.

5.9 Learning from Non-Learning Subgoals

While many agents use chunking to learn rules every time a subgoal returns a result, in complex
real-world system, an agent designer may want to learn rules from some subgoals but not others.
For example, they may not want to learn rules in a subgoal that they know uses reasoning that
chunking cannot correctly summarize, for example in a subgoal that chooses between operators
probabilistically. Or they may not want to learn rules in a subgoal that they know uses reasoning
that is so abstract or so specific that it will generate a chunk that will provide little utility. For cases
like these, Soar provides the capability to selectively enable or disable online procedural learning

78

in a subgoal. Note that these non-learning subgoals generate the same exact knowledge structures
in supergoals as their learning counterparts. The difference is that a rule is not learned that could
generate the structure in the future.

Soar does perform some analysis of the reasoning that occurred in the non-learning subgoals.
When learning is disabled, another type of rule called a justification is created instead of a chunk.
Justifications are transient, architecturally-created rules that allow Soar to ensure that the knowl-
edge structures created in the supergoal only persists as long as they should.

In some ways, justifications are just like chunks. For example, Soar performs the exact same
dependency analysis for justifications that it does for chunking to determine which knowledge
structures in the supergoal were tested by the subgoal reasoning. Soar performs this analysis to
determine whether the working memory elements that are being created in the supergoal should
be either persistent ones or context-dependent ones. If the justification tests an operator in the
supergoal, Soar knows a result should be persistent (o-supported) and remain in working memory
until the agent removes it. If the justification does not test an operator, Soar knows the result is
context-dependent (i-supported) and should only stick around while the context of the justification
holds. So, it adds the justification to procedural memory; when it no longer matches, Soar will
know that it must remove the working memory elements that it created. Justifications are created
every time a non-learning subgoal creates a result in a supergoal.

In other ways, justifications are very different from chunks. For example, they are fully specified:
they contain absolutely no variables, not even for Soar identifiers, or RHS functions. So, in most
cases, a justification looks exactly like its own instantiation. This means that a justification does
not encode any indication of how general the underlying reasoning was that led to the result.
Without this information, justifications cannot be used, at least in their current from, within an
EBBS behavior trace. If chunking attempts to later summarize reasoning in the learning goal, it
will be unable to capture the generality encoded in the rules that led to the matched knowledge
that came from the non-learning subgoal. To learn an optimally general rule, EBBS must be
provided with information that specifies, not only any dependencies that the result has to other
knowledge structures, which justification do provide, but also which aspects of those dependencies
were reasoned about generally and what constraints there are on that generality, which justifications
do not provide.

5.9.1 Applying Strategy 1: Explanatory Justifications

To address this problem, EBBS augments justifications with the same explanatory power that
chunks have. It does this by performing the same analysis in non-learning goals that it does in
learning goals and adding explanatory meta-information to justifications. EBBS does the follow-

79

ing two tasks to create justifications that eliminate the key differences:

1. While the elements of every condition and action in a justification still contain the literal
values that matched, they are annotated with an identity that was determined using the same
identity creation/propagation rules that chunks use.

2. Each element of the justification is annotated with all constraints placed on the value during
reasoning.

These changes allow EBBS to acquire and integrate the missing knowledge that caused this cor-
rectness issue and learn optimally general rules from justifications as readily as it can from hand-
written rules and other chunks.

5.10 Concluding Comments On Generality

In this chapter, we described how EBBS applies the first three strategies, acquire and integrate
missing knowledge, selective specialization and selective unification, to learn rules that capture
the generality of the agent’s underlying reasoning without unnecessary overgenerality.

1. Acquire
and

Integrate
Missing

Knowledge

2. Selective
Specialization G2-1. Reasoning leverages implicit knowledge of constraints on knowledge representation

G2-2. Reasoning leverages implicit knowledge of domain-specific uniqueness

G2. Learns Unnecessarily General Rules

G1-1. Reasons Generally Over Features Names or Feature Values

G1-2. Dependent on knowledge from subgoals that don't explain results

G1. Learns Undergeneral Rules

Generality Issues

3. Selective
Unification

Strategies

Figure 5.13: Three strategies applied to the generality issues of chunking.

Chapter 6 similarly describes how the strategies are applied to mitigate the 12 correctness issues
Soar has performing online procedural learning.

80

CHAPTER 6

Learning Correct Procedural Knowledge

Traditional explanation-based systems learn new procedural knowledge by generating one or more
explanation traces that describe how a specific example could lead to a desired or known proposi-
tion. In contrast, a procedural learning algorithm in a cognitive architecture learns new procedural
knowledge by summarizing a behavior trace of previous agent reasoning that led to a proposi-
tion. One of the key ways that this type of behavior summarization differs from learning in other
explanation-based systems is that it is possible to learn knowledge that is incorrect and may later
lead to unjustified inferences when the learned knowledge is used. We posit that this occurs when
a summarization algorithm summarizes reasoning that either (1) has dependencies that are not re-
flected in the behavior trace, (2) includes reasoning that cannot be expressed in a single rule or
(3) includes reasoning that is dependent on unreliable knowledge. The EBBS algorithm uses four
strategies to ensure correct summaries of agent reasoning as described in Figure 6.1. This chapter
will discuss each of the strategies and show how EBBS uses them to avoid the twelve correctness
issues we’ve identified in Soar’s chunking mechanism.

81

1. Acquire

and

Integrate

Missing

Knowledge

2. Selective
Specialization

4. Modify

Architecture

To Achieve a

Necessary

Condition of OPL

5. Detect and
Optionally Prevent

C1-1. Dependent on dynamically-generated knowledge (multiple)

C1-2. Dependent on operator selection knowledge

C1-3. Dependent on promoted knowledge

C1-4. Dependent on implicit knowledge

C1-5. Dependent on knowledge from subgoals that do not explain results

C1-6. Dependent on knowledge retrieved from LTM multiple times

C1. Behavior Trace Does Not Explain All Dependencies

C2-1. Requires that a calculation meets a constraint

C2-2. Conflates a disjunction of contexts

C2-3. Generates knowledge structures linked to long-term memory structures

C2. Reasoning That Is Not Expressible in a Single Rule

C3-1. Dependent on an operator selected probabilistically

C3-2. Dependent on knowledge recalled from LTM using opaque mechanism

C3-3. Dependent on knowledge recalled from a changing LTM

C3. Reasoning That Is Not Reliably Repeatable

Correctness IssuesStrategies

Figure 6.1: Applying the Five Strategies of EBBS to the 12 Correctness Issues.

6.1 Strategy 1: Acquire Missing Knowledge and Integrate

One of the key differences between a behavior trace and an explanation trace is that a behavior
trace is an approximate description of all of the factors that contributed to a proposition. If that de-
scription is inadequate and does not provide a complete delineation of everything that contributed
to the result, an online procedural learning algorithm can learn an overgeneral and hence incorrect
rule.

In this section, we discuss one of the more straightforward ways an explanation can be inade-
quate: missing dependencies. These are cases in which the behavior trace does not describe all
necessary dependencies between the agent’s knowledge structures and its subgoal reasoning. The
following three sub-sections will discuss the three classes of situations we’ve identified in the Soar
architecture in which missing dependencies can occur. In each of them, EBBS acquires the knowl-

82

edge by building architectural instantiations or augmenting existing instantiations that describe the
missing dependencies. It then integrates them into the online learning process by adding the new
instantiations to the behavior trace.

6.1.1 Case 1: Dynamically-Generated Knowledge

Knowledge structures in an agent’s working memory arise in one of two ways. The first mechanism
is the agent’s procedural memory: knowledge structures are created when the conditions of a rule in
the agent’s procedural matches the current state of working memory and transform the knowledge
that matched its conditions into new structures.1 The second mechanism is when the architecture
creates knowledge structures dynamically at run-time in response to agent execution. Specifically,
Soar creates the following knowledge structures dynamically:

• Subgoal Meta-knowledge

Soar automatically augments the subgoal with several features that describe the nature of the
supergoal impasse that gave rise to the subgoal.

• Long-term Knowledge

In response to requests from the agent, Soar creates knowledge structure in working memory
based on knowledge structures stored in either its semantic or episodic memory store.

• Dynamic Actions

Cognitive architectures often have special-purpose functions that can be used in an action
of a rule to dynamically generate knowledge structures. For example, Soar has a deep-copy

function that allows an agent to submit a single Soar identifier to create a new knowledge
structure that is a copy of the entire sub-graph of working memory rooted at that Soar iden-
tifier. Another example of a dynamic action is Soar’s math functions, which create new
working memory elements by performing mathematical operations on a set of input parame-
ters. Dynamic actions are essentially black boxes to an online procedural learning algorithm.

Solution: Describe Missing Dependencies

1The mechanics by which new knowledge structures are created in working memory is a bit more complicated and
has an intermediate layer. The actions in a rule create data structures called preferences that assert desired working
memory changes. Those preferences are later resolved into actual working memory changes. This additional layer
of processing allows Soar to handle multiple justifications for a working memory element, including ones that may
conflict. For simplicity’s sake, we ignore preference memory in these discussions unless they play a meaningful role
in the problem.

83

Classical chunking can learn incorrect knowledge in agents whose rules test or create dynamically-
generated working elements. In the first two cases, subgoal meta-knowledge and long-term knowl-
edge, the behavior trace does describe the implicit dependencies between dynamically-generated
working memory elements and the supergoal structures that they are dependent on. In the third
case, dynamic actions, an instantiation of the rules exist but they do not completely describe how
the knowledge structures created by the actions are dependent on the contents of working memory
from which their values were derived. Without something in the behavior trace that describes these
missing dependencies, classical chunking may learn a rule that does not test all of the knowledge
structures that gave rise to the reasoning that the algorithm was attempting to summarize and hence
is overgeneral and incorrect.

To remedy this deficiency, EBBS creates special architectural instantiations for any knowledge
structures that are automatically or dynamically created by the architecture. These architectural
instantiations describe all dependencies that exist between those architecturally-created WMEs
and the supergoal data structures that they are dependent, which allows EBBS to learn knowledge
which is not overgeneral.

We will now describe how this approach was applied to Soar’s dynamically generated knowledge
structures.

6.1.1.1 Case 1 Example 1: Subgoal Meta-knowledge, the ˆimpasse and ˆitem features

Whenever an impasse occurs that leads to a subgoal, Soar automatically creates knowledge struc-
tures in the subgoal to describe the impasse. For example, Soar always creates an ˆimpasse

feature that indicates which type of impasse occurred. Because most impasses are attempting to
resolve a situation where at least one operator is proposed in the supergoal, Soar also creates one
or more ˆitem features for each operator involved in the impasse. For example, when an agent
faces a tie impasse, it has two or more operators are under consideration, so Soar creates an ˆitem
feature for each one. Similarly, when an agent faces an operator no-change impasse, which occurs
when an agent has selected an operator but does not have any rules that will apply the operator in
the current situation, Soar creates a single ˆitem feature for the stalled operator.

To describe what an architectural instantiation looks like, consider the following example in which
an agent had a tie between operators O1 and O2 in goal S1, which caused Soar to spawn a new
subgoal S2 with the dynamically-generated features:

(S2 ˆimpasse tie)

(S2 ˆitem O1)

(S2 ˆitem O2)

84

Clearly, (S2 ˆitem O1) and (S2 ˆitem O2) are dependent on the proposed operators O1
and O2 in the superstate.

Solution

To describe these dependencies, both EBBS and classical chunking add architectural instantiations
that explicitly describes the dependencies behind each of those features.2 Figure 6.2 shows the
architectural instantiations created for each of the three aforementioned dynamically-generated
subgoal features.3

 (S2 ^superstate S1)
 (S1 ^operator O1 +)
 -->
 (S2 ^item O1)

 (S2 ^superstate S1)
 (S1 ^operator O2 +)
 -->
 (S2 ^item O2)

(S2 ^item O2)

(S2 ^item O1)

Architectural WMEs Architectural Instantiations

Figure 6.2: Architectural instantiations that explain subgoal meta-knowledge.

6.1.1.2 Case 1 Example 2: Semantic and Episodic Memories Retrievals

In this example, we describe one of the simpler reasons that chunking can learn incorrect knowl-
edge when summarizing reasoning that tests knowledge that was retrieved from a long-term mem-
ory store. To do that, though, we must describe some basic of the basic mechanics of Soar’s two
long-term memory (LTM) systems, semantic memory and episodic memory, and how they differ
from short-term working memory (STM or WM).

Semantic memory contains a declarative representation of the agent’s long-term abstract knowl-
edge. Soar places minimal constraints on how the knowledge in semantic memory is structured.
In contrast to STM, which can be represented as a single directed graph, because all knowledge

2The only new addition that EBBS makes is that it generates identities for the elements of the architectural
instantiation.

3The + symbol in the figure is special syntax that allows a condition to match an operator that is proposed but not
selected.

85

structures are required to be connected, directly or indirectly, to a goal node, the knowledge in
LTM is a directed graph that may contain an arbitrary number of disconnected sub-graphs.

Soar’s other LTM system, episodic memory, periodically stores a copy of an agent’s working mem-
ory to the episodic memory store. This provides an agent with a history of its previous experiences
to reason over. We will focus on semantic memory, because some the correctness issues in this
chapter only involve it.

Semantic memory is composed of long-term working memory elements (LTMEs) which use their
own set of transient identifiers called long-term identifiers (LTIs), to group features. We will
explain long-term identifiers work and why they pose a significant problem for Soar’s chunking
mechanism to Section 6.3.1. In this section, we will describe how an agent is able to reason over
the LTMEs in semantic memory.

As we know from Section 3.1, an agent’s rules can only test knowledge structures in relation to a
goal or subgoal. Given that constraint, how does an agent reason over the knowledge in semantic
or episodic memory whose contents are in a separate system not connected to an agent’s goal
structures? In short, an agent cannot access the contents of LTM directly. To utilize the knowledge
structures in a LTM like semantic memory, the agent must make a request to the architecture,
asking it to bring the desired long-term memory into short-term memory where it can be reasoned
over by the agent’s rules.

Specifically, an agent creates a request by creating a set of WMEs that describe what it wants. It
then connects that description to a special, architecturally created WME called the SMEM link
that is added to every goal node. The Soar architecture monitors the SMEM link for long-term
memory queries. When Soar finds one, it will attach a set of WMEs that correspond to the semantic
knowledge requested to the SMEM link. Once the long-term knowledge is in working memory,
the agent’s rules can then match against the knowledge producing new inferences. Through this
process, the agent is able to reason, albeit indirectly, on the content of its semantic memory.

There are two types of semantic memory requests that an agent can make. The first type is a query,
which is a request that provides Soar with a partial description of the knowledge the agent wants. In
response to a query, Soar will attempt to find all knowledge structures in semantic memory that best
matches that description. If at least one structure is found that satisfies the query, the best match
is then “moved” to working memory. More accurately, Soar creates a set of WMEs that mirror
the LTMEs that best matched the query. The second type of semantic memory request is called a

retrieval and occurs when an agent knows the root node of which semantic memory it wants.4 In

4The agent may have the identifier of a semantic memory node because it previously retrieved that node using a
query. It can also occur when the agent previously stored a structure in working memory into semantic memory, which
converts each STI into a LTI.

86

these cases, the agent submits a retrieval command containing the LTI that it is interested in. Soar
will then create WMEs in STM that correspond to all of the LTMEs that are rooted in that LTI, i.e.
all of its children LTMEs.

Now that we have described the basics of Soar’s long-term memory systems, we describe one of
the situations where chunking may learn incorrect knowledge. This problem occurs when rea-
soning in the subgoal tests knowledge that is retrieved from a semantic memory command also

issued in the same subgoal. (In other words, the agent issues a semantic memory request to the
SMEM command link in a subgoal instead of one in a higher-level goal.) The problem is that the
structures generated by long-term memory retrievals are dynamically-created by the architecture,
so there is no computational accounting of any dependency between the context of the query and
the knowledge retrieved. Because the request was made in the subgoal, Soar attaches the LTM
structures directly to the subgoal. Because the knowledge is subgoal knowledge, chunking will
ignore the conditions that tests the recalled knowledge when it summarizes the subgoal and will
not include them as conditions of the chunk. From the online procedural learning algorithm’s per-
spective, a LTM recall is the equivalent of knowledge that just magically appeared in memory for
no reason. If an online procedural learning algorithm attempts to summarize reasoning that tests
that knowledge without including the necessary conditions for that knowledge to exist in memory,
the learned rule may be ignoring necessary aspects of the context, which means the rule can be
considered over-general and incorrect.

Solution

Both EBBS and classical chunking handle this problem by adding an explanation for why the
semantic memory structures were created in working memory by creating an architectural instanti-
ation for any structures recalled by semantic or episodic memory in a subgoal. These architectural
instantiations provide a description of the features that needed to exist to initiate the acquisition
of the long-term knowledge that was used in the behavior trace. (If the rationale for the query is
dependent on supergoal knowledge – the query would only have been performed if certain con-
ditions in the supergoal were met – then the knowledge retrieved from long-term memory should
also be dependent on those conditions.) The left-hand side conditions of one of these architectural
instantiations are the WMEs that matched the rule that created the query, and the right-hand side
effects of the instantiation are the LTM structures that were added to the subgoal in response to the
query. By backtracing through this instantiation, the online procedural learning algorithms is able
to learn correct rules that summarize the reasoning that eventually led to the query.

The key difference between the architectural instantiations created by classical chunking and EBBS
is that the EBBS version creates the appropriate identities for the elements of the architectural
instantiation.

87

An Architectural Solution

In this section, we explain why we did not pursue another, arguably simpler, solution, which is to
modify the architecture so that subgoal retrievals of LTM is not possible. If we remove the ability to
retrieve knowledge structures from LTM at multiple levels of the hierarchy and instead had a single
SMEM link on the top goal that the agent must use for all semantic memory recalls, this problem
simply wouldn’t exist. All long-term knowledge would be accessed through the supergoal, so it
could never be ignored as subgoal knowledge. So, why did we not do that?

The short answer is that some research projects implement their secondary learning mechanisms
using techniques that require subgoal semantic memory recalls. For example, some agents pro-

ceduralize a recall by retrieving a LTM into a subgoal, testing a cue in the supergoal and then
returning the LTM structure as a result. By doing this, the agent learns a rule that, in a future
similar situation, can create the LTM structure directly into working memory without paying the
computational and time costs of a semantic memory access. Other agents retrieve a knowledge
structure from semantic memory directly into the subgoal so that they can use the information
in their reasoning without it appearing in the learned rules that summarize the reasoning. In other
words, subgoal retrievals of LTMs provide a way to intentionally exclude conditions from a learned

rule, which is a very powerful capability. This allows researchers to implement a myriad of other
forms of secondary, slower online procedural learning mechanisms. In fact, it’s so powerful a
technique that Stearns (Stearns et al., 2017) was able to use it to implement an entirely different
procedural learning algorithm called PRIMS using EBBS as the underlying engine.

6.1.1.3 Case 1, Example 3: Rules with Dynamic Actions

In some sense, rules that use dynamic action are creating a new rule at run-time that is based on
structures that exist in working memory. This makes rules with dynamically-generated actions
different from the previous two cases. Unlike subgoal meta-knowledge and long-term memory
retrievals, they come into existence when an agent rule matches, so they already have a normal
instantiation. Consequently, they do not need a new architectural instantiation. For example,
Figure 6.3 shows an instantiation that is created when a rule matches that uses the deep-copy
action to copy a working memory structure in the supergoal.

88

sp {rule1
 (state <s> ^superstate <ss>)
 (<ss> ^object <obj>)
 -->
 (<s> ^copy-of-object (deep-copy <obj>)}

(S2 ^superstate S1)
(S1 ^object A1)
-->
(S2 ^copy-of-object C1)
(C1 ^feature1 23)
(C1 ^feature2 33)
(C1 ^sub-object C2)
(C2 ^sub-feature1 45)
(C2 ^sub-feature2 91)

(S1 ^object A1)
(A1 ^feature1 23)
(A1 ^feature2 33)
(A1 ^sub-object A2)
(A2 ^sub-feature1 45)
(A2 ^sub-feature2 91)
(S2 ^superstate S1)

Working Memory

Rule

Resulting Instantiation

Figure 6.3: A rule with a dynamic action and the instantiation it leads to.

To explain the missing dependencies and learn correct rules, EBBS modifies the instantiation by
adding new conditions that map to each of the dynamically-created actions, as shown in Figure
6.4.

sp {rule1
 (state <s> ^superstate <ss>)
 (<ss> ^object <obj>)
 -->
 (<s> ^copy-of-object (deep-copy <obj>)}

(S2 ^superstate S1)
(S1 ^object A1)
-->
(S2 ^copy-of-object C1)
(C1 ^feature1 23)
(C1 ^feature2 33)
(C1 ^sub-object C2)
(C2 ^sub-feature1 45)
(C2 ^sub-feature2 91)

(S1 ^object A1)
(A1 ^feature1 23)
(A1 ^feature2 33)
(A1 ^sub-object A2)
(A2 ^sub-feature1 45)
(A2 ^sub-feature2 91)
(S2 ^superstate S1)

Working Memory

Rule

Resulting Instantiation
(S2 ^superstate S1)
(S1 ^object A1)
(A1 ^feature1 23)
(A1 ^feature2 33)
(A1 ^sub-object A2)
(A2 ^sub-feature1 45)
(A2 ^sub-feature2 91)

-->
(S2 ^copy-of-object C1)
(C1 ^feature1 23)
(C1 ^feature2 33)
(C1 ^sub-object C2)
(C2 ^sub-feature1 45)
(C2 ^sub-feature2 91)

Resulting EBBS Instantiation

Figure 6.4: EBBS adds conditions to an instantiation with dynamic actions.

6.1.1.4 Case 1, Example 3: Rules with Dynamic Actions (Math Functions)

Another example of a dynamic action is a math function, which are functions used in the right-
hand side of a rule to create a WME that contains element(s) that are mathematical functions of
input elements matched in the conditions. Since DIGU now provides the ability to generalize over
numerical reasoning, EBBS should now be able to learn rules with math functions. To do this,
EBBS needs more than what is provided by the instantiations used by classical chunking, which

89

did not describe either the math functions or the dependencies to their parameters.5

EBBS adds the ability to learn rules with RHS math functions by building instantiations that in-
clude right-hand side functions. These instantiations describe the dependency between the argu-
ments of the function and numerical elements in the conditions. Figure 6.5 compares a rule learned
from an EBBS instantiation of a rule that uses a math function with one created by classical chunk-
ing.

—- Online Procedural Knowledge Learning —

sp {calc_coefficient
 (state <s> ^superstate <ss>)
 (<ss> ^a <a>)
 (<ss> ^b)
 (<ss> ^n <n>)
 (<ss> ^t <t>)
 (<ss> ^last-t <last-t>)
 (<ss> ^total <tot>)
 (<ss> ^constants.pi <pi>)
 -->
 (<s> ^coefficient (+ (* <a> (cos (/ (* 2 <pi> <n> <t>) (* <tot> (- <t> <last-t>)))))
 (* (sin (/ (* 2 <pi> <n> <t>) (* <tot> (- <t> <last-t>)))))))}

 (S2 ^superstate S1)
 (S1 ^a 1)
 (S1 ^b 2)
 (S1 ^n 3)
 (S1 ^t 4)
 (S1 ^last-t 3)
 (S1 ^total 5)
 (S1 ^constants.pi 3.14)
 -->
 (S2 ^coefficient (+ (* 1 (cos (/ (* 2 3.14 3 4) (* 5 (- 4 3)))))
 (* 2 (sin (/ (* 2 3.14 3 4) (* 5 (- 4 3)))))))}

Rule with RHS Math Function

Classical Instantiation EBBS Instantiation

 (S2 ^superstate S1)
 (S1 ^a 1)
 (S1 ^b 2)
 (S1 ^n 3)
 (S1 ^t 4)
 (S1 ^last-t 3)
 (S1 ^total 5)
 (S1 ^constants.pi 3.14)
 -->
 (S2 ^coefficient 0.54)}

Rule Learned by Chunking Rule Learned by EBBS

sp {classic*calc*chunk
 (state <s> ^a 1)
 (<s> ^b 2)
 (<s> ^n 3)
 (<s> ^t 4)
 (<s> ^last-t 3)
 (<s> ^total 5)
 (<s> ^constants.pi 3.14)
 -->
 (<s> ^coefficient 0.54)}

sp {ebbs*calc*chunk
 (state <s> ^a <a>)
 (<s> ^b)
 (<s> ^n <n>)
 (<s> ^t <t>)
 (<s> ^last-t <last-t>)
 (<s> ^total <tot>)
 (<s> ^constants.pi <pi>)
 -->
 (<s> ^coefficient (+ (* <a> (cos (/ (* 2 <pi> <n> <t>) (* <tot> (- <t> <last-t>)))))
 (* (sin (/ (* 2 <pi> <n> <t>) (* <tot> (- <t> <last-t>)))))))}

—- Rule Match —

Figure 6.5: How EBBS provides the capability to learn rules that use RHS math functions.

While these new instantiations now properly describe the math function and its dependencies,
which allows EBBS to learn rules with math functions that chunking could not, they also intro-
duced a new correctness issue. Specifically, EBBS can learn an incorrect rule if a rule with a RHS

5This made perfect sense at the time because we knew the algorithm’s heuristic-based generalization could not
generalize any elements that matched a numerical symbol, so there was no benefit to including RHS math functions in
an instantiation.

90

math function is used to create an intermediate value that another subgoal rule in the behavior
trace later tests. We posit that the underlying challenge behind this issue is that EBBS is attempt-
ing to learn something that is not expressible in Soar’s production syntax. This will be discussed
in Section 6.2.1.

6.1.1.5 How EBBS Integrates Architectural Instantiations from 1A, 1B, 1C into online pro-
cedural learning

The previous three sections describe how EBBS accounts for missing dependencies by creating
architecturally-created rule instantiations for rules that create dynamically-generates WMEs. To
utilize these new dependencies into the online procedural learning process, EBBS then adds the
architectural instantiations to the subgoal’s instantiation graph. EBBS does this by providing a
connection between any condition in the trace that tests one these WMEs described in the previous
sections to its corresponding architectural instantiation.

As EBBS creates and adds these architectural instantiations to the instantiation graph, it must also
determine how to assign identities to the elements of the instantiation. Unlike typical instantiations,
architectural instantiations do not provide that information because they don’t have an underlying

rule that contains variables which describes which elements are generalizable and which elements

are not. To handle this, EBBS manually assigns and propagates identities to all of the elements of
the architectural instantiation depending on the nature of the particular case.

For subgoal meta-knowledge, assigning identities to elements of the instantiations is straightfor-
ward; those rules only test supergoal knowledge, so EBBS assigns new identities to each element.

For long-term knowledge retrievals, the conditions of the rule are assigned identities the same way
that a standard rule does: a condition that test local knowledge has an identity propagated to it,
while a condition that test supergoal knowledge has new identities assigned. The rule’s actions,
which create new knowledge structure that mirrors the one requested from LTM, will get new
identities since they are not based on any existing structures in working memory.

For dynamically created actions, like those of deep-copy, assigning identities is a bit trickier be-
cause the structure copied could be subgoal knowledge, supergoal knowledge or even a combi-
nation of the two. To handle this, EBBS assumes two things based on the semantics of what a
deep copy should do: first, that every element in a dynamic condition or action is generalizable,
second, that the identities of each dynamic action maps to the same identities as its correspond-
ing dynamic condition. So, EBBS first creates or propagates an identity for each element of the
dynamically-created conditions; it does this based on whether the condition matched subgoal or
supergoal knowledge. EBBS then assigns the same identities to each element of the corresponding
dynamic actions. (The identities in the non-dynamic conditions and actions are assigned normally

91

based on the initial rule match.)

Adding these architectural instantiations to the behavior trace and assigning/propagating identities
to each element provides the missing dependencies that EBBS needs. When EBBS backtraces
through these new instantiations, it will add conditions to the new rule that will enforce the depen-
dencies that were necessary for the original reasoning.

6.1.2 Case 2: Operator Selection Knowledge

Operator selection knowledge (OSK) is the knowledge used to choose an operator from a set of
potential operators. One of the reasons why OSK poses a problem for procedural learning is that,
unlike typical rules that add and remove knowledge structures from working memory, operator
selection rules create a different type of knowledge, preferences, which are added to preference
memory. Specifically, there are six different types of preference in Soar. Some of them indicates a
unary desirability for a single operator (acceptable, best, worst, required, prohibited, indifferent);
others indicate a relative desirability between two operators (better, worst, equal/indifferent); and
one preference is used to set numerical desirability preference that can be used to decide an operator
probabilistically (indifferent). The following are examples of preferences:

(S2 operator O1 > O2)

(S2 operator O1 = O3)

(S2 operator O3 = 0.22)

The first preference indicates operator O1 should be preferred over O2. The second preference
indicates that the agent should be indifferent between O1 and O3, all other things being equal.
And the third preference assigns a numerical value to the desirability of O3 to 0.22.

Because operator selection rules do not create working memory structures and the behavior trace is
a history of how rules changed working memory, operator selection knowledge is not described in
the behavior trace. That means that, even though operator selection knowledge was used to effect
reasoning in the subgoal, chunking does not include it in its analysis.

When chunking was first developed, this was not viewed as a problem. The philosophy at the
time was that operator selection rules were used only to improve the efficiency of search and
should not affect its validity. In other words, the path of operator selections and applications
from an initial state in a subgoal to a result would always have all necessary tests in the operator
proposal conditions and any goal test, so only those items would need to be summarized. The
idea was that in a properly designed agent, a subgoal’s operator evaluation preferences lead to a
more efficient search of the space but do not influence the correctness of the result. As a result, the

92

knowledge used by rules that produce such evaluation preferences should not be included in any
chunks produced from that subgoal. And if that is the case – the operator selection rules are used
purely to choose search paths that are more likely to lead to a solution – chunking does indeed
learn correct rules.

In practice, it is common for agents to use general criteria to propose operators and then use
operator selection rules to ensure that only operators that satisfy necessary goal requirements are
considered. Since those rules test aspects of the situation that are required for the goal to be
achieved, the trace must show how the agent’s reasoning is dependent on the operator selection
rules that were used to select the operators in the subgoal. Doing so will allow future summaries
of the subgoal to include conditions for the superstate knowledge tested by the operator evaluation
rules. We describe how EBBS integrates rules that create preferences into a behavior trace of rules
that does not describe how preferences are used is described in Section 6.1.2.2.

Online procedural learning algorithms face a second and much more difficult challenge when incor-
porating operator selection knowledge into the rules it learns. This challenge is that the algorithm
must analyze Soar’s preference resolution semantics, the algorithm that determines how a set of
preferences interact to choose a winner. How a set of these varied preferences determine which op-
erator to select is a complex, multi-stage process. It is not entirely clear how an online procedural
learning algorithm should analyze that process to determine which preferences play a necessary

role in an operator selection. Whether a preference is relevant is highly dependent on the other
types of preferences that exist at the time; for example, a better preference may not be relevant
if another rule gives a best preference to an operator. In Section 6.1.2.2, we describe how EBBS
analyzes operator selection semantics to determine which preferences to include in a learned rule.

6.1.2.1 Solution: Analyzing and Incorporating Operator Selection Knowledge

EBBS handles this issue by tracking what we call Relevant Operator Selection Knowledge
(ROSK) for every operator selected in a subgoal and dynamically integrating it into the behavior
trace. Relevant operator selection knowledge is the set of necessary operator evaluation preferences
that led to the selection of an operator in a subgoal.

EBBS builds a ROSK set for an operator every single time the agent chooses an operator from a set
of proposed operators. It does this by analyzing the operator preferences involved in the selection
of the operator to determine which preferences played a necessary role.

To understand how EBBS determines which of those preferences to include in the ROSK, we must
describe the preference resolution algorithm that Soar uses to choose an operator. This algorithm
consists of a sequence of seven steps, each of which handles a specific type of preference. At each
step, a preference semantics is applied that incrementally filters the candidate operators. When the

93

set is reduced to a single candidate, it is selected as the operator. At each of these steps, EBBS
may add some of the preferences that the resolution algorithm is processing to the ROSK set based
on what role those preferences played in that step. For example, all necessity preferences (prohibit
and require) are added to the ROSK set in the first step since they inherently encode the correctness
of whether an operator is applicable in a problem space. In contrast, some desirability preferences
(rejects, betters, worses, bests, worsts and indifferents) are only included in the ROSK if they
play a necessary role in the selection of the operator. The philosophy we used in this work is that a
preference is necessary if removing the preference could lead to a different operator being selected.

6.1.2.2 How EBBS Determines Which OSK Preferences are Relevant

Soar’s preference resolution algorithm analyzes the set of all operator preferences currently under
consideration in a goal. There are six steps to the algorithm, each of which analyzes one type of
preference.6 The algorithm starts with a list of candidate operators and then iterates through all
preferences in memory. As it iterates through the preference types, it removes candidate operators
as necessary. The algorithm returns either a winning operator or, if it can’t determine a winner, an
impasse type with a list of tied or conflicting operators.

The following outline describes the logic underlying the algorithm. At each step, we (1) define the
preference type will be iterated over and analyzed in that step, (2) describe how Soar uses that type
of preference to select an operator and (3) describe which of those preferences EBBS chooses to
add to the ROSK set and why.

Note that the algorithm only proceeds to the next step if there is more than one candidate operator
left. If one or no candidate is left, the algorithm terminates.

1. Require Preferences

A require preference indicates that an operator must be selected if the goal is to be achieved.

Soar If there is exactly one candidate operator with a require preference and that candidate
does not have a prohibit preference, preference semantics terminates and that candidate
is returned as the winner.

ROSK If an operator is selected based on a require preference, that preference is added
to the ROSK. The logic behind this step is straightforward: the context of the require
preference directly resulted in the selection of the operator and should be included in
any rules that summarize reasoning dependent on that operator.

2. Prohibit/Reject Preferences

6In some cases, a step analyzes two closely related preferences, for example better and worse preferences.

94

A reject preference indicates that an operator is not a candidate for selection, while a pro-
hibit preference states that the value cannot be selected if the goal is to be achieved.7

Soar This step removes from consideration any candidate operators that have a prohibit
or reject preference. If only one candidate operator remains, preference semantics
terminates and that candidate is returned as the winner.

ROSK If there exists at least one prohibit or reject preference, all prohibit and reject pref-
erences for the eliminated candidates are added to the ROSK. The logic behind this
stage is that the conditions that led to the exclusion of the prohibited and rejected can-
didates is what allowed the final operator to be selected from among that particular set
of surviving candidates.

3. Better/Worse Preferences

Better and worse preferences indicate that one operator should be preferred over another.

Soar This step removes any candidates that are worse than another candidate.

ROSK For every candidate that is not worse than some other candidate, add all better/worse
preferences involving the candidate. The logic behind this step is that these better/worst
preferences allowed the candidate operator to survive this step and eventually be cho-
sen.

4. Best Preferences

A best preference indicates an operator should be chosen over all other operators under
consideration.

Soar If at least one remaining candidate has a best preference, this step removes any can-
didates that do not have a best preference. If no best preferences exist, this step is
skipped.

ROSK Add any best preferences for surviving candidates to the ROSK.

5. Worst Preferences

A worst preference indicates an operator should only be chosen if no other operators are
currently under consideration.

Soar This step removes any candidates that have a worst preference. If all remaining candi-
dates have worst preferences or there are no worst preferences, this step has no effect.

7While there is a slight difference between the two preferences, we can consider them equivalent for this
discussion.

95

ROSK If any remaining candidate has a worst preference which leads to that candidate
being removed from consideration, that worst preference is added to the ROSK. The
underlying logic is that part of the reason that the winning operator was selected was
that other candidates were removed from consideration by these worst preferences.
Hence, the context that led to those worst preferences should be included in any rules
that summarize reasoning dependent on that operator.

6. Indifferent/Numerical Preferences

A unary indifferent preference indicates that an operator is as good a choice as any other
expected alternative. A binary indifferent preference indicates that an operator is as
good a choice as another operator. A numerical indifferent preference assigns a prefer-
ence value to an operator that can be used in tandem with whatever exploration policy
is set to select amongst a set of operators that all have numerical preferences. Numeric
preferences can be used to select operators probabilistically or as the basis for Soar’s
reinforcement learning mechanism.

Soar This step is a bit more complex than the others. It traverses the remaining candidates
and marks each candidate that has either a unary indifferent preference or a numeric
indifferent preference. This step then checks every candidate is not marked to see if it
has a binary indifferent preference with every other candidate. If one of the candidates
fails this test, then the procedure signals a tie impasse and returns the complete set of
candidates that were passed into this step. Otherwise, the candidates are mutually indif-
ferent, in which case an operator is chosen according to whatever indifferent selection
or exploration policy was selected for the agent.

ROSK Indifferent preferences are added to the ROSK set depending on whether any nu-
meric indifferent preferences exist.

(a) If there exists at least one numeric indifferent preference, then every numeric pref-
erence for the winning candidate is added to the ROSK. There can be multiple
such preferences. Moreover, all binary indifferent preferences between that win-
ning candidate and candidates without a numeric preference are added.

(b) If all indifferent preferences are non-numeric, then any unary indifferent prefer-
ences for the winning candidate are added to the ROSK. Moreover, all binary
indifferent preferences between that winning candidate and other candidates are
added.

The logic behind adding binary indifferent preferences between the selected operator
and the other final candidates is that those binary indifferent preferences prevented a

96

tie impasse and allowed the final candidate to be chosen by the exploration policy from
among those mutually indifferent preferences.

If, at any point in the process, a winner is chosen, the decision process will exit with a finalized
ROSK set for the selected operator. If a winner is not chosen and an impasse occurs, the ROSK set
is emptied.

Integrating the ROSK Set into the Behavior Trace

To utilize the knowledge encoded in the ROSK set when learning a rule, EBBS must somehow link
the ROSK set to the behavior trace. As previously mentioned, one reason that utilizing preference
knowledge when learning rules is not straightforward is the fact that the trace describes working
memory changes and operator selection rules do not create working memory structures. EBBS
handles this dilemma as follows. Whenever an instantiation is created for a rule that tests an
operator, EBBS also includes that particular operator’s ROSK set of preferences. So, as EBBS
backtraces through each rule instance in the trace, it will also branch out and backtrace through the
instantiations that created each of the ROSK preferences for the tested operator.8 By backtracing
through these additional set of rules at each step of the backtrace, EBBS incorporates the conditions
that led to the creation of the ROSK preferences.

Limitations

How we select which preferences to include in the ROSK is still an open question that needs
further study. While the logic underlying how we determine the ROSK set seems reasonable and
has produced agents that can learn the rules we hoped they would learn, it is certainly possible to
come up with different rationale that would lead to a different set of preferences in the ROSK.

This approach is also limited by the fact that operator selection knowledge is non-monotonic. A
single rule can fire and change the relevancy of the other rules in the OSK. Even though that
priority-shuffling rule did not match in the situation being learned form, it could have matched in
other contexts. An agent whose reasoning included OSK rules that interact in such ways may learn
incorrect rules.

As a result of these factors, we consider this aspect of the EBBS algorithm a work in progress. We
characterize this implementation as a first pass at exploring of the viability of the ROSK approach
in general and our preference semantics in particular.

8If the rule does not test an operator, the ROSK set will be empty and no additional backtracing occurs.

97

6.1.3 Case 3: Promoted Knowledge

In many agents, a single subgoal often returns multiple results to a supergoal before the impasse is
resolved. It is not uncommon for subgoal reasoning to build a knowledge structure in the subgoal,
return it as a result and then continue to use that structure in the subgoal for further reasoning. This
can pose a problem for Soar’s procedural learning algorithm. Specifically, chunking can learn an
incorrect rule if it attempts to summarize reasoning that augments or tests knowledge structures
that were previously returned as a result.

This problem can be more easily explained if we introduce the notion of knowledge promotion.
We will define knowledge promotion as follows. A knowledge structure in a subgoal is promoted
from local knowledge to supergoal knowledge when it becomes accessible to a supergoal. So,
every rule action that returns a result is doing one of two things: it is either (1) creating a new
knowledge structure directly in the supergoal or (2) connecting a local knowledge structure to an
existing supergoal structure, hence promoting it.

Knowledge promotion makes procedural learning difficult because working memory indicates that

the promoted knowledge is supergoal knowledge while the behavior trace only describes that

knowledge relative to the subgoal.

For example, consider a rule that tests a subgoal structure and returns it as a result. This rule
“promotes” the structure from subgoal knowledge to supergoal knowledge. After its promotion,
there will be two paths to the result: one in relation to the supergoal and one in relation to the
subgoal. At this point, any instantiation in the trace that tested the promoted structure in relation

to the subgoal becomes a problem. The online procedural learning algorithm will know that the
knowledge tested is supergoal knowledge but it will not know how to build conditions that describe
the knowledge relative to the supergoal, since the rule that matched only described the structure
relative to the subgoal.

Now consider what happens when another rule fires, tests the promoted structure relative to the
subgoal and returns a new result. Chunking will attempt to learn a rule by backtracing through
the trace that led to the result. During the backtrace, it will encounter the condition that tests
the promoted structure. It will look at the promoted WME and determine that it is accessible to
the superstate, so it adds it as a condition to the chunk it is building. What it won’t add are any
additional conditions that connect the promoted structure to the supergoal goal; this is because
the rules in the trace still only reference the structure in respect to the subgoal. Consequently,
chunking learns a malformed rule with a condition that is not connected to a goal node; this rule
is inherently incorrect because it can never match in any of the situations that original subgoal
reasoning applies in. In summary, chunking fails because it cannot determine how to specify

98

conditions that match the previously promoted structure in relation to the supergoal. This will
produce a rule with unconnected conditions, which are not only incorrect but impossible to add to
Soar’s production memory.

With classical chunking, this problem could only be avoided by modifying the agent’s original rules
so that they never test or augment the substructure of a previous result. In fact, whenever classical
chunking learned a malformed rule, it would suggest that the agent designer check whether the
agent may have inadvertently tested a previous result.9 The rules would need to be modified so
that the conditions of any rules that test the promoted knowledge are changed to test them relative
to the supergoal rather than the subgoal. Only with such changes would classical chunking be able
to learn a correct rule.

In the next section, we will discuss how EBBS is able to learn correct rules in such situation without
any modification of the agent’s reasoning using a new rule repair algorithm.

6.1.3.1 Rule Repair

If an unconnected action or condition is found when validating a learned rule, EBBS will know it
must have tested promoted knowledge and will attempt to repair the rule by adding new conditions
that provide a link from a goal node to the unconnected condition or action. To determine a
path to the promoted knowledge, EBBS examines the agent’s working memory and looks for the
promoted knowledge, starting at all goal nodes referenced in the malformed rule. It attempts to
find the shortest path from one of those goal nodes to the top element of the promoted knowledge,
which will be the soar identifier that matched the unconnected connection. Because there may be
multiple paths from a state to the unconnected identifier, EBBS does a breadth-first search to find
the one with the shortest distance. It will then create a set of conditions based on the set of WMEs
that provided the path from the goal node to the WME that matched the disconnected condition.
So, these new grounding conditions provide a path from a goal that is tested somewhere else in
the rule, to the unconnected condition or action. EBBS then variablizes those conditions in much
the same way that it variablizes the conditions it adds for dynamic actions as described in Section
6.1.1.3.

Note that while a repaired rule is correct, there’s a chance it may also be undergeneral. This
is because the conditions are based purely on what happened to be in working memory at that
point and nothing in the explanation dictated that particular path found during the search. The
chunk will only match future situations where the previous result can be found on that same path.
Fortunately, in most cases, we suspect that they won’t be undergeneral in practice. The rules are
only overspecialized when the knowledge in the supergoal is moved after the results is returned

9In some sense, that warning was classical chunking’s detect and prevent mechanism for this correctness issue.

99

but before a second chunk is learned, which seems like a peculiar edge case that is not likely to
happen. Even if such the rule learned was indeed overspecialized, new chunks can be learned
to handle other cases. If a similar situation is encountered in the future where the knowledge
structures end up in a different location relative to the supergoal, the chunk won’t fire, because the
WM-based grounding conditions won’t match; this should cause the agent to subgoal and learn a
new, similar chunk with a different set of grounding conditions. In most cases though, the path to
the previous result found by the search should exist, and a repaired rule should match in all of the
same situations that the original reasoning does.

A better approach might be to infer a path to the promoted knowledge by examining the rule that
previously promoted the knowledge. Because the final rule in that trace is the one that promoted the
knowledge, it must describe how it connected the knowledge to the supergoal. If EBBS could infer
the path from that rule, it could then repair the malformed rule by adding conditions that specify
that inferred path to the promoted knowledge. Though we did plan to experiment with this idea, we
assigned it a low priority since we already had the rule repair mechanism available from a different
correctness issue. Moreover, an algorithm that inferred the path from the first chunk learned would
generate the exact same conditions as those generated by rule repair, except in one edge case: the
repaired rule will be undergeneral only if another rule fires, after the knowledge is promoted but
before the second result is returned, and moves the knowledge around in the supergoal. A rare
case of undergenerality did not seem to warrant the effort it would take to add a significant new
mechanism.

6.1.4 Case 4: Implicit Knowledge

It can be difficult if not impossible to learn correct procedural knowledge when summarizing rea-
soning in a subgoal that is implicitly dependent on knowledge that is not encoded or a situation
that cannot be described easily. For this correctness problem, we acquire the missing knowledge
by making the implicit knowledge explicit. We’ve seen this strategy applied to a few problems
already. For example, user-defined singletons allow an agent engineer to describe domain-specific
uniqueness properties that they implicitly assumed while writing the agent’s rules. Moreover, sev-
eral of the solutions to missing dependencies in Section 6.1.1 could be described as examples of
making implicit knowledge explicit. In those cases, EBBS creates architectural instantiations that
explicitly define dependencies for subgoal meta-knowledge that agent engineers would previously
test because of the implicit knowledge they had about the semantics of that meta-knowledge.

6.1.4.1 Case 4, Example 1: Implicit Knowledge of Soar Operation

Consider an agent that needs to determine that all operators have applied in a goal. A convenient
way to do that is to allow all operators to be applied, wait for the impasse that occurs when no

100

further operators are available, which is called a state-no-change impasse. The agent can then use
a simple rule in the resulting subgoal that tests if the impasse type is state-no-change, and, if it is,
create a result in the supergoal indicating that operator exhaustion has been reached. Chunking
obviously does not have much to summarize in this case. Because the reasoning in the subgoal
is only dependent on the existence of the subgoal, chunking will learn the most overgeneral rule
possible, a rule with no conditions, which it will discard. Even though the rule was thrown out,
the superstate result, in this case a flag that indicates that operator exhaustion was reached, is still
created by the subgoal rule that matched. Any rule that is later learned by summarizing reasoning
that tests that exhaustion flag will be over-general since the rule will not contain any conditions
that ensures that the chunk will fire only after all others operators were first exhaustively applied.

A similar problem can occur when an agent uses a worst preference to make sure that an operator
is selected only after all other operator options have been exhausted. If this final operator then
produces a result that is implicitly dependent on it occurring after all other operators, it will be
overgeneral and incorrect because that requirement will not be captured in any of the conditions of
the learned rule.

To make the implicit knowledge explicit, EBBS could create an operator exhaustion feature in the
supergoal right before it creates the state-no-change impasse. Agents could then test that feature to
detect that all operators have been applied. Moreover, an agent that is designed to subgoal before
testing that feature could learn a rule that, in future similar situations, will fire after all operators in
the goal have been applied but before the state-no-change impasse is created.10

6.1.4.2 Case 4, Example 2: Testing the Absence of Knowledge Structures

Unfortunately, making implicit knowledge explicit may not always be possible. For example, con-
sider the case of learning a rule from a behavior trace that includes conditions that test for the

absence of a working memory elements in the subgoal. A chunk that summarized that subgoal
should not fire in situations that could give rise to the WME that violated the negative condition.
Since there is no practical way for chunking to generate a set of conditions that describe all possi-
ble situations in which such WMEs could be created, chunking can’t represent that aspect of the
problem-solving. Chunks learned from such traces have the potential to fire in situations where the
subgoal processing would not have occurred and consequently are incorrect.

In many cases, though, summarizing traces that include negative tests will generate rules that are
perfectly safe to use. Specifically, such rules are correct as long as no other rules exist that could
have created a WME that matched the negative condition in a hypothetical lower level goal.11 In

10Adding these new features is not yet implemented but is on the road map of future work.
11We say “could have” and hypothetical, because the chunk will fire before an impasse occurs and a subgoal is

spawned.

101

other words, summarizing traces with local negations will not lead to learning incorrect rules if the
only rules that create the prohibited WMEs are also subgoal rules that only test subgoal knowledge.

And this is why we describe this as an issue involving implicit knowledge. In some sense, all rules
learned from behavior traces that include tests for the absence of knowledge in the subgoal are
implicitly dependent on any supergoal rules that could potentially create knowledge that match the
negative condition(s), not existing. If no such supergoal rules exist, rules learned from the trace
will indeed be correct. If such rules do exist, then the chunks may incorrectly generate inferences
in situations where the original subgoal reasoning would not have. (Specifically, those chunks
should not fire whenever the conditions of rules that can create the prohibited WME match.) In
other words, an agent designer should only include such tests in the agents they write when they

have knowledge that such rules do not exist.

While we do not have an algorithmic solution to this problem, there is a workaround, as well
as a mechanism to help detect when that workaround is necessary. If the agent engineer knows
that a local feature that they have a negative test for can be created by a supergoal rule, they
can reformulate their rules so that they create the prohibited WME in the supergoal. This lets
them change the negative condition so that it test for the absence of knowledge in the supergoal

rather than the subgoal, which will allow both EBBS and classical chunking to learn a correct rule
that includes the negative condition. To help an agent designer figure out when this technique is
necessary, both chunking and EBBS provide a limited form of detect and prevent that detects when
it has summarized a rule that include a negative test of a local knowledge structure. It is limited in
the sense that it can detect when a local negation is used in a behavior trace but it cannot determine
whether that use is problematic or not. This mechanism also includes an option to prevent it from
learning rules based on traces that test local negations, but it is not enabled by default.

6.1.5 Case 5: Learning from Non-Learning Subgoals

In Section 5.9, we explained why chunking may not learn an optimally general rule from a trace
that tests knowledge previously generated by a non-learning subgoal. What we did not mention
was that those learned rules could also be incorrect. If the non-learning subgoal involves any of the
problematic types of reasoning that we describe in this chapter, the justification learned may only
provide a partial description of the context that led to the result. And, if the knowledge produced
by the justification is involved in a future learning episode in the supergoal, the new rule learned
would inherit the same incomplete description and lack of correctness.

To handle this problem, EBBS enables all of the correctness mechanisms described in this chap-
ter in non-learning subgoals. For example, EBBS adds the new architectural instantiations to the
behavior trace of non-learning subgoals. It also analyzes operator selection knowledge and back-

102

traces through them. EBBS will even perform rule repair on justifications if it finds disconnected
conditions, just like it does in learning subgoals. By utilizing all of its correctness mechanisms in
non-learning subgoals, EBBS ensures that it fixes any correctness issues before they are propagated
to a supergoal where learning is indeed enabled.

6.2 Strategy 2: Selective Specialization

Selective specialization is another technique EBBS uses to fix incorrect rules. If EBBS determines
that an aspect of an agent’s reasoning is problematic to generalize over, it sets the identity of the
involved elements to the null identity, which prevents generalization of those elements. While the
learned rule loses some generality, it gains correctness.

6.2.1 Case 1: Behavior Traces with Constraints on Intermediate Results

In many real-world systems, agents need to perform mathematical calculations using functions in
the actions of their rules to calculate them. Since the DIGU algorithm allows us to generalize over
all data types, EBBS is now able to learn more expressive rules whose actions perform arbitrary
right-hand side functions with variablized arguments. While this is a powerful capability, it does
introduce a correctness issue. If another rule in the chain of reasoning tests whether the output of
the function meets some mathematical constraint, chunking is not able to summarize the reasoning.

The underlying problem is that the chunking is attempting to learn a rule that summarizes reason-
ing that is not expressible in a single rule in the cognitive architecture’s production syntax. For
example, consider the case of one rule that used a RHS function to add two numbers. Now con-
sider another rule that matched the output of the RHS function, but only if it was less than 5. If the
second rule matched, it would return the total as a result. How could we encode the reasoning of
those two rules into one rule? Since Soar’s production syntax does not allow using RHS function
as constraints in conditions, there is no way to ensure that the two numbers add up to something
less than 5 in a single rule. In other words, there is no way to write a single rule that encodes “if (x
+ y) < 5, make this inference,” because there is no way to perform a calculation in a condition test.
So, even though it’s easy to encode this reasoning using two rules, chunking cannot summarize it
into one.

Solution: Selective Specialization of Constrained Intermediate Results

Because the chunk’s conditions can’t represent constraints on the output of intermediate RHS
functions, EBBS sets the identities of the variables that appear as arguments to the intermediate
RHS function to the null identity, as well as the identities in any conditions that test the output of
the RHS function. That ensures the output value of the RHS function is constant and guarantees

103

that any constraints in conditions that test the output of that RHS function will be met. While this
will make the learned rule more specific, it will also ensure that the rule is correct.

It is worth noting that strategy 4, modifying the architecture, could also be applied to this cor-
rectness issue. In this case, the architecture modification would be a new type of constraint that
allowed mathematical calculations, i.e. it would calculate the intermediate result during that match-
ing process to determine whether the rule should match. Another way that strategy 4 could also be
used is by changing the online procedural learning algorithm so that it learns two rules.12 In some
sense, this would be like partitioning the behavior trace and learning a rule for each partition.

6.2.2 Comments on Selective Specialization

Selective specialization is a technique that allows an online procedural learning algorithm to trade
some generality for correctness. Selective specialization is particularly easy to apply to different
correctness issues, which makes it an excellent placeholder mechanism that can be used by a
cognitive architecture until the correctness issue is better understood and a more effective technique
developed. In fact, that occurred in this project; previous versions of our online procedural learning
algorithm used selective specialization to handle several issues that we now have better solutions
for.

In some sense, classical chunking is a great example of using selective specialization as a place-
holder. Its straightforward generalization mechanism, which replaces all Soar identifiers with a
corresponding variable, is equivalent to selectively specializing every element of the learned rule
that did not test a Soar identifier. So, in some sense, chunking used a wide-spread form of selective
specialization as a placeholder mechanism to avoid some of the correctness issues that we have
described in this thesis, and, once it became possible to study the issue further, it replaced that
application of selective specialization with a more powerful architectural modification, the DIGU
algorithm.

We could also rephrase an argument made in 3.6.1 in these terms, by saying that classical chunk-
ing cannot be used by many agents because the generality-correctness trade-off it incurs through
selective specialization is too high and leads to overly specialized rules that do not provide benefits
to many agents.

12The architecture could use some sort of semaphore in the supergoal to make sure that the rules fire in sequence.

104

6.3 Strategy 4: Modify Architecture to Ensure Correct Learn-
ing

As described in Section 4.4, the fourth strategy EBBS utilizes is to modify mechanisms in the
architecture to ensure its processing does not violate one of the four necessary conditions for an
online procedural learning algorithm to learn correct rules, as described in Section 2.2. If the
change succeeds in making the processing of the cognitive architecture parsimonious with the
online procedural learning algorithm, the correctness issue can be avoided entirely.

As discussed earlier in this thesis, the first example of this strategy being applied to improve Soar’s
procedural learning can be found in the work behind Robert Wray’s 1998 thesis on ensuring consis-
tency in hierarchical architectures (Wray et al., 1996). In his research work, Wray described how
changes to the environment that occurred during problem-solving could lead to learning incorrect,
logically inconsistent rules. To eliminate this source of incorrect rules, Wray modified basic Soar
operation, namely how it manages subgoals, by adding a new architectural mechanism called the
Goal Dependency Set (GDS). (Wray and Laird, 2003) The GDS monitors knowledge dependence
in every subgoal to ensure that the reasoning in each is always consistent with higher-level knowl-
edge structures. By eliminating the possibility that a behavior traces will contain inconsistent
assertions, Wray’s GDS system eliminated the possibility that chunking would learn an incorrect,
non-contemporaneous rule that could never match.

In the next section, we describe how we modify a major component of the Soar architecture to allow
EBBS to learn correct procedural knowledge when knowledge structure retrieved from Soar’s long-
term memory systems interact in unusual ways across subgoals.

6.3.1 Long-term Memory Elements and Long-Term Identifiers

One of the most important differences between short-term and long-term memory systems is that
LTM is composed of long-term working memory elements (LTMEs) which use their own set of
transient identifiers called long-term identifiers (LTIs), to group features. Structurally, an LTME
is identical to a WME. An LTME also consists of three symbols: the long-term identifier, a unique
special symbol analogous to a typical Soar identifier, an attribute, which specifies a feature label,
and a value, which specifies either a constant value or another LTI.

Semantic memory only contains LTIs in its knowledge structures. In contrast, working memory

can contain both STIs and LTIs. When Soar creates knowledge structures in working memory in
response to a query or retrieval, it will use the same LTIs in the new WMEs it creates that were used

105

in the LTMEs that they were based on.13 LTIs are also created in short-term memory when an agent
requests that a WME is stored to LTM; Soar immediately converts all the STIs in the WME to be
stored to LTIs. Either way, an LTIs in short-term memory is, in some sense, a hybrid identifier that
indicates a structure is simultaneously in both memory systems. As will become clear in Section
6.3.2, it is this dual, hybrid nature that underlies the key problem that our online procedural learning
algorithms faces when trying to learn from knowledge retrieved from long-term memory stores.

6.3.2 Case 1: LTM Knowledge Structures Interacting Across Subgoals

When we began testing early versions of our online procedural learning algorithm with ROSIE,
a complex agent that learns by instruction and uses knowledge retrieved from long-term seman-
tic memory, we encountered a variety of show-stopping problems. Not only would ROSIE learn
incorrect rules, but it would often not achieve the same goals it could achieve when learning was
disabled. These issues were particularly challenging – we spent nearly two years analyzing them
and exploring solutions – because they could not easily be recreated and only occurred with our
most complex agents. To simplify this discussion, we will avoid describing the convoluted partic-
ulars of the variety of ways that this problem manifested itself and simply explain the underlying
issue.

The reason that Soar’s semantic memory model introduces a fundamental problem for Soar’s pro-
cedural learning algorithm is that knowledge structures can be simultaneously retrieved at multiple
levels of the goal hierarchy. If the same knowledge structure is retrieved by two different queries in
two different subgoals of the goal stack, unintended interactions can occur between the reasoning
in the two subgoals. In these cases, the two queries in the two subgoals will both return the same
long-term identifier. Because Soar identifiers are unique, the same structure will be connected to
both subgoals, which makes it difficult for chunking to summarize either subgoal. All rules that
test knowledge structures recalled from semantic memory in the subgoal must now be treated as
tests of supergoal knowledge; similarly, rules that augment knowledge structures recalled from
semantic memory in the subgoal must now be treated as results to the supergoal.

In some sense, multiple semantic memory recalls interacting with each other is a challenge for
the same reason that using promoted knowledge is a challenge. Consider what happens when a
knowledge structure is retrieved from semantic memory in a subgoal and is then retrieved again
by a different query in a higher-level goal. The moment that the knowledge is retrieved in the
higher-level goal, it has effectively been promoted to supergoal knowledge. The semantic memory
knowledge structures then become problematic for the same reason that a promoted chunk result is

13This design allows the agent to perform operations on semantic memory, for example updating the contents of
semantic memory by adding new structures and then re-storing it.

106

problematic. If chunking tries to summarize a behavior trace that utilizes that promoted knowledge,
it will know that it needs to create conditions that test the semantic memory structures in the learned
rule, but it will not how to build conditions to describe the knowledge relative to the supergoal
because the behavior trace only describes how to access that knowledge structures in terms of the
subgoal. Similarly, if a behavior trace augments one of these multiply-retrieved semantic memory
knowledge structures, it will detect that it is making knowledge available to the supergoal, but it
will not be able to build conditions from the trace that describe where that knowledge was added.

To make things even more difficult, the fact that these problems stemmed from interaction between
subgoals meant that these issues were highly dependent on the timing of the queries and the un-
expected coincidences between the reasoning at different levels of the goal hierarchy. This is why
we saw so many different manifestations of the problem, many of which were hard to recreate.

Episodic memory can also be accessed at any subgoal level, but it did not introduce any new prob-
lems for our online procedural learning algorithm. We posit that the reason that similar problems
did not occur is that episodic memory made a different design choice. Specifically, it did not utilize
hybrid symbols to indicate that a structure in working memory is also in episodic memory. Instead,
it generates new identifiers every time an historical episode is requested from episodic memory.
We did face a few problems learning from knowledge recalled from episodic memories, but they
all arose because a reconstructed episodic memory recreates any LTIs that existed in the agent’s
working memory at the time the episode was stored. In other words, they were just manifestations
of the same challenge we were facing learning directly from semantic memory knowledge. The
strategies we describe in the following section to handle these semantic memory related correctness
issues also eliminated the problem from occurring when using episodic memory.

6.3.2.1 Early Solutions

The problems caused by unintended interactions between semantic memory knowledge structures
across subgoals is another example of a correctness issue that occurs when a behavior trace does
not explain all dependencies. In this case, the missing knowledge is a description of how the
semantic memory structure is linked to a supergoal. To generate this missing description, our
early version of EBBS used rule repair. As discussed in 6.1.3.1, rule repair can be used to fix any
malformed rule with conditions that are not connected to a goal, which is exactly what happens
when chunking attempts to learn a rule in one of these problematic semantic memory cases.14

While this was a serviceable solution – the rules EBBS would learn would correctly summarize
the reasoning in the subgoal – the agents still had problems in many situations because the rules
were codifying unintended interactions between subgoals. In other words, agents were learning

14Despite the fact that rule repair currently only corrects issues that stem from traces that test promoted knowledge,
it was originally developed as a response to semantic memory issues.

107

rules that summarized and re-created undesirable, coincidental interactions between reasoning in
different subgoals.

Eventually, we realized that the real problem is that Soar’s model of semantic memory was in con-
flict with a core assumption of Soar’s online procedural learning algorithm, which is that knowl-
edge structures are created by rules and that dependence between reasoning and knowledge struc-
tures can be determined by examining a trace of rules. Chunking cannot summarize how subgoal
reasoning relates to a supergoal knowledge if subgoal knowledge can become supergoal knowl-
edge at any time without explanation. So, our solution was to fundamentally change how Soar
represents semantic memories in working memory so that each semantic memory retrieval is in-
dependent and does not interact with other retrievals. This change, which we describe in 6.3.2.2,
was successful and allowed us to completely eliminate both the unexpected interactions between
memory retrievals and the incorrect rules they gave rise to.

One may wonder why we didn’t eliminate this issue by simply removing the ability to retrieve
knowledge structures from LTM at multiple levels of the hierarchy. In other words, why didn’t we
just change the architecture so that there is a single SMEM link on the top level that the agent must
use for all semantic memory recalls? The answer is that it doesn’t completely solve the problem.
It would still be possible for an agent to “promote” subgoal knowledge by issuing a command
to store a short-term memory structure into semantic memory. After the structure is stored, Soar
replaces all of the short-term Soar identifiers in the stored structure to long-term identifiers, which
means that it’s now possible for reasoning in a supergoal to retrieve the local structure that was just
stored, which would lead to the same problematic situation we faced before. The problems would
be a lot less common, but they would still be possible. So, while having multiple SMEM links
does exacerbate this correctness issue to the point that it became extremely widespread, the real
underlying issue was the hybrid nature of long-term identifiers and our model of semantic memory.

6.3.2.2 Instance-Based Semantic Memory

Our ultimate solution was to replace Soar semantic memory system with a new model in which
every retrieval is an independent instance of a long-term memory structure. In this new model,
long-term identifiers do not appear in short-term memory at all; all semantic memory requests
made by an agent return knowledge structures that use standard Soar identifiers. For example, if
an agent performs two identical recalls in two different subgoals, Soar would return a set of WMEs
in each subgoal that are structurally identical but use different short-term identifiers. In our first
model of semantic memory, there was always a 1-to-1 relationship between a structure in LTM
and one in STM; in our new model, there can be 1-to-N relationships. We say that each of these
N knowledge structures is an independent instance of the long-term memory upon which they are
based, and we call the new system instance-based semantic memory.

108

A short-term instance of a LTM looks like any other set of WMEs, but underneath the hood,
it contains additional information. Specifically, Soar maintains meta-information that links each
short-term identifier in the recalled structure with the long-term identifier it was based on. While
these links are not directly inspectable by the agent, Soar keeps track of all of them so that instance-
based semantic memory can provide the same functionality that our previous hybrid model of
semantic memory provided. To do so, though, additional capabilities were needed that allow an
agent to test the long-term identity of a short-term knowledge structure in the condition of a rule.
For example, instance-based semantic memory introduces a new test that is only fulfilled when two
short-term working memory structures are instances of the same long-term structure. Specifically,
this new test compares whether a short-term identifier in a condition is linked to the same long-
term identifier as short-term identifier in another condition of that rule. Figure 6.6 lists all of the
new tests and actions that instance-based semantic memory adds.

Test Syntax Example Explanation
Equality: <variable> <s> ^foo <x> Feature foo is bound to <x> (and unconstrained)
Literal constraint: literal-value <s> ^foo 3 Feature foo must be 3
Disjunction constraint: << list of literals >> <s> ^foo << 2 3 >> Feature foo must be 2 or 3
Relative constraint: <>, >, >= <, <= Feature has relationship to either a literal-value or a variable

<s> ^foo <> <y> Feature foo must not have same value as <y> (bound elsewhere in rule)
<s> ^foo > 3 Feature foo must be greater than 3
<s> ^foo <= <y> Feature foo must be less than or equal to the value bound to <y>

<=> <variable> <s> ^foo <=> <y> Feature foo must not have same type as <y>

LTM constraint: @+, @- <s> ^foo { @+ <x> } Feature foo is bound to <x> and is linked to a LTM
@- <s> ^foo { @- <x> } Feature foo is bound to <x> and is not linked to a LTM

Relative LTM constraint: @ <s> ^foo { @ <y> <> <y> <x> } Feature foo is bound to <x>, is not the same identifier as <y> but is
linked to the same LTM that <y> is linked with

!@ <s> ^foo { !@ <y> <> <y> <x> } Feature foo is bound to <x>, is not the same identifier as <y> and is
not linked to the same LTM that <y> is linked with

Conjunctions of Constraints:

Syntax: { (test1) ... (test-n) }
Example: <s> ^foo { <> <y> > 3 << 4 6 >> <x> }
Explanation: Feature foo is bound to <x>, must not be equal to the value bound to <y>, must be greater than 3 and must be 4 or 6.

Figure 6.6: The new tests in the middle pane can be used in rule conditions to test how a short-term
WME is linked to a LTM.

With these new capabilities, instance-based semantic memory not only allows all of the same
types of reasoning that was possible with our old model of semantic memory, but it also makes
several other use cases possible or at least much easier. For example, it is now much easier to use
the same semantic knowledge when reasoning about multiple hypothetical situations, because the
engineer no longer needs to worry about the knowledge structures used in one hypothetical affects
the structures in a different hypothetical.

Instance-based semantic memory also eliminated correctness problems chunking had learning
rules when agents also used episodic memory. Those problems were essentially the same as the
semantic memory issues and arose because episodic memory would have a record of all LTIs that
were in the agent’s memory at the time the episode was recorded. The only unique aspect of this
version of the correctness problem is that the LTIs involved in the unexpected interaction with rea-

109

soning in another subgoal were acquired from an episodic memory recall rather than a semantic
memory recall.

6.3.3 Case 2: Subgoal Results Based on Long-Term Memory Structures

When discussing Soar’s taxonomy of correctness issues in Section 3.5, we described how many
correctness issues arose when Soar gained additional capabilities. The following correctness issue
is an example of that. This issue did not exist until we replaced Soar’s model of semantic memory
with an instance-based one.

EBBS may learn an incorrect rule when it summarizes subgoal reasoning that generates a result
which includes WMEs that are instances of LTMs, i.e. WMEs that were created in response to a
semantic memory request. While EBBS will learn a chunk that creates structurally identical WMEs
in future similar situations, those WMEs will not include internal, meta-knowledge that links it to
the LTM structures that the WMEs that were originally generated by the subgoal were linked to.
If the agent performs further reasoning that require that the LTM links exist – for example, the
rule may use one of the new semantic memory tests to test that two short-term working memory
structures were linked to the same semantic memory – the reasoning would match against the
original results but would not match against the WMEs produced by the chunk. That is a problem
because it could lead to different behavior. So, even though instance-based semantic memory
solved many of the problems that EBBS had learning from agents that reason over LTM, it also
introduced a new situation in which EBBS cannot learn a correct rule.

In Section 3.5, we also posited that our analysis of the underlying reasons for correctness issues
- violations of the four necessary conditions for correct behavior summarization – can help archi-
tectures identify new correctness issues. If we examine the problem in those terms, we can see
that this issue is an example of attempting to summarize reasoning that is not expressible in a sin-
gle rule, or in this case, any rule. The learned rule produces different behavior because it doesn’t
have the language to express one of the effects that the original subgoal reasoning brought about.
Specifically, the learned rule doesn’t have the language to create the invisible links between the
working memory structures it creates and the long-term memory structures they were based on.

Our Solution

To remedy this problem, we modified the expressibility of the architecture’s rule language so that
learned rules have the ability to effect the same changes that the subgoal reasoning did. Specifi-
cally, we added a new rule action that creates a link between a short-term working memory struc-
ture and a long-term one. At the end of a learning episode, EBBS will check if any of the WMEs
in a result are linked to LTM structures. For each WME that is linked, EBBS adds a RHS action to

110

the learned rule that will create a link between WME that the chunk adds and the LTWME that the
original result WME was linked to. When the learned rule matches, the standard RHS actions will
first create the new WMEs and then the new semantic memory linking actions will link them to the
LTME elements that the original results were linked to. In summary, by increasing the expressibil-
ity of the architecture’s rule language so that a rule can link WMEs it creates to LTMs, EBBS is
able to learn a correct rule that produces effects identical to those of the original subgoal.

6.4 Strategy 5: Detect and Prevent Incorrect Rules

The final strategy that EBBS uses to avoid learning incorrect rules is to detect whether the behavior
trace uses reasoning that cannot always be summarized correctly. If it finds evidence that it’s trying
to summarize reasoning that the algorithm cannot correctly summarize, EBBS discards the chunk.
This forces the agent to re-deliberate in future similar situations, which will produce the agent’s
correct intended behavior.

This strategy is used in two ways. First, it is applied to problems that may not be solvable or
do not have clear architecture-level solutions, for example implicit dependencies. Second, this
strategy is used as a placeholder for proposed mechanisms that may be able to learn correct rules
from traces that EBBS cannot currently handle. In fact, this has already occurred. Several of the
correctness issues that are now handled by other mechanisms were previously avoided using detect
and prevent.

We will now describe all of the types of problematic traces that this strategy can detect. The
next few examples are correctness problems faced when summarizing reasoning that violates the
requirement that any summarized reasoning must be reliably repeatable.

6.4.1 Case 1: Unreliable Knowledge from Operators Chosen Probabilisti-
cally

If the problem-solving in a subgoal involves operators that were selected probabilistically, chunk-
ing will not be able to summarize the agent’s reasoning into a correct rule. For a rule to be correct,
it must always produce the same result that the subgoal would have produced if the learned rule
were not in production memory. In this case, even redeliberating with only the original rules may
not produce the same results twice: since the operator selection was probabilistic, it’s possible that
an entirely different alternate operator would be selected next time which may lead to entirely dif-
ferent reasoning and results. Clearly the first learned rule would not be summarizing that alternate
reasoning, which means the learned rule is incorrect.

EBBS can easily detect these cases while it’s analyzing operator selection preferences to build the

111

ROSK set as described in Section 6.1.2. After EBBS annotates the operator with a ROSK set of
operator preferences, it also adds flag to indicate whether the operator was selected in an unreliable
way. A selection is considered unreliable if it used random selection, numeric preferences or
reinforcement learning. In future learning episodes, EBBS checks for these flags as it backtraces
through a behavior trace during the learning episode. If it encounters any rules that test operators
that are flagged as selected unreliably, it will flag the entire learned rule as unreliable as well. And,
if the prevent option is on, it will not add the rule to procedural memory. 15

6.4.2 Case 2: Unreliable Knowledge from LTM

Long-term knowledge can be considered inherently unreliable and, hence, a potential source of
correctness issues. There are two main reasons for this:

1. The rationale for a LTM query is opaque

The underlying problem is that the retrieval mechanism of the memory system is opaque to
the learning algorithm and may not reliably produce the same retrieval in future similar or
even identical situations.

As an example, consider an agent that reasons in a subgoal using knowledge structures re-
trieved from semantic memory. If there are multiple matches, the semantic memory system
will return the memory structure with the highest activation level. (Soar’s semantic memory
activation is, by default, biased towards recently stored and retrieved memory structures, but
it also has three other activation methods available: frequency, base-level and spreading.)
Regardless of which activation method is used, the problem for online procedural learning
is that activation levels of semantic memories can change as the agent uses semantic mem-
ory. It is entirely possible that activation levels change in a way that the same exact retrieval
returns a memory structure that is different from the one used in original summarized rea-
soning. So, if the agent re-executed its original deliberate reasoning instead of the chunk,
the new semantic memory structure returned may lead to different subgoal reasoning, which
could then lead to a different result in the supergoal. The chunk is clearly not correct in such
cases because it does not generate the same inferences as the original reasoning.

2. Recalled LTM can change after the learning episode

Soar’s semantic memory model allows the agent to intentionally add and modify its contents.
Knowledge retrieved from a memory store whose contents can change can be problematic
because, even if activation levels all stay the same, future retrievals may still return memories

15Instead, EBBS will convert the learned rule to a justification and adds it instead.

112

with different features. Since a different retrieval could produce different problem-solving,
the rules learned from the initial case may not be correct.

To allow EBBS to detect these cases while backtracing, Soar now marks every instantiation with
a flag indicating whether it is considered reliable in terms of LTM usage. Specifically, this flag is
set to true if either (a) any of the conditions matched a WME that is linked to a LTM or (b) any of
the conditions matched a WME created by an instantiation already flagged as unreliable. If EBBS
encounters an instantiation with one of the flags set, it will mark the rule summarizing the trace
as unreliable in terms of LTM usage. And, if the prevent option is on, it will not add the rule to
procedural memory.

6.4.3 Case 3: Reasoning that Conflates a Conjunction of Contexts

An incorrect rule can be learned when multiple rules fire that test different structures in the su-
pergoal but create the same WME in the subgoal. For example, consider an agent that has a rule
which has only one action, which creates a single, specific WME in the subgoal. Assume this rule
matches three different WMEs in the supergoal, so three instantiations are added, each of which
creates the same WME in the subgoal. Another rule then tests this WME and adds a new Soar
identifier as result to the supergoal, which causes a chunk to be learned.

In the original subgoal processing, the three matches produced one subgoal WME, and that one
subgoal WME created a single Soar identifier as a result in the superstate. The chunk on the other
hand will match three times, once for each of the WMEs that matched our original rule. Each
one of those matches will create a Soar identifier, creating three Soar identifiers. This is different
behavior than the original subgoal, which only created one Soar identifier. Even though the chunk
is not overgeneral, it is incorrect because it produces different inferences than the original subgoal
reasoning.

This is an example of procedural learning attempting to learn something that the architecture cannot
express in its syntax. If Soar could express a disjunction of conditions in a chunk, it could learn a
correct rule. Such a rule would have a clause in the disjunction for each of the instantiations that
had previously created the subgoal WME that was repeatedly asserted.

Fortunately, this problem is easily avoided. If this type of reasoning is needed, agents can move the
conflating WME to the superstate. The rule learned would then produce only one result regardless
of the number of rules that repeatedly asserted that WME.

113

6.5 Final Comments on Improving Correctness

In this chapter, we have shown an example of how a cognitive architecture can use our strategies to
learn rules that correctly summarize the reasoning an agent performs. We do this by showing how
EBBS uses four of our five strategies to address chunking’s deficiencies and eliminate or minimize
the negative effects of the twelve issues listed in Figure 6.7.

1. Acquire

and

Integrate

Missing

Knowledge

2. Selective
Specialization

4. Modify

Architecture

To Achieve a

Necessary

Condition of OPL

5. Detect and
Optionally Prevent

C1-1. Dependent on dynamically-generated knowledge (multiple)

C1-2. Dependent on operator selection knowledge

C1-3. Dependent on promoted knowledge

C1-4. Dependent on implicit knowledge

C1-5. Dependent on knowledge from subgoals that do not explain results

C1-6. Dependent on knowledge retrieved from LTM multiple times

C1. Behavior Trace Does Not Explain All Dependencies

C2-1. Requires that a calculation meets a constraint

C2-2. Conflates a disjunction of contexts

C2-3. Generates knowledge structures linked to long-term memory structures

C2. Reasoning That Is Not Expressible in a Single Rule

C3-1. Dependent on an operator selected probabilistically

C3-2. Dependent on knowledge recalled from LTM using opaque mechanism

C3-3. Dependent on knowledge recalled from a changing LTM

C3. Reasoning That Is Not Reliably Repeatable

Correctness IssuesStrategies

Figure 6.7: Applying the Five Strategies of EBBS to the 12 Correctness Issues.

Because the descriptions of how EBBS applies the strategies involve many, varied, complex issues,
we will conclude this chapter by quickly summarizing them:

• In Section 6.1.1, we describe how EBBS remedies several deficiencies in the behavior trace
by building or augmenting instantiations so that the trace provides a more complete descrip-
tion of the knowledge dependencies that were involved in the agent’s reasoning. Specifically,

114

we explain how EBBS builds/augments instantiations for subgoal meta-data, basic LTM re-
calls and rules with dynamic RHS actions.

• In Section 6.1.2 we describe how EBBS analyzes an agent’s use of operator selection knowl-
edge so that it can build a behavior trace that describes and learn rules that incorporate how
knowledge was used to select the operators involved in the agent’s reasoning.

• In Section 6.1.3, we describe why knowledge that has been promoted by being returned as a
result can make it difficult for an online procedural learning algorithm to summarize further
reasoning in a subgoal.

• In Section 6.1.3.1, we describe how EBBS repairs malformed rules, including the ones that
can occur when summarizing a trace that tests promoted knowledge, by searching through
working memory to create a set of conditions that connect disconnected aspects of the mal-
formed rule to a goal.

• In Section 6.1.4, we describe how agent designers sometimes use implicit knowledge in the
rules of their agents, why that is a problem for online procedural learning, and how EBBS
can sometimes correct those issues by making the implicit knowledge explicit.

• In Section 6.2.1, we describe how EBBS uses selective specialization to learn correct rules
when summarizing traces that perform mathematical reasoning.

• In Section 6.3.2.2, we describe how we performed a major architecture modification to
eliminate learning issues that occurred when long-term memory recalls occurred in mul-
tiple subgoal and interacted in unintended ways. Specifically, we describe how we replaced
a semantic memory system that produced hybrid long-term knowledge structures with an
instance-based semantic memory.

• In Section 6.4, we describe how EBBS is able to algorithmically detect several types of
behavior traces that may lead to incorrect rules: traces that test knowledge deemed to be un-
reliable, because it tested either operators that were selected probabilistically or knowledge
recalled from LTM, and traces that conflate a conjunction of contexts.

In the next chapter, we evaluate our system and present experimental results that show how the
collective mechanisms of EBBS have made significant progress towards achieving the online pro-
cedural learning desiderata we outlined in Section 2.6.

115

CHAPTER 7

Evaluation

In this section, we present our evaluation of how well our approach improves Soar’s online proce-
dural learning against our desiderata. Specifically, our main goal is to answer the following four
questions:

• E1. Task Performance: Does the EBBS approach improve task performance as much or
more than the current state of the art online procedural learning system?

• E2. Generality: Does the EBBS approach learn more optimally general rules than the current
state of the art online procedural learning system?

• E3. Computational Costs: Does the computational overhead incurred by the EBBS approach
prevent an agent from maintaining reactivity?

• E4. Correctness: Does the EBBS approach learn correct rules in situations where the current
state of the art online procedural learning system cannot?

7.1 Evaluation Overview and Experiment Setup

To better answer these evaluation questions, we have developed a special version of Soar, which
we call EVAL-SOAR, that is highly-instrumented and performs meta-analysis on its own reasoning
and learning. This version of Soar allows us to both more accurately compare the performance of
classical chunking and our EBBS approach and measure the impact that various mechanisms of
EBBS has on the quality of rules learned. It does this by including the following capabilities:

• Highly-instrumented online procedural learning code that tracks several new metrics that we
use to evaluate our approach.

• A testing framework that repeatedly runs agents under different settings with some control
for randomness. This tool runs agents thousands of times to generate data for our analysis.

116

• Simulated classical chunking

For practical and theoretical reasons, we generate data by simulating classic chunking us-
ing a version of EBBS in which identity-based generalization is replaced with chunking’s
heuristic-based mechanism. Using a simulated classic chunking mode allows us avoid re-
implementing our testing framework in a historical version of the architecture, which we
stopped updating and maintaining in 2012. So many aspects of the Soar architecture have
changed since then that it would be difficult to generate data that we’d be confident are com-
parable. Using a simulated version of classical chunking also allows us to include agents in
our evaluation that use reasoning that historical versions of Soar cannot correctly summa-
rize. If some of our agents are run in an older version of Soar, they learn classic chunks that
prevent them from solving the task. Because task failures would prevent us from fairly com-
paring generality, task performance and computational overhead across the two approaches,
we allow the simulated classic chunking mode to use some of the correctness mechanisms
of EBBS, for example the integration of operator selection knowledge into the rules learned.
(This means that we are essentially comparing EBBS against an enhanced version of classi-
cal chunking, which implies that EBBS would provide further improvements over classical
chunking than this chapter reflects.)

• The ability to turn off individual mechanisms of EBBS piecemeal. This allows us to explore
the impact that individual mechanisms have on correctness and generality. The system can
even turn off forward identity propagation, allowing us to examine what effect the DIGU
algorithm’s distributed approach has on efficiency.

7.1.1 Experiments

For each experiment, we use EVAL-SOAR’s testing framework to repeatedly run the same agent
using different learning algorithms and settings. Each experiment consists of one agent performing
100 trials. In each trial, there are three sets of agent runs, one for each learning approach. In each
set of runs, the agent performs separate learning and post-learning runs to isolate the effects of the
learned rules. We do this to avoid confounding factors in the initial learning run that make it more
difficult to measure the benefits that the learned rules provide. For example, a learned rule can
improve performance because it replaces deliberate reasoning with an immediate inference, but it
can also improve performance simply because it serendipitously changed the agent’s search path to
one that more quickly led to a solution. By performing multiple non-learning runs using a fixed set
of learned rules, we can test the qualities of those rules more accurately and more fairly compare
the results across learning algorithms. Unless otherwise stated, all of the data in this chapter are
derived from experiments that are structured as follows:

117

• 100 trials

1. Non-Learning run

(a) One run with all procedural learning disabled that is used as a baseline.

2. Classical chunking runs

(a) One learning run (classical chunking enabled)

(b) 50 post-learning runs: learning is disabled, but agent uses classic chunks learned
in the first run.

3. EBBS runs

(a) One learning run (EBBS enabled)

(b) 50 post-learning runs: learning is disabled, but agent uses EBBS chunks learned
in the first run.

Because some of our evaluation agents do not terminate when they are not able to solve their task,
our testing framework considers any run that doesn’t find a solution within 50,000 decision cycles
a failure.

7.1.2 Controlling for Randomness

To reduce the effects of the probabilistic aspects of agent execution, the testing frameworks sets the
same starting conditions and random seeds in corresponding runs.1 In other words, it ensures that
run 1 of an EBBS learning run uses the same starting configuration and random number generator
seed as run 1 of the non-learning and classic chunking runs. For agents that are deterministic,
using the same random seed produces the same reasoning across runs. For agents that are not
deterministic, for example the ones that perform a search through a problem space, the agent
will only produce the same behavior as another agent using that seed until the point where the
two agents do anything differently that uses a random number. This can happen, for example,
if a learned rule provides knowledge that allows it to avoid a subgoal in which an operator is
selected randomly from a set of proposed operators. When something like that occurs, the agent
that avoided the subgoal will not “consume” a random number from the random number generator,
while the agent that subgoals will. At that point, having the same random seed no longer ensures
that the agent is facing the same situations. Nonetheless, it still provides benefits insofar as it
allows each of the runs to explore the problem space differently in a way that is still replicatable.

1One way to reduce variability across runs is by setting the random number generator’s initial seed. This forces
the same sequence of pseudo-random numbers to be used by the architecture internally.

118

7.1.3 Conventions Used in Figures

In all of the figures of this chapter, we use red for re-
sults from the baseline non-learning run, blue for results
from classic chunking runs, and green for EBBS runs.
As shown in the sample figure of 7.1, the type of run can
often also be found in the names of each agent. We use
“NL” as shorthand for non-learning runs, “CC” for clas-
sic chunking runs, and “EBBS” for EBBS runs. Each
bar in a figure indicates the average value of a metric and
includes an error bar that reflect the standard deviation
of the underlying data. If an agent fails to solve a task
using a particular learning approach, we add a graphic
that looks like a head with an X on its forehead.

All of the agents in this chapter and the data gener-
ated from them can be found at https://soar.
eecs.umich.edu/downloads/files/EBBS_

Evaluation_Agents_and_Data.zip.

Figure 7.1: Sample figure used in this
chapter.

7.2 Agents and Tasks Used in Evaluation

In this section, we describe the 14 agents that we use in our evaluation and the 8 different tasks they
perform. We split the agents that we use for evaluation into two groups. The first group consists
of four agents that were either developed or significantly updated after this research project was
undertaken.2 These four agents perform four different tasks: solving arithmetic problems, finding
a path in a graph using A* search, solving a Sudoko-like game called Kenken, and parsing natural
language sentences for interactive task learning. The second group consists of 10 different agents
that solve 4 classic AI puzzles: BlocksWorld, Water-jug, Eight-puzzle, and Mice and Cats. These
agents pre-date EBBS, and most of them solve their task using a form of search. All the agents
were programmed by the original Soar agent programmer, John Laird.

One reason that these agents are used is simply necessity; these are the agents that we had available
to us. But part of it is also intentional. Evaluating agents that were not designed with EBBS in
mind and, in some cases, would not work at all with classical chunking, allows us to examine how
well we are progressing towards an automatic mechanism that does not require agent alteration.3

2While some of the agents are recent and some were updated for this project, none of them were developed
specifically to be used as an evaluation agent.

3To be fair, a few of these agents do have some updates. In most cases, the alterations are trivial required ones, for

119

https://soar.eecs.umich.edu/downloads/files/EBBS_Evaluation_Agents_and_Data.zip
https://soar.eecs.umich.edu/downloads/files/EBBS_Evaluation_Agents_and_Data.zip
https://soar.eecs.umich.edu/downloads/files/EBBS_Evaluation_Agents_and_Data.zip

But there are disadvantages to using these agents as well. For example, several of the agents we
use in our evaluation were designed with classical chunking in mind. (A discussion of how agent
designers can represent a problem in a way that avoids classical chunking inability to capture all
of the generality of an agents can be found in Section 3.6.2.) Consequently, there is little to no
additional generality for EBBS to capture. In those agents, we expect EBBS to learn the same or
similar rules and provide little to no additional benefits over classical chunking.

The agents in the first group will be our focus, because they use representation and reasoning that
is more varied and closer to the types of reasoning that real-world agents, who motivated this work,
use.

7.2.1 Task 1: Solving Multi-column Arithmetic Problems

The goal in this task is to perform arithmetic
and subtraction between two three-digit num-
bers. The agent used for this task, which con-
sists of 99 rules, formulates the problem in
terms of multiple columns, using carries or
borrows, and does not use any math functions.
Instead, the agent performs math using one or
more tables of simple math facts and symbol
manipulation. For addition problems and one
of the strategies for subtraction problems, the
agent uses a table of all single digit addition
facts. For the second subtraction strategy, it
uses a table of simple subtraction facts and an-
other table of addition-by-ten to single digits
facts.

Figure 7.2: Examples of multi-column arithmetic
problems.

example changes to the syntax of commands or the addition of domain-specific singletons. But, there are a few agents
that were updated to replace reasoning that relied on limitations or idiosyncrasies of classical chunking that no longer
exist with EBBS.

120

7.2.2 Task 2: Finding a Path in a Graph using A* Search

The goal in this task is to take a waypoint
graph and find the minimal path from a start-
ing location to a target location. The agent
used for this task consists of 123 rules and uses
iterative A* search to find the shortest path
through the graph.

Figure 7.3: A representation of a graph search
problem.

7.2.3 Task 3: Solving a Kenken Puzzle

Kenken is very similar to the classic game Su-
doku. Like Sudoku, the goal of Kenken is to
fill a grid with integers so that every row and
every column contains all the integers from 1
through N. In Kenken, though, there are ad-
ditional mathematical constraints that must be
met in subsets of cells, called cages. (In Figure
7.4, the cages have a heavy outline.)
The kenken agent consists of 284 rules and
uses reasoning that combines constraint satis-
faction and forward search. It is important to
note that the Kenken agent is not able to com-
plete the task when learning classic chunks, so
it cannot be used to compare classical chunk-
ing to EBBS. Figure 7.4: A Kenken puzzle.

121

7.2.4 Task 4: Parsing Natural Language

The NLP agent parses natural language ut-
terances into a format that the ROSIE in-
structable agent can use. This agent, which
consists of 443 rules, utilizes ideas from em-
bodied construction grammars and performs
left-to-right incremental parsing with repair. Figure 7.5: An example of a parsed sentence.

7.2.5 Task 5: BlocksWorld

As described by Russell and Norvig (2010),
“the blocks world is a planning domain in ar-
tificial intelligence. The algorithm is similar to
a set of wooden blocks of various shapes and
colors sitting on a table. The goal is to build
one or more vertical stacks of blocks. Only
one block may be moved at a time: it may ei-
ther be placed on the table or placed atop an-
other block. Because of this, any blocks that
are, at a given time, under another block can-
not be moved.”

Figure 7.6: The blocks-world task.

• BlocksWorld Operator Subgoaling Agent
This agent consists of 20 rules and uses a deterministic strategy that includes means-ends
analysis and operator subgoaling. Means-ends analysis involves proposing operators that
can achieve part of the goal, even if those operators may not apply to the current state.

• Blocks-world Hierarchical Agent
This agent consists of 52 rules and solves the blocks-world problem using a hierarchy com-
posed of three levels of problem spaces. This agent includes evaluation knowledge that
eliminates search/uncertainty at every level, so its behavior is deterministic.

• Blocks-world Look-Ahead Agent
This agent consists of 99 rules and solves the blocks-world problem using a single problem
space and non-deterministic look-ahead search.

• Blocks-world Look-Ahead State Evaluation Agent
This agent consists of 104 rules and solves the blocks-world problem using a single problem
space and non-deterministic look-ahead search. Unlike the standard look-ahead ahead, this

122

agent will not lock onto one particular path. This agent instead evaluates the states that the
search considers, which allows it to perform more exploration of the search space.

• Blocks-world Hierarchical Look-Ahead Agent
This agent consists of 158 rules and solves the blocks-world problem using a hierarchy
composed of three levels of problem spaces with non-deterministic look-ahead search in the
middle problem space. For the top and bottom problem spaces, there is pre-existing selection
knowledge that is sufficient to eliminate search at those levels.

7.2.6 Task 6: Water-Jug Puzzle

The water-jug problem is a classic logic puz-
zle involving a water tap and 2 containers,
each with a different capacity. Each container
has no markings except for that which gives
you it’s total volume. Jugs can be filled to the
top using the running tap. To solve the puzzle,
the containers must be filled and emptied until
one of the jugs has the target amount of water.
In our formulation, there are two jugs, one that
holds 3 units of water and one that holds 5, and
the goal of the task is to find the sequence of
emptying and filling actions that leads to the
three gallon jug containing exactly one gallon
of water.

Figure 7.7: The water-jug puzzle.

Our evaluation includes three different water-jug agents: water-jug hierarchical (22 rules), water-
jug tie (30 rules), water-jug look-ahead (97 rules). Because these agents utilize search strategies
that are very similar to the ones used by the blocks-world agents, we will not describe each one
here individually.

123

7.2.7 Task 7: Eight Puzzle

The eight-puzzle is a sliding puzzle having 8
square tiles numbered 1–8 in a frame that is 3
tiles high and 3 tiles wide, leaving one unoc-
cupied tile position. Tiles in the same row or
column of the open position can be moved by
sliding them horizontally or vertically, respec-
tively. The goal of the puzzle is to place the
tiles in numerical order. Figure 7.8: The 8-puzzle task.

The agent we use to evaluate this task consists of 87 rules and solves the puzzle using look-ahead
search with a heuristic evaluation function.

7.2.8 Task 8: Mouse and Cats

In the mouse and cats problem, three mice and
three cats must cross a river using a boat which
can carry at most two animals, under the con-
straint that, for both banks, if there is a mouse
present on the bank, they cannot be outnum-
bered by cats. (In this world, it always takes
two cats to trap and eat a mouse).

The agent we use to evaluate this task consists
of 95 rules and solves the puzzle using look-
ahead search with a heuristic evaluation func-
tion. Figure 7.9: The mouse and cats task.

7.2.9 Special Allowances for Some Agents

In our experiments, we found that some of the agents that used a look-ahead search strategy need to
solve multiple problems to learn enough rules that they impact performance. The Mouse and Cats
Planning agent needs about fifteen runs. The BlocksWorld Look-ahead needs about six, and the
Water-Jug Look-ahead agent needs two. Consequently, we allow those agents multiple learning
runs instead of just one.

This issue also exists for the arithmetic agent but is handled differently. Unlike the other agents, the

124

arithmetic agent has Soar rules that generate a specified number of math problems at the beginning
of a run that the agent then solves. Instead of increasing the number of runs, we allow it to solve
a set of 1000 math problems. On a related note, we do not include any of the processing that was
used to generate those math problem in any of our metrics.

125

7.3 Evaluating Task Performance Improvements (E1)

In this section, we attempt to answer whether the EBBS approach improves task performance and
how that improvement compares to the performance improvement that the current state of the art
online procedural learning system, chunking, offers.

Note that evaluating task performance will not include experiments that measure the time to solve
the task. While timing metrics are also a measure of performance, this section focuses on metrics
that measure task performance in terms of the quality of the solution. We leave our analysis of
timing data to Section 7.5, where we evaluate computational overhead.

7.3.1 Task Success

The most obvious metric to use
to evaluate task performance is
whether the agent successfully
solved the problem. In terms of
comparing agents and learning ap-
proaches, task success unfortunately
is a metric of limited interest in
these agents; nearly all of our agents
in group one can solve their task
with all learning approaches, as
shown in Figure 7.10.

The two notable exceptions are the
runs where the Kenken agent and the
NLP agent use classical chunking.
In those two cases, we can claim that
EBBS trivially improves task suc-
cess more than classical chunking
because classic chunks prevent task
success.

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

0.00%

100.00%

100.00%

0.00%

100.00%

0.00% 25.00% 50.00% 75.00% 100.00%

Arithmetic (NL)

Arithmetic (CC)

Arithmetic (EBBS)

A* Search (NL)

A* Search (CC)

A* Search (EBBS)

Kenken (NL)

Kenken (CC)

Kenken (EBBS)

NLP Agent (NL)

NLP Agent (CC)

NLP Agent (EBBS)

Task Success

Figure 7.10: Percentage of runs in which agents
from group one achieve their task goal.

In the second set of agents, there are only four cases where agents do not reliably solve their task,
as we can see in Figure 7.11. And, even in the two agents that do fail to reliably find a solution,
blocks-world hierarchical look-ahead and water-jug look-ahead, both EBBS and classical chunking

126

increase the number of successful runs by the same amount. So, in terms of comparing learning

algorithms, task success reveals nothing of interest in these agents.

100.00%

100.00%

100.00%

26.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

100.00%

99.98%

100.00%

100.00%

100.00%

100.00%

0.00%

92.00%

92.00%

100.00%

100.00%

100.00%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

BW Hierarchical (NL)

BW Hierarchical (CC)

BW Hierarchical (EBBS)

BW Hierarchical Look-ahead (NL)

BW Hierarchical Look-ahead (CC)

BW Hierarchical Look-ahead (EBBS)

BW Look-ahead (NL)

BW Look-ahead (CC)

BW Look-ahead (EBBS)

BW Look-ahead State Evaluation (NL)

BW Look-ahead State Evaluation (CC)

BW Look-ahead State Evaluation (EBBS)

BW Operator Subgoaling (NL)

BW Operator Subgoaling (CC)

BW Operator Subgoaling (EBBS)

Eight-puzzle (NL)

Eight-puzzle (CC)

Eight-puzzle (EBBS)

MaC Planning (NL)

MaC Planning (CC)

MaC Planning (EBBS)

WJ Hierarchical (NL)

WJ Hierarchical (CC)

WJ Hierarchical (EBBS)

WJ Look-ahead (NL)

WJ Look-ahead (CC)

WJ Look-ahead (EBBS)

WJ Tie (NL)

WJ Tie (CC)

WJ Tie (EBBS)

Task Success

Figure 7.11: Percentage of runs in which an agent from group two achieves its task goal.

127

7.3.2 Number of Decisions Cycles Needed to Solve Task

The second and more important metric we use is the number of Soar primitive cognitive execution
cycles (decisions) that are needed to achieve success in a task. Because the reasoning in a subgoal
can span multiple decision cycles and a learned rule fires in a single decision cycle, an agent that
learns rules that replaced subgoal reasoning should improve its task performance by solving the
problem in fewer decision cycles.

7.3.2.1 Evaluation of Agent Group 1

As shown in Figure 7.12, EBBS reduces the number of decision cycles to solve a task by more
than a factor of 2 in both the arithmetic agent and the A* search agent. And in the Kenken and
NLP agents, EBBS rules dramatically reduce the number of decision cycles needed to solve the
task while classic chunks prevent task success.

319.76

74.94

0

50

100

150

200

250

300

350

No learning Classic EBBS

De
cis

io
n

Cy
cle

s

Kenken Agent

288.77

32.97
16.00

0

50

100

150

200

250

300

350

No learning Classic EBBS

De
cis

io
n

Cy
cle

s

A* Search Agent

30,718.88

4,164.92
2,003.00

0

5000

10000

15000

20000

25000

30000

35000

No learning Classic EBBS

De
cis

io
n

Cy
cle

s

Arithmetic Agent

Figure 7.12: The number of decision cycles needed to solve the tasks of the agents in group one
shows that EBBS reduces the number of decision cycles needed to solve a problem more than
classic chunking does.

7.3.2.2 How Learning Rate Affects Task Performance

One of the reasons that we argued that learning optimally general rules may provide benefits over
more specific rules is that they are more likely to apply in future situations because they describe a
larger space of situations. But consider what happens when classical chunking is given a sufficient
number of varied training examples that it also learns a set of rules that cover the entire space
of situations that the original reasoning applies to. At that point, having more general rules may
no longer provide any benefit. Both algorithms possess a set of rules that replace the same space
of reasoning. Consequently, we must examine an agent’s performance before it has learned that
full set. Specifically, we examine how our metrics are impacted by an online procedural learning
algorithm’s learning rate, how quickly it learns a set of rules that can be used in the full space of

128

situations that the original rules they summarize can be used in. This allows us to examine whether
there are benefits to using a procedural learning algorithm with a faster learning rate.

Unfortunately, most of our agents do not lend themselves to this analysis because the limited
complexity of their tasks and the representations they use allow both EBBS and classical chunking
to learn all of the rules that cover the space of original reasoning during only a single (or few)
examples. The arithmetic agent, though, is different and perfect for this experiment because we
have fine-grained control over how much learning the agent performs. As discussed in Section
7.2.9, the arithmetic agent has Soar rules that generate a number of math problems at the beginning
of a run that the agent then solves. And, as we show in the figures of this section, this is needed
because the arithmetic agent requires far more than one example, especially when using classical
chunking, to learn a set of rules that can replace its deliberate reasoning.

In the previous experiment, which was shown in Figure 7.12, we gave the arithmetic agent 1000
practice arithmetic problems to solve with learning on, and then tested the effectiveness of the
learned rules by having the agent solve 50 different sets of 1000 problems with learning off. We
now present an incremental version of that experiment where we gradually increase the amount
of learning the arithmetic agent performs each run. So, in the first run, the agent solves exactly
one problem with learning on and then solves 50 different sets of 1000 problems with learning
off. (From this point on, we refer to the problems an agent solves with learning on as its practice

problems.) In the second run, it solves two practice problems before solving 50 different sets of
1000 problems with learning off, and so forth. Figure 7.13 shows how many decision cycles an
agent uses on average to solve 1000 math problems when given 1 to 200 practice problems.

129

9307

2003

30517

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200

De
cis

io
n

Cy
cle

s t
o

So
lv

e
10

00
 p

ro
bl

em
s

Number of Practice Problems

Classic Chunking EBBS No Learning Log. (Classic Chunking) Log. (EBBS) Linear (No Learning)

Figure 7.13: How the number of practice problems solved (1-200) affects number of decision
cycles needed to solve 1000 problems.

EBBS needs only about a dozen practice problems to achieve its maximal performance. In contrast,
an agent that learn classic chunks take roughly between 9k to 25k more decision cycles, depending
on the number of practice problems it was given, to solve the same set of problems. And, if we
extend this experiment out to 25k practice problems, we see that it takes thousands of practice
problems before classic chunking can decrease the number of decision cycles to solve a set of
1000 math problems as much as EBBS.

130

3030

2003

30303

1000

6000

11000

16000

21000

26000

31000

0 100 200 300 400 500 600 700 800 900 1000

D
ec

is
io

n
Cy

cl
es

 to
 S

ol
ve

 1
00

0
Pr

ob
le

m
s

Number of Practice Problems

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

Figure 7.14: How the number of practice problems solved (1-25000) affects number of decision
cycles needed to solve 1000 problems.

7.3.2.3 Evaluation of Agent Group 2

In our second group of agents, some agents that learned EBBS rules solved their tasks in fewer
decision cycles than the ones that learned classic chunks, but not by a significant amount. As we
can see in Figure 7.15, EBBS rules and classic chunks perform comparably for all of these agents.4

4Some of these agents, particularly the look-ahead agents, have a lot of noise in their results because of the variable
nature of their search strategy.

131

440.10

193.83 185.87

0

100

200

300

400

500

600

700

800

900

No learning Classic EBBS

De
ci

sio
n

Cy
cl

es

Water-Jug Hierarchical
Agent

718.67

4.00 4.00
0

200

400

600

800

1000

1200

1400

1600

No learning Classic EBBS

De
ci

sio
n

Cy
cl

es

Blocks-World Hierarchical
Look-ahead Agent

42.00

4.00 4.00

0

5

10

15

20

25

30

35

40

45

No learning Classic EBBS

De
ci

sio
n

Cy
cl

es

Blocks-World Hierarchical
Agent

5.00

3.00 3.00

0

1

2

3

4

5

6

No learning Classic EBBS

De
ci

sio
n

Cy
cl

es

Blocks-World Operator
Subgoaling Agent

123.76

20.70 17.98

0

50

100

150

200

250

No learning Classic EBBS

De
ci

sio
n

Cy
cl

es

Water-Jug Tie Agent

63.90

5.94 5.10

0

10

20

30

40

50

60

70

No learning Classic EBBS

De
ci

sio
n

Cy
cl

es
Blocks-World Look-ahead

State Evaluation Agent

256.21

15.44 15.60
0

50

100

150

200

250

300

350

400

450

500

No learning Classic Chunking EBBS

D
ec

is
io

n
Cy

cl
es

Mouse and Cats Puzzle
Planning Agent

60.94

4.00 4.00

0

10

20

30

40

50

60

70

80

90

No learning Classic Chunking EBBS

D
ec

is
io

n
Cy

cl
es

Blocks-World Look-ahead
Agent

326.18

6.06 9.66

-50

0

50

100

150

200

250

300

350

400

No learning Classic Chunking EBBS

D
ec

is
io

n
Cy

cl
es

Water-Jug Look-ahead Agent

48.88

7.98 8.02

0

10

20

30

40

50

60

70

No learning Classic Chunking EBBS

D
ec

is
io

n
Cy

cl
es

Eight-puzzle Agent

Figure 7.15: The number of decision cycles needed to solve classic AI problems show that both
EBBS and classical chunking decrease the number of decision cycles to solve a task by approxi-
mately the same amount.

As shown in Figure 7.16, EBBS’s faster learning rate does provide some task performance benefits
to a few of the agents in group two. In the initial learning run, the run in which the agent starts with
no learned rules and learns rules as it solves a problem, EBBS is able to solve the problem in fewer
decision cycles than classic chunking in two of these agents. In BlocksWorld Hierarchical, the
EBBS agent solves the task in 20% fewer decision cycles, and, in BlocksWorld Hierarchical Look-
Ahead, it solves its task in approximately half the decision cycles. (The other agents completed
their tasks in their learning run in the same number of decision cycles as they did in their post-

132

learning runs.)

Figure 7.16: This figure shows the number of decision cycles needed to solve a task for both the
learning and post-learning runs. EBBS reduces the number of decision cycles to solve a problem
during the learning run more than classical chunking does for these two agents.

7.3.3 Conclusions on our Evaluation of Task Performance

Our experiments have shown strong evidence that EBBS improves task performances as much as
classical chunking, and in some cases more. In domains or tasks where learning rate is important,
the improvements can be dramatic.

7.4 Evaluation of Optimal Generality (E2)

In this section, we examine one of the most important of our evaluation criteria, whether the EBBS
approach learns rules that capture more of the generality of the underlying reasoning than the
current state of the art online procedural learning system, chunking.

7.4.1 Types of Knowledge That Learned Rules Reason Over

The key reason that classical chunking learns overly specialized rules is that it can only capture the
generality of reasoning that involves Soar identifiers. It cannot capture any of the generality found
in reasoning that involve other knowledge types; for example, classic chunking cannot capture
reasoning that tests that two objects or concepts have the same string feature or that a feature is a
number within a certain value range. Consequently, the rules that it learns will always use specific
values instead of variables for those tests. This means that when a classic chunk fires, the variables
it does include will always match Soar identifiers and never match other knowledge types. If
EBBS and DIGU are indeed capturing generality from reasoning over other data types that classic

133

chunking cannot, some of the variables in the EBBS rules should also match those other data types.

So, the first metric tracks all learned rule firings and calculates how many times each type of

knowledge is reasoned about generally, i.e. tested by a variable in a learned rule firing. Whenever
a learned rule fires, EVAL-SOAR examines each condition of the rule and compares it with the
WME that matched. If an element is a variable and it matches a Soar identifier in a WME, then
the variable match metric for identifiers is incremented. Similarly, if an element in the rule is a
variable and it matches a string or number in a WME, then the variable match metric for a string
match or numerical match is incremented.

7.4.1.1 Evaluation of Agent Group 1

Figure 7.17 shows the types of knowledge that were tested when the learned rules of group one
fired.

134

Figure 7.17: The types of knowledge that chunks and EBBS rules match against. When chunks
fire, they match only against Soar identifiers; when EBBS rules fire, their variables match against
multiple types of knowledge, evidence that EBBS captures and uses generality from an agent trace
that chunking does not.

In all four runs that used classic chunking, the variables always match Soar identifiers, as expected.
In contrast, the EBBS rules learned by the A* Search, Kenken and NLP agents contained variables
that test a combination of Soar identifiers, strings and numbers. And, in the arithmetic agent, more
variables in the EBBS rules matched numerical features than matched Soar identifiers.

If we examine two rules learned by the arithmetic agent, as shown in Figure 7.18, we see how the

135

EBBS rule on the left represents a more general description of the same reasoning summarized by
the classical chunk on the right. If we examine the elements of the classic chunk that are high-
lighted in blue, we see that they each must match a specific value. In contrast, the corresponding
elements in the EBBS rules, which are highlighted in green, can match any value that allows the re-
lationships between the variables and any constraints on their values to hold. This is the generality
in the underlying reasoning that EBBS is able to capture and classic chunking cannot.

sp {process-column*apply*result
 (state <s1> ^operator <o1>
 ^problem <a1>
 ^one-fact 1

 ^top-state <s1>
 ^arithmetic <a2>
 ^arithmetic <a3>)
 (<o1> ^name process-column)
 (<a1> ^operation subtraction
 ^current-column <c1>)
 (<c1> -^new-digit1 <n1>
 ^digit1 0
 ^digit2 7
 ^next-column <n2>)
 (<n2> ^new-digit1 9
 ^digit1 0
 ^next-column <n3>)
 (<n3> ^digit1 5
 ^new-digit1 4)
 (<a3> ^add10-facts <a4>)

 (<a4> ^digit1 0
 ^digit-10 10)

 (<a2> ^subtraction-facts <s2>
 ^subtraction-facts <s3>
 ^subtraction-facts <s4>)
 (<s2> ^digit1 10 ^digit2 1
 ^result 9)
 (<s3> ^digit1 5 ^digit2 1
 ^result 4)
 (<s4> ^digit1 10 ^digit2 7
 ^result 3)
 -->
 (<c1> ^result 3)
}

sp {process-column*apply*result*EBBS
 (state <s1> ^operator <o1>
 ^ problem <a1>
 ^one-fact <o2>
 ^one-fact <o3>
 ^top-state <t1>
 ^arithmetic <a2>
 ^arithmetic <a3>)
 (<o1> ^name process-column)
 (<a1> ^operation subtraction
 ^current-column <c1>)
 (<c1> -^new-digit1 <n1>
 ^digit2 <d1>
 ^digit1 { <d2> < <d1> }
 ^next-column <n2>)
 (<n2> ^new-digit1 <n3>
 ^digit1 { <d3> < <o3> }
 ^next-column <n4>)
 (<n4> ^new-digit1 <n5>
 ^digit1 { <d4> >= <o2> })
 (<a3> ^add10-facts <a4>
 ^add10-facts <a5>)
 (<a4> ^digit1 <d2>
 ^digit-10 { <d5> >= <d1> })
 (<a5> ^digit1 <d3>
 ^digit-10 { <d6> >= <o3> })
 (<a2> ^subtraction-facts <s2>
 ^subtraction-facts <s3>
 ^subtraction-facts <s4>)
 (<s2> ^digit1 <d5> ^digit2 <d1>
 ^result <r1>)
 (<s3> ^digit1 <d6> ^digit2 <o3>
 ^result <n3>)
 (<s4> ^digit1 <d4> ^digit2 <o2>
 ^result <n5>)
 -->
 (<c1> ^result <r1>)
}

Figure 7.18: The EBBS rule on the left captures generality of the agent’s reasoning, shown in
green, that the chunk on the right does not.

Note that the classic chunk also has fewer conditions than the EBBS rule. This is because, as
previously discussed in Section 5.7.3, classic chunking collapses multiple conditions that test the
same supergoal WME into a single condition, which is a consequence of learning from a WME
trace instead of a trace of the underlying rules that fired.

136

7.4.1.2 Evaluation of Agent Group 2

In Figure 7.19, we see that seven agents in group two also learn and use EBBS rules that reason
generally over knowledge types that the classic chunks do not reason over.

Figure 7.19: The types of knowledge that chunks and EBBS rules match against in seven of the
agents of group two. We see evidence that EBBS captures and uses generality that chunking cannot
in

In the final three agents, as shown in Figure 7.20, we see that both EBBS rules and classic chunks
only match Soar identifiers. This shows that these agents’ rules only use variables to match against

137

elements known to be Soar identifiers. Because these agents do not reason generally about other
knowledge types, there is no additional generality for DIGU to capture that classical chunking
cannot already capture. This leads both classical chunking’s heuristic-based variablization and
EBBS’s identity-based variablization to produce similar if not identical rules.

Figure 7.20: The types of knowledge that chunks and EBBS rules match against are the same in
these three agents; both EBBS rules and classic chunks only reason generally about Soar identi-
fiers.

Note that we could have also generated a similar metric for the types of knowledge used by analyz-

ing the match that gave rise to the rule. Such a metric would likely have shown that EBBS captures
additional generality that this metric does not show; this metric ignores generality captured by rules
that are learned but do not find an opportunity to fire, a common occurrence. We chose to only
include learned rule firings, though, because we felt it was more interesting and informative. It not
only shows that generality is being captured by EBBS rules, but it also shows that that generality
is being used by the agent.

In conclusion, this metric has shown clear evidence that EBBS captures and uses generality from
the reasoning of all four of the agents in group one and most of the agents in group two that
chunking does not.

7.4.2 Number of Rules Learned

The next metric we use to evaluate whether the rules that are learned by EBBS are more optimally
general than those learned by chunking is the number of rules learned. While the absolute value of
this metric is not meaningful in and of itself, it can be used to compare two procedural learning al-
gorithms. If EBBS is able to capture more of the generality when summarizing the same reasoning
traces, it should learn fewer rules.

138

One limitation of this metric is that it is difficult to guarantee that two agents will actually summa-
rize the same behavior traces, most notably in agents that are searching through a problem space.
Even when given the same random seed and starting configuration, two agents may end up sum-
marizing different traces. If so, it is not clear whether the agent is learning fewer rules because
its search path happened to find a solution quickly or because it captured an agent’s reasoning in
fewer, more optimally general rules.

We also include data on whether the two approaches learn rules that are actually identical. To
calculate this value, we take advantage of Soar’s RETE network, which reports when a new rule
added to the RETE is a duplicate of a rule already in procedural memory. After the learning run of
each approach, we save the rules learned and then load them both into an agent to see how many
rules that the RETE reports as duplicates. In the following figures, if this mechanism detects any
identical rules, the count will be superimposed on the right-most bar, the ones that indicates the
number of rules that EBBS learns. Note that this value should be considered a minimum value,
because, unfortunately, the way we detect identical rules is not completely reliable; the RETE
sometimes fails to detect duplicate rules that have superficial differences.

7.4.2.1 Evaluation of Agent Group 1

Figure 7.21 shows the number of rules that compose an agent and the number of rules learned after
each of the agents solves a single problem under both learning approaches.

99

2497.44

47.37
0

500

1000

1500

2000

2500

3000

Hand-written
Rules

Classic Chunks
Learned

EBBS Rules
Learned

Nu
m

be
r o

f R
ul

es

Arithmetic Agent

123

23 22

0

20

40

60

80

100

120

140

Hand-written
Rules

Classic Chunks
Learned

EBBS Rules
Learned

Nu
m

be
r o

f R
ul

es

A* Search Agent
284

28.89

0

50

100

150

200

250

300

Hand-written
Rules

Classic Chunks
Learned

EBBS Rules
Learned

Nu
m

be
r o

f R
ul

es

Kenken Agent

Figure 7.21: The number of hand-written rules and the number of rules learned using classical
chunking and EBBS for each of the four agents of group one.

For the arithmetic agent, we find that EBBS summarizes the reasoning performed in many fewer
rules (47) than classical chunking (2498). This is strong evidence that EBBS learns more optimally
general rules than chunking in that agent. In the A* agent, though, EBBS learns only one fewer
rules than classical chunking. Because our mechanism to detect identical rules did not indicate that
any of the rules are identical, we gain no insight from this metric on whether the rules it learned are

139

more general. Finally, because classical chunking is not able to learn correct rules that summarize
the reasoning of the Kenken agent or the NLP agent, we trivially assert that EBBS is learning more
optimally general rules from the traces of those agents than classical chunking.5

7.4.2.2 Evaluation of Agent Group 2

In seven agents, we find that EBBS summarizes the reasoning performed in fewer rules than clas-
sical chunking, as shown in Figure 7.22. This suggests that, in some situations, EBBS learns more
optimally general rules than chunking, even in these simpler agents.

9.54

5

0

2

4

6

8

10

12

Classic Chunking EBBS

Ru
le

s L
ea

rn
ed

Water-Jug Tie Agent

2
Identical Rules

5.85

3

0

1

2

3

4

5

6

7

8

Classic Chunking EBBS

Ru
le

s L
ea

rn
ed

Water-Jug Hierarchical Agent

2
Identical Rules

20

16

0

5

10

15

20

25

Classic Chunking EBBS

Ru
le

s L
ea

rn
ed

Blocks-World Hierarchical Agent

6
Identical Rules

35.9

19.34

0

5

10

15

20

25

30

35

40

Classic Chunking EBBS

Ru
le

s L
ea

rn
ed

Blocks-World Hierarchical Look-
ahead Agent

7.34
Identical Rules

Figure 7.22: The number of rules learned for seven of the agents in group two. EBBS summarizes
the reasoning performed by these agents in fewer rules than classical chunking.

In the other three agents, EBBS learns the same number of rules as classical chunking, as shown
in Figure 7.23.

5While the NLP agent did learn fewer rules using classic chunking, our other metrics will show that this result
was not meaningful.

140

1 1

0

0.2

0.4

0.6

0.8

1

1.2

Classic Chunking EBBS

Ru
le

s L
ea

rn
ed

Blocks-World Operator Subgoaling
Agent

All
Rules

Identical

8.3 8.3

0

1

2

3

4

5

6

7

8

9

10

Classic Chunking EBBS

Ru
le

s L
ea

rn
ed

Eight-puzzle Agent

3.5
Identical Rules

Figure 7.23: The number of rules learned for the final three agents of group two. EBBS learns the
same number of rules from the reasoning of these agents.

This again suggests that these agents represent generality in their reasoning in a way that classical
chunking can already capture.

7.4.2.3 How Learning Rate Affects the Number of Rules Learned

In this section, we revisit the arithmetic agent and examine how learning rate affects the number
of rules learned by the agent. Figure 7.24 shows how many rules are learned from solving 1 to 200
practice problems.

141

1132

47

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180 200

Nu
m

be
r

of
 R

ul
es

 L
ea

rn
ed

 f
ro

m
 P

ra
ct

ice
 P

ro
bl

em
s

Number of Practice Problems

Classic Chunking EBBS Linear (Classic Chunking)

Figure 7.24: The number of rules learned by each learning approach after practicing a 1-200
problems. EBBS quickly learns all rules necessary to represents the reasoning of the arithmetic
agent while classic chunking continually learns more rules.

As we can see, the EBBS agent never learns more than 47 rules. (The reason for this, as we
show in the Section 7.4.3.1 is that this set of 47 rules eliminates most knowledge impasses, which
eliminates the need to learn more rules.) If we look at the raw numbers underlying this figure, we
see that EBBS reaches the point where it no longer learns new rules after solving about a dozen
practice problems. In contrast, the classic chunking agent continually learns additional rules as
it practices more problems. If we extend this experiment, as shown in Figure 7.25, we see that
the classical chunking agent is still learning an increasing number of rules after 25,000 practice
problems. (It does seem to be approaching an asymptotic value.)

142

45

0

1000

2000

3000

4000

5000

6000

7000

0 5000 10000 15000 20000 25000

Nu
m

be
r

of
 R

ul
es

 L
ea

rn
ed

 f
ro

m
 P

ra
ct

ice
 P

ro
bl

em
s

Number of Practice Problems

Classic Chunking EBBS Log. (Classic Chunking)

Figure 7.25: The number of rules learned by each learning approach after practicing 1-25k prob-
lems. Even after 25k practice problems, classic chunking continues to learn new rules.

7.4.3 Impasses Encountered

The fact that an agent learns fewer rules with a procedural learning algorithm does not necessarily
imply that it learned rules that represent the same reasoning at a different level of generality. But if
it is the case that the rules learned by EBBS do apply to a larger, more optimally general space of
situations, then they should provide benefits in situations that the agent has not encountered more
often than those learned by classic chunking. To get some measure of this, the third metric that
we use to evaluate whether the rules that are learned by EBBS are closer to optimally general than
those learned by chunking is number of knowledge impasses encountered. Because Soar’s impasse-
based learning mechanism is driven by knowledge insufficiencies, a learned rule that captures more
of the generality of the subgoal reasoning that resolved a knowledge insufficiency, should apply to
a larger space of situations, so it should more often provide the information that the agent needs to
avoid a knowledge insufficiency in future similar situations.

143

7.4.3.1 Evaluation of Agent Group 1

As shown in Figure 7.26, both classical chunking and EBBS are quite effective at reducing im-
passes encountered in the Arithmetic and A* search agents, but EBBS decreases the number of
impasses encountered by a larger amount. And, in the Kenken and NLP agents, EBBS dramati-
cally decreases the number of impasses encountered while classical chunking does not and instead
prevents task success.6

5,686.96

519.02

0.00
0

1000

2000

3000

4000

5000

6000

7000

No learning Classic Chunking EBBS

Kn
ow

le
dg

e
Im

pa
ss

es

Arithmetic Agent

Figure 7.26: The number of impasses encountered by the agents of group one under each learning
approach. EBBS prevents more knowledge impasses than classical chunking in all four agents.

In Figure 7.27, we re-visit the arithmetic agent and examine how each algorithm’s learning rate af-
fects the number of impasses the agent faces. As we can see, EBBS eliminates most impasses after
only a few practice problems, while classical chunking still faces nearly two thousand impasses
after 200 practice problems.

6While the NLP agent encountered fewer impasses using classic chunking, it did not successfully parse any sen-
tences, so, like the number of learned rules, this is a generality metric that does not help us compare how well classic
chunking and EBBS can capture the generality of the NLP agent.

144

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160 180 200

Kn
ow

le
dg

e
Im

pa
ss

es
 F

ac
ed

 W
hi

le
 S

ol
vi

ng
 1

00
0

Pr
ob

le
m

s

Number of Practice Problems

Classic Chunking EBBS Log. (Classic Chunking) Log. (EBBS)

Figure 7.27: The number of impasses encountered by the arithmetic agent after practicing 1-200
problems. EBBS eliminates the vast majority of impasses encountered after only a few practice
problems.

If we extend this experiment out to 25,000 practice problems, as shown in Figure 7.28, we see
that it takes thousands of practice problems before classical chunking prevents a similar number of
impasses as EBBS rules do.

145

425

0
0

500

1000

1500

2000

2500

3000

3500

4000

0 5000 10000 15000 20000 25000

Kn
ow

le
dg

e
Im

pa
ss

es
 F

ac
ed

 W
hi

le
 so

lv
in

g
10

00
 p

ro
bl

em
s

Number of Practice Problems

Classic Chunking EBBS Log. (Classic Chunking)

Figure 7.28: The number of impasses encountered by the arithmetic agent after practicing 1-25k
problems. Classical chunking requires thousands of practice problems to eliminate as many im-
passes as EBBS.

7.4.3.2 Evaluation of Agent Group 2

In Figure 7.29, we can see that both EBBS rules and classic chunks provide the agent with the
knowledge required to avoid many impasses. Learned rules allow the agent to avoid 76% of im-
passes in the BlocksWorld look-ahead agent, 20% of the impasses in the Mouse and Cat agent and
nearly all of the impasses in the other seven agents. EBBS may be a little better at providing the
knowledge necessary to avoid impasses in these particular agents but not by a significant amount.
We see that six of the ten agents, the ones in the second and third row of Figure 7.29, face roughly
the same number of impasses when using EBBS rules as they do when using classic chunks, which
suggests that both approaches learned rules that cover the same space of reasoning that the under-
lying reason applies to. When the agent needed knowledge, both agents had learned rules ready.
In the other four agents, the ones in the top row of Figure 7.29, we see only slight decreases in the
number of impasses encountered. If these agents are indeed learning more general rules, they are
not preventing significantly more impasses than the more specific rules of classical chunking.

146

145.71

0.00 0.00
0

20

40

60

80

100

120

140

160

180

No learning Classic Chunking EBBS

Kn
ow

le
dg

e
Im

pa
ss

es

Water-Jug Look-ahead Agent

251.11

0.00 0.00
0

50

100

150

200

250

300

350

400

450

500

No learning Classic Chunking EBBS

Kn
ow

le
dg

e
Im

pa
ss

es

Blocks-World Hierarchical
Look-ahead Agent

9.00

0.00 0.00
0

1

2

3

4

5

6

7

8

9

10

No learning Classic Chunking EBBS

Kn
ow

le
dg

e
Im

pa
ss

es

Blocks-World Hierarchical
Agent

27.72

0.00 0.00
0

5

10

15

20

25

30

35

40

No learning Classic Chunking EBBS

Kn
ow

le
dg

e
Im

pa
ss

es

Blocks-World Look-ahead
Agent

1.00

0.00 0.00
0

0.2

0.4

0.6

0.8

1

1.2

No learning Classic Chunking EBBS

Kn
ow

le
dg

e
Im

pa
ss

es

Blocks-World Operator
Subgoaling Agent

67.92

3.29 0.00
0

20

40

60

80

100

120

140

No learning Classic Chunking EBBS

Kn
ow

le
dg

e
Im

pa
ss

es

Water-Jug Hierarchical Agent

19.49

0.60 0.00
0

5

10

15

20

25

30

35

40

No learning Classic Chunking EBBS

Kn
ow

le
dg

e
Im

pa
ss

es

Water-Jug Tie Agent

105.81

0.00 0.00
0

20

40

60

80

100

120

140

160

180

200

No learning Classic Chunking EBBS
Kn

ow
le

dg
e

Im
pa

ss
es

Mouse and Cats Puzzle
Planning Agent

17.78

0.46 0.17
0

5

10

15

20

25

30

No learning Classic Chunking EBBS

Kn
ow

le
dg

e
Im

pa
ss

es
Blocks-World Look-ahead

State Evaluation Agent

Figure 7.29: The number of impasses encountered by the agents of group two. EBBS and classical
chunking both decrease the number of impasses encountered by these agent faces by roughly the
same amount.

EBBS’s faster learning rate does provides some benefits to these agents. If we examine the run in
which the agent is actively learning rules, as shown in Figure 7.30, we find that EBBS reduces im-
passes in two of the agents of group two in the learning runs. In BlocksWorld Hierarchical, EBBS
reduces the number of impasses from 7 to 5, while, in BlocksWorld Hierarchical Look-Ahead, it
cuts the number of impasses encountered in half, from approximately 21 to 10.7 Because both
agents avoid all impasses in the post-learning runs, we see that they both learn a set of rules from
the initial learning run that replaces all the deliberate subgoal reasoning in subsequent runs. This
shows that the EBBS agents learn rules faster; the rules it learned were applied to new situations in

7In the other agents, the benefits during the learning run were the same as those during the post-learning runs.

147

the same run that they are learned in. In contrast, the rules that the classic chunking agents learns,
which do cover the same space of situations, find no opportunities to fire until subsequent runs.
So, the fact that EBBS learned usable rules more quickly leads to the differences in performances
shown in Figure 7.30.

Figure 7.30: The number of impasses encountered in both the learning run and post-learning run.
In these two agents, EBBS reduces the number of impasses encountered during the learning run
more than classical chunking does.

7.4.4 Firing Count of Learned Rules Per Decision Cycle

One weakness of the impasses-encountered metric is that it is highly dependent on the way the
agent decomposes a problem and the strategy it uses. For example, consider an agent that uses
search. In such an agent, the number of impasses encountered may be as much a function of
how deep the search path tended to be is as it is a function of how often learned rules replace
deliberate reasoning. Another weakness of this metric is that it does not reflect when a learned
rule fires and creates some of the working memory structures that the agent needs but not enough
of them to prevent an impasse. (Sometimes multiple results that previously arose from a subgoal
are necessary to avoid an impasse.) In other words, the impasses-encountered metric ignores how
much learned rule firings contribute to resolving the impasses that do still occur.

To help compensate for these weaknesses, the final metric that we will use to evaluate whether the
rules that are learned by EBBS can be applied across a more optimal space of situations than those
learned by chunking is the frequency of learned rule firings, i.e. the firing count of learned rules

per decision cycle. If EBBS is able to learn more optimally general rules than classical chunking,
its rules should find more opportunities to fire. The limitation of this metric is that it will not show
any relative benefits once both approaches learn rules that cover the same space of situations that
the original reasoning could apply to.

148

7.4.4.1 Evaluation of Agent Group 1

As we can see in Figure 7.31, EBBS chunks find significantly more opportunities to fire than classic
chunks in both the arithmetic, A* search and NLP agents.8 We now see that the fact that the NLP
agent learned fewer rules with classic chunking than EBBS is not meaningful. The classic chunks
learned by the NLP agent found almost no opportunities to fire.

Figure 7.31: The firing count per decision cycle of the agents of group one. EBBS rules find more
opportunities to fire every decision cycle than classic chunks in the arithmetic, A* and NLP agents.

If we re-visit the arithmetic agent, we see something interesting when we look at how EBBS’s firing
rate per decision cycle changes with the number of practice problems, as shown in Figure 7.32.
EBBS’s firing rate per decision cycle is an even distribution centered on a much larger value than
classic chunking’s. There seems to be little to no relationship between the effectiveness of EBBS
rules and the number of practice problems. This is strong evidence that EBBS learns optimally
general rules that summarize the original reasoning in only a few shots. In contrast, the firing rate
of classic chunks starts low and gradually increases as the number of practice problems increases.
The classic chunking agent must build up quite a large arsenal of rules before firing count increases
significantly. And, after about 6000 practice problems, it approaches an asymptotic value that is
still significantly lower than the firing rate of EBBS rules.

8The Kenken agent is not included in this section because this metric is only useful when comparing two ap-
proaches, and the Kenken agent cannot solve the problem using classical chunking.

149

3.138

4.354

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000

Fi
rin

g
Co

un
t /

 D
ec

is
io

n
Cy

cl
e

Number of Practice Problems

Classic Chunking EBBS Log. (Classic Chunking) Log. (EBBS)

Figure 7.32: The firing count per decision cycle metric shows that the effectiveness of EBBS
chunks has little to no relation with the number of practice problems. In contrast, the effectiveness
of classic chunks gradually increases with more practice problems.

7.4.4.2 Evaluation of Agent Group 2

In these agents, both approaches quickly learn rules that cover the space of situations that the
original rules cover, so we don’t expect to see much differences in the firing count rate between
EBBS rules and classic chunks. And, as we can see in Figure 7.33, for seven agents, that does
seem to be the case.

150

5.750 5.750

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Classic Chunking EBBS

Fi
rin

g
Co

ou
nt

 p
er

 D
ec

isi
on

 C
yc

le

Blocks-World Hierarchical
Agent

5.750 5.750

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Classic Chunking EBBS

Fi
rin

g
Co

ou
nt

 p
er

 D
ec

isi
on

 C
yc

le

Blocks-World Hierarchical
Look-ahead Agent

5.19
5.65

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Classic Chunking EBBS
Fi

rin
g

Co
ou

nt
 p

er
 D

ec
isi

on
 C

yc
le

Water-Jug Tie Agent

1.16
1.21

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Classic Chunking EBBS

Fi
rin

g
Co

ou
nt

 p
er

 D
ec

isi
on

 C
yc

le

Water-Jug Hierarchical Agent

0.33 0.33

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Classic Chunking EBBS

Fi
rin

g
Co

ou
nt

 p
er

 D
ec

isi
on

 C
yc

le

Blocks-World Operator
Subgoaling Agent

Figure 7.33: The firing count per decision cycle metric shows that, for these 7 agents, EBBS rules
do not fire significantly more often than classic chunks.

In the other three agents, though, we find that EBBS rules find more opportunities to fire than their
classic chunk counterparts, as shown in Figure 7.34, which suggests that some of their rules were
more general and fired more often.

2.83

3.92

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Classic Chunking EBBS

Fi
rin

g
Co

ou
nt

 p
er

 D
ec

isi
on

 C
yc

le

Blocks-World Look-ahead
State Evaluation Agent

Figure 7.34: The firing count per decision cycle metric shows that, for these three agents, EBBS
rules find more opportunities to fire than classic chunks.

151

7.4.5 Conclusions on our Evaluation of Optimal Generality

Our experiments have shown strong evidence that EBBS captures more of the generality of the
underlying rules. In many agents, EBBS summarizes an agent’s reasoning in fewer rules than
classical chunking, and those rules prevent more impasses and find more opportunities to fire than
the rules of classical chunking. We have also shown evidence that EBBS rules do indeed reason
generally over knowledge types that classic chunks instead test specific values of, which is the key
reason that classic chunking learns overly specialized rules.

7.5 Evaluating the Computational Cost of EBBS Approach (E3)

In this section, we attempt to evaluate whether the computational overhead added by the EBBS
approach prevents an agent from maintaining reactivity.

Note that we do expect EBBS to have higher computational costs. Obviously, it performs far more
analysis of the agent’s subgoal’s reasoning, and that is not free. Moreover, the more general rule is,
the more expensive it can be to match against (Tambe and Newell, 1988), an issue that is examined
more closely in Section 7.5.1.

As previously mentioned in Section 2.5, we ignore the average growth issue (Doorenbos, 1995), i.e.
the performance decrease that occurs as procedural memory grows. Not only is it not currently a
problem — modern rule matchers like RETE can efficiently detect matches in procedural memories
with millions of rules — but EBBS learns fewer rules than the current procedural learning system,
so this issue should be ameliorated not exacerbated.

7.5.0.1 Experiment Setup

In all of our previous experiments, we allow an agent to solve only a single problem with learning
on9 before we run the agent with those learned rules repeatedly with learning off, as described
in Section 7.1.1. We focused on the post-learning runs because we wanted to control for the
confounding factors that arise from problem-solving so that we can better examine the effects of
the learned rules. Even if we were not focused on that, the comparison between the non-learning
run and the post-learning run may still be more important than the learning runs. The reasoning
behind this argument is that an agent, if given enough learning runs, is able to learn a set of rules
that cover the entire space of reasoning that the original rules cover. When the agent reaches
that point, it’s seldom needs to analyze subgoals, which means its processing will be similar to
that of the post-learning agent. So, as the agent gets closer to learning the full space of rules
that summarize the agent’s deliberate reasoning, its learning run performance becomes more and

9Or, in the case of the Arithmetic agent, we let it solve 1000 math problems.

152

more like its post-learning performance. Because the speed at which an agent can learn the full
space of reasoning is a function of the task/domain, the post-learning run is a much more reliable
point of comparison. Nonetheless, if learning costs when actively learning prevents an agent from

maintaining reactivity, that is a problem. So, we must examine learning runs as well.

In the experiments of this section, each agent will perform both a learning run where it solves
a single problem, which we will refer to as the initial learning run, and a learning run where it
solves 50 problems, which we will refer to as the learning run.10 Note that in these experiments,
the agent’s post-learning runs use the rules learned from the agent that solves 50 problems with
learning on, not the rules learned from the agent that solves a single problem.

• 100 trials

1. Non-Learning runs

(a) Baseline runs (Agent solves 50 problems with all procedural learning disabled.)

2. Classical chunking runs

(a) Initial learning run (Agent solves 1 problem with classical chunking enabled.)

(b) Learning runs (Agent solves 50 problems with classical chunking enabled.)

(c) Post-learning runs: (Agent solves 50 problems with learning disabled. Agent uses
classic chunks learned in learning runs.)

3. EBBS runs

(a) Initial learning run (Agent solves 1 problem with EBBS enabled.)

(b) Learning runs (Agent solves 50 problems with EBBS enabled.)

(c) Post-learning runs: (Agent solves 50 problems with learning disabled. Agent uses
EBBS rules learned in learning runs.)

7.5.1 Computational Costs of Determining Which Rules Match

The utility problem (Mooney, 1989) is a term that describes a phenomenon where learned rules
decrease performance because the persistent cost of determining whether rules match outweighs
the periodical computational benefits that are gained when the rules fire. While exploring the
general utility problem is outside the scope of this work, we perform a limited examination of how
it affects our agents by showing cases where expensive chunks arise and how they influence the
time it takes for our agents to solve a problem.

10For practical reasons, the agent performs 50 learning runs instead of solving 50 problems in one run. Similarly,
the Arithmetic agent solves 50 sets of 1000 problems in this experiment.

153

We now examine the amount of time spent matching rules per decision cycle. To determine whether
expensive chunks arise more often with EBBS than with classic chunking, Figure 7.35 compares
how much time is spent matching rules each decision cycle for both EBBS and classic chunking.
This figure also includes the percentage increase in match cost that occurs when that agent uses
EBBS rules instead of classic chunks, which is shown as a percentage number in between and to
the right of each pair of bars. (Negative values indicate that an agent spends less time matching
with EBBS than it does with classic chunks.) Any values in red indicate agents where the lower
bound of the match cost of EBBS rules is always higher than the upper bound of the match cost
of classic chunks. Note that the metrics in this figure are generated using the post-learning runs,
where the agent’s learning rate does not play a role

0.060

0.134

0.056

0.052

0.083

0.076

0.025

0.025

0.027

0.027

0.309

0.276

0.051

0.060

0.019

0.031

122.23%

-7.40%

-9.19%

0.10%

-1.60%

-12.59%

-10.52%

13.28%

17.89%

68.27%

65.15%

3.48%

0.00000 0.05000 0.10000 0.15000 0.20000 0.25000 0.30000 0.35000 0.40000

Arithmetic (CC)

Arithmetic (EBBS)

BW Hierarchical (CC)

BW Hierarchical (EBBS)

BW Hierarchical Look-ahead (CC)

BW Hierarchical Look-ahead (EBBS)

BW Look-ahead (CC)

BW Look-ahead (EBBS)

BW Look-ahead State Evaluation…

BW Look-ahead State Evaluation…

BW Operator Subgoaling (CC)

BW Operator Subgoaling (EBBS)

Eight-puzzle (CC)

Eight-puzzle (EBBS)

A* Search (CC)

A* Search (EBBS)

MaC Planning (CC)

MaC Planning (EBBS)

WJ Hierarchical (CC)

WJ Hierarchical (EBBS)

WJ Look-ahead (CC)

WJ Look-ahead (EBBS)

WJ Tie (CC)

WJ Tie (EBBS)

Time Spent Matching Rules per Decision Cycle (ms)

Figure 7.35: The amount of time spent matching rules each decision cycle and the percentage
increase in match cost that occurs when that agent uses EBBS rules instead of classic chunks.

The agent with the highest percentage increase in match cost is the Arithmetic agent, where EBBS
rules increase the amount of time spend matching rules each decision cycle by 122%. This is also
the only agent where the lower bound of the match cost of EBBS rules is always higher, by a

154

significant margin, than the upper bound of the match cost of classic chunks. This is clearly an
agent whose match costs need closer examination.

For the rest of the agents in our evaluation, though, matching against EBBS rules does not seem
to be systematically more computationally expensive than matching against classic chunks. The
variability in match cost, as depicted by the error bars in Figure 7.35, is greater than differences
in values in all of them,11 which suggests that the differences in average time may not indicate
anything meaningful. Moreover, the direction of improvement is split. In 5 of the agents, matching
against EBBS rules is faster, and in 6 of them, matching against classic chunks is faster.

It is interesting that EBBS has lower match costs than classic chunking in some of these agents,
even if the difference is small. While exploring the utility problem and the underlying reason for
match differences is outside of the scope of this project, this does show that learning more general
rules does not always lead to higher match costs, which is not unexpected. While EBBS rules are
able to encode generality that classic chunks cannot, which may open up additional opportunities
for match cost issues, that fact alone does not make them more expensive. Previous research
has shown that multiple factors play a role in match cost, for example, the number of WMEs in
memory that can match the variables in the learned rules and how many of them are multi-valued
(Tambe and Newell, 1988). Those other aspects play a role in the match cost of both EBBS rules
and classic chunks.

11The error bars overlap.

155

We now examine how the increased match cost of the
arithmetic agent affects the total time of execution, as
shown in Figure 7.36. Please remember that the classic
chunking agent is given 50 learning runs, which trans-
lates into 50,000 practice problems. Consequently, it
learns the full space of rules and solves its problems, in
its post-learning runs, in the same number of decision
cycles as the agent that learns EBBS rules.

As we can see, EBBS introduces computational costs
that are significant enough that the average duration of
the EBBS runs is greater than that of the classic chunk-
ing runs. It is worth noting that the agent still solved the
problem faster than the non-learning agent.

Figure 7.36: Execution time and the
number of decision cycles to solve a
task for the Arithmetic agent. The ad-
ditional computational costs of EBBS
outweigh the amount saved by de-
creases in decision times.

In conclusion, while the match cost of EBBS rules do generally seem higher than the match cost
of classic chunks, we do not see any evidence that expensive chunks are more pervasive when
learning EBBS rules. The Arithmetic agent is the sole agent that shows high match costs that
may be caused by expensive chunks. And, if we use a strict definition of expensive chunks that
only includes agents where the persistent cost of determining whether rules match outweighs the
periodical computational benefits that are gained when the rules fire, the EBBS rules learned by
the arithmetic agent are technically not expensive chunks either. As shown in Figure 7.36, they
still provide a computational benefit over the non-learning agent.

7.5.1.1 Impact of Increased Match Costs in Real-World Agents

Real-world agents are often connected to external environments or embodiments, which means
they must spend time updating their percepts, potentially expensive processing that is performed
periodically, often every decision cycle. As a result, match cost may be a relatively smaller portion
of the overall decision cycle cost than we see in our evaluation agents. This would also mean that
reducing the number of decision cycles to solve a problem may lead to bigger improvements in

the total time to execute the task than we are seeing in this evaluation. Because updating input is
generally a constant cost each cycle, any decrease in the number of decision cycles needed to solve
a problem also avoids the cost of that many percept updates. So, we expect that the benefits EBBS
provides to real-world agents, which may have embodiments or environments where that cost is
high, to be much more consequential, in terms of the total time to solve a task, than what we would

156

see in these test agents.

In our experiments, we found that percept processing costs are influential enough that even a small
amount will dominate the effect that match cost has. To illustrate this, we show how our previous
timing figures for the Arithmetic agent, the agent most affected by high match cost, would be im-
pacted by the inclusion of percept updating. Figure 7.37 shows how much time that the Arithmetic
agent took to solve 1000 problems given a set of practice problems without any adjustment for
percept updating. We can see that the additional computational costs of EBBS is larger than the
speed-up provided by the decrease in the number of decision cycles used, regardless of the number
of practice problems.

0

0.5

1

1.5

2

2.5

3

3.5

0 5000 10000 15000 20000 25000

Ti
m

e
(s

ec
on

ds
)

Number of Practice Problems

Classic Chunking

EBBS

No Learning

Figure 7.37: The amount of time spent to solve 1000 math problems after practicing 1-25k practice
problems.

In comparison, Figure 7.38 shows the same data but also includes of 0.001 ms of percept updating

time every decision cycle. As we can see, adding some percept updating costs decreases the total
time to solve the problem in a way that it once again correlates closely to the decreases in decision
cycles to solve a problem, as previously shown in Figure 7.14.

157

0

5

10

15

20

25

30

35

40

0 5000 10000 15000 20000 25000

Ti
m

e
(s

ec
on

ds
)

Number of Practice Problems

Classic Chunking

EBBS

No Learning

Figure 7.38: With the inclusion of minimal percept processing time (0.001 ms/dc), the relative
amount of time needed for the arithmetic agent to solve 1000 problems under each learning ap-
proach changes dramatically. It now mirrors how the number of decision cycles to solve the prob-
lem decreases with number of practice problems.

Obviously, if you add enough time to a decision cycle for perceptual processing, you can mask
the effects of other contributing factors. So, it’s important that we point out that we chose a
conservative value for percept updating, 0.001 ms. Even toy domains have much higher values.
For example, in the Eaters domain, a Pac-Man like game environment used in the Soar tutorial,
percept updating takes approximately 0.12 ms every decision cycle. And, in embodied real-world
agents, percepts with vision often take on the order of 10-100 ms or more.

7.5.2 Computational Costs of Analyzing Subgoals and Building Rules

In Section 5.7, we discussed the processing that occurs after a rule matches in a subgoal and returns
a result to a supergoal, processing that we referred to as the learning episode. In this section, we
examine the cost of this processing, which we will refer to as learning costs.

One interesting phenomenon we noticed is that a significant portion of the speed-up benefits that

158

online procedural learning provides to these agents is a result of the agents spending less time

learning. While it may be counter-intuitive that enabling procedural learning would produce runs
with lower learning costs, that is often the case. This is because an architecture that is based on
universal subgoaling is never able to fully disable learning; even a non-learning agent needs to
perform similar analysis of subgoals to build justifications. And, as we previously saw, agents that
are learning more specific rules face more subgoals, and agents that disable procedural learning
face the most subgoals of all, every one of which needs to be analyzed. So, even though a non-
learning or classic chunking agent may be doing less work when analyzing a single subgoal, it may
be analyzing more of them.

In the next section, we present figures that show the amount of time spent in the following cate-
gories of Soar’s internal processing:

• Learning: Architectural processing that creates rules or justifications by analyzing how
reasoning in a subgoal relates to knowledge in the supergoal. This metric is the focus of this
discussion and is highlighted in red in all of the figures.

• Matching: Processing that determines which rules in procedural memory match the state of
working memory.

• WM updating: Processing that annotates each WME with meta-information that indicates
which goals have access to it. Note that WME updating is a function of the number of
working memory changes that occur and is not directly impacted by learning.

• Other processing: This metric is calculated by taking the total time of execution and sub-
tracting the above three timers. Because this a bucket for all miscellaneous processing, it is
not particularly meaningful, but we include it in our figures so that the bar shows the total
time of execution.

Note some of the agents have learning and post-learning runs that are so much faster than the non-
learning run that they are difficult to visually depicted clearly; consequently, we provide a support
figure that zooms in on the bars that are too small to read.

7.5.2.1 Results

Our experiments show evidence that the following three observations hold consistently:

1. (O1): Learning costs of the non-learning run are always higher than that of the post-learning

run.

159

2. (O2): When either classical chunking or EBBS is enabled, learning costs decrease with
more learning. In other words, the learning costs of the initial learning run are higher than
the learning costs of the full learning runs, which are higher than learning costs of the post-
learning runs. This is evidence for our argument that, as the agent gets closer to learning the
full space of rules that summarize the agent’s deliberate reasoning, the performance of its
learning runs approach the performance of its post-learning runs.

3. (O3): Learning costs of both EBBS and classic chunking in the post-learning runs are com-
parable to each other.

They also show that the following two observations are sometimes true:

1. (O4): Learning costs of the initial learning run are sometimes greater than that of the non-
learning run. In half of the agents, it takes more than a single learning run before the benefits
of learned rules overcome the cost of learning them.

2. (O5): Learning costs of the initial EBBS learning run are higher than that of the initial classic
chunking learning run in eight out of fourteen evaluation agents. While the differences are
fairly minor, this confirms that it can be more computationally expensive to learn EBBS rules
than it is to learn classic chunks.

Figure 7.39 shows how the agents of group one spend their time. As we can see, O1 holds true
across all agents: the learning cost of the non-learning run, the red portion of the left-most bar, is
higher than the learning costs of the post-learning runs, the red portion of the middle and right-
most bars. (For the Arithmetic, Kenken and NLP agents, it is higher than all other runs.) We
also see evidence of O2, that learning costs decrease with more learning, in all agents. Both the
EBBS and classic chunking spend less time building rules in their full learning run than they do
in their initial learning run. While O3 is not applicable to the Kenken or NLP agents because
they cannot be run with classic chunking, we do find that O3 holds true for both the Arithmetic
agent and the A* agent: both EBBS and classic chunking have almost the same learning cost in
the post-learning runs. We find O4 is true only for the A* Search agent, in which the learning
costs of the initial learning run of both EBBS and classic chunking are higher than the learning
costs of the non-learning run. Finally, O5 also only holds true for the A* search agent, where the
initial EBBS learning run is more expensive than the initial classic chunking learning run. (In the
arithmetic agent, though, the classic chunking arithmetic agent has higher learning costs during
its initial learning run than the EBBS agent. The reason for this, as we learned in Section 7.4.3.1,
is that the arithmetic agent that learns classic chunks always faces thousands of impasses that the
agent that learns EBBS rules avoids.)

160

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

No learning

Classic
chunking

(1 learning
run)

Classic
chunking

(50 learning
runs)

Classic
chunking

(post-
learning)

EBBS
(1 learning

run)

EBBS
(50 learning

runs)

EBBS
(post-

learning)

Learning 0.003 0.004 0.000 0.000 0.007 0.000 0.000
Matching 0.009 0.007 0.000 0.000 0.007 0.000 0.000
WME Updating 0.002 0.001 0.000 0.000 0.001 0.000 0.000
Other Processing 0.013 0.012 0.001 0.000 0.015 0.001 0.000

Ti
m

e
(s

ec
on

ds
)

A* Search Agent

Learning

Matching

WME Updating

Other Processing
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Classic
chunking
(50 LRs)

Classic
chunking

(post-
learning)

EBBS
(50 LRs)

EBBS
(post-

learning)

Learning 0.000 0.000 0.000 0.000
Matching 0.000 0.000 0.000 0.000
WME Updating 0.000 0.000 0.000 0.000
Other Processing 0.001 0.000 0.001 0.000

Ti
m

e
(s

ec
on

ds
)

A* Search Agent (Magnified)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

No learning

Classic
chunking

(1 learning
run)

Classic
chunking

(50 learning
runs)

Classic
chunking

(post-
learning)

EBBS
(1 learning

run)

EBBS
(50 learning

runs)

EBBS
(post-

learning)

Learning 0.260 0.154 0.024 0.012 0.028 0.019 0.013
Matching 0.178 0.164 0.130 0.121 0.269 0.267 0.268
WME Updating 0.176 0.119 0.119 0.114 0.116 0.117 0.118
Other Processing 0.483 0.369 0.260 0.222 0.351 0.291 0.231

Ti
m

e
(s

ec
on

ds
)

Arithmetic Agent

Learning

Matching

WME Updating

Other Processing

Figure 7.39: A breakdown of how the agents of group one spend their time.

Figures 7.40 and 7.41 show how the BlocksWorld agents spend their time. Again, O1, O2 and O3
hold for all agents.12 Learning costs of the non-learning run are always higher than those of the
post-learning runs; when learning is enabled, learning costs decrease with more learning; and, the
learning costs of the EBBS and classic chunking post-learning runs are comparable. O4, which

12Note that BlocksWorld Operator Subgoaling agent is such a simple agent that our timers do not have the resolution
to measure how long learning takes in several of the runs.

161

states that learning cost of the initial learning run may be greater than that of the non-learning run,
is true for 4 out of the 5 agents. The one exception is the BlocksWorld Hierarchical Look-ahead
agent, which is able to eliminate all subgoaling in its initial learning run. Finally, O5 holds for 3
out of the 5 agents: in the BlocksWorld Look-Ahead State Evaluation, BlocksWorld Look-Ahead
and the BlocksWorld Operator Subgoaling agents, the learning cost of the initial EBBS learning
run is greater than that of classical chunking.

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.01

No learning

Classic
chunking

(1 learning
run)

Classic
chunking

(50 learning
runs)

Classic
chunking

(post-
learning)

EBBS
(1 learning

run)

EBBS
(50 learning

runs)

EBBS
(post-

learning)

Learning 0.000940 0.001270 0.000036 0.000000 0.002020 0.000056 0.000000
Matching 0.001618 0.001361 0.000140 0.000100 0.001441 0.000143 0.000100
WME Updating 0.000237 0.000186 0.000007 0.000000 0.000202 0.000008 0.000000
Other Processing 0.002492 0.002622 0.000235 0.000111 0.003316 0.000267 0.000122

Ti
m

e
(s

ec
on

ds
)

Blocks-World Look-ahead Agent

Learning

Matching

WME Updating

Other Processing
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Classic
chunking
(50 LRs)

Classic
chunking

(post-
learning)

EBBS
(50 LRs)

EBBS
(post-

learning)

Learning 0.000036 0.000000 0.000056 0.000000
Matching 0.000140 0.000100 0.000143 0.000100
WME Updating 0.000007 0.000000 0.000008 0.000000
Other Processing 0.000235 0.000111 0.000267 0.000122

Ti
m

e
(s

ec
on

ds
)

Blocks-World Look-ahead Agent (Magnified)

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

No learning

Classic
chunking

(1 learning
run)

Classic
chunking

(50 learning
runs)

Classic
chunking

(post-
learning)

EBBS
(1 learning

run)

EBBS
(50 learning

runs)

EBBS
(post-

learning)

Learning 0.000760 0.001596 0.000047 0.000001 0.001803 0.000038 0.000000
Matching 0.001912 0.002057 0.000192 0.000121 0.001776 0.000165 0.000121
WME Updating 0.000240 0.000215 0.000012 0.000002 0.000212 0.000010 0.000005
Other Processing 0.002910 0.003725 0.000366 0.000222 0.004224 0.000373 0.000238

Ti
m

e
(s

ec
on

ds
)

Blocks-World Look-ahead State Evaluation Agent

Learning

Matching

WME Updating

Other Processing
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Classic
chunking
(50 LRs)

Classic
chunking

(post-
learning)

EBBS
(50 LRs)

EBBS
(post-

learning)

Learning 0.000047 0.000001 0.000038 0.000000
Matching 0.000192 0.000121 0.000165 0.000121
WME Updating 0.000012 0.000002 0.000010 0.000005
Other Processing 0.000366 0.000222 0.000373 0.000238

Ti
m

e
(s

ec
on

ds
)

Blocks-World Look-ahead State Evaluation Agent
(Magnified)

0.00

0.00

0.00

0.00

0.00

0.00

No learning

Classic
chunking

(1 learning
run)

Classic
chunking

(50 learning
runs)

Classic
chunking

(post-
learning)

EBBS
(1 learning

run)

EBBS
(50 learning

runs)

EBBS
(post-

learning)

Learning 0.000584 0.000763 0.000013 0.000000 0.000675 0.000011 0.000000
Matching 0.000340 0.000498 0.000245 0.000224 0.000432 0.000220 0.000207
WME Updating 0.000101 0.000101 0.000081 0.000059 0.000100 0.000066 0.000039
Other Processing 0.000914 0.000785 0.000295 0.000280 0.000768 0.000286 0.000259

Ti
m

e
(s

ec
on

ds
)

Blocks-World Hierarchical Agent

Learning

Matching

WME Updating

Other Processing
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Classic
chunking
(50 LRs)

Classic
chunking

(post-
learning)

EBBS
(50 LRs)

EBBS
(post-

learning)

Learning 0.000013 0.000000 0.000011 0.000000
Matching 0.000245 0.000224 0.000220 0.000207
WME Updating 0.000081 0.000059 0.000066 0.000039
Other Processing 0.000295 0.000280 0.000286 0.000259

Ti
m

e
(s

ec
on

ds
)

Blocks-World Hierarchical Agent (Magnified)

162

Figure 7.40: A breakdown of how the BlocksWorld Hierarchical, BlocksWorld Look-Ahead State
Evaluation and BlocksWorld Look-Ahead agents spend their time.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

No learning

Classic
chunking

(1 learning
run)

Classic
chunking

(50 learning
runs)

Classic
chunking

(post-
learning)

EBBS
(1 learning

run)

EBBS
(50 learning

runs)

EBBS
(post-

learning)

Learning 0.000000 0.000012 0.000000 0.000000 0.000032 0.000000 0.000000
Matching 0.000097 0.000100 0.000010 0.000006 0.000100 0.000010 0.000005
WME Updating 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Other Processing 0.000188 0.000208 0.000105 0.000099 0.000241 0.000105 0.000099

Ti
m

e
(s

ec
on

ds
)

Blocks-World Operator Subgoaling Agent

Learning

Matching

WME Updating

Other Processing

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

No learning

Classic
chunking

(1 learning
run)

Classic
chunking

(50 learning
runs)

Classic
chunking

(post-
learning)

EBBS
(1 learning

run)

EBBS
(50 learning

runs)

EBBS
(post-

learning)

Learning 0.010593 0.002487 0.000043 0.000000 0.001359 0.000024 0.000000
Matching 0.034324 0.002204 0.000400 0.000334 0.001444 0.000413 0.000364
WME Updating 0.002202 0.000360 0.000105 0.000100 0.000248 0.000103 0.000100
Other Processing 0.032778 0.004189 0.000530 0.000400 0.002702 0.000504 0.000395

Ti
m

e
(s

ec
on

ds
)

Blocks-World Hierarchical Look-ahead Agent

Learning

Matching

WME Updating

Other Processing

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Classic
chunking
(50 LRs)

Classic
chunking

(post-
learning)

EBBS
(50 LRs)

EBBS
(post-

learning)

Learning 0.000043 0.000000 0.000024 0.000000
Matching 0.000400 0.000334 0.000413 0.000364
WME Updating 0.000105 0.000100 0.000103 0.000100
Other Processing 0.000530 0.000400 0.000504 0.000395

Ti
m

e
(s

ec
on

ds
)

Blocks-World Hierarchical Look-ahead Agent
(Magnified)

Figure 7.41: A breakdown of how the BlocksWorld Hierarchical Look-ahead and BlocksWorld
Operator Subgoaling agents spend their time.

Figure 7.42 shows how the Mouse and Cats Planning and Eight-puzzle agents spend their time. In
these two agents, O1, O2, O3 and O5 hold true. O4, which states that learning cost of the initial
learning run can sometimes be higher than that of the non-learning run only holds for the Mouse
and Cats Planning agent, where the learning cost of the initial EBBS learning run is greater than
that of the non-learning run.

163

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0.05

0.05

No learning

Classic
chunking

(1 learning
run)

Classic
chunking

(50 learning
runs)

Classic
chunking

(post-
learning)

EBBS
(1 learning

run)

EBBS
(50 learning

runs)

EBBS
(post-

learning)

Learning 0.003283 0.002453 0.000152 0.000000 0.003486 0.000204 0.000000
Matching 0.023169 0.012700 0.002788 0.000788 0.017347 0.003121 0.000940
WME Updating 0.001147 0.000705 0.000102 0.000003 0.000835 0.000108 0.000004
Other Processing 0.016761 0.014144 0.002401 0.000649 0.019431 0.002846 0.000681

Ti
m

e
(s

ec
on

ds
)

Mouse and Cats Puzzle Planning Agent

Learning

Matching

WME Updating

Other Processing
0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

Classic
chunking
(50 LRs)

Classic
chunking

(post-
learning)

EBBS
(50 LRs)

EBBS
(post-

learning)

Learning 0.000152 0.000000 0.000204 0.000000
Matching 0.002788 0.000788 0.003121 0.000940
WME Updating 0.000102 0.000003 0.000108 0.000004
Other Processing 0.002401 0.000649 0.002846 0.000681

Ti
m

e
(s

ec
on

ds
)

Mouse and Cats Puzzle Planning Agent (Magnified)

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

No learning

Classic
chunking

(1 learning
run)

Classic
chunking

(50 learning
runs)

Classic
chunking

(post-
learning)

EBBS
(1 learning

run)

EBBS
(50 learning

runs)

EBBS
(post-

learning)

Learning 0.000597 0.001002 0.000025 0.000000 0.001233 0.000023 0.000000
Matching 0.002760 0.002764 0.002517 0.002444 0.003235 0.002331 0.002193
WME Updating 0.000143 0.000148 0.000127 0.000125 0.000152 0.000101 0.000095
Other Processing 0.002537 0.001565 0.000565 0.000511 0.001962 0.000416 0.000360

Ti
m

e
(s

ec
on

ds
)

Eight-puzzle Agent

Learning

Matching

WME Updating

Other Processing
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Classic
chunking
(50 LRs)

Classic
chunking

(post-
learning)

EBBS
(50 LRs)

EBBS
(post-

learning)

Learning 0.000025 0.000000 0.000023 0.000000
Matching 0.002517 0.002444 0.002331 0.002193
WME Updating 0.000127 0.000125 0.000101 0.000095
Other Processing 0.000565 0.000511 0.000416 0.000360

Ti
m

e
(s

ec
on

ds
)

Eight-puzzle Agent (Magnified)

Figure 7.42: A breakdown of how the Mouse and Cats and Eight-Puzzle agents spend their time.

Finally, Figure 7.43 shows how our last set of agents, the Water-Jug agents, spend their time. In
these agents, again O1, O2 and O3 all hold true. O4, which states that learning cost of the initial
learning run can sometimes be higher than that of the non-learning run, is true for the initial EBBS
learning run of the Water-Jug Look-ahead agent but is not true for its classic chunking runs or any
of the other agents. Similarly, O5 is only true for the Water-Jug Look-ahead agent; the learning
cost of the initial EBBS run is greater than that of the initial classic chunking run. In the other two
agents, the learning cost of the classic chunking initial learning run is greater.

164

Figure 7.43: How the Water-Jug agents spend their time.

In conclusion, while online procedural learning can lead to higher learning costs in early learning
runs, they play an increasingly minor role in overall timing after the agent is exposed to enough
problems that it has summarized the full space of reasoning that its underlying rules are capable
of. EBBS does have higher learning costs than classical chunking in some agents, but that cost
difference is also reduced with further learning.

165

7.5.3 Average and Maximum Decision Cycle Time

The goal of our computational overhead desiderata is to ensure that an agent maintains reactivity.
Because an agent is given the opportunity to react once every decision cycle, an agent’s reactivity
is a function of the duration of a decision cycle. Consequently, the most important metric we use
to evaluate computational overhead is the average and maximum decision cycle time.

Figure 7.44 shows the average decision cycle times for all of our evaluation agents across all
three learning approaches. Note that the figure uses log 10 scale and includes a data point that
corresponds to our maximum decision cycle time of 50ms.

0.
02

60

0.
03

32

0.
04

34

0.
05

07

0.
17

28

0.
16

42

0.
11

71 0.
22

91

0.
23

18

0.
08

71

0.
05

56

0.
05

91 0.
09

81

0.
08

24

0.
08

24

0.
05

75

0.
04

76

0.
04

78 0.
12

38 0.
38

88

0.
33

33

0.
10

22

0.
07

90

0.
07

45 0.
15

71

0.
09

35

0.
10

43

0.
01

46

0.
01

57

0.
01

58 0.
12

55

0.
04

53

0.
07

02

0.
02

02

0.
03

18

0.
03

36 0.
08

15 0.
14

76

0.
12

10

0.
02

17

0.
16

71

50

0.0

0.1

1.0

10.0

100.0

A RIT
HM

ET IC
 (N

L)

A RIT
HM

ET IC
 (C

C)

A RIT
HM

ET IC
 (E

BBS)

BW
 H IE

RA RCH IC
A L (N

L)

BW
 H IE

RA RCH IC
A L (C

C)

BW
 H IE

RA RCH IC
A L (E

BBS)

BW
 H IE

RA RCH IC
A L LOOK-A

HEA D (N
L)

BW
 H IE

RA RCH IC
A L LOOK-A

HEA D (C
C)

BW
 H IE

RA RCH IC
A L LOOK-A

HEA D (E
BBS)

BW
 LOOK-A

HEA D (N
L)

BW
 LOOK-A

HEA D (C
C)

BW
 LOOK-A

HEA D (E
BBS)

BW
 LOOK-A

HEA D S TA TE E
V A LUA T IO

N (N
L)

BW
 LOOK-A

HEA D S TA TE E
V A LUA T IO

N (C
C)

BW
 LOOK-A

HEA D S TA TE E
V A LUA T IO

N (E
BBS)

BW
 OPERA TOR S UBGOA LIN

G (N
L)

BW
 OPERA TOR S UBGOA LIN

G (C
C)

BW
 OPERA TOR S UBGOA LIN

G (E
BBS)

E IG
HT -P

UZ Z LE (N
L)

E IG
HT -P

UZ Z LE (C
C)

E IG
HT -P

UZ Z LE (E
BBS)

A * S
EA RCH (N

L)

A * S
EA RCH (C

C)

A * S
EA RCH (E

BBS)

M
A C P

LA NNIN
G (N

L)

M
A C P

LA NNIN
G (C

C)

M
A C P

LA NNIN
G (E

BBS)

W
J H

IE
RA RCH IC

A L (N
L)

W
J H

IE
RA RCH IC

A L (C
C)

W
J H

IE
RA RCH IC

A L (E
BBS)

W
J LOOK-A

HEA D (N
L)

W
J LOOK-A

HEA D (C
C)

W
J LOOK-A

HEA D (E
BBS)

W
J T

IE
 (N

L)

W
J T

IE
 (C

C)

W
J T

IE
 (E

BBS)

KENKEN (N
L)

KENKEN (E
BBS)

NLP A GENT (N
L)

NLP A GENT (C
C)

NLP A GENT (E
BBS)

M
A XIM

UM
 A LLOW

A BLE DURA T IO
N

TI
M

E
(M

S,
 L

O
G

 1
0)

AVERAGE DURATION OF A DECISION CYCLE

Figure 7.44: The average duration of a decision cycle. All agents are well below our target level
of 50 ms/decision.

As we can see, the average decision cycle time is small for all of the agents. For the majority of
them, it is under 0.1ms. The largest value is 0.38 ms, which is over two orders of magnitude less
than our maximum decision cycle duration of 50 ms. The learning approach does have some effect
on the value of this metric, but, in absolute terms, the amount is negligible.

166

We see a similar pattern when we look at the maximum decision cycle type, as shown in Figure
7.45.

0.
69

19

0.
55

91

0.
78

63

0.
16

57

0.
22

83

0.
21

75 0.
44

35

0.
29

68

0.
30

33

0.
30

88

0.
07

57

0.
07

90 0.
23

42

0.
11

77

0.
10

90

0.
12

46

0.
06

74

0.
06

76

0.
34

06 0.
62

16

0.
54

18

0.
43

22

0.
17

69

0.
16

66 0.
53

74

0.
19

52

0.
23

49

0.
06

46

0.
05

31

0.
05

54

0.
41

10

0.
06

55 0.
12

86

0.
07

41

0.
05

77

0.
05

65

0.
94

28

0.
73

65

3.
46

42

3.
57

40

3.
49

61

50

0.0

0.1

1.0

10.0

100.0

A RIT
HM

ET IC
 (N

L)

A RIT
HM

ET IC
 (C

C)

A RIT
HM

ET IC
 (E

BBS)

BW
 H IE

RA RCH IC
A L (N

L)

BW
 H IE

RA RCH IC
A L (C

C)

BW
 H IE

RA RCH IC
A L (E

BBS)

BW
 H IE

RA RCH IC
A L LOOK-A

HEA D (N
L)

BW
 H IE

RA RCH IC
A L LOOK-A

HEA D (C
C)

BW
 H IE

RA RCH IC
A L LOOK-A

HEA D (E
BBS)

BW
 LOOK-A

HEA D (N
L)

BW
 LOOK-A

HEA D (C
C)

BW
 LOOK-A

HEA D (E
BBS)

BW
 LOOK-A

HEA D S TA TE E
V A LUA T IO

N (N
L)

BW
 LOOK-A

HEA D S TA TE E
V A LUA T IO

N (C
C)

BW
 LOOK-A

HEA D S TA TE E
V A LUA T IO

N (E
BBS)

BW
 OPERA TOR S UBGOA LIN

G (N
L)

BW
 OPERA TOR S UBGOA LIN

G (C
C)

BW
 OPERA TOR S UBGOA LIN

G (E
BBS)

E IG
HT -P

UZ Z LE (N
L)

E IG
HT -P

UZ Z LE (C
C)

E IG
HT -P

UZ Z LE (E
BBS)

A * S
EA RCH (N

L)

A * S
EA RCH (C

C)

A * S
EA RCH (E

BBS)

M
A C P

LA NNIN
G (N

L)

M
A C P

LA NNIN
G (C

C)

M
A C P

LA NNIN
G (E

BBS)

W
J H

IE
RA RCH IC

A L (N
L)

W
J H

IE
RA RCH IC

A L (C
C)

W
J H

IE
RA RCH IC

A L (E
BBS)

W
J LOOK-A

HEA D (N
L)

W
J LOOK-A

HEA D (C
C)

W
J LOOK-A

HEA D (E
BBS)

W
J T

IE
 (N

L)

W
J T

IE
 (C

C)

W
J T

IE
 (E

BBS)

KENKEN (N
L)

KENKEN (E
BBS)

NLP A GENT (N
L)

NLP A GENT (C
C)

NLP A GENT (E
BBS)

M
A XIM

UM
 A LLOW

A BLE DURA T IO
N

TI
M

E
(M

S,
 L

O
G

 1
0)

DURATION OF LONGEST DECISION CYCLE

Figure 7.45: The duration of the longest decision cycle during a run. All agents are well below our
target level of 50 ms/decision.

The learning approach does not seem to significantly affect the duration of the longest decision
cycle time of an agent. There are some cases where EBBS has higher values compared to classic
chunking,13 most notable the arithmetic agent, but the differences are, again, negligible.

What is important is that the durations of the longest decision cycles are under 50 ms. As Figure
7.45 shows, the duration of the longest decision cycle is under 1ms for all agents and learning
approaches except one, the NLP agent, which had at least one decision cycle that lasted 3.57 ms.

In conclusion, we can say the EBBS approach does not compromise agent reactivity; all of our
decision cycle times, both average and maximum, are well below our target level of agent reactivity
of 50 ms/dc.

13There are also a few agents where classic chunking has increased average or maximum decision times

167

7.5.4 Conclusions on our Evaluation of Computational Cost

We began this section by examining how the utility problem impacts our agents. While expensive
chunks do still exist and are likely to be more common under EBBS, we found that there were no
cases in our evaluation agents where they obviate the total speed-up provided by online procedural
learning.

More importantly, our experiments have shown strong evidence that the additional costs of EBBS
do not prevent an agent from maintaining reactivity. All of the agents had average decision cycle
times under 0.39 ms/dc and all but one agent had a maximum decision cycle time under 1 ms.
The slowest maximum decision cycle duration we saw in our evaluation were 3.57 ms/dc, which
is more than a full order of magnitude below our target level of 50ms/dc.

7.6 Evaluating Correctness (E4)

In this section, we attempt to answer the most difficult of our evaluation questions: does the EBBS
approach learns correct rules in situations that the current state of the art online procedural learning
system cannot?

7.6.1 Empirical Evaluation of Correctness

While we were able to develop quantitative metrics to evaluate an algorithm’s ability to capture
generality, we found that it was much more difficult to evaluate correctness empirically.

To prove that rule is correct would be impractical. To review our definition of correctness from
Section 3.5, a learned rule is a correct summarization if it always generates the same knowledge

structures that the original, deliberate reasoning would have in the same situation. So, we would
need to first explicate every possible context in which the original agent’s deliberate subgoal rea-
soning could apply. We would then need to determine what inferences would arise from a subgoal
that used deliberate reasoning to respond to that context, so that we could then compare them with
the inferences that are generated from the rules that were learned based on the same underlying
reasoning. If the two sets of inferences were identical, then we’d know the rule produces correct
inferences in all the situations that the original reasoning produced inferences. At that point, we’d
also have to examine all situations where the deliberate reasoning would not produce any infer-
ences to make sure that the learned rules also don’t produce any inferences. Obviously, it is not
feasible to exhaustively list all situations where a set of rules could apply or could not apply, so an
ideal version of this approach is not possible.

We did spend significant effort attempting to implement an ambitious tool that performed a more

168

limited form of such meta-analysis. This tool, which we call the chunk doctor, monitors the sub-
goal reasoning of an agent and compares what happens in each subgoal with what would have
happened had a learned rule fired. So, in some sense, the agent itself is used to create a meaningful
space of situations for examining the correctness of an agent’s learned rules. But, the real trick
behind the chunk doctor is that it learns rules, keeps them in procedural memory, but does not

allow them to fire, which forces a subgoal to be generated, which then leads to deliberate reasoning
in the subgoal. Because the rules don’t fully fire, the chunk doctor can perform meta-analysis and
compare the deliberate reasoning of an agent with what would have happened had learning truly
been enabled.

The first way we tried to detect whether a learned rule is correct is to have the chunk doctor verify
that a duplicate rule would be learned from the same context that led the learned rule to match. So,
whenever a learned rule matches, the chunk doctor inhibits the rule from firing and tracks what
rules are learned from the subgoal. If no subgoal is generated or the same chunk is not re-learned,
the chunk doctor concludes that the matched chunk fired in a situation that the original reasoning
did not support, which would mean that the matched chunk was overgeneral and, hence, incorrect.

Unfortunately, this method was hampered by the fact that the RETE sometimes fails to detect that a
rule is a duplicate of another previously added rule. Because every one of these failures was a false
positive that required manual comparison of rules, this approach proved to be very time intensive.
Eventually, we abandoned this idea until more work can be done to improve the RETE’s ability to
detect duplicate rules.

The second way the chunk doctor detects whether a learned rule is correct is to compare the WMEs
generated by the subsequent subgoal and compare them to the WMEs that would have been gen-
erated by the learned rules that were ready to fire but were instead inhibited.14 So, instead of
monitoring the rules that are learned from the subgoal reasoning, the second method monitors the
inferences that are generated by subgoal reasoning. To compare these WMEs to the WMEs that
would have been generated by the inhibited learned rule, the chunk doctor simulates the firing of
the inhibited learned rule. The firing is simulated in the sense that the WMEs that would arise
from the rule will never be added to the agent’s memory and instead are set aside to be used for
comparison with the WMEs generated by the deliberate reasoning in the subgoal. This comparison
occurs when the subgoal ends. If other chunks also match and are inhibited while reasoning in the
subgoal is occurring, the rule and its simulated inferences are added for comparison.

For some agents, the chunk doctor did show that they were generating the same inferences using
learned rules that they generate with deliberate reasoning. But for many agents, small differences

14In reality, the chunk doctor compares preferences for WMEs, but, for the sake of clarity, we’ll ignore that level
of processing.

169

in the preferences that arose from each subgoal would flag a chunk as incorrect that proved to be
correct. For example, because other elements of working memory may have changed, additional
rules may fire in the subgoal that led to data structures being generated in the supergoal that weren’t
generated from the original subgoal; this would cause all learned rules that were currently inhibited
to be flagged as a potentially incorrect. After time-consuming manual inspection, we would find
an explanation for the discrepancy. So, like the previous technique, dealing with false positives
proved to be too time intensive for this approach to be of use.

In conclusion, while the chunk doctor shows some limited promise as a verification mechanism,
we did not have success using it as a correctness evaluation or a diagnostic tool. As an evaluation
tool, the chunk doctor proved to be more labor intensive and less informative than our explicit
correctness issue detectors. As a diagnostic tool, the chunk doctor would not be informative enough
because, even if it did accurately detect a case where a chunk produced different inferences than
deliberate reasoning, it would not be able to offer any explanation of why the rule was incorrect.
While we certainly could have improved it further, we weren’t confident that something robust
could be built. So, after about a year of development and experimentation, we abandoned our
efforts to empirically evaluate correctness using the chunk doctor.

7.6.2 Correctness Regression Test Agents

To evaluate correctness, we use a suite of correctness re-

gression test agents. Each of these agents creates a sub-
goal and performs reasoning that is designed to produce
a trace that will require the learning algorithm to deal
with one of the correctness issue originally introduced
in Section 3.5, as shown in Figure 7.46.

While these agents are simple, a detailed, description of
every one would be taxing to follow and is more detail
than is necessary to understand the outcomes of this ex-
periment. So, we present a low-level description of op-
eration for only one of the agents, which should allow
the reader to understand how the regression tests agents
generally work. For the remaining agents, descriptions
are provided, but they are more abstract. The full Soar
agent code for all of these agents are available for down-
load and inspection in the evaluation agents package de-
scribed in Section 7.1.3.

C1-1. Dependent on dynamically-generated knowledge (multiple)

C1-2. Dependent on operator selection knowledge

C1-3. Dependent on promoted knowledge

C1-4. Dependent on implicit knowledge

C1-5. Dependent on knowledge from subgoals that do not explain results

C1-6. Dependent on knowledge retrieved from LTM multiple times

C1. Behavior Trace Does Not Explain All Dependencies

C2-1. Requires that a calculation meets a constraint

C2-2. Conflates a disjunction of contexts

C2-3. Generates knowledge structures linked to long-term memory structures

C2. Reasoning That Is Not Expressible in a Single Rule

C3-1. Dependent on an operator selected probabilistically

C3-2. Dependent on knowledge recalled from LTM using opaque mechanism

C3-3. Dependent on knowledge recalled from a changing LTM

C3. Reasoning That Is Not Reliably Repeatable

Correctness Issues

Figure 7.46: Regression test agent were
designed for most of these correctness
issues.

170

Because we do not need to generate quantitative metrics for these tests, we do not use the simulated
version of classical chunking and instead compare learning algorithms by first running a regression
agent in EVAL-SOAR and then running the same agent in the last version of Soar with classical
chunking, Soar 9.3.2.

For each regression agent, we describe three qualities of what we observe:

1. What happens when EBBS summarizes the agent’s reasoning

2. What happens when classic chunking summarizes the agent’s reasoning

3. When applicable, whether each of the learning algorithms can detect the correctness issue
before the rule is added to procedural memory

This section is included if EBBS fails. Classical chunking has few correctness issue detec-
tors, so the reader may assume that a detector does not exist in classical chunking unless
otherwise noted.

The first eight tests involve correctness issues that arise when summarizing a behavior trace that
does not explain all dependencies. These agents are designed to test as little information in the
supergoal as possible. In most cases, this makes failures obvious; the agent learns a rule with no
conditions, which is rejected by Soar. While this type of invalid rule may seem different from an
incorrect rule, it really isn’t; if we had designed the agent so that it directly tests an additional
WME in the supergoal, it would have successfully learned a rule, one that was overgeneral and
hence incorrect.

The agent that we describe in detail is the agent that uses a dynamic rule in its subgoal reasoning.
To review, a dynamic rule is one that has some of its structure determined dynamically at run-time,
for example, based on the contents of working memory.

7.6.2.1 Behavior Trace Dependent on a Dynamic Rule

• Initial setup: This agent will use the RHS func-
tion deep-copy to test whether an agent can learn
from a dynamic rule. The knowledge that is deep-
copied is a multi-level working memory structure
that the agent creates on the top goal as shown
in Figure 7.47. The actual items copied are thus
determined at run-time, and that is the dynamic
aspect of this rule.

Working Memory Elements Working Memory Visualization

S1

A

deep-data

B C

child2child1

(S1 ^deep-data A)
(A ^child1 B)
(A ^child2 C)

Figure 7.47: Initial state of WM of re-
gression test agent C1-1(a).

171

• Operation: The agent subgoals, proposes and se-
lects a subgoal operator. A rule then fires that uses
the dynamic function deep-copy to create a copy
(in the subgoal) of A and all of its children. An-
other rule fires and returns a copy of the top node
A, a new WME D, as a result to the supergoal.
(This makes the children accessible to the super-
goal, so they are also results.) Figure 7.48 shows
these two rules.

sp {perform-deep-copy
 (state <s> ^operator.name deep-copy
 ^superstate <ss>)
 (<ss> ^deep-data <a>)
 -->
 (<s> ^deep-copy-in-subgoal (deep-copy <a>))
 }

sp {add-deepcopy-to-supergoal
 (state <s> ^operator.name deep-copy
 ^superstate <ss>
 ^deep-copy-in-subgoal <a2>)
 (<ss> ^operator <so>)
 -->
 (<ss> ^deep-data2 <a2>)
 }

Figure 7.48: The dynamic rule (top)
and the rule that produces a result in the
supergoal (bottom.)

• Desired Behavior: A rule is learned that tests
A, B and C and creates a structurally equivalent
structure: D, E and F. In Figure 7.49, A, B and C
would match <f1> <f2> and <f3>, while D, E and
F would be created by the RHS unbound variables
<f4>, <f5> and <f6>. Note that B and C are not
tested in any of the conditions of the rules shown
in Figure 7.48 but are implicit in the operation of
deep-copy.

sp {desired-learned-rule
 (state <s> ^superstate nil
 ^deep-data <f1>)
 (<f1> ^child1 <f2>
 ^child2 <f3>)
 -->
 (<s> ^deep-data2 <f4>)
 (<f4> ^child1 <f5>)
 (<f4> ^child2 <f6>)
 }

Figure 7.49: The correct rule that
should be learned by regression test
agent C1-1(a).

• EBBS Behavior: EBBS learns the expected rule
and passes this regression test.

sp {EBBS-rule-learned
 (state <s> ^superstate nil
 ^deep-data <f1>)
 (<f1> ^child1 <f2>
 ^child2 <f3>)
 -->
 (<s> ^deep-data2 <f4>)
 (<f4> ^child1 <f5>)
 (<f4> ^child2 <f6>)
 }

Figure 7.50: The EBBS rule learned
from regression test agent C1-1(c).

172

• Classic Chunking Behavior: Classic chunking
fails this regression test. The agent learns an in-
correct rule that only matches A before it creates
D, E and F. This rule is overgeneral because it
does not also test A’s children.

sp {classic-chunk-learned
 (state <s> ^superstate nil
 ^deep-data <f1>)
 -->
 (<s> ^deep-data2 <f4>)
 (<f4> ^child1 <f5>)
 (<f4> ^child2 <f6>)
 }

Figure 7.51: The classic chunk learned
from regression test agent C1-1(c).

7.6.2.2 Behavior Trace Dependent on Architectural Meta-data

We evaluate whether an online procedural learning algorithm can learn from a trace dependent on
architectural meta-data, for example the architecturally created features in a subgoal that indicate
which operators are tied in the supergoal, by using an agent that performs subgoal reasoning that
only tests meta-data. This agent faces an operator tie impasse in the top-level goal, which causes
the agent to subgoal. In the subgoal, a rule fires that tests supergoal operators A and B via the

architectural meta-data and creates a preference in the supergoal to prefer A over B.15 What’s
important is that this rule does not directly test the operators in the supergoal; instead, it tests the
operators referred to by meta-knowledge that Soar creates in the subgoal that list all tied operators.
The correct rule is one that tests that both operators A and B are proposed in the current state, and,
if so, creates a preference preferring A over B.

• EBBS Behavior: EBBS learns the expected rule and passes this regression test.

• Classic Chunking Behavior: Classic chunking learns the expected rule and passes this
regression test. As described in 6.1.1.1, both EBBS and classic chunking automatically
create architectural instantiations for these subgoal features.

7.6.2.3 Behavior Trace Dependent on Knowledge Recalled from LTM

This agent tests whether an online procedural learning algorithm can learn correct rules from LTM
memory recalls. As previously discussed in Section 6.1.1.2, summarizing traces that test LTM is a
challenge because structures generated by long-term memory retrievals are dynamically-created by
the architecture, so there is no computational accounting of any dependency between the context
of the query and the knowledge retrieved. To test whether an agent can learn from such traces, this
agent proposes an operator in a subgoal that will issue a semantic memory recall. The proposal

15Note that correctness issues involving learning from operator selection knowledge do not exist here. This agent
is not summarizing reasoning that includes operator selection knowledge, which is where correctness issues lie, and is
simply creating operator selection knowledge.

173

for the subgoal operator tests a feature A in the supergoal. The operator is selected and issues a
semantic memory recall command. The semantic memory command creates a data structure B in
the subgoal that corresponds to a long-term memory structure. An operator application rule then
fires that returns that structure to the supergoal. The correct rule is one that tests feature A and
creates a knowledge structure B in the same goal.

• EBBS Behavior: EBBS learns the expected rule and passes this regression test.

• Classic Chunking Behavior: Classic chunking passes this regression test.

7.6.2.4 Behavior Trace Dependent on Operator Selection Knowledge

This agent tests whether an online procedural learning algorithm can learn correct rules that behav-
ior traces that include operators selected using operator selection knowledge. This agent proposes
two operators in a subgoal. A rule fires that tests feature A in the supergoal and creates an oper-
ator preference that prefers one of the subgoal operators over the other. The preferred operator is
selected and an operator application rule then fires that returns a result, feature B, to the supergoal.
The correct learned rule tests feature A, which was originally tested by the OSK rule, and creates
feature B.

• EBBS Behavior: EBBS learns the expected rule and passes this regression test.

• Classic Chunking Behavior: Classic chunking fails this regression test. Agent learns a rule
that creates feature B but has no conditions that it rejects.

7.6.2.5 Behavior Trace Dependent on Promoted Knowledge

This agent tests whether an online procedural learning algorithm can learn from a behavior trace
that inaccurately describes knowledge as subgoal knowledge that is actually supergoal knowledge.
As discussed in Section 6.1.3, this occurs when another rule previously fired in the subgoal and
returned the knowledge structure as a result, effectively promoting the knowledge to supergoal
knowledge.

This agent creates a WME A in the top goal. The agent then subgoals, after which it proposes and
selects an operator in the subgoal. An operator application rule then fires and creates subgoal WME
B. Another rule fires and adds a child WME to A that points to B. Because A is in the supergoal, this
promotes B to supergoal knowledge. Finally, a rule fires in the subgoal that references B relative
to the subgoal and adds a child WME C to B. Because B was promoted to supergoal knowledge, C
is also being added to the supergoal, so a rule should be learned. The correct rule is one that tests
A and B and creates C as a child.

174

• EBBS Behavior: EBBS learns the expected rule and passes this regression test. Note that
this agent initially learns an invalid rule that tests for B and creates C. EBBS uses rule repair
to find a path from the supergoal to A to B. This allows it to add a condition that tests A,
which provides a path to the goal and makes the rule valid.

• Classic Chunking Behavior: Classic chunking fails this regression test. Soar reports a
critical error and exits, which is a problematic response, given that this is one of the most
common correctness issues agents encounter. (We assume that the reason that it exits is that
the researchers who implemented the system felt that stability of Soar would be compro-
mised if they added unjustified knowledge to the agent.)

7.6.2.6 Behavior Trace Dependent on Implicit Knowledge

This agent tests the one detectable case of an incorrect rule that arises from the use of implicit
knowledge: behavior traces that tests that a knowledge structure does not exist in the subgoal. As
previously discussed, these traces only produce incorrect rules if the agent has other rules that both
create the prohibited structure in the subgoal and test supergoal knowledge. If the agent designer
has implicit knowledge that such rules do not exist, then the rule is correct.

This agent is fairly simple. It creates A in the top goal, subgoals, tests that some hypothetical
WME B does not exist in the subgoal and then returns B as a result. We also add another rule,
which never fires, which tests for C in the topgoal and adds B to the subgoal. While this rule never
actually fires16, its existence means that the implicit knowledge used by the “designer” was wrong,
so any rule learned from a trace that tests that B doesn’t exist in the subgoal is incorrect.

• EBBS Behavior: EBBS fails this regression test.

• Classic Chunking Behavior: Classic chunking fails this regression test.

• Detection: Neither OPL algorithm can verify the implicit assumption that no rules exist that
can fire in a supergoal and create the prohibited subgoal WME. What they both do detect,
are rules learned that summarize behavior traces that test that a subgoal WME does not exist,
which is information that can help the agent engineer to diagnose whether the correctness
issue exists in an agent. If they find that only subgoal rules can create the prohibited WME,
they can ignore the warning. If they realize that there are rules that can create the prohibited
subgoal WME, they can eliminate the correctness issue by redesigning their rules so that the
prohibited WME is instead created in the supergoal and any rules that test that the existence
of the WME test it relative to the supergoal. Both EBBS and classic chunking also include a

16At the risk of making a joke, this rule is truly symbolic.

175

filter for this issue that, when enabled, will throw out the learned rule and force Soar to learn
a justification instead. EBBS also includes an option that will flag the chunk as potentially
incorrect but allow it to be learned and added to procedural memory.

7.6.2.7 Behavior Trace Dependent on Knowledge from Non-learning Subgoals

As previously discussed in Section 6.1.5, correctness issues can arise from non-learning subgoals
because the mechanisms that prevent learning incorrect rules are not employed in those subgoals.
Consequently, we use a modified version of the regression test for C1-2, which test whether an
agent can learn from operator selection knowledge, to creates a correctness issue for this agent.
The main difference between the agents is that this one subgoals twice, which results in a stack of
three goals, which we will refer to as G1, G2, and G3, but only enables learning in the middle goal

G2. A WME A is created in G1 and a WME B is created in G2. This agent then uses the logic
from the C1-2 agent to propose two operators in G3. And like the C1-2 agent, an operator selection
rule fires in G3 that tests A in G1 and creates an operator preference for one of the proposed G3
operators. That operator is selected, and then an operator application rule tests B, which is in G2,
and returns a result to G2: WME C. Finally, a rule fires in G2 that tests only C in G2 and returns a
result D to G1. The OPL algorithm should then learn a rule that tests feature A, which was tested
by the OSK rule in the non-learning subgoal G3, and creates feature D.

• EBBS Behavior: EBBS learns the expected rule and passes this regression test.

• Classic Chunking Behavior: Classic chunking fails this regression test. Because clas-
sic chunking does not incorporate OSK in the rules that it learns, the justification that was
learned in G3 did not test A, which led the final chunk to also not test A. Consequently, the
chunk is overgeneral.

7.6.2.8 Behavior Trace Dependent on Knowledge Retrieved from LTM Multiple Times

This agent tests whether an OPL learns correct rules in agents that retrieve the same LTM in
multiple subgoals, a situation that can cause unintended interactions between LTM recalls. This
agent creates a WME A and then issues a semantic memory recall command in the top goal. After
the LTM structure is retrieved into the top goal, the agent subgoals. Rules fire in the subgoal that
issue another semantic memory recall command that retrieves the same LTM into the subgoal. A
rule fires that tests A in the supergoal and one of the WMEs in the subgoal version of the LTM
and add a child WME, B, to it. Because the LTM is technically supergoal knowledge, the OPL
algorithm should learn a rule that tests A and creates a child WME connected to it, B.

Note that the desired rule is technically also incorrect. This is because the agent tests knowledge
from LTM that is retrieved directly into the subgoal, which both EBBS and classical chunking

176

will ignore because it is knowledge that is not accessible to the supergoal.17 But, this particular
overgenerality can be ignored because it is simply the nature of this correctness issue. The agents
that face these problems are intentionally using semantic memory to hide certain dependencies
in the agent’s reasoning from the OPL algorithm. This process, which we call context-specific
decontextualization is a key mechanism by which other research projects have used both chunking
and EBBS to effect higher-order procedural learning, for example, learning by instruction.

• EBBS Behavior: Instance-based semantic memory allows EBBS to avoid this problem en-
tirely because it ensures that each LTM recall is independent and cannot interact with another
LTM recall. So, EBBS learns the expected rule and passes this regression test.

Note that EBBS would still be able to learn a correct rule, even if instance-based semantic
memory were not being used. Previous versions of EBBS used rule-repair to create condi-
tions that correct unconnected conditions that arose from the missing dependencies in the
behavior trace caused by unexpected interactions between LTM recalls.

• Classic Chunking Behavior: Classic chunking fails this regression test and generates a
rule where one of the conditions, the one that would match A, is not connected to a goal.
Soar reports a critical error and exits. (It reports that the agent may have modified previous
results.)

7.6.2.9 Behavior Trace with Reasoning that Requires that a Calculation Meets a Constraint

This agent implements reasoning that is similar to the example used in Section 6.2.1. The agent
creates three numerical features on the top goal, N1, N2 and N3, which are equal to 1, 2 and 3
respectively. In the subgoal, a rule fires that adds N1 and N2 together using a RHS function which
it then stores in a subgoal WME A. Another rule fires that tests both N3 (using a variable) and
whether the value stored in A is less than 5, and, if so, it uses a RHS math function to return the
sum of N3 and A as a result. The correct learned rule has conditions that test N1 and N2 using
specific values (1 and 2) and tests N3 using a variable. The correct rule learned will have a RHS
that is a math function that adds N3, again using a variable, with the specific value of the sum,
three.

• EBBS Behavior: EBBS learns the expected rule and passes this regression test.

• Classic Chunking Behavior: Classic chunking can neither capture the generality of numer-
ical reasoning nor learn rules with RHS math functions, so this issue does not apply. (The

17This is why the agent also tests A in the supergoal; testing A guarantees that the rule will have at least one positive
condition and be valid.

177

classic chunk will always contain the specific value of numerical features and the RHS cal-
culations.) As previously discussed in Section 6.2.1, this correctness issue is one that arose
when we gave EBBS the ability to learn rules that capture the mathematical reasoning in
RHS functions.

7.6.2.10 Behavior Trace with Reasoning that Conflates a Disjunction of Contexts

To review, this problem occurs when multiple rules test different knowledge structures in the su-
pergoal but create the same WME in the subgoal. To correctly learn a rule in such situations,
the cognitive architecture would need to support rules with disjunctive conditions, something Soar
does not have the language to do currently.

A detector for context conflation exists but is still a work in progress. While it did function properly,
it required some low-level architectural changes18 that introduced general stability issues. As a
result, we decided to disable the detector and re-examine the technical issues in future work.19

Because we did not get our conflation detector fully working and neither EBBS nor classic chunk-
ing include a mechanism to ameliorate this problem, we did not implement a regression tests for
this issue.

7.6.2.11 Behavior Trace that Generates Knowledge Structures Linked to LTM

This issue is unique because it is one that is a direct consequence of instance-based semantic
memory. As discussed in Section 6.3.3, if an agent returns a result that has internal links to LTMs,
it must create chunks that also creates a working memory structure that is linked to the same LTM.
Otherwise, the rule would be incorrect. If the agent performs further reasoning that require that
the LTM links exist – for example, the rule may use one of the new semantic memory tests to
test that two short-term working memory structures were linked to the same semantic memory –
the reasoning would match against the original results but would not match against the WMEs
produced by the chunk.

This is probably the simplest of the regression test agents. The agent first creates A in the top goal.
It then subgoals and retrieves a knowledge structure B, which has an internal link to a structure in
LTM. It tests A in the supergoal and returns B to the supergoal. The correct rule is one that tests A
and creates a knowledge structure that is both structurally equivalent to B and linked to the same
LTM as B.

• EBBS Behavior: EBBS learns the expected rule and passes this regression test. The rule

18Keeping all preferences in a slot ordered, for those who are curious.
19Part of the reason behind this decision is that we’ve never actually encountered this correctness issue in any of

our agents, so we always considered it low priority.

178

learned contains special actions that create internals links between the WMEs that the rule
creates and the same LTM that was linked to B.

• Classic Chunking Behavior: This problem does not exist in classic chunking.20

7.6.2.12 Behavior Trace with Reasoning that is Dependent on a Probabilistic Operator

This agent is straightforward. It creates two WMEs in the top goal, A and B. It then subgoals
and proposes one operator that tests A and one operator that tests B. It selects between the two
operators randomly. An operator application rule then fires that creates a result in the supergoal
that points to the WME that its operator proposal tested (either A or B). Because Soar rules cannot
represent such probabilistic reasoning in a rule, there is no rule that can be learned from this trace
that will always produce the correct inferences.

• EBBS Behavior: EBBS fails this regression test. Agent learns an incorrect rule that tests
A and creates a WME that points back to A. If the two operators proposed in the subgoal
had an equal chance to be selected, this rule will be incorrect half the time. (Because the
deliberate reasoning also had a 50% chance to create a WME that points back to B.)

• Classic Chunking Behavior: Classic chunking fails this regression test and also learns one
of the two incorrect rules.

• Detection: EBBS can detect rules with this correctness issue. When EBBS is analyzing
OSK to build a ROSK set, it also flags each operator with information indicating whether
the operator was chosen probabilistically. If it encounters any instantiations that tests such
probabilistically chosen operators when it is backtracing through the behavior trace, it flags
the learned rule that it’s building accordingly. If the correctness filter for this issue is enabled,
EBBS does not add the rule to memory and instead builds a justification for it instead. Classic
chunking does not have a mechanism to either detect this correctness issue or block these
rules from forming.

7.6.2.13 Behavior Trace Dependent on Knowledge from LTM that is Either Changing or
Retrieved Using an Opaque Mechanism

This agent proposes an operator in a subgoal that will issue a semantic memory recall. The proposal
for the subgoal operator tests a feature A in the supergoal. The operator is selected and issues a
semantic memory recall command. Soar responds to the query and creates a data structure B in
the subgoal that corresponds to a long-term memory structure B*. An operator application rule

20Note that if instance-based semantic memory had existed back then, classic chunking would also have this issue.

179

then fires that returns B to the supergoal, which causes a rule to be learned. A set of rules then fire
in the supergoal that creates a structure C and issues a semantic memory store command that will
effectively replace B* with a new LTM based on the structure C. Because the LTM knowledge that
the trace is dependent on, B*, no longer exists, there is no correct rule that can be learned from this
trace.

• EBBS Behavior: EBBS fails this regression test. It learns a rule that tests feature A and
creates a knowledge structure B based on and linked to B*. Because B* was removed from
LTM, this rule is incorrect.

• Classic Chunking Behavior: Classic chunking fails this regression test and also learns the
same incorrect rule.

• Detection: EBBS can detect rules with this correctness issue. If any rules in a behavior trace
test knowledge structures retrieved from LTM, EBBS flags the chunk accordingly. If the
correctness filter for either of these issues is enabled, EBBS does not add the rule to memory
and instead builds a justification for it instead. Note that this detector differs from the one
described in Section 7.6.2.3, which detects rules learned from behavior traces that test LTM
knowledge structures that are generated by a LTM retrieval that is also in the behavior trace.
This detector flags any rule learned from a trace that tests at least one WME that is linked

to a LTM, even if it was retrieved in a different subgoal. If the correctness filter for this issue
is enabled, EBBS does not add the rule to memory and instead builds a justification for it
instead. Classic chunking does not have a mechanism to either detect this correctness issue
or block these rules from forming.

Note that this agent can also be used to evaluate whether an OPL algorithm can learn from rea-
soning that is dependent on knowledge from LTM retrieved using an opaque mechanism. The two
issues are functionally equivalent because they both arise when two identical LTM recalls return
different knowledge structures. They differ in only the underlying reason.

7.6.3 More Complex Regression Tests

In the spirit of transparency, it is worth noting that the regression tests described in the previous
sections were created purely to facilitate this discussion.21 They were not actually used in the
development of EBBS. Instead, we used a suite of 100 more complex agents as correctness and
generality unit tests.

21It was obvious to us beforehand how each agent would do on each test.

180

To use these agents as regression unit tests, we developed a “key” for each agent: a set of “gold
standard” rules that we expected the agent to learn. To generate keys for the 77 simple agents,
we ran the agents and manually verified that each rule that the agent learned is correct. (These
agents were added over several years. Each time we faced and overcame some issue with our
algorithm, we would add an agent to test it.) For the more complex agents, manually verifying the
rules learned was not practical. And, as previously discussed, we have no automated method to
determine or prove that a set of learned rules are correct. So, we essentially used task performance
to evaluate whether the agent was learning the rules we wanted. If the agent could solve the
problem reliably, we would add the agent to our test agents and use the rules that it learned at the
time as its key. As we improved and refined the algorithm, we would update the rules in each
agent’s key.

The agents in our unit tests include:

• 12 of the evaluation agents we described in the generality, correctness, task performance and
computational overhead sections of this chapter.22

• Two agents that model PRIMS learning (Stearns et al., 2017), which were derived from the
agents used in Bryan’s Stearns thesis.

• One agent based on James Kirk’s game-learning agent (Kirk and Laird, 2014). This agent
learns the rules for 90 different games and is the largest and most complex of our unit test
agents.

• Eight agents based on reasoning performed by ROSIE (Mininger and Laird, 2016), a robot
that learns by instruction.23

• 77 agents that test specific aspects of EBBS. These simple agents are at about the same level
of complexity as the correctness regression tests that we described in this section.

These agents and their keys can be found in the current distribution of Soar. To run all 100 of them
and see how their rules compare to their keys, the reader can run the UnitTests executable.
(The UnitTests program uses the RETE duplicate detection capabilities to verify that the rules
learned matched the rules in the agent’s key.)

Note that we did not use the PRIMS, game-learning, or ROSIE agents in our detailed evaluation
because none of them were able to complete their task either with classical chunking enabled or
when learning is disabled.

22The NLP and Kenken agents, which were developed after EBBS was completed, are the two that are not included.
23None of these are complete ROSIE agents. They are simplified excerpts of ROSIE’s reasoning that were given to

me every time my algorithm wasn’t able to learn something they wished it could learn.

181

7.6.4 Additional Comments on Correctness

The following are a collection of observations that show how EBBS’s correctness mechanism
makes progress towards automatic online procedural learning:

• Several of our evaluation agents that limit their learning to only certain subgoals with clas-
sical chunking can now learn correct rules from all subgoals. (With classic chunking, these
agents learn incorrect rules in the previously disabled subgoals.)

– BlocksWorld Hierarchical Look-ahead
– BlocksWorld Look-ahead State Evaluation
– BlocksWorld Look-ahead

• If the OPL algorithm does not include operator selection knowledge in the rules that it learns,
the following agents learn incorrect rules that cause the following problems:

– BlocksWorld Look-ahead, Water-Jug Look-ahead and Mouse and Cats Planning agents
will sometimes fail to complete their task.

– BlocksWorld Operator Subgoaling and BlocksWorld Operator Subgoaling Reinforcement-
Learning agents are always unable to complete their task.

– BlocksWorld Hierarchical Look-ahead will sometimes fail to find a solution, but only
in classic chunking mode.

– Mouse and Cats Look-ahead Reinforcement-Learning agent, an agent we have not dis-
cussed, will learn rules that do not converge and improve performance.

182

7.6.5 Conclusions on our Evaluation of Correctness

In this section, we attempted to answer the question: does the EBBS approach learns correct rules
in situations that the current state of the art online procedural learning system cannot? If we
review the specific situations listed in Figure 7.52, we see that the answer is yes. We have shown
evidence that all of the correctness issues that occur when summarizing behavior traces that do not
explain all dependencies have been remedied, except one, C1-4, behavior traces that are dependent
on implicit knowledge, which is the one correctness issue that has no clear solution. We have
also shown evidence that two out of three of the correctness issues that occur when summarizing
behavior traces with reasoning that is not expressible in a single rule have been remedied. A
detector for the issue that was not addressed, C2-1, behavior traces with reasoning that conflates a
disjunction of contexts, exists but has technical issues. Finally, all of the correctness issues related
to unreliable knowledge are detectable, which allows EBBS to learn a justification instead of a
rule when it detect that a trace is dependent on unreliable knowledge. This is a viable way to
reduce the effect of these three correctness issues because justifications are essentially immune
to the problems posed by unreliable knowledge. In summary, while some correctness issues will
always exist, most notably behavior traces dependent on implicit knowledge, our evaluation has
shown that EBBS eliminates many of the most common sources of correctness issues that existed
in classical chunking and detects the ones that it cannot currently ameliorate.

C1. Behavior Trace Does Not Explain All Dependencies
C1-1. Dependent on dynamically-generated knowledge (meta-knowledge)
C1-1. Dependent on dynamically-generated knowledge (dynamic rule)
C1-1. Dependent on dynamically-generated knowledge (LTM recall)
C1-2. Dependent on operator selection knowledge
C1-3. Dependent on promoted knowledge
C1-4. Dependent on implicit knowledge
C1-5. Dependent on knowledge from subgoals that do not explain results
C1-6. Dependent on knowledge retrieved from LTM multiple times

C2. Reasoning That Is Not Expressible in a Single Rule
C2-1. Requires that a calculation meets a constraint
C2-2. Conflates a disjunction of contexts
C2-3. Generates knowledge structures linked to long-term memory structures

C3. Reasoning That Is Not Reliably Repeatable
C3-1. Dependent on an operator selected probabilistically
C3-2. Dependent on knowledge recalled from LTM using opaque mechanism
C3-3. Dependent on knowledge recalled from a changing LTM

EBBS

Pass
Fail Fail but can detect and block

Not applicable

C1. Behavior Trace Does Not Explain All Dependencies
C1-1. Dependent on dynamically-generated knowledge (meta-knowledge)
C1-1. Dependent on dynamically-generated knowledge (dynamic rule)
C1-1. Dependent on dynamically-generated knowledge (LTM recall)
C1-2. Dependent on operator selection knowledge
C1-3. Dependent on promoted knowledge
C1-4. Dependent on implicit knowledge
C1-5. Dependent on knowledge from subgoals that do not explain results
C1-6. Dependent on knowledge retrieved from LTM multiple times

C2. Reasoning That Is Not Expressible in a Single Rule
C2-1. Requires that a calculation meets a constraint
C2-2. Conflates a disjunction of contexts
C2-3. Generates knowledge structures linked to long-term memory structures

C3. Reasoning That Is Not Reliably Repeatable
C3-1. Dependent on an operator selected probabilistically
C3-2. Dependent on knowledge recalled from LTM using opaque mechanism
C3-3. Dependent on knowledge recalled from a changing LTM

Classic Chunking

Figure 7.52: The results of regression tests with classic chunking and EBBS.

183

7.7 Evaluation Conclusions

In this section, we summarize our evaluation of whether EBBS improves Soar’s online procedural
learning against our desiderata by answering the following four questions:

• E1. Task Performance: Does the EBBS approach improve task performance as much or
more than the current state of the art online procedural learning system?

Our answer is yes. Our experiments have shown strong evidence that EBBS improves task
performances as much as classical chunking, and in some cases more. In domains or tasks
where learning rate is important, the improvements can be dramatic.

• E2. Generality: Does the EBBS approach learn more optimally general rules than the
current state of the art online procedural learning system?

Our answer is yes. Our experiments have shown strong evidence that EBBS captures more
of the generality of the underlying rules. In many agents, EBBS summarizes an agent’s
reasoning in fewer rules than classical chunking, and those rules prevent more impasses and
find more opportunities to fire than the rules of classical chunking. We have also shown
evidence that the rules that EBBS learns are indeed reasoning generally over knowledge
types that chunks cannot reason over, which is the key reason that classic chunking learns
overly specialized rules.

• E3. Computational Costs: Does the computational overhead added by the EBBS approach
allow an agent to maintain reactivity?

Our answer is yes. While expensive chunks do still exist and are likely to be more common
under EBBS, we found that there were no cases in our evaluation agents where they obviate
the total speed-up provided by online procedural learning. More importantly, our experi-
ments have shown strong evidence that the additional costs of EBBS do not prevent an agent
from maintaining reactivity. Both the average and maximum decision cycle times of all of
our evaluation agents are orders of magnitude below problematic values.

• E4. Correctness: Does the EBBS approach learn correct rules in situations that the current
state of the art online procedural learning system cannot?

Our answer is yes. Our experiments have shown that EBBS eliminates many of the most
common sources of correctness issues that existed in classical chunking and detects the ones
that it cannot.

184

CHAPTER 8

Conclusion

In this thesis, we have made the following contributions:

1. We explicated the underlying deficiencies in the original implementations of chunking that
arose from many of its core assumptions. We explained the key issue behind why chunk-
ing does not always learn optimally general rules and provided a detailed description of 12
different correctness issues.

2. We provided four architecture-agnostic necessary conditions for correct behavior summa-
rization when performing online procedural learning and showed how they can be used to
organize the varied correctness issues of an online procedural learning algorithm into a tax-
onomy whose categories suggest mitigation strategies.

3. We defined four desiderata for an ideal online procedural learning algorithm that are architecture-
agnostic and can be used to evaluate an online procedural learning system.

4. We presented five architecture-agnostic strategies that can be used to improve dynamic pro-
cedural knowledge learning. We demonstrated this approach by applying three strategies to
chunking’s generality issues and four strategies to its correctness issues.

5. We developed mechanisms that implement our five strategies and used them as the ba-
sis for a completely new implementation of dependency-based procedural learning called
explanation-based behavior summarization (EBBS). Our implementation can continually
learn general and correct procedural knowledge while maintaining the reactivity that real-
world agents require. This implementation is robust to agent design and can capture the
generality of problem-solving that the current state of the art online procedural learning sys-
tem, chunking, cannot.

6. We detailed how this system captures previously ignored information and uses a novel uni-
fication algorithm called Distributed Identity Graph Unification (DIGU) that is informed by

185

insights we’ve had on the tight relationship between generality and correctness in online pro-
cedural learning systems within cognitive architectures. We showed how DIGU can capture
more of the generality in the reasoning being summarized, interfaces with the various mech-
anisms that improve correctness by using the formalism of object “identity,” and is uniquely
designed to handle the computational demands that arise from online procedural learning in
a cognitive architecture.

7. We described the algorithmic mechanisms that remedy or detect each of the 12 correctness
issues described in our chunking analysis.

8. Finally, we evaluated our implementation and showed that our system learns more optimally
general rules that capture reasoning that previously could not be captured, effect correct
behavior and improve agent performance without sacrificing agent reactivity. We did this by
gathering data from several experiments that used 14 agents across 8 different tasks.

One of the primary motivations for this work was to give Soar the capabilities needed to pursue
research on higher level procedural learning approaches. So, to conclude this thesis, we examine
whether the EBBS approach improves online procedural learning enough so that it can be used
in research projects in ways that could not be achieved with the current state of the art online
procedural learning system, chunking. In Section 3.7, we listed the various problems that ROSIE,
Soar’s interactive task learning agent, faced while trying to use chunking as a basis for its level-2
learning:

1. ITL agent cannot tolerate undergenerality. Other agents can compensate for undergeneral
rules with extra training, i.e. they learn multiple rules that are equivalent to an optimally
general rule. Agents that learn by instruction cannot repeatedly ask a human the same ques-
tion. So, these agents need to learn optimally general rules from a single instruction (Laird
et al., 2017), a capability chunking cannot currently provide.

2. ITL agents utilize many of the types of reasoning that leads chunking to learn incorrect
rules. In terms of our correctness taxonomy, our current ITL agents utilize nearly every type
of problematic reasoning we have described.

3. ITL agents must learn rules that encode the knowledge acquired from the instruction without
being directly dependent on a declarative representation of the instructor’s utterance. (A
rule that was dependent on the words of the instructor would have little utility since those
instructions are only available during the interaction with the instructor.)

From the evaluation in Chapter 7, we can now see that we have completely addressed (1) and made
significant on progress on (2).

186

The third item refers to a key capability that level 2 learning often needs from a level-1 procedural
learning system: the ability to ignore aspects of an agent’s reasoning when learning rules. This pro-
cess, which we call context-specific decontextualization, allows an agent to force the procedural
learning algorithm to ignore targeted aspects of reasoning in a subgoal. Previous Soar systems that
learned by instructions would force learned knowledge to be independent of declarative instruc-
tions by putting reasoning that is dependent on instructions in rules that create operator selection
knowledge, which the agent designer knew chunking would ignore (Huffman and Laird, 1995),
thus producing rules that do not rely on the original instructions. Current systems use semantic
memory retrievals to achieve the same thing, which is why the correctness issues related to seman-
tic memory were so debilitating for those projects. Our instance-based semantic memory system
eliminated those issues, which means that we’ve cleared the last roadblock that ITL agents had
using Soar’s automatic level-1 procedural learning as a basis for its level-2 learning by instruction.

Ultimately, the best evidence is that multiple research systems have already used EBBS in their
research, often as a basis for level 2 learning. These projects, which investigate natural language
comprehension (Lindes, 2022), game learning (Kirk et al., 2016), interactive task learning (Lindes
et al., 2017; Kirk and Laird, 2016; Mininger and Laird, 2016), and a PRIMS model of human pro-
cedural learning (Stearns et al., 2017), have all used various implementations of our explanation-
based behavior summarization system. For the game-learning and interactive task learning work
in particular, the capabilities of EBBS were a fundamental and very necessary component for all
of their learning results.

187

APPENDIX A

Soar Terminology Primer

• Symbols: Signifiers that are the atomic units of Soar’s representation:

– Constants: There are three types of constants: strings, floating point numbers and
integers. Examples are blue, 2.3 and 33.

– Soar Identifiers(SI): These are special symbols created at run-time to group a set of
features together to correspond to an abstraction or object. Soar identifiers are transient
and not guaranteed to be the same across runs. They take the form of a letter followed
by a number, for example C1. We will use the abbreviations SI to avoid confusion with
the identifier element of other Soar data structures.

– Variables: These symbols are only used in rule conditions and can match any symbol
type. They are indicated by angle brackets, for example <variable>.

• Working Memory: A set of symbol triples that represents an agent’s current knowledge of
the world and its current state in problem solving. Soar’s WM is a directed graph and is also
referred to as Soar’s short-term memory.

• Element: Because Soar’s working memory is a directed graph, many of its data structures
are triples. Regardless of what type of triple it is, they all have an identifier, attribute and

value elements.

• Working Memory Element (WME): A tuple of three symbols. A WME is equivalent to a
fact in a predicate logic formalism.

– The identifier element must be always be an SI.

– Attributes can be any constant type.

– The value element can be either a Soar identifier or a constant.

• Condition: A tuple of three tests. Each test is a symbol along with an optional list of
constraint tests.

188

– The identifier element must be always be a variable.

– The attributes and value elements can be any constant type or a variable.

– Note that a condition can be marked as a negative condition or a conjunction of negative

conditions if it tests for the absence of a feature or set of features.

• Top goal: A Soar identifier that is the root node of working memory and represents the
agent’s top-level problem space.

• Subgoal: A Soar identifier that is the root node of a subservient problem space’s local work-
ing memory. This is created when an agent impasses.

• Superstate Edge: When an agent impasses, Soar connects a subgoal’s local memory to
its supergoal’s local memory with a superstate edge. This aspect of the representation is
important to our discussion because it allows the architecture to trivially determine whether

a piece of knowledge is accessible to a particular goal.

• Results: Working memory elements created in a goal by a subservient subgoal. When a
rule fires in a subgoal and creates a new WME linked to a supergoal, we say that the rule is
returning a result to the supergoal.

• Supergoal knowledge: In this discussion, supergoal knowledge are the working memory
elements that are connected to at least one of the supergoals. So, saying that a condition
tested supergoal knowledge is shorthand for saying that either the condition’s identifier is
the supergoal symbol or there exists a path of WMEs that links the supergoal symbol to the
symbol tested by the identifier element.

• Local knowledge: Similarly, local knowledge is the set of working memory elements for
which no path of WMEs exists that links each one’s identifier to a supergoal symbol.

• Variablization: The process of generalizing a rule by replacing tests for specific values with
variables.

• Heuristic-Based Variablization: A term to describe chunking’s variablization mechanism.
Heuristic-Based variablization replaces every Soar identifier in a rule with a variable, always
assigning each identifier the same variable.

• Semantic Memory: This is a representation of an agent’s long-term, semantic memory.
This knowledge is not directly accessible to an agent. The agent must deliberately request
a subset of semantic knowledge deliberately, either through a specific retrieval or a query
based on a set of features.

189

BIBLIOGRAPHY

Anderson, J. R. Skill Acquisition: Compilation of Weak-Method Problem Solutions. Psychologi-
cal Review, 1987. ISSN 0033295X. doi:10.1037/0033-295X.94.2.192. 2

Cassimatis, N. L. Polyscheme: A Cognitive Architecture for Integrating Multiple Representation
and Inference Schemes. Ph.D. thesis, Massachusetts Institute of Technology, 2002. 3

Dejong, G. Explanation-Based Learning. In Dejong, G., editor, Computing Handbook, Third
Edition: Computer Science and Software Engineering, pages 37.1–37.19. 2014. ISBN
9781439898536. 37

Dejong, G. and Mooney, R. Explanation-Based Learning : An Alternative View. Machine Learn-
ing, 1(1983):145–176, 1986. ISSN 15730565. doi:10.1023/A:1022898111663. 12, 59

Doorenbos, R. B. Production Matching for Large Learning Systems. Information Sciences,
9(4):208, 1995. ISSN 15249050. doi:10.1.1.83.4551. 13, 152

Gobet, F. and Lane, P. C. R. Constructing a Standard Model : Lessons from CHREST. In AAAI
2017 Fall Symposium, pages 338–343. 2017. 4

Gratch, J. M. and Gerald, F. Utility Generalization and Composability Problems in EBL. Technical
report, Illinois Univ., Urbana. Dept. of Computer Science, 1991. 27

Gunetti, P. and Thompson, H. A soar-based planning agent for gas-turbine engine control and
health management. In IFAC Proceedings Volumes (IFAC-PapersOnline), volume 17, pages
2200–2205. 2008. ISBN 9783902661005. doi:10.3182/20080706-5-KR-1001.1012. 2

Huffman, S. B. and Laird, J. E. Flexibly Instructable Agents. Journal Of Artificial Intelligence
Research, 1995. doi:10.1613/jair.150. 38, 187

Keller, R. M. Defining operationality for explanation-based learning. Artificial Intelligence,
35(2):227–241, 1988. ISSN 00043702. doi:10.1016/0004-3702(88)90013-6. 27

Kim, J. and Rosenbloom, P. S. Bounding the cost of learned rules. Artificial Intelligence,
120(1):43–80, 2000. ISSN 00043702. doi:10.1016/S0004-3702(00)00025-4. 15

Kirk, J., Mininger, A. and Laird, J. Learning task goals interactively with visual demonstrations.
In Biologically Inspired Cognitive Architectures, volume 18, pages 1–8. 2016. doi:10.1016/j.
bica.2016.08.001. 37, 187

Kirk, J. R. and Laird, J. E. Interactive Task Learning for Simple Games. Advances in Cognitive
Systems, 3:13–30, 2014. 5, 181

190

Kirk, J. R. and Laird, J. E. Learning General and Efficient Representations of Novel Games
Through Interactive Instruction. Advances in Cognitive Systems, 4:1–14, 2016. 5, 37, 187

Kotseruba, I. and Tsotsos, J. K. A Review of 40 Years of Cognitive Architecture Research: Core
Cognitive Abilities and Practical Applications. CoRR, 2016. 5, 17

Laird, J. The Soar Cognitive Architecture. 2012. 17, 18, 24

Laird, J. and Mohan, S. Learning Fast and Slow: Levels of Learning in General Autonomous
Intelligent Agents. In AAAI 2018, Senior Track, New Orleans, LA, Ebbinghaus 1885. 2018. 1

Laird, J. E. Universal Subgoaling. Ph.D. thesis, Carnegie Mellon University, 1983. 18

Laird, J. E., Derbinsky, N. and Tinkerhess, M. Online Determination of Value-Function Struc-
ture and Action-value Estimates for Reinforcement Learning in a Cognitive Architecture. In
Advances in Cognitive Systems, volume 2, pages 221–238. 2012a. 25

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins, O. C., Lebiere, C., Salvucci, D.,
Scheutz, M., Thomaz, A., Trafton, G., Wray, R. E., Mohan, S. and Kirk, J. R. Interactive Task
Learning. IEEE Intelligent Systems, 2017. ISSN 15411672. doi:10.1109/MIS.2017.3121552.
2, 38, 186

Laird, J. E., Newell, A. and Rosenbloom, P. S. SOAR: An architecture for general intelligence.
Artificial Intelligence, 33(1):1–64, 1987. ISSN 00043702. doi:10.1016/0004-3702(87)90050-6.
4

Laird, J. E. and Rosenbloom, P. Evolution of the SOAR Architecture. In Laird, J. E. and Rosen-
bloom, P., editors, Mind Matters: A Tribute to Allen Newell, pages 1–50. 1996. 4

Laird, J. E. and Rosenbloom, P. S. Integrating execution, planning, and learning in Soar for external
environments. AAAI 1990, pages 1022–1029, 1990. 1

Laird, J. E., Rosenbloom, P. S. and Newell, A. Chunking in Soar: The Anatomy of a General
Learning Mechanism. Machine Learning, 1(1):11–46, 1986. ISSN 15730565. doi:10.1023/A:
1022639103969. 2

Laird, J. J., Kinkade, K., Mohan, S. and Xu, J. Cognitive Robotics Using the Soar Cognitive
Architecture. In AAAI 2012 8th International Workshop on Cognitive Robotics, pages 46–54.
2012b. ISBN 9781577355717. 15

Lake, B. M., Ullman, T. D., Tenenbaum, J. B. and Gershman, S. J. Building Machines That
Learn and Think Like People. Behavioral and Brain Sciences, abs/1604.0:1–101, 2016. ISSN
14691825. doi:10.1017/S0140525X16001837. 5

Lindes, P. Constructing Meaning, Piece by Piece: A Computational Cognitive Model of Human
Sentence Comprehension. Ph.D. thesis, University of Michigan, 2022. doi:10.7302/4697. 187

Lindes, P., Mininger, A., Kirk, J. R. and Laird, J. E. Grounding Language for Interactive Task
Learning. ACL WS Robot-NLP, 2017. 29, 37, 187

191

Miller, C. S. and Laird, J. E. Accounting for Graded Performance Within a Discrete Search Frame-
work. Cognitive Science, 20(4):499–537, 1996. ISSN 03640213. doi:10.1016/S0364-0213(99)
80013-5. 24

Miller, G. A. The Magical Number Seven. Psychological Review, 63:81–97, 1956. ISSN 0033-
295X. doi:10.1037/h0043158. 28

Mininger, A. and Laird, J. Interactively Learning Strategies for Handling References to Unseen or
Unknown Objects. Advances in Cognitive Systems, 5, 2016. 5, 37, 181, 187

Mininger, A. and Laird, J. E. Interactively Learning a Blend of Goal-Based and Procedural Tasks.
In AAAI 2018. 2018. 5

Mitchell, T. M. Learning and Problem Solving. In IJCAI, volume 8, pages 1139–1151. 1983. 27

Mohan, S. and Laird, J. E. Learning Goal-Oriented Hierarchical Tasks from Situated Interactive
Instruction. In AAAI 2014, pages 387–394. 2014. ISBN 9781577356776. 1, 3

Mooney, R. A General EBL Mechanism and its Application to Narrative Understanding. Ph.D.
thesis, University of Illinois at Urbana-Champaign, 1988. 27

Mooney, R. The effect of rule use on the utility of explanation-based learning. In AAAI 1989,
pages 725–730. 1989. 13, 54, 153

Mooney, R. J., Bennett, S. W. and Urbana, A. A Domain Independent Explanation-Based Gener-
alizer. In AAAI 1986, pages 551–555. 1986. 15, 28, 54

Newell, A. Reasoning, Problem Solving and Decision Processes : The Problem space as a Funda-
mental Category. In Nickerson, R., editor, Attention and Performance (Volume VIII). Hillsdale,
NJ, 1980. ISBN 0-262-68071-8. 17

Newell, A. Unified theories of cognition and the role of Soar. In Newell, A., editor, Soar A
cognitive architecture in perspective A tribute to Allen Newell Studies in cognitive systems Vol
10, pages 25–79 ST – Unified theories of cognition and the. 1992. 4

Newell, A. Unified Theories of Cognition. 1994. 15

Newell, A. and Rosenbloom, P. S. Mechanisms of skill acquisition and the law of practice. In
Newell, A. and Rosenbloom, P. S., editors, Cognitive skills and their Acquisition, volume 6,
pages 1–55. 1981. ISBN 0898590930. doi:10.1.1.910.5264. 28

Rosenbloom, P. S., Laird, J. and Newell, A. The Soar Papers: Research on Integrated Intelligence.
August 2015. 1993. 23

Rosenbloom, P. S. and Laird, J. E. Mapping EBG onto Soar. In AAAI 1986, pages 561–567. 1986.
32

Russell, S. and Norvig, P. Artificial Intelligence A Modern Approach Third Edition. 2010. ISBN
9780136042594. doi:10.1017/S0269888900007724. 122

192

Stearns, B., Laird, J. and Assanie, M. Applying Primitive Elements Theory for Procedural Transfer
in Soar. In Proceedings of the 15th International Conference on Cognitive Modeling. 2017. 88,
181, 187

Steier, D. M., Laird, J. E., Newell, A., Rosenbloom, P. S., Flynn, R. A., Golding, A., Polk,
T. A., Shivers, O. G., Unruh, A. and Yost, G. R. Varieties of Learning in SOAR: 1987.
In AIP-6 Technical Report. 1987. ISBN 978-0-934613-41-5. doi:http://dx.doi.org/10.1016/
B978-0-934613-41-5.50034-9. 23

Taatgen, N. A. The nature and transfer of cognitive skills. Psychological review, 120(3):439–471,
2013. ISSN 19391471. doi:10.1037/a0033138. 4

Taatgen, N. A. and Lee, F. J. Production compilation: a simple mechanism to model complex skill
acquisition. Human factors, 45(1):61–76, 2003. ISSN 0018-7208. doi:10.1518/hfes.45.1.61.
27224. 3

Tambe, M. and Newell, A. Some Chunks Are Expensive. In Laird, J., editor, Machine Learning
Proceedings 1988, pages 451–458. Morgan Kaufmann, San Francisco (CA), 1988. ISBN 978-
0-934613-64-4. doi:https://doi.org/10.1016/B978-0-934613-64-4.50051-7. 152, 155

Waldinger, R. Achieving Several Goals Simultaneously. Machine Intelligence 8, 8(Technical Note
107):94–136, 1977. 28, 54

Wray, R. E. and Laird, J. E. An Architectural Approach to Ensuring Consistency in Hierarchical
Execution. Journal of Artificial Intelligence Research, 19:355–398, 2003. ISSN 10769757.
doi:10.1613/jair.1142. 9, 30, 47, 105

Wray, R. E., Laird, J. E. and Jones, R. M. Compilation of non-contemporaneous constraints. In
AAAI 1996. 1996. 46, 105

Zerr, F. and Ganascia, J. G. Integrating an Explanation-Based Learning Mechanism into a Gen-
eral Problem-Solver. In EWSL’91 Proceedings of the 5th European Conference on European
Working Session on Learning, pages 62–80. 1991. 32, 40

Zhong, S., Ma, H., Zhou, L., Wang, X., Ma, S. and Jia, N. Guidance compliance behavior on VMS
based on SOAR cognitive architecture. Mathematical Problems in Engineering, 2012, 2012.
ISSN 1024123X. doi:10.1155/2012/530561. 1, 26

193

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Acronyms
	Abstract
	Introduction
	Online Procedural Knowledge Learning
	Contributions of This Thesis
	Structure of Remainder of Thesis

	Evaluating Online Procedural Knowledge Learning
	Correct Behavior Summarization
	Necessary Conditions for Correct Behavior Summarization
	Capturing Generality of Summarized Reasoning
	Generality's Relationship to Correctness
	Computational Benefits of Optimal Generality
	Desiderata for An Online Procedural Learning Algorithm

	Soar's Online Procedural Knowledge Learning Algorithm
	Soar's Problem Space Computational Model
	Chunking: Soar's Online Procedural Learning Algorithm
	Chunking's Strengths
	Relationship to Explanation-Based Learning
	A Taxonomy of Chunking's Correctness Issues
	Problems with Generality
	Problems Capturing Generality of Underlying Reasoning
	Mitigating Problems with Generality

	Problems Supporting Higher-Level, Deliberate Learning Strategies
	Conclusions

	Our Approach to Online Procedural Knowledge Learning
	Strategy 1: Acquire and Integrate Missing Knowledge
	Strategy 2: Selective Specialization
	Strategy 3: Selective Unification
	Strategy 4: Modify Architecture
	Strategy 5: Detect and Optionally Prevent
	Applying the Five Strategies of EBBS

	Learning Optimally General Procedural Knowledge
	Capturing the Generality of a Reasoning Trace
	Challenges of Using Classical EBL Unification
	Distributed Identity Graph Unification
	Identity: A Common Formalism Across EBBS Strategies
	The Identity Graph
	Summary of DIGU Algorithm

	EBBS Processing Overview
	The Behavior Trace
	Integrating Identity into the Behavior Trace
	Identity Analysis Phase 1: Identity Creation and Propagation
	Adding Identity-Based Constraints

	The Learning Episode
	Calculating the Full Set of Inferences
	Backtracing and the Three Types of Analysis Performed
	Dependency Analysis
	Identity Analysis Phase 2: Identity Resolution
	Constraint Collection
	Rule Formation

	Unnecessary Generality
	Applying Strategy 3: Selective Unification of the SUPERSTATE feature
	Domain-Specific Unnecessary Generality

	Learning from Non-Learning Subgoals
	Applying Strategy 1: Explanatory Justifications

	Concluding Comments On Generality

	Learning Correct Procedural Knowledge
	Strategy 1: Acquire Missing Knowledge and Integrate
	Case 1: Dynamically-Generated Knowledge
	Case 1 Example 1: Subgoal Meta-knowledge, the ^impasse and ^item features
	Case 1 Example 2: Semantic and Episodic Memories Retrievals
	Case 1, Example 3: Rules with Dynamic Actions
	Case 1, Example 3: Rules with Dynamic Actions (Math Functions)
	How EBBS Integrates Architectural Instantiations from 1A, 1B, 1C into online procedural learning

	Case 2: Operator Selection Knowledge
	Solution: Analyzing and Incorporating Operator Selection Knowledge
	How EBBS Determines Which OSK Preferences are Relevant

	Case 3: Promoted Knowledge
	Rule Repair

	Case 4: Implicit Knowledge
	Case 4, Example 1: Implicit Knowledge of Soar Operation
	Case 4, Example 2: Testing the Absence of Knowledge Structures

	Case 5: Learning from Non-Learning Subgoals

	Strategy 2: Selective Specialization
	Case 1: Behavior Traces with Constraints on Intermediate Results
	Comments on Selective Specialization

	Strategy 4: Modify Architecture to Ensure Correct Learning
	Long-term Memory Elements and Long-Term Identifiers
	Case 1: LTM Knowledge Structures Interacting Across Subgoals
	Early Solutions
	Instance-Based Semantic Memory

	Case 2: Subgoal Results Based on Long-Term Memory Structures

	Strategy 5: Detect and Prevent Incorrect Rules
	Case 1: Unreliable Knowledge from Operators Chosen Probabilistically
	Case 2: Unreliable Knowledge from LTM
	Case 3: Reasoning that Conflates a Conjunction of Contexts

	Final Comments on Improving Correctness

	Evaluation
	Evaluation Overview and Experiment Setup
	Experiments
	Controlling for Randomness
	Conventions Used in Figures

	Agents and Tasks Used in Evaluation
	Task 1: Solving Multi-column Arithmetic Problems
	Task 2: Finding a Path in a Graph using A* Search
	Task 3: Solving a Kenken Puzzle
	Task 4: Parsing Natural Language
	Task 5: BlocksWorld
	Task 6: Water-Jug Puzzle
	Task 7: Eight Puzzle
	Task 8: Mouse and Cats
	Special Allowances for Some Agents

	Evaluating Task Performance Improvements (E1)
	Task Success
	Number of Decisions Cycles Needed to Solve Task
	Evaluation of Agent Group 1
	How Learning Rate Affects Task Performance
	Evaluation of Agent Group 2

	Conclusions on our Evaluation of Task Performance

	Evaluation of Optimal Generality (E2)
	Types of Knowledge That Learned Rules Reason Over
	Evaluation of Agent Group 1
	Evaluation of Agent Group 2

	Number of Rules Learned
	Evaluation of Agent Group 1
	Evaluation of Agent Group 2
	How Learning Rate Affects the Number of Rules Learned

	Impasses Encountered
	Evaluation of Agent Group 1
	Evaluation of Agent Group 2

	Firing Count of Learned Rules Per Decision Cycle
	Evaluation of Agent Group 1
	Evaluation of Agent Group 2

	Conclusions on our Evaluation of Optimal Generality

	Evaluating the Computational Cost of EBBS Approach (E3)
	Experiment Setup
	Computational Costs of Determining Which Rules Match
	Impact of Increased Match Costs in Real-World Agents

	Computational Costs of Analyzing Subgoals and Building Rules
	Results

	Average and Maximum Decision Cycle Time
	Conclusions on our Evaluation of Computational Cost

	Evaluating Correctness (E4)
	Empirical Evaluation of Correctness
	Correctness Regression Test Agents
	Behavior Trace Dependent on a Dynamic Rule
	Behavior Trace Dependent on Architectural Meta-data
	Behavior Trace Dependent on Knowledge Recalled from LTM
	Behavior Trace Dependent on Operator Selection Knowledge
	Behavior Trace Dependent on Promoted Knowledge
	Behavior Trace Dependent on Implicit Knowledge
	Behavior Trace Dependent on Knowledge from Non-learning Subgoals
	Behavior Trace Dependent on Knowledge Retrieved from LTM Multiple Times
	Behavior Trace with Reasoning that Requires that a Calculation Meets a Constraint
	Behavior Trace with Reasoning that Conflates a Disjunction of Contexts
	Behavior Trace that Generates Knowledge Structures Linked to LTM
	Behavior Trace with Reasoning that is Dependent on a Probabilistic Operator
	Behavior Trace Dependent on Knowledge from LTM that is Either Changing or Retrieved Using an Opaque Mechanism

	More Complex Regression Tests
	Additional Comments on Correctness
	Conclusions on our Evaluation of Correctness

	Evaluation Conclusions

	Conclusion
	Appendix
	Soar Terminology Primer
	Bibliography

