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ABSTRACT

Understanding the heterogeneous covariate-response relationship is central to mod-

ern data analysis. Beyond the usual descriptors such as the mean and variance, quan-

tile and superquantile (also known as the expected shortfall or conditional value-at-

risk) can capture the differential covariate effects on the upper or lower tails of the

response distribution. This dissertation studies some fundamental aspects of the sta-

tistical inference of quantile and superquantile regression.

In the first part of the dissertation, we propose a novel approach to estimating

the superquantile regression. Superquantile measures the average of a response given

that it exceeds a certain quantile, and is widely used as a risk measure in financial

and engineering applications to quantify the expected outcome in a given percentage

of the worst-case scenarios. Most existing approaches for superquantile regression

rely explicitly on the modeling of the conditional quantile functions. In this disser-

tation, we offer new insights into an optimization formulation for the superquantile

in the recent literature, based on which we provide and validate a direct approach

to superquantile regression estimation without relying on additional quantile regres-

sion modeling. Operationally, the approach can be well approximated by fitting a

linear quantile regression to an array of pre-estimated conditional superquantile pro-

cesses. With certain initial estimators based on binning of the covariate space, we

show that the proposed superquantile regression estimator is consistent and asymp-

totically normal. This approach achieves implicit weighting of the data, which is

found to be automatically adaptive to data heterogeneity and offers efficiency gain in

various scenarios. Via theoretical and numerical comparisons show that the proposed

xi



approach has competitive, and often superior, performance relative to other common

approaches in the literature.

In the second part of the dissertation, we study pseudo-Bayesian inference for

possibly sparse quantile regression models. We find that by coupling the asymmetric

Laplace working likelihood with appropriate shrinkage priors, we can deliver pseudo-

Bayesian inference that adapts automatically to the possible sparsity in quantile re-

gression analysis. After a suitable adjustment on the posterior variance, the proposed

method provides asymptotically valid inference under heterogeneity. Furthermore,

the proposed approach leads to oracle asymptotic efficiency for the active (nonzero)

quantile regression coefficients and super-efficiency for the non-active ones. We also

discuss the theoretical extension when the covariate dimension increases with the

sample size at a controlled rate. By avoiding the need to pursue dichotomous vari-

able selection as well as nuisance parameter estimation, the Bayesian computational

framework demonstrates desirable inferential stability.
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CHAPTER I

Introduction and Preliminaries

1.1 Superquantile, from one-sample to regression

Superquantile (SQ), also known as the conditional value-at-risk (CVaR), or the

expected shortfall (ES), measures the conditional mean of an outcome above certain

quantile level. Specifically, for a random variable Y , its τ -th (0 < τ < 1) quantile

and SQ are defined as

q(τ) = inf{u : Pr(Y ≤ u) ≥ τ}, v(τ) = E[Y | Y ≥ q(τ)], (1.1)

respectively. If the distribution of Y is continuous, then the SQ can be expressed as

the following alternative form:

v(τ) =
1

1− τ

∫ 1

τ

q(α) dα. (1.2)

In this dissertation, we focus on the case with continuous outcomes, hence we use

the definitions in (1.1) and (1.2) interchangeably. While we focus on the upper-

tail average, our discussion easily applies to the lower-superquantile, which is more

commonly used in the literature (Artzner et al., 1999; Acerbi and Tasche, 2002).

Superquantile plays an important role in a wide range of applications. In par-

1



ticular, SQ is a popular risk measure in financial applications to quantify the loss

in extreme cases. Replacing the quantile, Basel Committee on Banking Supervision

(2013) has made superquantile the official metric for market risk capital requirements.

Such transition has provoked the recent development of novel methods for estimating,

forecasting, and backtesting the SQ in the finance industry (Nolde and Ziegel , 2017;

Bercu et al., 2021; Deng and Qiu, 2021). Beyond financial applications, superquantile

is also useful in other disciplines such as supply chain management (Soleimani and

Govindan, 2014), treatment effect detection (He et al., 2010; Chen and Yen, 2021),

robust machine learning (Laguel et al., 2021a,b), as well as quality control engineering

(Rockafellar and Royset , 2010).

Compared to the quantile, the SQ has two distinct advantages (Emmer et al.,

2015; Yamai and Yoshiba, 2005). First, it provides a more informative summary of

the upper tail in a distribution. Focusing only on the τ -th quantile overlooks the

extreme loss that might occur beyond that quantile. On the other hand, the τ -th SQ

quantifies the expected loss in the worst 100τ% scenarios; it also follows from (1.2)

that the SQ takes the entire tail distribution into account. Second, the superquantile

is a coherent measure of risk in the sense of Artzner et al. (1999), while the quantile

is not. Specifically, the SQ satisfies the celebrated sub-additivity property of (Acerbi

and Tasche, 2002), i.e., for two random variables X and Y with finite expectations,

we must have

vX+Y (τ) ≤ vX(τ) + vY (τ).

Such sub-additivity echoes the principle of diversification in financial portfolio man-

agement (Koumou, 2020). On the contrary, the lacking of sub-additivity makes the

quantile less suitable for financial risk management.

From a statistical perspective, the estimation and inference of SQ in one-sample

problems are well-understood. Following (1.1), a simple SQ estimator would be the

average of observed data that exceeds the sample quantile. The asymptotic properties

2



of this empirical estimator can be established via L-statistics theory (Van der Vaart ,

2000, Chapter 22). In particular, Chen (2007) shows that the empirical SQ estimator

is asymptotically efficient among a class of kernel-smoothed approaches (Scaillet ,

2004). More recently, Zwingmann and Holzmann (2016) gives a general asymptotic

analysis for the empirical SQ estimator under relaxed conditions. There are also

several other model-based estimation methods in the literature; See Nadarajah et al.

(2014) for a review. As for inference for the SQ, the bootstrap method in Sun and

Cheng (2018) can be helpful.

In this dissertation, we focus on regression modeling of the superquantile. When

auxiliary information is available, it is often valuable to study the conditional SQ of

Y given a set of predictors X. In parallel to (1.1), we formally define the conditional

SQ as:

vY |X(τ, x) =
1

1− τ

∫ 1

τ

qY |X(α, x) dα = E
[
Y | Y > qY |X(τ, x), X = x

]
, (1.3)

where qY |X(τ, x) is the τth quantile of Y given X = x. We sometimes omit the

subscript Y | X in the notation for conditional SQ if there is no confusion. We

consider the following linear SQ regression model:

v(τ, x) = xTβ (1.4)

where β is the SQ regression coefficient. Compared with quantile regression modeling,

the SQ regression model (1.4) can better capture the heterogeneous covariate effect

in the tail of the response distribution. The focus for the first part of this dissertation

is the estimation of β under Model (1.4).

While the formulation of the SQ regression is straightforward, valid estimation

under Model (1.4) is non-trivial. The key difficulty is that SQ is unelicitable (Gneit-

ing , 2011), in the sense that the SQ can not be formulated as the solution to an
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M -estimation problem. Even in the one-sample case, Gneiting (2011) shows that

there does not exist a function ψ such that

v(τ) ∈ argmin
θ

Eψ(Y − θ),

for a broad enough class of Y and a given τ . Many classic regression methods, e.g., the

least-squares or quantile regression, relies on such elicitability. Therefore, estimation

of Model (1.4) cannot be achieved via the M -estimation framework, and relatively

little has been available in the literature. We review some related methods in the

following.

Most approaches in the literature require more modeling assumptions beyond

Model (1.4), under which the estimation of SQ regression is more tangible. Assuming

a homoscedastic linear model, Chun et al. (2012) uses a calibrated composite quantile

regression for SQ regression. When the conditional quantile functions are assumed

linear at all quantile levels, Peracchi and Tanase (2008) proposes to average the

estimated quantile regression over a range of quantile levels based on the formula

in (1.2) and (1.3). More recently, Fissler and Ziegel (2016) recognizes that quantile

and SQ are jointly elicitable as a pair; Therefore, when both the τ -th quantile and

SQ are linear, Dimitriadis and Bayer (2019) and Patton et al. (2019) develop a joint

regression framework that estimates the quantile and SQ regression simultaneously.

However, the resulting optimization problem is non-smooth and non-convex. Using

the same joint regression model, Barendse (2020) and Peng (2022) propose two-step

procedures that estimate the quantile and SQ regression sequentially, which may

improve the computational stability. Importantly, all those approaches rely explicitly

on a parametric quantile regression model, in addition to the linear SQ model (1.4).

In the Operations Research literature, Rockafellar et al. (2014) and Rockafellar and

Royset (2018) propose a different superquantile-oriented regression approach (named

4



RRM hereafter) that does not require quantile regression modeling. However, we

demonstrate in the next section that their approach does not deliver the correct SQ

regression coefficient in general. Their approach is based on the minimization of a

new convex loss function, where the function cannot be written as the expectation of

a random function. Though the loss function is valid in the one-sample case without

covariates, their regression approach does not work as intended from the statistical

perspective. Even on the population level, we show that the minimizer of the RRM

loss function may not be the SQ regression coefficient. Therefore, while the RRM

approach provides a valuable framework, it requires further study to fully understand

its statistical validity.

We hasten to add that non-parametric estimation of the conditional SQ is widely

available in the literature. For example, Cai and Wang (2008) and Kato (2012)

consider kernel-based approaches that are generalizations from the one-sample case.

Xiao (2014) proposes another approach based on the connection between SQ and

the check-loss function in quantile regression; and Martins-Filho et al. (2018) uses

an approach based on the extreme value theory. More recently, Olma (2021) consid-

ers local-linear estimation based on Neyman-orthogonalized score functions. Another

line of work considers aggregating non-parametric quantile regression estimators over

a range of quantile levels (Peracchi and Tanase, 2008; Leorato et al., 2012). Nonethe-

less, all these non-parametric SQ regression methods can be less efficient and less

interpretable. In this dissertation, we focus on the parametric SQ modeling based on

Model (1.4).

Recently, Chetverikov et al. (2022) proposes a new approach for average quantile

regression estimation, which covers the SQ regression as an example. Their approach

is based on integrating non-parametric estimators of the conditional distribution func-

tion. By using the idea of debiased machine learning (Chernozhukov et al., 2018), they

do not explicitly require a linear quantile regression model.
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In this dissertation, we develop new approaches for estimating the linear SQ re-

gression model (1.4). In the remainder of this chapter, we give a more detailed review

of the RRM approach and demonstrate its inconsistency for the SQ regression prob-

lem. We further give a modified RRM loss function, which we name the m-Rock

loss function, that correctly identifies the SQ regression coefficients on the population

level. Such a modification is critical to its validity in SQ regression.

In Chapter 2, we explore new approaches for SQ regression under the simple

yet illustrative scenario with discrete covariates. In particular, we show how the m-

Rock loss function can lead to a practical method for SQ regression. We also study

two other intuitive methods in the case with discrete covariates. Via practical and

asymptotic comparisons, we find that the m-Rock approach is superior to the other

two approaches.

In Chapter 3, we focus on the m-Rock approach and seek its extension to the

case with general covariates. We give a theoretical analysis of the m-Rock approach

based on binning, thereby effectively discretizing the covariate space. Following our

analysis, we uncover the principle of the m-Rock approach: First, it needs a set of

non-parametric SQ estimators at different quantile levels; Second, it linearizes those

initial estimators in an efficient way. We also show that a Neyman-orthogonalized

local-linear estimator can be used as an example of the initial SQ estimator, and we

demonstrate the merit of the resulting estimator via asymptotic efficiency compar-

isons. Importantly, the m-Rock approach does not rely on a linear quantile regression

model.

In Chapter 4, we discuss the practical applicability of the m-Rock approach. We

give a prototype implementation of the m-Rock approach, followed by numerical

experiments to demonstrate its performance. We further illustrate the use of the

m-Rock approach in two empirical applications related to finance and public health.
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1.2 RRM regression revisited

In this section, we review the RRM approach in Rockafellar et al. (2014), and

we use a toy example to demonstrate that it does not deliver the true SQ regression

coefficient in general. We present both analytical and numerical evidence.

1.2.1 Original formulation

Rockafellar et al. (2014) proposed a superquantile-oriented regression approach

that can be transformed into a convex optimization problem. Key to the approach

is a novel loss function induced by the following RRM formula. Denote by v[Y ](α) as

the α-th superquantile function of Y , Theorem 1 of Rockafellar et al. (2014) shows

that

v[Y ](τ) = argmin
C

{
C +

1

1− τ

∫ 1

0

max{0, v[Y−C](α)} dα
}

≜ argmin
C
Lτ (C), (1.5)

and that Lτ (C) is a convex function of C; we sometimes omit the index τ and write

L(C). Equation (1.5) is a population level formula since it relies on the true yet

unknown superquantile function of Y , and direct calculation/optimization of L(C)

is infeasible. However, Rockafellar et al. (2014) and Rockafellar and Royset (2018)

show that the empirical RRM problem based on the observed data can be transformed

into an alternate form, which can then be solved without knowing the superquantile

of Y in advance. Therefore, in the one-sample case without covariates, the RRM

formula provides a valuable alternative to approximating the superquantile, and is

useful for applications that involve large-scale optimization of the SQ (Xu et al., 2016;

Rockafellar and Royset , 2018).

As a direct extension, Rockafellar et al. (2014, Section 3.1) proposes a regression

approach by exploiting the same loss function. Targeting the τ -th SQ of Y given X,
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the RRM regression solves:

min
θ1,θ0

{
θ0 + EXT θ1 +

1

1− τ

∫ 1

0

max{0, v[Y−θ0−XT θ1](α)} dα
}
, (1.6)

where θ1 is the slope and θ0 is the intercept; Note θ1 is generally a vector. It is impor-

tant that Equation (1.6) relies only on the marginal superquantile of Y − θ0 −XT θ1,

not the conditional superquantile. In parallel to (1.5), the RRM regression prob-

lem (1.6) can be solved via convex optimization algorithms (Rockafellar and Royset ,

2018). Therefore, the RRM approach offers a computationally efficient regression

technique for superquantile-based modeling, and has been used in many applications

ever since (Xu et al., 2016; Laguel et al., 2021b).

To facilitate subsequent analysis, we review some additional results regarding the

optimization problem (1.6). Proposition 3 of Rockafellar et al. (2014) shows that

solving (1.6) is equivalent to the following two-step procedure:

θ∗1 ← argmin
θ1

{
EXT θ1 +

1

1− τ

∫ 1

τ

v[Y−XT θ1](α) dα

}
, (1.7)

θ∗0 ← v[Y−XT θ∗1 ]
(τ), (1.8)

where θ∗0 and θ∗1 are the population-level minimizers, i.e., the estimands for the RRM

approach. In what follows, we shall work with Equations (1.7) and (1.8), instead of

the original formulation in (1.6). Note, we use the notations θ∗0 and θ∗1 to emphasize

that they may be different than the SQ regression coefficient in Model (1.4).

1.2.2 A counter-example

Here we illustrate that θ∗0 and θ∗1 from the RRM approach do not coincide with

the true SQ regression coefficients under Model (1.4). Consider the following data

generating model:

Y = 1 +X ε, (1.9)
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where X ∼ Γ(2, 1) with EX = 2, and the error term ε ∼ U(−1, 1) independent of X.

We aim to estimate the 50% SQ regression, where the true SQ regression coefficients

are β0 = 1, β1 = 0.5.

We find the minimizer to the population level RRM loss function (1.7) with τ =

0.5, where we label the loss function as L1(θ1). To this end, we compute the analytical

expression for the marginal superquantile of Z(θ1) = (Y − θ1X) for any θ1 and any

quantile level. For all θ1 ∈ (−1, 1), Z(θ1) follows tilted double exponential distribution

with density function:

fZ(θ1)(z; θ1) =



1
2
exp

{
z

1+θ1

}
, z < 0,

1
2
exp

{
−z

1−θ1

}
, z ≥ 0.

Straightforward probabilistic calculation shows that the marginal super quantile of

Z(θ1) = Y − θX is:

v[Z(θ1)](α) =


1 + 1

1−α

(
α(1 + θ1)(1− log

[
2α

1+θ1

]
)− 2θ1

)
, 0 ≤ α ≤ 1+θ1

2
,

1 + (θ1 − 1)
(
log
[
2(1−α)
1−θ1

]
− 1
)
, 1+θ1

2
< α < 1.

(1.10)

Substituting Equation (1.10) into the the RRM loss function (1.7), we can obtain an

analytical expression for the RRM loss function L1(θ1). Moreover, we can compute
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the first-order derivative to the loss function L1(θ1) as:

∂L1(θ1)

∂θ1
= EX +

1

1− 1/2

∫ 1

1/2

∂v[Y−XT θ1](α)

∂θ1
dα

=


−1− log(1− θ1), −1 ≤ θ1 ≤ 0,

2
{
−1

2
− Li2(

1
2
) + Li2(

θ1+1
2

) + (1
2
− log 2) log(1 + θ1)

}
, 0 < θ1 ≤ 1,

where Li2(x) = −
∫ x

0
log(1− z)/z dz.

Figure 1.1 below shows the RRM loss function in (1.7) and its derivative under

Model (1.9). Since the RRM loss function is convex and differentiable (Rockafellar

et al., 2008; Rockafellar and Uryasev , 2013), we can use a first-order method, e.g.,

the Newton-Raphson method, to solve the minimization problem (1.7). We use the

convex optimization toolbox in MATLAB and obtain the population-level minimizer

as θ∗1 = 0.7041, marked by the red line in Figure 1.1; The true SQ regression coefficient

β1 = 0.5 is marked by the blue line. Note we focus on the population level loss

function, therefore the clear discrepancy between θ∗1 and β1 shows the RRM approach

fails to give the targeted coefficients for the superquantile regression. 1
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Figure 1.1: The population level loss function L1(θ1) (left panel) and its derivative
(right panel). The blue dashed line marks the true SQ regression coefficient β1, while
the red one marks the minimizer of L1(θ1).

We further demonstrate the inconsistency of the RRM approach by a numerical

1Although the foregoing derivation for L1(θ1) is only valid for θ ∈ (0, 1), it does not affect our
conclusion. This is due to the global convexity of the RRM loss function (Rockafellar et al., 2008):
A local minimizer within [−1, 1] must also be the global minimizer.
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experiment. We generate 200 Monte Carlo datasets from Model (1.9), and we con-

sider sample sizes at n = 100 or n = 1000. Setting τ = 0.5, Figure 1.2 shows the

histogram of the estimated slope term θ̂1 among the 200 Monte Carlo datasets. The

empirical RRM problem is solved by the numerical integration method in Section

5.2 of Rockafellar et al. (2014) with 100 grid points. We can see the histograms are

clearly concentrating toward θ∗1 = 0.704, instead of the true SQ regression coefficient

β1 = 0.5.
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Figure 1.2: The empirical distribution of the RRM estimator θ̂1 at sample size n = 100
(left) and n = 1000 (right). The blue line marks the true SQ regression coefficient
β1 = 0.5, while the red one marks the RRM estimand θ∗1 = 0.704.

Although the RRM approach is not valid for superquantile regression, it can still

be valuable as a generalized regression technique. As shown in Rockafellar and Urya-

sev (2013), the RRM approach finds the best linear approximation to the response

Y using the covariates X, in the sense that the residuals minimize the superquantile-

oriented loss function (1.6). Furthermore, Rockafellar and Royset (2018) shows that

the RRM approach is consistent for the SQ regression in homoscedastic linear mod-

els; and Golodnikov et al. (2019) shows that the RRM approach is equivalent to a

composite quantile regression under certain scenarios. Therefore, the RRM approach

can be useful for risk tuning and optimization that incorporates covariate information

(Miranda, 2014).
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1.3 A modified loss function

In this section, we provide a corrected RRM loss function based on (1.5) and (1.6)

that can be used for superquantile regression. Here we stay on the population level,

where the modified loss function depends on unknown distributional quantities and

is not directly useful for empirical estimation; We shall discuss the implementation

and finite-sample properties of the modified loss function in Chapter 2. The proofs

of the results in this section are relegated to Section 2.5.3 in Chapter 2.

1.3.1 The one-sample RRM formula revisited

Before extending to the regression case, we first investigate the RRM formula (1.5)

in the one-sample case. The mathematical correctness of the formula follows from

Theorem 1 in Rockafellar et al. (2014). We provide some statistical insight behind

the RRM formula in the following Proposition.

Proposition 1. The loss function Lτ in (1.5) can be written as

Lτ (C)−
∫ 1

0

v[Y ](α) dα =
1

1− τ

∫ 1

0

ρτ
(
v[Y ](α)− C

)
dα =

1

1− τ
Eξ [ρτ (g(ξ)− C)] ,

(1.11)

where ρτ (u) = u(τ −1[u ≤ 0]) is the check-loss function, g(z) = v[Y ](z), and ξ follows

a uniform distribution on (0, 1).

By recasting the original RRM loss function into an alternate form, it is now easier

to see why the one-sample RRM formula (1.5) is correct. By the property of the check-

loss function ρτ (·), minimizing L(C) finds the τ -th quantile of the random variable

g(ξ); See e.g., Koenker (2005, Section 2). Since the function g is monotonically

increasing, it is apparent that the τ -th quantile of g(ξ), also the minimizer of Lτ (C),

is simply g(τ) = v[Y ](τ).

In fact, we can think of the RRM formula as finding the τth quantile of the
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superquantile process. For a sufficiently fine grid α1 < . . . < αJ that spans the

interval (0, 1), finding the τth sample quantile of the set {v[Y ](α1), . . . , v[Y ](αJ)} would

approximately recover the targeted τth SQ v[Y ](τ). Therefore, the one-sample RRM

formula works by leveraging the monotonicity of the superquantile process v[Y ](α)

over α ∈ (0, 1).

1.3.2 A suitable loss function for the regression setting

While the RRM formula (1.5) is correct in the one-sample case, its direct extension

as in (1.6) is not valid for the SQ regression setting. The main reason is as follows.

The loss function (1.6) involves only the marginal SQ of the residual, but not the

conditional SQ given the covariates. Moreover, the marginal SQ in the RRM loss

function cannot be directly connected with the conditional SQ since the law of total

expectation does not apply for (1.6).2 Therefore, the RRM loss function (1.6) is not

suitable for modeling the conditional SQ of Y given X.

To properly model the conditional SQ, we propose the following population-level

loss function in place of (1.6). In the following, we shall write v[Z|X](α, x) as the

conditional α-th SQ of Z given X = x. Given the covariate vector X (which includes

an intercept term) and the response Y , we define the modified RRM function as:

L(θ) = EXT θ +
1

1− τ

∫ 1

0

E max{0, v[Y−XT θ|X](α,X)} dα, (1.12)

which simply substitutes the conditional SQ function for the marginal SQ in (1.6);

the expectation in (1.12) is for X only. We name (1.12) as the modified Rockafellar

(m-Rock) loss function hereafter. Though the modification from (1.6) to (1.12) seems

straightforward, it is a substantial step to ensure identification of the SQ regression

coefficients.

2For a classic M-estimation problem with loss function ℓ(·), it follows that E[ℓ(Y − XT θ)] =
E
{
E[ℓ(Y − xT θ)] | X = x

}
. However the RRM loss function cannot be written as an expectation.
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Conditioning on X = x, the m-Rock loss function reduces to the one-sample RRM

loss function in (1.5); it is then intuitive that the m-Rock loss function is minimized

at the conditional SQ The result below formally establishes the validity of (1.12) in

SQ regression.

Theorem I.1. There exists a constant C0, such that the population level m-Rock loss

function L(θ) can be written as:

L(θ) = C0 +
1

1− τ
EX

[∫ 1

0

ρτ
(
v[Y |X](α,X)−XT θ

)
dα

]
(1.13)

= C0 +
1

1− τ
E(X, ξ)

[
ρτ
(
g(X, ξ)−XT θ

)]
,

where g(x, z) = v[Y |X](z, x), and ξ follows a uniform distribution on (0, 1) independent

of X. Furthermore, suppose: (i) for some c0 > 0, the function g(x, z) is differentiable

with respect to z for all x and |z − τ | < c0, and the derivative is uniformly (in x)

bounded; and (ii) the matrix E[XXT ] is positive definite. Then, we have:

β = argmin
θ

L(θ),

under Model (1.4), where β is the true SQ regression coefficient and the minimizer is

uniquely identified3.

In parallel to Proposition 1, the first part of Theorem I.1 translates the m-Rock

loss function into a more useful form (1.13). Minimizing L(θ) solves the τth linear

quantile regression problem of Z versus X, where Z is distributed as (conditional on

X = x):

Z | X = x ∼ g(x, ξ), ξ ∼ U(0, 1).

Similar to the arguments following Proposition 1, finding the conditional quantile of

3In the case where |L(θ)| may not be finite, we can consider the minimization of L(θ) − L(β),
which is guaranteed to take finite values under the conditions of Theorem I.1.
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Z is equivalent to finding the conditional SQ of Y . Thus, β from Model (1.4) is

identifiable from the m-Rock loss function L(θ). The second part of Theorem II.1

provides some sufficient conditions for the uniqueness of the minimizer. In light of

Theorem I.1, we shall use the expressions (1.12) and (1.13) interchangeably in the

remainder of this dissertation. We emphasize that our modification to the RRM loss

function is critical to its validity in SQ regression.

Here we provide some further comments about the m-Rock loss function. First,

the conditions for unique identifiability in Theorem I.1 are relatively weak, and are

also required for quantile regression analysis (Koenker , 2005, Section 2). Second,

Theorem I.1 is for population-level identifiability. The loss function L(θ) involves the

unknown conditional SQ of Y given X, therefore Theorem I.1 is not directly useful

for SQ estimation in a finite sample. Third, the domain of integration in L(θ) can be

shortened without jeopardizing the identification, as shown in the following Corollary.

Corollary 1. For any 0 < δ ≤ 1, define

L(δ)(θ) = EX

[∫ τ+δ(1−τ)

τ−δτ

ρτ
(
v[Y |X](α,X)−XT θ

)
dα

]
.

Under the same conditions of Theorem I.1, the minimizer to L(δ)(θ) is identical to

that of L(θ).

The upper and lower end of the integral in L(δ) matches in a suitable way, where

taking δ = 1 recovers L(θ). By taking a smaller δ, Corollary 1 shows that only the

conditional SQ at levels near τ are relevant for the m-Rock loss function. Corollary 1 is

beneficial when we discuss the practical implementation of the m-Rock SQ regression

approach in Chapter 4.
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CHAPTER II

Superquantile Regression with Discrete Covariates

In this chapter, we explore new approaches for superquantile regression in the

case with discrete covariates. In particular, we devote much of our focus to a new

approach based on the m-Rock loss function, which we name the m-Rock approach.

We show how the population-level formula can be used to obtain an empirical estima-

tor in a finite sample. As benchmarks, we also investigate two other methods for SQ

regression; Both of these methods are intuitive in the setting with discrete covariates,

yet they have not been thoroughly studied in the literature.

We begin with the simple setting with discrete covariates because it greatly sim-

plifies the theory and methodology. The main goal of this chapter is to provide some

understanding on the validity and applicability m-Rock approach, and to compare

it with other intuitive alternatives. We find that the m-Rock approach is the most

flexible and efficient among the three new approaches, which confirms its value and

potential. These results can be seen as a preliminary and a foundation before further

discussion with continuous covariates.

To further simplify the notations, in this section we shall assume a fixed design

where the covariates are equally distributed on a few distinct values. We suppose we

have M fixed covariate values (including the intercept term) {x1, . . . , xM}, where M

is a fixed number that does not depend on the sample size; And at each covariate
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value, we have the same number of i.i.d. observations for the response. Therefore,

with a total of n samples, the observed data can be written as1

{(xm, Ymj) : m = 1, . . . ,M ; j = 1 . . . , n/M}.

At eachm, the responses Ymj (j = 1 . . . , n/M) are a random sample from the distribu-

tion Ym. Note, our discussion in this section easily extends to the case with random

discrete design and/or unbalanced covariates, but at the cost of more complicated

notations.

We fix some other notations here. At each covariate value xm, let qm(s) and

vm(s) as the sth (0 < s < 1) quantile and SQ for Ym, and the linear SQ model (1.4)

simplifies to

vm(τ) = xTmβ, m = 1, . . . ,M,

in our setting. We use q̂m(s) and v̂m(s) for empirical estimators for the quantile and

SQ. When s varies within a range I, we call {v̂m(s) : s ∈ I} the empirical SQ process.

Let Fm and fm be the distribution and density function for Ym. For any vector a, let

∥a∥ be its ℓ2 norm.

2.1 The m-Rock approach

2.1.1 A practical implementation

Here we introduce the new m-Rock approach. The population-level loss function

L(θ) in Theorem I.1 of Chapter 1 is not directly feasible for empirical estimation,

because it involves the unknown conditional SQ process of Y given X, which includes

the parameter of interest itself. To make it practical, we use an initial estimator for

the conditional SQ to obtain a plug-in version of L(θ), which is relatively simple when

1Without loss of generality, we assume n is divisible by M .
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the covariates are discrete. We give the details below.

With discrete covariates, it is natural to use the empirical SQ (Scaillet , 2004;

Chen, 2007) at each covariate value as an initial estimator. To be more specific, for

each m = 1, . . . ,M and each quantile level s ∈ (0, 1), we first find the sample quantile

of the response at xm, denoted by q̂m(s); then we simply average the response at xm

that are above the estimated quantile:

v̂m(s) =

n/M∑
j=1

Ymj1[Ymj ≥ q̂m(s)]

(1− s)n/M
,

since there are (1−s)n/M observations above the quantile at each xm. The empirical

m-Rock loss function is then given by:

Ln(θ) =
1

M

M∑
m=1

[∫ 1

0

ρτ
(
v̂m(α)− xTmθ

)
dα

]
, (2.1)

which is an approximation for the population-level loss function (1.13).

Correspondingly, the m-Rock estimator is defined to be the minimizer of Ln(θ).

While direct optimization of (2.1) is possible, numerically it may be more convenient

to consider the following approximation:

β̂ = argmin
θ

Ln(θ)

≈ argmin
θ

(MT )−1

M∑
m=1

T∑
t=1

ρτ
(
v̂m(αt)− xTmθ

)
, (2.2)

where α1, . . . , αT is a fine enough equally-spaced grid over the interval (0, 1). There-

fore, computation of the m-Rock SQ regression can be reduced to a quantile regression

problem, for which efficient numerical algorithms exist (Koenker , 2005, Section 6).2

This computational trick is due to our Theorem II.1 in Chapter 1.

2Note the minimizer to (2.2) may not be unique, in that case β̂ refers to any such minimizers.
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Several comments are in place for the implementation of the m-Rock approach.

First, the grid-based approximation for Ln(θ) in (2.2) is only for computational pur-

poses. In our theoretical analysis, we still focus on the loss function Ln(θ) in (2.1)

that involves integration. Since v̂m(α) is a piece-wise constant function in α, the

approximation of the integral can be made exact by choosing a sufficiently fine grid,

though it may not be necessary in practice. Second, on top of (2.1), we can further

exploit Corollary 1 and use a truncated range of integration. In this way, we can

avoid estimating the empirical SQ at extreme levels, which may help to stabilize the

numerical performance.

2.1.2 Statistical properties of the m-Rock estimator

Here we study the statistical properties of the m-Rock estimator. To this end, we

need several technical conditions on the data generating mechanism, which are also

needed for other methods later in this Chapter.

Condition R-X. The Gram matrix D0 =
∑M

m=1 xmx
T
m/M is positive definite.

Condition R-Y1. At each xm (m = 1, . . . ,M), the distribution of Ym is continuous

with density function fm(y). Furthermore, fm(y) satisfies: (i) fm(y) is finite and

continuous at each y; (ii) fm(qm(τ)) > 0.

Condition R-Y2. At each each xm (m = 1, . . . ,M), we have:

E[(Y +
m )2] < +∞,

where Y +
m = max{Ym, 0}.

Condition R-X ensures the m different covariate values are non-degenerate. Con-

ditions R-Y1 and R-Y2 are relatively weak for the response distribution. In fact,

these conditions are even weaker than those required by quantile and least-squares

regression with fixed design. Under Conditions R-Y1 and R-Y2, the superquantile
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function vm(α) is strictly increasing and continuously differentiable with respect to

α.

We begin by giving some finite-sample properties of the empirical m-Rock loss

function (2.1). We suppose that |Ln(θ)| < +∞ for all θ; otherwise we can restrict the

domain of interest to {θ : |Ln(θ)| < +∞}.

Proposition 2. Under Condition R-X, the following holds true for the empirical

m-Rock loss function Ln(θ):

1. Ln(θ) is convex and Lipshitz continuous.

2. The directional derivative of Ln(θ) exists at any θ and along any direction.

3. Suppose there are no ties among the response at each covariate value, then any

minimizer of Ln(θ), denoted by β̂, satisfies:

∥∥∥∥∥M−1

M∑
m=1

xm

[
τ − ĥm(xTmβ̂)

]∥∥∥∥∥ ≤ C1M

n
, (2.3)

for some universal constant C1 > 0, where ĥm(z) is the empirical inverse3 of

the SQ function:

ĥm(z) = inf{s ∈ [0, 1] : v̂m(s) ≥ z}.

Proposition 2 shows that the function Ln(θ) enjoys some desirable properties.

Therefore, theoretical and computational tools from convex optimization apply to

the analysis of the m-Rock approach. With convexity, (2.3) gives the necessary first-

order optimality condition for the m-Rock estimator. Though Ln(θ) is not everywhere

differentiable, optimality requires all the directional derivatives of Ln(θ) to be non-

negative at β̂, which leads to (2.3).

3The inverse is well-defined as v̂m(α) is monotonically increasing in α; see Lemma 3 in Section
2.5.2.
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Remark 1. Proposition 2 is a general result that does not depend on Conditions R-

Y1 and R-Y2; nor does it depend on the choice of v̂m(α) in the loss function. The

conclusions take hold for any estimator v̂m(α) that is (i) monotonic in α, and (ii)

not flat over α for any interval of length M/n. However, our subsequent asymptotic

analysis may depend on the sampling properties of v̂m(α).

Our subsequent theoretical analysis builds upon the generalized Z-estimation

framework4 from Proposition 2. In particular, (2.3) suggests that the property of

the m-Rock estimator is closely tied to that of ĥm(·), the inverse empirical SQ. The

following Lemma establishes a key asymptotic result for ĥm, where we define

hm(z) = inf{s ∈ [0, 1] : vm(s) ≥ z} = v−1
m (z),

since vm(α) is strictly increasing with respect to α.

Lemma 1. Under a fixed discrete design and Conditions R-Y1 and R-Y2, the inverse

empirical SQ satisfies:

√
n

M

(
ĥm[vm(τ)]− τ

)
d−→ N

(
0,

(1− τ)2σ2
m(τ)

[vm(τ)− qm(τ)]2

)
,

for each m = 1, . . . ,M , with (1−τ)σ2
m(τ) = var[Ym | Ym ≥ qm(τ)]+τ [vm(τ)−qm(τ)]2.

Lemma 1 establishes the asymptotic normality of the inverse SQ estimator. It

serves as an important technical tool to understand the m-Rock estimator via (2.21).

While the asymptotic properties of the SQ estimator v̂m(τ) has been well studied

in the literature (Chen, 2007; Nadarajah et al., 2014; Zwingmann and Holzmann,

2016), our Lemma 1 gives the first asymptotic analysis of ĥm. In fact, we obtain

more asymptotic results for both v̂m and ĥm that complement the literature, but we

4We use the word ‘generalized’ because the estimating equation (2.3) is not an empirical average
over each data point.
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relegate those discussions to Section 2.5.1; Lemma 1 here is a simple corollary from

Lemma 2 therein.

With the help of Proposition 2 and Lemma 1, we are now ready to state the main

result for the m-Rock estimator.

Theorem II.1. Under a fixed discrete design and suppose Conditions R-X, R-Y1

and R-Y2 hold. In addition, if the matrix

D1 =M−1

M∑
m=1

xmx
T
m

vm(τ)− qm(τ)

is positive definite, then the m-Rock estimator β̂ is consistent for β in Model (1.4),

and it holds that

(1− τ)D1

(
β̂ − β

)
=

1

M

M∑
m=1

xm

{
τ − ĥm[vm(τ)]

}
+ oP

(
1√
n

)
.

In particular,
√
n
(
β̂ − β

)
d−→ N

(
0, D−1

1 Ω1D
−1
1

)
,

where

Ω1 =M−1

M∑
m=1

{
σ2
m

[vm(τ)− qm(τ)]2
xmx

T
m

}
,

and σm is defined in Lemma 1.

Theorem II.1 uncovers the main statistical properties of the m-Rock estimator:

consistency and asymptotically normality. It also gives an explicit connection between

β̂ and ĥm in Lemma 1 via a Bahadur-type representation. While implementation of

the m-Rock approach only depends on v̂m as in (2.2), the first-order asymptotic

property of β̂ depends directly on ĥm, the inverse function of v̂m.

Our consistency result in Theorem II.1 is different from Theorem 3 of Rockafellar

et al. (2014). While they show the RRM estimator converges in probability, we
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find in Section 1.2 that their convergent limit is not the SQ regression coefficient.

Therefore, the modification in the m-Rock approach is necessary for estimating the

SQ regression.

2.2 Two other approaches

In this section, we introduce two other methods for linear SQ regression in the

case with discrete covariates.

2.2.1 The Linearization approach

The first approach is to linearize the initial SQ estimators. Similar to the m-Rock

approach, we start with the empirical SQ estimator v̂m(τ) at each covariate value;

however, in this method we only use the τth SQ instead of the entire SQ process.

While the initial estimates v̂m(τ) (m = 1, . . . ,M) are not linear in covariates, we

can enforce linearity by fitting a least-squares regression. Specifically, we define the

Linearization estimator as follows.

β̂(L) = argmin
u

M∑
m=1

(
v̂m(τ)− xTmu

)2
=

(
M∑

m=1

xmx
T
m

)−1 [ M∑
m=1

xmv̂m(τ)

]
.

(2.4)

The Linearization approach effectively starts with a non-parametric estimation of the

τth conditional SQ, then it uses those estimators, instead of the original data, to form

a parametric estimator under the linear SQ model (1.4). The following Theorem gives

the asymptotic properties of the Linearization estimator.

Theorem II.2. Under a fixed discrete design, and suppose Conditions R-X, R-Y1
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and R-Y2 hold. We have

√
n
(
β̂(L) − β

)
d−→ N

(
0, D−1

0 Ω0D
−1
0

)
,

where D0 =
∑M

m=1 xmx
T
m/M , Ω0 =

∑M
m=1(σ

2
mxmx

T
m)/M , and σ2

m is defined in Lemma

1.

Theorem II.2 implies that the Linearization estimator is
√
n-consistent for the SQ

regression model, which is typical for parametric estimation and the rate is indepen-

dent of M . On the contrary, each of the initial estimators v̂m(τ) has a variance at

the order of M/n. By aggregating a series of non-parametric estimators, we may be

able to recover a parametric estimator with a
√
n-convergence rate.

Moreover, the SQ regression model (1.4) can accommodate heterogeneity in data.

Motivated by the possible heteroscedasticity, we can use weighted least-squares (WLS)

as an alternative approach for the Linearization method in (2.4), which solves:

min
u

M∑
m=1

wm

(
v̂m(τ)− xTmu

)2
, (2.5)

where wm is the weight attached to each covariate value. When heteroscedasticity is

present, it is known that WLS with proper weights can achieve better efficiency than

OLS in general. For the Linearization method, the optimal (infeasible) weights are

given by

w∗
m ∝

1

σ2
m

, m = 1, . . . ,M. (2.6)

However, those optimal weights are generally unknown and have to be estimated in

practice. Here we only provide a theoretical guideline for optimal weighting, yet do

not further pursue the empirical estimation of WLS Linearization in this chapter.
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2.2.2 The Two-Step approach

The next approach is a two-step method motivated by SQ estimation in the one-

sample case, where we average the response above the estimated quantile. In the

regression setting, we can use quantile regression to estimate the conditional quantile,

followed by least-squares regression using the data above the fitted quantile. For this

approach, we assume the linearity assumption holds for both the conditional SQ and

quantile, which involves the additional assumption that:

qm(τ) = xTmβq, (2.7)

on top of the linear SQ model (1.4). With a joint quantile and SQ regression model,

the Two-Step procedure is given by

β̂q ← argmin
u

M∑
m=1

n/M∑
j=1

ρτ (Ymj − xTmu),

β̂(TS) = argmin
θ

M∑
m=1

n/M∑
j=1

[
(Ymj − xTmθ)2 · 1{Ymj ≥ xTmβ̂q}

]
,

(2.8)

where ρτ (·) is the check function; here β̂(TS) is the SQ regression estimator of interest

and β̂q is the intermediate quantile regression estimator.

The estimation procedure (2.8) falls into the standard framework of two-step M-

estimation; See, e.g., Section 12.4 of Wooldridge (2010). Accordingly, we can derive

the asymptotic property of β̂(TS) in the following result.

Theorem II.3. Under a fixed discrete design, and suppose Conditions R-X, R-Y1

and R-Y2, In addition, suppose the matrix

D2 =M−1

M∑
m=1

fm(qm(τ))xmx
T
m,
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is positive definite. Under a joint model of (1.4) and (2.7), we have

√
n
(
β̂(TS) − β

)
d−→ N

(
0, D−1

0 (V +GΣG)D−1
0

)
,

where Σ = τ(1− τ)D−1
2 D0D

−1
2 , and

V = [M(1− τ)]−1

M∑
m=1

{
var[Ym | Ym ≥ qm(τ)]xmx

T
m

}
,

G = [M(1− τ)]−1

M∑
m=1

{
fm(qm(τ))[vm(τ)− qm(τ)]xmxTm

}
.

In particular, the property of the Two-Step estimator depends on Σ, which is the

asymptotic variance-covariance matrix for the classic quantile regression estimator β̂q.

This is intuitive since we use the linear quantile regression as the first step in (2.8).

The Two-Step approach is connected to the Linearization approach as follows. In

the Two-Step estimation procedure (2.8), we rely on the linear quantile regression

model (2.7) to provide an estimator for qm(τ). Without relying on the linearity of

conditional quantile, we may also choose to use the empirical estimator q̂m(τ) at each

xm, which would lead to another estimator:

min
θ

M∑
m=1

n/M∑
j=1

[
(Ymj − xTmθ)2 · 1{Ymj ≥ q̂m(τ)}

]
.

We can show that the above formulation is exactly the same as the Linearization

estimator β̂(L). While β̂(TS) uses Model (2.7) to assist quantile estimation, it is not

clear whether β̂(TS) is more efficient than β̂(L), even when (2.7) takes hold. We relegate

more detailed comparisons to Section 2.3

Remark 2. One advantage of β̂(TS) is that both the estimation procedure and the

proof of Theorem II.3 can be easily extended to the case with continuous covariates.

The two-step M-estimation framework does not rely on the discreteness of the covari-
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ates. On the other hand, both the m-Rock and the Two-Step approaches rely on the

empirical SQ estimator at each covariate value, the analysis of which becomes more

complicated with continuous covariates.

2.3 Connection and comparison

In this section, we compare the three proposed methods in the case of discrete

covariates. We begin with their operational differences, followed by an explicit com-

parison of the asymptotic efficiency under two families of models. The focus here is

to better understand the behaviour of the m-Rock approach.

2.3.1 Conceptual differences

Operationally, both the m-Rock and the Linearization approaches require initial

SQ estimators at each covariate value. Among those two methods, the Linearization

approach is conceptually simpler as it only involves the SQ at a single level τ , whereas

the m-Rock approach needs the SQ process at many other levels. Note, however, the

m-Rock approach does not require a parametric model beyond that for the τth SQ

in (1.4).

On the other hand, the Two-Step approach is more straightforward and does not

depend on any initial estimator, yet it relies critically on the additional linear quan-

tile regression model in (2.7). With a joint quantile and SQ model, the Two-Step

method becomes remarkably easy to implement by fitting two standard regression

models. The method also applies seamlessly to cases with general covariate distribu-

tions and/or higher dimensions. Such a joint model is often used in recent works on

SQ regression (Dimitriadis and Bayer , 2019; Barendse, 2020).

We highlight several important differences between the three methods in Table

2.1. To summarize, the Two-Step method requires the most stringent assumption;

and the m-Rock approach requires the most computational effort.
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Table 2.1: Requirements of the three SQ regression methods

Parametric quantile
regression model?

Initial estimator
for the τth SQ?

Initial SQ estimator
beyond τth level?

m-Rock × ✓ ✓
Linearization × ✓ ×
Two-step ✓ × ×

2.3.2 Efficiency comparison I: homoscedastic models

In the following, we use two examples to compare the asymptotic variances for

the three estimators. In the first example, we consider a homoscedastic linear model:

Ymj = xTmη + εmj (m = 1, . . . ,M ; j = 1, . . . , n0), (2.9)

where each xm is a vector that includes the intercept term, and εmj’s are i.i.d. from

the same distribution as ε. Let q0(τ) and v0(τ) be the τth quantile and SQ of ε,

respectively. Under Model (2.9), both the τth quantile and SQ regression model are

linear, and can be written as

qm(τ) = xTmη + q0(τ), vm(τ) = xTmη + v0(τ).

In the following, we consider a fixed τ and hence omit the index τ in q0(τ) and v0(τ)

to simplify the notations.

We fix some notations before the comparison. Let V0 = var (ε | ε ≥ q0), and let

f0(·) be the density function for ε. Recalling fm from Condition R-Y1 and σm from
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Lemma 1, we can simplify the following conditional quantities under Model (2.9):

fm(qm(τ)) = f0(q0),

var [Ymj | Ymj ≥ qm(τ)] = V0,

vm(τ)− qm(τ) = v0 − q0,

σ2
m = σ2

0 ≜
V0 + τ(v0 − q0)2

1− τ
.

(2.10)

With a homoscedastic model, none of the above quantities depend on xm. Further-

more, let AVar(mR), AVar(L) and AVar(TS) be the re-scaled (by the sample size n)

asymptotic variance-covariance matrices for the m-Rock, Linearization, and Two-

Step methods, respectively.

Plugging in the quantities in (2.10) into Theorems II.1, II.2 and II.3, straightfor-

ward calculations show that

AVar(mR) = AVar(L) = AVar(TS) = σ2
0D

−1
0 ,

where σ2
0 is also the sampling variance for the one-sample SQ (Chen, 2007). Under

Model (2.9), all three methods are asymptotically the same in efficiency. Without any

heteroscedasticity, the sandwich-form variance formulae collapse to a common one.

Moreover, even though the quantile function is linear-in-covariates, the Two-Step

method does not offer any efficiency improvement by exploiting this linearity.

2.3.3 Efficiency comparison II: location-scale shift models

Next we consider a heteroscedastic location-scale shift model. For simplicity,

we restrict to the case with only one (discrete) scalar covariate and even omit the

intercept term in the regression. WithM (M > 2) covariate values 0 < x1 < . . . < xM
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and a fixed γ1 > 0, we consider the model

Ymj = η1xm + (γ1xm) · εmj (m = 1, . . . ,M ; j = 1, . . . , n0), (2.11)

where the error terms εmj are i.i.d. across both m and j. We consider the comparison

for a fixed τ , and we adopt the same notations that follow (2.9). The τth quantile

and SQ regression under Model (2.11) are

qm(τ) = (η1 + γ1q0)xm, vm(τ) = (η1 + γ1v0)xm,

and the true SQ regression coefficient is β1 + γ1v0 since we have no intercept term.

Now we calculate the asymptotic variance for each estimator under Model (2.11).

Parallel to the calculations in (2.10), we can show that the quantity σm is proportional

to (γ1xm), yet fm(qm(τ)) is inversely-proportional to (γ1xm) under the location-scale

shift model (2.11). Moreover, let µj =
∑M

m=1 x
j
m/M for j = 1, . . . , 4, and we define

R1 = µ2/(µ
2
1) and R2 = µ4/(µ

2
2). For the m-Rock estimator, we have from Theorem

II.1 that

AVar(mR) = D−1
1 Ω1D

−1
1

=

[
1

γ1(v0 − q0)
µ1

]−1 [
σ2
0

(v0 − q0)2
µ2

] [
1

γ1(v0 − q0)
µ1

]−1

=
γ21

1− τ
[V0 + τ(v0 − q0)2] ·R1,

since σ2
0 = (1 − τ)−1[V0 + τ(v0 − q0)2]. Similarly, for the Linerization estimator we
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have

AVar(L) = D−1
0 Ω0D

−1
0

= (µ2)
−1(γ21σ

2
0µ4)(µ2)

−1

=
γ21

1− τ
[V0 + τ(v0 − q0)2] ·R2.

And for the Two-Step estimator,

AVar(TS) = D−1
0 (V +GΣG)D−1

0

=
1

1− τ
(µ2)

−1
[
γ21V0 µ4 + τγ21(v0 − q0)2µ−2

1 µ3
2

]
(µ2)

−1

=
γ21

1− τ
[
V0 ·R2 + τ(v0 − q0)2 ·R1

]
.

Thus, all the asymptotic variances depend on two quantities under Model (2.11): V0

and τ(v0− q0)2; And the difference between three methods originates from how those

two quantities are weighted, either by R1 or R2. We show in Section 2.5.4 that

R1 < R2, (2.12)

and hence the comparison of the asymptotic efficiency follows as

AVar(mR) < AVar(TS) < AVar(L),

which suggests that the m-Rock method is the most efficient under Model (2.11).

We provide some heuristic explanations for the asymptotic relative efficiency. The

variance for β̂(L) uses the weight R2 for both quantities V0 and τ(v0 − q0)
2. Next,

β̂(TS) improves upon β̂(L) by utilizing the linear quantile regression model: With more

accurate conditional quantile estimation, the variance of β̂(TS) uses a better weight

R1, but only for one component τ(v0 − q0)2.
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Furthermore, the variance for the m-Rock estimator uses the better weight R1

for both components V0 and τ(v0− q0)2. Surprisingly, the m-Rock approach achieves

better efficiency than the Two-Step method, even though the latter requires more

modeling assumptions. The key to this improvement is the implicit weighting induced

by the m-Rock loss function. In Theorem II.1, the middle part of the sandwich form

variance-covariance matrix involves a weight5:

wm ∝
1

vm(τ)− qm(τ)
=

1

γ1xm
, m = 1, . . . ,M,

under Model (2.11). Although these weights wm are not optimal as those in (2.6),

they are still beneficial for efficiency because wm reflects the scale of Ym on the right

tail: the data are down-weighted if the conditional variance of the response is larger.

With heterogeneity, such weighting is beneficial in general (Leamer , 2010), and we

conjecture that the m-Rock approach is competitive beyond the relatively simple

model (2.11).

To conclude the efficiency comparisons, the m-Rock approach is superior to other

two methods we considered in this section: it does the best in heteroscedastic models,

while it remains equally competitive in homoscedastic models. Therefore, the m-Rock

approach is partially adaptive to the underlying heterogeneity in data.

2.4 Discussion

In this chapter, we study new approaches for superquantile regression in the setting

with discrete covariates. Under this relatively simple but illustrative setting, we are

able to focus on the nature of the problem, and to think outside of the traditional

M-estimation framework. We consider three new approaches that complement the

literature on SQ regression, among which the m-Rock approach demonstrates the

5The weighting is implicit because we never have to estimate those weights in the implementation
of the m-Rock approach.
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most desirable statistical efficiency. Via two examples, we show that the m-Rock

approach is at least as efficient, if not more efficient, than the other two approaches,

yet it does not require any additional assumption beyond the τ -th SQ regression

model (1.4).

The m-Rock approach originates from a modified loss function in Chapter 1. When

the covariates are discrete, we compute the SQ regression using not the raw data, but

an array of empirical SQ estimators at each covariate value and at a range of quantile

levels. Operationally, the m-Rock approach fits a linear quantile regression to the

array of initial SQ estimators. The approach is intuitive following Proposition 1 in

Chapter 1, where we show the τth SQ can be interpreted as the τth quantile of the

SQ process.

Admittedly, the setting with discrete covariates is relatively restrictive in this

chapter; And our comparison does not include other SQ regression approaches in the

recent literature. The focus here is to understand and demonstrate the potential of

the novel m-Rock approach. We shall give more discussion and comparisons in the

next chapter.

2.5 Technical details

In this section, we give technical details that supplement the discussion in this

chapter, which include the proofs of all results.

2.5.1 Auxiliary results for the one-sample SQ process

We first present asymptotic results in the one-sample case without any covariate.

These results also apply to the empirical SQ estimators at each covariate value in our

regression setting of this chapter.

We fix some notations for the discussion of the one-sample problem. Suppose the

data Y1, . . . , Yn are i.i.d. observations with a common distribution function F (y). For
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any 0 < s < 1, let q̂(s) be the sample quantile from the n observations, we define the

empirical SQ estimator as:

v̂(s) =

∑n
i=1 Yi · 1{Yi ≥ q̂(s)}∑n

i=1 1{Yi ≥ q̂(s)}
. (2.13)

While the parameter of interest is the τth SQ, here we consider the empirical SQ

process, which is the stochastic process given by {v̂(s) : s ∈ [τL, τU ]}, where 0 <

τL < τ < τU < 1. Let ℓ∞[a, b] be the set of all uniformly bounded functions on the

interval [a, b]. To further simplify notations, in the remainder of this subsection, we

shall write v̂s = v̂(s) and q̂s = q̂(s), and we define qL and qU as the τL-th and τU -th

quantile, respectively. In the one-sample case, the notations here may be different

than those in the regression setting.

We need the following technical condition, which is the one-sample counterpart

for Conditions R-Y1 and R-Y2.

Condition U. The distribution function F (y) is continuously differentiable on the

interval [qL − ε, qU + ε] for some ε > 0; the density function f(y) is bounded away

from zero on the same interval. Furthermore, we have E[Y 2 · 1{Y ≥ 0}] < +∞.

Now we present the first main result in the one-sample case, which concerns the

weak convergence of the empirical SQ as a stochastic process indexed by the quantile

level. Not only is the result an important technical tool for subsequent analysis, but

it also is of interest on its own.

Theorem II.4. Suppose Condition U holds, then we have

v̂s − vs =
1

n

n∑
i=1

[
(Yi − qs) · 1{Yi ≥ qs}

1− s
− (vs − qs)

]
+ oP

(
n−1/2

)
,

uniformly in s ∈ [τL, τU ]. Furthermore, the centered empirical SQ process converges
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weakly:
√
n [v̂(·)− v(·)]⇝ G(·) in ℓ∞[τL, τU ],

where G(·) is a mean zero Gaussian Process.

Theorem II.4 gives the uniform (weak) Bahadur representation for the empirical

SQ process. To the best of our knowledge, the uniformity of the result is new. Re-

stricting to a single quantile level τ , Chen (2007) and Zwingmann and Holzmann

(2016) study the asymptotic properties of the SQ estimator v̂(τ) under more general

conditions; on the other hand we discuss process convergence. Practically, Theorem

II.4 is a technical tool for simultaneous statistical inference for a range of superquan-

tiles.

As a simple corollary of Theorem II.4, we can obtain the asymptotic distribution

for the τth empirical SQ, which is known from, e.g., Chen (2007) and Zwingmann

and Holzmann (2016). We omit the proof since it simply combines the Central Limit

Theorem with the Bahadur representation in Theorem II.4.

Corollary 2. Under Condition U, we have

√
n(v̂τ − vτ )

d−→ N(0, σ2
τ ),

with (1− τ)σ2
τ = var(Y | Y ≥ qτ ) + τ(vτ − qτ )2.

The asymptotic variance σ2
τ consists of two parts. The first part is the variance in

estimating vτ when qτ is known, whereas the second part is attributable to quantile

estimation (Zwingmann and Holzmann, 2016).

Next, we proceed to the study of the inverse SQ function, which we define below:

h(z) = {s : vs = z} and ĥ(z) = inf{s ∈ [0, 1] : v̂s ≥ z},

for any z ∈ [vτL , vτU ]. Note vs is strictly increasing in s ∈ [τL, τU ], and we show in
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Lemma 3 that v̂(z) is also non-decreasing in s ∈ [τL, τU ]; therefore the definitions

above are well-defined. The following Lemma shows that ĥ(z), the empirical inverse

SQ, is also asymptotically Gaussian.

Lemma 2. Under Condition U, the inverse SQ process satisfies:

ĥ(z)− h(z) = − 1

n

n∑
i=1

[
(Yi − qh(z)) · 1{Yi ≥ qh(z)}

z − qh(z)
− (1− h(z))

]
+ oP

(
n−1/2

)
,

uniformly in z ∈ [vτ − ε′, vτ + ε′] for some ε′ > 0. In particular, we have:

√
n
(
ĥ(vτ )− τ

)
d−→ N

(
0,

(1− τ)2σ2
τ

(vτ − qτ )2

)
,

with σ2
τ defined in Corollary 2. Furthermore, the process n1/2[ĥ(z)−h(z)] is asymptot-

ically equi-continuous over z ∈ [vτ −ε′, vτ +ε′] with respect to the Euclidean distance.

The asymptotic property of ĥ(z) is an essential for the analysis of the m-Rock

regression approach. The proof of Lemma 2 builds upon the uniform representation

in Theorem II.4, as well as the functional Delta method; See, e.g., Theorem 20.8 in

Van der Vaart (2000). Note, the asymptotic normality of v̂τ at a single level (Chen,

2007; Zwingmann and Holzmann, 2016), is not sufficient to establish the result in

Lemma 2.

2.5.2 Proof for the one-sample case

The proofs in this subsection rely on standard empirical process tools in, e.g.,

Van Der Vaart and Wellner (1996), and we adopt the same notations therein. Let

Y1, . . . , Yn be i.i.d. observations from the same population. For a class of function

y 7→ f(y; θ) indexed by θ ∈ Rq, let En[f(Y
∗; θ)] =

∑n
i=1 f(Yi; θ)/n, E[f(Y

∗; θ)] =

E[f(Yi; θ)] and Gn[f(Y
∗; θ)] = n1/2{En[f(Y

∗; θ)] − E[f(Y ∗; θ)]}. We sometimes use
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the subscript and write En[fθ] instead of En[f(Y
∗; θ)] for further simplicity. For a

semi-metric space T, we use ℓ∞(T) to denote the functional space that consists all

bounded functions of T 7→ R. Moreover, we use the same notations in the previous

subsection.

We need the following technical lemmas, the proofs of which are at the end of this

subsection.

Lemma 3. Under Condition U, for any s, t such that τL ≤ s < t ≤ τU , we have

v̂s ≤ v̂t and vs < vt. Furthermore, as a function of s, v̂s is left continuous whose right

limit exists everywhere.

Lemma 4. Let ψ(y; θ, s) = (y− vs)1{y ≥ θ}. Under the conditions of Theorem II.4,

and suppose that |q̃s − qs| = oP(1) uniformly over s ∈ [τL, τU ], then we have

sup
s∈[τL,τU ]

∣∣Gn[ψ(q̃s,s)]−Gn[ψ(qs,s)]
∣∣ = oP(1).

Furthermore, the function class F = {y 7→ ψ(y, θ, s) : θ ∈ [qL, qU ], s ∈ [τL, τU ]} is

Donsker.

Proof of Theorem II.4

Proof. We first prove the Bahadur representation for a broader class of SQ estimator.

Consider any estimator ṽs that solves the following estimating equation:

0 =
n∑

i=1

(yi − ṽs)1{Yi ≥ q̃s}, (2.14)

where q̃s is any estimator for the qs that satisfies (i) sups∈[τL,τU ] |q̃s− qs| = OP(n
−1/2);

and (ii) q̃s ∈ ℓ∞([τL, τU ]) as a stochastic process indexed by s. Choosing q̃s as the

sample quantile in (2.14) recovers the empirical SQ estimator.

Let ψ(y; θ, s) = (y − vs)1{y ≥ θ}. Given the quantile estimators q̃s (s ∈ [τL, τU ]),

37



the estimating equation (2.14) for ṽs solves En[(Y
∗−ṽs)1{Y ∗ ≥ q̃s}] = En[ψ(Y

∗; q̃s, s)]+

(vs − ṽs)En[1{Y ∗ ≥ q̃s}] = 0. Hence the estimator ṽs satisfies:

√
n(ṽs − vs)En[1{Y ∗ ≥ q̃s}]

=
√
nEn[ψ(Y

∗; q̃s, s)] (2.15)

=
√
n {E[ψ(Y ∗; q̃s, s)]− E[ψ(Y ∗; qs, s)]} (2.16)

+ Gn[ψ(Y
∗; q̃s, s)]−Gn[ψ(Y

∗; qs, s)]︸ ︷︷ ︸
R1(s)

+ Gn[ψ(Y
∗; qs, s)]

=
∂E[ψ(Y ∗; qs, s)]

∂qs
[
√
n (q̃s − qs)] +Gn[ψ(Y

∗; qs, s)] +R1(s)

+
√
n

{
E[ψ(Y ∗; q̃s, s)]− E[ψ(Y ∗; qs, s)]−

∂E[ψ(Y ∗; qs, s)]

∂qs
(q̃s − qs)

}
︸ ︷︷ ︸

R2(s)

= (vs − qs)fY (qs)[
√
n (q̃s − qs)] +Gn[ψ(Y

∗; qs, s)] +R1(s) +R2(s),

where (2.16) holds since E[ψ(Y ∗; qs, s)] = 0 for all s ∈ [τL, τU ], and the last inequality

follows since ∂E[ψ(Y ∗; θ, s)]/∂θ = (vs − θ)fY (θ).

Now we show that both R1(s) and R2(s) are negligible uniformly in s. By Lemma

4, we immediately obtain R1(s) = oP(1) uniformly over s ∈ [τL, τU ]. For R2, we first

re-write

E[ψ(Y ∗; θ, s)] =

∫ +∞

θ

yfY (y) dy − vs[1− FY (θ)] ≜ I1(θ) + vs × I2(θ),

and hence by Taylor expansion with respect to θ we have:

sup
s∈[τL,τU ]

|R2(s)|

≤ sup
s∈[τL,τU ]

|
√
n∆s| × sup

θ∈[qτL ,qτU ]

|θ−θ′|≤∆s

|[I ′1(θ′)− I ′1(θ)]− vs × [I ′2(θ
′)− I ′2(θ)]|

= oP(1),
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where ∆s = q̃s − qs, the last equality follows since: (i) n1/2(q̃s − qs) is asymptotically

tight, (ii) vs is uniformly bounded over s ∈ [τL, τU ], and (iii) both I1(θ) and I2(θ) are

continuously differentiable on θ ∈ [qτL − ε0, qτU + ε0] under Condition U.

Combining the results for R1(s) and R2(s) with Equation (2.15), we have

√
n(ṽs− vs)En[1{Y ∗ ≥ q̃s}] = (vs− qs)fY (qs)[

√
n (q̃s − qs)] +Gn[ψ(Y

∗; qs, s)] + oP(1),

(2.17)

where the oP(1) term is uniform in s ∈ [τL, τU ]. From here, we can deduce the

n1/2-uniform consistency of ṽs as follows. From the Lemma 4, the function class

{y 7→ ψ(y, θ, s); s ∈ [τL, τU ], θ ∈ [qL, qU ]} is Donsker, therefore

sup
s∈[τL,τU ]

|
√
nGn[ψ(Y

∗; qs, s)]| ≤ sup
s∈[τL,τU ]
θ∈[qL,qU ]

|
√
nGn[ψ(Y

∗; θ, s)]| = OP(1);

Furthermore, the assumptions on q̃s at the beginning of the proof implies

sup
s∈[τL,τU ]

√
n|q̃s − q̃s| = OP(1), and En[1{y ≥ q̃s}] = 1− s+ oP(1).

Hence, it follows from (2.17) that

sup
s∈[τL,τU ]

|
√
n(ṽs − vs)| = OP(1).

From here, we can obtain the uniform Bahadur representation of ṽs−vs. Dividing

both sides of (2.17) by (1 − s), we obtain, since
√
n(ṽs − vs) is asymptotically tight

in ℓ∞([τL, τU ]), that

√
n(ṽs−vs) =

1

1− s
{√

n (q̃s − qs) (vs − qs)fY (qs) +Gn[(Y
∗ − vs)1{Y ∗ ≥ qs}]

}
+oP(1),

(2.18)

uniformly over s ∈ [τL, τU ].
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In particular, if we choose q̃s to be the sample quantile that satisfies En[1{y ≤

q̃s}] = s, then for sufficiently large n, the estimator obtained from (2.14) is asymptot-

ically equivalent to the empirical SQ estimator v̂s defined in (2.13). Since the sample

quantile satisfies
√
n(q̂s − qs) =

n∑
i=1

s− 1{Yi ≤ qs}
fY (qs)

+ oP(1),

uniformly in s (see, e.g., Corollary 21.5 of Van der Vaart (2000)). Combining the

above displayed equation with (2.18), we have

√
n(v̂s − vs) =

1

1− s
Gn[(y − qs)1{y ≥ qs}] + oP(1),

uniformly over s ∈ [τL, τU ].

Finally, we show that the empirical SQ process
√
n(v̂s − vs) converges towards

a Gaussian Process in ℓ∞[τL, τU ]. In view of the uniform Bahadur representation,

it suffices to consider the process Gn[(Y
∗ − qs)1{Y ∗ ≥ qs}]. Since qs is uniformly

Lipschitz continuous in s ∈ [τL, τU ], it follows from Example 19.19 of Van der Vaart

(2000) that the function class {y 7→ (y − qs)1[y ≥ qs] : s ∈ [τL, τU ]} is Donsker.

Therefore Gn[(Y
∗ − qs)1{Y ∗ ≥ qs}]

d−→ G∞(s) as a function of s on the space

ℓ∞([τL, τU ]); here G∞(s) is a zero-mean Gaussian process with continuous sample

path with respect to the semi-metric

ρ(s, t) =
(
E{(Y ∗ − qs)1[Y ∗ ≥ qs]− (Y ∗ − qt)1[Y ∗ ≥ qt]}2

)1/2
, s, t ∈ [τL, τU ].

Since ρ(s, t) ≤ |qs − qt| ≲ |s − t|, the sample path of G∞(·) is also continuous with

respect to the Euclidean distance. This concludes the proof.

Proof of Lemma 2

Proof. Let a = vτ − ε0 and b = vτ + ε0 for some constant ε0 such that vτU − 2ε0 ≥
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vτ ≥ vτL + 2ε0. Define the function space D1 as the space of all non-decreasing,

continuous function on [τL, τU ]. For any function F ∈ D1, we define the inverse

map ϕ(·) : D1 7→ ℓ∞([a, b]) such that ϕ(F )(z) = inf{s ∈ [τL, τU ] : F (s) ≥ z} for

z ∈ [a, b] 6. Note that vs as a function of s ∈ [τL, τU ] is continuously differentiable

with ∂vs/∂s = (vs − qs)/(1 − s) > 0. Following Lemma 21.4 in Van der Vaart

(2000), the map ϕ(·) is Hadamard-differentiable at vs ∈ D1, tangentially to the set

of all continuous (with respect to the Euclidean distance) functions on [τL, τU ]. The

Hadamard-derivative of the inverse map ϕ at vs is ϕ
′
v(h) = −h(v−1)/v′(v−1), for any

continuous function h.

Next we apply the functional Delta method. Note vs, v̂s ∈ D1, and h(·) = ϕ ◦

vs(·) ∈ ℓ∞([a, b]); since v̂τL
P ∗
−→ vτL < a, v̂τU

P ∗
−→ vτU > b, the inverse SQ process

ĥ(·) = ϕ ◦ v̂s(·) with probability going to 1 7. Therefore, applying the functional

Delta method (Theorem 20.8 in Van der Vaart (2000)) towards the inverse map ϕ

gives

√
n[ĥ(z)− h(z)] = −

[√
n(v̂s − vs)
v′(s)

] ∣∣∣∣∣
s=v−1(z)

+ oP(1)

= −
[
Gn[(Y

∗ − qs)1{Y ∗ ≥ qs}]
vs − qs

] ∣∣∣∣∣
s=v−1(z)

+ oP(1),

in ℓ∞[a, b], which shows the first part of the Lemma. Since n1/2(v̂s − vs)
d−→ G∞(s),

it follows that n1/2[ĥ(z)− h(z)] also converges towards a Gaussian process with con-

tinuous sample path (with respect to the Euclidean distance), since vs is continuously

differentiable with respect to s. Asymptotic equi-continuity of n1/2[ĥ(z) − h(z)] is

then a consequence of its convergence towards a continuous stochastic process.

For the second part of the Lemma, taking z = vτ in the above displayed equation,

and recalling
√
n(v̂τ − vτ )

d−→ N(0, σ2
τ ) from Theorem II.4 concludes the proof.

6We define ϕ(F )(z) = τU if sups∈[τL,τU ] F (s) < z, so that ϕ(F ) ∈ ℓ∞([a, b]).
7Since the infimum in the definition of ϕ is taken only within [τL, τU ].

41



Proof for other auxiliary lemmas

Proof of Lemma 3. Under Condition U, the SQ process vs = E[Y | Y ≥ qs] is contin-

uous in s, and in particular

∂vs
∂s

=
vs − qs
1− s

> 0, s ∈ [τL, τU ],

which indicates vs is strictly increasing in s.

Next we show that the sample SQ v̂s ≤ v̂t for τL ≤ s < t ≤ τU . Without loss of

generality, we can assume q̂s < q̂t, where q̂ is the sample quantile; otherwise v̂s = v̂t.

Let m1 =
∑n

i=1 1{Yi ≥ q̂t} and m2 =
∑n

i=1 1{Yi ≥ q̂s}; by the choice of sample

quantiles q̂s, we have m2 ≥ m1 > 0. Hence

v̂t − v̂s =

∑n
i=1 Yi · 1{Yi ≥ q̂t}

m1

−
∑n

i=1 Yi · 1{Yi ≥ q̂s}
m2

=
(m2 −m1)

∑n
i=1 Yi · 1{Yi ≥ q̂t} −m1

∑n
i=1 Yi · 1{q̂t > Yi ≥ q̂s}

m1m2

≥ q̂t(m2 −m1)
∑n

i=1 1{Yi ≥ q̂t} −m1q̂t
∑n

i=1 1{q̂t > Yi ≥ q̂s}
m1m2

≥ 0,

where the equality in the penultimate inequality holds if and only if m1 = m2. There-

fore, v̂s is non-decreasing with respect to s.

From its monotonicity, the one-sided limit of v̂s from either the left or right ex-

ists. To show the continuity from the left, note that the quantile function q̂s is

left-continuous over s ∈ (0, 1), thus for any s ∈ (τL, τU),

lim
ε→0+

n∑
i=1

1{Yi ≥ q̂s−ε} = lim
ε→0+

n∑
i=1

1{Yi ≥ q̂s − ε} =
n∑

i=1

1{Yi ≥ q̂s} > 0,

lim
ε→0+

n∑
i=1

Yi1{Yi ≥ q̂s−ε} =
n∑

i=1

Yi1{Yi ≥ q̂s}.

Since v̂s is the ratio of the above displayed equations, we conclude that v̂s is also
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continuous from the left.

Proof of Lemma 4. Define a class of functions F = {y 7→ ψ(y, θ, s) : θ ∈ [qL, qU ], s ∈

[τL, τU ]}. We shall show that F is a Donsker class of functions. First, note that

F = F1 ×F2 ≜ {fg : f ∈ F1, g ∈ F2}, where

F1 = {z 7→ z − vs : s ∈ [τL, τU ]}, F2 = {z → 1[z ≥ θ] : θ ∈ [qL, qU ]}.

Since F1 contains only linear functions and F2 contains only indicator functions of

half lines, it is clear that both F1 and F2 are VC classes of functions, and therefore

F also satisfy the uniform entropy condition. (See e.g. Example 19.19 of Van der

Vaart (2000).) Next, let F (y) = [|y| + |vτU | + |vτL|]1{y ≥ qL}, we can easily verify

that supf∈F |f(z)| ≤ F (z) and E[F 2] < +∞ under Condition U, i.e., F is a suqare-

integrable envelope function for F . Therefore, we conclude that F is Donsker, which

follows from Lemma 19.14 of Van der Vaart (2000).

Let T = [qτL , qτU ] × [τL, τU ] be the product space equipped with the semimetric

ρ((θ, s), (θ′, s′)) = {E[ψ(Y ∗; θ, s) − ψ(Y ∗; θ′, s′)]2}1/2. As a consequence of Donsker-

ness, the stochastic process Gn[ψ(Y
∗; θ, s)] indexed by (θ, s) is stochastically equi-

continuous on (T, ρ), and that (T, ρ) is totally bounded.

Similar to Lemma 19.24 in Van der Vaart (2000), define the map

g : ℓ∞(T) × ℓ∞([τL, τU ]) 7→ R

z(·, ·) × v(·) 7→ sups∈[τL,τU ] |z(v(s), s)− z(qs, s)|.

First, it is easy to verify that g(·, ·) is continuous (with respect to the product metric

on ℓ∞(T) × ℓ∞([τL, τU ])) at (z0, v0), as long as z0(·, ·) is uniformly continuous over

(T, ρ). Second, by its Donskerness, Gn(ψ(Y
∗; θ, s))

d−→ G∞(θ, s) in ℓ∞(T), where

almost all sample paths of the limit G∞(θ, s) is uniformly continuous on (T, ρ). Third,

by assumption we have q̃s
P ∗
−→ qs on ℓ∞([τU , τL]), which implies that the bivariate
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process [Gn(ψ(Y
∗; θ, s)), q̃s] also converges weakly. Hence by the continuous mapping

theorem,

sup
s∈[τL,τU ]

∣∣Gn[ψ(q̃s,s)]−Gn[ψ(qs,s)]
∣∣ = g ◦ {Gn[ψ(Y

∗; θ, s)], q̃s}

= g ◦ {Gn[ψ(Y
∗; θ, s)], q̃s} − g ◦ {G∞[ψ(θ, s)], qs}

d−→ 0,

since g {G∞[ψ(θ, s)], qs} = 0. Weak convergence to a constant then implies conver-

gence in probability, which concludes the proof.

2.5.3 Proof for the m-Rock approach

Here we give the proofs for the results in Section 2.1, as well as those in Chapter

1. For a matrix A, let λmin(A) be the minimal eigenvalue of A.

For the results in Section 2.1

Proof of Proposition 2. Part 1 of the Proposition follows from the properties of the

check loss ρτ (·) function. Note that

Ln(u1) + Ln(u2) =
M∑

m=1

[∫ 1

0

ρτ
(
v̂m(α)− xTmu1

)
+ ρτ

(
v̂m(α)− xTmu2

)
dα

]

≥
M∑

m=1

∫ 1

0

ρτ
(
v̂m(α)− xTm(u1 + u2)/2

)
dα

≥ Ln

(
u1 + u2

2

)
. (2.19)
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Moreover,

|Ln(u1)− Ln(u2)| =

∣∣∣∣∣
M∑

m=1

∫ 1

0

ρτ
(
v̂m(α)− xTmu1

)
− ρτ

(
v̂m(α)− xTmu2

)
dα

∣∣∣∣∣
≤

M∑
m=1

∫ 1

0

∣∣ρτ (v̂m(α)− xTmu1)− ρτ (v̂m(α)− xTmu2)∣∣ dα
≤

M∑
m=1

∫ 1

0

∣∣xTm(u1 − u2)∣∣ dα
≤

M∑
m=1

∥xm∥ · ∥u1 − u2∥.

Thus, the convexity and Lipschitz continuity of Ln(θ) follows.

For Part 2 of the Proposition, the previous Lipschitz continuity implies we can

exchange the order of integration and differentiability. Therefore

∇wLn(u) = lim
t→0+

Ln(u+ tw)− Ln(u)

t

=
M∑

m=1

∫ 1

0

∇wρτ (v̂m(α)− xTmu) dα

= −
M∑

m=1

xTmw

∫ 1

0

ψ∗
τ

(
v̂m(α)− xTmu,−xTmw

)
dα, (2.20)

where ψ∗
τ originates from the gradient condition of the check loss function, as in

Koenker (2005, page 33):

ψ∗
τ (u, v) =


τ − 1{u < 0}, if u ̸= 0,

τ − 1{v < 0}, if u = 0.

= τ − 1{u < 0} − 1{u = 0, v < 0}.

We now prove Part 3, i.e., the optimality condition for the m-Rock estimator.

By the convexity of Ln, any minimizer β̂ of Ln must satisfy: ∇wLn(β̂) ≥ 0, for all

w ∈ Rp, ∥w∥ = 1. Using the expression in (2.20), we can re-write the optimality
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condition as

0 ≥
M∑

m=1

xTmw

∫ 1

0

ψ∗
τ

(
v̂m(α)− xTmβ̂,−xTmw

)
dα

=
M∑

m=1

xTmw

(
τ −

∫ 1

0

1{v̂m(α) < xTmβ̂} dα− 1{xTmw > 0}
∫ 1

0

1{v̂m(α) = xTmβ̂} dα
)
.

(2.21)

By the monotonicity of v̂m(α), each of the set {α : v̂m(α) < xTmβ̂} is an interval on

[0, 1]. By relating the integration to Lebesgue measure, we have

∫ 1

0

1{v̂m(α) < xTmβ̂} dα = 1−
∫ 1

0

1{v̂m(α) ≥ xTmβ̂} dα

= 1− Leb
(
{α ∈ (0, 1) : v̂m(α) ≥ xTmθ̂}

)
= ĥm(x

T
mβ̂),

where Leb(·) is the Lebesgue measure on R, and the last inequality follows from the

definition of ĥm(·). Therefore, (2.21) implies that

∥∥∥∥∥
M∑

m=1

xm

[
τ − ĥm(xTmβ̂)

]∥∥∥∥∥
2

= sup
∥w∥=1

[
M∑

m=1

xTmw
(
τ − ĥm(xTmβ̂)

)]

≤ sup
∥w∥=1

[
M∑

m=1

xTmw1{xTmw > 0} ·
∫ 1

0

1{v̂m(α) = xTmβ̂} dα

]

≤
M∑

m=1

∥xm∥ · Leb{α ∈ [0, 1] : v̂α(xm) = xTmβ̂}

≲
M2

n
, (2.22)

almost surely since the covariates are bounded; the last inequality follows since there

are no ties among Y1, . . . , Yn, and hence Leb{α ∈ [0, 1] : v̂m(α) = xTmθ̂} ≤ M/n. The

proof is now complete.
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Proof of Theorem II.1. First we prove the consistency part. For any ε0 > 0, ∥β̂ −

β∥ ≥ 2ε0 implies that ∇wLn(β + ε0w) ≤ 0 for all ∥w∥ = 1, which follows from the

convexity of the loss function. Using (2.20) and (2.22) in the proof of Proposition 2,

the negativity of the directional derivative further implies

inf
∥w∥=1

[
M∑

m=1

xTmw
{
ĥm[x

T
m(β + ε0w)]− τ

}]
≤ C0

n
,

with probability one for some universal constant C0; Note that there are no ties in

the data under Condition R-Y1 with probability 1.

For small enough ε0, let

R1(w) = ĥm[x
T
m(β + ε0w)]− hm[xTm(β + ε0w)].

Lemma 2 shows that R1(w) = oP(1) uniformly over ∥w∥ = 1. Furthermore, since

hm(z) is continuously differentiable and hm(x
T
mβ) = τ , we have

hm(z)− τ = (z − xTmβ)h′m(xTmβ) + o(|z − xTmβ|).

Therefore, for sufficiently small ε0 > 0,

P
(
∥β̂ − β∥ ≥ 2ε0

)
≤ P

(
inf

∥w∥=1

{
M∑

m=1

xTmw
[
ĥm(x

T
mβ + ε0x

T
mw)− τ

]}
≤ C0

n

)

≤ P

(
ε0 inf

∥w∥=1
wT

[
M∑

m=1

xmx
T
mh

′
m(x

T
mβ)

]
w − o(1) ≤ sup

w
|R1(w)|+

C0

n

)

= P

(
ε0 [M(1− τ)λmin(Ω1)− o(1)] ≤ sup

w
|R1(w)|+ o(1)

)
→ 0,

since h′m(x
T
mβ) = (vm − qm)−1(1 − τ) and Ω1 is positive definite; this concludes the
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consistency of β̂.

Next we derive the asymptotic distribution of β̂. From Proposition 2, we have

OP

(
1

n

)
=

M∑
m=1

xm

[
τ − ĥm(xTmβ̂)

]
=

M∑
m=1

xm

[
τ − ĥm(xTmβ)

]
︸ ︷︷ ︸

R1

+
M∑

m=1

xm

[
hm(x

T
mβ)− hm(xTmβ̂)

]
︸ ︷︷ ︸

R2

+
M∑

m=1

xm

{
[ĥm(x

T
mβ)− hm(xTmβ)]− [ĥm(x

T
mβ̂)− hm(xTmβ̂)]

}
︸ ︷︷ ︸

R3

.(2.23)

We consider the three terms R1 through R3 separately in the following.

By Lemma 2, ĥm(z) is asymptotically Gaussian at z = vm(τ) = xTmβ for each

covariate value xm, therefore:

√
n

M

[
ĥm(x

T
mβ)− hm(xTmβ)

]
d−→ N

(
0,

(1− τ)2σ2
m

(vm − qm)2

)
.

Therefore, summing the above equation over m gives

√
n

M
R1

d−→ N
[
0, (1− τ)2Ω1

]
,

where Ω1 is defined in Theorem II.1. For the term R2, Taylor expansion of hm gives

R2

M
= − 1

M

M∑
m=1

xm

[
xTm(β̂ − β)h′m(xTmβ) + oP(∥β̂ − β∥)

]
= − [(1− τ)D1 + oP(1)] (β̂ − β),

since hm(·) is continuously differentiable. For R3, the asymptotic equi-continuity in
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Lemma 2 shows that

R3

M
=

1

M

M∑
m=1

[
xmoP

(√
M

n

)]
= oP

(
1√
n

)
,

since β̂ is consistent for β.

Therefore, substituting R1, R2 and R3 back into (2.23) gives

√
n [(1− τ)D1 + o(1)] (β̂ − β) d−→ N

[
0, (1− τ)2Ω1

]
,

which implies
√
n(β̂ − β) d−→ N

(
0, D−1

1 Ω1D
−1
1

)
.

The proof is now complete.

For the results in Chapter 1 Here we prove the results in Chapter 1, where we

use the same notations therein. For two matrices A and B, we write A ⪰ B if A−B

is positive semi-definite.

Proof of Proposition 1. The second equality in Equation (1.11) of the Proposition is

straightforward; we only prove the first one. Note that v[Y−C](α) = vY (α)−C. Hence

the loss function in (1.5) can be written as

Lτ (C)−
∫ 1

0

v[Y ](α) dα =
1

1− τ

∫ 1

0

(1− τ)[C − v[Y ](α)] + max{0, v[Y ](α)− C} dα

=
1

1− τ

∫ 1

0

ρτ (v[Y ](α)− C) dα,

which follows from standard algebra.
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Proof of Theorem I.1. Letting

C0 = EX

[∫ 1

0

v[Y |X](α, x) dα

]
,

Equation (1.13) then follows directly from Proposition 1 and the linearity of the

operator EX(·). We prove the identification of β and the uniqueness of the minimizer

using (1.13).

We first show that the function g(x, u) is strictly increasing in all u ∈ (0, 1)

for each possible value of x. Note g(x, u) is continuous and (weakly) monotonic

by construction (1.3). Since the response distribution is continuous, it follows that

q[Y |X](u, x) is strictly increasing in u and almost everywhere continuous; Therefore

∂g(x, u)

∂u
=

v[Y |X](u, x)− q[Y |X](u, x)

1− u
(2.24)

=
1

(1− u)2

∫ 1

u

[q[Y |X](s, x)− q[Y |X](u, x)] du

> 0,

almost everywhere in u. Hence the strict monotonicity of g(x, u) takes hold.

Now we prove the optimality of β for the function L(θ). From the property of the

check-loss function, it follows that the function L(θ) is convex and differentiable in θ;

See, e.g., Koenker (2005, Chapter 1.3). In fact, the derivative is

∂L

∂θ
= τEX

[
Pr
(
g(X, ξ) ≥ XT θ | X

)
·X
]
− (1− τ)EX

[
Pr
(
g(X, ξ) < XT θ | X

)
·X
]

= EX

{[
τ − Pr

(
g(X, ξ) < XT θ | X

)]
·X
}
.

Note xTβ = g(x, τ) = v[Y |X](τ, x), hence the optimality of β follows from the first-

order condition

Pr
(
g(x, ξ) < xTβ | X = x

)
= Pr (g(x, ξ) < g(x, τ) | X = x) = Pr(ξ < τ) = τ,
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for all x, as g(x, u) is strictly increasing in all u ∈ (0, 1).

Next we show the minimizer of L is unique. Let g−1(x, z) be the inverse of g, such

that g ◦ (x, g−1(x, z)) = z. By the conditions in Theorem I.1, g(x, u) is differentiable

in u for all |u− τ | ≤ c0, with derivative given by (2.24); Hence we have

∂Pr(g(x, ξ) ≤ z)

∂z

∣∣∣∣∣
z=g(x,τ)

=

[
∂g(x, s)

∂s

∣∣∣∣∣
s=τ

]−1

≥ δ0 > 0,

for some constant δ0 uniformly in all x. Therefore, it follows that L(θ) is twice

differentiable, and the derivative satisfies

∂2L

∂θ∂θT

∣∣∣∣∣
θ=β

= EX

∂Pr(g(X, ξ) ≤ z)

∂z

∣∣∣∣∣
z=XT β

·XXT

 ⪰ δ0 · EX

[
XXT

]
.

Therefore, the Hessian matrix of L(·) evaluated at β is positive definite, establishing

the uniqueness of the minimizer β.

2.5.4 Proof of other results

2.5.4.1 For the Linearization method

Proof of Theorem II.2. By the SQ regression model (1.4), we have vm(τ) = xTmβ for

all m = 1, . . . ,M . Hence we can rewrite

√
n
(
β̂(L) − β

)
=

(
1

M

M∑
m=1

xmx
T
m

)−1 [√
n

M

M∑
m=1

xm {v̂m(τ)− vm(τ)}

]
. (2.25)

Theorem II.4 implies that

√
n

M
{v̂m(τ)− vm(τ)}

d−→ N
(
0, σ2

m

)
,
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and therefore

√
n

M

M∑
m=1

xm {v̂m(τ)− vm(τ)}
d−→ N

{
0,

1

M

M∑
m=1

xmx
T
mσ

2
m

}
,

since v̂m(τ) only involves the data at xm, they are independent across m = 1, . . . ,M .

The proof is complete by substituting the above displayed equation into Equation

(2.25).

2.5.4.2 For the Two-Step method

Proof of Theorem II.3. The proof follows from standard M-estimation framework;

See, e.g., Van der Vaart (2000, Section 5). Here we give a more direct proof. Let

q̃m = xTmβ̂q be the linear quantile regression estimator for qm in (2.8). At each covari-

ate value xm, we define an estimator for the SQ as

ṽm =

∑nm

j=1 Ymj1{Ymj ≥ q̃m}
ŵm

,

wher ŵm =
∑nm

j=1 1{Ymj ≥ q̃m}/nm and nm = n/M .

From the estimating equation (2.8), β̂(TS) is the solution to a weighted least sqau-

res equation, and hence we can express it in close form:

√
n
(
β̂(TS) − β

)
=

(
1

M

M∑
m=1

ŵmxmx
T
m

)−1(√
n

M

M∑
m=1

ŵmxm[ṽm − vm]

)

=

(
1− τ
M

M∑
m=1

xmx
T
m + oP(1)

)−1

(2.26)

·

(√
n(1− τ)
M

M∑
m=1

xm[ṽm − vm] + oP(1)

)
,

(2.27)

the last equality follows since q̃m = qm + oP(1) and therefore ŵm = (1 − τ) + oP(1)
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for each m.

By (2.18) in the proof of Theorem II.4, each ṽm has the following representation

ṽm − vm =
1

1− τ

{
(q̃m − qm)(vm − qm)fm(qm) +

1

nm

nm∑
j=1

[Ymj − vm]1{Ymj ≥ qm}

}

+ oP

(
1
√
nm

)
.

Substituting the above expansion into the second factor of (2.27), we have

√
n(1− τ)
M

M∑
m=1

xm[ṽm − vm] =

[√
n

M

M∑
m=1

xmx
T
m(vm − qm)fm(qm)

]
(β̂q − βq)

+
1√
n

M∑
m=1

xm

nm∑
j=1

[Ymj − vm]1{Ymj ≥ qm}+ oP(1)

= (1− τ)G

[
1√
n
D−1

2

M∑
m=1

xm

nm∑
j=1

(τ − 1{Ymj < qm})

]

+
1√
n

M∑
m=1

xm

nm∑
j=1

[Ymj − vm]1{Ymj ≥ qm}+ oP(1)

d−→ N
{
0, (1− τ)2GΣG+ (1− τ)2V

}
,

where the first equality holds since q̃m − qm = xTm(β̂3 − βq), and the second equation

follows from the classic Bahadur representation of the quantile regression estimator

(see e.g., Chapter 4 of Koenker (2005)), and the weak convergence follows from the

Central Limit Theorem; Refer to the statement of Theorem II.3 for the definition of

G, Σ and V .

Combining the above displayed equation with (2.27), we obtain

√
n
(
β̂(TS) − β

)
d−→ N

{
0,

1

1− τ
D−1

0 (GΣG+ V )D−1
0

}
,

which finishes the proof.
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2.5.4.3 Proof for Equation (2.12)

Proof. Recall that 0 < x1 < . . . < xM and µj =
∑M

m=1 x
j
m/M . The result is a direct

application of the Hölder’s inequality. Note

µ2 =M−1

M∑
m=1

∣∣x4/3m · x2/3m

∣∣ ≤ (M−1

M∑
m=1

|xm|4p/3
)1/p

·

(
M−1

M∑
m=1

|xm|2q/3
)1/q

for any 1/p+ 1/q = 1. Taking p = 3 and q = 3/2 in the above shows that

µ3
2 ≤ µ4 × µ2

1,

therefore

R1 =
µ2

µ2
1

≤ µ4

µ2
2

= R2.

For our setting under Model (2.11), the above inequality is strict because x
4/3
m and

x
2/3
m cannot be proportional to each other across m = 1, . . . ,M .
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CHAPTER III

The m-Rock Approach with General Covariates

In this chapter, we extend the m-Rock approach to the case with general covariate

distributions. While the same principles of Chapter 2 apply, there are several signifi-

cant challenges, both practically and theoretically, for applying the m-Rock approach

with continuous covariates. We study the asymptotic properties of the m-Rock es-

timator based on binning of the covariate space. The main focus of this chapter is

the theoretical investigation of the m-Rock approach, and we demonstrate its benefits

over other common approaches in the literature via asymptotic efficiency comparisons.

Following from the general formula (1.13) in Chapter 1, the key challenge for the

m-Rock approach is to obtain an initial estimator for the unknown conditional SQ

process. When the covariates are discrete, taking the sample SQ at each covariate

value suffices in Chapter 2. With continuous covariates, we start with a general anal-

ysis that can incorporate a broad class of non-parametric initial SQ estimators; Under

appropriate technical conditions, we show that the m-Rock approach is asymptoti-

cally equivalent to a weighted linearization of those initial SQ estimators. Next, we

show that the local-linear estimator in the spirit of Olma (2021) can be used as an

example of the initial estimator, and we characterize the precise asymptotic distri-

bution for the resulting m-Rock estimator. To deal with continuous covariates, the

theoretical analysis in this chapter is much more involved than those in Chapter 2.
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For simplicity, we shall assume that all the covariates have a continuous distribu-

tion in our theoretical analysis. Our discussion in this chapter can be easily extended

to the setting where we have both discrete and continuous covariates.

3.1 The binning method

For theoretical analysis with continuous covariates, we rely on the idea of binning

to partition the continuous sample space into local sub-spaces, which we call bins.

Within each bin, we can obtain an initial estimator for the conditional SQ, based

on which we can implement the m-Rock approach in a way similar to Chapter 2.

Overall, the binning method effectively discretizes the sample space, which facilitates

our theoretical analysis.

In general, binning regression has been a popular practical tool to summarize

the data (Starr and Goldfarb, 2020), and recently Cattaneo et al. (2019) gives a

comprehensive theoretical analysis of its properties. However, the analysis in Cattaneo

et al. (2019) does not apply to our setting because (i) it is restricted to one-dimensional

covariates, and (ii) it does not cover the SQ process convergence. In the following, we

develop new asymptotic theories for the m-Rock approach under the binning method,

where we allow covariates of multiple dimensions.

We formally define the binning procedure as follows. Suppose the data {(Xi, Yi) :

i = 1, . . . , n} is a random sample from the distribution (X, Y ) ∼ Pr, where X ∈ Rp+1

includes p covariates and an intercept term. Let X ⊂ Rp+1 be the sample space of

the covariate, and we partition

X =
M⋃

m=1

Am,

where A1, . . . , AM are non-stochastic, disjoint bins, and the number M = Mn may

depend on the sample size n. For each m = 1, . . . ,M , let x̄m ∈ Rp+1 be the geometric

center of Am, i.e., x̄m =
∫
x1{x ∈ Am} dx; Note x̄m is also non-stochastic. With
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Mn → +∞, the conditional SQ function v(τ, x) can be approximated by the SQ in

each bin. In the following, we shall omit the index n in Mn for simplicity.

The m-Rock approach can be implemented with an initial SQ estimator in each

bin; in the following, we first give a general analysis that does not depend on a specific

choice of initial estimator. Within each bin Am, let v̂(α, x̄m) be a binning estimator

of v(α, x̄m), for a range of α ∈ (0, 1); the estimator should only use the data within

the bin Am. Furthermore, let γ̂m be a suitable weight for each bin Am that only

depends on the covariates; we shall discuss the choice of γ̂m later. Parallel to the

implementation in Chapter 2, the m-Rock estimator can be obtained by:

β̂ = arg min
u∈Rp+1

M∑
m=1

γ̂m

∫ 1

0

ρτ
(
v̂(α, x̄m)− x̄Tmu

)
dα. (3.1)

In terms of computation, we can approximate the integration in (3.1) by a fine grid

of quantile levels over α ∈ (0, 1), then solve the optimization problem via quantile

regression, similar to (2.2) in Chapter 2. We relegate more computational details in

Chapter 4.

There are several options when defining the m-Rock estimator (3.1) that we have

not yet specified. First, we do not focus on a specific estimator v̂(α, x̄m). Our analysis

here works for a class of binning estimators that satisfy certain technical conditions

given in the next section. Second, our analysis do depend on the exact shape or

construction of the bins Am; later we discuss some necessary conditions for the bin

size. Third, we do not specify the choice of γ̂m. Intuitively, the purpose of those

weights is to adjust for the difference in sample sizes across the bins; In practice, γ̂m

may depend on the construction of initial estimators, and we give one example later

in Section 3.4.
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3.2 High-level technical conditions

Since the m-Rock approach builds upon a set of initial SQ estimators, its properties

would depend on that for those SQ estimators. Here we give some technical conditions

on both the data generating process and the initial SQ estimators. We set τ to be

the fixed quantile level of interest. Let fY |X(y;x) be the conditional density function

of Y | X = x, and let q(s, x) and v(s, x) be the conditional quantile and SQ function

of Y | X = x, respectively.

We first give the following regularity conditions regarding the covariate and re-

sponse distributions, which are similar to those in Section 2.1.2 for the case with

discrete covariates.

Condition G-X. The covariates have bounded support X ⊂ Rp+1, and have a density

function fX(x) that is uniformly bounded away from 0 and +∞. Furthermore, the

matrix D1 is positive definite, where

D1 = E

[
XXT

v(τ,X)− q(τ,X)

]
.

Condition G-Y1. At each x, fY |X(y;x) is continuous over y. Furthermore, there exist

constants f , f , and ε0 > 0, such that

0 < f ≤ inf
(x,y):x∈X

|y−q(τ,x)|≤ε0

fY |X(y;x) ≤ sup
(x,y):x∈X

|y−q(τ,x)|≤ε0

fY |X(y;x) ≤ f.

Condition G-Y2. For each x, both q(s, x) and v(s, x) are strictly increasing and con-

tinuous over s ∈ (0, 1). Furthermore, both q(τ, x) and v(τ, x) are Lipschitz continuous

over x ∈ X .

We briefly discuss the conditions above. First, we require the covariates to be

bounded in Condition G-X to simplify the technical derivations; the condition may

be relaxed at the cost of more complicated proofs. Second, Conditions G-Y1 and G-
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Y2 have several further implications on the data generating process; E.g., they imply

the differentiability of v(s, x) with respect to s, and that v(s, x)− q(s, x) is uniformly

bounded over both s and x. We give more details later in Lemma 6 of Section 3.7.1.

Next, we require the following high-level technical conditions for the binning SQ

estimators used in the m-Rock approach.

Condition G-V1. For any m = 1, . . . ,M , the initial SQ estimator v̂(s, x̄m) is left-

continuous and non-decreasing in s ∈ (0, 1). Furthermore, for any constant B > 0

and some sequence rn = o(n−1/4), those estimators satisfy:

1. sup
m=1,...,M

s:|s−τ |≤B·(rn+n−1/2)

|v̂(s, x̄m)− v(s, x̄m)| = OP(rn),

2. sup
m=1,...,M

s:|s−τ |≤B·(rn+n−1/2)

|[v̂(s, x̄m)− v(s, x̄m)]− [v̂(τ, x̄m)− v(τ, x̄m)]| = oP
(
n−1/2

)
.

Condition G-V2. The weighted aggregation of the initial SQ estimators satisfies:

M∑
m=1

[
γ̂mx̄m

v(τ, x̄m)− q(τ, x̄m)
{v̂(τ, x̄m)− v(τ, x̄m)}

]
= OP

(
n−1/2

)
.

Condition G-V2 requires that the τth initial SQ estimators can be aggregated over

the bins, and that the resulting statistic enjoys a
√
n-rate of convergence. Condition

G-V1 is more technical, and is about the uniform consistency and asymptotic equi-

continuity of the estimated SQ process. Similar conditions are commonly used in

the empirical process literature to ensure process convergence (Van Der Vaart and

Wellner , 1996, Section 3.3). Common to those assumptions is that they only concern

v̂(s, x) when s is in a local neighbourhood of τ . In fact, our analysis for the m-Rock

approach does not depend on the properties of v̂(s, x̄m) in the tails when s is close

to 0 or 1, as long as v̂(s, x) is monotonic in s. In particular, v̂(s, x̄m) does not need

to converge uniformly over s ∈ (0, 1). Later in Section 3.4, we show those conditions

can be satisfied with a practical estimator.

59



Outside of the technical parts in Conditions G-V1 and G-V2, the other relatively

restrictive assumption is the monotonicity of v̂(s, x̄m) over s ∈ (0, 1). For many typical

estimators, v̂(s, x̄m) may not be smooth and monotonic in their usual finite-sample

constructions. Here we show how monotonicity can be reached in practice. In the

quantile regression literature, there are various approaches to enforce monotonicity

in the estimation of monotone functions, see, e.g., He (1997); Chernozhukov et al.

(2010); Dette and Volgushev (2008). In particular, we can use the re-arrangement

approach in Chernozhukov et al. (2010) to monotonize a given initial SQ estimator

without jeopardizing our theoretical analysis. Therefore, monotonicity of v̂(s, x̄m) can

be safely assumed, and we do not explicitly discuss this condition in our subsequent

analysis.

Remark 3. In fact, we believe our main result does not rely on the monotonicity

of v̂(s, x̄m); this assumption is more of a proof artifact to simplify the technical

derivations. Some further discussions on what can be done without monotonicity are

relegated to Section 3.7.6.1. In the following of our thesis, we keep the monotonicity

requirement to make the presentation concise.

Remark 4. Since Conditions G-V1 and G-V2 only concern the behaviour of v̂(s, x̄m)

when s is near τ , there are two possible simplifications in the m-Rock estimation

procedure. First, we can use Winsorization (Wilcox , 2005) to construct the initial

estimator {v̂(s, x) : s ∈ (0, 1)}. Specifically, we calculate v̂(s, x) only for s near τ ,

and then extrapolate with a constant into the upper and/or lower tails. Second,

parallel to Corollary 1 of Chapter 1, we can use a truncated range of integration in

the m-Rock loss function (3.1). These simplifications eliminate the need for initial SQ

estimation at extreme tails. We give more discussions on the practical implementation

in Chapter 4.
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3.3 Main result

Here we present the main theoretical result of this chapter, which characterizes

how β̂ links to the initial SQ estimators. Recall from (3.1) that γ̂m is a weight

for each bin in the m-Rock approach, and that the number of bins M may depend

on the sample size. Let diam(·) be the diameter of a set in Rp+1, and let π̂m =

n−1
∑n

i=1 1[Xi ∈ Am] be the proportion of data that fall into the bin Am.

Theorem III.1. Suppose Conditions G-X, G-Y1 and G-Y2 hold. In addition, let the

binning mechanism satisfy

sup
m=1,...,M

diam(Am) = o(1), sup
m=1,...,M

∣∣∣∣ γ̂mπ̂m − 1

∣∣∣∣ = oP(1).

Given any initial SQ estimator that satisfies Conditions G-V1 and G-V2, the m-Rock

estimator in (3.1) would satisfy:

(
β̂ − β

)
= D−1

1

M∑
m=1

[
γ̂mx̄m

v(τ, x̄m)− q(τ, x̄m)
{v̂(τ, x̄m)− v(τ, x̄m)}

]
+ oP(n

−1/2),

where D1 is given in Condition G-X. In particular, β̂ is
√
n-consistent for β.

Theoretically, Theorem III.1 shows that β̂ is asymptotically equivalent to a weighted

linearization of v̂(τ, x̄m) over each bin: it turns a set of non-parametric initial esti-

mators to a parametric estimator using the m-Rock loss function (3.1). To better

understand our asymptotic result, consider the following alternative way of lineariza-

tion:

β̃ = min
u∈Rp+1

M∑
m=1

γ̂mwm

(
v̂(τ, x̄m)− x̄Tmu

)2
, (3.2)

where wm is a set of known weights. Simply put, (3.2) is a weighted least-squares
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(WLS) of the initial τth SQ estimator on the covariates, and β̃ satisfies

√
n
(
β̃ − β

)
=

(
M∑

m=1

γ̂mwmx̄mx̄
T
m

)−1 M∑
m=1

[γ̂mwmx̄m{v̂(τ, x̄m)− v(τ, x̄m)}] .

Theorem III.1 shows that the m-Rock estimator is asymptotically equivalent to (3.2)

with wm = [v(τ, x̄m)− q(τ, x̄m)]−1.

Remark 5. It is important that the m-Rock approach is only effective with non-linear

initial estimators. To see this, consider the case when the initial SQ estimators are

linear-in-covariates, i.e., v̂(τ, x̄m) = x̄Tmξ̂ for some ξ̂. Noting that v(τ, x̄m) = x̄Tmβ, it

then follows from Theorem III.1 that:

β̂ − β = D−1
1

[
M∑

m=1

γ̂m
v(τ, x̄m)− q(τ, x̄m)

x̄mx̄
T
m

]
(ξ̂ − β) + oP

(
n−1/2

)
= ξ̂ − β + oP

(
n−1/2

)
,

since the summation in the bracket converges towards D1. Asymptotically, the m-

Rock approach would make no change to the initial linear SQ estimator ξ̂.

3.3.1 Benefits of m-Rock: semi-efficient weight

A simpler way to linearize the initial SQ estimators is to use (3.2) with wm ≡ 1; this

is the Linearization method of Chapter 2 when the covariates are discrete. Specifically,

the Linearization method only involves the τth SQ, while the m-Rock approach relies

on the initial SQ estimator v̂(s, x̄m) for a range of s. In the following, we explain how

the m-Rock approach uses the initial SQ process to achieve better efficiency over the

Linearization method.

For the sake of theoretical illustration, it suffices to compare two different weights

in (3.2): using wm = [v(τ, x̄m) − q(τ, x̄m)]
−1 corresponds to the m-Rock approach,

and wm ≡ 1 for the Linearization method. Among the class of estimators (3.2),
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the optimal weight should reflect the heterogeneity of the initial estimators, i.e.,

w∗
m ∝ var−1[v̂(τ, x̄m)]; See, e.g., (Wooldridge, 2010, Section 7). Even though the

effective weights for the m-Rock approach are not optimal in general, we show that

they tend to be closely related to the optimal weights w∗
m.

For general non-parametric SQ estimation, Olma (2021) shows that many SQ

estimators has asymptotic variance in the form of:

anvar[v̂(τ, x̄m) | X = x̄m] =ρ1var[Y | X = x̄m, Y ≥ q(τ, x̄m)]

+ ρ2[v(τ, x̄m)− q(τ, x̄m)]2 + oP(1),

(3.3)

where an is the scaling factor, and ρ1, ρ2 are two constants depending on the construc-

tion of v̂(τ, x). Therefore, the m-Rock weight wm = [v(τ, x̄m) − q(τ, x̄m)]−1 captures

part of the variance in (3.3), and hence can be similar to the optimal weight w∗
m. In

fact, we shall demonstrate in Section 3.5 that the two additive components in (3.3) are

often proportional to each other across xm; In those situations, the m-Rock weights

satisfy wm ∝ (w∗
m)

1/2, and hence are partially adaptive to heterogeneity. Therefore,

the m-Rock approach can often be more efficient than the simple Linearization ap-

proach, since the latter ignores any heterogeneity in the data. We relegate more

detailed asymptotic efficiency comparisons to Section 3.5.

3.3.2 Benefits of m-Rock: automatic weighting

Motivated from the m-Rock weights, one may also consider a direct weighted

Linearization in (3.2) using wm = [v(τ, x̄m) − q(τ, x̄m)]−1. However, the weights wm

are unknown and therefore the WLS approach is infeasible. Using some estimated

weights ŵm for (3.2), the resulting feasible WLS estimator may be unstable if the

weights are not estimated well; See, e.g., Section 3.4.1 of Angrist and Pischke (2010).

We also provide numerical evidence in Section 4.2.2 of Chapter 4. On the contrary, the

m-Rock approach does not require estimating any weight, yet its asymptotic property
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is the same as if the weight was known. The theoretical weighting is implicit and

achieved automatically, which is another important feature of our method.

Central to the understanding of our approach is how those weights come into play.

Recall from (3.1) that we require v̂(s, x̄m) for a range of s in the m-Rock approach.

The key is that we borrow information from nearby quantile levels. The m-Rock

weights can be written as:

w−1
m ∝

v(τ, x̄m)− q(τ, x̄m)
1− τ

=
∂v(s, x̄m)

∂s

∣∣∣∣∣
s=τ

, m = 1, . . . ,M.

Heuristically, by invoking the initial SQ estimators at levels near τ , the m-Rock

approach can implicitly approximate the derivative of v̂(s, x̄m), which leads to the

automatic weighting in the m-Rock approach.

3.4 An example of initial estimator

In this section, we provide one concrete example of constructing the initial SQ

estimator, and we show that it satisfies the technical conditions of Theorem III.1.

Using this initial estimator, we can characterize the asymptotic normality of the

resulting m-Rock estimator.

3.4.1 Neyman-orthogonalized local-linear estimation

Our construction is a bin-wise linear SQ estimator that uses a Neyman-orthogonalized

score function. Operationally, we fit a linear SQ regression using the data within each

bin, and those estimator can be viewed as an example of local-linear estimation (Fan,

1992; Fan and Gijbels , 2018) with rectangular kernels. For the SQ regression in each

bin, we use the Neyman-orthogonalized least-squares regression as in Barendse (2020)

and Olma (2021).

We fix some notations first. In this section, we separate the intercept term from
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the covariates and write X = (1, X̃T )T and x̄m = (1, x̃Tm)
T . Let q̂(s, x) be an estimator

for the conditional quantile function of Y | X = x, and we define

Zi(s, θ) =
(Yi − θ)1[Yi ≥ θ]

1− s
+ θ. (3.4)

For notational simplicity, in the following we shall write Zi(s) = Zi(s, q(s,Xi)) and

Ẑi(s) = Zi(s, q̂(s,Xi)). For each bin Am, we define

Xm =

1n,

(X̃1 − x̃m)T
...

(X̃n − x̃m)T

 ∈ Rn×(p+1), Wm = diag{w1m, . . . , wnm} ∈ Rn×n,

where wim = 1[Xi ∈ Am] and the first column of Xm is a vector of ones. We further

define the following partition:

n−1
[
XT

mWmXm

]
=

 S0m ST
1m

S1m S2m

 , (3.5)

where S0m = n−1
∑n

i=1 1{Xi ∈ Am} = π̂m, and S2m is a p-by-p sample Gram matrix

for the covariates without the intercept.

Now we give the explicit construction of our initial SQ estimator. For each x̄m

and each quantile level s ∈ (0, 1), we fit the following bin-wise linear regression:

min
c0∈R
c1∈Rp

n∑
i=1

Xi∈Am

[
Ẑi(s)− c0 − cT1 (X̃i − x̃m)

]2
,

and we use the estimated intercept term ĉ0 as the initial SQ estimator at x̄m. The
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solution can be given in closed form as:1:

v̂(s, x̄m) = eT1
[
XT

mWmXm

]−1


∑n

i=1wimẐi(s)

∑n
i=1(X̃i − x̃m)wimẐi(s)

 , (3.6)

where e1 = (1, 0, . . . , 0) is a unit vector in Rp+1.

Our binning SQ estimator is similar to the the non-parametric estimator in Olma

(2021), with a key difference being that we do not require a specific form of q̂(s, x).

Given a quantile level s ∈ (0, 1), we create an auxiliary variable Zi(s), which is

approximated by Ẑi(s) using estimated quantile functions. Then we obtain the initial

SQ estimator by fitting an OLS using Ẑi(s) as the response variable. The validity

of the approach can be seen from standard local-linear regression theory (Fan and

Gijbels , 2018) since E[Zi(s) | Xi = x] = v(s, x).

The motivation to consider our construction is to better control the bias in v̂(s, x)

in two ways. First, we use local-linear estimation to alleviate the binning bias since

v(τ, x) is linear-in-covariates; See, e.g., (Fan and Gijbels , 2018) for discussions in

general non-parametric regression settings. Second, recall in (3.6) that we use Ẑi(s)

as a proxy for Zi(s), which leads to another source of bias since E[Ẑi(s) | X = x] ̸=

v(s, x). In our construction (3.6), we use Neyman-orthogonalization to alleviate the

bias attributable to quantile estimation. We relegate more discussions to Section

3.7.6.2.

Remark 6. The initial SQ estimator we provide here is only one possible example

that fits into Theorem III.1. While the estimators need to satisfy Conditions G-V1

and G-V2, we believe there are many other possibilities and we do not claim that

our construction is optimal. The focus here is to demonstrate that the technical

conditions of Theorem III.1 can be satisfied under general conditions.

1If a square matrix A is not invertible, A−1 is defined as the Moore–Penrose pseudo-inverse.
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3.4.2 Theoretical properties

Here we investigate the properties of our initial estimator constructed in (3.6).

To this end, we need to have a few more detailed technical conditions, as well as to

strengthen Condition G-Y1 in Section 3.2. To fix notations, recall fY |X(y;x) is the

conditional density of Y given X = x. For each bin Am, let

h̄m = sup
x∈Am

∥x− x̄m∥2, hm = inf
x/∈Am

∥x− x̄m∥2,

where h̄m is the radius of the bin, and hm is the separation between bins. We further

define h̄ = maxm{h̄m} and h = minm{hm}; both of these quantities depend on the

sample size n. For a matrix G, let ∥G∥2 be its operator norm.

Condition G-Y1’. All requirements in Condition G-Y1 hold; in addition, we have:

1. For some constant L1 > 0,

sup
x∈X
|fY |X(y1;x)− fY |X(y2;x)| ≤ L1|y1 − y2|.

2. For some δ0 > 0,

sup
x∈X

E
[
(Y +)2+δ0

∣∣∣X = x
]
< +∞,

where Y + = max{Y, 0} is the positive part of Y .

Condition G-A1. There exists a constant ε1 > 0, such that

h̄→ 0,
nmin{1/2, 1−2/(2+δ0)−ε1}hp

log n
→∞,

where δ0 is in Condition G-Y1’. Furthermore, for some constants 0 < mh < Mh <

+∞,

mh ≤ lim inf
n→∞

(h̄−1h) ≤ lim sup
n→∞

(h̄−1h) ≤Mh.
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Condition G-A2. At least one of the following takes hold:

1. The covariate-dimension p < 4 and h̄4−p = o(log−1 n); furthermore, v(s, x) is

twice continuously differentiable with respect to x, and for some ε1 > 0 and

L2 > 0,

sup
x∈X

∥∥∥∥∂2v(s, x)∂x∂xT
− ∂2v(τ, x)

∂x∂xT

∥∥∥∥
2

≤ L2|s− τ |,

for all |s− τ | ≤ ε1.

2. For all sufficiently large n, there exists β
(m)
n (s) such that

vn(s, x) = xTβ(m)
n (s), |s− τ | ≤ ε2n

−1/4 ; x ∈ Am,

for each m = 1, . . . ,M , where ε2 > 0 is a universal constant.

We comment on these conditions. First, Condition G-Y1’ implies that v(s, x) is

finite for each s and x, and that

sup
x∈X

var[Y | X = x, Y ≥ q(τ, x)] < +∞.

Second, Condition G-A1 ensures each bin is of appropriate size, which is in line to the

general bandwidth conditions for kernel SQ estimation (Olma, 2021); it also implies

that the number of bins M = Mn is upper bounded by
√
n. Moreover, Condition

G-A1 ensures that h̄m and hm are at the same order, which holds if e.g., all the bins

are hyperspheres or hypercubes. Third, Condition G-A2 is more technical; it requires

either a low-dimensional model with smooth SQ functions over x ∈ X , or a piece-wise

linear SQ regression model. Note the bandwidth condition in item 1 of Condition G-

A2 is compatible with Condition G-A1 since p < 4. The motivation behind Condition

G-A2 is to control the non-parametric binning bias in the initial SQ estimator v̂(s, x).

In addition to these conditions, we also require the following technical conditions

on q̂(s, x) used in our initial SQ estimator (3.6). Condition G-Q is relatively weak, and
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therefore we can use a wide range of conditional quantile estimators. In particular,

q̂(s, x) does not necessarily have to be based (i) a parametric quantile regression

model, or (ii) the same binning mechanism as v̂(s, x).

Condition G-Q. For some sequence g1n and g2n with n1/4g1n → 0 and n1/2g2n → 0,

the conditional quantile estimator q̂(s, x) satisfies:

1. sup
x∈X

s:|s−τ |≤n−1/4

|q̂(s, x)− q(s, x)| = OP(g1n).

2. For each j = 0, 1,

sup
m=1,...,M

s:|s−τ |≤n−1/4

∥∥∥∥∥∥∥∥∥∥∥∥∥

n∑
i=1

Xi∈Am

[
X̃i − x̃m

h̄m

]j
[q̂(s,Xi)− q(s,Xi)][s− 1{Yi ≤ q(s,Xi)}]

n∑
i=1

1{Xi ∈ Am}

∣∣∣∣∣∣∣∣∣∣∣∣∣
= OP(g2n).

Under these new conditions, now we are ready to give the main result of this

section, which is tailored for our specific implementation as follows. We consider the

m-Rock estimator β̂ in (3.1), where we use the initial estimator v̂(s, x) given in (3.6),

and use the associated weights

γ̂m = (S0m − ST
1mS

−1
2mS1m), (3.7)

where the quantities Sjm are defined in (3.5).

Theorem III.2. Suppose Conditions G-X, G-Y1’ and G-Y2 hold under Model (1.4);

Furthermore, suppose the binning mechanism satisfies Condition G-A1 and G-A2, and

that q̂(s, x) satisfies Condition G-Q. Then the conclusion of Theorem III.1 takes hold

under our implementation; In particular, the resulting m-Rock estimator satisfies:

√
n
(
β̂ − β

)
d−→ N(0, D−1

1 Ω1D
−1
1 ),
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where

Ω1 = E

[
σ2
τ (X)

[v(τ,X)− q(τ,X)]2
XXT

]
,

and (1− τ)σ2
τ (x) = var(Y | X = x, Y ≥ q(τ, x)) + τ [v(τ, x)− q(τ, x)]2.

Theorem III.2 shows that our Neyman-orthogonalized local-linear estimator (3.6)

satisfies Conditions G-V1 and G-V2 required by Theorem III.1, and therefore can

be used as an initial estimator for the m-Rock approach. Furthermore, the resulting

asymptotic variance-covariance matrix in Theorem III.2 is the same as that in Theo-

rem II.1 for discrete covariates. In general, however, the asymptotic distribution may

depend on the construction of initial SQ estimators.

Note the m-Rock approach based on Theorem III.2 does not require a parametric

quantile regression model, hence is more flexible than many other approaches in

the literature (Dimitriadis and Bayer , 2019; Barendse, 2020; Patton et al., 2019).

Moreover, the first-order asymptotic property of q̂(s, x) does not affect the asymptotic

variance of β̂, thanks to the Neyman-orthogonality in our initial estimator in (3.6).

Asymptotically, there is no additional benefit for the m-Rock approach even if a linear

quantile regression model is correct.

Compared to the case with discrete covariates, the main technical challenges be-

hind Theorem III.2 can be summarized as follows. First, the number of binsM =Mn

increases with the sample size. Therefore the uniform convergence rate of the initial

estimators over the bins needs to be carefully investigated. Second, we need to es-

tablish the process convergence of v̂(s, x̄m) for a continuum of s. Standard empirical

process tools do not directly apply to the binned data. Moreover, we also need to

explicitly analyze the bias in v̂(s, x̄m) attributable to binning and quantile estimation.

In our proof of Theorem III.2, we develop new asymptotic results for the estimated

superquantile process.
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3.5 Theoretical comparison of SQ regression approaches

In this section, we give a selective comparison between several SQ regression meth-

ods, where we compute the asymptotic relative efficiency under different scenarios.

For two estimators β̂1 and β̂2, the asymptotic relative efficiency (ARE) of β̂1 relative

to β̂2 is defined as

ARE =
∥var(β̂2)∥
∥var(β̂1)∥

,

where ∥·∥ is certain matrix norm given in the comparison later; a larger ARE indi-

cates that β̂1 is more efficient. Note the discussions in this section are not based on

numerical simulations, but on the asymptotic analysis in Section 3.4; our discussions

are more general and more extensive than those in Chapter 2.

All of our comparisons operate under the following joint linear model for quantile

and SQ regression:

q(τ, x) = xTη0(τ), v(τ, x) = xTβ0(τ), (3.8)

where only β0(τ) is the parameter of interest and the index τ is often omitted. From

the modeling perspective, the m-Rock approach does not rely on the linear quantile

regression model. However, most other competing approaches require such a joint

model. Hence we consider the stronger model (3.8) in this section for the sake of

theoretical comparison.

3.5.1 Competing approaches

We consider three other approaches for estimating the superquantile regression.

These approaches are by no means exhaustive, but we find them to be the most similar

to our proposed approach in terms of underlying assumptions and applicability.

The first approach is the ‘oracle’ approach given in Remark 2.9 of Dimitriadis

and Bayer (2019), where we assume the true conditional quantile function is known.
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Note that this approach is infeasible in practice, and we include this approach only

as a benchmark. Given the true conditional τth quantile function of Y given X = x

as q(τ, x), the approach solves

β̂ ← min
n∑

i=1

(
[yi − xTi β]21[yi ≥ q(τ, x)]

)
.

This approach estimates the SQ regression as a truncated conditional mean.

Second, we consider the Neyman-orthogonalized truncated Least-Squares (No-LS)

in Barendse (2020). They consider the following two-step estimation procedure where

we fit a quantile regression followed least-squares:

η̂ ← min
η

n∑
i=1

ρτ (yi − xTi η),

β̂ ← min
β

n∑
i=1

[
Zi(x

T
i η̂)− xTi β

]2
,

where Zi is defined in (3.4). The validity of the second stage least-squares can be seen

from E[Zi(x
T
i η0) | X = xi] = xTi β0. Therefore we achieve estimation of superquantile

regression via least-squares.

The third approach is the joint quantile and expected-shortfall approach (Dimi-

triadis and Bayer , 2019; Patton et al., 2019). Given a non-decreasing function G1(·)

and a concave increasing function G2(·), the approach minimizes a joint loss function

2

(η̂, β̂)← min
η,β

n∑
i=1

ℓi(η, β;G1, G2),

2We reverse the direction of the loss function from lower tail to upper tail to match with our
context
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where

ℓi(η, β;G1, G2) = ρτ
(
G1(yi)−G1(x

T
i η)
)
+G′

2(x
T
i β)

[
Zi(x

T
i η)− xTi β

]
+G2(x

T
i β),

(3.9)

and Zi is defined in (3.4). See Fissler and Ziegel (2016) and Dimitriadis and Bayer

(2019) for more discussion on the bivariate loss function.

The joint approach depends on the so-called ‘specification functions’ G1 and G2,

both numerically and theoretically. Dimitriadis and Bayer (2019) demonstrated that

the choice of G2 is central to the estimation efficiency of β̂. However, there is no

universal recommendation of which G2 would be the most beneficial. To make a solid

argument, we focus on the following two options advocated by Dimitriadis and Bayer

(2019) and Patton et al. (2019):

G2(u) = log(u), and G2(u) =
√
u.

We shall name the two versions of the Joint approaches Joint-1 (J1) and Joint-2 (J2),

respectively.

Here we compute the asymptotic variance-covariance matrices for the competing

approaches under Model (3.8). Let

m1(x) = var(Y | Y ≥ q(τ, x), X = x), m2(x) = [v(τ, x)− q(τ, x)].

We write A ≺ B if the matrix B−A is positive definite, and A ⪯ (B∧C) means both

B − A and C − A are positive semi-definite. Next we collect some results from the

literature. From Remark 2.9 in Dimitriadis and Bayer (2019), the Oracle approach

has an asymptotic variance-covariance matrix:

VORCL =
1

1− τ
E[XXT ]−1E

[
XXTm1(X)

]
E[XXT ]−1.
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The result for NO-LS approach is given by Theorem 1 of Barendse (2020):

VNOLS =
1

1− τ
E[XXT ]−1E

[
XXT{m1(X) + τm2

2(X)}
]
E[XXT ]−1.

From Theorem 2.4 of Dimitriadis and Bayer (2019), we have for the Joint approach

VJ1 =
1

1− τ
E

[
XXT

v2(τ,X)

]−1

E

[
XXT

{
m1(X) + τm2

2(X)

v4(τ,X)

}]
E

[
XXT

v2(τ,X)

]−1

,

VJ2 =
1

1− τ
E

[
XXT

v3/2(τ,X)

]−1

E

[
XXT

{
m1(X) + τm2

2(X)

v3(τ,X)

}]
E

[
XXT

v3/2(τ,X)

]−1

,

for G2(u) = log u and G2(u) =
√
u, respectively. Finally, recalling from Theorem

III.2 that the m-Rock approach has an asymptotic variance-covariance matrix:

VROCK =
1

1− τ
E

[
XXT

m2(X)

]−1

E

[
XXT

{
m1(X)

m2
2(X)

+ τ

}]
E

[
XXT

m2(X)

]−1

.

The matrices VNOLS, VJ1, VJ2, and VROCK all involve the weighted expectations of

m1(X) + τm2
2(X). The key difference between these approaches lies in the weighting

scheme. For VNOLS, VJ1, VJ2 and VROCK the weights are proportional to 1, [v(τ, x)]−2,

[v(τ, x)]−3/2, and [m2(x)]
−1 respectively. We shall examine their effect in the following

examples.

3.5.2 Efficiency comparison I: homoscedastic models

First, we consider the following homoscedastic linear model with covariateX ∈ Rp:

Y = γ0 + γT1 X + ε,

where ε is independent of X and has a density function f0(·). For a fixed τ , let

q0(τ) and v0(τ) be the τth quantile and superquantile of ε, and we further define

V0(τ) = var[ε | ε > q0(τ)]; in the following we shall omit the index τ in these

74



quantities. The τth quantile and superquantile regression are:

q(τ, x) = (γ0 + q0) + xTγ1, v(τ, x) = (γ0 + v0) + xTγ1.

In addition, we have

m1(x) = V0, m2(x) = v0 − q0,

and neither of which depend on x.

With simple algebra, we can show that

VORCL ≺ VNOLS = VROCK ⪯ (VJ1 ∧ VJ2),

where the equality takes hold if and only if xTγ1 is constant almost surely. We see

both the NO-LS and the m-Rock approach are more efficient than the two Joint

approaches. Specifically, the Joint-1 and Joint-2 approaches loses efficiency by incor-

porating non-constant weighting in homoscedastic models. On the other hand, the

m-Rock approach remains efficient as the weight m2(x) is constant in homoscedastic

models.

To better visualize the difference in asymptotic efficiency, we numerically compute

the asymptotic variance-covariance matrix for each method below. For concreteness,

we focus on τ = 0.9 and consider the following setting: let p = 3 and X be uni-

formly distributed on the cube [0, 3]3; furthermore, let ε follow the standard normal

distribution. We fix γ0 = 1 and we randomly sample 200 values of γ1 from the cube

[0, 5]3. Figure 3.1 summarizes the results under the sampled γ1 values; it shows the

determinant and Frobenius norm of the asymptotic variance-covariance matrix for

the Joint-1 and Joint-2 approaches, relative to the m-Rock (or NO-LS) approach.

We see the Joint approaches are always less efficient than the m-Rock (or NOLS)

approach. Remarkably, the asymptotic variance for the J1 approach can be 2 − 3
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Figure 3.1: The violin plot of ARE relative to the m-Rock approach in the ho-
moscedastic model; the plot is under 200 random values of γ1. The left panel com-
pares the efficiency by the Frobenius norm of the variance-covariance matrix Σ; the
right panel compares by the normalized determinant |Σ|1/p.

76



times as large as the m-Rock approach under a simple linear model. Heuristically,

the Joint approaches perform worse under larger values of ∥γ1∥.

3.5.3 Efficiency comparison II: heteroscedastic models

Next we consider the heteroscedastic model

Y = (γT1 X) + (γT2 X)ε.

where X = (1, X1, . . . , Xp) contains an intercept term and ε is independent of X. Let

the covariates (excluding the intercept) be uniformly distributed on the unit cube

[0, 1]p. We shall write γT1 = (γ10, γ
T
11) where γ11 ∈ Rp; similar notation applies to γ2.

Let q0, v0 and V0 be the same quantity as in the last subsection. For identifiability,

we consider the case with v0 = 0 and V0 = 1, and that the true parameters satisfy

γT1 X > 0 and γT2 X > 0 almost surely. This linear location-scale shift model satisfies

the joint model (3.8), with

q(τ, x) = γT1 x+ q0(γ
T
2 x), v(τ, x) = γT1 x+ v0(γ

T
2 x) = γT1 x.

Under this more complicated model, it is difficult to give an analytical comparison

between the asymptotic variance-covariance matrices. Instead, we shall calculate

the asymptotic relative efficiency (ARE) under different values of model parameters,

similar to how we obtain Figure 3.1. We focus on τ = 0.9 and suppose ε follows a

(scaled) normal distribution with v0 = 0 and V0 = 1. In the following, we give the

comparisons under three different model specifications.

First, we examine the ARE relative to the NO-LS approach when p = 3; we fix

γ10 = γ20 = 3 and sample 200 different values of γ11 and γ21 independently and uni-

formly in [−1, 3]3. Figure 3.2 summarizes the ARE under the 200 sampled parameter

values. The m-Rock approach is consistently more efficient than the NO-LS approach
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because the weight m2(x) is always proportional to the direction of heteroscedasticity

under the location-scale model. On the other hand, the performance of the Joint

approach varies heavily with γ1 and γ2. Depending on the model coefficients, both

J1 and J2 can be up to 20% more or less efficient than the NO-LS approach.

Next, we further examine the ARE of the Joint approaches relative to the m-

Rock approach. To this end, we set p = 1 to simplify the setting, and let ∥γ1∥2 =

∥γ2∥2 = 1; note γ1 and γ2 are 2-dimensional vectors with an intercept term. For a

two-dimensional vector γ, we define θ(γ) to be its angular coordinate. Figure 3.3

shows the ARE when the angular coordinate of γ1 and γ2 varies between −π/4 and

π/2 on the Polar system. We can see that the contour is roughly characterized by

the angular difference θ(γ1) − θ(γ2). Only when γ1 is approximately parallel to γ2,

the Joint approaches can be more efficient than the m-Rock approach. In general,

however, either J1 or J2 can be up to 30% less efficient than the m-Rock approach.

There is a clear intuition behind the comparison. Note the Joint approaches

has a weight proportional to v(τ, x) = xTγ1 in the sandwich variance-covariance

matrix, yet the m-Rock approach involves the weight of m2(x) = v(τ, x) − q(τ, x) =

(v0 − q0)(x
Tγ2). Under the linear location-scale model, it is γ2 that governs the

degree of heteroscedasticity and hence should be used as weights. Therefore, the

Joint approach is only competitive when γ1 is similar to γ2, i.e., the location shift is

in the same direction as the scale shift.

Finally, we point out that even the Oracle approach may not be the most efficient.

To this end, we consider the following example with p = 1; we set γ1 = (1, 4),

γ2 = (0.5, γ21) and we vary γ21. Figure 3.4 shows the ARE relative to the Oracle

approach when γ21 grows. Both J1 and m-Rock can be more efficient than the Oracle,

and when γ21 > 12, i.e., with strong heteroscedasticity, the m-Rock approach is

the most efficient. While the Oracle approach uses the true conditional quantile, it

does not apply any weight to the data. With strong heteroscedasticity, the implicit
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and γ2 in the Polar coordinate system, respectively. The ARE is measured by the
Frobenius norm of the asymptotic variance-covariance matrix.

weighting in the m-Rock approach can lead to better efficiency.

To conclude the asymptotic efficiency comparisons, we find that none of the ap-

proaches can be universally the most efficient. Though not optimal, the implicit

weighting of the m-Rock approach is more adaptive to data heterogeneity. Hence it

can often be beneficial for statistical efficiency.

3.6 Discussion

In this chapter, we study the theoretical properties of the m-Rock approach with

general covariate distributions. Our analysis specializes to binning of the covari-

ate space with certain initial SQ estimates. We show that the m-Rock approach is

asymptotically equivalent to a weighted linearization of those initial SQ estimator.

Via theoretical efficiency comparisons, we demonstrate that those weights are often

adaptive to the heterogeneity in data; Hence, the m-Rock approach achieves desir-

able, if not superior, statistical efficiency compared to other common approaches in

the literature.
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As one concrete example, we show that a Neyman-orthogonalized local-linear SQ

estimator can be used for the m-Rock approach. The resulting m-Rock estimator is

asymptotically normal under relatively weak conditions, and the asymptotic variance

does not depend on the choice of conditional quantile estimators.

The m-Rock approach is significantly different from other existing approaches

for SQ regression. Operationally, it uses a set of non-parametric SQ estimators for

a more efficient estimation of the linear SQ regression model. From the modeling

perspective, the m-Rock approach is one of the most flexible approaches since it

does not explicitly require a joint quantile and SQ regression model (Dimitriadis and

Bayer , 2019; Barendse, 2020), nor does it require a parametric model for the SQ

process (Peracchi and Tanase, 2008; Leorato et al., 2012).

There are several limitations to our theoretical analysis of the m-Rock approach.

First, we rely on binning of the covariate space, where the bins have to be disjoint

and cannot depend on the data. Second, our analysis builds on a set of local non-

parametric SQ estimators, hence our theoretical results may not generalize to settings

with high dimensions.

3.7 Technical details

3.7.1 Some technical lemmas

Here we collect some technical lemmas that are useful for our proofs later. These

lemmas do not depend on the specific construction of an initial SQ estimator, and

hence are applicable for te results in both Sections 3.3 and 3.4. The proof of these

lemmas can be found in Sections 3.7.5.1 and 3.7.5.2.

We fix some notations here. Recall A1, . . . , AM are the bins. For each bin, x̄m

is its geometric center, and γ̂m is a weight (that only depends on the covariates) in

the m-Rock estimation procedure (3.1). Let v̂(s, x) and q̂(s, x) be the initial binning
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SQ and quantile estimators, respectively. The lemmas below do not depend on any

particular choice of γ̂m, v̂ or q̂. The total number of bins M is allowed to increase

with the sample size. For the binning mechanism, let wim = 1{Xi ∈ Am}, and let

π̂m = n−1

n∑
i=1

wim,

be the proportion of data that falls into bin Am. For each bin, we write diam(Am) =

h̄m = supx∈Am
∥x − x̄m∥ and hm = infx/∈Am∥x − x̄m∥. We further define the inverse

SQ function as3:

h(z, x) :=

∫ 1

0

1{v(s, x) ≤ z} ds = sup{s ∈ [0, 1] : v(s, x) ≤ z},

ĥ(z, x) :=

∫ 1

0

1{v̂(s, x) ≤ z} ds = sup{s ∈ [0, 1] : v̂(s, x) ≤ z}.
(3.10)

In the Operations Research literature, these functions are called the ‘superdistribu-

tion’ functions, in duality to the superquantile functions (Rockafellar and Royset ,

2013; Rockafellar and Uryasev , 2013).

We also use the following set of notations. For a vector v, let ∥v∥ be its ℓ2 norm;

for a matrix A, let ∥A∥ be its operator norm. For two deterministic sequences an and

bn, we write an ≪ bn if an = o(bn) and an ≲ bn if there exists a universal constant

C∗ > 0 such that an ≤ C∗bn; we define an ≍ bn if both an = O(bn) and bn = O(an)

hold. For stochastic sequences An and Bn, we use the notations An ≪P Bn and

An ≲P Bn to denote An = oP(Bn) and An = OP(Bn), respectively.

Lemma 5. Suppose the bins Am and the associated weights γ̂m satisfy:

sup
m=1,...,M

diam(Am)
P ∗
−→ 0, sup

m=1,...,M

∣∣∣∣ γ̂mπ̂m − 1

∣∣∣∣ P ∗
−→ 0.

Let g(·) : X 7→ Rm be a bounded and Lipschitz continuous function over X , then we

3Without loss of generality, we assume v̂(s, x) and v(s, x) are (weakly) increasing in s.
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have
M∑

m=1

γ̂mg(x̄m)
P ∗
−→ E[g(X)].

In addition, if h(·) : X 7→ R is a function such that E[|h(X)|] <∞, then we have

E

[
M∑

m=1

1{X∈Am}g(x̄m)h(X)

]
→ E[h(X)g(X)],

as n→∞.

Lemma 6. Under Conditions G-X, G-Y1 and G-Y2, there is a constant c1 > 0 such

that the following results hold:

1. For some constants 0 < m1 < m1 < +∞, we have

m1 ≤ inf
x∈X

s:|s−τ |≤c1

|v(s, x)− q(s, x)| ≤ sup
x∈X

s:|s−τ |≤c1

|v(s, x)− q(s, x)| ≤ m1.

2. Both q(s, x) and v(s, x) are differentiable with respect to s when |s − τ | ≤ c1,

and there exist constants 0 < m2 < m2 < +∞ such that

m2 ≤ inf
x∈X

s:|s−τ |≤c1

∣∣∣∣∂q∂s(s, x)
∣∣∣∣ ≤ sup

x∈X
s:|s−τ |≤c1

∣∣∣∣∂q∂s(s, x)
∣∣∣∣ ≤ m2,

m2 ≤ inf
x∈X

s:|s−τ |≤c1

∣∣∣∣∂v∂s (s, x)
∣∣∣∣ ≤ sup

x∈X
s:|s−τ |≤c1

∣∣∣∣∂v∂s (s, x)
∣∣∣∣ ≤ m2.

3. There exists a constant L > 0 such that

sup
x∈X

∣∣∣∣∂v∂s (s1, x)− ∂v

∂s
(s2, x)

∣∣∣∣ ≤ L|s1 − s2|,

sup
x∈X

∣∣∣∣∣
[
∂v

∂s
(s1, x)

]−1

−
[
∂v

∂s
(s2, x)

]−1
∣∣∣∣∣ ≤ L|s1 − s2|,

for all s1, s2 ∈ [τ − c1, τ + c1].
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Lemma 7. Suppose the initial estimators v̂(s, x̄m) satisfy Condition G-V1, and the

binning weights γ̂m satisfy

sup
m=1,...,M

∣∣∣∣ γ̂mπ̂m − 1

∣∣∣∣ P ∗
−→ 0.

The following results hold, where rn is the same as in Condition G-V1.

1.

M∑
m=1

γ̂m sup
(z,z′):z=v(τ,x̄m)

|z′−z|≲(rn∨n−1/2)

∣∣∣{ĥ(z, x̄m)− h(z, x̄m)} − {ĥ(z′, x̄m)− h(z′, x̄m)}
∣∣∣ = oP

(
1√
n

)
.

2.
M∑

m=1

γ̂m [v̂(τ, x̄m)− v(τ, x̄m)]2 = oP

(
1√
n

)
.

3.
M∑

m=1

γ̂m

∣∣∣τ − ĥ ◦ (v̂(τ, x̄m), x̄m)
∣∣∣ = oP

(
1√
n

)
.

Lemma 8. Recall S0m, S1m, and S2m given in (3.5). Under Conditions G-A1 and

G-X, the following results hold:

1. sup
m=1,...,M

∣∣S−1
0m (S0m − ST

1mS
−1
2mS1m)− 1

∣∣ = oP(1).

2. For any fixed c2 > 0,

Pr

(
sup

m=1,...,M

∥∥h̄mST
1mS

−1
2m

∥∥ ≥ c2

)
≤ C2

n3
,

where C2 is a constant that may depend on c2.

3. For some ε2 > 0,

Pr

(
inf

m=1,...,M
|h̄−p

m S0m| ≤ ε2

)
≤ 1

n3

Lemma 9. Suppose Condition G-Y1’ holds. For any two sequences an, bn → 0, if the

quantile estimator q̂(s, x) satisfies

sup
x∈X

s:|s−τ |≤an

|q̂(s, x)− q(s, x)| = OP(bn),
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then we have

1.
sup

m=1,...,M
|s−τ |≤an

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

wimκim[Yi − q(s,Xi)] [1{Yi ≥ q̂(s,Xi)]} − 1{Yi ≥ q(s,Xi)}]

n∑
i=1

wim

∣∣∣∣∣∣∣∣∣∣
= OP(a

2
n + b2n);

2.
sup

m=1,...,M
|s−τ |≤an

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

wimκim (q(s,Xi)− q̂(s,Xi)) [1{Yi ≥ q̂(s,Xi)} − 1{Yi ≥ q(s,Xi)}]

n∑
i=1

wim

∣∣∣∣∣∣∣∣∣∣
= OP(a

2
n + b2n);

where wim = 1{Xi ∈ Am} and κim = [1− ST
1mS

−1
2m(Xi − x̄m)]; S1m, S2m are given in

(3.5).

We comment on these lemmas. Lemmas 5 and 8 are about the covariate properties

with the binning mechanism. Lemma 6 gives some more technical implications on

the data generating process derived from the conditions in Section 3.2. In addition,

Lemma 7 and 9 are more technical. In particular, the results in 7 are similar to,

but stronger than the examples given by standard functional delta method [Chapter

20](Van der Vaart , 2000). For a fixed quantile level τ , Lemma 9 is the same as Lemma

A.4 in Olma (2021) and Lemma A.3 in Kato (2012). Our result is stronger in the

uniformity over s.

3.7.2 Proof of Theorem III.1

Now we give the proof to our first main result Theorem III.1. To simplify the

notations, in the following proof we define vm(α) = v(α, x̄m), and v̂m(α) = v̂(α, x̄m);

correspondingly we write hm(z) = h(z, x̄m) and ĥm(z) = ĥ(z, x̄m) for the inverse SQ

function. When there is no confusion, we shall write vm = v(τ, x̄m) without the index
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to refer to the targeting τth SQ. In our proof, the number of bins M =Mn increases

with the sample size, though we often omit the subscript.

Proof of Theorem III.1. In this proof, we work with the following shifted m-Rock

objective function:

Ln(δ) =
M∑

m=1

γ̂m

∫ 1

0

[
ρτ
(
v̂m(α)− vm(τ)− x̄mδ/

√
n
)
− ρτ (v̂m(α)− vm(τ))

]
dα.

(3.11)

It follows that δ̂ = n1/2(β̂ − β) minimizes Ln(δ), where β̂ is the m-Rock estimator in

(3.1). Therefore, it suffices to study the asymptotic properties of δ̂. To this end, we

first show that the function Ln(δ) in (3.11) converges (pointwise) in probability to a

quadratic function of δ. Then we apply the convexity argument in Pollard (1991) to

derive the asymptotic properties of δ̂. We define ∆m(δ) = v̂m(τ)− vm(τ)−n−1/2x̄Tmδ.

By Knight’s identity (Knight , 1998),

ρτ (w − v)− ρτ (w) = −v(τ − 1{w ≤ 0}) +
∫ v

0

(1{w ≤ t} − 1{w ≤ 0}) dt,

for any w and v, therefore

ρτ (w − v1)− ρτ (w − v2) = [ρτ (w − v1)− ρτ (w)]− [ρτ (w − v2)− ρτ (w)]

= (v2 − v1)(τ − 1{w ≤ 0}) +
∫ v1

v2

(1{w ≤ t} − 1{w ≤ 0}) dt.

Taking w = v̂m(α) − v̂m(τ), v1 = −∆m(δ), and v2 = vm(τ) − v̂m(τ) in the above
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displayed equation, we obtain:

∫ 1

0

ρτ
(
v̂m(α)− vm(τ)− x̄Tmδ/

√
n
)
dα−

∫ 1

0

ρτ (v̂m(α)− vm(τ)) dα

= −n−1/2x̃T δ

∫ 1

0

(τ − 1{v̂m(α) ≤ v̂m(τ)})dα

+

∫ 1

0

∫ −∆m(δ)

vm−v̂m

(1{v̂m(α) ≤ v̂m(τ) + t} − 1{v̂m(α) ≤ v̂m(τ)}) dt dα

= −n−1/2x̄Tmδ[τ − ĥm(v̂m)] +
∫ −∆m(δ)

vm−v̂m

[ĥm(v̂m + t)− ĥm(v̂m)] dt,

where the last equality follows from the definition of ĥ in (3.10), and by exchanging the

order of integration. Therefore, summing over m = 1, . . . ,M in the above equation

gives the following decomposition for Ln(δ) (defined in (3.11)):

Ln(δ) = −n−1/2

M∑
m=1

γ̂mx̄
T
mδ[τ − ĥm(v̂m)]︸ ︷︷ ︸

An(δ)

+
M∑

m=1

γ̂m

∫ −∆m(δ)

vm−v̂m

[ĥm(v̂m + t)− ĥm(v̂m)] dt

= An(δ) +
M∑

m=1

γ̂m

∫ −∆m(δ)

vm−v̂m

[hm(v̂m + t)− hm(v̂m)] dt︸ ︷︷ ︸
Bn(δ)

+
M∑

m=1

γ̂m

∫ −∆m(δ)

vm−v̂m

[
{ĥm(v̂m + t)− hm(v̂m + t)} − {ĥm(v̂m)− hm(v̂m)}

]
dt︸ ︷︷ ︸

Cn(δ)

≜ An(δ) +Bn(δ) + Cn(δ). (3.12)

For any fixed δ = O(1), we shall show that both An(δ) and Cn(δ) are oP(n
−1).

For An(δ), note x̄
T
mδ is uniformly bounded over m, hence

|nAn(δ)| ≲
√
n

(
M∑

m=1

γ̂m|τ − ĥm(v̂m)|

)
= oP(1),
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from Lemma 7. For Cn(δ), we first define

Rn = sup
m=1,...,M

max

{
|x̄Tmδ|√
n
, |v̂m(τ)− vm(τ)|

}
,

and it follows from Condition G-V1 that Rn = OP(rn ∨ n−1/2). By taking the supre-

mum within each the integration in Cn(δ), we have

|nCn(δ)|

≤
√
n

(
M∑

m=1

γ̂m|x̄Tmδ| × 2 sup
|s|≤Rn

∣∣∣{ĥm(vm + s)− h(vm + s)} − {ĥm(vm)− hm(vm)}
∣∣∣)

≲P

√
n

(
M∑

m=1

γ̂m sup
|s|≲rn∨n−1/2

∣∣∣{ĥm(vm + s)− hm(vm + s)} − {ĥm(vm)− hm(vm)}
∣∣∣)

= oP(1),

where the last inequality follows from Lemma 7.

Next we turn to the convergence of Bn(δ), where we first give a linear approxima-

tion for hm(v̂m + t) − hm(v̂m) in (3.12). Note the derivative for the inverse function

hm(z) = h(z, x̄m) in (3.10) is:

h′m(z) =

∂vm(s)
∂s

∣∣∣∣∣
s=hm(z)

−1

=
1− hm(z)

vm(hm(z))− qm(hm(z))
. (3.13)

By using the first order Taylor-expansion and the mean value theorem, there exists

a ξm between v̂m and v̂m + t such that

|hm(v̂m + t)− hm(v̂m)− th′m(vm)| = |t[h′m(ξm)− h′m(vm)]|

≤ |t| × (L|ξm − v̂m|+ |v̂m − vm|)

≤ L t2 + |v̂m − vm| × |t|, (3.14)

since |ξm− v̂m| ≤ |t|, where L is the Lipschitz constant in Lemma 6. Therefore, Bn(δ)
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can be approximated as follows:

∣∣∣∣∣Bn(δ)−
1

2

M∑
m=1

γ̂mh
′
m(vm)

{
∆2

m(δ)− [v̂m − vm]2
}∣∣∣∣∣

=

∣∣∣∣∣
M∑

m=1

γ̂m

∫ −∆m(δ)

vm−v̂m

[hm(v̂m + t)− hm(v̂m)− th′m(vm)] dt

∣∣∣∣∣
≲

∣∣∣∣∣
M∑

m=1

γ̂m

∫ −∆m(δ)

vm−v̂m

(t2 + |v̂m − vm| × |t|) dt

∣∣∣∣∣
≲

1√
n

M∑
m=1

γ̂m|v̂m − vm|2 +
1

n

M∑
m=1

γ̂m|v̂m − vm|+ oP

(
1

n

)
= oP

(
1

n

)
,

where the second inequality follows from (3.14), and the last equality holds from

Lemma 7. Therefore, Bn(δ) can be approximated by a function of ∆2
m(δ).

We now show that the loss function Ln is approximately a quadratic function in

δ. Let

D1n =
1

1− τ

[
M∑

m=1

γ̂mh
′
m(vm)x̄mx̄

T
m

]
, and un =

√
n

1− τ

M∑
m=1

γ̂mh
′
m(vm)x̄m(v̂m − vm).

Collecting the results for An(δ), Bn(δ) and Cn(δ) into (3.12), we have shown that for

any fixed δ ∈ Rp+1,

n · Ln(δ) =
1

2

M∑
m=1

γ̂mh
′
m(vm){∆2

m(δ)− [v̂m − vm]2}+ oP(1)

=
1

2
δTD1nδ − δTun + oP(1), (3.15)

where the last equality follows by expanding ∆m(δ) = v̂m(τ) − vm(τ) − n−1/2x̄Tmδ.

Since the m-Rock loss function Ln(δ) is convex, standard convexity argument (see

e.g., Hjort and Pollard (2011) and Pollard (1991)) shows that the convergence in

(3.15) is uniform in δ over any compact subset of Rp+1. Furthermore, the calculation
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of h′m in (3.13) and Lemma 5 shows

D1n
P ∗
−→ D1 = E

[
XXT

v(τ,X)− q(τ,X)

]
,

since v(τ, x)− q(τ, x) is bounded by Lemma 6. Therefore, (3.15) implies that for any

compact set B ⊂ Rp+1,

n · sup
δ∈B
|Ln(δ)−Qn(δ)| = oP(1), (3.16)

where Qn(δ) =
1
2
δTD1δ−δTun. This shows that Ln(δ) can be uniformly approximated

by a quadratic function in δ.

Finally, we show the convergence of δ̂, which establishes the asymptotic properties

of the m-Rock estimator. As a function of δ, Qn(·) in (3.16) has a unique minimizer

δ̃ = D−1
1 un,

since D1 is positive definite. Given Condition G-V2 and (3.16), we apply the Basic

Corollary in Hjort and Pollard (2011) to conclude that the minimizers of Ln(δ) and

Qn(δ) are asymptotically equivalent, i.e.,

δ̂ = δ̃ + oP(1) = D−1
1

[
√
n

M∑
m=1

γ̂mx̄m
vm(τ)− qm(τ)

[v̂m(τ)− vm(τ)]

]
+ oP(1).

The proof is now complete by noting that δ̂ = n1/2(β̂ − β).

3.7.3 Proof of Theorem III.2

To prove Theorem III.2, it entails to show that all conditions of Theorem III.1

apply to our specific construction of the initial estimator in (3.6). We break the main
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technical requirements into three Propositions below, the proof of which can be found

later in this subsection. In our proofs here, v̂(s, x̄m) refers specifically to the estimator

constructed in (3.6), and the weight γ̂m refers to the one in (3.7). Furthermore, we

fix the sequence rn to be the one defined in Proposition 4 below; We shall verify later

in the proof of Theorem III.2 that rn indeed satisfies the requirements in Theorem

III.2.

Proposition 3. Under the conditions of Theorem III.2, we have

√
n

M∑
m=1

[
γ̂mx̄m

v(τ, x̄m)− q(τ, x̄m)
{v̂(τ, x̄m)− v(τ, x̄m)}

]
d−→ N(0, Ω1) ,

where Ω1 is defined in Theorem III.2.

Proposition 4. Let

rn =

√
log n

nhp
.

Under the condition of Theorem III.2, we have

sup
m=1,...,M

|v̂(τ, x̄m)− v(τ, x̄m)| = OP (rn) .

Proposition 5. Under the condition of Theorem III.2, we have for any fixed B > 0,

sup
m=1,...,M

|t|≤B·(rn+n−1/2)

|[v̂(τ + t, x̄m)− v(τ + t, x̄m)]− [v̂(τ, x̄m)− v(τ, x̄m)]| = oP
(
n−1/2

)
,

where rn is given in Proposition 4.

The proof of Theorem III.2 is relatively straightforward with these Propositions,

and we now give the details.

Proof of Theorem III.2. Under the conditions of Theorem III.2, the binning mecha-
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nism satisfies:

sup
m=1,...,M

diam(Am) ≲ h̄ = o(1), and sup
m=1,...,M

∣∣∣∣ γ̂mπ̂m − 1

∣∣∣∣ = oP(1),

which follows from Lemma 8. It then suffices to check Conditions G-V2 and G-V1.

Proposition 3 directly implies Condition G-V2. From Condition G-A1, we have

n−1/2 ≪ rn =

√
log n

nhp
≪ n−1/4,

therefore the sequence rn constructed in Proposition 4 can be used in Condition G-V1.

Next we check Condition G-V1.

The second requirement in Condition G-V1 follows from Proposition 5. Moreover,

from Proposition 4 and 5 we have

sup
m=1,...,M
|s−τ |≤B·rn

|v̂(s, x̄m)− v(s, x̄m)|

≤ sup
m=1,...,M

|v̂(τ, x̄m)− v(τ, x̄m)|

+ sup
m=1,...,M
|t|≤B·rn

|[v̂(τ + t, x̄m)− v(τ + t, x̄m)]− [v̂(τ, x̄m)− v(τ, x̄m)]|

= OP(rn) + oP(n
−1/2).

Hence the first requirement in Condition G-V1 also holds. Since the monotonicity of

v̂(s, x) (with respect to s) is assumed, we have checked all requirements of Theorem

III.1. The proof is now complete.

3.7.4 Proof of Propositions 3, 4 and 5

Here we prove the three Propositions used in the proof Theorem III.2. We fix

some notations used in the proof. Recall S0m, S1m and S2m from (3.5); and note
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S0m = n−1
∑n

i=1wim = π̂m. For the weight of each bin in (3.1), we set

γ̂m = S0m − ST
1mS

−1
2mS1m,

as in (3.7). Using the block matrix inverse, our estimator v̂(s, x̄m) in (3.6) can be

further simplified as:

v̂(s, x̄m) = (nγ̂m)
−1

[
n∑

i=1

wimẐi(s)− ST
1mS

−1
2m

n∑
i=1

(Xi − x̄m)wimẐi(s)

]
, (3.17)

where Ẑi(s) is defined in (3.4). Furthermore, let ṽ(s, x̄m) be the oracle estimator

where we know q(s, x) and Zi(s), i.e.,

ṽ(s, x̄m) = (nγ̂m)
−1

[
n∑

i=1

wimZi(s)− ST
1mS

−1
2m

n∑
i=1

(Xi − x̄m)wimZi(s)

]
. (3.18)

In the proofs of this section, we write X as the covariate vector that does not contain

the intercept for simplicity.

3.7.4.1 Proof of Proposition 3

Proof. We rely on the decomposition that

[v̂(τ, x̄m)− v(τ, x̄m)] = [v̂(τ, x̄m)− ṽ(τ, x̄m)] + [ṽ(τ, x̄m)− v(τ, x̄m)]

= [v̂(τ, x̄m)− ṽ(τ, x̄m)]

− (nγ̂m)
−1

[
ST
1mS

−1
2m

n∑
i=1

(Xi − x̄m)wim[Zi(τ)− v(τ,Xi)]

]

+ (nγ̂m)
−1

[
n∑

i=1

wim[Zi(τ)− v(τ,Xi)]

]
, (3.19)

where the last equality follows from standard local-linear calculation (Fan and Gijbels ,

2018) since v(τ, x) is linear in x.
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It suffices to consider the aggregation of the three terms in the decomposition

above. First, we give two claims below; and we verify them one by one at the end of

this proof. In what follows, we define ζm = v(τ, x̄m)− q(τ, x̄m).

Claim 1:

√
n

M∑
m=1

{
γ̂m
ζm
x̄m

[
n∑

i=1

wim

nγ̂m
ST
1mS

−1
2m(Xi − x̄m)[Zi(τ)− v(τ,Xi)]

]}
= oP(1). (3.20)

Claim 2:

√
n

M∑
m=1

{
γ̂m
ζm
x̄m [v̂(τ, x̄m)− ṽ(τ, x̄m)]

}
= OP

(√
ng21n +

√
ng2n

)
= oP(1), (3.21)

where g1n and g2n are given in Condition G-Q.

Claims 1 and 2 together show the first two terms in Equation (3.19) are asymptot-

ically negligible when aggregated over the bins. In particular, they show that using

our initial estimator is asymptotically equivalent to using the oracle estimators. In

what follows, the proof is given in three steps. In the first step, we give our main

argument, which establishes a Central Limit Theorem type result; This step shows

the desired asymptotic normality in Proposition 3. In the next steps, we verify Claims

1 and 2 separately.

Step 1: A CLT-type result We give the asymptotic analysis for the aggregation

of the last term in (3.19) over the bins, given by

1√
n

M∑
m=1

{
1

ζm
x̄m

[
n∑

i=1

wim[Zi(τ)− v(τ,Xi)]

]}

=
1√
n

n∑
i=1

[Zi(τ)− v(τ,Xi)]

[
M∑

m=1

wim

ζm
x̄m

]
︸ ︷︷ ︸

Oin

,
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which holds by exchanging the order of summation. Since ζm and x̄m are deter-

ministic, the term
∑M

m=1(ζm)
−1wimx̄m in each Oin only depends on the bin that Xi

falls into. For fixed n and M , the random vectors Oin are i.i.d. with mean 0 across

i = 1, . . . , n; and we apply the multivariate Lindeberg-Feller Central Limit Theorem

for triangular arrays (E.g., Theorem 2.27 of Van der Vaart (2000)) in our proof below.

We check the first Lindeberg conditions here. In our setting it suffices to show:

E∥Oin∥21{∥Oin∥ ≥ ε
√
n} → 0, (3.22)

for all fixed ε > 0 as n→∞. Since x̄m is uniformly bounded, we have that

E∥Oin∥2+δ0 ≲ E|Zi(τ)− v(τ,Xi)|2+δ0 ≲ E[|q(τ,X)|2+δ0 ] + E
[
|Y +|2+δ0

]
<∞,

which follows from Condition G-Y1’. Furthermore note |x|21{|x| ≥ a} ≤ a−δ|x|2+δ,

the Lindeberg condition (3.22) then follows from the Markov inequality.

Next we calculate the variance of each Oin. Parallel to the one-sample case in

Corollary 2 of Chapter 2, we have that

var[Zi(τ)− v(τ,Xi) | Xi = x] =
var(Y | X = x, Y ≥ q(τ, x)) + τ [v(τ, x)− q(τ, x)]2

1− τ
≜ σ2

τ (x). (3.23)

Therefore from Oin in the beginning of Step 1, we have

var(Oin) = EX

{[
M∑

m=1

wim

ζ2m
x̄mx̄

T
m

]
EY |X [Zi(τ)− v(τ,Xi)]

2

}

= EX

{
σ2
τ (X)

[
M∑

m=1

wim

ζ2m
x̄mx̄

T
m

]}

→ EX

{
σ2
τ (X)

[v(τ,X)− q(τ,X)]2
XXT

}
,
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as n→∞, which follows from Lemma 5. Hence, it follows that

1√
n

n∑
i=1

Oin
d−→ N(0, Ω1) ,

by the Lindeberg CLT, where Ω1 is given in Theorem III.2.

Together with Claims 1 and 2, we have proved that

1√
n

M∑
m=1

{
γ̂m
ζm
x̄m [v̂(τ, x̄m)− v(τ, x̄m)]

}
d−→ N(0, Ω1) ,

from the decomposition in (3.19). Therefore Proposition 3 holds.

Step 2: Verification of Claim 1 Now we check Claim 1. The left hand side of

(3.20) can be written as:

1√
n

n∑
i=1

[Zi(τ)− v(τ,Xi)]

[
M∑

m=1

wim

ζm
x̄mS

T
1mS

−1
2m(Xi − x̄m)

]
︸ ︷︷ ︸

Vin

 , (3.24)

by re-arranging the summation.

We use Markov inequality to bound (3.24); To this end, we calculate the variance

for each term of (3.24). Note that Vin depends on the covariates but not the response,

by conditioning on X first we have:

E

∥∥∥∥∥ 1√
n

n∑
i=1

[Zi(τ)− v(τ,Xi)]Vin

∥∥∥∥∥
2

=
1

n
E

(
n∑

i=1

σ2
τ (Xi)∥Vin∥2

)
≲

1

n

n∑
i=1

E∥Vin∥2,

since σ2
τ (x) in (3.23) is bounded. Following the above displayed equation, we can
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further expand the variance of Vin as:

1

n

n∑
i=1

E∥Vin∥2 =
1

n
E

[
n∑

i=1

M∑
m=1

wim∥x̄m∥2

ζ2m
∥ST

1mS
−1
2m(Xi − x̄m)∥2

]

≲ E


M∑

m=1

ST
1mS

−1
2m

[
n−1

n∑
i=1

wim(Xi − x̄m)(Xi − x̄m)T
]

︸ ︷︷ ︸
S2m

S−1
2mS1m


= E

[
M∑

m=1

ST
1mS

−1
2mS1m

]
(3.25)

= o(1),

where the definition of S2m is in (3.5), and the convergence to the o(1) term in the

end follows from the Dominated Convergence theorem as outlined below. First, the

term inside the expectation of (3.25) is bounded by

M∑
m=1

ST
1mS

−1
2mS1m ≤

M∑
m=1

S0m = n−1

M∑
m=1

n∑
i=1

1{Xi ∈ Am} = 1,

since γ̂m = S0m − ST
1mS

−1
2mS1m ≥ 0. Second, we have from Lemma 8 that

∣∣∣∣∣
M∑

m=1

ST
1mS

−1
2mS1m

∣∣∣∣∣ ≤
M∑

m=1

S0m

∣∣∣∣1− γ̂m
S0m

∣∣∣∣ = oP(1).

The convergence in expectation of (3.25) then follows.

Therefore, Claim 1 holds by applying Markov inequality for (3.24).

Step 3: Verification of Claim 2 By the construction of v̂ and ṽ in (3.17) and

(3.18), we have

v̂(τ, x̄m)− ṽ(τ, x̄m) = (nγ̂m)
−1

[
n∑

i=1

wim[1− ST
1mS

−1
2m(Xi − x̄m)][Ẑi(τ)− Zi(τ)]

]
.
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Similar to the proof of Lemma 1 in Olma (2021), we consider the following decom-

position of Ẑi(τ)− Zi(τ):

(1− τ)[Ẑi(τ)− Zi(τ)] = [Yi − q(τ,Xi)] {1[Yi ≥ q̂(τ,Xi)]− 1[Yi ≥ q(τ,Xi)]}

+(q(τ,Xi)− q̂(τ,Xi)) · (τ − 1[Yi < q(τ,Xi)])

+ (q(τ,Xi)− q̂(τ,Xi)) · {1[Yi ≥ q̂(τ,Xi)]− 1[Yi ≥ q(τ,Xi)]}

≜ u1i(τ) + u2i(τ) + u3i(τ), . (3.26)

where we sometimes omit the index τ in this proof. Using the above two displayed

equations, and by re-arranging the order of summation in (3.21) of Claim 2, we have

√
n

M∑
m=1

{
γ̂m
ζm
x̄m [v̂(τ, x̄m)− ṽ(τ, x̄m)]

}

=
1√
n

n∑
i=1

[Ẑi(τ)− Zi(τ)]

[
M∑

m=1

wim

ζm
[1− ST

1mS
−1
2m(Xi − x̄m)]x̄m

]
︸ ︷︷ ︸

κi


=

1√
n(1− τ)

(
n∑

i=1

u1iκi +
n∑

i=1

u2iκi +
n∑

i=1

u3iκi

)
≜ U1n + U2n + U3n, (3.27)

where Ujn = [
√
n(1− τ)]−1

∑n
i=1 ujiκi and uji is defined in (3.26). To check Claim 2,

it suffices to consider the three terms in (3.27) separately.

We consider U2n first. Separating κi into two sums for the terms 1 and ST
1mS

−1
2m(Xi−
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x̄m), we have

∥(1− τ)
√
nU2n∥

≲ ∥
n∑

i=1

u2iκi∥

≤

∥∥∥∥∥
M∑

m=1

n∑
i=1

(
wim

ζm
u2ix̄m

)∥∥∥∥∥+
∥∥∥∥∥

M∑
m=1

n∑
i=1

[
wim

ζm
ST
1mS

−1
2m(Xi − x̄m) · u2ix̄m

]∥∥∥∥∥
≲ sup

m=1,...,M

∣∣∣∣∑n
i=1wimu2i
nπ̂m

∣∣∣∣ · M∑
m=1

nπ̂m∥x̄m∥
|ζm|

+ sup
m=1,...,M

∥∥∥∥∥∥∥∥∥∥

n∑
i=1

wim

[
Xi − x̄m
h̄m

]
u2i

nπ̂m

∥∥∥∥∥∥∥∥∥∥
·

M∑
m=1

nπ̂m · ∥x̄m∥ · ∥h̄m · ST
1mS

−1
2m∥

|ζm|

≲ Op(g2n)
M∑

m=1

(nπ̂m) +OP(g2n)
M∑

m=1

[nπ̂moP(1)] ,

where we have used the fact that ∥x̄m∥/|ζm| is bounded; in the last inequality, the

OP(g2n) terms follow from Condition G-Q, and the oP(1) term uses the bound of

∥h̄m · ST
1mS

−1
2m∥ in Lemma 8. Noting that

∑M
m=1 π̂m = 1, we conclude that U2n =

OP(n
1/2g2n).

Next we consider U1n and U3n. Noting that wim|1−ST
1mS

−1
2m(Xi− x̄m)| = 1+oP(1)

uniformly as in Lemma 8, we have from (3.27) that

∥(1− τ)
√
nU1n∥ =

∥∥∥∥∥
n∑

i=1

u1iκi

∥∥∥∥∥
≤

n∑
i=1

M∑
m=1

wim|u1i| · ∥x̄m∥
|ζm|

[1 + oP(1)]

≲P sup
m=1,...,M

[∑n
i=1wim|u1i|
nπ̂m

]
·

M∑
m=1

nπ̂m

= n · sup
m=1,...,M

[∑n
i=1wim|u1i|
nπ̂m

]
,
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since
∑M

m=1 π̂n = 1. Similarly

∥(1− τ)
√
nU3n∥ ≲P n · sup

m=1,...,M

[∑n
i=1wim|u3i|
nπ̂m

]

Therefore, it follows directly from Lemma 9 that U1n = OP(n
1/2g21n) and U3n =

OP(n
1/2g21n), hence Claim 3 holds. The proof of Proposition 3 is now complete.

3.7.4.2 Proof of Proposition 4

We define some additional notations. Let

κim = [1− ST
1mS

−1
2m(Xi − x̄m)], (3.28)

and let

A0m = sup
i=1,...,n

|wimκim|, A1m =
n∑

i=1

wim|κim|, A2m =
n∑

i=1

wimκ
2
im. (3.29)

Proof. Following the same calculation in (3.19), for each bin Am we have:

[v̂(τ, x̃m)− v(τ, x̃m)] = [v̂(τ, x̃m)− ṽ(τ, x̃m)]

+ γ̂−1
m S0m

[∑n
i=1wim[Zi(τ)− v(τ,Xi)][1− ST

1mS
−1
2m(Xi − x̃m)]∑n

i=1wim

]
≜

S0m

γ̂m
[Bq(τ,m) + C(τ,m)] , (3.30)

where Bq(τ,m) = S−1
0mγ̂m[v̂(τ, x̃m)− ṽ(τ, x̃m)] corresponds to the bias term that origi-

nates from using the estimated quantile in Ẑi(τ), and C(τ,m) has mean zero. Under

the conditions of Theorem III.2, we give the following claims, which we verify at the

end of the proof.
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Claim 1:

sup
m=1,...,M

|Bq(τ,m)| = OP(g
2
1n + g2n),

where g1n and g2n are in Condition G-Q.

Claim 2:

Pr

(
sup

m=1,...,M
A0m ≥ 2

)
≤ 1

n3
, A1m ≤ nS0m, and A2m ≤ nS0m,

where the quantities Ajm (j = 1, 2, 3) are defined in (3.29).

Claim 1 shows that the bias in the initial SQ estimator is asymptotically negligible,

Claim 2 is also useful but more technical. Following Claims 1 and 2, the proof proceeds

in 5 steps. In steps 1 through 3, we establish the main argument that:

sup
m=1,...,M

|C(τ,m)| = OP(rn);

In step 1, we give a truncation argument similar to Mack and Silverman (1982); In

step 2, we derive exponential inequalities for the truncated process; Step 3 gives some

auxiliary calculations that completes the proof. In the final two steps we verify Claims

1 and 2.

Step 1: Truncation For any sequence bn > 0 that satisfies: (i)
∑∞

n=1 b
−2−δ0
n < +∞

for δ0 in Condition G-Y1’; (ii) bn is monotonically increasing; and (iii) bn → +∞, we

define the truncated variable:

Z
(B)
i (τ) =

[Yi − q(τ,Xi)]1{0 ≤ Yi − q(τ,Xi) ≤ bn}]
1− τ

+ q(τ,Xi),
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and the corresponding truncated process:

C(B)(τ,m) = (nS0m)
−1

n∑
i=1

{
wim

[
Z

(B)
i (τ)− v(τ,Xi)

]
[1− ST

1mS
−1
2m(Xi − x̃m)]

}
.

We shall give the precise choice of bn in step 2 below. For sufficiently large n, in the

following we show that C(B)(τ,m) is equivalent to C(τ,m) with probability one.

Comparing C(B)(τ,m) with C(τ,m) in (3.30), we see that C(B)(τ,m) ̸= C(τ,m)

only when Yi − q(τ,Xi) ≥ bn for some i = 1, . . . , n; and we can calculate this proba-

bility:

Pr ([Yi − q(τ,Xi)] ≥ bn) ≤
E[Yi − q(τ,Xi)]

2+δ01[Yi ≥ q(τ,Xi)]

b2+δ0
n

≲ b−2−δ0
n ,

from Chebyshev’s inequality and Condition G-Y1’. Following Proposition 1 of Mack

and Silverman (1982), under our choice of bn we have

Pr

(
lim inf
n→∞

{
sup

m=1,...,M
|C(B)(τ,m)− C(τ,m)| = 0

})
= 1,

where lim infn→∞ denotes the limit infimum for a sequence of events.

Step 2: Exponential inequality Here we derive exponential tail bounds for the

centered truncated sequence C(B)(τ,m) − E[C(B)(τ,m)]. Note C(B)(τ,m) does not

have mean zero after truncation. With κim in (3.28), we write

C(B)(τ,m) = (nS0m)
−1

n∑
i=1

{
wimκim

[
Z

(B)
i (τ)− v(τ,Xi)

]}
.

For a small enough ε3 > 0, let the truncation threshold satisfy

bn ≍ n
1

2+δ0
+ε3 , (3.31)
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where δ0 is in Condition G-Y1’; it is easy to check that this choice of bn satisfies the

requirements in Step 1 of the proof.

We apply Bernstein inequality on the truncated and centered process; to this end,

we compute some key quantities below. Conditional on the covariates X, we have

sup
x∈X

var

[
Z

(B)
i (τ)− v(τ,Xi)

∣∣∣∣∣ Xi = x

]
≤ C1 < +∞,

for some constant C1, which follows from Condition G-Y1’; hence

n∑
i=1

var

[
wimκim[Z

(B)
i (τ)− v(τ,Xi)]

∣∣∣∣∣ X
]
≤ C1A2m ≤ nC1S0m.

Furthermore, each of summands in C(B)(τ,m) can be bounded by

∣∣∣wimκim[Z
(B)
i (τ)− v(τ,Xi)]

∣∣∣ ≲ A0mbn.

Refer to Claim 2 for the properties of A0m and A2m.

Now, a direct application of the (conditional on X) Bernstein inequality (e.g.,

Theorem 2.8.4 of Vershynin (2018)) and a union bound gives

Pr

(
sup

m=1,...,M

∣∣C(B)(τ,m)− E[C(B)(τ,m)]
∣∣ ≥M1rn

∣∣∣∣∣ X
)

≤
M∑

m=1

Pr

(∣∣∣∣∣
n∑

i=1

wimκim

[
Z

(B)
i (τ)− E[Z

(B)
i (τ)]

]∣∣∣∣∣ ≥M1 · nS0mrn

∣∣∣∣∣ X
)

≤ 2 exp

{
log n− (M2

1nr
2
n/2) · infm S0m

C1 + (M1bnrn/3) · supmA0m

}
≲ 2 exp

{
log n− (M2

1nr
2
n/2) · infm S0m

C1(1 + supmA0m)

}
, (3.32)

for sufficiently large n, where the log n factor comes from M ≲ h̄−p ≤ n under
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Condition G-A1; the last inequality follows since

bnrn =

√
log n

n1−2/(2−δ0)−2ε3 h̄p
→ 0,

under Condition G-A1, with bn in (3.31) and rn in Proposition 4

Here we give the unconditional tail bound from the conditional one in (3.32). Let

Γ denote the event that supmA0m ≤ 2 and infm |h̄−p
m S0m| ≥ ε2 for some ε2 > 0; With

Lemma 8 and Claim 2, we have Pr(Γc) ≲ n−3. With the law of total expectation

applied to (3.32), the unconditional tail bound is:

Pr

(
sup

m=1,...,M
|CB(τ,m)− E[CB(τ,m)]| ≥M1rn

)
≤ EX

[
2 exp

{
log n− (M2

1nr
2
n/2) · infm S0m

C1(1 + supmA0m)

}
· 1{Γ}

]
+ E [exp{log n} · 1{Γc)]

≲ EX

[
2 exp

{
log n− log n ·M2

1 ε2/2

3C1

}]
+ nPr (Γc)

≲
1

n
, (3.33)

for sufficiently large M1 since C1 and ε2 are fixed.

Step 3: Final calculations Noting that

∣∣C(τ,m)− C(B)(τ,m)
∣∣ = (nS0m)

−1

n∑
i=1

wim|κim|
{
[Yi − q(τ,Xi)]1{bn ≤ Yi − q(τ,Xi)}

1− τ

}
,
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the expectation of C(B) can be bounded by

E
[
|C(τ,m)− C(B)(τ,m)| | X = x

]
= (nS0m)

−1

n∑
i=1

wim|κim|
1− τ

E
{
[Yi − q(τ,Xi)]1[Yi − q(τ,Xi) ≥ bn]

∣∣∣ X = x
}

≤ (nS0m)
−1

n∑
i=1

wim|κim|
1− τ

E

{
[Yi − q(τ,Xi)]

2+δ01[Yi ≥ q(τ,Xi)]

b1+δ0
n

∣∣∣ X = x

}
≲ (nS0m)

−1A1m · b−1−δ0
n

≤ b−1−δ0
n ,

where the second inequality follows from Chebyshev’s inequality, the third inequality

follows from the moment bound in Condition G-Y1’ and the last inequality from

Claim 2. Taking expectation again with expect to X we obtain:

sup
m=1,...,M

E
[
|C(B)(τ,m)− C(τ,m)|

]
≲ b−1−δ0

n ≲ rn,

from the choice of bn in (3.31) and rn in Proposition 4.

Combining the above expectation bounds with the results of steps 1 and 2, we

have

sup
m=1,...,M

|C(τ,m)| = OP (rn) .

Together with Claim 1, we’ve proved that

sup
m=1,...,M

|Bq(τ,m) + C(τ,m)| = OP(g
2
1n + g2n + rn) = OP(rn),

since g21n + g2n ≪ n−1/2 ≪ rn in Proposition 4. Furthermore, note from Lemma 8 we

have γ̂−1
m S0m = 1+oP(1) uniformly overm = 1, . . . ,M . The conclusion of Proposition

4 then holds from the decomposition (3.30).
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Step 4: Verification of Claim 1 We follow the same decomposition of Ẑi(τ) −

Zi(τ) as in (3.26) in the proof of Proposition 3. From the definition of Bq in (3.30)

we have

Bq(τ,m) =
1

(1− τ)

{
(nS0m)

−1

n∑
i=1

[u1i(τ) + u2i(τ) + u3i(τ)]wimκim

}
≜

1

(1− τ)
[U1n(τ,m) + U2n(τ,m) + U3n(τ,m)] , (3.34)

where uji(τ) is defined in (3.26). We consider the three terms separately.

We consider U2n(τ,m) first. By separating κim in (3.28) into two parts, we have:

sup
m=1,...,M

|U2n(τ,m)| ≤ sup
m=1,...,M

∣∣∣∣∑n
i=1wim[S

T
1mS2m(Xi − x̄m)]u2i(τ)

nS0m

∣∣∣∣
+ sup

m=1,...,M

∣∣∣∣∑n
i=1wimu2i(τ)

nS0m

∣∣∣∣
≤ sup

m=1,...,M

∥∥∥∥∥∥∥∥∥∥

n∑
i=1

wim

[
Xi − x̄m
h̄m

]
u2i(τ)

nS0m

∥∥∥∥∥∥∥∥∥∥
· sup
m=1,...,M

∥h̄mST
1mS

−1
2m∥

+ OP(g2n)

= OP(g2n),

which follows from Condition G-Q and Lemma 8.

For U1n, we have

sup
m=1,...,M

|U1n(τ,m)| ≤ sup
m=1,...,M

∑n
i=1wimκim|u1i(τ)|

nS0m

≤ sup
m=1,...,M

A0m · sup
m=1,...,M

∑n
i=1wim|u1i(τ)|∑n

i=1wim

= OP(g
2
1n),
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which follows from Claim 2 and Lemma 9. Similarly,

sup
m=1,...,M

|U3n(τ,m)| = OP(g
2
1n).

Combining the results with U2n(τ,m), we have verified

Bq(τ,m) = OP(g
2
1n + g2n),

hence Claim 1 holds. The proof is now complete.

Step 5: Verification of Claim 2 We check the conditions for A0m, A1m, and A2m

separately. For A2m, standard algebra gives

A2m =
n∑

i=1

wim + ST
1mS

−1
2m

[
n∑

i=1

wim(Xi − x̃m)(Xi − x̃m)T
]
S−1

2mS1m

− 2ST
1mS

−1
2m

n∑
i=1

wim(Xi − x̃m)

= nS0m − nST
1mS

−1
2mS1m

≤ nS0m,

similar to how we obtain (3.25). For A1m, Cauchy–Schwartz inequality gives

A1m ≤

√√√√A2m

n∑
i=1

wim ≤ nS0m.
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For A0m, note

Pr

(
sup

m=1,...,M
A0m ≥ 2

)
≤ Pr

 sup
i=1,...,n

m=1,...,M

∣∣wimS
T
1mS

−1
2m(Xi − x̃m)

∣∣ ≥ 1


≤ Pr

(
sup

m=1,...,M

∥∥h̄m · ST
1mS

−1
2m

∥∥ ≥ 1

)
≤ 1

n3
,

which follows from Lemma 8. We have verified Claim 2, and hence the proof of

Proposition 4 is complete.

3.7.4.3 Proof of Proposition 5

Proof. For each s ∈ (0, 1), the decomposition in (3.30) gives

[v̂(s, x̃m)− v(s, x̃m)] =
S0m

γ̂m
[Bq(s,m) + C(s,m)]

+ γ̂−1
m S0m

[∑n
i=1wimκim[v(s,Xi)− v(s, x̃m)]∑n

i=1wim

]
=

S0m

γ̂m
[Bq(s,m) + C(s,m) +Bnp(s,m)] , (3.35)

where the additional term Bnp(s,m) corresponds to the non-parametric binning bias;

In (3.30), this bias does not exist because v(τ, x) is linear in x. Following the above

three-term decomposition,

[v̂(s, x̃m)− v(s, x̃m)]− [v̂(τ, x̃m)− v(τ, x̃m)]

=
S0m

γ̂m
{[Bq(s,m)−Bq(τ,m)] + [Bnp(s,m)−Bnp(τ,m)] + [C(s,m)− C(τ,m)]} .

Recall that

rn =

√
log n

nhp
,
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from Proposition 4. We give two claims below, the verification of which is at the end

of the proof.

Claim 1:

sup
m=1,...,M
|s−τ |≤B·rn

|Bq(s,m)| = OP(g
2
1n + g2n + r2n),

for any fixed B > 0, where where g1n and g2n are in Condition G-Q.

Claim 2:

sup
m=1,...,M
|s−τ |≤B·rn

|Bnp(s,m)| = oP
(
n−1/2

)
,

for any fixed B > 0, if any one of the requirements in Condition G-A2 holds.

Claims 1 and 2 show that the bias terms are uniformly (over s) negligible; They

are stronger than those in the proof of Proposition 4. Following Claims 1 and 2, the

proof proceeds in 5 steps. In steps 1 to 3, we establish the main argument:

sup
m=1,...,M
|s−τ |≤B·rn

|C(s,m)− C(τ,m)| = oP
(
n−1/2

)
.

In steps 4 and 5 we verify Claims 1 and 2.
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Step 1: Decomposition We use the following decomposition of Zi(s) defined in

(3.4):

(1− s)[Zi(s)− v(s,Xi)]− (1− τ)[Zi(τ)− v(τ,Xi)]

= (q(s,Xi)− yi)1[q(τ,Xi) ≤ yi ≤ q(s,Xi)]︸ ︷︷ ︸
u4i(s)

− {(1− s)[v(s,Xi)− q(s,Xi)]− (1− τ)[v(τ,Xi)− q(s,Xi)]}︸ ︷︷ ︸
Ei[u4i(s)]

+ [q(τ,Xi)− q(s,Xi)]{τ − 1[yi ≤ q(τ,Xi)]}︸ ︷︷ ︸
u5i(s)

≜ u4i(s)− Ei[u4i(s)] + u5i(s),

where we define Ei[·] as the conditional expectation givenX = Xi; and note Ei[u5i(τ, s)] =

0. Therefore from the definition of C(s,m) in (3.30) and κim in (3.28), we have

(1− s)C(s,m)− (1− τ)C(τ,m) = (nS0m)
−1

n∑
i=1

wimκim{u4i(s)− Ei[u4i(s)]}︸ ︷︷ ︸
U4n(s,m)

+ (nS0m)
−1

n∑
i=1

wimκimu5i(s)︸ ︷︷ ︸
U5n(s,m)

.

(3.36)

Furthermore, we separate κim into:

κim = κim1[κim ≥ 0] + κim1[κim < 0] ≜ κ
(+)
im − κ

(−)
im ,

and correspondingly we define U4n(s,m) = U
(+)
4n (s,m) + U

(−)
4n (s,m)

U
(+)
4n (s,m) = (nS0m)

−1

n∑
i=1

wimκ
(+)
im {u4i(s)− Ei[u4i(s)]},

U
(−)
4n (s,m) = (nS0m)

−1

n∑
i=1

wimκ
(−)
im {u4i(s)− Ei[u4i(s)]}.
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In the following we consider U
(+)
4n (s,m), U

(−)
4n (s,m) and U5n(s,m) separately.

Step 2: Bound for U4n Let s+ = τ + Brn, it suffices to consider the convergence

of U
(+)
4n (s,m) over the over s ∈ [τ, s+]. The result for s < τ and/or U

(−)
4n (s,m) follows

analogously.

We use a monotonicity argument to show the uniformity over s. Since u4i(s) is

monotonically increasing in s, we have the sandwich-type bound for U
(+)
4n :

n∑
i=1

wimκ
(+)
im {u4i(τ)− Ei[u4i(s+)]}

nS0m

≤ U
(+)
4n (s,m) ≤

n∑
i=1

wimκ
(+)
im {u4i(s+)− Ei[u4i(τ)]}

nS0m

,

which holds for all s ∈ [τ, s+]. Noting that u4i(τ) = 0, using the monotonicity

argument in Van der Vaart (2000, Theorem 19.1) gives

sup
m=1,...,M
s∈[τ,s+]

|U (+)
4n (s,m)| ≤ sup

m=1,...,M
|U (+)

4n (s+,m)|+ sup
m=1,...,M

∣∣∣∣∣(nS0m)
−1

n∑
i=1

wimκ
(+)
im Ei[u4i(s+)]

∣∣∣∣∣ .
(3.37)

Next we bound the two terms separately.

For the first term in (3.37), note each of the summand in U
(+)
4n (s+,m) is bounded

from (3.36), and

0 ≤
n∑

i=1

|wimκ
(+)
im u4i(s+)|2 ≤ (f−1|τ − s+|)2

n∑
i=1

wimκ
2
im ≤ A2mf

−2B2r2n,

where A2m is in (3.29) and f from Condition G-Y1. For any ε4 > 0, application of

the (conditional on X) Hoeffding’s inequality and the union bound gives

Pr

(
sup

m=1,...,M
|U (+)

4n (s+,m)| ≥ ε4n
−1/2

∣∣∣∣∣X
)
≤

M∑
m=1

2 exp

{
− 2nε24 · infm S0m

f−2B2r2n · supmA2m

}
.

Since r−1
n ≫ log(n) under Condition G-A1, we can obtain the unconditional tail
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bound, which implies

sup
m=1,...,M

|U (+)
4n (s+,m)| = oP

(
n−1/2

)
,

similar to how we obtain (3.33).

Next we consider the conditional expectation on the right hand side of (3.37).

From (3.36), each Ei[u4i(s+)] is bounded as

|Ei[u4i(s+)]| ≲ |qi(s)− qi(τ)|2 ≤ f−2B2r2n;

Hence

∣∣∣∣∣(nS0m)
−1

n∑
i=1

wimκ
(+)
im Ei[u4i(s+)]

∣∣∣∣∣ ≲ (nS0m)
−1

n∑
i=1

wim|κim|B2r2n

≤ (nS0m)
−1A1mr

2
n

= OP(r
2
n),

where A1m and its property are in Claim 2 of Proposition 4.

We now conclude from (3.37) that

sup
m=1,...,M
|s−τ |≤B·rn

|U (+)
4n (s,m)| = oP

(
n−1/2

)
,

since r2n = o(n−1/2) under Condition G-A1.
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Step 3: Bound for U5n For any s, s′ ∈ (0, 1), from the decomposition in (3.36) we

have

|U5n(s,m)− U5n(s
′,m)| = (nS0m)

−1max{τ, 1− τ}
n∑

i=1

wim|κim||q(s,Xi)− qi(s′, Xi)|

≲
A1m

nS0m

|s− s′|

≤ |s− s′|,

since q(s,Xi) is Lipschitz continuous in s, and we use the bound for A1m in Claim 2

of Proposition 4.

We use a discretization argument to show the uniform convergence over s. Define

τ −Brn = s0 < s1 < . . . , sJ = τ +Brn,

as an equally-spaced grid, such that sj+1 − sj ≍ n−1; therefore there are J ≲ n

sub-intervals. Similar to (3.37), we have

sup
m=1,...,M
|s−τ |≤B·rn

|U5n(s,m)| ≤ sup
m=1,...,M
j=0,...,J

|U5n(sj,m)|+ sup
m=1,...,M
j=0,...,J
s∈Ij

|U5n(s,m)− U5n(sj,m)|

≤ sup
m=1,...,M
j=0,...,J

|U5n(sj,m)|+ sup
m=1,...,M

∣∣∣∣ A1m

n2S0m

∣∣∣∣ ,
where the last term is from the beginning of step 3.

Next we apply Bernstein inequality for the discretized U5n(sj,m). For each |s −

τ | ≤ Brn, from (3.36) and the Lipschitz continuity of q(s,Xi) (over s):

E[u5i(s) | X] = 0, |wimκimu5i(s)| ≤ C51A0mBrn,

n∑
i=1

var[wimκimu5i(s) | X] ≤ C52(Brn)
2A2m,
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where C51 and C52 are two constants, and A0m and A2m are in (3.29). For small

enough ε5 > 0, we apply the (conditional on X) Bernstein inequality as in (3.32),

which shows that:

Pr

(
sup
m,j
|U5n(sj,m)| ≥ ε5n

−1/2

∣∣∣∣∣X
)

≤ 2
M∑

m=1

J∑
j=0

exp

{
− nε25S

2
0m

C52B2r2nA2m + n1/2εS0mC51A0mBrn/3

}
≲ 2 exp

{
2 log n− ε25 · infm S0m

B2r2n + n−1/2Brn · supmA0m

}
.

Similar to how we obtain (3.33), we can show that the corresponding unconditional

probability is o(1), which implies that:

sup
m=1,...,M
|s−τ |≤B·rn

U5n(s,m) = oP
(
n−1/2

)
.

Therefore, with the decomposition in (3.36), we have established that

sup
m=1,...,M
|s−τ |≤B·rn

|C(s,m)− C(τ,m)| = oP
(
n−1/2

)
,

from steps 1 through 3. Using Claims 1, 2 and Equation (3.35), we would complete

the proof of Proposition 5.

Step 4: Verification of Claim 1 We check Claim 1 under two scenarios separately.

First, consider the case where the second requirement in Condition G-A2 holds. Then

v(s, x) is piece-wise linear in all the bins, for all s ≲ n−1/4 ≪ rn. Therefore the same

calculations in (3.30) apply, and the non-parametric bias does not exist, i.e.,

sup
m=1,...,M
|s−τ |≤B·rn

|Bnp(s,m)| = 0,
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which follows from the nature of local-linear estimation (Fan and Gijbels , 2018).

In the following, we consider the case when only the first requirement in Condition

G-A2 holds. For notational simplicity, let v′x denote the p-dimensional gradient vector

with respect to covariates x, and v′′
xx be the p by p Hessian matrix. With Taylor

expansion at each x̃m,

v(s,Xi)− v(s, x̃m) = (Xi − x̃m)Tv′x(s, x̃m) +
1

2
(Xi − x̃m)T

[
∂2v(s, x̂im)

∂x∂xT

]
(Xi − x̃m),

for some x̂im in between x̃m and Xi.

Note Bnp is the linear combination of v(s,Xi) − v(s, x̃m) as in (3.35); We plug

in the two terms in the above displayed equation into (3.35) separately. First, the

first-order terms sum up to exactly 0:

n∑
i=1

wim(Xi − x̃m)Tv′x(s, x̃m)[1− ST
1mS

−1
2m(Xi − x̃m)] = 0,

due to standard local-linear calculation (Fan and Gijbels , 2018).

Second, note that v′′
xx(τ, x) = 0 for all x due to the linearity of τ -th SQ, therefore

the first item in Condition G-A2 implies ∥v′′
xx(s, x)∥2 ≤ L2|s− τ | uniformly for all x.

Hence

1

2nS0m

n∑
i=1

wim(Xi − x̃m)T [v′′
xx(s, x̂im)](Xi − x̃m)[1− ST

1mS
−1
2m(Xi − x̃m)]

≤

[
L2|s− τ |
2nS0m

n∑
i=1

wim∥Xi − x̃m∥2
] ∣∣1− ST

1mS
−1
2m(Xi − x̃m)

∣∣
≲ |s− τ |

∣∣∣∣∑n
i=1wim∥Xi − x̃m∥2∑n

i=1wim

∣∣∣∣ (1 + oP(1))

≲ |s− τ |h̄2(1 + oP(1)),

where the first inequality owns to the operator norm bound for v′′
xx, and the oP(1)

terms are uniform in m and independent of s due to Lemma 8.
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Combining the previous two displayed equations, we obtain

sup
m=1,...,M
|s−τ |≤B·rn

|Bnp(s,m)| = OP

(
rnh̄

2
)
= oP

(
n−1/2

)
,

since

rnh̄
2 =

√
h̄4 log n

nhp
≪ 1√

n
,

under the first requirement of Condition G-A2.

Therefore, Claim 1 holds under either requirements of Condition G-A2.

Step 5: Verification of Claim 2 With Condition G-Q and Lemma 9, the proof

here is a simple extension of step 4 in the proof of Proposition 4. We only give an

outline here. Using same decomposition used in (3.34), we have

Bq(s,m) =
1

(1− s)
[U1n(s,m) + U2n(s,m) + U3n(s,m)].

For U2n, similar to step 4 in the proof of Proposition 4, we have:

sup
m=1,...,M
|s−τ |≤B·rn

|U2n(s,m)| ≤ sup
m=1,...,M
|s−τ |≤B·rn

∥∥∥∥∥∥∥∥∥∥

n∑
i=1

wim

[
Xi − x̄m
h̄m

]
u2i(s)

nS0m

∥∥∥∥∥∥∥∥∥∥
· sup
m=1,...,M

∥h̄mST
1mS

−1
2m∥

+ sup
m=1,...,M
|s−τ |≤B·rn

∣∣∣∣∑n
i=1wimu2i(s)

nS0m

∣∣∣∣
= OP(g2n),

which follows from Condition G-Q.

For U1n(s,m), it follows verbatim to part 4 of Proposition 4 that:

sup
m=1,...,M
|s−τ |≤B·rn

|U1n(τ,m)| = OP(g
2
1n), sup

m=1,...,M
|s−τ |≤B·rn

|U3n(τ,m)| = OP(g
2
1n),

117



from the uniform convergence (over s) in Lemma 9.

Noting that g21n + g2n ≪ n−1/2, we have verified Claim 2.

3.7.5 Proof of the technical lemmas

3.7.5.1 Proof of Lemmas 5, 6 and 7

In this section, we use the same notations as in the proof of Theorem III.1 in

Section 3.7.2.

Proof of Lemma 5. First we prove the second claim. By the Lipschitz continuity of

g(·), we have

∥∥∥∥∥E
[

M∑
m=1

1{X ∈ Am}g(x̄m)h(X)

]
− E[g(X)h(X)]

∥∥∥∥∥
≤ E

[
M∑

m=1

1{X ∈ Am} · ∥g(x̄m)− g(X)∥ · |h(X)|

]
≲ sup

m=1,...,M
diam(Am) · E [|h(X)|]

= oP(1),

where the last equality follows from the binning conditions in Lemma 5 as well as the

absolute integrability of h.

For the first claim, we first show the convergence when γ̂m is replaced by π̂m,

where π̂m is given in Lemma 5. By re-arranging the summation we have

M∑
m=1

π̂mg(x̄m) =
1

n

M∑
m=1

n∑
i=1

1{Xi ∈ Am}g(x̄m) =
1

n

n∑
i=1

M∑
m=1

1{Xi ∈ Am}g(x̄m)︸ ︷︷ ︸
U

(n)
i

,

where U
(n)
i depends on the sample size through binning. For each fixed n, U

(n)
i are

i.i.d. across i = 1, . . . , n, and E[|U (n)
i |] < +∞ since g(·) is bounded. The Law of Large
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Numbers gives
M∑

m=1

π̂mg(x̄m)− E[U
(n)
i ]

P ∗
−→ 0.

Furthermore, using the second claim of the lemma, we have E[U
(n)
i ]→ E[g(X)], thus

M∑
m=1

π̂mg(x̄m)
P ∗
−→ E[g(X)]. (3.38)

Next, we show the first claim of the lemma holds with γ̂m. Under the conditions

on γ̂m in Lemma 5, we have

∣∣∣∣∣
M∑

m=1

γ̂mg(x̄m)−
M∑

m=1

π̂mg(x̄m)

∣∣∣∣∣ ≤
M∑

m=1

∣∣∣∣ γ̂m − π̂mπ̂m

∣∣∣∣ π̂m|g(x̄m)| = oP(1),

since |g(·)| is bounded. The proof is now complete by combining the above displayed

equation with (3.38).

Proof of Lemma 6. We prove the three items separately.

For claim 1, note that |v(s, x)− q(s, x)| is a continuous function in s and x under

Condition G-Y2; therefore the upper bound holds since continuous functions are

always bounded on compact intervals. We consider the lower bound. By the uniform

continuity of q(s, x) on compact intervals, there is a constant c1 > 0 such that |s−τ | ≤

2c1 implies |q(s, x) − q(τ, x)| ≤ ε0 for all x, where ε0 is defined in Condition G-Y1.

Without loss of generality we assume c1 < ε0/2. For each |s− τ | < c1, we have

v(s, x)− q(s, x) =

∫ 1

s
q(α, x)− q(s, x) dα

1− s

≥
inf

x,|α−τ |≤2c1

[
∂q(α, x)

∂s

]
·
∫ τ+2c1

τ+c1

|α− s| dα

1− s

≥ 1

sup
x,|y−q(τ,x)|≤ε0

fY |X(y;x)
· c21
2(1− s)

.
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The lower bound in the first claim hence follows follows from Condition G-Y1.

For claim 2, the derivative of q(s, x) is bounded because fY |X(y;x) is bounded in

Condition G-Y1. For the derivative of v(s, x), note

∂v(s, x)

∂s
=
v(s, x)− q(s, x)

1− s
; (3.39)

the boundedness of the above derivative then follows from item 1 of Lemma 6.

Finally we prove claim 3. Since claim 2 of Lemma 6 implies both v(s, x) and

q(s, x) are uniformly (in x) Lipschitz continuous in s ∈ [τ − c1, τ + c1]. Therefore, the

derivative ∂v(s, x)/∂s is also uniformly (over both x and s ∈ [τ − c1, τ + c1]) Lips-

chitz continuous from (3.39). Furthermore, the Lipschitz continuity of [∂v(s, x)/∂s]−1

follows since ∂v(s, x)/∂s is uniformly bounded away from 0 and +∞.

Proof of Lemma 7. We need to check items 1, 2 and 3 in the lemma separately. As a

preliminary result, note that

∣∣∣∣∣
M∑

m=1

(γ̂m − π̂m)

∣∣∣∣∣ ≤
M∑

m=1

π̂m

∣∣∣∣ γ̂m − π̂mπm

∣∣∣∣ = oP(1),

under the conditions of the lemma. Therefore
∑M

m=1 γ̂m = OP(1).

To check item 2, it follows that

√
n

M∑
m=1

γ̂m [v̂m(τ)− vm(τ)]2 ≤ OP(
√
n r2n),

which is a direct consequence of Condition G-V1.

Next we check item 3 in Lemma 7. From the monotonicity and (left-)continuity of

v̂(s, x̄m) we have τ ≤ ĥm[v̂m(τ)] < τ+gn, for any gn > 0 satisfying v̂m(τ+gn) > v̂m(τ).

Therefore it suffices to show that there exists a sequence 0 < gn ≪ n−1/2, such that

inf
m=1,...,M

[v̂m(τ + gn)− v̂m(τ)] > 0,
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with high probability; the above displayed inequality means the functions v̂m(·) are

not flat near τ . Note for any 0 < gn ≪ n−1/2, we shall have

inf
m=1,...,M

[v̂m(τ + gn)− v̂m(τ)] ≥ inf
m
[vm(τ + gn)− vm(τ)]

− sup
m=1,...,M

s:|s−τ |≲n−1/2

|[v̂m(s)− vm(s)]− [v̂m(τ)− vm(τ)]|

︸ ︷︷ ︸
OP(Gn)

≥ gn ·

 inf
m=1,...,M
|s−τ |≤gn

v′m(s)

−OP(Gn),

where Gn ≪ n−1/2 as in the second requirement of Condition G-V1. By Lemma

6, v′m(s) is uniformly bounded from below; therefore by choosing any gn such that

Gn ≪ gn ≪ n−1/2, the last displayed inequality is positive with probability tending

to 1. Item 3 in Lemma 7 thus takes hold.

Finally we check item 1 in Lemma 7. Our proof follows the classical treatment in

Bahadur (1966). We first show that ĥm(z) converge uniformly at a rate of rn, which

is given in Lemma 7. For each s in a shrinking neighbourhood of τ , and for any fixed

C1 > 0, it follows from the definition of ĥ in (3.10) that

ĥm[vm(s)] < s− C1rn ⇒ vm(s) ≤ v̂m(s− C1rn),

ĥm[vm(s)] > s+ C1rn ⇒ vm(s) ≥ v̂m(s+ C1rn),

which shows that

sup
m=1,...,M

|ĥm[vm(s)]− hm[vm(s)]| > C1rn

⇓

sup
m=1,...,M
|u|<C1rn

|v̂m(s+ u)− vm(s+ u)| ≥ C1rn inf
|u|≤C1rn

v′m(s+ u).
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Note v′m(·) is uniformly bounded in Lemma 6, hence for sufficiently large C1, the

probability of the right hand side of the above displayed equation converges to zero

by Condition G-V1. Adding uniformity with respect to s, we have that

sup
m=1,...,M

|z−vm(τ)|≤C2 (rn+n−1/2)

|ĥm(z)− hm(z)| = OP(rn) = oP(1), (3.40)

for some C2 > 0; we can use the range |z − vm(τ)| ≤ C2 (rn + n−1/2) since hm is

uniformly (over m) Lipschitz continuous by Lemma 6.

Next we consider the asymptotic equi-continuity of ĥm. Let zm = vm(τ), and fix a

z′m such that |z′m − zm| ≤ C2(n
−1/2 + rn). Define ξ̂m = ĥm(zm), ξ̂

′
m = ĥm(z

′
m). Fixing

n, from the monotonicity and (left-)continuity of v̂m we have:

v̂m(ξ̂m) ≤ zm ≤ v̂m(ξ̂m + εn), v̂m(ξ̂
′
m) ≤ z′m ≤ v̂m(ξ̂

′
m + εn),

for any εn > 0; See Van der Vaart (2000, Chapter 19). Letting ∆m(·) = v̂m(·)−vm(·),

the first set of inequalities above on the left implies

∆m(ξ̂m) ≤ [zm − vm(ξ̂m)] ≤ ∆m(ξ̂m + εn) + vm(ξ̂m + εn)− vm(ξ̂m).

Re-arranging the above displayed inequalities gives

∆m(ξ̂m)−∆m(ξ̂
′
m + εn)− ηk(z′m) ≤ [zm − z′m]− [vm(ξ̂m)− vm(ξ̂′m)]

≤ ∆m(ξ̂m + εn)−∆m(ξ̂
′
m) + ηk(z

′
m),

(3.41)

where

ηk(z
′
m) = max

{
|vm(ξ̂m + εn)− vm(ξ̂m)|, |vm(ξ̂′m + εn)− vm(ξ̂′m)|

}
.

We derive the desired asymptotic equi-continuity of ĥm from (3.41). To this end,
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we bound its left and right hand sides separately. An application of the results in

(3.40) shows that both ξ̂m and ξ̂′m converges in probability towards τ uniformly over

m. It then follows from the Lipschitz continuity of vm in Lemma 6 that

sup
m=1,...,M

|z′m−vm(τ)|≤C2(n−1/2+rn)

|ηm(z′m)| = OP(εn).

In addition, from (3.40) we have

sup
m=1,...,M

|ξ̂m − τ | = OP(rn), sup
m=1,...,M

|z′m−vm(τ)|≤C2(n−1/2+rn)

|ξ̂′m − τ | = OP(rn + n−1/2),

Then, by choosing εn = o(n−1/2 ∧ rn) we have

sup
m=1,...,M

|z′m−vm(τ)|≤C2(n−1/2+rn)

|∆m(ξ̂m)−∆m(ξ̂
′
m + εn)| = oP

(
n−1/2

)
,

from the second claim of Condition G-V1. The right hand side of Equation (3.41)

can be bounded with the same argument, hence we have

sup
m=1,...,M

|z′m−vm(τ)|≤C1(n−1/2+rn)

∣∣∣[zm − z′m]− [vm(ξ̂m)− vm(ξ̂′m)]
∣∣∣ = oP

(
n−1/2

)
, (3.42)

by our choice of εn.

Finally, we connect Equation (3.42) with the desired asymptotic equi-continuity

of ĥm. Let ξm = hm(zm), ξ
′
m = hm(z

′
m), and therefore zm − z′m = vm(ξm) − vm(ξ′m).
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By the first-order Taylor expansion of vm(·) we have

∣∣∣[zm − z′m]− [vm(ξ̂m)− vm(ξ̂′m)]
∣∣∣ =

∣∣∣v′m(s̃1)[ξm − ξ̂m]− v′m(s̃2)[ξ′m − ξ̂′m]∣∣∣
≥ v′m(s̃1)

∣∣∣[ξm − ξ̂m]− [ξ′m − ξ̂′m]
∣∣∣

− sup
m=1,...,M

∣∣∣[v′m(s̃1)− v′m(s̃2)] · [ξ̂′m − ξ′m]∣∣∣︸ ︷︷ ︸
OP(Hn)

≥ c1

∣∣∣[hm(zm)− ĥm(zm)]− [hm(z
′
m)− ĥm(z′m)]

∣∣∣
−Hn,

for some s̃1 in between ξm and ξ̂m and some s̃2 in between ξ′m and ξ̂′m; the last

inequality follows by expanding ξm and x̂m, and that v′m is bounded in Lemma 6.

Since both hm and v′m is Lipschitz continuous, it follows from (3.40) that we can take

Hn = (rn + n−1/2)2. We conclude from the above displayed equation and (3.42) that

sup
m=1,...,M
zm=vm(τ)

|z′m−vm(τ)|≤C1·(rn+n1/2)

∣∣∣[hm(zm)− ĥm(zm)]− [hm(z
′
m)− ĥm(z′m)]

∣∣∣
= oP

(
n−1/2

)
+OP

(
(rn + n−1/2)2

)
,

which proves item 1 of Lemma 7. The proof is now complete.

3.7.5.2 Proof of Lemmas 8 and 9

In this section, we use the same notations as in the proof of Theorem III.2 in

Section 3.7.3.

Proof of Lemma 8. We first prove the first claim; By definition

∥∥S−1
0mS1m

∥∥ ≤ ∑n
i=1∥Xi − x̃m∥1{Xi ∈ Am}∑n

i=1 1{Xi ∈ Am}
≤ h̄m,
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for all m = 1, . . . ,M . Therefore

∣∣∣∣1− γ̂m
S0m

∣∣∣∣ = ∣∣S−1
0mS

T
1mS

−1
2mS1m

∣∣ ≤ ∥h̄mS−1
2mS1m∥,

and hence the first claim follows from the second claim. It suffices to show

sup
m
∥h̄mS−1

2mS1m∥ = oP(1).

For Claim 2, we first give a uniform probability order bound for ∥S1m∥2, where

n · S1m =
n∑

i=1

(Xi − x̃m)1{Xi ∈ Am} ∈ Rp.

We apply the covering argument to show the convergence of the ℓ2 norm. For any

α ∈ Rp, with ∥α∥ = 1, we have

∣∣E (αTS1m

)∣∣ =

∣∣∣∣αT

∫
z∈Am

(z − x̃m)fX(z)dz
∣∣∣∣

≤ fX(x̃m) ·
∣∣∣∣αT

∫
z∈Am

(z − x̃m)dz
∣∣∣∣

+αT

∫
z∈Am

|fX(z)− fX(x̃m)| · ∥z − x̃m∥ dz

= 0 +O
(
h̄p+2
m

)
, (3.43)

uniformly over m, where the last inequality owns to x̃m being the geometric center

of Am, as well as the Lipschitz continuity of fX . Similarly, we have the following

uniform bound for variance

var
(
αTS1m

)
≤ E[(αT (Xi − x̃m)1{Xi ∈ Am})2]

= O
(
h̄p+2
m

)
.

Furthermore, note the boundedness of ∥Xi − x̃m∥ ≤ h̄m when Xi ∈ Am. Application
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of the Bernstein’s inequality (Vershynin, 2018, Theorem 2.8.4) gives for any ε > 0,

Pr
(
n · |αTS1m| ≥ nh̄p+1

m ε
)

≤ Pr
(
|E(αTS1m)| ≥ h̄p+1

m ε
)
+ Pr

(
n · |αTS1m − E(αTS1m)| ≥ nh̄p+1

m ε
)

≤ 2 exp

{
− n2h̄2p+2

m ε2/2

nO(h̄p+2
m ) + nh̄p+2

m ε/3

}
= 2 exp

{
−C1nh̄

p
mε

2
}
,

for some constant C1 > 0 whenever n is sufficiently large. With the standard covering

argument, see e.g., Vershynin (2018, Chapter 4), we have

∥S1m∥ = sup
α
αTS1m ≤ 2 sup

j=1,...,J
αT
t S1m,

where {αj} forms a 1/2-net in the unit p-dimensional sphere and the covering number

J ≤ 2p. Using a union bound over m and t gives

Pr

(
sup

m=1,...,M

∥∥∥∥n · S1m

nh̄p+1
m

∥∥∥∥ ≥ 2ε

)
= 2

M∑
m=1

J∑
j=1

exp{−C1nh̄
p
mε

2}

≤ 2 exp
{
logM + log J − C1nε

2 · inf
k
h̄pm

}
≲

1

n3
,

for sufficiently large n under Condition G-A1, which implies

sup
m=1,...,M

∥∥∥∥ S1m

h̄p+1
m

∥∥∥∥ = oP (1) .

Next, we prove an analogous result for the operator norm of S−1
2m. Basic matrix

algebra gives

∥S−1
2m∥op =

(
min
α∈Rp

αTS2mα

)−1

, (3.44)

and hence it suffices to bound the right hand side. For any fixed α in the p-dimensional
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unit sphere, we have, using similar to the derivation in (3.43):

E
(
n · αTS2mα

)
≥ m1 · nhp+2

m ,

var
(
n · αTS2mα

)
= O

(
nh̄p+4

m

)
,

for some constant C2; the expectation is lower bounded since the Am covers a ball

with radius hm. With Bernstein’s inequality, similar to that used for S1m, we have

for any ε > 0:

Pr
(
n · |αTS2mα− E(αTS2mα)| ≥ nh̄p+2

m ε
)
≤ 2 exp

{
−C2nh̄

p
mε

2
}
,

and hence for any sufficiently large M2 > 0,

Pr

(
nh̄p+2

m

n · αTS2mα
≥M2

)
= Pr

(
n · αTS2mα ≤

1

M2

nh̄p+2
m

)
≤ Pr

(
n · |αTS2mα− E(αTS2mα)| ≥ n · E[αTS2mα]−

1

M2

nh̄p+2
m

)
≤ Pr

(
n · |αTS2mα− E(αTS2mα)| ≥ m1nh̄

p+2
m /2

)
≤ 2 exp{−C2nh̄

p
mm

2
1/4},

since h̄m/hm is uniformly bounded and the expectation is bounded from below.

Next, applying the same covering argument again, and note the relationship from

(3.44), we have that

Pr

(
sup

m=1,...,M

∥∥h̄p+2
m S−1

2m

∥∥
op
≥M2

)
≲ exp{logM + p log 2− C2nh

pm2
1/4} ≲

1

n3
,

implying

sup
m=1,...,M

∥∥h̄p+2
m S−1

2m

∥∥
op

= OP(1).
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Therefore Claim 2 follows by combining the norm bounds for S1m and S−1
2m. In

particular,

Pr

(
sup
m
∥h̄mS−1

2mS1m∥ ≥
1

2

)
≤ Pr

(
sup
m

∥∥(h̄p+1
m )−1S1m

∥∥ ≥ 1

2M2

)
+ Pr

(
sup
m

∥∥h̄p+2
m S−1

2m

∥∥
op
≥M2

)
≲

1

n3
.

For Claim 3, we give a bound for

S0m = n−1

n∑
i=1

1[Xi ∈ Am],

similar to what we did in Claim 2. Note that

E[S0m] = Pr(X ∈ Am) ≳ hpm, var[S0m] ≤ Pr(X ∈ Am) ≲ h̄pm,

since the density of X is bounded. Therefore for small enough ε0 > 0, an application

of Bernstein’s inequality gives

Pr (S0m ≤ ε0h
p
m) ≤ Pr (S0m − E[S0m] ≤ −ε0hpm/2)

≤ exp
{
−C3nh̄

p
mε

2
0

}
,

for some constant C3 > 0. Taking a union bound with all m = 1, . . . ,M shows

Pr

(
inf
m

S0m

h̄pm
≤ ε0

)
≤

M∑
m=1

exp
{
−C3nh̄

p
mε

2
0

}
≤ 1

n3
,

for sufficiently large n with the bandwidth in Condition G-A1. The proof is now

complete.
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Proof of Lemma 9. We only give detailed proof for item 1; the conclusion for item

2 holds similarly and we only give an outline. We prove the conclusion specifically

for an = rn in Proposition 4 and bn = g1n as in Condition G-Q. We use the same

notations in (3.26) and define

u1i(s) = [Yi − q(s,Xi)] [1{Yi ≥ q̂(s,Xi)]− 1{Yi ≥ q(s,Xi)}] ,

u3i(s) = (q(s,Xi)− q̂(s,Xi)) · [1{Yi ≥ q̂(s,Xi)} − 1{Yi ≥ q(s,Xi)}] ;

Correspondingly the left hand sides in Lemma 9 can be written as

U1n(s,m) =

∑n
i=1wimκimu1i(s)∑n

i=1wim

, U3n(s,m) =

∑n
i=1wimκimu3i(s)∑n

i=1wim

.

Moreover, let

Rq = sup
m=1,...,M
|s−τ |≤B·rn

|q̂(s,Xi)− q(s,Xi)| = OP(g1n),

as in Condition G-Q.

We consider the decomposition:

|U1n(s,m)| ≲P (nS0m)
−1

n∑
i=1

wim[yi − q(s,Xi)]1{q(s,Xi) ≤ yi ≤ q̂(s,Xi)}

+(nS0m)
−1

n∑
i=1

wim[q(s,Xi)− yi]1{q̂(s,Xi) ≤ yi ≤ q(s,Xi)}

≤ (nS0m)
−1

n∑
i=1

wim[yi − q(s,Xi)]1{q(s,Xi) ≤ yi ≤ q(s,Xi) +Rq}

+(nS0m)
−1

n∑
i=1

wim[q(s,Xi)− yi]1{q(s,Xi)−Rq ≤ yi ≤ q(s,Xi)}

≜ U
(+)
1n (s,m) + U

(−)
1n (s,m),

where we use a constant to upper bound |κim| (see Claim 2 in the proof of Proposition

4); and the second inequality holds by monotonicity of the indicator functions. By
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symmetry, hereafter we focus on the term U
(+)
1n (s,m).

Let s− = τ −Brn, s+ = τ +Brn. For any s ∈ [s−, s+] we have

0 ≤ U
(+)
1n (s,m) ≤ (nS0m)

−1

n∑
i=1

wim[yi − q(s−, Xi)]1{q(s−, Xi) ≤ yi ≤ q(s+, Xi) +Rq}

≜ Ū
(+)
1n (k),

Therefore we can drop the supremum over s by relying on Ū
(+)
1n (k), we bound its

expectation and centered process separately. In what follows we bound the centered

empirical process and the expectation of Ū
(+)
1n (k) separately.

We give a tail bound for E[Ū
(+)
1n (k)] − Ū (+)

1n (k) using Hoeffding’s inequality (con-

ditional on X) and a union bound. By Condition G-Y1, each summand in Ū
(+)
1n (k) is

bounded by [yi − q(s−, x)]1{q(s−, x) ≤ yi ≤ q(s+, x) + Rq} ≲ (s+ − s−) + Rq for all

x. For any δ1 > 0, there exists a large enough M1 > 0 that

Pr

(
sup

m=1,...,M

∣∣∣Ū (+)
1n (k)− E[Ū

(+)
1n (k)]

∣∣∣ ≥M1(g1n + rn)

∣∣∣∣∣X
)

≤ 2 exp
{
log n− 2nM2

1 · inf
m
S0m

}
+ δ1,

where the δ1 comes from the probability that Rq ≥ M1g1n. Similar to how we ob-

tain (3.33), the following unconditional tail bound holds from the above displayed

conditional bound:

Pr

(
sup

m=1,...,M

∣∣∣Ū (+)
1n (k)− E[Ū

(+)
1n (k)]

∣∣∣ ≥M1(g1n + rn)

)
≲ 2δ1.

130



Here we bound the expectation E[Ū
(+)
1n (k)]. By Condition G-Y1’ we have

E[Yi − q(s−, Xi)]1{q(s−, Xi) ≤ Yi ≤ q(s+, Xi) +Rq}

= E[Yi − q(s−, Xi)]1
{
0 ≤ [Yi − q(s−, Xi)] ≤ Rq + f−1|s+ − s−|

}
= O

(
(g1n + rn)

2
)
,

since s+ − s− ≲ rn and Rq = OP(g1n). Therefore

sup
m=1,...,M

E[Ū
(+)
1n (k)] = OP

(
(g1n + rn)

2
)
.

Combining the bounds for the expectation and the centered empirical process, we

arrive at

sup
m=1,...,M
|s−τ |≤B·rn

U
(+)
1n (s,m) ≲P sup

m=1,...,M
Ū

(+)
1n (k) = OP

(
(g1n + rn)

2
)
.

Repeating the same procedure for U
(−)
1n (s,m) would complete the proof for the first

item of the Lemma.

For U3n(s,m), note

|U3n(s,m)| ≲P Rq(nS0m)
−1

n∑
i=1

wim1[q(s,Xi)−Rq ≤ yi ≤ q(s,Xi) +Rq];

therefore we can follow the same line of reasoning and establish

sup
m=1,...,M
|s−τ |≤B·rn

|U3n(s,m)| = OP

(
(g1n + rn)

2
)
.

The proof is now complete.
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3.7.6 Auxiliary discussions

3.7.6.1 On the monotonicity of the initial SQ estimator

In Condition G-V1, we require the initial SQ estimator v̂(s, x̄m) to be mono-

tonically increasing in s ∈ (0, 1). In our discussions below Condition G-V1, we

demonstrate that monotonicity can be achieved by re-arrangement of a given estima-

tor (Chernozhukov et al., 2009, 2010). Here we provide a technical perspective that

suggests monotonicity may not be necessary for Theorem III.1.

Even when the initial SQ estimators are not monotone, the m-Rock approach still

has a clear interpretation as finding the τth ‘re-arranged’ SQ (Chernozhukov et al.,

2009). To see this, consider the univariate case with no covariate as an illustrative

example. Following (2.2), the m-Rock approach solves:

min
C

∫ 1

0

ρτ (v̂(s)− C) ds ≈
1

J
min
C

J∑
j=1

ρτ (v̂(sj)− C) , (3.45)

where we discretize the integral above as a grid s1, . . . , sJ ∈ (0, 1). The solu-

tion to (3.45) is approximately the τ -th quantile of the (possible unordered) set

{v̂(s1), . . . , v̂(sJ)}. Operationally, the m-Rock approach gives exactly the τ -th mono-

tonically re-arranged superquantile in Chernozhukov et al. (2009).

Following this insight, we now demonstrate that the proof of Theorem III.1 may

adapt to situations where v̂(s, x̄m) is not monotonic. As we’ve demonstrated in the

proof of Theorem III.1, central to the main result is the asymptotic properties of

ĥ(·, x̃m); Without monotonicity, ĥ(·, x̃m) is defined by

ĥ(z, x) :=

∫ 1

0

1{v̂(s, x) ≤ z} ds = sup{s ∈ [0, 1] : v̂(s, x) ≤ z}.

The functional ĥ(·, x̃m) is the monotonized inverse operator in Chernozhukov et al.

(2010); note when v̂(·, x̃m) is indeed monotonic, ĥ(·, x̃m) reduces to the classic inverse
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operator defined in (3.10). Corollary 3 of Chernozhukov et al. (2010) establishes

the Hadamard differentiability of ĥ(·, x̃m), and shows that its asymptotic property

does not rely on the (finite-sample) monotonicity of v̂(·, x̃m). With some technical

modification, we expect that their proof can be adapted to our setting, therefore

our main result, i.e., Lemma 7 and Theorem III.1, can be established without the

monotonicity requirement in Condition G-V1.

Remark 7. As yet another technical solution, one may pursue the following strategy:

first find J equally-spaced grid points 0 < τ1 < . . . < τJ < 1 that spans the interval

[0, 1]. Then we can estimate the initial SQ on the grid with linear interpolations

in between the grid points. The monotonicity follows with probability going to 1

provided that rn ≪ (τj+1 − τj)≪ n−1/4, where rn is in Condition G-V1.

3.7.6.2 On the bias in the initial SQ estimator

Here we illustrate the importance to control the bias in the initial SQ estimator.

Consider the following example with fixed design in a unit cube [0, 1]p (excluding

intercept); and we define the bins as hypercubes with edge length h̄ and therefore we

have M ≤ ⌈h̄−p⌉ total bins. Suppose we use a standard Nadaraya-Watson type esti-

mator for the initial SQ in each bin m, and the τ -th SQ estimator can be represented

as v̂m(τ)− vm(τ) = Bm + Um, where E[Um] = 0 and Bm is the bias.

We consider the plausibility of Condition G-V2. From the results in (Kato, 2012),

Bm = OP(h̄
2) and Um = OP((nh̄

p)−1/2). Because each v̂m are based on local observa-

tions in disjoint bins, (Bm, Um) is independent across m = 1, . . . ,M . Therefore, the

aggregation for Um gives

√
n

M∑
m=1

Um =
√
nM ·OP

(
1√
nhp

)
= OP(1),

by the Central Limit Theorem, provided that
√
nh̄p → 0. On the other hand, for the
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bias terms we have

√
n

M∑
m=1

Bm =
√
nM ·OP(h̄

2) = OP

(√
nh2−p

)
;

the order of the above sum goes to infinity if p > 1, hence the bias dominates in the

aggregation of v̂m in Condition G-V2. Therefore, it is critical to reduce the bias when

constructing the initial SQ estimator.
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CHAPTER IV

Numerical and Empirical Investigations

In this chapter, we demonstrate the practical applicability of the m-Rock approach

via numerical and empirical examples. Inspired by our theoretical framework in

Chapter 3, we first discuss the computational aspects of the m-Rock approach and

give a prototype implementation of the approach. Then we demonstrate the numerical

stability and statistical efficiency of our approach via simulation studies. We also

apply the m-Rock approach to two empirical examples related to finance and public

health.

4.1 Implementation

Our theoretical analysis in Chapter 3 relies on finding disjoint bins that parti-

tion the sample space. However, it is often more practical to consider overlapping

and possibly data-dependent bins. Specifically, we use subsampling and k-Nearest

Neighbours (kNN) to find those overlapping bins. Suppose the observed covari-

ates are X1, . . . , Xn. For each Xi, we find its K nearest neighbours in the data

as Bi = {Xnij
: j = 1, . . . , K}. We then choose a subsample of size m out of those

n sets as B(1), . . . , B(m); those sets form m effective bins that discretize the sample

space and may overlap with each other. The purpose of subsampling is to reduce the

computational cost and we set m = ⌈20n/K⌉ in our experiments. On the other hand,
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the value of K can be regarded as a tuning parameter of the m-Rock approach.

Based on those selected bins, the m-Rock approach can then be implemented from

the discussions in Chapter 3. We give the detailed implementation in Algorithm 1.

We review some notations here. Let X ∈ Rp+1 be the covariate vector including an

intercept term. The number K is the tuning parameter we described above, and δ

(δ ∈ [0, 1)), J and m are three user-specified parameters that we explain below.

Algorithm 1 Estimation of the τth SQ regression via the m-Rock approach.

1: Form an equally-spaced grid over the interval [τ − δτ, τ + δ(1− τ)] as

τ − δτ = s0 < s1 < . . . < sJ = τ + δ(1− τ).

2: Subsample m out of n covariate vectors X(1), . . . , X(m).
3: for i = 1 to m do
4: Find the K nearest neighbours of X(i) in the full data, collected in bin Bi.
5: for j = 0 to J do
6: Obtain the conditional quantile estimator at level sj:

q̂(i)(sj, x), x ∈ Bi.

7: Obtain the initial SQ estimator at level sj from (3.6) in Chapter 3:

v̂ij ← v̂
(
sj, X(i)

)
,

8: end for
9: end for
10: Solve the (approximate) optimization problem via quantile regression

θ̂ ← min
θ∈Rp+1

m∑
i=1

γ̂m

∫ τ+δ(1−τ)

τ−δτ

ρτ
(
v̂
(
s,X(i)

)
−XT

(i)θ
)
ds.

≈ min
θ∈Rp+1

1

1 + J

m∑
i=1

J∑
j=0

γ̂mρτ
(
v̂ij −XT

(i)θ
)
,

where γ̂m is given in (3.7) in Chapter 3.

We explain several aspects of Algorithm 1. First, the choice of J in Step 1 may

have to increase with more sample size, so that the approximation error is negligible.
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Second, in Step 10 we use a δ-truncated interval in the m-Rock loss function, in

accordance with Corollary 1; Moreover, we may use a left-winsorized estimator (for

the lower quantile levels) for v̂(s, x) in Step 7; see also Remark 4 in Chapter 3. The

truncation and winsorization can reduce the computational cost. Third, in Step 2 we

can use the k-medoids algorithm (Schubert and Rousseeuw , 2019) for subsampling,

so that the selected bins are more representative. In our experience, choosing m =

⌈20n/K⌉, J = ⌈
√
n log(n)⌉, δ = 0.8, and using 50% left-winsorization gives relatively

stable performances; therefore we fix those parameters in our subsequent experiments.

Another important ingredient to Algorithm 1 is the quantile estimator in Step

6. While there are many possibilities, in our experiments we restrict to two types of

estimators: local or global estimation. For local estimation, we use the data within

each bin to fit a bin-wise linear quantile regression; and we name this approach m-

Rock with kNN quantile. For global estimation, we use all available data to fit either

(i) linear quantile regression, or (ii) B-splines quantile regression.

Remark 8. Instead of specifying the size (volume) for each bin, in Algorithm 1 we

specify the number (K) of observations within each bin. This is in parallel to using a

variable bandwidth for kernel-based estimation (Muller and Stadtmuller , 1987; Fan

and Gijbels , 1992). By ensuring each bin has sufficient data, our implementation

based on kNN helps with the numerical stability in the initial SQ estimation.

Remark 9. In the scenario with only one covariate, we have conducted extensive

numerical experiments to compare our Algorithm 1 with the implementation using

non-overlapping bins. With only one covariate, it is relatively simple to find non-

overlapping bins based on the sample quantiles, which are consistent with our theo-

retical framework in Chapter 3. We find that our Algorithm 1 is more stable with

respect to the bin sizes.
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4.2 Numerical experiments

4.2.1 The effect of tuning K

In this section, we use Monte Carlo simulations to investigate the effect of K in

the m-Rock approach. Effectively, K is the bandwidth parameter for the initial non-

parametric SQ estimation in Chapter 3; and the choice of K reflects the bias-variance

trade-off in the m-Rock approach. Here we use two models to study the practical

effect of selecting K when the m-Rock approach is implemented as in Algorithm 1.

For each simulation setting, we generate 1, 000 Monte Carlo datasets and report the

average estimation accuracy.

Theoretically, we can derive some theoretical requirements for K. For each bin,

K ≍ nh̄p under the notations in Section 3.4, where h̄ is the radius of the bin and p is

the dimension of covariates. Condition G-A1 in Chapter 3 then implies that K needs

to satisfy:
√
n log n≪ K ≪ n.

In the subsequent simulations, we shall examine the performance of the m-Rock

approach when K varies within the above range.

4.2.1.1 A one-dimensional model

We first consider a heteroscedastic model with one continuous covariate X ∼

U(0, 4):

Y = −1 + 2X + (2(X − 2)2 + 1)(ε− v0), (4.1)

where ε is independent of X and follows the standardized skewed-t5 distribution with

skewness set to 2, see Hansen (1994); v0 is chosen to be the 90% SQ of ε. Figure

4.1 shows the density function of ε, as well as a scatterplot of data generated from

Model (4.1) with sample size n = 2000. Under Model (4.1), the 90% conditional SQ
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is linear in X, yet the 90% conditional quantile is highly non-linear. Therefore many

other approaches in the literature (e.g., those we compare with in Section 3.5) are

not directly applicable.
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Figure 4.1: Illustration of the skewed-t error distribution. Left: The density func-
tions of the standardized t5-distribution and skewed t5-distribution with the skewness
parameter equals to 2. Right: The scatterplot of one dataset generated from Model
(4.1).

We consider three different sample sizes n = 500, n = 2000 and n = 5000 under

Model (4.1), and we focus on τ = 0.9. For initial estimation of the conditional

quantile function in Step 6, we consider two options: (i) kNN quantile regression;

and (ii) B-splines quantile regression with 5 degrees of freedom. In this setting, we

find that the B-splines quantile regression provides an accurate approximation for the

conditional quantile function, and it does not depend on the tuning ofK. We consider

the performance of these two m-Rock implementations when the tuning parameter

K varies within [n0.5, n0.85].

Figure 4.2 shows the scaled RMSE (Root Mean Squared Error) of the m-Rock

approach for a wide range of K. Note the x-axis is on a log-scale; and the RMSE

is multiplied by
√
n so that the results under different sample sizes are comparable.

We observe that both versions of the m-Rock approach can achieve a desirable bias-

variance trade-off for a wide range of K near
√
n log n/2, marked with a vertical line.

When using a proper K, the two m-Rock implementations are similar.

We explain the effect of K in more details. First, choosing too large a K will
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Figure 4.2: The scaled (by
√
n) RMSE for each coefficients under Model (4.1). The

x-axis is displayed on the log scale, and the vertical line marks our recommended
value of K =

√
n log n/2.

lead to a worse performance. This phenomenon is persistent in both implementations

of the m-Rock approach and is due to the binning bias: the local structure of the

covariate space cannot be well-approximated by the bins if they are too large in size.

Second, using a smaller K in Figure 4.2 also drives up the RMSE for the approach

with kNN quantile; This is particularly notable for the estimation of the slope term

β1. With kNN quantile, the tuning of K affects both the m-Rock approach itself

and the initial quantile estimation. The results in Figure 4.2 suggest that the kNN

quantile regression can be unstable with a small K, which impairs the performance

of the m-Rock approach. On the other hand, the m-Rock approach with B-splines

quantile (which does not depend on K) stays relatively stable with smaller values of
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K.

To conclude, we find that when K is in a suitable range, both implementations of

the m-Rock approach can achieve relatively stable performance. In our subsequent

experiments, we shall fix K =
√
n log(n)/2, which is marked with a vertical line in

Figure 4.2. Furthermore, if we have a good conditional quantile estimator that does

not depend on K, the performance of the m-Rock approach can be even more stable,

and smaller values of K may be preferred.

4.2.1.2 A three-dimensional model

Here we consider a model with three continuous covariates to examine the effect

of dimensionality in the selection of K. Specifically, we consider the following model:

Y = −3 + 2X1 − 3X2 + 2X3 + (5X1 + 2)ε (4.2)

where (X1, X2, X3) is uniformly distributed on the 3-dimensional cube [0, 4]3; the

error term ε follows a standard normal distribution independent of the covariates.

While heterogeneity is present in Model (4.2), both the conditional quantile and SQ

of Y are linear in covariates at all quantile levels.

We generate Monte Carlo datasets under Model (4.2) with four difference sample

sizes n = 500; 2, 000; 5, 000 and 10, 000; for each generated data, we estimate the SQ

regression at three quantile levels τ = 0.8, 0.9 and 0.95. For the m-Rock approach,

we consider two implementations based on (i) kNN quantile; or (ii) linear quantile

We also include the Two-Step approach in (2.8) of Chapter 2 as a relatively simple

benchmark: we first fit the τ -th linear quantile regression, followed by least-squares

regression using the data above the fitted τ -th quantile; We name this approach TS-

LS. The TSLS approach is similar to the m-Rock implementation (ii) as they both

rely on the linearity of the conditional quantile function. On the other hand, the m-
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Rock implementation (i) does not rely on a linear quantile regression model a priori,

even though it takes hold under Model (4.2).

We first examine the average RMSE over the four estimated SQ regression coeffi-

cients under Model (4.2). Figure 4.3 gives a matrix of plots that shows the rescaled

(by
√
n) RMSE at different (n, τ) combinations; In each plot, we vary K within the

range [n0.55, n0.85] for the m-Rock approach. We observe that the m-Rock approaches

are consistently more efficient than the benchmark approach with almost all choices

of K; and the performances are relatively steady when K is close to our recommended

value
√
n log n/2, marked by a vertical line in Figure 4.3.
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Figure 4.3: The scaled (by
√
n) average RMSE across four coefficients under Model

(4.2); each row represents a fixed quantile level, and each column shares a fixed
sample size. The x-axis is displayed on the log scale, and the vertical line marks our
recommended value of K =

√
n log n/2.

With multiple continuous covariates, it becomes even more challenging for the m-

Rock with kNN quantile regression. This becomes more evident in the bias-variance
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decomposition in Figure 4.4, where we focus on one of the coefficient β1 and one

quantile level τ = 0.9. For the m-Rock Implementation with kNN quantile, there is

a significant bias for most values of K; the magnitude of the bias is comparable to

that of the standard deviation. From Figure 4.4, using a smaller K quickly increases

the bias, while using a larger K leads to inflated variance. Therefore, it may be

difficult for the m-Rock Implementation (i) to achieve desired bias-variance balance

by tuning K. On the other hand, the m-Rock approach with linear quantile is much

more stable when K is small, though it is less robust because it hinges on a linear

quantile regression model.
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Figure 4.4: The scaled (by
√
n) absolute bias and standard deviation for β1 with

τ = 0.9 under Model (4.2); other attributes of the figure are the same as Figure 4.3.

In summary, the m-Rock approach is still applicable with multiple covariates; and

the choice K =
√
n log n/2 is still suitable under Model (4.2). Nonetheless, the kNN
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quantile regression can be less stable in this setting with respect to the tuning of K.

it is desirable to have a joint quantile and SQ regression model to assist the initial

quantile estimation, though it is not necessary for our theoretical analysis in Chapter

3. Moreover, due to the use of non-parametric initial SQ estimators, the m-Rock

approach requires a much larger sample size when the covariate dimension increases.

4.2.2 More comparisons with a fixed K

In this section, we present more numerical results to compare the m-Rock approach

with other approaches in the literature. We shall fix the value of K in Algorithm 1 to

be K =
√
n log(n)/2. We find the comparisons would not be qualitatively different

when we use a different K at the same magnitude.

We compare with a limited number of approaches in the literature, including

those in Section 3.5. The approaches can be categorized into three classes. The first

class involves two-stage estimation of the quantile and SQ regression, which includes

the Neyman-Orthogonalized Least-Squares (NO-LS) approach in Barendse (2020);

and the simple Two-Step (TS-LS) approach described in (2.8) of Chapter 2. The

second class is based on the joint estimation of Dimitriadis et al. (2020), where we

consider two different specification functions G2(z) = log(z) and G2(z) =
√
z as

in Section 3.5 of Chapter 3, which we name Joint-1 and Joint-2 respectively. We

rely on the R package esreg (Dimitriadis and Bayer , 2022) for computation of the

Joint approaches. For the third class of method, we consider the Original Rockafellar

(O-Rock) approach in Rockafellar et al. (2014), which is implemented based on the

duality theory inMiranda (2014) and Rockafellar and Royset (2018). We only include

the third method in limited scenarios, since it is theoretically biased and hence invalid

in general; see our discussions in Chapter 1.
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4.2.2.1 The quadratic-scale model revisited

Here we examine the one-dimensional Model (4.1) in more detail; we focus on

the same Monte Carlo settings but with more competing methods. For the m-Rock

approach, we include the same two implementations used in Section 4.2.1.1, where

mRock-1 refers to using kNN quantile and mRock-2 refers to B-splines quantile.

Since the 90% conditional quantile of Y given X is not linear, the first two classes

of methods are not directly applicable. We present the bias of those approaches in

Figure 4.5. Except for the m-Rock approaches, all other methods are highly biased,

especially for the intercept term β0; this is because the bias from quantile regression

carries over to the targeted SQ regression. On the other hand, the m-Rock approaches

have no visible bias when the sample size is sufficiently large.
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Figure 4.5: The bias for various SQ regression approaches under Model (4.1); the error
bars show two times the estimated standard errors. For details on abbreviations of
the methods’ names; see the beginning of Section 4.2.2.

For a fair comparison, we now use the same B-splines quantile regression with 5

degrees of freedom for all the competing approaches, therefore alleviating the bias

from quantile modeling. Operationally, we simply use the B-splines basis matrix
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generated by the observed covariate data as the predictors for quantile regression

modeling, which is straightforward to implement for all approaches in Classes 1 and

21. For the m-Rock approach, we also focus on the implementation with B-splines

quantile regression. The estimation accuracies are presented in Table 4.1.

Since the modeling of conditional quantile is the same, all approaches in Table

4.1 are comparable. We highlight several findings. First, the m-Rock approach is

consistently more efficient than all competing methods in this example with het-

erogeneity, with around 30% reduction in RMSE and MAE. Second, all the other

approaches share similar performance. While Barendse (2020) shows that choosing

G2(z) = log(z) is semi-parametric efficient under certain forms of heterogeneity, in

the current Model (4.1) the Joint approaches do not offer any significant efficiency

gain. Therefore, the m-Rock approach can help under broader forms of heterogeneity.

Furthermore, we include one further comparison with the weighted linearization

method described in Equation (3.2). In practice, we can use an estimated weight and

solve the feasible weighted least-squares (WLS) problem:

min
θ

m∑
j=1

[v̂(τ,X(j))−XT
(j)θ]

2

v̂(τ,X(j))− q̂(τ,X(j))
, (4.3)

where both v̂(τ,X(j)) and q̂(τ,X(j)) are available from Steps 6 and 7 in Algorithm

1. Parallel to the m-Rock implementations, we consider two linearization methods,

labeled by Linearize-1 and Linearize-2; the former uses kNN quantile regression and

the latter uses B-splines quantile regression to estimate the weights. We also include

the oracle linearization method (Linearize-OR) as if the weights v(τ, x) − q(τ, x) in

(4.3) were known.

Figure 4.6 compares the estimation accuracy of the linearization and the m-Rock

approaches. We observe that the m-Rock approaches are similar to the (infeasible)

1Though the theoretical results for those approaches may not apply.
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Linearize-OR approach, thereby agreeing with the asymptotic theory in Theorem

III.1. On the other hand, the linearization approaches using estimated weights do

not achieve the same estimation accuracy with limited sample sizes. Therefore, the

m-Rock approach achieves implicit oracle weighting2 without having to estimate the

weights, which may not be consistently reliable in practice with limited sample size.
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Figure 4.6: The RMSE of m-Rock and linearization approaches under Model (4.1).
The error bars show two times the estimated standard errors. For details on abbre-
viations of the methods’ names; see Section 4.2.2.

2Such ‘oracle’ weighting does not refer to the semi-parametric efficient weights, but the true
weight in (4.3).
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Table 4.1: The estimation accuracy for 90% SQ regression under Model (4.1); the
conditional quantiles are modeled by B-splines regression with 5 degrees of freedom
for all methods. RMSE is the root-mean-squared error, and MAE is the mean absolute
error. The numbers in parentheses are the estimated standard errors.

Method
Bias (×10) RMSE (×10) MAE (×10)
β0 β1 β0 β1 β0 β1

n = 500

m-Rock q̂τ (x) by B-splines 0.95
(0.42)

-0.78
(0.27)

13.64
(0.29)

8.82
(0.19)

10.74
(0.25)

6.96
(0.16)

Two-stage NO-LS 0.69
(0.56)

-1.31
(0.38)

19.13
(0.43)

12.88
(0.28)

14.67
(0.34)

9.99
(0.23)

TS-LS 0.74
(0.57)

-1.52
(0.38)

19.66
(0.43)

13.23
(0.28)

15.14
(0.35)

10.33
(0.23)

Joint G2(z) = log(z) 0.76
(0.53)

-1.36
(0.35)

17.88
(0.39)

11.97
(0.25)

13.96
(0.32)

9.39
(0.21)

G2(z) =
√
z 0.54

(0.53)
-1.26
(0.36)

18.08
(0.40)

12.13
(0.25)

14.04
(0.33)

9.46
(0.21)

n = 2000

m-Rock q̂τ (x) by B-splines 0.21
(0.22)

-0.24
(0.14)

6.59
(0.15)

4.29
(0.10)

5.21
(0.13)

3.40
(0.08)

Two-stage NO-LS 0.06
(0.30)

-0.30
(0.20)

9.48
(0.25)

6.42
(0.18)

7.41
(0.19)

5.04
(0.13)

TS-LS 0.02
(0.30)

-0.35
(0.20)

9.53
(0.26)

6.46
(0.19)

7.45
(0.19)

5.08
(0.13)

Joint G2(z) = log(z) 0.05
(0.28)

-0.32
(0.19)

8.92
(0.22)

6.02
(0.16)

6.98
(0.18)

4.74
(0.12)

G2(z) =
√
z -0.02

(0.29)
-0.30
(0.19)

9.03
(0.22)

6.11
(0.16)

7.04
(0.18)

4.79
(0.12)

n = 5000

m-Rock q̂τ (x) by B-splines 0.00
(0.14)

-0.04
(0.09)

4.21
(0.09)

2.74
(0.06)

3.35
(0.08)

2.19
(0.05)

Two-stage NO-LS 0.06
(0.19)

-0.07
(0.13)

5.95
(0.13)

4.02
(0.09)

4.74
(0.11)

3.21
(0.08)

TS-LS 0.03
(0.19)

-0.07
(0.13)

5.96
(0.13)

4.03
(0.09)

4.74
(0.11)

3.21
(0.08)

Joint G2(z) = log(z) 0.01
(0.18)

-0.07
(0.12)

5.67
(0.13)

3.81
(0.08)

4.52
(0.11)

3.04
(0.07)

G2(z) =
√
z -0.03

(0.18)
-0.06
(0.12)

5.68
(0.13)

3.84
(0.09)

4.53
(0.11)

3.06
(0.07)
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4.2.2.2 The linear location-scale shift models

Here we consider the linear model:

Y = −2 + 2X + (1 + γX)ε, (4.4)

where X is uniformly distributed on [0, 4], γ > 0 controls the heterogeneity and ε

is the error term independent of X. Depending on the heterogeneity parameter γ

and the error term ε, Equation (4.4) represents a class of linear location-scale shift

models. Here we consider four different specifications, where ε follows either (i) a

standard normal distribution, or (ii) a standardized skewed-t5 distribution in (4.1)

with skewness 2; and γ is set to be (i) γ = 2 or (ii) γ = 0. Therefore, we cover both

homogeneous and heterogeneous cases with different error distributions.

For each model specification, we consider three sample sizes n = 500; n = 2, 000

and n = 5, 000. For each Monte Carlo dataset, we estimate the SQ regression coeffi-

cients at four different quantile levels τ = 0.8, τ = 0.9, τ = 0.95 and τ = 0.975. For

the m-Rock approaches, we consider two implementations with (i) kNN quantile, and

(ii) linear quantile. We also include all three classes of competing methods described

in Section 4.2.2.

Tables 4.2 and 4.3 show the average RMSE across the two SQ regression coef-

ficients β0 and β1 under Model (4.4); each one of the tables is for a fixed γ value,

representing a scenario with homogeneous or heterogeneous model. For each sample

size n and quantile level τ , we report the maximum of estimated standard errors

among all methods, since the standard errors for different methods are comparable

in this example.

With sufficiently large sample sizes and/or less extreme quantile levels, both im-

plementations of the m-Rock approach are among the most efficient in all scenarios.

With homogeneous models (γ = 0), Table 4.2 shows the m-Rock approaches and the
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Table 4.2: The average RMSE (multiplied by 10) for the SQ regression coefficients
under Model (4.4) in homogeneous settings with γ = 0. The numbers in the paren-
theses show the maximum estimated standard error across all methods for each (n, τ).
For abbreviations of methods’ names, see Section 4.2.2.

Normal error Skewed-t error

Method
Quantile levels (%) Quantile levels (%)

80 90 95 97.5 99 80 90 95 97.5 99

n = 500

m-Rock
kNN q̂ 1.02 1.26 1.64 2.12 2.83 1.80 2.77 4.22 6.40 10.97
linear q̂ 1.02 1.27 1.66 2.24 3.35 1.83 2.85 4.57 7.53 14.66

Rock Original 1.06 1.32 1.67 2.17 3.13 1.68 2.60 4.16 6.54 14.68

Two-stage
NO-LS 1.01 1.25 1.60 2.03 2.89 1.80 2.81 4.46 7.06 12.57
TS-LS 1.01 1.27 1.61 2.04 3.02 1.80 2.84 4.47 7.10 13.03

Joint
Joint-1 1.17 1.44 1.80 2.28 3.16 2.15 3.18 4.84 7.42 13.04
Joint-2 1.11 1.36 1.71 2.18 3.05 1.99 3.01 4.65 7.21 12.66

max. s.e. (0.02) (0.03) (0.04) (0.05) (0.08) (0.05) (0.07) (0.15) (0.25) (0.99)

n = 2000

m-Rock
kNN q̂ 0.50 0.64 0.83 1.11 1.61 0.95 1.46 2.27 3.51 6.16
linear q̂ 0.50 0.64 0.81 1.05 1.58 0.94 1.45 2.25 3.56 6.65

Rock Original 0.52 0.65 0.83 1.06 1.54 0.88 1.33 2.06 3.20 5.80

Two-stage
NO-LS 0.50 0.63 0.80 1.02 1.45 0.94 1.44 2.24 3.52 6.35
TS-LS 0.50 0.63 0.79 1.02 1.45 0.93 1.44 2.23 3.50 6.37

Joint
Joint-1 0.57 0.71 0.89 1.13 1.60 1.09 1.62 2.44 3.73 6.55
Joint-2 0.54 0.67 0.85 1.09 1.54 1.03 1.54 2.35 3.62 6.41

max.s.e. (0.01) (0.01) (0.02) (0.02) (0.03) (0.02) (0.03) (0.05) (0.08) (0.16)

n = 5000

m-Rock
kNN q̂ 0.31 0.40 0.52 0.70 1.07 0.58 0.90 1.41 2.25 4.11
linear q̂ 0.31 0.40 0.51 0.65 0.99 0.58 0.90 1.40 2.20 4.03

Rock Original 0.32 0.41 0.52 0.66 0.96 0.54 0.83 1.28 1.99 3.68

Two-stage
NO-LS 0.31 0.39 0.50 0.64 0.92 0.58 0.90 1.41 2.24 4.18
TS-LS 0.31 0.39 0.50 0.64 0.93 0.58 0.90 1.41 2.24 4.23

Joint
Joint-1 0.35 0.44 0.55 0.71 1.01 0.66 1.00 1.53 2.39 4.36
Joint-2 0.33 0.42 0.53 0.68 0.98 0.62 0.95 1.48 2.32 4.27

max. s.e. (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.04) (0.07) (0.19)
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Table 4.3: The average RMSE (multiplied by 10) for the SQ regression coefficients
under Model (4.4) in heterogeneous settings with γ = 2. Other attributes of the table
are the same as Table 4.2.

Normal error Skewed-t error

Method
Quantile levels (%) Quantile levels (%)

80 90 95 97.5 99 80 90 95 97.5 99

n = 500

m-Rock
kNN q̂ 3.23 4.19 5.44 7.06 9.74 5.78 8.80 13.46 21.17 41.74
linear q̂ 3.26 4.27 5.66 8.11 13.11 5.89 9.13 14.69 25.15 55.99

Rock Original 3.76 4.62 5.80 7.36 12.00 9.25 11.96 16.46 23.69 49.07

Two-stage
NO-LS 4.27 5.44 7.05 9.10 12.99 7.98 12.10 18.89 29.99 55.43
TS-LS 3.68 4.60 6.11 7.94 13.42 7.00 10.70 16.94 27.32 51.06

Joint
Joint-1 3.20 3.99 5.11 6.61 9.33 5.37 8.00 12.31 19.14 33.19
Joint-2 3.40 4.25 5.46 7.04 10.06 5.75 8.55 13.14 20.50 36.35

max. s.e. (0.09) (0.12) (0.16) (0.24) (1.11) (0.18) (0.29) (0.57) (1.83) (4.13)

n = 2000

m-Rock
kNN q̂ 1.60 2.04 2.67 3.51 5.01 2.92 4.44 6.77 10.61 19.22
linear q̂ 1.60 2.05 2.67 3.48 5.34 2.94 4.48 6.86 11.11 21.70

Rock Original 2.41 2.84 3.32 3.92 5.24 7.94 9.65 11.78 15.16 23.30

Two-stage
NO-LS 2.23 2.82 3.60 4.60 6.47 4.04 6.15 9.43 14.77 26.94
TS-LS 1.91 2.38 3.02 3.90 5.51 3.61 5.43 8.41 13.08 24.12

Joint
Joint-1 1.72 2.12 2.67 3.36 4.69 2.90 4.29 6.41 9.84 17.62
Joint-2 1.82 2.26 2.84 3.58 5.02 3.10 4.60 6.87 10.55 18.88

max. s.e. (0.05) (0.06) (0.08) (0.10) (0.15) (0.08) (0.13) (0.20) (0.34) (0.70)

n = 5000

m-Rock
kNN q̂ 0.95 1.22 1.62 2.18 3.26 1.83 2.82 4.35 6.80 12.50
linear q̂ 0.95 1.23 1.62 2.13 3.19 1.83 2.82 4.34 6.78 12.87

Rock Original 1.92 2.21 2.49 2.85 3.59 7.51 9.03 10.77 13.13 18.03

Two-stage
NO-LS 1.34 1.71 2.21 2.85 4.06 2.57 3.96 6.18 9.69 17.83
TS-LS 1.13 1.45 1.88 2.43 3.48 2.27 3.55 5.55 8.59 15.71

Joint
Joint-1 1.04 1.31 1.68 2.16 3.05 1.86 2.79 4.21 6.38 11.40
Joint-2 1.10 1.39 1.78 2.28 3.23 1.99 2.99 4.53 6.87 12.28

max. s.e. (0.03) (0.04) (0.05) (0.06) (0.08) (0.06) (0.09) (0.14) (0.23) (0.50)
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two-stage approaches are more efficient than the Joint approaches. When hetero-

geneity is present (γ = 2), however, the Joint approach with G2(z) = log(z) and the

m-Rock approaches are similar and consistently the most efficient3. These efficiency

comparisons are in line with our theoretical findings in Chapter 3; and the differences

between methods are more evident with heavy-tailed errors. To conclude, the esti-

mation accuracy of the m-Rock approach remains competitive in either homogeneous

or heterogeneous scenarios.

We note that SQ regression can be less stable with limited sample sizes and/or

at extreme quantile levels. The m-Rock approach can be especially sensitive due to

its need for an initial estimator at a range of quantile levels, e.g., when targeting the

99% SQ regression, we often need to estimate up to the 99.9% initial SQ for the m-

Rock approach, which can be unstable with limited sample sizes. Therefore in Tables

4.2 and 4.3, we sometimes observe the m-Rock approach can be less competitive at

extreme quantile levels (e.g., τ = 0.975 or τ = 0.99).

We further zoom in to the case of n = 2000, τ = 0.9 with skewed-t5 error in Figure

4.7, which shows a more detailed bias-variance decomposition of the results in Tables

4.2 and 4.3. We highlight two findings from Figure 4.7. First, Figure 4.7 visualizes the

adaptivity of the m-Rock approach: the variances are among the smallest in either

homoscedastic or heteroscedastic cases. Note, however, that the m-Rock approach

with kNN quantile can introduce some more bias with limited sample sizes.

Second, Figure 4.7 informs us that the Original Rock approach can be highly

biased in heterogeneous scenarios, though it can be valid and even more efficient than

others in homogeneous settings with heavy-tailed errors. In Figure 4.8, we further

compare the bias for the Original Rock approach with the m-Rock approach. The

bias for the O-Rock approach is persistent, while the bias for our m-Rock approach

3We note that the R package esreg for the Joint approach will shift the response variable before
fitting, therefore the numerical performance may differ from the theoretical discussions in Section
3.5.
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vanishes as the sample size increases; Therefore, our modification is critical for a

consistent SQ regression. These results agree with our findings in Chapter 1.

Overall, we conclude that the m-Rock approach demonstrates desirable estimation

accuracy that is automatically adaptive to the heterogeneity in data. The m-Rock

approach can also incorporate either parametric or non-parametric quantile regression

estimators; and when the sample size is large, its performance does not change much

with the quantile estimation. Those empirical findings corroborate our theoretical

discussions in Chapter 3.

4.3 Empirical data applications

In this section, we use two empirical applications to illustrate the use of the m-

Rock approach in practice. In our examples, the standard errors for all involved

statistical procedures are from B = 500 bootstrap samples.

4.3.1 Financial data

We first study an example related to financial risk analysis. In financial appli-

cations, superquantile is often used to quantify the risk in an investment portfolio,

which reflects the potential losses in adverse situations. In this example, we use the

proposed m-Rock approach to study the risk exposures of some investment portfolios

to the Fama-French (F-F) three factors model (Fama and French, 1993, 1995). Our

settings are similar to those in Chetverikov et al. (2022) and Barendse (2020).

We investigate the superquantile risk of 6 different investment strategies based

on the the company’s size and operating profitability (OP) (Novy-Marx , 2013). The

first four portfolios are the double-sorted portfolios based on small/large market cap-

italization (i.e., size) and low/high OP. The other two portfolios are of a long-short

type that takes a long position in high OP stocks and a short position in low OP

stocks; each of those two portfolios focuses only on stocks with big (or small) market

153



0.00

0.05

0.10

0.15

0.20

0.25

β0 β1

Coefficient

Empirical absolute bias

0.00

0.05

0.10

0.15

0.20

0.25

β0 β1

Coefficient

Method

m−Rock−1

m−Rock−2

NO−LS

TS−LS

Joint−1

Joint−2

Rock−Original

Empirical std.

(a) For the homoscedastic case

0.0

0.5

1.0

β0 β1

Coefficient

Empirical absolute bias

0.0

0.5

1.0

β0 β1

Coefficient

Method

m−Rock−1

m−Rock−2

NO−LS

TS−LS

Joint−1

Joint−2

Rock−Original

Empirical std.

(b) For the heteroscedastic case

Figure 4.7: The absolute bias and standard deviation when τ = 0.9 and n = 2000
under Model (4.4) with skewed-t error. The error bars show two times the estimated
standard errors. For abbreviations of methods’ names, see Section 4.2.2.
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Figure 4.8: The bias for each coefficient at different quantile levels τ under Model
(4.4) with heterogeneity (γ = 2) and skewed-t error.

capitalization. For the covariates, we use the Fama-French three factors, which in-

clude the market factor (MktRF), the size factor (SMB), and the value factor (HML).

Those factors are standard in the financial literature as systematic macro-economic

risk factors. We refer to Fama and French (1993) for more detailed discussions of

factor models; and Fama and French (2015) for the portfolio construction based on

profitability. We focus on the U.S. stock market in this example; all data for the

investment portfolios and the F-F factors are publicly available from the data library

of Professor Ken French (https://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html).

In our analysis, we use the daily loss percentage (negative return) of the six

portfolios as different response variables. The sampling period is from July 1963 to
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April 2022, which consists of n = 14, 810 daily observations. Table 4.4 presents the

result for τ = 95% superquantile regression using the m-Rock approach, where we

fix the nearest-neighbour parameter K = 584 in Algorithm 1. To properly capture

the serial correlation, the reported standard errors are from the block bootstrap in

Kunsch (1989) using a fixed block length of one year. We use the name ‘Small/hi’

to represent the portfolio with small size and high profitability, and ‘Small/LS’ for

the portfolio with small size and takes a long-short position based on profitability;

the names of other portfolios follow the same convention. Each row in Table 4.4

represents one regression model with the corresponding portfolio as the response. In

what follows, we refer to the estimated coefficient for each factor as factor loadings.

In Table 4.4, the factor loadings represent the risk exposures of the targeting

portfolio on the Fama-French factor returns; In particular, a negative loading indicates

that risk decreases, i.e., a smaller loss, when the corresponding factor return is high.

The left and right panels in Table 4.4 display similar results for the factor loadings;

yet the approach with kNN quantile consistently under-estimates the intercept term

α. This observation is in line with our result in Section 4.2.2 that kNN quantile

may be more biased. Therefore, we focus on the linear quantile in our subsequent

discussion.

In general, the factor loadings are quite heterogeneous across the six portfolios.

For the first four long-only portfolios, the risk exposures to the market factor are all

approximately −1, which is consistent with the traditional CAPM model; since we

focus on the loss (negative return) distribution, these exposures are negative. The

portfolios of smaller market caps also have significant negative risk exposures to the

size factor; this means that smaller-sized companies have lower risk when the size

premium is high. This is intuitive as the size premium is driven by the excess return

of smaller-sized companies. Except for the Small/hi portfolio, the long-only portfolios

have relatively little risk exposure to the value factor.
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Table 4.4: The 95% SQ regression using the m-Rock approach for the six investment
portfolios. Left/right panels reflects two m-Rock implementations using different
conditional quantile estimators. The term α is the estimated intercept. The numbers
in the parentheses show the block bootstrap standard errors.

linear quantile kNN quantile

Portfolios
F-F factors F-F factors

α (%) MktRF SMB HML α (%) MktRF SMB HML

Small/low 0.578
(0.064)

-1.069
(0.020)

-1.034
(0.047)

-0.090
(0.049)

0.509
(0.047)

-1.074
(0.016)

-1.027
(0.034)

-0.098
(0.038)

Small/hi 0.717
(0.107)

-1.015
(0.023)

-0.866
(0.051)

-0.433
(0.076)

0.603
(0.071)

-1.027
(0.021)

-0.853
(0.044)

-0.406
(0.065)

Big/low 0.914
(0.126)

-1.146
(0.039)

-0.223
(0.068)

0.009
(0.087)

0.793
(0.089)

-1.133
(0.031)

-0.206
(0.053)

-0.035
(0.072)

Big/hi 0.450
(0.066)

-0.938
(0.024)

0.186
(0.034)

0.087
(0.043)

0.404
(0.047)

-0.946
(0.021)

0.183
(0.029)

0.099
(0.039)

Small/LS 1.007
(0.126)

0.075
(0.030)

0.214
(0.077)

-0.323
(0.101)

0.879
(0.087)

0.065
(0.029)

0.202
(0.066)

-0.303
(0.091)

Big/LS 1.246
(0.167)

0.226
(0.058)

0.286
(0.078)

0.126
(0.110)

1.108
(0.123)

0.208
(0.047)

0.306
(0.069)

0.158
(0.098)

For the two long-short type portfolios, the risk exposures to all three factors are

relatively small. In particular, the exposures to the market factor are now approx-

imately zero, or even positive; By taking long-short positions, the market risk is

hedged away in these portfolios. Moreover, those long-short type portfolios have the

largest estimated α among the six portfolios. Note α quantifies the potential loss

that is not captured by the F-F factors (Barendse, 2020). As in Table 4.4, both the

long-short portfolio has an unexplained average daily loss of over 1% in the worst

5% situations. Following the reasoning in Fama and French (2015), these long-short

portfolios are more focused on the profitability effect yet have less exposure to other

systematic risks, comparing with the long-only portfolios. Our results corroborate

the findings in Novy-Marx (2013) that the F-F three factors model is insufficient to

explain variations in the stock market related to profitability.

157



We also give the results for the Original Rock approach in Table 4.5. While the

Original Rock approach is not valid in general, in this example it gives similar results

to the m-Rock approach. The reason is the lack of strong heterogeneity in this dataset.

Nonetheless, when comparing with the m-Rock approach using linear quantile, the

Original Rock approach seems to consistently under-estimate α.

Table 4.5: The 95% SQ regression from the Original Rockafellar’s approach for the
six investment portfolios; the setting is the same as Table 4.4.

Portfolios
F-F factors

α (%) MktRF SMB HML

Small/low 0.508
(0.041)

-1.081
(0.014)

-1.012
(0.034)

-0.110
(0.039)

Small/hi 0.588
(0.057)

-1.034
(0.018)

-0.864
(0.052)

-0.407
(0.055)

Big/low 0.793
(0.078)

-1.128
(0.031)

-0.214
(0.042)

-0.046
(0.076)

Big/hi 0.399
(0.043)

-0.952
(0.019)

0.190
(0.024)

0.092
(0.046)

Small/LS 0.875
(0.070)

0.064
(0.025)

0.160
(0.075)

-0.270
(0.086)

Big/LS 1.088
(0.120)

0.200
(0.045)

0.313
(0.076)

0.166
(0.118)

Furthermore, we compare our results with those obtained using the NO-LS ap-

proach and the Joint approach with G2(z) = log(z). For our m-Rock approach, we

focus on the one with linear quantile. Figure 4.9 shows the point estimates and the

standard error bars for the six investment portfolios. While all methods give qualita-

tively similar point estimates, the estimated standard errors of our m-Rock approach

are consistently among the smallest. These results indicate that our m-Rock ap-

proach may offer improved estimation efficiency compared to other approaches in the

literature.
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Figure 4.9: The comparison between the m-Rock approach, the Joint approach, and
the NOLS approach. Each panel represents an investment portfolio, and the x-axis
shows three F-F factors. We omit the intercept terms. The error bars show two times
the block bootstrap standard errors.
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4.3.2 Birth-weight data

Here we study another example related to birth weight. A low birth weight (<

2500g) is long-known to be associated with increased infant mortality risk and long-

term health issues; See Hughes et al. (2017) for a recent review. Since low birth

weights are considered at risk, in this example we focus on the lower-superquantile

of the birth weight distribution, which is the average birth weight below a certain

quantile level. The method developed in the dissertation is still applicable for the

problem by reversing the direction of both the covariate and response 4.

We focus on the effect of parity on the birth weight distribution. Parity is defined

as the number of live births a mother has given, e.g., a parity of 1 indicates the first

live birth of a mother. In our analysis, we consider the difference in birth weight

between two groups: (i) parity = 1 and (ii) parity > 1; therefore, the variable of

interest is a binary indicator, where parity of 1 is the reference level. This reference

group is commonly referred to as nulliparous in the public health setting. Many

previous studies (Shah, 2010; Duong et al., 2012; Hinkle et al., 2014; Lin et al., 2021)

have shown that nulliparous mothers are exposed to higher risk of low birth weight

and/or birth defect. In this example, we use the m-Rock approach to study the

superquantile effect of parity on the birth weight distribution.

The data we use is the 2020 U.S. birth-weight dataset, which is available on-

line at the National Center for Health Statistics (https://www.cdc.gov/nchs/data_

access/vitalstatsonline.htm). In our analysis, we focus on the cases of male sin-

gleton births only; and we restrict to the subpopulation of black or white mothers

that are recorded to be married, college-educated, non-smokers, and at least 36 years

old. This subpopulation focuses on the mothers that are relatively older but in good

conditions otherwise; therefore, taking the subpopulation eliminates some possible

4The lower τth superquantile of Y given X is equivalent to the upper (1− τ)th superquantile of
−Y given −X.
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confounders in our analysis of parity (Yang et al., 2006; Muula et al., 2011). We

include three other maternal factors in our SQ regression model: mother’s race, age,

and weight gain during pregnancy; We also include a quadratic term for the mother’s

weight gain after centering the variable. Any record with missing data is removed.

We retain n = 79, 336 birth records from the 2020 U.S. birth-weight dataset. Some

summary statistics are presented in Table 4.6.

Table 4.6: Average values of the variables used in the birth weight example, strati-
fied by parity groups. For continuous variables, the numbers in parentheses are the
interquartile range.

Parity = 1 Parity > 1

Birth weight (g) 3301 (3005 – 3657) 3482 (3185 – 3820)
Maternal age 38.0 (36.0 – 39.0) 38.1 (36.0 – 39.0)
Gestational weight gain (lb) 30.4 (21.0 – 38.0) 30.2 (22.0 – 38.0)
Race = Black (%) 10.2 10.7

Table 4.7 presents the result using m-Rock SQ regression at two quantile levels

τ = 0.05 and τ = 0.2, where we fix K = 787 and use linear quantile in the m-Rock

approach. The unit for the reported birth weight effect is in grams. We observe

that the nulliparous group (i.e., parity = 1) has an adverse effect on the lower end of

the birth weight distribution; Moreover, the effect is heterogeneous and not a simple

location shift. For those with the 5% lowest birth weight, babies born to nulliparous

mothers are, on average, over 300 grams lighter than those born to multiparous

mothers. This effect may be interpreted as that mothers giving their first birth may

be inexperienced in pregnancy and giving births (Bisai et al., 2006; Muula et al.,

2011).

In addition, we observe in Table 4.7 that race is another significant risk factor.

The difference in birth weight between white and black mothers is over half a kilogram

at the 5% superquantile. Coupling this effect with the estimated intercept term, we

obtain that the 20% SQ for the birth weight distribution for black mothers at the age
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of 38 years old and had a weight gain of 30 pounds5 is less than 2, 500 grams; such a

low birth weight is considered to at risk in the public health context (Hughes et al.,

2017).

Table 4.7: The lower-SQ regression using the m-Rock approach for the birth weight
example. White mothers with parity 1 are the baseline groups; The other continuous
covariates are centered prior to the regression. The numbers in the parenthesis show
the bootstrap standard errors.

Covariates
Quantile levels
0.05 0.2

(Intercept) 2006.83
( 21.53 )

2580.32
( 9.62 )

Parity > 1 325.93
( 23.35 )

241.22
( 10.64 )

Race = Black -505.92
( 39.09 )

-297.43
( 16.62 )

Mom age -34.03
( 5.33 )

-22.20
( 2.48 )

Mom weight gain 21.39
( 0.92 )

12.67
( 0.43 )

Mom weight gain2 -0.41
( 0.04 )

-0.22
( 0.02 )

Furthermore, we compare the mean, quantile, and superquantile effects of parity

and race in Figure 4.10. The effects of parity and race are differential, in the sense

that the effects at lower tail of the birth weight distribution are different than the

average effect. Figure 4.10 suggests that our superquantile-based approach can better

capture those differential effects, whereas the quantile effect at 20% or 25% does not

show a significant difference from the mean-effect. Furthermore, the SQ effect curves

are smoother than the quantile regression curves, because the SQ is an average over

the entire tail distribution.

As a comparison to the results of the m-Rock approach, we also give the results

5These are the average age and weight gain in the sample from Table 4.6.
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Figure 4.10: The race and parity effects estimated from the m-Rock (lower-)SQ re-
gression, quantile regression (QR) and OLS; the reference levels are white mothers
with parity > 1. The error bars show two times the bootstrap standard errors.

using the NO-LS approach and the O-Rock approach in Table 4.86; see the beginning

of Section 4.2.2 for abbreviations of methods’ names. Comparing with Table 4.7, the

NO-LS approach give similar results to our m-Rock approach; the O-Rock approach

often underestimates the SQ effects by a magnitude of one standard error. This

suggests that the O-Rock approach may implicitly shrink the coefficients towards 0.

These findings echo our simulation findings in Section 4.2.2 that the O-Rock approach

can be biased but has reduced variance.

4.4 Discussion

In this chapter, we use simulations and empirical applications to demonstrate

the performance of the m-Rock approach. Our m-Rock implementation depends

on a tuning parameter K, and a set of quantile regression estimators q̂(s, x). We

demonstrate via numerical experiments that the m-Rock approach is relatively stable

under a wide range of K, and several different choices of q̂(s, x). In practice, we

6The Joint approach is excluded because the algorithm in the esreg package has convergence
issues in our example
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Table 4.8: The lower-SQ regression using the O-Rock and NO-LS approaches for the
birth weight data. Other attributes in the table are the same as Table 4.7

O-Rock NO-LS

Covariates
Quantile levels Quantile levels
0.05 0.2 0.05 0.2

(Intercept) 2002.53
( 19.79 )

2570.77
( 9.08 )

1996.39
( 21.69 )

2569.08
( 9.62 )

Parity > 1 327.33
( 21.56 )

239.08
( 9.64 )

341.10
( 23.85 )

247.71
( 10.63 )

Race = Black -507.97
( 43.49 )

-286.75
( 18.44 )

-497.74
( 40.49 )

-289.97
( 17.77 )

Mom age -29.04
( 4.38 )

-18.95
( 2.07 )

-28.89
( 4.67 )

-20.09
( 2.04 )

Mom weight gain 21.46
( 0.82 )

13.11
( 0.44 )

21.26
( 0.82 )

12.65
( 0.39 )

Mom weight gain2 -0.40
( 0.03 )

-0.21
( 0.02 )

-0.37
( 0.03 )

-0.19
( 0.02 )

find that it is often the best to use a parametric quantile regression estimator for the

m-Rock approach, especially with limited sample sizes and/or multiple continuous

covariates; even though our theoretical analysis in Section 3.3 does not rely on a

linear quantile regression model.

In our simulations, the m-Rock approach demonstrates desirable estimation effi-

ciency in a wide range of models. Parallel to our discussions in Section 3.5, we confirm

numerically that the m-Rock approach is adaptive to a broad form of heterogeneity.

Our empirical studies further illustrate how the m-Rock approach can be useful for

data analysis in financial and public health applications.

We hasten to add that our Algorithm 1 is only a prototype implementation for the

m-Rock approach, and our empirical applications are relatively simple. Importantly,

we have restricted examples with only a few continuous covariates because the kNN

binning strategy can be unstable otherwise. Furthermore, it is not yet clear how to

select the tuning parameter in a data-driven way. Therefore, we would need to develop
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a more general implementation of better applicability of the m-Rock approach.
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CHAPTER V

Posterior Inference for Quantile Regression with

Shrinkage Priors

5.1 Introduction

Quantile regression, since its first debut in Koenker and Bassett Jr (1978), has

become a popular data analysis tool in a wide range of applications, from economics

(Fitzenberger et al., 2013) to public health (Wei et al., 2019). Importantly, quantile

regression allows researchers to go beyond the conditional mean analysis: it examines

the effect of the covariates at different conditional quantile levels, thus providing

more comprehensive information on the relationship between the response and the

covariates. Another celebrated virtue of quantile regression is its robustness. In the

presence of heavy tails or extreme outliers, the median regression, also known as the

Least Absolute Deviation regression, serves as an attractive alternative to the least-

squares regression (Narula and Wellington, 1982; Wilson, 1978). The asymptotic

theory and related inferential methods have been well explored for quantile regression.

We refer the readers to Koenker (2005) and Koenker et al. (2017) for a comprehensive

discussion on quantile regression.

In this chapter, we consider a pseudo-Bayesian framework for quantile regression,

where the quantile level of interest is fixed at a pre-specified value. Following Yu and
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Moyeed (2001), we adopt the asymmetric Laplace working likelihood, which permits

efficient posterior computations with MCMC algorithms (Tsionas , 2003; Kozumi and

Kobayashi , 2011). However, direct posterior inference is invalid since the asymmetric

Laplace working likelihood is generally mis-specified (Sriram, 2015; Yang et al., 2016).

Since the quantile regression model allows a broad form of heteroscedasticity, there

is little reason to believe our working likelihood is close to the true one. Therefore,

posterior inference is not justified by Bayes’ Theorem, not even in the asymptotic

sense (Kleijn and Van der Vaart , 2012). Specifically, the posterior credible intervals

do not provide valid coverage probabilities, either in the frequentist or Bayesian sense.

Despite the likelihood mis-specification, the pseudo-Bayesian method offers a valu-

able computational tool for frequentist inference. Yang et al. (2016) and Sriram

(2015) recognize that we can provide valid frequentist inference after a sandwich-

form adjustment on the posterior variance. Using the adjusted posterior variance,

the Wald-type interval can have valid frequentist coverage asymptotically. This idea

of adjusted-posterior inference dates back to Chernozhukov and Hong (2003). Because

the sampling distributions of the quantile regression estimators involve the conditional

density functions as nonparametric nuisance parameters, inferential methods have to

approximate those quantities directly or indirectly; see (Koenker , 2005, Section 3).

The Bayesian computational approach trades optimization and nuisance parameter

estimation for posterior sampling, and therefore provides a convenient framework for

inference. The posterior-based method further stands out in more complex settings,

such as censored regression (Powell , 1986) or missing covariates (Sherwood et al.,

2013), where the computational burden worsens for frequentist inferential procedures;

See also Yang et al. (2016).

In this chapter, we extend the pseudo-Bayesian framework by considering shrink-

age priors under a possibly sparse quantile regression model. In the big data era,

datasets with a large amount of variables are becoming more and more common.
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Given a large number of potential covariates, it is not unreasonable to believe that

only a small portion of them affects the conditional quantile function. Under this spar-

sity regime, it is recognized that a shrinkage approach greatly improves estimation

accuracy and statistical efficiency (Tibshirani , 1996). In this chapter, we use shrink-

age priors in the Bayesian computational framework to capture possible sparsity in

the model. Our goal is to provide valid, and more importantly, efficient inference for

the quantile regression coefficients under sparsity.

In the Bayesian literature, using shrinkage priors is empirically shown to give im-

proved performance when the model is sparse. Some examples of the priors include

the Bayesian Lasso (Park and Casella, 2008), the horseshoe (Carvalho et al., 2010),

and the Dirichlet-Laplace prior (Bhattacharya et al., 2015). There are also compu-

tational developments that adapt the shrinkage priors to quantile regression settings

(Li et al., 2010; Alhamzawi et al., 2012; Adlouni et al., 2018; Kohns and Szendrei ,

2020). From a theoretical perspective, however, most results in the literature focus on

the Gaussian mean regression and related settings, where the likelihood specification

is approximately correct (Bai and Ghosh, 2021; Gao et al., 2020; Zhang et al., 2022);

see also Bhadra et al. (2019) for a recent review. In the context of quantile regression,

there is so far no theoretical understanding of how shrinkage priors can be used for

valid and efficient inference.

In this chapter, we bring together the strength of the pseudo-Bayesian frame-

work and shrinkage priors. We first establish two contributions when the covariate-

dimension is fixed. On the theoretical side, we provide an asymptotic characterization

of the posterior distribution. With a suitable prior, we show the posterior is consis-

tent at the root-n rate regardless of the likelihood mis-specification, and we show

the posterior is adaptive to model sparsity. Asymptotically, the posterior factors into

two independent components: One for the non-zero (active) coefficients that achieves

oracle efficiency as if we knew the true model; The other component for the inactive
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components will concentrate toward 0 at a second-order rate. Based on these theoret-

ical results, we present a unified approach for adaptive posterior inference in quantile

regression. With an appropriate adjustment of the posterior variance, we can con-

struct automatically adaptive confidence intervals in the frequentist sense: For the

active coefficients, the interval achieves oracle efficiency; For the inactive coefficients,

the interval is super-efficient and centers at 0. The confidence interval is adaptive in

the sense that it automatically distinguishes active and inactive components without

an additional variable selection step.

Then we extend our theoretical results to an increasing dimensional regime. That

is, the covariate-dimension can grow with, but not exceed, the sample size. We find

that the adaptivity result of the posterior distribution still applies, provided that

the dimension grows at a controlled rate. The regime with increasing dimension

is relevant when we approximate a non-parametric conditional quantile function by

series expansion, e.g., splines, wavelets or local-polynomials. The number of effective

regressors is typically chosen to increase with the sample size at a certain rate (He

and Shi , 1994; Belloni et al., 2019a). In empirical studies, it is also common to

incorporate a large number of dummy variables, with possible interactions among

them. In econometrics, this is referred to as the ‘many regressors’ regime (Cattaneo

et al., 2018).

Our setting of possibly sparse quantile regression is different from the high-dimensional

regime where the regression coefficients are not identifiable without stringent sparsity

constraints (Belloni and Chernozhukov , 2011; Belloni et al., 2019b). Direct estima-

tion and inference are feasible in our setup with increasing dimensions, though it may

be inefficient if the true model is sparse. In another related regime with increasing

dimension, Belloni et al. (2019a); Pan and Zhou (2021) considers bootstrap inference

for the quantile regression. However, these bootstrap methods cannot incorporate

the model sparsity, and specialized bootstrap procedures are needed for penalized
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quantile regression; see Wang et al. (2018) for such an approach when the covariate

dimensions are fixed.

Key to the pseudo-Bayesian framework is the choice of likelihood and prior. Since

the quantile regression model does not assume any parametric likelihood function, it is

common to rely on a working likelihood to pursue pseudo-Bayesian inference. Exam-

ples of other working likelihoods include the empirical likelihood (Yang and He, 2012;

Xi et al., 2016), the score likelihood (Wu and Narisetty , 2021), or the approximate

likelihood (Feng et al., 2015). The use of different shrinkage priors is also prevalent in

practice for more efficient estimation (Li et al., 2010; Chen et al., 2013; Adlouni et al.,

2018; Kohns and Szendrei , 2020). This paper adopts the asymmetric Laplace working

likelihood and focuses on two easy-to-understand examples of continuous shrinkage

priors for their interpretability and computational attractiveness.

We hasten to add that our focus is not variable selection consistency or estima-

tion accuracy, but the understanding of what can be accomplished with inference in

the pseudo-Bayesian framework. In the recent literature, many have discussed the

Bayesian variable selection performances under slab-and-spike type priors (Ishwaran

and Rao, 2005; Narisetty and He, 2014; Ročková and George, 2018), and the posterior

contraction rates under continuous shrinkage priors (Song and Liang , 2017; Jiang and

Sun, 2019; Gao et al., 2020). However, the literature is relatively sparse for adaptive

pseudo-Bayesian inference in quantile regression, where the likelihood is mis-specified.

The rest of this chapter is organized as follows. In Section 5.2, we discuss the

quantile regression problem and our pseudo-Bayesian framework. In Section 5.3,

we present our main theoretical results under a fixed dimension. We discuss the

posterior inference procedure in Section 5.4. The extension to increasing dimensions is

considered in Section 5.5. We provide the computational details of posterior sampling

in Section 5.6, followed by simulation studies in Section 5.7. We conclude in Section

5.8. All proofs are relegated to Section 5.9.
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5.2 Modeling framework

5.2.1 Quantile regression model and working likelihood

We consider the linear quantile regression model. Let Qτ (Y | X = x) be the τ -th

conditional quantile of a continuous response Y given covariates X = x ∈ Rp, which

includes an intercept term. Here the dimension p is fixed; later in Section 5.5, we

extend our discussion to allow p to increase with the sample size. For a pre-specified

quantile level τ ∈ (0, 1), we consider the model

Qτ (Y | X = x) = xTβ0(τ). (5.1)

In the rest of the paper, we shall suppress the index τ whenever there is no confusion.

Furthermore, we consider the case where the model (5.1) is possibly sparse, i.e.,

S = {j ∈ {1, . . . , p} : β0
j ̸= 0}, |S| = s ≤ p,

for some integer s ≥ 0. This possible sparsity implies that some of the covariates may

be irrelevant for modeling the τ -th conditional quantile of Y .

Let Dn = {(xi, yi) : i = 1, . . . , n} be a random sample of size n from (X, Y )

that satisfies model (5.1). The classical quantile regression estimator (Koenker and

Bassett Jr , 1978) minimizes the following check-loss function

β̂ = argmin
u

Ln(u) = argmin
u

n∑
i=1

ρτ (yi − xT
i u), (5.2)

where ρτ (·) is the check function ρτ (u) = u[τ − I(u < 0)]. It is well known that

Ln(u) is convex, and (5.2) is equivalent to a linear programming problem. Under

mild conditions, β̂ consistently estimates the true quantile regression coefficients in

(5.1). See Koenker (2005) and Koenker et al. (2017) for more discussion on quantile
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regression.

In the pseudo-Bayesian framework of quantile regression, we consider the asym-

metric Laplace working likelihood popularized by Yu and Moyeed (2001):

L(Dn | β) =
τn(1− τ)n

σn
exp

{
−
∑n

i=1 ρτ (yi − xT
i β)

σ

}
, (5.3)

where σ is a fixed scale parameter. The asymmetric Laplace likelihood (5.3) exponen-

tiates the check-loss objective function Ln in (5.2); equivalently, (5.3) coincides with

the likelihood function of an asymmetric Laplace distribution. We call (5.3) a work-

ing likelihood because it does not correspond to the true data-generating mechanism

of Dn given β. The model (5.1) does not impose any distributional assumption of

the data, except for the τ -th conditional quantile. Therefore, the true likelihood may

well be different from (5.3). Nonetheless, the maximum likelihood estimator under

(5.3) coincides with the classic quantile regression estimator in (5.2). Furthermore,

we consider the scale parameter σ to be fixed at 1 throughout this chapter. Alterna-

tively, Choi and Hobert (2013) and Yu and Moyeed (2001) consider a full Bayesian

approach with a prior on σ.

5.2.2 Penalization and shrinkage priors

Since the model (5.1) is possible sparse, we use shrinkage priors in our pseudo-

Bayesian framework. In this chapter, we focus on two choices that are motivated

by the frequentist penalized regression procedures. When there are a relatively large

number of covariates, it is common to consider the following penalized quantile regres-

sion problem, which can improve efficiency and interpretability (Tibshirani , 1996).

min
u

n∑
i=1

ρτ (yi − xT
i u) +Qλ(u),
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for some non-negative penalty function Qλ(u). Among others, the Smoothly Clipped

Absolute Deviation (SCAD) in Fan and Li (2001) and the adaptive Lasso in Zou

(2006) are known to enjoy ‘oracle’ properties for quantile regression Wu and Liu

(2009).

In this chapter, we consider priors that are motivated from the SCAD and adaptive

Lasso penalty functions as below:

πAL(β) ∝ exp

{
−
√
n

p∑
j=1

λ

wj

|βj|

}
, (5.4)

πCA(β) ∝ exp

{
−n

p∑
j=1

pλ(βj)

}
, (5.5)

where the choice of wj and the function pλ(·) will be given shortly. The prior (5.4)

corresponds to the Adaptive Lasso (AL) penalty (Zou, 2006), where wj = |β̂j| for j ∈

{1, . . . , p} as in Wu and Liu (2009) and β̂j is the j-th component of β̂; Similar prior

has been studied in Alhamzawi et al. (2012) and Li et al. (2010) via a full Bayesian

approach. In the Clipped Absolute (CA) prior (5.5) we define pλ(u) = λ(|u| ∧ λ),

which is motivated from the Smoothly Clipped Absolute Deviation (SCAD) penalty

of Fan and Li (2001). However, we remove the smoothing component to simplify

the theoretical derivation; See Figure 5.1 for a visual comparison. Our choices of

priors are relatively simple examples from the broader class of shrinkage priors Griffin

and Brown (2010); Carvalho et al. (2010); Bhattacharya et al. (2015); Zhang et al.

(2022). We stick to the choices (5.4) and (5.5) to fix ideas and simplify the technical

derivations.

Given the choice of a prior π(β), the working posterior density is then

p(β | Dn) ∝ L(Dn | β) · π(β). (5.6)

Here ∝ means equal up to some constants that does not depend on β (but could
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Figure 5.1: Comparison between the prior πCA(u) and the prior induced by the SCAD
penalty in Fan and Li (2001); a is a tuning parameter in the SCAD penalty and we
set a = 2 in the plot. Both priors are flat when |u| > aλ.

depend on the data Dn). Note each of the prior functions (5.4) and (5.5) is uniformly

upper bounded by 1. Thus they give rise to a proper posterior, in the sense that the

above posterior leads to a valid probability distribution on β (Yu and Moyeed , 2001;

Tsionas , 2003). Thus, various MCMC techniques readily applies to the model (5.6).

Below we provide some additional comments to our prior choices. Both classes of

priors involve an additional scalar parameter λ. We regard this λ = λn as a tuning

parameter that depends on n, though suppressing any subscript to simplify notation.

This dependency is the essence of the family of ‘shrinkage priors’, which aims to

shrink the irrelevant coefficients to 0 in the posterior. See for example Armagan

et al. (2013a) and Song and Liang (2017). For any fixed prior that does not depend

on n, the impact of the prior will eventually get washed away as the sample size

grows (Van der Vaart , 2000; Bontemps , 2011). In our setting, as λ grows with n, the

priors (5.4) and (5.5) will show a sharper peak at the origin, flatter tail, and places
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more mass in the neighbourhood of 0. these properties make our priors adaptive in

a possibly sparse model, which are in line with other commonly used priors in the

Bayesian framework (Song and Liang , 2017).

5.3 Asymptotic properties of the posterior distribution

In this section, we present the main theoretical results under either choices of the

shrinkage prior (5.5) or (5.4). Specifically, we study the large-sample properties of

the posterior distribution under the repeated sampling perspective.

5.3.1 Regularity conditions

We fix some notations first. Let Dn = {(x1, y1), . . . , (xn, yn)} be i.i.d. samples

from (X, Y ) ∼ P∗ that satisfies model (5.1), where each xi ∈ Rp and each yi is a

scalar for i = 1, . . . , n. Note P∗ does not necessarily satisfy the asymmetric Laplace

working likelihood (5.3). We denote convergence in P∗-probability by
P ∗
−→; we denote

the expectation under P∗ by E∗(·). Given the data Dn, let p(β | Dn) be the working

posterior density for β as in (5.6); we define the corresponding posterior probability

measure as

Π (A | Dn) =

∫
A
p(β | Dn) dβ,

for any measurable set A ⊂ Rp. Note both p(β | Dn) and Π(A | Dn) are random

variables under P∗-probability.

Let β0 = (β1, . . . , βp)
T be the true values of regression coefficients in model (5.1);

let β̂ = (β̂1, . . . , β̂p)
T be the classic quantile regression estimator from (5.2). For a

vector v, let ∥v∥ be its L2 norm and ∥v∥∞ be its L∞ norm. For probability density

functions f(x) and g(x), we denote their total variation distance by ∥f − g∥TV =∫
|f−g|dx. For non-stochastic sequences an and bn, we write an ≪ bn if an/bn = o(1);

we write an ≲ bn if there is a universal constant C0 such that an ≤ C0 · bn. For
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stochastic sequences An and Bn, we define An ≪P∗ Bn (or An ≲P∗ Bn) if An ≪ Bn

(or An ≲ Bn) holds with P∗-probability tending to unity. Recall S = {1, . . . , s} is the

index set for active covariates, for any vector v we write vT = (vT
1 ,v

T
2 ) with v1 ∈ Rs.

For any matrix A ∈ Rp×p, we partition

A =

 A11 A12

A21 A22

 ,

where A11 ∈ Rs×s; for i, j ∈ {0, . . . , p}, we shall write A(i, j) as the (i, j)th entry of

A.

Now we introduce some technical assumptions, most of which are standard in

quantile regression (Koenker , 2005; Belloni and Chernozhukov , 2011) and variable

selection literature (Wu and Liu, 2009; Zhao and Yu, 2006).

Assumption E.1 (Identification). For any δ > 0, there exists ε > 0, such that

lim sup
n→∞

P∗

{
sup

∥β−β0∥≥δ

1

n
(Ln(β)− Ln(β

0)) ≥ ε)

}
= 1.

Assumption E.2 (Smooth and bounded conditional densities). (i) The conditional

distribution of Y givenX has a density function fY |X=x(u). (ii) There exist 0 < f < f ,

such that

f ≤ inf
x

[
fY |X=x(x

Tβ0)
]
≤ sup

u∈R
x

[
fY |X=x(u)

]
≤ f.

(iii) fY |X=x(u) is uniformly (over x) Lipschitz continous (in u).

Assumption E.3 (Eigenvalue condition). The matrix D = E
[
xix

T
i

]
is positive

definite; its eigenvalues are all bounded away from 0 and +∞.

Assumption E.4 (Bounded covariates). The covariates X has bounded support.

Assumption E.5 (Sparsity). For a constant b0 > 0, the true regression coefficients
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satisfy:

min
j=1,...,s

|β0
j | > b0,

β0
s+1 = . . . = β0

p = 0.

Here we briefly discuss the assumptions. Assumptions E.1–E.4 are standard in

pseudo-Bayesian modeling with a working likelihood (Chernozhukov and Hong , 2003;

Yang et al., 2016) and the quantile regression literature (Knight , 1998; Pan and Zhou,

2021); see also Koenker (2005, Section 4). In particular, Assumption E.4 is to simplify

the technical treatment in our theoretical development. When the dimension is fixed,

it implies the boundedness of ∥Xi∥. Assumption E.5 requires the non-zero coefficients

to be well separated from others. This so called beta-min condition is necessary for a

consistent model selection in either frequentist or Bayesian literature (Wu and Liu,

2009; Belloni and Chernozhukov , 2011; Castillo et al., 2015). Although our target is

not variable selection, these conditions are necessary for adaptive inference.

5.3.2 Main results

Before bringing in the shrinkage prior, we first present a Proposition regarding the

rate of consistency for the posterior (5.6) under a flat prior and without concerning

the model sparsity. Here flat means a improper uniform prior on the entire space

Rp, which induces a posterior proportional to the likelihood (5.3) itself. Nonetheless,

the asymptotic result here also applies to any fixed prior that does not depend on

the sample size. The Proposition below is not only a useful lemma for the remaining

asymptotic results, but also of independent interest itself.

Proposition 6. Given Assumptions E.1 - E.4 hold, and consider the flat prior π(β) ∝
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1. The posterior is consistent at a
√
n-rate, that is,

Π(
√
n · ∥β − β0∥ ≥Mn | Dn)

P ∗
−→ 0,

for any sequence Mn → +∞.

The above result gives a
√
n-rate of posterior contraction, which is the Bayesian

counterpart to the frequentist result of β̂ − β0 = Op(n
−1/2). This is intuitive as

the posterior mode coincides exactly with the classic quantile regression estimator β̂.

Note the sequence Mn can tend to infinity arbitrarily slow, yet it can not be replaced

by any fixed constant M .

Such
√
n-rate is necessary for the adjusted posterior inference in quantile regres-

sion. For example, the validity of inference scheme in Yang et al. (2016) and Sriram

(2015) depends on a
√
n-rate. However, this result has not been thoroughly studied

yet. It is hinted in Theorem 1 of Chernozhukov and Hong (2003), yet no rigorous

derivation is present. Our Proposition 6 provides a general treatment specifically for

quantile regression. The results in Kleijn and Van der Vaart (2012) does not apply

with the absence of distributional assumption in Model (5.1). Specific for quantile

regression, Sriram et al. (2013) claims the same
√
n consistency result as ours, but

a later correction by Sriram and Ramamoorthi (2017) voids their contribution. Re-

cently, a manuscript of Sriram and Ramamoorthi (2018, Theorem 2) gives the same

conclusion. Their result is only valid for a proper prior, whereas ours is valid for

the improper flat prior. In terms of technical treatment, they rely on the piece-wise

nature of the check function ρτ (·), while we provide a more general treatment via

empirical process theory.

Now we are ready to introduce shrinking priors to incorporate model sparsity. In

particular, we present consistency result similar to Proposition 6 and a Bernstein-von-

Mises (BvM) type theorem about the distributional approximation of the posterior,
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under both priors (5.4) or (5.5). In smooth parametric models, the usual BvM theo-

rem (Van der Vaart , 2000; Kleijn and Van der Vaart , 2012) asserts that the posterior

can be approximated by a normal distribution in total variation distance. That is

∥p(· | Dn)− ϕ(·)∥TV
P ∗
−→ 0,

where ϕ(·) is the density function for the limiting Gaussian distribution. For Bayesian

quantile regression with no sparsity, Sriram and Ramamoorthi (2017) concludes that

the posterior is indeed asymptotically normal, despite that the working likelihood is

mis-specified. Here we show that shrinkage priors can make the posterior adaptive to

model sparsity, in correspondence with the frequentist penalized quantile regression

(Wu and Liu, 2009; Li and Zhu, 2008). We first consider the CA shrinkage prior

(5.5). We define

G = E
[
xix

T
i · fY |X=xi

(xT
i β

0)
]
.

Further, we denote the upper-left s-by-s sub-matrix of G by G11.

Theorem V.1 (CA shrinkage). Consider the improper CA prior (5.5). Suppose

Assumptions E.1 through E.5 hold, and the tuning parameter λ satisfies 1/
√
n ≪

λ≪ 1. We have the following:

1. Posterior consistency:

Π(
√
n · ∥β − β0∥ ≥Mn | Dn)

P ∗
−→ 0,

for any sequence Mn → +∞.

2. Distributional approximation:

∥∥∥∥∥p(β | Dn)− ϕ
(
β1; β̃1,

G−1
11

n

)
⊗

p∏
j=s+1

nλ

2
exp {−nλ|βj|}

∥∥∥∥∥
TV

P ∗
−→ 0.
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Here ϕ(·;µ,Σ) represents a Gaussian density function with mean vector µ and

covariance matrix Σ, and β̃1 is the oracle QR estimator using the true model.

Part 1 of the above Theorem states that the rate of contraction is the same as in

the un-penalized case. By choosing a proper value of λ, the CA shrinkage prior does

not cast any bias or performance loss on the first order. Further, part 2 of Theorem

V.1 shows that there is actually some efficiency gain. The limiting distribution breaks

down into two independent components, corresponding to the active coefficients β1

and those inactive ones β2, respectively. For non-zero coefficients β1, the posterior

achieves oracle efficiency. In particular, the limiting distribution is the same as if we

know the true model (Sriram, 2015). On the other hand, the posterior for inactive

coefficients β2 is highly concentrated toward 0 at a faster-than-first-order rate, since

1/(nλ)≪ 1/
√
n. Consequently, the posterior is automatically adaptive to the model

sparsity, and the efficiency for both components β1 and β2 can be improved under

sparsity.

Theorem V.1 shares the same spirit of Theorem 2.1 in Song and Liang (2017),

where the name ‘near-oracle property’ is adopted. The main difference between them

is the model mis-specification in our setting, and that the working likelihood is non-

smooth, therefore our results require more delicate technical treatment. On the con-

trary, Theorem V.1 is in sharp contrast with those under discrete spike-and-slab priors

(Ishwaran and Rao, 2005; Castillo et al., 2015), where the posterior gives sparse solu-

tion automatically. Our shrinkage priors are not tailored for variable selection, there-

fore the posterior distribution is continuous. As we illustrate later, such smoothness

is beneficial for more stable posterior inference.

Remark 10. The posterior variance for the active component, G−1
11 , does not match the

sampling variance of the (oracle) QR estimator, as recognized by Yang et al. (2016).

This is a consequence of using the mis-specified asymmetric Laplace likelihood (5.3).

Nonetheless, Theorem V.1 leads to an convenient tool for constructing the Wald
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interval, particularly so in quantile regression. As the MCMC samples from the

posterior provide an efficient estimation of G−1
11 (Chernozhukov and Hong , 2003),

which is an essential piece for quantile regression inference. In the next section we

develop an easy-to-implement inferential procedure that targets sparse model.

Remark 11. The convergence in total variation in Theorem V.1 does not immediately

imply convergence of moment. Later in Proposition 7, we show that the posterior

moments converges toward the moments in the limiting distribution.

Next we present the result for Adaptive Lasso shrinkage. The results are similar

to Theorem V.1. However the different natures of the two kinds of priors requires

different treatment in the proof.

Theorem V.2 (Adaptive Lasso shrinkage). Consider the Adaptive Lasso prior (5.4).

Suppose assumptions E.1 through E.5 hold and the tuning parameter satisfies 1/
√
n≪

λ≪ 1. Then we have

1. Posterior consistency:

Π(
√
n · ∥β − β0∥ ≥Mn | Dn)

P ∗
−→ 0,

for any sequence Mn → +∞.

2. Distributional approximation:

∥∥∥∥∥p(β | Dn)− ϕ
(
β1; β̃1,

G−1
11

n

)
⊗

p∏
j=s+1

√
nλ

2wj

exp

{
−
√
nλ

wj

|βj|
}∥∥∥∥∥

TV

P ∗
−→ 0.

Here ϕ(·;µ,Σ) represents a Gaussian density function with mean vector µ and

covariance matrix Σ, β̃1 is the oracle QR estimator under the true model, and

wj is defined in (5.4).
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Theorem V.2 is in the same spirit as Theorem V.1, though the limiting distribution

is in slightly different forms. For the inactive coefficients β2, the posterior share the

same order at Op∗(nλ) since wj = |β̂j| = Op∗(1/
√
n) for j = s + 1, . . . , p. Such an

order matches with Theorem V.1. In fact, the posterior limit is the same as the

Adaptive Lasso prior (5.4). This coincidence is in line with Song and Liang (2017),

in the sense that the posterior for the inactive coefficients is asymptotically driven by

the prior.

We further provide an heuristic explanation of the technical results in Theorem

V.1 and V.2, through which we hope to shed some light on the subtle difference

between the two kinds of priors. The CA prior is the same for each coordinate of β,

and its adaptivity is driven by its flat tail and sharp peak. For the zero coefficients,

the prior dominates the likelihood using the sharp peak around zero; while for the

non-zero coefficients the prior is washed out by the likelihood. On the other hand, the

Adaptive Lasso prior achieves the adaptation via the choice of weights wj = |β̂j|: For

those active coefficients, the scale for prior shrinkage in (5.4) is of order OP∗(
√
nλ) =

oP∗(
√
n). For an inactive coefficient it would be in an order of OP∗(nλ)≫ OP∗(

√
n).

Since the likelihood itself has a
√
n-scale by Proposition 6, it can dominate the prior

for the active coefficients, yet not the the inactive ones. From the above reasoning, it

should also be clear that any
√
n-consistent estimator can be used in wj as in (Zou,

2006).

Remark 12. We emphasize that the adaptivity of the posterior shrinkage in Theorems

V.1 and V.2 is not shared under all popular Bayesian priors. For example, Castillo

et al. (2015) shows that the traditional Bayesian-lasso (Park and Casella, 2008) can

not achieve the adaptation in the Gaussian mean regression setting, in the sense that

the posterior either over-shrinks the active coefficients or under-shrinks the inactive

coefficients.
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5.4 Adaptive posterior inference

In this section we develop an asymptotically valid inferential procedure based on

the posterior moments. It is known since Yang et al. (2016) that the posterior variance

matches the sampling variance of β̂ after a feasible correction. We extend their ap-

proach to target possibly sparse models, which we show to be automatically adaptive

to sparsity. It is important that our inferential procedures are valid in the frequentist

sense. Though adopting a pseudo-Bayesian framework, the posterior only serves as

an computational tool to construct the confidence intervals. See Chernozhukov and

Hong (2003) for a in-depth discussion of this idea.

5.4.1 Inferential procedure using posterior moments

We construct interval estimates that achieves frequentist validity based on the

posterior moments. We focus on the CA prior (5.5) for simplicity. We introduce

some additional notations. Denote by β̌ the (finite sample) posterior mean and

Σ̌ the posterior variance-covariance matrix in (5.6). Let D̂ =
∑n

i=1 xix
T
i /n and

D = E[XXT ]. In Theorem V.1, the limiting posterior has mean (β̃1,0) and variance

Σ. Recall β̃1 is the oracle QR estimator, and

Σ =

 1
n
G−1

11 0

0 2
n2λ2Ip−s

 , (5.7)

where Ip−s is the identity matrix of dimension p− s.

In accordance with Yang et al. (2016), we define the adjusted variance-covariance

matrix

Σ̌adj = nτ(1− τ)Σ̌ D̂ Σ̌, (5.8)

using all p covariates. We propose an weighted Wald-interval using β̌ as the center,

and Σ̌adj as the standard error. In particular, for any one-dimensional component βj,
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we construct the 1− α confidence interval as

β̌j ± zα/2 · ηj ·
√

Σ̌adj(j, j), (5.9)

with weights ηj = max{1, λ/|β̂j|}, and zα/2 Above we have used the upper α/2 quan-

tile for the standard normal distribution, and the j-th diagonal element of the adjusted

variance-covariance matrix. Note that β̂j in the weight is the un-penalized quantile

regression estimator.

To study the property of our interval estimate in (5.9), we need the following

result regarding the convergence of posterior moments. The key is the adaptive rate

of convergence: For active component, the convergence occur at
√
n-rate, while for

inactive components, the moments converge at a faster nλ-rate. Such an adaptive

rate is necessary for technical derivations hereafter.

Proposition 7 (Posterior moments). Under the conditions of Theorem V.1, we have

 √n(β̌1 − β̃1)

nλ(β̌2 − 0)

 P ∗
−→ 0

 nΣ̌11 n1.5λΣ̌12

n1.5λΣ̌21 n2λ2Σ̌22

−
 G−1

11 0

0 2Ip−s

 P ∗
−→ 0

Based on Proposition 7, we now show the interval estimate (5.9) is valid in the

frequentist sense, and adaptive to sparsity. We first consider an active component

j ∈ S, and we show that the interval achieves oracle efficiency. Proposition 7 implies

for an active component j ∈ S, the posterior mean β̌j enjoys the same first-order

asymptotic behavior with the oracle QR estimator β̃1. The results in Wu and Liu

(2009) then applies to the posterior mean β̌1,

√
n
(
β̌1 − β0

1

) d−→ N
(
0, τ(1− τ)G−1

11D11G
−1
11

)
.
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For the standard error in (5.9), Proposition 7 implies that the posterior variance Σ̌

converges to Σ defined in (5.7). We can rewrite the adjusted variance-covariance

matrix as

n · Σ̌adj = n2τ(1− τ)[Σ + oP ∗(1/n)] · [D + oP ∗(1)] · [Σ + oP ∗(1/n)]

= τ(1− τ)(nΣ) ·D · (nΣ) + oP ∗(1)

=

 τ(1− τ)G−1
11D11G

−1
11

2τ(1−τ)
nλ2 G−1

11D12

2τ(1−τ)
nλ2 D21G

−1
11

4τ(1−τ)
n3λ4 D22

+ oP ∗(1)

=

 τ(1− τ)G−1
11D11G

−1
11 0

0 0

+ oP ∗(1). (5.10)

The last identity is due to 1/
√
n≪ λ≪ 1 in Theorem V.1. For an active 1 ≤ j ≤ s,

this implies our adjusted variance (5.8) consistently estimates the sampling variance

of β̌j. For j ∈ S we have also the weight ηj
P ∗
−→ 1, concluding (5.9) attains 1 − α

coverage asymptotically.

Next we consider the case when j /∈ S. We show the interval is super-efficient,

in the sense that the coverage achieves 100%, while the length vanishes faster than

a rate of 1/
√
n. Denote by σ̌j the j-th row of Σ̌. Proposition 2 shows the posterior

mean β̌2 = oP ∗(1/nλ), and

σ̌j =
ej

n2λ2
+
[ r1
n1.5λ

,
r2
n2λ2

]
,

where ej is the unit vector with 1 on its j-th entry and rk = oP ∗(1). From (5.8), the

adjusted variance for βj becomes

Σ̌adj(j, j) ≍ nτ(1− τ)σ̌T
j σ̌j

≍ ∥r1∥2

n2λ2
+
∥r2 + ej∥2

n3λ4
,
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where A ≍ B means that A = OP ∗(B) and B = OP ∗(A). Together with the weight

ηj = λ/|β̂j| ≍
√
nλ for j /∈ S, we have

β̌j − 0

zα/2 · ηj ·
√

Σ̌adj(j, j)

P ∗
−→ 0,

√
n · ηj ·

√
Σ̌adj(j, j)

P ∗
−→ 0.

The first line shows the width of the interval (5.9) dominates the magnitude of the

center, implying the interval will cover β0
j = 0 with probability attaining one; The

second line shows the length of the interval is of order oP ∗(1/
√
n), achieving super-

efficiency.

We summarize the behaviour of the interval estimate (5.9), denoted as CIj(α).

Combining the above arguments, we have:

P∗ (β0
j ∈ CIj(α)

)
→ 1− α, if j ∈ S,

P∗ (β0
j ∈ CIj(α)

)
→ 1, if j /∈ S.

For j ∈ S, CIj(α) achieves ‘oracle efficiency’ as in (Wu and Liu, 2009; Zou, 2006).

For j /∈ S, CIj(α) is super-efficient, and its width is narrower than the usual 1/
√
n or-

der. This reveals an important feature of our inferential procedure: The constructed

confidence interval (5.9) can automatically distinguish the active and inactive coeffi-

cients. Given the MCMC samples from the posterior, a unified variance-adjustment

step serves any coefficient βj. Our discussion also applies to constructing confidence

intervals for any linear combination of the coefficients.

Remark 13. The weight ηj in (5.9) is necessary to achieve desired coverage for inactive

components. For j /∈ S, denote by ℓn as the width of (5.9). Our weighting scheme

induced by ηj inflates the standard error such that the width of the interval is at the

correct order 1/(nλ) ≲ ℓn ≪ 1/
√
n. Such an order ensures that the interval is super-
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efficient, yet has guaranteed coverage probability in theory. Without the weighting

adjustment, the interval length would be too narrow to have valid coverage.

Remark 14. Under the same conditions, the SCAD quantile regression estimator

enjoys the oracle property asymptotically (Wu and Liu, 2009). One may use the

SCAD-penalized estimator as the center in our interval (5.9). Our interval based

on the posterior mean, however, has the following two advantages. First, all pieces

used to form (5.9) are readily available from MCMC computation. Second, numerical

evidences in Section 5.7 show the inferential procedure is less sensitive to the choice

of λ when using the posterior mean.

5.4.2 Comparison with the frequentist approach

Another common approach for inference in sparse models is the following two-

step procedure: we first conduct variable selection, then apply frequentist inferential

methods on the selected model. Here we compare this two-step procedure with our

method. First, the two-step approach is valid only when the variable selection is

correct. In finite samples, however, variable selection procedures often fail to give

oracle selection 100% of the time (Wang et al., 2020). As we show in the simulation

studies of Section 5.7, our pseudo-Bayesian approach does not depend on the binary

variable selection, and therefore is often more stable in practice.

Second, the classical Wald-type interval in quantile regression requires estimat-

ing G11, which involves a weighted average of the conditional densities of Y given

X = xi. While many non-parametric approaches are available for estimating those

density functions (Koenker , 2005), those methods rely critically on other additional

assumption and/or the proper selection of a bandwidth parameter. E.g., Powell

(1991) propose a kernel-based weighted density estimator; Hendricks and Koenker

(1992) develop a method based on a differentiation formula, assuming the conditional

quantile remains linear in x for a range of quantile level close to τ . In practice, the
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performance of the resulting Wald interval are often unstable, even when the sample

size is moderately large (Yang et al., 2016, Section 4). Our posterior-based method

provides a versatile inferential method that can approximate G11 using MCMC (Cher-

nozhukov and Hong , 2003).

5.5 Theoretical investigation with increasing dimensions

In this section, we present some theoretical results when the dimension pn diverges

with, while is still of smaller order than, the sample size n; We also allow the size of

the true model, sn, to depend on the sample size. Sometimes we shall omit the index

n if there is no confusion. We show similar asymptotic behaviours to that in Section

5.3 hold true under some additional conditions. We first investigate the asymptotic

behaviour of the posterior distribution under the flat prior, where no model sparsity

is assumed. Then, we incorporate shrinkage priors to deal with sparse models. For

technical simplicity, we shall only focus on the CA prior (5.5) in this section.

We discuss some extensions of the regularity conditions in Section 5.3. When

p = pn → +∞, some of those conditions may not be practical anymore. We still need

Assumptions E.1 and E.2, which are standard in the quantile regression literature

(Belloni et al., 2019a; Pan and Zhou, 2021). As for Assumption E.3 through E.5, we

replace them by the following:

Assumption E.3′ (Relaxed eigenvalue condition). The maximal/minimal eigenval-

ues of the p-by-p matrix D satisfy p−1 ≲ θmin(D) ≤ θmax(D) ≲ p. Further, the

minimal eigenvalue of the s-by-s matrix D11 satisfy θmin(D11) ≥ θ11 > 0 for some

constant θ11.

Assumption E.4′ (Regular covariates). E∗[xij] = 0 and E∗[x2ij] = 1. Furthermore,
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the standardized covariate D−1/2xi is sub-exponential, i.e., for some constant σ1 > 0,

P∗ (|uTD−1/2xi| ≥ σ1t
)
≤ 2e−t, (5.11)

for all ∥u∥ = 1 and t > 0.

Assumption E.5′ (Sparsity). We assume β0
s+1 = . . . = β0

p = 0, and there exists a

sequence bn > 0 such that minj=1,...,s|β0
j | > bn > 0.

Here we discuss the above generalizations. Assumption E.3′ relaxes the bounded-

eigenvalue condition in Assumption E.3 by allowing the matrix D to have vanish-

ing/diverging eigenvalues. That is, our analysis can tolerate some degree of co-

linearity among the covariates. Nonetheless, we assume that the eigenvalues of D11,

the active covariates, are bounded from below; so that the asymptotic results for quan-

tile regression (He and Shao, 2000; Belloni et al., 2019a) apply to the s-dimensional

oracle estimator. In our setting, the same eigenvalue conditions in Assumption E.3′

also applies to the matrix G defined above Assumption E.3. For Assumption E.4′, it

is implied by the original Assumption E.4 when the dimensions are fixed. In high-

dimensions, however, Assumption E.4′ is stronger than the boundedness of xij. We

refer the readers to the recent book Vershynin (2018, Section 3.3) for examples of

sub-exponential distributions in high-dimensions. Finally, Assumption E.5′ requires

all non-zero coefficients to be sufficiently-separated from zero by a margin of bn. So

far we do not specify any requirement for s and bn; We discuss them in our main

results below.

5.5.1 Posterior consistency with a dense model

We first consider the case without model sparsity, and we focus on the flat prior,

i.e., p(β) ∝ 1. The following Proposition is a natural extension of Proposition 6 that

allows a diverging number of predictors. The proof relies on two auxiliary Lemmas
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IB.1 and IB.3 in the Appendix. The remaining proof is identical to that of Proposition

6 and Sriram (2015, Theorem 1), hence we omit it in this dissertation.

Proposition 8. Suppose that Assumptions E.1, E.2, E.3′ and E.4′ hold. Suppose in

addition we have θmin(D) ≥ c0 > 0 for some universal constant c0. Then under the

flat prior, if the dimension p satisfy p6 = o(n), we have

• Posterior Consistency:

Π

(√
n

p
· ∥β − β0∥ ≥Mn | Dn

)
P ∗
−→ 0,

for any non-random sequence Mn →∞.

• Berstein-von-Mises Theorem:

∥∥∥∥p(β | Dn)− ϕ
(
β; β̂,

G−1

n

)∥∥∥∥
TV

P ∗
−→ 0,

where β̂ is the classic quantile regression estimator, G and ϕ are the same in Theorem

V.1.

Part 1 of the above Proposition characterizes the
√
n/p-rate of convergence, which

coincides with the convergence rate for the frequentist estimator in increasing dimen-

sions (He and Shao, 2000). Our result strengthens Sriram and Ramamoorthi (2018)

by providing the exact rate of contraction. Along with most literature for Bayesian

estimation, the convergence is measured in terms of the ℓ2 error for the entire p-

dimensional vector. Part 2 of Proposition 8 asserts the joint posterior distribution

approaches a multivariate Gaussian distribution. Since the convergence is in Total

Variation norm, the proposition guarantees that the posterior distribution for the

entire p-dimensional vector is uniformly close to its limit, even though the dimension

of the distribution may increase with the sample size. Without model sparsity and
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shrinkage prior, our result suggests that the adjusted posterior inference for quantile

regression in Yang et al. (2016) applies to the case with p→ +∞.

The growth rate of p in Proposition 8 is much stronger than that in frequentist

analysis of quantile regression (He and Shao, 2000). This is certainly not the best

possible rate. However, note the Bayesian and frequentist results are different in

nature: Our result considers the distributional approximation for the p-dimensional

regression vector as a whole, whereas the frequentist results consider the asymptotic

normality for a low-dimensional linear combination of all parameters. Even though He

and Shao (2000) establishes a Bahadur-type representation for the regression vector,

the joint Gaussian approximation does not necessarily apply in diverging dimensions.

This is because the conditions for CLT in high dimensions is not known until recently

(Chernozhukov et al., 2013, 2017). Using the idea of coupling, Belloni et al. (2019a)

establishes the distributional approximation for the entire quantile regression vector

under comparable conditions to our Proposition 8.

Here we make some connections with the literature on Bernstein-von-Mises (BvM)

theorems for general regression models, which corresponds to part 2 of Proposition

8. With increasing dimensions, the literature is relatively sparse. For general smooth

parametric models, Ghosal (1999) and Panov and Spokoiny (2015) derive the BvM

theorem for the posterior distribution under the condition p4 = o(n). Here smooth

means the likelihood is second-order differentiable with respect to the parameter.

Further, Spokoiny (2013) shows that the condition p3 = o(n) is necessary for the

BvM theorem to hold in an one-sample Poisson model. Even for those smooth models,

this necessary condition is stronger than the known rate for the frequentist analysis

of general M -estimators, which is p2 log p = o(n) (He and Shao, 2000). We refer

the readers to Panov and Spokoiny (2015) for a detailed discussion on the differences.

Turning to Bayesian quantile regression, less is known about its asymptotic behaviour

since our working likelihood (5.3) is neither smooth nor correctly specified. Therefore
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in our asymptotic analysis we require a more stringent condition of p6 = o(n).

5.5.2 Posterior asymptotics under the CA prior

Now we incorporate shrinkage priors and model sparsity into the pseudo-Bayesian

framework. Our theoretical results apply to both sparse (sn ≪ pn) and dense (sn =

pn) models. For technical simplicity, we only consider the CA prior (5.5).

Let θmin(·) be the minimal eigenvalue of a matrix, and recall bn from Assumption

E.5′, as well as the matrix D = E∗[xix
T
i ]. The following result generalizes Theorem

V.1 to the case with increasing dimensions, under a few more technical conditions.

Theorem V.3 (CA shrinkage for increasing dimension). Consider the improper

CA prior (5.5). Suppose Assumptions E.1, E.2, and E.3′ through E.5′ hold. If

s4p2 log2 n = o(n), and the tuning parameter λn is chosen such that

√
sp log p√
n

≪ λn ≪ min

{
bn,

1√
s
, bn

√
θmin(D)

}
,

then we have the following results:

1. Posterior consistency:

Π

(
∥β1 − β0

1∥2 ≥Mn

√
s

n
; or ∥β2∥∞ ≥Mn

s log p

nλn

∣∣∣ Dn

)
P ∗
−→ 0,

for any sequence Mn → +∞.

2. Distributional approximation:

∥∥∥∥∥p(β | Dn)− ϕ
(
β1; β̃1,

G−1
11

n

)
⊗

p∏
j=s+1

nλn
2

exp {−nλn|βj|}

∥∥∥∥∥
TV

P ∗
−→ 0.

Here ϕ(·) and G are the same as in Theorem V.1, and β̃1 is the oracle estimator

using the true model.
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To cover a wide range of scenarios, the range for the tuning parameter is entangled

with many other factors; We shall provide comments on the conditions later via a few

examples. Part 1 of the above Theorem states that with the CA prior, the pseudo-

Bayesian quantile regression achieves adaptive and near-oracle performance in terms

of estimation accuracy. For those active coefficients, the posterior achieves the oracle√
n/s-rate of contraction around the true parameter. The rate is the same as if we

knew the true model in advance. On the other hand, the convergence rate for inactive

coefficients is (nλn)/(s log p) ≫
√
p2n/s, per the conditions on λn. Therefore, the

posterior for inactive coefficients will be highly concentrated around 0, explaining the

name ‘adaptive’. Since the measure is the ℓ∞ norm, this rate of contraction holds

simultaneously for every single component of the inactive coefficients, even when

there is a large number of inactive coefficients. Such an adaptive contraction rate is

comparable with Theorem 2.3 of Song and Liang (2017), where they focus on the

Gaussian linear model. Our result is more general, as we work with the mis-specified

likelihood (5.3).

Part 2 of Theorem V.3 provides the distributional approximation for the posterior,

similar to Theorem V.1. In the diverging dimension case, nonetheless, it is sometimes

more realistic to consider a linear combination of the p-dimensional parameters αTβ,

where ∥α∥ = 1 (Fan and Peng , 2004; He and Shao, 2000). Proposition V.3 then

implies that the marginal posterior distribution for αTβ is asymptotically normal,

provided that α1 ̸= 0.

Here we comment on the condition in Theorem V.3. The involved conditions

depend on: (i) the dimension, (ii) the minimal eigenvalue of D = E∗[xix
T
i ], and

(iii) the minimal signal strength bn. We shall provide a few examples later to make

the requirement for the theorem explicit and visible. The difficulty behind such

complicated requirements is twofold. First, we allow both the dimension pn and sn

to diverge with sample size at a reasonable rate, and we do not explicitly require the

193



model to be sparse; see Example 2 below. Second, our Assumption E.3′ does not

restrict the gram matrix D to have uniformly bounded eigenvalues as n and p grows;

see Example 3 below Therefore, our setting is more general than many other existing

results on shrinkage estimation and variable selection, either in the frequentist (Kim

et al., 2008; Huang et al., 2008) or the Bayesian framework (Armagan et al., 2013b;

Song and Liang , 2017).

We give a few representative examples to explain Theorem V.3 under different

scenarios. For each of those specific cases, we are able to derive more explicit and

intuitive conditions under which Theorem V.3 holds.

Example 1. Consider a sparse model where sn stays a constant yet pn → ∞. In

addition to Assumption E.3′, suppose the minimal eigenvalue for D is uniformly

bounded from below θmin(D) ≥ c0 > 0. Suppose all other assumptions required by

Theorem V.3 hold.

In this simple case, our conclusions in Theorem V.3 hold as long as p2 log2 p = o(n)

and bn ≫ p log p√
n
. The growth rate condition for the dimension p is considerably relaxed

compared with Proposition 8. In addition, the range for the tuning parameter in

Theorem V.3 reduces to

p log p√
n
≪ λn ≪ bn.

This rate for the tuning parameter is more intuitive and matches with that in the

literature (Fan and Peng , 2004).

Example 2. Consider a dense model where sn = pn → ∞. Suppose in this case

∥β0∥ = c0 stays fixed, and bn ≍ 1/
√
p. This example holds if the magnitudes of all

regression coefficient are the same. Again, suppose all other assumptions required by

Theorem V.3 hold. Note Assumption E.3′ implies θmin(D) ≥ θ11 > 0 uniformly in a

dense model.

Under this type of dense models, Theorem V.3 still holds as long as p6 log2 n =
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o(n). This dimensionality constraint is roughly equivalent to that of Proposition 8.

Using a shrinkage prior, the conclusions in Theorem V.3 reduce to those in Proposition

8 under a flat prior. This suggest that a properly-tuned shrinkage prior does not hurt

the performance, even when the model is not sparse.

Now, the proper range for the tuning parameter in Theorem V.3 becomes

p1.5 log p√
n

≪ λn ≪
1
√
p
. (5.12)

However, this range for the tuning parameter (5.12) is not the best possible. If we

know the model is dense, we can simply choose λn ≡ 0, i.e., use the flat prior. The

asymptotic results in Theorem V.3 would still hold.

Example 3. Consider a quantile regression model with one active predictor Z:

Qτ (Y | Z = z) = β0 + β1z,

with a large enough β1. Beyond Z, suppose we have a sequence of other predictors

X1, X2, . . . that is irrelevant to Y , yet predictive for Z. To be more precise, we assume

Z =
∞∑
k=1

αkXk, and Xk
i.i.d.∼ N(0, 1), k = 1, 2, . . . ,

where αk ≍ 1/k. Note the infinite sum on the right hand side converges in the L2

sense.

For each p, there is collinearity among the covariates when fitting the model using

all of Z and X1, . . . , Xp. The population covariance matrix of (Z,X1, . . . , Xp) can be
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written as:

Dp =



∑∞
k=1 α

2
k α1 · · · αp

α1

...

αp

Ip


.

We show in Lemma IA.4 in Section 5.9.6 that θmin(Dp) ≍ 1/p, which satisfies As-

sumption E.3′. Therefore Theorem V.3 holds when p3 log2 p = o(n), and

p log p√
n
≪ λn ≪

1
√
p
,

given the other assumptions on the data generating process. Note the condition on p

is more stringent than the explicit requirement in Theorem V.3, i.e., p2 log2 p = o(n).

This is due to the range of the tuning parameter has to be non-empty. Hence, we

show that Theorem V.3 covers certain situations with collinearity.

5.5.3 Practical posterior inference in higher dimensions

The results in this section do not apply to the high-dimensional regime where

p ≫ n. Under such a scenario, the asymmetric Laplace working likelihood (5.3)

degenerates, and Bayesian inference for quantile regression is much less understood in

the literature. Furthermore, the variance adjustment in Section 5.4 is not applicable

when n < p, since it relies on estimation of the full covariance matrix E∗[XXT ].

Therefore, direct application of the pseudo-Bayesian approach becomes problematic.

Nonetheless, the pseudo-Bayesian approach can be useful when combined with the

idea of marginal screening (Fan and Lv , 2008). For high-dimensional sparse problems

with s≪ n < p, it is often practically useful to employ a fast screening step to reduce

the dimension to a manageable scale, prior to further statistical analysis (Fan and

Lv , 2010; Liu et al., 2015; Barut et al., 2016). Such screening is routinely applied in
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many real-world applications (Bermingham et al., 2015; Tamba et al., 2017).

For inference in high dimensional quantile regression, we suggest using our pseudo-

Bayesian framework after applying a quantile sure screening procedure such as those

proposed by He et al. (2013), Wu and Yin (2015), Shao and Zhang (2014) and

Ma et al. (2017). Under appropriate conditions, those screening procedures keep all

relevant covariates with probability approaching one, while at the same time the total

number of retained covariates is dn = O(nr) for some r < 1. Our Theorem V.3 then

applies to the dn-dimensional posterior distribution post-screening.

5.6 Computational details

In this section, we present the Bayesian hierarchical model for quantile regression

under shrinkage prior, and derive the induced posterior sampling techniques. Though

theoretical properties under CA (5.5) and AL (5.4) priors are similar, the AL prior

is computational more efficient (Alhamzawi et al., 2012; Benoit and Van den Poel ,

2017). For the CA prior, we also propose a feasible Gibbs sampling device based on

the piece-wise interpretation of the Bayesian Lasso (Hans , 2009).

5.6.1 Bayesian hierarchy under the AL prior

We first provide a review of the Bayesian Adaptive Lasso quantile regression. See

Alhamzawi et al. (2012) and Li et al. (2010) for a more detailed discussion. Following

Kozumi and Kobayashi (2011), denote

θ =
1− 2τ

τ(1− τ)
and ρ =

√
2

τ(1− τ)
.

The Asymmetric Laplace distribution with skewness τ in (5.3) can be succinctly

formulated as θv + ρ
√
vz, where vi ∼ Exp(1) and zi ∼ N(0, 1). By Andrews and
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Mallows (1974), the double-exponential prior can be represented as follows:

a

2
e−a|z| =

∫ ∞

0

1√
2πs

exp

(
−z

2

2s

)
· exp

(
−a

2s

2

)
ds.

This is a scale mixture of Normal distribution, where the mixing distribution is Ex-

ponential. When λ and the scale parameter σ = 1 in (5.3) are fixed, the Bayesian

hierarchy of the Adaptive Lasso quantile regression is

Likelihood: p(yi | vi,β) ∝
√

1

2πρ2vi
· exp

(
−(yi − β0 − xT

i β−0 − θvi)2

2ρ2vi

)
,

p(vi | β) ∝ exp (−vi) ,

Prior: p(β0) ∝ 1,

p(βj | sj) ∝

√
1

2πsj
exp

(
−
β2
j

2sj

)
, j = 1, . . . , p,

p(sj) ∝ exp

(
−nλ

2sj

2|β̂j|2

)
.

The full posterior distribution of β,v, s is

p(β0,β−0,v, s | Dn) ∝
n∏

i=1

√
1

2πρ2vi
· exp

(
−(yi − β0 − xT

i β−0 − θvi)2

2ρ2vi
− vi

)

×
p∏

j=1

√
1

2πsj
exp

(
−
β2
j

2sj
− nλ2sj

2|β̂j|2

)
.

The above expression yields the following list of conditional distributions.

1. The conditional distribution of sj | · is (j = 1, . . . , p)

p(sj | β,v, Dn) ∝

√
1

sj
exp

{
−1

2

(
β2
j

sj
+
nλ2sj

|β̂j|2

)}
.

This is a generalized Inverse Gaussian distributionGIG(1/2, nλ2/|β̂j|2, β2
j ) (Jor-

gensen, 2012). A generalized Inverse Gaussian distribution GIG(p, a, b) is
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parametrized as

f(x; p, a, b) ∝ xp−1e−(ax+b/x)/2.

2. The conditional distribution of vi | · is (i = 1, . . . , n)

p(vi | β, s, Dn) ∝
√

1

vi
exp

{
− 1

2ρ2

(
(yi − β0 − xT

i β−0)
2

vi
+
(
θ2 + 2ρ2

)
vi

)}
∼ GIG

(
1

2
,
θ2

ρ2
+ 2,

[y − β0 − xTi β−0]
2

ρ2

)

This is again a generalized Inverse Gaussian distribution.

3. The conditional distribution of β0 | · is

p(β0 | β−0,v, s,Dn) ∝ exp

{
−

n∑
i=1

(β0 − yi + xTi β−0 + θvi)
2

2ρ2vi

}

∝ exp

{
−1

2

(
n∑

i=1

[
1

ρ2vi

]
β2
0 − 2

n∑
i=1

[
yi − xiβ−0 − θvi

ρ2vi

]
β0

)}
∼ N(µ̄0, σ̄

2
0),

where 1/σ̄2
0 = ρ−2

∑n
i=1 v

−1
i and

µ̄0 = σ̄2
0 ·

n∑
i=1

yi − xT
i β−0 − θvi
ρ2vi

.

4. The conditional distribution of the vector β−0 | · follows from a similar strategy.

Let ỹi = yi − β0 − θvi, W = diag{ρ2vi} and S = diag{si}

p(β−0 | β0, s,v,Dn) ∝ exp

{
−

n∑
i=1

(ỹi − xT
i β−0)

2

2ρ2vi
−

p∑
j=1

β2
j

2sj

}

∝ exp

{
−1

2
βT
−0(X

TW−1X + S−1)β−0 + ỸW−1Xβ−0

}
∝ exp

{
−1

2
(β−0 − µ̄)B̄(β−0 − µ̄)

}
∼ N

(
µ̄, B̄−1

)
, (5.13)
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where

B̄ = XTW−1X + S−1, µ̄ = B̄−1XTW−1Ỹ .

In the above algorithm, step (5.13) can be implemented in a sequential way as in Li

et al. (2010). That is, sample one component βj from its full conditional distribution

p(βj | β−j,v, s,Dn) at a time for j = 1, . . . , p. The block update (5.13) offers a faster

mixing behaviour in the Gibbs sampler, at a cost of computing the inverse of a p by

p matrix in each iteration.

5.6.2 Bayesian hierarchy under the CA prior

While Metropolis-Hastings algorithms for Bayesian quantile regression under the

smooth SCAD prior are available (Adlouni et al., 2018), here we derive a direct

Gibbs sampling device based on our modified CA prior. Our method adapts from

the Gibbs sampler for Bayesian Lasso (Hans , 2009). With the same characterization

of Asymmetric Laplace likelihood, the Bayesian hierarchy follows similarly from the

previous section.

Likelihood: p(yi | vi,β) ∝
√

1

2πρ2vi
· exp

(
−(yi − β0 − xT

i β−0 − θvi)2

2ρ2vi

)
,

p(vi | β) ∝ exp (−vi) ,

Prior: p(β0) ∝ 1,

p(βj) ∝ exp (−nλmin{|βj|, λ}) , j = 1, . . . , p.

Note the prior on (βj) is improper, in the sense that the integration over βj diverges.

Nonetheless, the following full posterior is a proper distribution that can be normal-

ized. Thus the validity of using the posterior distribution (5.6) is still well justified
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(Gelman et al., 2013).

p(β0,β−0,v, s | Dn) ∝
n∏

i=1

√
1

2πρ2vi
· exp

(
−(yi − β0 − xT

i β−0 − θvi)2

2ρ2vi
− vi

)

×
p∏

j=1

exp (−nλmin{|βj|, λ}) .

The above posterior yields the following full conditional distributions.

1. The conditional distribution of vi | · is the same Generalized Inverse Gaussian

as the previous section (i = 1, . . . , n)

p(vi | β, Dn) ∼ GIG

(
1

2
,
θ2

ρ2
+ 2,

[y − β0 − xTi β−0]
2

ρ2

)

2. The conditional distribution of β0 | · is the same Normal distribution as the

previous section

p(β0 | β−0,v,Dn) ∼ N(µ̄0, σ̄
2
0).

3. Now we derive the conditional distribution of βj | · for each j = 1, . . . , p. We

start by noting the prior p(βj) can be written in a piece-wise fashion.

p(βj) =


nλβj, if 0 < βj < λ,

−nλβj, if − λ < βj < 0,

nλ2, if |βj| ≥ λ.

Following Hans (2009), we write the conditional distribution of βj | · as a

mixture of truncated Normal. Let ỹi = yi − θvi − β0 −
∑

k ̸=j xikβk. Denote by

N+(µ, σ2) as a generic truncated Normal distribution on 0 < x ≤ λ, N−(µ, σ2)

as the truncated Normal on −λ < x < 0, and N0(µ, σ2) as the one truncated
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on |x| ≥ λ.

p(βj | β−j,v,Dn) (5.14)

∝ exp

{
−

n∑
i=1

(ỹi − xijβj)2

2ρ2vi
− nλmin{|βj|, λ}

}

∝ exp

{
− 1

2ρ2

(
n∑

i=1

[
x2ij
vi

]
β2
j − 2

n∑
i=1

[
xij ỹi
vi

]
βj

)
− nλmin{|βj|, λ}

}

∝



exp(−nλ2)
ϕ
(
0;µO

j , σ
2
j

) · ϕ (βj;µO
j , σ

2
j

)
, if |βj| ≥ λ

1

ϕ
(
0;µ+

j , σ
2
j

) · ϕ (βj;µ+
j , σ

2
j

)
, if 0 < βj < λ

1

ϕ
(
0;µ−

j , σ
2
j

)ϕ (βj;µ−
j , σ

2
j

)
, if − λ < βj < 0

∼ κ+j N
+
(
µ+
j , σ

2
j

)
+ κ−j N

− (µ−
j , σ

2
j

)
+ κ0jN

0
(
µO
j , σ

2
j

)
, (5.15)

where ϕ(x;µ, σ2) is the density function for a generic Normal distributionN(µ, σ2).

Let W = diag{ρ2vi} The parameters in (5.15) are given by

σ−2
j =

∑n
i=1 x

2
ij/vi

ρ2
= (XTW−1X)j,j,

µ0
j =

σ2
j

∑n
i=1 xij ỹi/vi

ρ2
,

µ+
j = µ0

j − nλσ2
j ,

µ−
j = µ0

j + nλσ2
j ,

κ+j =

[
P+
j

ϕ(0;µ+
j , σ

2
j )

]/[
exp(−nλ2)P 0

j

ϕ(0;µ0
j , σ

2
j )

+
P−
j

ϕ(0;µ−
j , σ

2
j )

+
P+
j

ϕ(0;µ+
j , σ

2
j )

]
,

κ−j =

[
P−
j

ϕ(0;µ−
j , σ

2
j )

]/[
exp(−nλ2)P 0

j

ϕ(0;µ0
j , σ

2
j )

+
P−
j

ϕ(0;µ−
j , σ

2
j )

+
P+
j

ϕ(0;µ+
j , σ

2
j )

]
,

κ0j = 1− κ+j − κ−j .
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Note the variances for the three mixing components are the same, and are equal

to the j-th diagonal element of XTW−1X. The corresponding constants P+
j ,

P−
j and P 0

j normalizes the truncated distributions N+, N− and N0 respectively.

Let Φ(·) denote the cdf for a standard normal distribution, the constants can

be calculated explicitly as

P+
j = Φ

(
λ− µ+

j

σj

)
− Φ

(
−
µ+
j

σj

)
,

P−
j = Φ

(
−
µ−
j

σj

)
− Φ

(
−λ− µ−

j

σj

)
,

P 0
j = 1− Φ

(
λ− µ0

j

σj

)
+ Φ

(−λ− µ0
j

σj

)
.

The Gibbs Sampling under CA prior requires a component-wise update for each

βj in step (5.15). In one Gibbs iteration, we sample each βj from a different mixture

representation (5.15). The simultaneous block update of the entire p-dimensional

vector β is not tractable as in the Adaptive Lasso case (5.13). This is due to the

piece-wise nature of the prior pλ(βj), leading to a posterior of mixture-form. Though

the mixture weights κj are explicitly tractable in the univariate case, the multivariate

mixture weights are not.

Though the posterior sampling under the CA prior are easy to implement, its

mixing properties hinges on the correlation structure of the predictors. Compared

with the block-update (5.13), Hans (2009) points out that a component-wise update

as in (5.15) may increase the auto-correlation in the MCMC chain. The phenomena

exacerbate when the features Xj are highly correlated. An orthogonalized Gibbs

sampling step may replace (5.15) to improve the mixing behaviour of the Gibbs

sampler.
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5.6.3 The role of the tuning parameter

The remaining practical issue is selecting a hyper-parameter λ. We first comment

on the role of λ. A large λ helps improve the efficiency for those zero coefficients, as

their posterior variances are of the order 1/(nλ)2. A small λ ensures that the posterior

is unbiased for those non-zero coefficients. A reasonable choice of λ should strike a

balance in between. In theory, as Theorems V.1 V.2 show, the posterior inference

remains valid and improves over no shrinkage as long as λ falls in a certain range.

In our numerical experience, we have confirmed that the performance of the interval

estimates is not much affected by λ within a proper range. The choice of λ does,

however, affect the amount of efficiency gain of the posterior inference.

Unfortunately, there has not been a systematic approach for automatic tuning

parameter selection in our context. For a Bayesian treatment, one practical method is

the Empirical Bayes approach in Casella (2001), which finds the marginal maximum-

likelihood estimator of λ in the joint likelihood function of λ and β. However, since

our working-likelihood may be seriously mis-specified, such a model-based approach is

not well-justified. From a frequentist perspective, cross-validation (CV) is prevalent

for tuning parameter selection (Wu and Liu, 2009; Zou, 2006). Since CV aims to

minimize the prediction error, it may not work for posterior inference. Through

numerical evidence, we find that CV sometimes chooses a λ that is too large. We

suggest using a smaller λ than that chosen from CV, to ensure the posterior inference

is valid under the shrinkage prior.

5.7 Simulation

In this section, we present our findings from simulation studies. We verify that

the adjusted posterior inference provides adaptive confidence intervals for quantile

regressions, under a wide range of settings. By adaptive, we mean the method (i)
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achieves oracle efficiency for active coefficients and (ii) achieves super-efficiency for

inactive coefficients, as discussed in Section 5.4. We also compare the results with

some standard frequentist approaches. In what follows, we introduce the methods

and the simulation scenarios that we consider in this section.

Throughout this section, we may use four different methods to construct confi-

dence intervals for quantile regression coefficients. We first introduce some useful

abbreviations for those methods, which are highlighted in bold below.

• Full – Fit the classic quantile regression using all available covariates, then

apply the rank-score approach (Gutenbrunner and Jurecková, 1992) to construct

confidence intervals.

• Refit – First apply the Adaptive Lasso (Wu and Liu, 2009) for variable selec-

tion, and refit the quantile regression with the selected covariates. Then apply

the rank-score approach on the refitted model. For a coefficient that is not se-

lected by the Adaptive Lasso, we report its confidence interval as a single point

{0}.

• BayesM – The adjusted posterior inference in Section 5.4, under the Adaptive

Lasso prior (5.4). The confidence intervals are centered at the posterior means.

• BayesF – The same adjusted posterior inference as BayesM, but we use the

Adaptive Lasso estimators as the center. As in Remark 14, we do not implement

the weighting adjustment.

A few comments are in place for those methods. First, we comment on the choice

of the frequentist inferential procedure. Among the variety of inferential methods

for quantile regression (See e.g., Koenker (2005, Chapter 3)), we only consider the

rank-score method in this section. In the quantile regression literature, it is known

that the rank-score method enjoys robust and competitive performances. We do not
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consider those resampling methods as they usually have similar performances to the

rank-score method, yet with an increased computational cost. Second, we comment

on the choice of the prior in the posterior-based methods. We do not consider the

CA prior (5.5) due to the long mixing time of the Gibbs sampler, as mentioned in

Section 5.6.2. Instead, the Adaptive Lasso prior (5.4) offers easy computation and

satisfactory performance. Third, the methods Refit, BayesM and BayesF all need

a tuning parameter λ. To make a fair comparison, we shall always use the same λ

when comparing the performances of those shrinkage methods.

Now we provide a summary of different data generating processes in this section.

Let x = (x1, . . . , xp) be the covariates, y be the response, and u be the error terms

independent of x. Define Qτ (u) as the marginal τ -th quantile of u. In what follows,

we shall fix p = 6 unless stated otherwise. Note the values of β and sample sizes will

be given in each specific example later. In this section, we consider the following four

data generating models.

(A). An i.i.d. error model:

y = 1 + xTβA + u,

where x ∼ N(0,Σ) with Σij = 0.5|i−j|; We consider two possible error distribu-

tions: (i) u ∼ N(0, 1) and (ii) u ∼ Exp(1). In this model, the conditional τ -th

quantile of y given x is [1 +Qτ (u)] + xTβA, which is linear in x at any τ .

(B). A linear location-scale model:

y = 1 + xTβB + [3.5 + 2x6]u,

where x6 is generated from the uniform distribution on the interval [−1.5, 1.5];

Conditioning on x6, we generate x1, . . . , x5 ∼ N(x5/3, 1) independently; The

error term u ∼ (Γ(3, 2) − c0), where the constant c0 is chosen such that the

first quartile of u is 0. In this model, the conditional quantile of y given x is
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[1 + 3.5Qτ (u)] + xTβB + [2Qτ (u)]x6, which is linear in x at any τ .

(C). A global conditional quantile model:

Qτ (y | x) = 3Φ−1(τ) + xTβC(τ), ∀τ ∈ (0, 1),

where xj ∼ Unif(−1, 1), j = 1, . . . , 6; Φ−1(τ) is the quantile function of the

standard Normal distribution. Note the displayed conditional quantile function

uniquely determines the conditional distribution of y given x. We can simulate

the observation y from

y = 3Φ−1(u) + xTβC(u),

with u ∼ Unif(0, 1).

(D). An i.i.d. error model when the dimension p may increase with the sample size

n:

y = 1 + xTβD + u,

where x ∼ N(0,Σ) with Σij = 0.85|i−j|; u ∼ t(2). In this model, the conditional

τ -th quantile of y given x is [1 +Qτ (u)] + xTβD, which is linear in x at any τ .

Here we give some details about our upcoming simulation results. For each simula-

tion setting, we generate 1000 Monte Carlo data-sets independently, and we evaluate

the methods based on their performances on those 1000 realizations. We use the R

package ‘quantreg ’ (Koenker , 2018) to compute the frequentist approaches. For the

posterior-based method, we run the Gibbs sampler in Section 5.6.1 of length 20000

with a burn-in period of 3000 iterations. We find the posterior chain achieves sufficient

mixing for our simulations.
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5.7.1 The effect of the tuning parameter

While Theorem V.2 informs us that a wide range of λ provides asymptotically

valid inference, the finite-sample effect of λ remains unclear. In this first part, we

explore how the methods BayesF, BayesM and Refit depend on λ. To this end,

we evaluate all candidate methods’ performances at a range of different λ values. To

keep the presentation concise, we only include two simulation scenarios here: model

(A) with a small coefficient, and model (B).

5.7.1.1 In models with small coefficients

Our first example examines the effect of λ when the true model has a small

coefficient. We consider model (A) with

βA = (1/10, 3, 0, −5, 0, 0),

and the error term u ∼ N(0, 1); We fix the sample size at n = 80. Here we focus

on the case with τ = 0.5, i.e., the median regression. The active covariates include

x1, x2 and x4, despite that the regression coefficient for x1 is relatively small. Such

a small coefficient makes it difficult for shrinkage methods to deliver valid inference

(Leeb and Pötscher , 2005). Figure 5.2 presents how different methods perform under

a range of different λ; We shall only focus on β1, β2 and β3 for simplicity. Note in

this particular example, the interval lengths for BayesF and BayesM are identical.

The weighting adjustment in Remark 13 does not affect the performance with limited

sample sizes.

As we can see in Figure 5.2, while Full delivers valid inference for all coefficients,

the performance of other shrinkage methods depend heavily on λ. With a small

enough λ, all the shrinkage methods deliver satisfactory performances: Their empir-

ical coverage probabilities are all around 90% for the presented coefficients. With a
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limited sample size, there seem to be some size distortions for all methods: In general,

Refit is more liberal while BayesF and BayesM are more conservative.

When λ increases, the inference for β1, β2 and β3 shows different trends. For

the inactive coefficient β3, the shrinkage methods keep to provide valid inference:

Increased λ only reduces the length of the interval, without jeopardizing the cov-

erage probability too much. For the active coefficient β2, the performance remains

acceptable, as long as λ is not too large; This is because the true coefficient β0
2 = 3

is relatively large. However, the inference for the small coefficient, β1, breaks down

rapidly as λ grows, which is a well-recognized limitation of shrinkage methods (Leeb

and Pötscher , 2005). To be more specific, the coverage probabilities for all shrinkage

methods are below 50% when λ ≈ 2e–01 = 0.2.

Among the three shrinkage methods, the posterior-based methods, BayesM and

BayesF, are more robust to the change of λ, provided that λ is not too large. In

Figure 5.2a for β1, at λ = 1e-02 = 0.01, the empirical coverage probabilities of

BayesM and BayesF are still close to 90%, while the coverage for Refit is even

below 70%. This is not simply because the method BayesM is conservative. When

looking at the shape of the coverage curve, the one forRefit drops much more sharply

than BayesM and BayesF. We can observe the same behaviour in the plot for β2

as well.

The reason behind this robustness is that, Refit relies on a dichotomous vari-

able selection step. If the true coefficient is small yet non-zero, the variable selection

method will often select that coefficient as exactly 0, therefore providing no uncer-

tainty estimation (Pötscher and Leeb, 2009); The corresponding interval will then be

a singleton {0}. This issue is known as the non-uniformity for shrinkage methods,

as pointed out in Leeb and Pötscher (2005). On the other hand, the posterior-based

methods will always provide a non-empty confidence interval for each coefficient, even

when the true coefficient is close to 0. Thus, BayesM and BayesF mitigates the
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Figure 5.2: Inference using different λ under model (A) at τ = 0.5 and with normal
error. The x-axis is on the log scale. The true regression coefficients are β0

1 = 0.10,
β0
2 = 3, and β0

3 = 0. Nominal level is 90%, marked with a black dashed line.
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non-uniformity issue by providing a small margin of error for those small yet non-zero

coefficients.

Here we conclude our findings in this example. When the true regression coef-

ficients are relatively small, it is difficult for shrinkage methods to achieve adaptive

inference. To guarantee the coverage probability for the coefficient β1, we have to

choose a small λ; In turn, this choice limits the efficiency gain for the inactive coef-

ficients. Comparing with the classic Refit method, the posterior-based methods are

more robust to poor choices of λ.

5.7.1.2 In models with heteroscedasticity

Our second example demonstrates the effect of λ in heteroscedastic models. We

consider model (B) with

βB = (0, 3, 0,−5, 0, 0),

and we fix the sample size at n = 500. We focus on two different quantile levels τ =

0.25 and τ = 0.75. At those quantile levels, the true quantile regression coefficients

are

β0
0.25 = (0, 3, 0, −5, 0, 0), and β0

0.75 = (0, 3, 0, −5, 0, 2.19),

respectively. At level τ = 0.25, only x2 and x4 are active; Whereas x6 becomes active

at τ = 0.75. In this example, we also include the results where we choose λ adaptively

by 10-fold cross validation (CV). Note the CV approach is data-dependent, that is,

the value of λ will be different from each simulated dataset.

Since the heteroscedasticity issue is severe in this example, we shall use the mod-

ified frequentist approaches, Full-nid and Refit-nid, in place of Full and Refit.

• Full-nid – The same as Full, but we do not use the original rank-score method

for inference. Instead, we use the modified rank-score approach in Koenker and

Machado (1999) that is robust to heteroscedasticity.
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• Refit-nid – The same as Refit, the only difference is that we use the modified

rank-score approach as above, after refitting the model.

The modified rank-score approch can adapt to heteroscedasiticity with large enough

sample sizes; See Koenker (2005, Chapter 3). Correspondingly, its performance is

less stable than the original rank-score method when the sample size is small. The

‘nid’ approaches are also implemented in the R package ‘quantreg ’ (Koenker , 2018).

Figure 5.3 and 5.4 show the results for β2 and β6, respectively for τ = 0.25 and

τ = 0.75. As we can see, Full-nid provides valid inference for all presented coefficients;

Hence, we shall use Full-nid as a benchmark to compare other methods. The original

Full method, however, fails drastically for the inference of β6.

First we focus on the performance of Refit-nid, BayesM andBayesF for inactive

coefficients. To this end, we examine the inference for β6 at τ = 0.25 in Figure 5.3.

With smaller values of λ, all shrinkage methods provide valid inference. As λ grows,

we can see that the coverage probability for BayesM approaches 100% much faster

than all other methods. The coverage probabilities for BayesF and Refit-nid are

similar, which stay below 95% for most values of λ in our range. When λ is large

enough, nonetheless, all methods achieve near 100% coverage probability. For the

lengths of the intervals, all shrinkage methods are similar, and they provide narrower

interval than Full-nid for a wide range of λ. As λ grows, the efficiency gain is even

more significant. In this example, we observe the same behaviour for other inactive

coefficients as well. Thus, we conclude for inactive coefficients: (i) The posterior-based

method provides efficient inference, where a larger λ leads to better performance; (ii)

BayesM gives higher coverage for a wide range of λ, compared among the shrinkage

methods.

For active coefficients, the posterior-based methods are sometimes sensitive to the

choice of λ. For example, at τ = 0.75, the coefficient β6 is active in the quantile

regression model. As in Figure 5.4, we can see that BayesM and BayesF are both

212



0
.8

0
0

.9
0

1
.0

0

λ

β2

CV0.005 0.020 0.100 0.500 CV

Full

Full−nid

BayesF

BayesM

Refit−nid

0
.8

0
0

.9
0

1
.0

0
0

.8
0

0
.9

0
1

.0
0

λ

β6

0.005 0.020 0.100 0.500 CV

(a) Empirical coverage

0
.0

0
.1

0
.2

0
.3

0
.4

λ

β2

CV0.005 0.020 0.100 0.500 CV

Full

Full−nid

BayesF

BayesM

Refit−nid

0
.0

0
.1

0
.2

0
.3

0
.4

0
.0

0
.1

0
.2

0
.3

0
.4

λ

β6

0.005 0.020 0.100 0.500 CV

(b) Average length

Figure 5.3: Inference using different λ under model (B) at τ = 0.25. The x-axis is on
the log scale, with the largest tick at 1. The true regression coefficients are β0

2 = 3
and β0

6 = 0. Nominal level is 90%, marked with a black dashed line.
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Figure 5.4: Inference using different λ under model (B) at τ = 0.75. The x-axis is on
the log scale, with the largest tick at 0.50. The true regression coefficients are β0

2 = 3
and β0
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sensitive to the choice of λ: They have satisfactory coverage probability for smaller λ,

yet the inference for β6 breaks down for larger λ. Among the posterior-based methods,

BayesM seems to be more affected by large λ. For some other active coefficients,

however, the posterior-based methods are less sensitive to λ: The inference for β2

is valid for a wide range of λ, for both quantile levels τ = 0.25 and τ = 0.75. We

think the reason may be the following: The covariate x6 is associated with the het-

eroscedasticity in model (B), whereas x2 is not. Through more extensive simulations,

we observe the same phenomenon that the heteroscedasticity-related coefficients are

more sensitive to the choice of λ.

To get a better picture of why the posterior-based inference deteriorates for β6 at

τ = 0.75, we compare the centers of the intervals from BayesM and BayesF. Note

BayesM uses the posterior mean, while BayesF uses the Adaptive Lasso estimator.

As Figure 5.5 shows, the centers from both methods suffer from non-negligible bias

as λ increases; Yet the refitted estimator of Refit does not suffer from any variable

selection nor penalization bias. Furthermore, we observe the posterior mean is more

susceptible to the penalization bias, compared with the Adaptive Lasso estimator.

Those penalization bias explains why BayesM and BayesF are sensitive to λ.

Here we comment on the CV approach for choosing λ. When τ = 0.25, the cross-

validated λ seems to deliver satisfactory performances for BayesM and BayesF, but

the chosen λ may not the best. From Figure 5.3, we can see that the CV should have

chosen a larger λ: The length of the interval for β6 can be further reduced; At the

same time the inference for β2 remains valid. When τ = 0.75, the CV fails to select

a proper λ: The coverage probabilities for the cross-validated BayesM and BayesF

are both below 85%. This coverage is somewhat disappointing, considering that we

have a relatively large sample size n = 500. We find the failure of CV persists even

when (i) we have larger sample sizes, or (ii) we use more refined CV schemes like

the leave-one-out cross validation. Thus, we conclude that CV may not be the best
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approach for tuning λ, if we want to achieve valid and efficient inference.

As a summary, we find that BayesM provides better coverage for inactive coef-

ficients; Whereas BayesF is slightly more robust to λ for active coefficients. With

suitable values of λ, both BayesM and BayesF provide adaptive inference under

sparse heteroscedastic models, confirming their asymptotic properties in Section 5.4.

In the meantime, choosing a proper λ for inference is difficult; The CV is not capable

of finding the best λ. For λ’s that are too small, the inference is generally valid but

inefficient; Larger λ’s provide more efficient confidence intervals, but some of those

intervals may be invalid. The desired value of λ should strike a balance between

efficiency and validity.

5.7.2 When the tuning parameter is fixed

In this section, we further examine the performance of the posterior-based methods

in a wide range of settings. For the presentation to be more concise, we shall fix a

216



single value of λ in each simulation setting below. The particular value of λ is chosen

as follows: We run the CV on 100 preliminary datasets generated under the same

scenario, which gives 100 cross-validated λ’s; Then we fix λ at the 40% quantile of

those 100 values. Admittedly, CV is not designed to select the best λ for posterior

inference; But here we use that value for simplicity. In general, we find that the

selected λ delivers valid inference for shrinkage methods.

5.7.2.1 A sparse homoscedastic model

Here we consider model (A) with

βA = (0 , 3 , 0 ,−5 , 0 , 0)T .

Besides the intercept, only β2 and β4 are active in the quantile regression model. Un-

like the example in Section 5.7.1.1, all non-zero coefficients are sufficiently separated

from 0 here. Here we target three different quantile levels τ = 0.3, 0.5, 0.9; At each

τ , we consider two different sample sizes n = 80 and n = 500. We also present the

results with both error distributions as described in model (A): N(0, 1) and Exp(1).

Tables 5.1 and 5.2 summarize the results. Here we omit the results of BayesF to

keep the table concise.

We can see that Full delivers consistent coverage probability across all scenarios.

For the shrinkage methods, we discuss the inference for active and inactive coefficients

separately. For the active coefficients, we observe that BayesM is always on the con-

servative side, especially when the sample size is small. The BayesM confidence

intervals are sometimes even wider than the Full intervals, e.g., in Table 5.2 with

n = 80 and τ = 0.3. Nonetheless, BayesM still provides robust and valid coverage

probability. When the sample size increases, BayesM delivers more satisfactory per-

formance: The coverage probabilities are closer to 90%, while the average lengths are
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Table 5.1: Empirical coverage and average length for 90% confidence intervals under
model (A) with N(0, 1) error. The numbers in the parentheses are the empirical stan-
dard errors. The row named βinactive shows the average over all inactive coefficients
β1, β3, β5 and β6.

Empirical Coverage Average Length (s.e.)

n = 80

τ Full Refit BayesM Full Refit BayesM

τ = 0.3
λ =
0.140

β2 0.88 0.83 0.93 0.65 (0.21) 0.51 (0.18) 0.58 (0.12)
β4 0.89 0.84 0.94 0.65 (0.20) 0.51 (0.17) 0.58 (0.12)

βinactive 0.88 0.87 0.97 0.62 (0.20) 0.16 (0.26) 0.17 (0.15)

τ = 0.5
λ =
0.140

β2 0.89 0.83 0.94 0.61 (0.19) 0.48 (0.15) 0.54 (0.10)
β4 0.89 0.84 0.94 0.61 (0.19) 0.48 (0.15) 0.54 (0.11)

βinactive 0.90 0.88 0.98 0.58 (0.17) 0.16 (0.25) 0.16 (0.14)

τ = 0.9
λ =
0.089

β2 0.90 0.82 0.97 0.90 (0.38) 0.67 (0.30) 0.88 (0.22)
β4 0.89 0.81 0.97 0.91 (0.37) 0.67 (0.30) 0.88 (0.22)

βinactive 0.90 0.87 0.99 0.85 (0.35) 0.24 (0.37) 0.31 (0.24)

n = 500

τ Full Refit BayesM Full Refit BayesM

τ = 0.3
λ =
0.067

β2 0.90 0.86 0.92 0.25 (0.05) 0.20 (0.05) 0.21 (0.03)
β4 0.90 0.84 0.90 0.25 (0.05) 0.20 (0.05) 0.21 (0.03)

βinactive 0.90 0.89 0.97 0.23 (0.05) 0.06 (0.10) 0.05 (0.06)

τ = 0.5
λ =
0.071

β2 0.90 0.87 0.92 0.24 (0.05) 0.20 (0.04) 0.20 (0.03)
β4 0.90 0.84 0.90 0.24 (0.05) 0.20 (0.04) 0.20 (0.03)

βinactive 0.90 0.89 0.96 0.23 (0.04) 0.05 (0.09) 0.05 (0.05)

τ = 0.9
λ =
0.051

β2 0.89 0.84 0.93 0.33 (0.09) 0.26 (0.08) 0.28 (0.05)
β4 0.90 0.84 0.94 0.32 (0.08) 0.27 (0.07) 0.28 (0.05)

βinactive 0.90 0.88 0.97 0.31 (0.08) 0.08 (0.13) 0.08 (0.07)
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Table 5.2: Empirical coverage and average length for 90% confidence intervals under
model (A) with Exp(1) error. Other attributes in the table are the same as Table 5.1.

Empirical Coverage Average Length

n = 80

τ Full Refit BayesM Full Refit BayesM

τ = 0.3
λ =
0.062

β2 0.90 0.85 0.99 0.32 (0.12) 0.25 (0.09) 0.35 (0.07)
β4 0.89 0.83 0.98 0.32 (0.12) 0.25 (0.09) 0.35 (0.07)

βinactive 0.89 0.88 0.99 0.30 (0.11) 0.08 (0.14) 0.12 (0.09)

τ = 0.5
λ =
0.102

β2 0.89 0.84 0.95 0.46 (0.14) 0.36 (0.13) 0.42 (0.09)
β4 0.89 0.85 0.96 0.46 (0.14) 0.36 (0.12) 0.42 (0.08)

βinactive 0.89 0.88 0.98 0.43 (0.14) 0.12 (0.19) 0.14 (0.11)

τ = 0.9
λ =
0.132

β2 0.90 0.83 0.95 1.34 (0.54) 1.01 (0.46) 1.19 (0.34)
β4 0.90 0.82 0.95 1.36 (0.55) 1.06 (0.47) 1.23 (0.37)

βinactive 0.89 0.87 0.99 1.26 (0.52) 0.39 (0.58) 0.41 (0.35)

n = 500

τ Full Refit BayesM Full Refit BayesM

τ = 0.3
λ =
0.039

β2 0.91 0.87 0.94 0.12 (0.03) 0.10 (0.02) 0.10 (0.01)
β4 0.88 0.85 0.92 0.12 (0.03) 0.10 (0.02) 0.10 (0.01)

βinactive 0.90 0.89 0.95 0.11 (0.02) 0.02 (0.04) 0.03 (0.02)

τ = 0.5
λ =
0.058

β2 0.89 0.85 0.91 0.19 (0.04) 0.15 (0.03) 0.16 (0.02)
β4 0.90 0.85 0.91 0.19 (0.04) 0.15 (0.03) 0.16 (0.02)

βinactive 0.90 0.89 0.96 0.18 (0.04) 0.04 (0.07) 0.04 (0.04)

τ = 0.9
λ =
0.093

β2 0.90 0.85 0.91 0.56 (0.15) 0.44 (0.12) 0.47 (0.10)
β4 0.90 0.86 0.91 0.56 (0.14) 0.45 (0.13) 0.47 (0.10)

βinactive 0.90 0.89 0.98 0.53 (0.14) 0.12 (0.21) 0.11 (0.11)
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more similar to Refit. Note, however, Refit is usually more liberal with insufficient

coverage probability.

For the inactive coefficients, BayesM seems to stand out. While the method Full

is valid, the lengths of the confidence intervals are much wider, compared with Refit

and BayesM. On average, the two shrinkage methods give intervals of similar length,

yet BayesM has a much higher coverage probability. Note Refit never exceeds the

nominal 90% coverage for inactive coefficients, although it is claimed to be asymp-

totically oracle (Wu and Liu, 2009). In the meantime, the performance of BayesM

is also more stable; Because the lengths of BayesM intervals have smaller standard

errors.

To get a clearer picture of how Refit and BayesM differ, we zoom in on β1 and β3

in Table 5.3; For each coefficient, we compute the average lengths of the interval in two

different cases: Depending on whether the Adaptive Lasso selects that coefficient as 0

or not. We only focus on the scenario with n = 500 and τ = 0.5. When the Adaptive

Lasso identifies β1 as 0, Refit gives perfect inference: Its ‘confidence interval’ is a

singleton for β1, which coincides with the true coefficient. In the other case when the

Adaptive Lasso fails to select β1 as 0, Refit will refit the quantile regression model

that includes x1, with no shrinkage imposed on β1. Therefore, the intervals will be

wider in the latter case, similar to that in Full. On the other hand, BayesM is more

stable in terms of the interval lengths: we get much narrower intervals than Full in

either of the cases.

To conclude, BayesM achieves adaptive inference in this example. By paying

the price of being a little conservative, BayesM provides robust coverage for the

active coefficients. Furthermore, BayesM achieves super-efficiency for the inactive

coefficients, providing consistently narrower interval than Full.
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Table 5.3: The average interval lengths for β1 and β3, separately for two cases: (i) the
Adaptive Lasso (AL) selection is correct for that coefficient; and (ii) the AL selection
is incorrect. The column ‘Prop. zeros’ shows the empirical probability that the AL
is correct. The results are for n = 500 and τ = 0.5.

Prop. zeros
AL correct AL incorrect

Refit BayesM Refit BayesM

u ∼
N(0, 1)

β1 73.8% 0 0.026 0.200 0.110
β3 76.7% 0 0.031 0.228 0.123

u ∼
Exp(1)

β1 74.6% 0 0.023 0.157 0.088
β3 74.4% 0 0.026 0.173 0.095

5.7.2.2 A dense homoscedastic model

In this section, we consider model (A) with

βA = (+3,+3,+3,−3,−3,−3)T .

In this example, all coefficients are active and sufficiently-separated from 0. For

simplicity, we only present the results under N(0, 1) errors; We focus on the median

regression τ = 0.5 at three different sample sizes n = 80, n = 200 and n = 500. Table

5.4 compares the results for Full, BayesM and BayesF. Here we omit the results

for Refit, as the Adaptive Lasso always selects the full model. We only compare the

results for β0, β1, β2 and β3.

Even when the model is dense, the shrinkage methods BayesM and BayesF still

provide valid coverage probabilities for the λ values we choose, though they may be

more conservative. The conservative nature of posterior-based methods is consistent

with our findings in the previous example. Notably, we can see that BayesM is

always more conservative than BayesF. With n = 500, BayesF provides coverage

very close to 90%, whereas BayesM is still conservative.

Since the two methodsBayesM andBayesF provide intervals of identical lengths,

the difference between their coverage lies in the choice of centers: Recall thatBayesM
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Table 5.4: Empirical coverage and average length for 90% confidence intervals under
model (A) with dense coefficients and normal errors. The numbers in the parenthesis
are the empirical standard errors. These results are for τ = 0.5.

Empirical Coverage Average Length (s.e.)
Sample Size Full BayesF BayesM Full BayesF BayesM

n = 80
λ =
0.266

β0 0.89 0.93 0.96 0.46 (0.12) 0.54 (0.07) 0.54 (0.07)
β1 0.88 0.93 0.96 0.55 (0.17) 0.64 (0.12) 0.64 (0.12)
β3 0.89 0.93 0.94 0.61 (0.18) 0.72 (0.13) 0.72 (0.13)
β5 0.90 0.92 0.96 0.61 (0.18) 0.71 (0.13) 0.71 (0.13)

n = 200
λ =
0.237

β0 0.88 0.91 0.94 0.29 (0.06) 0.31 (0.03) 0.31 (0.03)
β1 0.89 0.92 0.94 0.33 (0.08) 0.36 (0.05) 0.36 (0.05)
β3 0.89 0.90 0.92 0.38 (0.09) 0.41 (0.06) 0.41 (0.06)
β5 0.88 0.91 0.94 0.37 (0.09) 0.41 (0.06) 0.41 (0.06)

n = 500
λ =
0.174

β0 0.88 0.90 0.93 0.18 (0.03) 0.19 (0.02) 0.19 (0.02)
β1 0.91 0.91 0.93 0.21 (0.04) 0.22 (0.03) 0.22 (0.03)
β3 0.91 0.92 0.93 0.24 (0.05) 0.25 (0.03) 0.25 (0.03)
β5 0.90 0.90 0.92 0.23 (0.05) 0.25 (0.03) 0.25 (0.03)

uses the posterior mean, while BayesF uses the Adaptive Lasso estimator. Those

point estimators have different finite sample properties. Figure 5.6 shows the bias

and standard error for the two standardized point estimators. We can see that,

the posterior mean and the Adaptive Lasso estimator are both unbiased, but the

former has a smaller standard error. The difference in standard error seems to be

more obvious when n = 80. Therefore, BayesM gives more conservative confidence

intervals, especially with limited sample sizes.

5.7.2.3 A global conditional quantile model

In this section, we consider model (C) with

βC(τ) =

(
5 ·min

{
τ − 3

4
, 0

}
, 3 + τ, 0, −5, 0, 0

)T

, τ ∈ (0, 1),

which is similar to the that in Reich and Smith (2013). With this choice of βC(τ),

the conditional distribution of y given x is complicated and heteroscedastic; See
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Figure 5.6: The scaled (by
√
n) empirical bias for the two point estimators β̂BayesF

2

and β̂BayesM
2 ; The error bars show ± 1 estimated standard error for the scaled bias.

The true coefficient is β0
2 = 3.

Rodrigues et al. (2019, Figure 4) for an illustration. We target two different quantile

levels τ = 0.25, and τ = 0.75; At those quantile levels, the true quantile regression

coefficients are

βC(0.25) = (−2.5, 3.25, 0, −5, 0, 0), and βC(0.75) = (0, 3.75, 0, −5, 0, 0),

respectively. Note β1 is active when τ = 0.25, yet it is inactive when τ = 0.75. We

consider two different sample sizes n = 200 and n = 500 for each of the quantile level.

Table 5.5 presents the results.

In this heteroscedastic example, BayesM continues to provide adaptive inference:

It gives valid coverage for active coefficients, though the intervals are sometimes wider

than the Full intervals; It gives near-100% coverage for inactive coefficients, with

much shorter intervals than Full. On the other hand, Refit often fails to provide

sufficient coverage probability, especially for the coefficient β1. The performance of

Refit does not seem to improve when the sample size grows.

Notably, the BayesM intervals for inactive coefficients are even shorter than the
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Table 5.5: Empirical coverage and average length for 90% confidence intervals under
model (C). The numbers in the parentheses are the empirical standard errors. The
row named βinactive shows the average over all inactive coefficients β3, β5 and β6.

Empirical Coverage Average Length

n = 200

τ Full Refit BayesM Full Refit BayesM

τ = 0.25
λ =
0.162

β1 0.88 0.86 0.88 1.53 (0.39) 1.45 (0.39) 1.67 (0.39)
β2 0.90 0.87 0.90 1.51 (0.38) 1.42 (0.38) 1.58 (0.35)
β4 0.90 0.88 0.92 1.52 (0.39) 1.44 (0.37) 1.59 (0.34)

βinactive 0.89 0.88 0.98 1.50 (0.38) 0.54 (0.73) 0.45 (0.46)

τ = 0.75
λ =
0.192

β1 0.87 0.85 0.98 1.57 (0.43) 0.59 (0.79) 0.47 (0.51)
β2 0.89 0.87 0.90 1.59 (0.41) 1.46 (0.39) 1.59 (0.35)
β4 0.90 0.88 0.91 1.55 (0.39) 1.44 (0.37) 1.58 (0.35)

βinactive 0.90 0.89 0.98 1.57 (0.41) 0.50 (0.72) 0.40 (0.43)

n = 500

τ Full Refit BayesM Full Refit BayesM

τ = 0.25
λ =
0.125

β1 0.86 0.85 0.89 0.95 (0.20) 0.92 (0.19) 1.03 (0.20)
β2 0.90 0.88 0.91 0.92 (0.19) 0.89 (0.19) 0.96 (0.19)
β4 0.90 0.89 0.91 0.93 (0.18) 0.89 (0.18) 0.96 (0.17)

βinactive 0.88 0.87 0.98 0.92 (0.18) 0.32 (0.44) 0.24 (0.25)

τ = 0.75
λ =
0.170

β1 0.87 0.85 0.99 0.99 (0.21) 0.29 (0.46) 0.22 (0.28)
β2 0.90 0.88 0.89 0.98 (0.20) 0.92 (0.19) 0.98 (0.17)
β4 0.91 0.89 0.91 0.99 (0.20) 0.93 (0.19) 0.99 (0.18)

βinactive 0.89 0.88 0.99 0.98 (0.20) 0.26 (0.42) 0.19 (0.23)
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Refit intervals on average. Figure 5.7 shows the average interval length for β1 at

τ = 0.75, separately in two cases. When the Adaptive Lasso correctly identifies

β1 as 0, Refit gives perfect inference with the ‘confidence interval’ as a singleton.

In the meantime, for more than one-third of the simulated datasets, the Adaptive

Lasso does not select β1 as 0. In those cases, Refit provides intervals that are of

similar length to that from Full; While BayesM intervals are still much narrower

than the Full intervals, on average. In practice, perfect variable selection is rare

for the Adaptive Lasso; See Wang et al. (2020), Bühlmann and Van De Geer (2011,

Chapter 7). Therefore, BayesM can often help to improve the efficiency for inactive

coefficients, even when Refit cannot.

BayesM Refit Full

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

n = 200

61% 39%

AL correct (61%)

AL incorrect (39%)

BayesM Refit Full

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

n = 500

67% 33%

AL correct (67%)

AL incorrect (33%)

Figure 5.7: The average interval lengths for β1 separately in two cases: (i) the Adap-
tive Lasso (AL) selection is correct for β1, shown in red; and (ii) the AL selection is
incorrect, shown in blue. The results are for τ = 0.75, where β1 is inactive.

5.7.2.4 A sparse model with increasing dimensions

This section considers model (D) in a series of experiments where the dimension

p grows with the sample size n. We choose three different combinations of the pair

(n, p): (140, 10), (350, 20) and (700, 30), following the growth rate n = 0.7p2 + 70.
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For a given dimension p, we set

βD = (1.5, 0 , . . . , 0︸ ︷︷ ︸
⌊p/2⌋−2

, 3, −5, 2, 0 , . . . , 0︸ ︷︷ ︸
⌈p/2⌉−2

)T .

Besides the intercept, there are 4 active coefficients in the quantile regression model,

with all others being inactive. Note in this example, there is a relatively high corre-

lation among all covariates, with corr(xi, xj) = 0.85|i−j|. Table 5.6 summarizes the

results. We only present: (i) the result for the intercept, (ii) the average result over

the 4 active coefficients, and (iii) the average result over all inactive coefficients.

We can see thatBayesM continues to provide valid and adaptive inference, similar

to what we see in previous examples. Two comments are in place to explain some

new observations in this example. First, the performance of Refit is consistently

poor throughout Table 5.6. When there are many covariates, the Adaptive Lasso

rarely achieve consistent variable selection in finite sample, which leads to invalid

inference (Leeb and Pötscher , 2005). BayesM seems to be a safer alternative than

Refit: For active coefficients, BayesM achieves nominal coverage, at the cost of

wider intervals; For inactive coefficients, BayesM provides near-100% coverage with

narrower intervals on average, compared with Refit.

Second, BayesM offers narrower intervals for the active coefficients, compared

with Full. We do not observe such an obvious improvement in previous examples,

where there is a small number of covariates. In this example, there are many highly

correlated covariates; Therefore, Full becomes inefficient when it uses all the covari-

ates. BayesM, on the other hand, implicitly uses a smaller number of covariates, as

BayesM shrinks some inactive coefficients toward zero. Thus, BayesM is close to

the ‘oracle efficiency’ (Zou, 2006) for the active coefficients, as if we knew the true

model in advance.

In summary, if we have enough samples, BayesM can deliver valid inference for
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Table 5.6: Empirical coverage and average length for 90% confidence intervals under
model (D). The numbers in the parenthesis are the empirical standard errors. The
row named βactive and βinactive shows the average over all active or inactice coefficients
in the slope, respectively.

Empirical Coverage Average Length (s.e.)

n = 140, p = 10

τ Full Refit BayesM Full Refit BayesM

τ = 0.3
λ =
0.100

β0 0.89 0.85 0.92 0.50 (0.13) 0.44 (0.12) 0.53 (0.09)
βactive 0.89 0.83 0.92 1.14 (0.33) 0.94 (0.30) 1.06 (0.22)
βinactive 0.89 0.85 0.97 1.17 (0.34) 0.36 (0.48) 0.35 (0.28)

τ = 0.5
λ =
0.101

β0 0.91 0.87 0.94 0.41 (0.10) 0.37 (0.08) 0.43 (0.05)
βactive 0.89 0.84 0.92 0.98 (0.26) 0.81 (0.24) 0.90 (0.16)
βinactive 0.90 0.86 0.97 1.00 (0.27) 0.29 (0.40) 0.28 (0.23)

τ = 0.9
λ =
0.090

β0 0.86 0.79 0.89 1.32 (0.57) 1.15 (0.52) 1.40 (0.43)
βactive 0.90 0.83 0.89 2.46 (0.93) 1.96 (0.86) 2.21 (0.68)
βinactive 0.90 0.85 0.97 2.50 (0.94) 0.96 (1.15) 0.93 (0.72)

n = 350, p = 20

τ = 0.3
λ =
0.106

β0 0.87 0.84 0.92 0.31 (0.07) 0.27 (0.06) 0.32 (0.04)
βactive 0.90 0.83 0.92 0.73 (0.17) 0.56 (0.15) 0.62 (0.10)
βinactive 0.89 0.86 0.97 0.76 (0.18) 0.14 (0.24) 0.14 (0.12)

τ = 0.5
λ =
0.102

β0 0.89 0.84 0.93 0.26 (0.05) 0.23 (0.04) 0.27 (0.03)
βactive 0.89 0.82 0.91 0.62 (0.13) 0.48 (0.12) 0.53 (0.08)
βinactive 0.89 0.86 0.97 0.65 (0.14) 0.12 (0.20) 0.11 (0.10)

τ = 0.9
λ =
0.089

β0 0.85 0.79 0.88 0.80 (0.25) 0.66 (0.21) 0.83 (0.18)
βactive 0.90 0.80 0.89 1.58 (0.46) 1.18 (0.40) 1.40 (0.32)
βinactive 0.90 0.83 0.98 1.65 (0.49) 0.43 (0.58) 0.42 (0.34)

n = 700, p = 30

τ = 0.3
λ =
0.090

β0 0.90 0.87 0.93 0.22 (0.04) 0.19 (0.03) 0.22 (0.02)
βactive 0.90 0.83 0.91 0.51 (0.10) 0.39 (0.09) 0.42 (0.06)
βinactive 0.90 0.87 0.97 0.54 (0.11) 0.08 (0.15) 0.08 (0.07)

τ = 0.5
λ =
0.084

β0 0.88 0.84 0.92 0.18 (0.03) 0.16 (0.02) 0.18 (0.01)
βactive 0.90 0.83 0.91 0.43 (0.08) 0.34 (0.07) 0.36 (0.04)
βinactive 0.90 0.88 0.97 0.45 (0.09) 0.07 (0.13) 0.07 (0.06)

τ = 0.9
λ =
0.091

β0 0.84 0.79 0.88 0.56 (0.14) 0.45 (0.11) 0.54 (0.09)
βactive 0.91 0.81 0.90 1.12 (0.28) 0.82 (0.23) 0.96 (0.18)
βinactive 0.91 0.85 0.98 1.18 (0.30) 0.23 (0.36) 0.21 (0.19)
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models with many covariates, whereas Refit oftentimes can not; With many highly-

correlated covariates, BayesM offers efficiency gain for both the active and inactive

coefficients, compared with Full.

5.7.3 A summary of the simulation studies

Here we summarize our findings from all those simulation studies. Overall, we

confirm that BayesM provides valid and adaptive inference in a wide range of set-

tings. With a suitable λ, BayesM achieves nominal coverage probability for active

coefficients, though it is sometimes conservative; BayesM also gives near-100% cov-

erage for inactive coefficients, with much shorter intervals than the analysis using the

full model.

First, we compare two posterior-based methods BayesM and BayesF. For inac-

tive coefficients, BayesM has much higher coverage for a wide range of λ, whereas the

coverage for BayesF is often insufficient. For active coefficients, BayesF is slightly

more robust to the penalization bias when λ is too large.

Second, BayesM is more stable thanRefit, especially for the inactive coefficients.

Furthermore, Refit often fails to provide sufficient coverage.

Third, we comment on the role of the tuning parameter λ. Often, there is a wide

range of λ that can achieve a balance between (i) valid coverage probability for active

coefficients, and (ii) better efficiency than Full for inactive coefficients. When λ is

too large, however, the inference may be incorrect.

Finally, for tuning λ, CV sometimes chooses a λ that is too large to deliver valid

inference for active coefficients. We suggest using a smaller λ than that chosen from

CV.
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5.8 Discussion

In this Chapter, we show that the Bayesian computational framework can be useful

for constructing frequentist confidence intervals in possibly sparse quantile regression

analysis. By employing appropriate shrinkage priors, we show the posterior inference

can adapt automatically to model sparsity. Asymptotically, the proposed confidence

intervals are oracle efficient for the active coefficients, and are super-efficient for the

inactive coefficients. Our work helps to uncloak the value of Bayesian computational

methods in frequentist inference with a mis-specified likelihood.

The proposed pseudo-Bayesian inference enjoys two distinct advantages over other

commonly-used frequentist approaches based on variable selection: (i) it avoids the

need to pursue dichotomous variable selection which is often non-oracle in finite-

sample problems; (ii) it avoids direct (non-parametric) estimation of the nuisance-

parameter needed for frequentist inference. These two properties often lead to more

stable results for quantile regression inference. In addition, the Bayesian computa-

tional framework can be especially valuable in other complex settings, e.g., censored

quantile regression problems (Yang et al., 2016; Wu and Narisetty , 2021) where the

objective function can be highly non-convex (Powell , 1986). Our pseudo-Bayesian

approach can be used to produce statistical inference without direct optimization of

the objective function while incorporating possible model sparsity.

There are several limitations of our work on the pseudo-Bayesian framework. First,

we focus on problems with fixed or moderately increasing dimensions. Second, we

use two relatively simple shrinkage priors as examples, which do not easily generalize

to high-dimensional settings. It remains an interesting problem, however, to study

what the pseudo-Bayesian approach can offer in higher dimensions when coupled with

other hierarchical shrinkage priors.
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5.9 Technical details

We first review some common notations, which shall appear throughout the ap-

pendix. Let P∗ be the true data generating probability measure, and let E∗ be the ex-

pectation under P∗. The posterior probability is Π(·|Dn), where Dn = {(x1, y1), . . . , (xn, yn)}.

Conversely, we shall use Pr for generic probability calculations.

For a vector a, let ∥a∥ be its L2 norm, and ∥a∥q be its Lq norm for 1 ≤ q ≤ ∞.

For any symmetric matrix A, we define θmax(A) and θmin(A) as the maximal/minimal

eigenvalue of A; and let |A| be its determinant. For p-by-p symmetric matrices A

and B, we write A ⪯ B if aTAa ≤ aTBa for all a ∈ Rp. For two probability density

functions f and g, we define ∥f − g∥TV as their total variation distance. For two real

numbers a and b, let a ∧ b = min{a, b}, and a ∨ b = max{a, b}. For two sequences an

and bn, we define an ≪ bn if an/bn → 0; and an ≲ bn if there is a universal constant

C0 > 0, such that an ≤ C0 · bn. We define an ≤P∗ bn if the inequality holds with

P∗-probability tending to 1.

5.9.1 Some preliminary lemmas

Let χ2
d(ν) represent the chi-square distribution with d degrees of freedom and non-

centrality parameter ν; let Laplace(b) represent the Laplace distribution with density

function

fb(x) =
1

2b
exp

{
−|x|
b

}
, x ∈ R;

and let N (µ,Σ) represent the multivariate normal distribution. We first present

Lemma IA.1 – Lemma IA.3 regarding the properties for those distributions.

Lemma IA.1. Let X ∼ χ2
d(ν), then for all x ≥ 4(d+ 2ν), we have

P (X ≥ x) ≤ exp (−x/4) .
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Furthermore, let Z ∼ N(µ,Σ) ∈ Rd, then if x2 ≥ 4θmax(Σ) · (d+ 2µTΣ−1µ), we have

P (∥Z∥ ≥ x) ≤ exp

(
− x2

4θmax(Σ)

)
.

Proof. The first inequality follows from Lemma 8.1 of Birgé (2001). To show the

second inequality, note that ZTΣ−1Z ∼ χ2
d (v) , where v = µTΣ−1µ; therefore if

x2θmin(Σ
−1) ≥ 4(d+ 2v), we have

Pr (∥Z∥ ≥ x) ≤ Pr
(
ZTΣ−1Z ≥ x2θmin(Σ

−1)
)
≤ exp{−x2/(4θmax(Σ))}.

Lemma IA.2. Given a1, . . . , am ≥ amin > 0, let X1, . . . , Xm be independent random

variables with

Xj ∼ Laplace

(
1

aj

)
, j = 1, . . .m,

Then, for all x > 0, we have

Pr

(
max

j=1,...m
|Xj| ≥ x

)
≤ m · exp{−amin · x};

furthermore, if amin/b > 1/2, then

Pr

(
max

j=1,...m
|Xj| ≥

x

b

)
≤ m · exp{−x/2}.

Proof. The first inequality follows from a standard union bound, since

Pr(|Xj| ≥ x) = 2

∫ ∞

x

aj
2
exp{−aj|u|} du ≤ exp{−amin · x}.
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The second inequality follows similarly, since

Pr(|Xj| ≥ x/b) = exp{−aminx/b}.

Lemma IA.3. Let w = (w1, . . . , ws)
T , and let X ∈ Rs be distributed as

X ∼ N

(
µ,
σ2
0

n
Is

)
.

For any positive integer k and any 0 < ε < 1/2, if

∥w∥ ≤ ε ·min

{√
2n

kσ0
,

1

k∥µ∥

}
,

then we have

∣∣EX

(
exp{−k ·wTX}

)
− 1
∣∣ ≤ 4ε.

Furthermore, if a constant K satisfy K ≥ 3σ0 and K2s ≥ 16n∥µ∥2, we have

EX

(
exp{−k ·wTX} · 1

[
∥X∥ ≥ K

√
s

n

])
≲ exp

(
−K

2s

8σ2
0

)
.

Proof. By leveraging the moment generating function of the normal distribution, and

using the upper bound for ∥w∥,

E
(
exp{−k ·wTX}

)
= exp

{
kµTw +

kσ2
0

2n
∥w∥2

}
≤ exp {2ε}

≤ 1 + 4ε,

for 0 < ε < 1/2. In a similar manner, we can establish the lower bound for
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E
(
exp{−k ·wTX}

)
, which shows the first result.

For the second inequality, using Cauchy-Schwartz inequality gives

E2

(
exp{−k ·wTX} · 1

[
∥X∥ ≥ K

√
s

n

])
≤ E

(
exp{−2k ·wTX}

)
· Pr

(
∥X∥ ≥ K

√
s

n

)
≤ exp {4ε} · exp

{
−K

2s

4σ2
0

}
,

where the tail probability is bounded by Lemma IA.1. Taking the square root of the

above inequality gives the desired result.

Furthermore, the following result is needed for Example 3 in Section 5.5.

Lemma IA.4. Let αk ≍ 1/k, and

Dp =



∑∞
k=1 α

2
k α1 · · · αp

α1

...

αp

Ip


.

Then the eigenvalues of Dp satisfy:

p−1 ≲ θmin(Dp) ≤ θmax(Dp) ≲ p,

as p→∞.

Proof of Lemma IA.4. Let Ap =
∑p

k=1 α
2
k, A =

∑∞
k=1 α

2
k and b = (α1, . . . , αp)

T . Any

eigenpair of Dp, denoted by (λ,u), satisfies:

Au0 + bTu1 = λu0

u0b+ u1 = λu1.
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From simple linear algebra, we have either λ = u0 = 1, or u1 = [u0/(λ− 1)] · b.

It suffices to consider the case where λ ̸= 1. From the first line of the above

displayed equations we have

A+
Ap

λ− 1
= λ,

since u1 = [u0/(λ− 1)] · b and u0 ̸= 0. Therefore it follows from simple algebra that

−
√

(A+ 1)2 − 4(A− Ap) ≲ λ− (A+ 1) ≲
√

(A+ 1)2 − 4(A− Ap).

Noting that A−Ap ≍ 1/p, the above displayed inequality shows that all eigenvalues

of Dp are upper bounded by a constant, and lower bounded by a multiple of p−1.

Hence the proof is now complete

The following lemma is simple but useful; we will implicitly use the lemma in the

upcoming proofs.

Lemma IA.5. Let f(z; θ) be a probability density function indexed by θ ∈ Θ ⊂ Rk.

We write Z ∼ f(z; θ) and define Prθ(Z ≥ x) =
∫
z≥x

f(z; θ)dz, where Z is independent

of the data. Let g(·, ·) be a bivariate function of Θ× R→ R; suppose we have

sup
θ: g(θ,x)≤B

Prθ(X ≥ x) ≤ a,

for some real numbers a, x, and B. For any statistic θn that satisfies g(θn, x) ≤P∗ B,

it holds that

Prθn(X ≥ x) ≤P∗ a.

We need the following variants of the Bernstein inequality. They are Theorem

2.10 of Boucheron et al. (2013) and Theorem 2.8.2 of Vershynin (2018), respectively.

Lemma IA.6. Let X1, . . . , Xn be independent random variables. Suppose there exist
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positive constants c, v > 0 such that
∑n

i=1 E(X
2
i ) ≤ v, and

n∑
i=1

E [(Xq
i )+] ≤

q!

2
vcq−2 for all integers q > 3.

Then

P

(
n∑

i=1

[Xi − E(Xi)] ≥ t

)
≤ 2 exp

(
− t2

2(v + ct)

)
.

Lemma IA.7. Let X1, . . . , Xn be independent, mean zero random variables that sat-

isfy

sup
i=1,...,n

Pr (|Xi| ≥ x) ≤ exp(−x/σ0),

for some constant σ0. Then there is a universal constant C2, such that for every t ≥ 0

and a = (a1, . . . , an),

Pr

(∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−C2 ·min

{
t2

σ2
0∥a∥22

,
t

σ0∥a∥∞

})
.

We also need the following lemma, which is from Lemma 4 of Belloni and Cher-

nozhukov (2011).

Lemma IA.8 (Expectation of log-likelihood). Let Ln(β) =
∑n

i=1 ρτ (yi − xTi β) and

δ = β − β0 Suppose Assumptions E.2 and E.3′ hold, then there exists a constant q0

such that

1

n
E∗ [Ln(β

0 + δ)− Ln(δ)
]
≥ min

{
∥G1/2δ∥2

4
, q0∥G1/2δ∥

}
.

In particular, when ∥G1/2δ∥ ≥ 4q0, the left-hand-side of the displayed equation is

lower bounded by q0∥G1/2δ∥.
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5.9.2 Technical lemmas with increasing dimensions

In this subsection, we state and prove two key results, Lemma IB.1 and IB.2,

which controls the uniform variation of the empirical quantile-loss function. When

the dimension p grows with the sample size n, the results are new; they are not

implied by generic combinatoric arguments (Belloni et al., 2019a) under our current

conditions. When p is fixed, those lemmas are standard from the empirical process

literature; see e.g., Knight (1998), Pollard (1985) and Andrews (1994).

Before stating the lemmas, we first review some notations. We shall continue to

use the notations in the beginning of the appendix. In addition, recall xi, yi and

β0 from the quantile regression model (5.1); and recall the quantile-loss function

ρτ (·) and Ln(·) from (5.2). Let X = [x1, . . . , xn]
T be the design matrix. We define

ϕτ (u) = τ − 1[u ≤ 0], and we shall write ϕ = [ϕτ (yi − xTi β0)]ni=1 as a vector. Recall

from Assumption E.3 that G = E∗[xix
T
i fy|x(x

T
i β

0)], D = E∗[xix
T
i ], as well as the

block-partition

G =

 G11 G12

G21 G22

 ,
where G11 is an s-by-s matrix corresponding to the active coefficients under Assump-

tion E.5′. Furthermore, for any vector a ∈ Rp, we shall write a = (aT1 , a
T
2 )

T , where

a1 ∈ Rs corresponds to the active components.

Now we give the key lemmas and their proofs.

Lemma IB.1 (Stochastic Differentiability). Let δ = β − β0 and

rn(δ) = Ln(β
0 + δ)− Ln(β

0) +
n∑

i=1

ϕτ (yi − xTi β0)xTi δ.

Suppose Assumptions E.1, E.2, E.3′ and E.4′ hold and p2 log2 p = o(n). Then we

have that

sup
δ∈Rp

∣∣∣∣rn(δ)− E∗[rn(δ)]

n∥D1/2δ∥+ 1

∣∣∣∣ P ∗
−→ 0.
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Proof. First, it is easy to see |rn(δ)| ≤
∑n

i=1 |xTi δ|. Therefore, for large enough a > 0,

we have that

sup
∥D1/2δ∥≥na

∣∣∣∣rn(δ)− E∗[rn(δ)]

n∥D1/2δ∥+ 1

∣∣∣∣ ≤ sup
∥D1/2δ∥≥na

∑n
i=1 |xTi δ|+

∑n
i=1 E

∗ [|xTi δ|]
n · ∥D1/2δ∥2

≤
∑n

i=1∥D−1/2xi∥
n1+a

+
E∗ [∥D−1/2xi∥

]
na

P ∗
−→ 0,

where the last inequality follows since Cov∗(D−1/2xi) = Ip. Therefore, it suffices to

show

sup
δ:∥D1/2δ∥≤na

∣∣∣∣rn(δ)− E∗[rn(δ)]

n∥D1/2δ∥+ 1

∣∣∣∣ P ∗
−→ 0,

for any constant a > 0.

Let γ4n = (p2 log2 n)/n → 0. In the following steps, we apply a generic chaining

argument to show that the above display is of order OP ∗(γn). To simplify notations,

we define fn(δ) = rn(δ)/(n∥D1/2δ∥2 + 1).

Step I: Main chaining First, we define the following concentric ‘cubes’:

Ck = {δ ∈ Rp : ∥D1/2δ∥∞ ≤ dk}, k = 0, . . . , Kn,

where dk is the edge length of each cube. For 0 < γn < 1, we take the lengths to be

dk = (k + 1)εn, with εn =
γn
np
, k = 0, . . . , Kn.

Letting Kn = ⌈pna+1

γn
⌉ − 1, it is easy to check {∥D1/2δ∥ ≤ na} ⊂ CKn . It then suffices

to show the uniform convergence in CKn .

For each of Ck\Ck−1, we further partition it into smaller cubes of length at most

εn. That is, Ck builds upon Ck−1 by one layer of such small cubes with edge εn. For
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each k ≥ 1, there are Bk = (2k)p− (2(k− 1))p such smaller cubes, which are denoted

as Cjk, j = 1, . . . , Bk. Letting δj
k be the center of Cjk, we have

sup
δ:∥D1/2δ∥≤na

|fn(δ)− E∗(fn(δ))|

≤ sup
δ∈C0
|fn(δ)− E∗(fn(δ))|+ sup

k=1,...,Kn
j=1,...,Bk

sup
δ∈Cj

k

|fn(δ)− E∗(fn(δ))|

≤
(
sup
δ∈C0
|fn(δ)− E∗(fn(δ))|

)

+

 sup
k=1,...,Kn
j=1,...,Bk

sup
δ∈Cj

k

[
|fn(δ)− fn(δj

k)|+ E∗|fn(δ)− fn(δj
k)|
]

+

 sup
k=1,...,Kn
j=1,...,Bk

|fn(δj
k)− E∗[fn(δ

j
k)]|


≜ R1 +R2 +R3.

In the next step, we shall compute the stochastic order of R1, R2, and R3 separately.

Step II: Auxiliary chaining Let v(δ) = ∥D1/2δ∥2; for any δ, δ′ ̸= 0, define

∆0(δ) = |fn(δ)| =
|rn(δ)|

n∥D1/2δ∥2 + 1
,

∆1(δ, δ
′) =

|rn(δ′)− rn(δ)|
n∥D1/2δ′∥2 + 1

,

∆2(δ, δ
′) =

∣∣∣∣rn(δ) · 1

n∥D1/2δ∥2 + 1
− 1

n∥D1/2δ′∥2 + 1

∣∣∣∣ .
(IB.1)

In step IV below, we show separately that for any d < 1/
√
n,

E∗

[
sup

∥D1/2δ∥≤d

∆0(δ)

]
≲ npd2,
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and

E∗

 sup
δ,δ′⊂CKn

∥D1/2(δ′−δ)∥≤d

∆u(δ, δ
′)

 ≲ n
√
pd,

for u = 1, 2.

Now, we show that we can control R1 and R2 using ∆0 through ∆2 defined in

(IB.1). Recall d0 = ε0 = γn/(np). For R1, note when δ ∈ C0 we have ∥D1/2δ∥ ≤
√
p∥D1/2δ∥∞ ≤

√
pd0 ≤ 1/

√
n, therefore

E∗[R1] ≤ 2E∗

[
sup

∥D1/2δ∥≤√
pεn

∆0(δ)

]
≲ np2ε2n ≤ γn.

For R2, note for any δ, δ′ ̸= 0, we have

|fn(δ′)− fn(δ)| ≤
|rn(δ′)− rn(δ)|
n∥D1/2δ′∥2 + 1

+

∣∣∣∣rn(δ) · 1

n∥D1/2δ∥2 + 1
− 1

n∥D1/2δ′∥2 + 1

∣∣∣∣
= ∆1(δ, δ

′) + ∆2(δ, δ
′);

furthermore, in each of the small cubes Cjk, we have ∥D1/2(δ− δj
k)∥ ≤

√
pεn ≤ 1/

√
n.

Therefore

E∗[R2] ≤ 2
2∑

u=1

E∗

 sup
δ,δ′⊂CKn

∥D1/2(δ′−δ)∥≤√
pεn

∆u(δ, δ
′)


 ≲ npεn ≤ γn.

Hence, Chebyshev’s inequality implies

R1 = OP ∗(γn), R2 = OP ∗(γn).

Now we bound R3. In step III below, we show that for any fixed δ, the following
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inequality holds for all tn > 0:

P∗ (|rn(δ)− E∗[rn(δ)]| ≥ tn) ≤ 2 exp

− t2n

2
(
c1n[v(δ)]3/2 + c2

√
v(δ)tn

)
 , (IB.2)

where v(δ) = ∥D1/2δ∥2 and c1, c2 > 0 are two constants. Recall there are at most

(2Kn)
p ≤ (4pna+1/γn)

p small cubes with edge-length εn; therefore, for large enough

M > 0,

P∗(R3 ≥Mγn)

≤
Kn∑
k=1

Bk∑
j=1

P∗

(
rn(δ

j
k)− E∗ [rn(δj

k)
]

n∥D1/2δ∥2 + 1
≥Mγn

)

≤
(
4pna+1

γn

)p

· exp

− inf
δ∈CKn

M2γ2n(nv(δ) + 1)2

2
(
c1n[v(δ)]

3/2 + c2
√
v(δ) ·Mγn(nv(δ) + 1)

)


≤ exp

{
(a+ 2)p log n− M2

√
nγ2n

c1

}
→ 0,

when M is large enough, since
√
nγ2n = p log n; to compute the infimum in the

penultimate inequality, we define z = (n
√
v(δ) + 1/

√
v(δ), which gives

(nv(δ) + 1)2

c1n[v(δ)]
3/2 + c2

√
v(δ) ·Mγn(nv(δ) + 1)

≥ z2

(c1 +Mγn · c2)z
≥
√
n

c1
.

Collecting the results for R1, R2 and R3 and recalling that γ4n = (p2 log2 n)/n, we

have

sup
δ:∥D1/2δ∥≤na

|fn(δ)− E∗(fn(δ))| = OP ∗

 4

√
p2 log2 n

n

 = oP ∗(1),

since p2 log2 n≪ n. Thus, we have shown the asserted claim of the Lemma.
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Step III: Exponential inequality Here we show the exponential inequality (IB.2)

holds. Without loss of generality, we assume the scale-parameter σ0 = 1 in Assump-

tion E.4′; therefore, standard calculation leads to

E∗ [|xTi D−1/2u|q
]
≲ q! · ∥u∥q (IB.3)

by Assumption E.4′.

Note for fixed δ, rn(δ) can be written as

rn(δ) =
n∑

i=1

∫ xT
i δ

0

(
1[yi − xTi β0 ≤ s]− 1[yi − xTi β0 ≤ 0]

)
ds ≜

n∑
i=1

∫ xT
i δ

0

hi(s) ds,

(IB.4)

which follows directly from Knight’s identity (Knight , 1998); note the above sum-

mands
∫
hi(s)ds are non-negative. To apply Lemma IA.6, we check the condition in

the next paragraph.

Let Fi(y) and fi(y) denote the conditional cumulative distribution function and

conditional density function of (y − xTi β
0) | x = xi, respectively. Letting An =

n∥D1/2δ∥3, we first have

n∑
i=1

E∗

[∫ xT
i δ

0

hi(s) ds

]2

=
n∑

i=1

E∗
X

[∫ xT
i δ

0

∫ xT
i δ

0

E∗
Y |X=x {hi(u)hi(s)} ds du

]

= n · E∗
X

[∫ xT
i δ

0

∫ xT
i δ

0

Fi(u ∧ s) + Fi(0)− Fi(u ∧ 0)− Fi(s ∧ 0) ds du

]

≤ 2n · E∗
X

[∫ xT
i δ

0

ds

∫ s

0

|u|fi(ũ) du

]
≲ n · E∗ [|xTi δ|3]
≲ An,
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where the first inequality owns to the mean value theorem; the penultimate inequality

follows since fi is bounded from above in Assumption E.2; the last inequality follows

from (IB.3). Next, it is easy to see from induction that for all integers q ≥ 3,

n∑
i=1

E∗

[∫ xT
i δ

0

hi(s) ds

]q
≤

n∑
i=1

E∗
(
|xTi δ|q · 1[0≤|yi−xT

i β0|≤|xT
i δ|]

)
≲ n · E∗

X

(
|xTi δ|q+1

)
≲ n · (q + 1)! · ∥D1/2δ∥q+1

≤ q! · An ·Bq−2
n ,

where Bn = 2∥D1/2δ∥, and the last inequality follows from (IB.3).

Now we can readily apply Lemma IA.6, which gives

P∗

(
n∑

i=1

∫ xT
i δ

0

(hi(s)− E∗[hi(s)]) ds ≥ tn

)
≤ exp

{
− t2n
2(c1An + c2Bntn)

}

≤ exp

− t2n

2
(
nc1[v(δ)]3/2 + 2c2

√
v(δ)tn

)
 ,

which is precisely the one-sided version of (IB.2). The inequality for the opposite

direction follows in a similar manner since
∫
hi(s)ds ≥ 0.

Step IV: Control of the supremum Here we compute the expectation of the

supremum of ∆0, ∆1 and ∆2 defined in (IB.1).

For ∆1, from the proof of Theorem 1 in Pollard (1991), we deduce,

E∗ sup
δ,δ′∈CKn

∥D1/2(δ′−δ)∥≤d

|rn(δ)− rn(δ′)| ≤ E∗ sup
δ,δ′

(∑
n

|xTi (δ′ − δ)| · 1[|yi−xT
i β0|≤|xT

i δ|∨|xT
i δ′|]

)

≤ E∗ sup
δ,δ′

(
n∑

i=1

∥xTi D−1/2∥ · ∥D1/2(δ′ − δ)∥

)
≤ nd

√
p,
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since E∗[∥xTi D−1/2∥] ≤
√

E∗[∥xTi D−1/2∥2] = √p. Observing the denominator of fn(δ)

is no less than 1, we obtain for d < 1,

E∗ sup
δ,δ′∈CKn

∥D1/2(δ′−δ)∥≤d

∆1(δ
′, δ) ≲ nd

√
p.

For ∆2, observe that for any ∥D1/2(δ − δ′)∥ ≤ d, we have |v(δ′) − v(δ)| ≤ d2 +

2d
√
v(δ), which further implies

∣∣∣∣ 1

n∥D1/2δ∥2 + 1
− 1

n∥D1/2δ′∥2 + 1

∣∣∣∣ ≤ n|v(δ)− v(δ′)|
(nv(δ) + 1)(nv(δ′) + 1)

≤
nd2 + 2nd

√
v(δ)

(nv(δ) + 1)
.

Therefore, we obtain for ∆2:

E∗ sup
δ,δ′∈CKn

∥D1/2(δ′−δ)∥≤d

∆2(δ, δ
′) ≤ E∗ sup

δ∈CKn

[
rn(δ) ·

nd2 + 2nd
√
v(δ)

(nv(δ) + 1)

]

≤ E∗ sup
δ∈CKn

[
n∑

i=1

|xTi δ| ·
nd2 + 2nd

√
v(δ)

(nv(δ) + 1)

]

≤ E∗

[
n∑

i=1

∥D−1/2xi∥

]
· sup
δ∈CKn

(√
v(δ) ·

nd2 + 2nd
√
v(δ)

(nv(δ) + 1)

)
≲ n

√
p(
√
nd2 + 2d).

with the second inequality owns to (IB.4), and the last inequality owns to E∗[∥xTi D−1/2∥] ≤
√
p. Therefore, with d ≤ 1/

√
n, the above display is bounded by n

√
pd.
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For ∆0, we have from (IB.4)

E∗ sup
δ:∥D1/2δ∥≤d

fn(δ
′) ≤ E∗ sup

δ:∥D1/2δ∥≤d

|rn(δ)|

≤ E∗ sup
δ

(∑
n

|xTi δ| · 1
[
yi − xTi β0| ≤ |xTi δ|

])

≤ E∗

(
n∑

i=1

d · ∥xTi D−1/2∥ · 1
[
|yi − xTi β0| ≤ d · ∥xTi D−1/2∥

])
≲ nd2p.

where the last inequality follows by first taking conditional expectation over y | x.

Lemma IB.2 (Restricted Quadratic Expansion). Suppose Assumptions E.1, E.2, and

E.3′ through E.5′ hold and s4p2 log2 n = o(n). Furthermore, if the tuning parameter

satisfies

λ≫
√
sp log p√
n

,

then we have

Ln(β
0 + δ)− Ln(β

0) =
n

2
δTGδ −

n∑
i=1

xTi δϕτ (yi − xTi β0) + oP ∗(1),

uniformly on δ ∈ Bn(K) for any constant K, where

Bn(K) =

{
∥G1/2

11 δ1∥2 ≤ K

√
s

n
; ∥δ2∥∞ ≤ K

s log p

nλ

}
,

with δ = (δT
1 , δ

T
2 )

T , where δ1 ∈ Rs corresponds to the active coefficients.

Proof. Recall the definition of rn(δ) in Lemma IB.1, it suffices to show

sup
δ∈Bn

∣∣∣rn(δ)− n

2
δTGδ

∣∣∣ = oP ∗(1).

Due to assumption E.2, we have δT
1D11δ1 ≤ δT

1 G11δ1/f . Therefore, when δ ∈
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Bn(K)

∥D1/2δ∥2 ≤ 2 (δ1D11δ1 + δ2D22δ2)

≤ 2K2 s

nf
+ 2θmax(D22) · p∥δ2∥2∞

≲ 2K2 s

n
+ 2p

(
K
s
√
p log p

nλ

)2

≲
s

n
, (IB.5)

since θmax(D22) ≤ p from Assumption E.3′, and that λ≫
√
sp log p√

n
. Lemma IB.1 then

implies that

sup
δ∈Bn(K)

∣∣∣∣rn(δ)− E∗[rn(δ)]

K2s+ 1

∣∣∣∣ ≲ sup
δ∈Bn(K)

∣∣∣∣rn(δ)− E∗[rn(δ)]

nE∗[|xTδ|2] + 1

∣∣∣∣ = OP ∗

 4

√
p2 log2 p

n

 .

Therefore, it follows that for any fixed K

sup
δ∈Bn(K)

|rn(δ)− E∗[rn(δ)]| = oP ∗(1),

if s4p2 log2 p = o(n).

Next we compute E∗[rn(δ)]. Denote by Fi as the conditional distribution function

for (yi − xTi β0) | X = xi, and fi as the corresponding conditional density function.

By Knight’s identity (IB.4) we have

E∗[rn(δ)] =
n∑

i=1

E∗
X

(∫ xT
i δ

0

[Fi(s)− Fi(0)] ds

)

=
n∑

i=1

E∗
X

(∫ xT
i δ

0

[
sfi(0) +

s2

2
f ′
i(s̃i)

]
ds

)
(by the mean value-theorem)

=
1

2
δTE∗

[
n∑

i=1

xix
T
i fi(0)

]
δ +O

(
f1 E

∗

[
n∑

i=1

|xTi δ|3
])

=
n

2
δTGδ +O

(
n · ∥D1/2δ∥3 · sup

∥u∥=1

E∗[|uTD−1/2xi|3]

)
,
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with f 1 is the uniform upper bound for |f ′
i | in Assumption E.2. Note when δ ∈ Bn(K)

we have ∥D1/2δ∥3 ≤ K3(s/n)3/2 as in (IB.5); and also sup∥u∥=1 E
∗[|uTD−1/2xi|3] is

uniformly bounded from (IB.3). Therefore, when s3 ≪ n we have

E∗[rn(δ)] =
n

2
δTGδ,

which completes the proof.

The following results are simple corollaries from Lemma IB.1 and IB.2.

Lemma IB.3 (Unrestricted Quadratic Expansion). Suppose Assumptions E.1, E.2,

E.3′ and E.4′ hold and p6 log2 n = o(n). In addition, suppose θmin(G) ≥ c0 > 0, then

for rn(δ) defined in Lemma IB.1 we have

sup
δ∈Bn(K)

|rn(δ)−
n

2
δTGδ| = oP ∗(1),

where Bn(K) = {∥G1/2δ∥2 ≤ K
√
p/n}.

Proof. The proof is similar to that of Lemma IB.2 and is therefore omitted.

Corollary IB.1. Define

Bn(Kn) =

{
∥G1/2

11 δ1∥2 ≤ Kn

√
s

n
; ∥δ2∥∞ ≤ Kn

s log p

nλ

}
.

Under the condition of Lemma IB.2, there exists a sequence Kn → ∞ such that the

conclusion therein holds uniformly when δ ∈ Bn(Kn). That is, for rn(δ) defined in

Lemma IB.1,

sup
δ∈Bn(Kn)

∣∣∣rn(δ)− n

2
δTGδ

∣∣∣ = oP ∗(1).

Proof. The desired result of the Corollary follows from a generic diagonalization ar-

gument.
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Corollary IB.2. Define

En(Kn) =

{
∥G1/2

11 δ1∥2 ≤ Kn

√
s

n
; ∥δ2∥∞ ≤ Kn

log p

nλ

}
.

Under the condition of Lemma IB.2, there exists a sequence Kn →∞ such that

sup
δ∈En(Kn)

|rn(δ)−
n

2
δT
1 G11δ1| = oP ∗(1),

where rn(δ) is define in Lemma IB.1.

Proof. We only need to verify nδTGδ − nδT
1 G11δ1 = oP ∗(1) on En. Observe that

∣∣nδTGδ − nδT
1 G11δ1

∣∣ ≤ nδT
2 G22δ2 + 2nδT

1 G12δ2

≤ nθmax(G22)p∥δ2∥2∞ + 2n∥δT
1 G

1/2
11 ∥ · ∥G

−1/2
11 G12δ2∥

≲ np2
(
Kn log p

nλ

)2

+ 2nK2
n

√
s

n
·
√
θmax(G22)p ·

log p

nλ

≲ K2
n

p2 log2 p

nλ2
+K2

n

√
sp log p√
nλ

→ 0,

provided that Kn diverges slow enough; the second to the last inequality holds due

to ∥G−1/2
11 G12∥2 ≤ θmax(G22) ≤ p as in Assumption E.3′.
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5.9.3 Proof under the flat prior

Proof of Proposition 6. Denote An = {β ∈ Rp : ∥β − β0∥ ≥ Mn/
√
n}. Let the

empirical check-loss function be

Ln(β) =
n∑

i=1

ρτ (yi − xTi β).

We prove that

∫
An

exp

{
−

n∑
i=1

ρτ (yi − xTi β)

}
dβ

∫
Rp

exp

{
−

n∑
i=1

ρτ (yi − xTi β)

}
dβ

=

∫
An

exp {Ln(β0)− Ln(β)} dβ∫
Rp

exp {Ln(β0)− Ln(β)} dβ

P ∗
−→ 0.

Without loss of generality, we assume that all Xi are bounded such that ∥Xi∥2 ≤ 1.

Also, we consider the sequence Mn such that Mn/
√
n → 0. Letting δ = β − β0 and

δ̂ = β̂ − β0. The proof goes by three parts. We first lower bound the denominator.

Then we upper bound the numerator on two disjoint regions Cn and Dn, where the

constant k will be specified later.

Cn =

{
β :

Mn√
n
≤ ∥β − β0∥ ≤ k

}
,

Dn =
{
β : ∥β − β0∥ ≥ k

}
.

The proof completes by showing the upper bound converges to 0.

Lower bound the denominator. For any fixed constant K, we consider the in-

tegral on Bn = {∥β − β0∥ ≤ K/
√
n}. Letting the constant

logSn = n(β0 − β̂)TD1(β
0 − β̂)/2, (IB.6)
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which does not depend on β. Recall θmax (θmin) is the maximal (minimal) eigenvalue of

the matrix D1. We proceed by translating into a non-central chi-square distribution.

By the uniform expansion in Lemma IB.3, we have

∫
Bn

exp {Ln(β0)− Ln(β)} dβ

= Sn

∫
Bn

exp
{
−n
2
(β − β̂)TD1(β − β̂) +Rn(β)

}
dβ

≥ Sn(1 +Rn(β))

∫
Bn

exp

{
−nθmax

2
(β − β̂)T (β − β̂)

}
dβ

≥ Sn(1− oP (1))
∫
∥δ∥≤K/

√
n

exp

{
−nθmax

2
(δ − δ̂)T (δ − δ̂)

}
dδ

= Sn(1− oP (1))
(

2π

nθmax

)p/2

P(χ2
p(gn) ≤ K2θmax),

where the non-centrality parameter gn = nθmax∥β̂ − β0∥2 = Op(1). Rn(β) = oP (1)

uniformly on Bn from Lemma IB.3.

For any K large enough, on the event En(K) = {K2θmax ≥ 4(p+2gn)}∩{Rn(β) ≤

1/2}, Lemma IA.1 gives the following lower bound for the preceding display:

∫
Rp

exp
{
Ln(β

0)− Ln(β)
}
dβ ≥ 1

2
Sn

(
2π

nθmax

)p/2 [
1− P(χ2

p(gn) ≥ K2θmax)
]

≥ 1

2
Sn

(
2π

nθmax

)p/2 [
1− exp(−K2θmax/4)

]
≥ Sn

3
·
(

2π

nθmax

)p/2

. (IB.7)

Note for every ε > 0, we can choose a K such that limnP (En(K)) ≥ 1 − ε by the

tightness of gn. Letting ε → 0 proves the above lower bound holds with probability

tending to 1.
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Bound the numerator on area Cn Let ϕτ (u) = τ−1[u ≤ 0]. By Knight’s identity

(Knight , 1998), we have

Ln(β
0)− Ln(β) =

n∑
i=1

xTi ϕτ (yi − xTi β0) · δ

−
n∑

i=1

∫ xT
i δ

0

(
1[yi − xTi β0 ≤ s]− 1[yi − xTi β0 ≤ 0]

)
ds

≜
n∑

i=1

xTi ϕτ (yi − xTi β0)δ −Bn

≤
n∑

i=1

xTi ϕτ (yi − xTi β0)δ − E(Bn) + |E(Bn)−Bn|. (IB.8)

To proceed further, we first provide a lower bound on E(Bn), followed by a uniform

upper bound on E(Bn)−Bn.

1. Bound E(Bn) Denote by Fi as the cdf for (Y − xTi β0) | X = xi, where fi is

the conditional density.

E(Bn | X) =
n∑

i=1

∫ xT
i δ

0

[Fi(s)− Fi(0)] ds

=
n∑

i=1

∫ xT
i δ

0

[
sfi(0) +

s2

2
f ′
i(s̃i)

]
ds (by mean value-theorem)

≥ 1

2
δT

[
n∑

i=1

xix
T
i fi(0)

]
δ − 1

6
f1

n∑
i=1

|xTi δ|3.
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The last inequality is due the bound of the f ′(s) in Assumption E.2. Taking expec-

tation again yields

E(Bn) ≥
n

2
δTD1δ −

n

6
f1E|xTi δ|3

≥ n

4
δTD1δ +

n

4
f δTE[xix

T
i ]δ −

n

6
f1 (E sup |xTi δ|) · E|xTi δ|2

≥ n

4
δTD1δ +

(
1

4
f − 1

6
f1 · sup

β∈Cn
∥β − β0∥2

)
nδTE[xix

T
i ]δ

≥ n

4
δTD1δ.

The second identity uses the fact that |u|3 ≤ sup |u| · |u|2. In the last identity resides

the choice of k, such that ∥β − β0∥ ≤ k ≤ 6f/4f1 on Cn.

2. Bound |E(Bn) − Bn| For any fixed 0 < ε0 < λmin/8, Lemma IB.1 implies

that there’s a constant k such that

sup
β∈Cn

∣∣∣∣Bn − E(Bn)

nδTD1δ

∣∣∣∣ ≤ sup
β∈Cn

∣∣∣∣Bn − E(Bn)

nθmin∥δ∥2

∣∣∣∣ ≤ ε0
θmin

≤ 1/8,

with probability approaching unity.

Combining the two steps above, (IB.8) shows with probability going to 1,

Ln(β
0)− Ln(β) ≤

n∑
i=1

ϕτ (yi − xTi β0)x
T
i (β − β0)− n

8
(β − β0)TD1(β − β0), (IB.9)

uniformly on β ∈ Cn. Define

log(Cn) = 2[
n∑

i=1

xiϕτ (ei)]
TD−1

1 [
n∑

i=1

xiϕτ (ei)]/n and µ̃ =
4

n
D−1

1

n∑
i=1

xiϕτ (ei).

(IB.10)

251



And ei = yi − xTi β0. We arrive at the following bound on the integral on Cn

∫
Cn

exp
{
Ln(β

0)− Ln(β)
}
dβ ≤

∫
Cn

exp

{
−n
8
δTD1δ +

n∑
i=1

xTi ϕ(ei)δ

}
dβ

= Cn

∫
∥δ∥≥Mn/

√
n

exp
{
−n
8
(δ − µ̃)TD1(δ − µ̃)

}
dδ

≤ Cn

∫
∥δ∥≥Mn/

√
n

exp

{
−nθmin

8
(δ − µ̃)T (δ − µ̃)

}
dδ

≤ Cn ·
(

8π

nθmin

)p/2

· P
[
χ2
p

(
nθmin

4
∥µ̃∥2

)
≥ θminM

2
n/4

]
.

Classic Central Limit Theorem shows the non-centrality parameter νn = nθmin

4
∥µ̃∥2 =

Op(1). Such tightness implies θminM
2
n/4 ≥ νn with probability going to 1. Applying

Lemma IA.1 yields the following bound

∫
Cn

exp
{
Ln(β

0)− Ln(β)
}
dβ ≤ Cn ·

(
8π

nθmin

)p/2

· exp(−θminM
2
n/16), (IB.11)

with probability approaching unity.

Bound the numerator on area Dn. From Assumption E.1 and the convexity of

the objective function (5.2), there exists a constant ε0 such that on Dn

Ln(β)− Ln(β
0) ≥ nε0

k
∥β − β0∥2 ≥

nε0
k
√
p
∥β − β0∥1, (IB.12)
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with probability going to unity. Note the inequality holds uniformly in β ∈ Dn. Thus,

∫
Dn

exp
{
Ln(β

0)− Ln(β)
}
dβ ≤

∫
Dn

exp

{
− nε0
k
√
p
∥β − β0∥1

}
dβ

≤
∫
∥δ∥1≥k

exp

{
− nε0
k
√
p

p∑
j=1

|δj|

}
dβ

=

(
2k
√
p

nε0

)p

· P
(
Γ

(
p,
nε0
k
√
p

)
≥ k

)
≤

(
2k
√
p

nε0

)p

· exp
{
− nε0
4
√
p

}
, (IB.13)

where we have used the fact that sum of independent exponential distribution forms

a Gamma distribution. The last inequality follows from the tail bound for Gamma

distribution (Boucheron et al., 2013, Section 2.4)

From the Bahadur representation of the QR estimator (Koenker , 2005, Section

4.1), we have that logCn = 4 logSn + oP (1), who are defined separately in (IB.6)

and (IB.10). Collecting the results in (IB.7), (IB.11) and (IB.13), the proof is now

complete.
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5.9.4 Proof under the CA prior

In this subsection, we prove Theorem V.3 in Section 5.5, where the dimension p

grows with the sample size. The result when p is fixed, i.e., Theorem V.1, follows as

a simple corollary.

Here we review some of the notations, most of which are defined in the beginning

of the previous subsection. Recall β0 = (β0
1,β

0
2) as the true quantile regression

coefficients, with β0
2 = 0 under Assumption E.5′. The quantile-loss function ρτ (·)

and Ln(·) are defined in (5.2). We shall write ϕ = [ϕτ (yi − xTi β
0)]ni=1 as a vector.

Recall from Assumption E.3 that G = E∗[xix
T
i fy|x(x

T
i β

0)], D = E∗[xix
T
i ], as well

as the sub-matrices Gkℓ for k = 1, 2. By Assumption E.3′, define the constant θ11

such that 0 < θ11 < θmin(G11). Furthermore, for any vector a ∈ Rp, we shall write

a = (aT1 , a
T
2 )

T , where a1 ∈ Rs corresponds to the active components. In particular,

we shall write X = [X1,X2]. Finally, we define ∆p = G−1XTϕ and ∆s = G−1
11 X

T
1 ϕ.

Under the CA prior (5.5), the posterior density with respect to δ = β−β0 is (up

to a normalization constant)

pn(δ) = πCA(δ + β0) · exp
{
Ln(β

0)− Ln

(
δ + β0

)}
.

The posterior probability that δ ∈ A under pn is then

Π(δ ∈ A|Dn) =

∫
AC

pn(δ) dδ∫
Rp

pn(δ) dδ
.

To better organize the proofs, we prove the two parts of Theorem V.3 separately

in the following subsections.

5.9.4.1 Part 1 of Theorem V.3: Adaptive rate of posterior consistency

Here we prove Part 1 of Theorem V.3, which we re-phrase as the following theorem.
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Theorem IC.1. Consider the CA prior (5.5). Suppose Assumptions E.1, E.2, and

E.3′ through E.5′ hold. In addition, suppose s4p2 log2 n = o(n), and the tuning pa-

rameter λn satisfies

√
sp log p√
n

≪ λn ≪ min

{
bn,

1√
s
, bn

√
θmin(D)

}
.

For any sequence Mn →∞, we define

Bn =

{
δ : ∥δ1∥2 ≤Mn

√
s

n
, ∥δ2∥∞ ≤Mn

s log p

nλ

}
. (IC.1)

Then, we have

Π
(
δ ∈ BC

n

∣∣∣ Dn

)
P ∗
−→ 0,

To facilitate the proof of Theorem IC.1, we need the following four lemmas, the

proof of which are deferred to Section 5.9.6.

Lemma IC.1 (Lower bounding the integration – CA prior). Under the conditions of

Theorem IC.1, we have

∫
Rp

pn(δ) dδ ≳P∗

(
2π

n

)s/2(
2

nλ

)p−s

·
exp

(
−snλ2 + n∆T

sG11∆s/2
)√

|G11|
.

Lemma IC.2 (Preliminary contraction region of the CA prior). Suppose the condi-

tions of Theorem IC.1 hold. Let

An =

{
δ = β − β0 : min

j=1,...,s
|βj| < λ, or max

j=s+1,...,p
|βs| > λ

}
, (IC.2)

then we have

Π
(
δ ∈ An

∣∣∣ Dn

)
P ∗
−→ 0.

Lemma IC.3. Recall ϕ = (ϕ1, . . . , ϕn) from the beginning of this subsection. Suppose

255



Assumptions E.2, E.3′, and E.4′ hold. For any matrix A ∈ Rq×p such that all diagonal

elements of ADAT are bounded from above by C0 > 0, we have

∥∥∥∥∥
n∑

i=1

ϕiAxi

∥∥∥∥∥
∞

= OP ∗(
√
n log q).

Lemma IC.4. Recall from the beginning of this subsection that

∆s = G−1
11

n∑
i=1

x1iϕτ (yi − xTi β0)/n, and ∆p = G−1

n∑
i=1

xiϕτ (yi − xTi β0)/n.

Suppose Assumption E.2 holds, then we have

∆T
sG11∆s = OP ∗(s/n),

∆T
pG∆p = OP ∗(p/n).

Now we are ready to prove Theorem IC.1.

Proof of Theorem IC.1. For the constant q0 in Lemma IA.8, we define

Cn =
{
δ : ∥G1/2δ∥ ≤ 4q0

}
.

Recalling that An from (IC.2), Lemma IC.2 shows the posterior probability of An

converges to zero. Therefore, to show that Π(BC
n | Dn) converges to zero, it suffices

to show the posterior probabilities of the following areas are all oP ∗(1):

1. Cn ∩ BC
n ∩ AC

n

2. CCn ∩ AC
n ,

where Bn is defined in (IC.1).

We divide our proof into five parts. In step I, we first give upper bounds for

the posterior density pn(δ); in steps II - III below, we obtain upper bounds for the

posterior integral
∫
pn(δ) dδ on the two areas Cn ∩BC

n ∩AC
n and CCn ∩AC

n separately;
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then in step IV, we show the posterior probabilities of those two areas are both oP ∗(1);

step V contains some auxiliary calculations to supplement the proof.

Since both areas Cn∩BC
n ∩AC

n and CCn ∩AC
n are in AC

n , the CA prior for δ becomes

πCA(δ + β0) = exp
{
−snλ2 − nλ · ∥δ2∥1

}
,

throughout the proof, as defined in (5.5).

Step I: Bounding the posterior density pn(δ) We give two different upper

bounds for pn(δ), one for δ ∈ Cn ∩ AC
n and the other for δ ∈ CCn ∩ AC

n .

Here we consider the case on CCn ∩ AC
n ; and we first provide upper bounds for

Ln(β
0)− Ln(δ + β0). By the convexity of Ln, we have

Ln(β
0)− Ln(δ + β0) ≤ n∥G1/2δ∥

4q0
· sup
∥G1/2δ∥≥4q0

{
Ln(β

0)− Ln(δ + β0)

n

}
≤P∗ −nε0∥G

1/2δ∥
4q0

, (IC.3)

uniformly in δ ∈ CCn ; here ε0 is the constant due to Assumption E.1. Therefore,

combining with the formula of the CA prior, we have

pn(δ) ≤P∗ exp

{
−nε0∥G

1/2δ∥2
q0

− snλ2 − nλ∥δ2∥1
}

≤ exp

{
−nε0∥G

1/2δ∥2
q0

− snλ2
}

≜ exp
{
−snλ2

}
· p1n(δ),

uniformly in δ ∈ CCn ∩ AC
n .

Next we consider the case on Cn ∩ An. First we bound the function rn(δ) =
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Ln(δ + β0)− Ln(β
0) + ϕTXδ using Lemma IB.1:

−rn(δ) ≤ −E∗[rn(δ)] +

(
sup
δ∈Cn

|rn(δ)− E∗[rn(δ)]|
n∥D1/2δ∥2 + 1

)
· (n∥D1/2δ∥2 + 1)

≤P∗ −n∥G
1/2δ∥2

4
+

1

8
f(n∥D1/2δ∥2 + 1)

≤ −n
8
δTGδ +

1

8
f, (IC.4)

uniformly on Cn, where f is a constant introduced in Assumption E.2; the second

inequality uses Lemma IB.1 to bound the centered empirical process rn(δ)−E∗[rn(δ)],

and Lemma IA.8 to bound E∗[rn(δ)]; (IC.4) follows since f ·D ⪯ G. Using (IC.4) and

the relationship between rn and Ln, we can upper bound the quantile-loss function

as

Ln(β
0)− Ln(δ + β0) ≤P∗ ϕTXδ − n

8
δTGδ +

1

8
f

≤ ϕTXδ − n

8
(δ1 + A2δ2)

TG11(δ1 + A2δ2) +
1

8
f

≤ −n
8
(δ1 + A2δ2 − 4∆s)

TG11(δ1 + A2δ2 − 4∆s)

+ ∥ϕTX2 − ϕTX1A2∥∞ · ∥δ2∥1

+ 2n∆T
sG11∆2 +

1

8
f, (IC.5)

where A2 = G−1
11 G12; the second inequality relies on δTGδ ≥ (δ1 + A2δ2)

TG11(δ1 +

A2δ2) by using the Schur-decomposition of G; and the last inequality follows by

completing the squares with respect to δ1 and Hölder’s inequality.

Let αn = ∥ϕTX2 −ϕTX1A2∥∞ and µ̃(δ2) = 4∆s −A2δ2. Combining (IC.5) with

the CA prior, we have

pn(δ) ≲P∗ exp
{
−snλ2 + 2n∆T

sG11∆s

}
· exp

{
−n
8
(δ1 − µ̃(δ2))TG11(δ1 − µ̃(δ2))

}
· exp {−(nλ− αn) · ∥δ2∥1}

≜ exp
{
−snλ2 + 2n∆T

sG11∆s

}
· p2n(δ1, δ2),
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uniformly on Cn ∩ AC
n .

Step II: Bounding the posterior integral on Cn ∩BC
n ∩AC

n Here we bound the

posterior integral of pn(δ) on Cn ∩ BC
n ∩ AC

n . Using the upper bound of p2n(δ1, δ2)

in step I, we relate its integration to probabilistic tail bounds. Let Z ∈ Rs and

ξ = (ξ1, . . . , ξp−s) be distributed as

ξ1, . . . , ξp−s
i.i.d.∼ Laplace

(
1

nλ− αn

)
,

Z | ξ ∼ N

(
µ̃(ξ),

4

n
G−1

11

)
,

where αn and µ̃ are defined at the end of Step I. In what follows, we shall write Pr(·)

as the probability with respect to (Z, ξ), while holding ∆s and αn fixed. Given any

fixed ∆s and αn < nλ, the function p2n(δ1, δ2) is proportional to the joint density

function of the vector (Z, ξ). Therefore, the integration of p2n(δ1, δ2) can be related

to the probabilistic statements about (Z, ξ), which gives

∫
Cn∩BC

n ∩AC
n

pn(δ) dδ

≲P∗ exp{−snλ2 + 2n∆T
sG11∆s} ·

∫
BC
n ∩AC

n

p2n(δ1, δ2) dδ1 dδ2

= exp{−snλ2 + 2n∆T
sG11∆s} ·

(
2

nλ− αn

)p−s

· 1√
|G11|

·
(
8π

n

)s/2

· Pr
(
∥Z∥2 ≥Mn

√
s

n
or ∥ξ∥∞ ≥

Mns log p

nλ

)
, (IC.6)

where we insert the normalizing constants of Laplace and Gaussian distributions in the

second equality; note the displayed equation holds on the event E1(γ) = {pαn < γ·nλ}

for small enough constant γ > 0.

To compute the tail probability in (IC.6), we break it into two parts. First, we

259



have

Pr

(
∥ξ∥∞ ≥

Mns log p

nλ

)
≤ p · exp {−Mns log p/2} ≤ exp {−Mns log p/4} ,

on the event E1(γ), which follows from Lemma IA.2. Second, using standard condi-

tional probability formula, we can show

Pr

(
∥Z∥2 ≥Mn

√
s

n
, ∥ξ∥∞ ≤

Mns log p

nλ

)
≤ sup

∥δ2∥∞≤Mns log p/(nλ)

Pr

(
∥Z∥2 ≥Mn

√
s

n

∣∣∣ ξ = δ2

)
≤ exp

{
−θ11M

2
ns

16

}
,

where the last inequality holds on the event

E2 =

{
8n · sup

∥δ2∥∞≤Mns log p/(nλ)

[
µ̃(δ2)

TG11µ̃(δ2)
]
≤M2

nθ11s

}
,

by Lemma IA.1; since Z | ξ = δ2 follows a Gaussian distribution with mean µ̃(δ2).

Thus, combining the two tail bounds above, we have

Pr

(
∥Z∥2 ≥Mn

√
s

n
or ∥ξ∥∞ ≥

Mns log p

nλ

)
≤ exp

{
−θ11M

2
ns

16

}
+ exp {−Mns log p/4}

≤ 2 exp {−c0 ·Mns} , (IC.7)

for some constant c0 > 0.

To further simplify (IC.6), note on the event E1(γ) = {pαn < γ · nλ}, we have

(
2

nλ− αn

)p−s

=

(
2

nλ

)p−s

·
(

1

1− αn/(nλ)

)p−s

≤
(

2

nλ

)p−s

· 1

1− γ
, (IC.8)
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which follows since (1−x)p ≥ 1−px for all 0 < x < 1. Therefore, substituting (IC.7)

and (IC.8) into (IC.6), we have

∫
Cn∩BC

n ∩AC
n

pn(δ) dδ

≲P∗ exp{−snλ2 + 2n∆T
sG11∆s} ·

1√
|G11|

·
(
8π

n

)s/2(
2

nλ

)p−s

· exp {−c0 ·Mns} ,

on the events E1(γ) and E2.

Step III: Bounding the posterior integral on CCn ∩AC
n When δ ∈ CCn ∩AC

n , we

first bound the posterior density pn(δ) with the upper bound p1n(δ) in step I. Then,

by letting u = G1/2δ, the posterior integral is bounded by

∫
CC
n ∩AC

n

pn(δ) dδ

≲P∗ exp
{
−snλ2

}
·
∫
CC
n ∩AC

n

p1n(δ) dδ

≤ exp{−snλ2} · 1√
|G|
·
∫
∥u∥2≥4q0

exp

{
−nε0∥u∥2

4q0

}
du

≤ exp{−snλ2} · 1√
|G|
·
∫
Rp

exp

{
θn · (∥u∥2 − 4q0)−

nε0∥u∥2
4q0

}
du

≤ exp{−snλ2 − 4θnq0} ·
1√
|G|
·
∫
Rp

exp

{
−
(
nε0
4q0
− θn

)
· ∥u∥1√

p

}
du

= exp{−snλ2 + p− nε0} ·
1√
|G|
·
(
4q0√
p

)p

, (IC.9)

where θn = (nε0 − p)/(4q0) > 0; the second inequality uses the Cramér-Chernoff

method (Boucheron et al., 2013, Section 2.2); the penultimate inequality follows from

√
p∥x∥2 ≥ ∥x∥1 for x ∈ Rp; the last inequality follows by the normalizing constant of

the Laplace distribution.

Step IV: Final bounds on the posterior probability Recall the events E1(γ)

and E2 in Step II; and we further define a event E3(γ) =
{
n∆T

sG11∆s ≤ γ ·Mns
}
.
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In step V later, we shall verify that all three events have P∗-probability going to 1,

which, by Lemma IA.5, implies that the upper bounds for posterior integrals in steps

II and III hold with P∗-probability going to 1.

Finally, we close the proof by showing the posterior probability of Cn ∩ BC
n ∩ AC

n

and CCn ∩ AC
n are both oP ∗(1). Since Lemma IC.1 implies that

∫
Rp

pn(δ) dδ ≳P∗

(
2π

n

)s/2(
2

nλ

)p−s

·
exp

(
n ·∆T

sG11∆s/2− snλ2
)√

|G11|
≜ P̃n,

it suffices to verify that

∫
Cn∩BC

n ∩AC
n

pn(δ) dδ +

∫
CC
n ∩AC

n

pn(δ) dδ = oP ∗

(
P̃n

)
.

For the first area Cn ∩ BC
n ∩ AC

n , we compare P̃n with the bound displayed at the

end of step II. After cancellation, we have

∫
Cn∩BC

n ∩AC
n

pn(δ) dδ

P̃n

≲P∗ 2s · exp
{
3n

2
∆T

sG11∆s − c0 ·Mns

}
= oP ∗(1),

which follows since the event E3(γ) =
{
n∆T

sG11∆s ≤ γMns
}
has P∗-probability tend-

ing to 1.

For the second area CCn ∩ AC
n , we compare P̃n with the bound in step III. To

facilitate the comparison, note that

P̃n ≥ exp
(
−snλ2

)
·
(
1

n

)p

· 1√
|G11|

,
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for all sufficiently large n since λ≪ 1. Therefore, we obtain:

∫
CC
n ∩AC

n

pn(δ) dδ

P̃n

≲P∗

(
4nq0√
p

)p

· 1√
|G̃22|

· exp{p− nε0}

≤ exp

{
p log

(
4nq0√
p

)
+
p

2
log[θ−1

min(G̃22)] + p− nε0
}

≤ exp {c2 · p log n+ c3 · p log p− nε0}

= oP ∗(1), (IC.10)

for some constants c2, c3 > 0, where we use |G| = |G11| · |G̃22| in the first inequal-

ity, with G̃22 = G22 − G21G
−1
11 G12 being the Schur-complement of G11; the second

inequality bounds the determinant with eigenvalues; the penultimate equality follows

since θmin(G̃22) ≥ θmin(G) ≳ p−1 in Assumption E.3′; and the last equation owns to

p log(n ∨ p)≪ n.

Therefore, the proof is now complete.

Step V: Auxiliary calculations Now we show that each of the events

E1(γ) = {pαn ≤ γ · nλ} , E3(γ) =
{
n∆T

sG11∆s ≤ γMns
}
,

and E2 =

{
8n · sup

∥δ2∥∞≤Mns log p/(nλ)

[
µ̃(δ2)

TG11µ̃(δ2)
]
≤M2

nθ11s

}
,

holds with P∗-probability tending to 1, for all small enough γ > 0.

We consider the event E1(γ) first. Let A = [−AT
2 , Ip−s] and vi = Axi ∈ Rp−s,

then αn = ∥
∑n

i=1 ϕiv
T
i ∥∞. We first show that eTj ADA

T ej is uniformly bounded for

all j = 1, . . . , p − s, where ej be the j-unit vector in Rp−s; and then apply Lemma
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IC.3. Note G/f ⪯ D ⪯ G/f in Assumption E.2, multiplying by block gives

eTj ADA
T ej ≤

1

f
· eTj AGAT ej

=
1

f
· eTj (G22 −G21G

−1
11 G12)ej

≤ c0,

uniformly for all j = 1, . . . , p − s, where c0 = f/f ; we have used the fact that

G22 − G21G
−1
11 G12 ⪯ G22 ⪯ fD22, and that Djj = 1 for all j = 1, . . . , p, as in

Assumption E.3′. Then, Lemma IC.3 implies that

P∗ (EC
1 (γ)

)
= P∗

(∥∥∥∥∥
n∑

i=1

ϕiAxi

∥∥∥∥∥
∞

≥ γ · nλ
p

)
→ 0.

since λ≫ p log p/
√
n.

For the event E3(γ), Lemma IC.4 directly implies that P∗(E3(γ))→ 1 as n→∞.

Finally, we consider the event E2. Note that ∥x− y∥2 ≤ 2(∥x∥2 + ∥y∥2), we have

n · µ̃(δ2)TG11µ̃(δ2) ≲ n ·∆T
sG11∆s + n · δT

2 A
T
2G11A2δ2, (IC.11)

with A2 = G−1
11 G12. We consider the two terms in (IC.11) separately.

For the first term in (IC.11), Lemma IC.4 implies that n · ∆T
sG11∆s = OP ∗(s).

For the second term, note AT
2G11A2G21 ⪯ G−1

11 G12 ⪯ G22 by the properties of Schur-

complements; therefore, uniformly when ∥δ2∥∞ ≤Mns log p/(nλ)

n · δT
2 A

T
2G11A2δ2 ≤ n · δT

2 G22δ2

≤ n · θmax(G22)p∥δ2∥2∞

≲ M2
nnp

2

(
s log p

nλ

)2

= M2
ns · o(1),
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where the penultimate inequality holds as θmax(G22) ≤ θmax(G) ≲ p in Assumption

E.3′; the last equation holds since λ≫
√
sp log p/

√
n.

Thus, plugging the bounds for ∆T
sG11∆s and δT

2 A
T
2G11A2δ2 into (IC.11), we have

sup
∥δ2∥∞≤Mns log p/(nλ)

[
n · µ̃(δ2)TG11µ̃(δ2)

]
= oP ∗(M2

ns),

which conclude that P∗(E2)→ 1.

5.9.4.2 Part 2 of Theorem V.3: Distributional Approximation

We first introduce some additional notations. Let β̂ = (β̂1, . . . , β̂p) be the classic

quantile regression estimator from minimizing (5.2); and let β̃1 be the oracle estimator

using the true model. Furthermore, let log Tn = n∆T
sG11∆s/2 and logSn =

n∆T
pG∆p/2; we define the following functions with respect to δ = β − β0:

hn(δ) = Sn · exp
{
−n
2
(δ −∆p)

TG(δ −∆p)− snλ2 − nλ∥δ2∥1
}

fn(δ) = Tn · exp
{
−n
2
(δ1 − δ̃1)

TG11(δ1 − δ̃1)− snλ2 − nλ∥δ2∥1
}
,

(IC.12)

where δ̃1 = β̃1 − β0
1.

Using the notations above, we re-phrase part 2 of Theorem V.3 below.

Theorem IC.2. Suppose the conditions of Theorem IC.1 hold, and in addition

λn ≫
√
sp log1.5 p√

n
.

Recalling that pn(δ) is the posterior density function for δ = β − β0; we have

∥∥∥∥ pn∫
Rp pn(δ) dδ

− fn∫
Rp fn(δ) dδ

∥∥∥∥
TV

P ∗
−→ 0.

where fn is defined in (IC.12).
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To prove Theorem IC.2, we need the following lemma, the proof of which is de-

ferred to Section 5.9.6.

Lemma IC.5 (Normal likelihood with CA prior). Under the conditions of Theorem

IC.2, we have the following:

∥∥∥∥∥∥∥∥
fn(δ)∫

Rp

fn(δ) dδ
− hn(δ)∫

Rp

hn(δ) dδ

∥∥∥∥∥∥∥∥
TV

P ∗
−→ 0,

where fn and hn are defined in (IC.12).

Now we are ready to prove Theorem IC.2.

Proof of Theorem IC.2. In what follows, we shall write
∫
fn(δ) dδ for integrating a

function fn on Rp. In view of Lemma IC.5, we only need to show that pn converges

to hn, ∥∥∥∥∥∥∥∥
pn(δ)∫
pn(δ) dδ

− hn(δ)∫
hn(δ) dδ

∥∥∥∥∥∥∥∥
TV

P ∗
−→ 0.

Note Lemma IC.1 implies that

∫
pn(δ) dδ ≳P∗

(
2π

n

)s/2(
2

nλ

)p−s

· Tn · exp (−snλ
2)√

|G11|
≜ P̃n.

Therefore, following the proof of Theorem 1 of Chernozhukov and Hong (2003), it

suffices to show ∫
Rp

|pn(δ)− hn(δ)| dδ

P̃n ∨
∫
pn(δ) dδ

P ∗
−→ 0.

Fix a diverging sequence Kn → +∞ that satisfies the condition in Corollary IB.1,
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we define

Bn =

{
δ ∈ Rp : ∥δ1∥2 ≤ Kn

√
s

n
, and ∥δ2∥∞ ≤ Kn

s log p

nλ

}
.

In the following, we upper bound the integral of |pn− hn| on Bn and its complement,

separately in steps I and II.

Step I: Bounding
∫
|pn−hn| dδ on Bn First, we analyze the CA prior when δ ∈ Bn.

For the active coefficients we have |δj +β0
j | > λ for 1 ≤ j ≤ s, since |β0

j | ≥ b≫
√
s/n

from Assumption E.5′; and for the inactive coefficients |δj + β0
j | < λ for s < j ≤ p,

since log p/(nλ)≪ λ. Therefore, the CA prior for δ then becomes

πCA(δ + β0) = exp
{
−snλ2 − nλ∥δ2∥1

}
, (IC.13)

when δ ∈ Bn.

Since hn contains the same factor as the above CA prior, Corollary IB.1 shows

that

sup
δ∈Bn

∣∣∣∣log(hn(δ)pn(δ)

)∣∣∣∣ = sup
δ∈Bn

∣∣∣Ln(β
0)− Ln(δ + β0) +

n

2
δTGδ − n ·∆T

pGδ
∣∣∣

= oP ∗(1),

which further implies |hn(δ)/pn(δ)− 1| = oP ∗(1) uniformly when δ ∈ Bn. Therefore,

we have:

∫
Bn

|pn(δ)− hn(δ)| dδ =

∫
Bn

pn(δ)

∣∣∣∣1− (hn(δ)pn(δ)

)∣∣∣∣ dδ
= oP ∗

(∫
pn(δ) dδ

)
.
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Step II: Bounding
∫
|pn−hn| dδ on BC

n Here we control the integration of |pn−hn|

on BC
n by showing that that both

∫
BC
n
pn(δ) dδ, and

∫
BC
n
hn(δ) dδ are oP ∗(P̃n).

For pn, Theorem IC.1 directly implies that

∫
BC
n

pn(δ) dδ = oP ∗

(
P̃n

)
.

Let A2 = G−1
11 G12, and we further define µ̃(δ2) = ∆s − A2δ2 and αn = ∥ϕTX2 −

ϕTX1A2∥∞. For hn(δ), we first upper bound it by

hn(δ) = exp
{
−n
2
δTGδ + n∆T

sGδ − snλ2 − nλ∥δ2∥1
}

≤ Tn · exp
{
−snλ2 − n

2
(δ1 − µ̃1(δ2))

TG11(δ1 − µ̃1(δ2))− (nλ− αn) · ∥δ2∥1
}

≜ Tn · exp{−snλ2} · hn(δ1, δ2),

where Tn is defined before (IC.12); we use the decomposition of δTGδ that is similar

to the one in (IC.5).

Similar to step II in the proof of Theorem IC.1, we can relate the integration of

hn(δ1, δ2) to Gaussian and Laplace tail bounds. Let Z ∈ Rs and ξ = (ξ1, . . . , ξp−s)

be distributed as

ξ1, . . . , ξp−s
i.i.d.∼ Laplace

(
1

nλ− αn

)
,

Z | ξ ∼ N

(
µ̃(ξ),

1

n
G−1

11

)
.

Following (IC.6), the function hn(δ1, δ2) is proportional to the joint density of (Z, ξ).

Recalling the definition of P̃n in the beginning of the proof, the integral of hn can
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then be bounded by:

∫
BC
n

hn(δ) dδ ≤ Tn · exp{−snλ2} ·
(

2

nλ− αn

)p−s

· 1√
|G11|

·
(
2π

n

)s/2

· Pr
(
∥Z∥2 ≥ Kn

√
s

n
or ∥ξ∥∞ ≥

Kns log p

nλ

)
≲

(
nλ

nλ− αn

)p−s

· P̃n · exp {−c0Kns}

≲ P̃n · exp {−c0Kns} , (IC.14)

for some constant c0 > 0; in the second inequality we bound the tail probability with

(IC.7), which holds on the events

E1(γ) = {p · αn ≤ γ · nλ},

E2 =

{
8n · sup

∥δ2∥∞≤K2
ns log p/(nλ)

[
µ̃(δ2)

TG11µ̃(δ2)
]
≤ Knsθmin(G11)

}
,

for a small enough constant γ > 0; the last inequality follows from (IC.8).

Similar to the proof of Theorem IC.1 (Step V), we can show that both the events

E1 and E2(γ) have P∗-probability tending to 1; therefore, we have proved

∫
BC
n

hn(δ) dδ = oP ∗

(
P̃n

)
,

as Kn →∞.

Combining steps I and II, we obtain

∫
Rp

|pn(δ)− hn(δ)| dδ

P̃n ∨
∫
pn(δ) dδ

P ∗
−→ 0,

which concludes the proof by Theorem 1 of Chernozhukov and Hong (2003).
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5.9.4.3 Proposition 7: Posterior Moments

We focus on the scenario where the dimension p is fixed. We show the posterior

moments converge to the moments of the limiting distribution in Theorem V.1 at a

(
√
n, nλ)-rate. Besides the convergence in total variation in Theorem V.1, it remains

to verify a uniform integrability condition (Van der Vaart , 2000). Under the CA prior

(5.5), recall that pn(δ) is the posterior density, and recall from (IC.12)

fn(δ) = Tn · exp
{
−n
2
(δ1 − δ̃1)

TG11(δ1 − δ̃1)− snλ2 − nλ∥δ2∥1
}
,

Proof of Proposition 7. Define A · δ = (
√
nδT

1 , nλδ
T
2 )

T , it suffices to show

∫
Rp

∥Aδ∥α

∣∣∣∣∣∣∣∣
fn(δ)∫
fn(δ) dδ

− pn(δ)∫
pn(δ) dδ

∣∣∣∣∣∣∣∣ dδ
P ∗
−→ 0

for α = 1, 2. For a fixed M that will be given below, define the partition An = {δ :

√
n∥δ1∥ ≤M, nλ∥δ2∥ ≤M}. On An, Theorem V.1 implies

∫
Rp

∥Aδ∥α

∣∣∣∣∣∣∣∣
fn(δ)∫
fn(δ) dδ

− pn(δ)∫
pn(δ) dδ

∣∣∣∣∣∣∣∣ dδ

≤ 2Mα

∫
An

∥Aδ∥α

∣∣∣∣∣∣∣∣
fn(δ)∫
fn(δ) dδ

− pn(δ)∫
pn(δ) dδ

∣∣∣∣∣∣∣∣ dδ
P ∗
−→ 0 (IC.15)

On Ac
n, we show that the moments of fn and pn are both negligible. First, the

result for fn follows from (ID.13) in the proof of Lemma IC.5. Let Z ∈ Rs and
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ξ = (ξ1, . . . , ξp−s) be distributed as

ξ1, . . . , ξp−s
i.i.d.∼ Laplace

(
1

nλ

)
,

Z ∼ N

(
δ̃1,

1

n
G−1

11

)
,

and ξ is independent of Z. Since fn proportional to the joint density function of

(Z, ξ), we have

∫
Ac

n

∥Aδ∥αfn(β) dβ ≤
(

2π

nθ11

)s/2(
2

nλ

)p−s

·
(√

E∥nλξ∥2α +

√
E∥
√
nZ∥2α

)
·
√
P (∥ξ∥1 ≥M/(nλ)) + P

(
∥Z∥2 ≥M/

√
n)
)

≤ 2Qn

(
2π

nθ11

)s/2(
2

nλ

)p−s

· exp(−M2θ11/8),

with probability at least 1− γ, where the last inequality follows from computing the

moments of Normal and Laplace distributions, and

Qn = [8(p− s)]α/2 +
(
n∥δ̃1∥+

2s

θmin

)α/2

= OP (1).

Note also ∫
Rp

fn(δ) dδ =

(
2π

n

)s/2
1√
|G11|

·
(

2

nλ

)p−s

.

Comparing the above two displayed inequalities gives

∫
Ac

n
∥Aδ∥αfn(δ) dδ∫
Rp fn(δ) dδ

≤ ε, (IC.16)

with probability at least 1− γ.

For pn(δ), using an argument similar to (IC.16) above, it follows from Lemma
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IC.2 that for any ε, γ, there is a constant M such that

∫
Ac

n
∥Aδ∥αpn(δ) dδ∫
Rp pn(δ) dδ

≤ ε, (IC.17)

with probability at least 1− γ.

The proof is complete by combining (IC.15) through (IC.17).
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5.9.5 Proof under the AL prior

In this subsection, we prove Theorem V.2 in Section 5.3, where the dimension p

is kept fixed.

Here we review some of the notations, most of which are carried from the proof of

Theorem V.3 in the previous subsection. Recall β0 = (β0
1,β

0
2) as the true quantile re-

gression coefficients, with β0
2 = 0 under Assumption E.5. We shall write ϕ = [ϕτ (yi−

xTi β
0)]ni=1 as a vector. Recall from Assumption E.3 that G = E∗[xix

T
i fy|x(x

T
i β

0)],

D = E∗[xix
T
i ], as well as the sub-matrices Gkℓ for k = 1, 2. By Assumption E.3, we de-

fine two constants θm = θmin(G) and θM = θmax(G). Finally, we define ∆p = G−1XTϕ

and ∆s = G−1
11 X

T
1 ϕ, where X1 is the design matrix of the active covariates.

In addition, let β̂ = (β̂1, . . . , β̂p) be the classic quantile regression estimator, and

let w = (w1, . . . , wp) with wj =
√
nλ/|β̂j|. The adaptive Lasso prior (5.4) is then

πAL(β) = exp

{
−

p∑
j=1

wj|βj|

}
.

We shall partitionw = (w1,w2), wherew1 ∈ Rs corresponds to the active coefficients.

Furthermore, let wmin = min{wj : j = s + 1, . . . , p} and wmax = max{wj : j =

s + 1, . . . , p} = ∥w2∥∞. Under the adaptive Lasso prior (5.4), the posterior density

(up to a normalization constant) with respect to δ = β − β0 is

pn(δ) = πAL(δ + β0) · exp
{
Ln(β

0)− Ln

(
δ + β0

)}
.

Similar to the proof of Theorem V.3, we prove the two parts of Theorem V.2

separately in the following subsections.

5.9.5.1 Part 1 of Theorem V.2: Adaptive rate of posterior consistency

Here we prove Part 1 of Theorem V.2, which we re-phrase as the following theorem.
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Theorem ID.1. Consider the adaptive Lasso prior (5.4). Suppose Assumptions E.1

through E.5 hold, and the tuning parameter λn satisfies

1√
n
≪ λn ≪ 1.

For any sequence Mn →∞, we define

Bn =

{
δ : ∥δ1∥2 ≤

Mn√
n
, ∥δ2∥∞ ≤

Mn

nλ

}
.

Then, we have

Π
(
δ ∈ BC

n

∣∣∣ Dn

)
P ∗
−→ 0,

To facilitate the proof of Theorem ID.1, we need the following two lemmas, the

proof of which are deferred to Section 5.9.6.

Lemma ID.1 (Lower bounding the denominator – adaptive Lasso prior). Under the

conditions of Theorem ID.1, and suppose β0
1 > 0 holds element-wise. Then we have

∫
Rp

pn(δ) dδ ≳P∗

p∏
j=s+1

(
2

wj

)
·
(

2π

nθM

)s/2

· exp
{
−wT

1 β
0
1 +

n

2
∆T

sG11∆s

}
,

where θM is the maximum eigenvalue of G.

Lemma ID.2 (Sign consistency of the adaptive Lasso prior). Under the conditions

of Theorem ID.1, we have

Π
(
sgn(β1) = sgn(β0

1)
∣∣∣ Dn

)
P ∗
−→ 1,

where the equality of sign functions holds element-wise.

Now we are ready to prove Theorem ID.1.

Proof of Theorem ID.1. The proof is similar to, but simpler than, the proof of The-
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orem IC.1; because we only consider the regime where p is fixed. Without loss of

generality, we assume that the true values of the active coefficients are all positive,

i.e., β0
1 > 0. The results under other scenarios holds by symmetry.

For the constant q0 in Lemma IA.8, we define the following regions for δ:

An = {δ = β − β0 : sgn(β1) = sgn(β0
1) },

Cn = {δ : ∥G1/2(β − β0)∥ ≤ 4q0},

where sgn(β0
1) is the signs for true values of active coefficients. In view of Lemma

ID.2, the posterior probability of AC
n converges to 0 in P∗-probability; therefore, it

suffices to show the posterior probability are oP ∗(1) for each of the areas below:

1. Cn ∩ Bn ∩ An.

2. CCn ∩ An.

In step I below, we give upper bounds for the posterior density; in step II and

III, we bound the posterior integrals of pn on each of the two areas above; then

we compute the posterior probabilities in step IV; step V contains some auxiliary

calculations that supplement the proof.

Since we only consider δ ∈ An throughout the proof, the adaptive Lasso prior

becomes

πAL(δ + β0) = exp

{
−wT

1 (β
0
1 + δ1)−

p∑
j=s+1

wj|δj|

}
,

where w1 = (w1, . . . , ws); since we assume the true values for active coefficients are

all positive.

Step I: Bounding the posterior density pn(δ) We give two different upper

bounds for pn(δ), one for δ ∈ Cn ∩ An, and the other for δ ∈ CCn ∩ An.

When δ ∈ CCn ∩ An, we rely on (IC.3) to upper bound the working likelihood, as
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in the proof of Theorem V.3; since the adaptive Lasso prior is upper bounded by 1,

we have

pn(δ) ≤P∗ exp

{
−nε0∥G

1/2δ∥2
q0

}
≜ p1n(δ),

uniformly when δ ∈ An.

When δ ∈ Cn ∩ An, we rely on (IC.4) to bound the working likelihood; since

δTGδ ≥ θmδ
T
1 δ1, we have

Ln(β
0)− Ln(β

0 + δ) ≤P∗ −nθm
8

δT
1 δ1 + ϕTXδ +

1

8
f

≤ −nθm
8

∥∥∥∥δ1 − 4

nθm
XT

1 ϕ

∥∥∥∥2 + 2

nθm
∥XT

1 ϕ∥2

+∥XT
2 ϕ∥∞ · ∥δ2∥1 +

1

8
f, (ID.1)

which followed by completing the squares for δ1. Combining the above equation with

the adaptive Lasso prior on An, we have

pn(δ) ≲P∗ exp

{
2

nθm
∥XT

1 ϕ∥2 −wT
1 β

0
1

}
· exp

{
−nθm

8
∥δ1 − µ1∥2 −wT

1 δ1

}
· exp

{
−

p∑
j=s+1

(wj − αn)|δj|

}

≜ exp

{
2

nθm
∥XT

1 ϕ∥2 −wT
1 β

0
1

}
· p2n(δ), (ID.2)

uniformly on δ ∈ Cn ∩ An, where αn = ∥ϕTXk∥∞ and µ1 = 4XT
1 ϕ/(nθm).

Step II: Bound on Cn ∩ BC
n ∩ An Here we bound the posterior integral of pn(δ)

by using its upper bound p2n(δ). Let γ > 0 be a small enough constant, we define

the event E1(γ) = {αn ≤ γ · wmin}, where αn is defined in the end of step I.

Similar to the proof of Theorem IC.1, we relate the integration to probabilistic
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calculations. Let Z ∈ Rs and ξ = (ξs+1, . . . , ξp) be distributed as

ξj
ind.∼ Laplace

(
1

wj − αn

)
, j = s+ 1, . . . , p,

Z ∼ N

(
µ1,

4

nθm
Is

)
,

where Z and ξ are independent. On the event E1, the function p2n(δ) can be related

with the moments of (Z, ξ); using a similar argument to (IC.6), we have:

∫
Cn∩BC

n ∩An

pn(δ) dδ

≲P∗ exp

{
2

nθm
∥XT

1 ϕ∥2 −wT
1 β

0
1

}
·
(

8π

nθm

)s/2

·
p∏

j=s+1

(
2

wj − αn

)
·E
(
exp

{
−wT

1 Z
}
· 1
[
∥Z∥ ≥ Mn√

n
or ∥ξ∥∞ ≥

Mn

nλ

])
≤ exp

{
2

nθm
∥XT

1 ϕ∥2 −wT
1 β

0
1

}
·
(

8π

nθm

)s/2

·
p∏

j=s+1

(
2

wj − αn

)

·

√
E (exp {−2wT

1 Z}) · Pr
(
∥Z∥ ≥ Mn√

n
or ∥ξ∥∞ ≥

Mn

nλ

)
, (ID.3)

where the last inequality follows from Cauchy-Schwarz inequality. Next we bound

the expectation and probability terms in (ID.3) separately.

For the expectation term with respect to Z, we have by Lemma IA.3 that

E
(
exp

{
−2wT

1 Z
})
≤ (1 + 4γ),

which holds on the event E2(γ) =
{
∥w1∥ ≤ γ ·

(√
2nθm ∧ ∥µ1∥−1

)}
.

For the probability term in (ID.3), we break it into two parts. First, Lemma IA.1

gives

Pr

(
∥Z∥ ≥ Mn√

n

)
≤ exp

{
−M

2
nθm
16

}
,
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which holds on the event E3(γ) =
{
n · µT

1µ1 ≤ γ ·M2
n

}
; second, Lemma IA.2 gives

Pr

(
∥ξ∥∞ ≥

Mn

nλ

)
≤ Pr

(
∥ξ∥∞ ≥

√
Mn ·

1

nλ/
√
Mn

)
≤ p · exp

{
−
√
Mn

2

}
,

which holds on the event E4(γ) =
{√

Mn · (wmin − αn) ≥ γ · nλ
}
. Therefore, the tail

probability in (ID.3) is bounded by

Pr

(
∥Z∥ ≥ Mn√

n
or ∥ξ∥∞ ≥

Mn

nλ

)
≲ exp

{
−
√
Mn

2

}
, (ID.4)

since p is constant and Mn →∞; the equation holds on the events E3(γ) and E4(γ).

Similar to (IC.8), we can further simplify (ID.3) by showing that

p∏
j=s+1

(
2

wj − αn

)
≲

p∏
j=s+1

(
2

wj

)
, (ID.5)

on the event E1(γ). Therefore, from (ID.3), the posterior integral on Cn ∩BC
n ∩An is

bounded from above by

∫
Cn∩BC

n ∩An

pn(δ) dδ ≲P∗ exp

{
nθm
8
∥µ1∥2 −wT

1 β
0
1

}
·
(

8π

nθm

)s/2

·
p∏

j=s+1

(
2

wj

)
· exp

{
−
√
Mn

4

}
,

on the events E1(γ) through E4(γ), where µ1 is defined in step I.
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Step III: Bound on CCn ∩An On CCn , we use the upper bound p1n in step I. Similar

to (IC.9), the posterior integral on CCn ∩ An is bounded from above by

∫
CC
n ∩An

pn(δ) dδ ≲P∗

∫
CC
n

p1n(δ) dδ

≤ exp{p− nε0} ·
1√
|G|
·
(
4q0√
p

)p

≲ exp{−nε0/4}, (ID.6)

where the last inequality follows since p is constant, and that |G| ≥ θmin(G)
p is

bounded away from 0.

Step IV: Bounding posterior probabilities Here we close the proof by showing

the posterior probability of both Cn∩BC
n ∩An and CCn ∩An are oP ∗(1). From Lemma

ID.1, we have

∫
Rp

pn(δ) dδ ≳P∗

p∏
j=s+1

(
2

wj

)
·
(

2π

nθM

)s/2

· exp
(
−wT

1 β
0
1 +

n

2
∆T

sG11∆s

)
≜ P̃n.

Similar to the proof of Theorem IC.1, it suffices to show that the integral of pn(δ) on

both Cn ∩ BC
n ∩ An and CCn ∩ An are are oP ∗(P̃n)

Let E5(γ) = {wmax ≤ γ · n}. In step V later, we shall show that the events E1(γ)

through E5(γ) holds with P∗-probability tending to 1, for small enough γ. Therefore

the bounds derived in steps II and III holds with P∗-probability tending to 1.

For the area Cn ∩ BC
n ∩ An, we use the upper bound displayed at the end of step

279



II; comparing it with P̃n gives

∫
Cn∩BC

n ∩An

pn(δ) dδ

P̃n

≲P∗

(
4θM
θm

)s/2

· exp
{
nθm
8
∥µ1∥2 −

√
Mn

4

}
≲P∗ exp

{
−
√
Mn

8

}
,

since s and θm are both bounded; the last inequality holds on the event E3(γ) for

small enough γ.

To bound the posterior probability of the area CCn ∩An, we first simplify P̃n. Since

the events E5(γ) and E2(γ) both have P∗-probability going to 1, we have ∥w1∥ ≲
√
n

and wj ≤ γ · n for all j = s+ 1, . . . , p; therefore,

P̃n ≳P∗

(
2

γn

)p−s

·
(

2π

nθM

)s/2

· exp
{
−∥w1∥ · ∥β0

1∥
}

≥
(
C1

n

)p

exp{−C2

√
n},

for some constant C1, C2 > 0, since ∥β0
1∥ = O(1). Comparing P̃n with the posterior

integral in step III, we have

∫
CC
n ∩An

pn(δ) dδ

P̃n

≲P∗ exp
{
p log n+ C2

√
n− nε0

4

}
≲ exp

{
−nε0

8

}
, (ID.7)

for large enough n.

Therefore, the proof is now complete.
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Step V: Auxiliary calculations Now we show that each of the events

E1(γ) = {αn ≤ γ · wmin}, E2(γ) =

{
∥w1∥ ≤ γ ·

(√
2nθm ∧

1

∥µ1∥

)}
,

E3(γ) =
{
n · µT

1µ1 ≤ γ ·M2
n

}
, E4(γ) =

{√
Mn · (wmin − αn) ≥ γ · nλ

}
,

and E5(γ) = {wmax ≤ γ · n} ,

holds with P∗-probability going to 1, where µ1 = 4XT
1 ϕ/(nθm) and αn = ∥XT

2 ϕ∥∞

are defined in step I. From standard asymptotic results for quantile regression (Koenker ,

2005, Section 4.2), we have

(
√
n)−1 · max

s+1≤j≤p

{
|β̂j|−1

}
= OP ∗(1),

√
n∥β̂2 − β0

2∥∞ = OP ∗(1),

√
n ·

(
s∑

j=1

|β̂j|−2 −
s∑

j=1

|β0
j |−2

)
= OP ∗(1),

(ID.8)

since s and p are both fixed.

First we consider the event E1(γ). For wmin we have

1

wmin

=

√
n∥β̂2 − β0

2∥∞
nλ

= OP ∗

(
1

nλ

)
,

from (ID.8). Furthermore, Lemma IC.3 implies that αn = OP ∗(
√
n). Since

√
nλ →

∞, it follows that αn/wmin = oP ∗(1), which further implies P∗(E1(γ))→ 1.

Next we consider the event E3(γ). Since µ1 = 4
∑n

i=1 x1iϕi/(nθm), the Central

Limit Theorem gives µ1 = OP ∗(1/
√
n). Therefore P∗(E3(γ))→ 1 follows.

For the event E2(γ), again from (ID.8), we have

∥w1∥2 = nλ2
s∑

j=1

|β̂j|−2 = OP ∗(nλ2).
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Furthermore, since ∥µ1∥ = OP ∗(1/
√
n), it follows that P∗(E2(γ))→ 1, as λ→ 0.

Now we consider the event E4(γ). Given that the event E1(γ) holds with P∗-

probability tending to 1, it suffices to show

P∗
(√

Mn · wmin ≤ γ · nλ
)
= P∗

(
1

wmin

≥
√
Mn

γ · nλ

)
→ 0,

for any small enough γ > 0; the desired result is then implied by the event E1(γ).

Finally, for the event E5(γ), we have from (ID.8) that

wmax =
√
nλ ·OP ∗(

√
n) = oP ∗(n),

which implies P∗(E5(γ))→ 1, as λ→ 0.

5.9.5.2 Part 2 of Theorem V.2: Distributional Approximation

We first introduce some additional notations. We shall continue to use the no-

tations in the previous subsection, i.e., the proof of Theorem ID.1. Let β̃1 be the

oracle estimator using the true model, and let δ̃1 = β̃1 − β0
1. Furthermore, let

log Tn = nδ̃T
1 G11δ̃1/2 −

∑s
j=1wj|β0

j | and logSn = n∆T
pG∆p/2 −

∑s
j=1wj|β0

j |. We

define the following functions

hn(δ) = Sn · exp

{
−n
2
(δ −∆p)

TG(δ −∆p)−
p∑

j=s+1

wj|δj|

}

fn(δ) = Tn · exp

{
−n
2
(δ1 − δ̃1)

TG11(δ1 − δ̃1)−
p∑

j=s+1

wj|δj|

}
.

(ID.9)

Using the notations above, we re-phrase part 2 of Theorem V.2 below.

Theorem ID.2. Suppose the conditions of Theorem ID.1 hold. Recalling that pn(δ)
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is the posterior density function for δ = β − β0; we have

∥∥∥∥ pn∫
Rp pn(δ) dδ

− fn∫
Rp fn(δ) dδ

∥∥∥∥
TV

P ∗
−→ 0.

where fn is defined in (ID.9).

To prove Theorem ID.2, we need the following lemma, the proof of which is

deferred to Section 5.9.6.

Lemma ID.3 (Normal likelihood with adaptive Lasso shrinkage). Under the condi-

tions of Theorem ID.2, we have the following:

∥∥∥∥∥∥∥∥
fn(δ)∫
fn(δ) dδ

− hn(δ)∫
hn(δ) dδ

∥∥∥∥∥∥∥∥
TV

P ∗
−→ 0,

where fn and hn are defined in (ID.9).

Now we are ready to prove Theorem ID.2.

Proof of Theorem ID.2. Without loss of generality, we assume β0
1 > 0, i.e., the true

values of the active coefficients are all positive. In what follows, we shall write∫
fn(δ) dδ for integrating a function fn on Rp. In view of Lemma ID.3, we only

need to show that pn converges to hn,∥∥∥∥∥∥∥∥
pn(δ)∫
pn(δ) dδ

− hn(δ)∫
hn(δ) dδ

∥∥∥∥∥∥∥∥
TV

P ∗
−→ 0.

Similar to the proof of Theorem IC.2, it suffices to show

∫
Rp

|pn(δ)− hn(δ)| dδ

P̃n ∨
∫
pn(δ) dδ

P ∗
−→ 0,
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where

P̃n =

p∏
j=s+1

(
2

wj

)
·
(

2π

nθM

)s/2

· exp
{
−wT

1 β
0
1 +

n

2
∆T

sG11∆s

}
,

as in Lemma ID.1.

Fix a diverging sequence Kn → +∞, we define

Bn =

{
δ ∈ Rp : ∥δ1∥2 ≤

Kn√
n
, and ∥δ2∥∞ ≤

Kn

nλ

}
;

we shall specify Kn later. In the following, we upper bound the integral of |pn − hn|

on Bn and its complement, separately in steps I and II.

Step I: Bounding
∫
|pn − hn| dδ on Bn When δ = β − β0 ∈ Bn, the adaptive

Lasso prior becomes

πSCAD(δ + β0) = exp

{
−wT

1 (δ1 + β0
1)−

p∑
j=s+1

wj|δj|

}
,

which holds since δ1 + β0
1 > 0 on Bn. Similar to the proof of Theorem IC.2, we have

sup
δ∈Bn

∣∣∣∣log(hn(δ)pn(δ)

)∣∣∣∣ = sup
δ∈Bn

∣∣∣Ln(β
0)− Ln(δ + β0) +

n

2
δTGδ − n ·∆T

pGδ
∣∣∣

+ sup
δ∈Bn

∣∣wT
1 δ1
∣∣

= oP ∗(1);

the first supremum is oP ∗(1) if we choose Kn that satisfies Corollary IB.1; and the

second supremum is oP ∗(1) if Kn ≪ 1/λ, as w1 = OP ∗(
√
nλ) in (ID.8). Thus, we

have |hn(δ)/pn(δ)− 1| = oP ∗(1) uniformly when δ ∈ Bn, which further implies

∫
Bn

|pn(δ)− hn(δ)| dδ =

∫
Bn

pn(δ)

∣∣∣∣1− (hn(δ)pn(δ)

)∣∣∣∣ dδ
= oP ∗

(∫
pn(δ) dδ

)
.
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Step II: Bounding
∫
|pn−hn| dδ on BC

n Here we control the integration of |pn−hn|

on BC
n by showing that that both

∫
BC
n
pn(δ) dδ, and

∫
BC
n
hn(δ) dδ are oP ∗(P̃n).

For pn, Theorem ID.1 directly implies that

∫
BC
n

pn(δ) dδ = oP ∗

(
P̃n

)
.

For hn, we first provide an upper bound before computing the integral. Note that

δTGδ ≥ θmδ
T
1 δ1, and G ·∆p = XTϕ/n; similar to (ID.2), we have

hn(δ) ≤ exp

{
nθm
2
∥µ1∥2 −wT

1 β
0
1 −

nθm
2

(δ1 − µ1)
T (δ1 − µ1)−

p∑
j=s+1

(wj − αn)|δj|

}

≜ exp

{
nθm
2
∥µ1∥2 −wT

1 β
0
1

}
· hn(δ1, δ2),

where αn = ∥XT
2 ϕ∥∞ and µ1 = XT

1 ϕ/(nθm).

Now we can relate the integration of hn(δ1, δ2) to Gaussian and Laplace tail

bounds. Let Z ∈ Rs and ξ = (ξs+1, . . . , ξp) be distributed as

ξj
ind.∼ Laplace

(
1

wj − αn

)
, j = s+ 1, . . . , p

Z ∼ N

(
µ1,

1

nθm
Is

)
,

and Z is independent of ξ; the function hn(δ1, δ2) is then proportional to the joint

density of (Z, ξ). Following the arguments in (ID.3), we have

∫
BC
n

hn(δ) dδ

P̃n

≤ 1

P̃n

[
exp

{
nθm
2
∥µ1∥2 −wT

1 β
0
1

}
·

p∏
j=s+1

(
2

wj − αn

)p−s

·
(

2π

nθm

)s/2

· Pr
(
∥Z∥2 ≥

Kn√
n

or ∥ξ∥∞ ≥
Kn

nλ

)]
≲ exp

{
nθm
2
∥µ1∥2 −

√
Kn

}
, (ID.10)
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where we bound the tail probability by (ID.4) and bound the product of (wj−αn) by

(ID.5); the displayed equations hold on the events E1(γ) = {αn ≤ γ ·wmin}, E2(γ) ={
n · µT

1µ1 ≤ γ ·K2
n

}
, and E3(γ) =

{√
Kn · (wmin − αn) ≥ γ · nλ

}
, as required by

(ID.4) and (ID.5).

As in the proof of Theorem ID.1 (Step V), we can show that all the events E1(γ)

through E3(γ) have P∗-probability tending to 1; therefore, the bounds in this step

holds with P∗-probability going to 1, which implies

∫
BC
n

hn(δ) dδ = oP ∗

(
P̃n

)
,

as Kn →∞.

Combining steps I and II, we obtain

∫
Rp

|pn(δ)− hn(δ)| dδ

P̃n ∨
∫
pn(δ) dδ

P ∗
−→ 0,

which concludes the proof by Theorem 1 of Chernozhukov and Hong (2003).

5.9.6 Proof of some auxiliary results

5.9.6.1 Proof of Lemmas IC.3 and IC.4

Proof of Lemma IC.3. First note that ϕi and xi are independent, as the conditional

distribution is

P∗ (ϕi = τ | xi) = P∗ (yi < xTi β
0 | xi

)
= 1− τ,

which does not depend on xi.

For each k = 1, . . . , q, let ek be the k-th unit vector in Rq and vk = D1/2AT ek. Un-

der the conditions of the Lemma, it holds that ∥vk∥2 = eTkADA
T ek ≤ C0. Therefore
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for each i = 1, . . . , n, we have

Pr (|(Axi)k| ≥ z) ≤ Pr
(
|vTkD−1/2xi| ≥ z

)
≤ 2 exp

{
− z

C0σ0

}
,

by Assumption E.4′. Therefore, we have verified that each component of Axi is sub-

exponential.

Finally, by applying a union bound and conditioning on ϕi’s,

P∗

(∥∥∥∥∥
n∑

i=1

ϕiAxi

∥∥∥∥∥
∞

≥M
√
n log q

)
≤

q∑
k=1

E∗
ϕ

[
P∗

(
n∑

i=1

|ϕi(Axi)k| ≥M
√
n log q

∣∣∣ ϕ)]

≤ q · E∗
ϕ

[
exp

{
−C2

M2n log q

∥ϕ∥2

}]
≤ exp

{
log(q)− C2M

2log q
}

≤ exp
{
−(C2/2) ·M2 log(q)

}
.

where the second inequality holds for some constant C2 > 0 by Lemma IA.7, as

∥ϕ∥∞ ≤ 1; and the penultimate inequality holds since ∥ϕ∥2 ≤ n. The displayed

probability is then arbitrarily small by making M large. The proof is now complete.

Proof of Lemma IC.4. We only prove the result for ∆T
sG11∆s, the conclusion for

∆T
pG∆p follows in a similar fashion. Let ϕi = ϕτ (yi − xTi β

0), and define ϕ =

[ϕ1, . . . , ϕn]. First note that xi and ϕi are independent, as proved in Lemma IC.3.

Therefore,

E∗ [ϕϕT | x1, . . . , xn
]
= τ(1− τ)In,

where In is the n by n identity matrix.

Let X1 = [xT11, . . . , x
T
1n]

T and D11 = E∗[x1ix
T
1i] = E∗[XT

1 X1]/n . We can re-write

∆T
sG11∆s = ϕTX1G

−1
11 X

T
1 ϕ/n

2 ≥ 0 since G11 is positive definite. By Chebyshev’s
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inequality and switching the expectation with trace, we have

P∗
(
∆T

sG11∆s ≥M
s

n

)
≤ E∗[ϕTX1G

−1
11 X

T
1 ϕ]/n

2

M · s/n

=
tr
(
E∗[G−1

11 X
T
1 ϕϕ

TX1]
)

M · sn

=
nτ(1− τ) · tr

(
G−1

11 ·D11

)
M · sn

≲
nτ(1− τ) · s/f

M · sn
≲

1

M
,

where the third equality holds by conditioning on X1 first; and the penultimate

inequality holds as D11 ⪯ G11/f as in Assumption E.2. The proof is now complete.

5.9.6.2 Proof of Lemmas IC.1, IC.2 and IC.5 under the CA prior

Proof of Lemma IC.1. We provide a lower bound of the integral by restricting to the

area

Bn = {δ ∈ Rp : ∥δ1∥ ≤ Kn

√
s/n; ∥δ2∥∞ ≤ Kn log p/(nλ)},

where the sequence Kn →∞ satisfies the requirement in Corollary IB.2. We define

P̃n =

(
2π

n

)s/2(
2

nλ

)p−s

·
exp

(
−snλ2 + n∆T

sG11∆s/2
)√

|G11|
.

In step I, we provide a lower bound for the posterior density

pn(δ) = πCA(δ + β0) · exp
{
Ln(β

0)− Ln(β
0 + δ)

}
,

on the area δ ∈ Bn, which is denoted by p
n
; and in step II we integrate p

n
on Bn to

conclude the proof.
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Step I: Lower bounding the posterior density First we analyze the quantile

loss function. By Corollary IB.2, we have

Ln(β
0)− Ln(δ + β0) = ϕTXδ − n

2
δT
1 G11δ1 + oP ∗(1)

≥ −n
2
(δ1 −∆s)

TG11(δ1 −∆s)

+
n

2
∆T

sG11∆s −
∥∥ϕTX2

∥∥
∞ · ∥δ2∥1 + oP ∗(1),(ID.11)

uniformly on Bn, which follows by completing the squares for δ1 and Holder’s inequal-

ity. Next we analyze the CA prior. As in (IC.13), the CA prior for δ is

πCA(δ + β0) = exp{−snλ2 − nλ∥δ2∥1},

when δ ∈ Bn.

Combining (ID.11) with the CA prior above, the posterior density on Bn is

bounded from below by

pn(δ) ≳P∗ exp
{
−snλ2 + n

2
∆T

sG11∆s

}
· exp

{
−n
2
(δ1 −∆s)

TG11(δ1 −∆s)
}

· exp {− (nλ+ αn) ∥δ2∥1}

≜ exp
{
−snλ2 + n

2
∆T

sG11∆s

}
· p

n
(δ),

where αn = ∥ϕTX2∥∞ and ∆s = G−1
11 X

T
1 ϕ.

Step II: Bounding the posterior integration Now, we relate the integration of

the lower bound p
n
(δ) to probabilistic calculations. Let Z ∈ Rs and ξ = (ξ1, . . . , ξp−s)
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be distributed as

ξ1, . . . , ξp−s
i.i.d.∼ Laplace

(
1

nλ+ αn

)
,

Z ∼ N

(
∆s,

1

n
G−1

11

)
,

and Z is independent of ξ. Similar to the arguments that leads to (IC.6), we have

∫
Rp

pn(δ) dδ ≳P∗ exp
{
−snλ2 + n

2
∆T

sG11∆s

}
·
(

2

nλ+ αn

)p−s

· 1√
|G11|

·
(
2π

n

)s/2

· Pr
(
∥Z∥2 ≤ Kn

√
s

n

)
· Pr

(
∥ξ∥∞ ≤

Kn log p

nλ

)
=

(
1

1 + αn/(nλ)

)p−s

· P̃n

·
[
1− Pr

(
∥Z∥2 ≥ Kn

√
s

n
or ∥ξ∥∞ ≥

Kn log p

nλ

)]
≳ P̃n,

where we rely on two techniques: (i) we bound the tail probabilities as in (IC.14);

(ii) we bound the leading factor by (1+x)−1 ≥ exp(−x); therefore the last inequality

holds on the events

E1(γ) = {pαn ≤ γ · nλ}, E2(γ) = {n∆T
sG11∆s ≤ γ ·K2

ns}.

for small enough γ > 0, as required in (IC.14).

Similar to the proof of Theorem IC.1 (Step V), we can show that the events E1(γ)

and E2(γ) have P∗-probability going to 1. Therefore, the proof is now complete that

∫
Rp

πCA(δ + β0) · exp
{
Ln(β

0)− Ln(β
0 + δ)

}
dδ ≳P∗ P̃n.
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Proof of Lemma IC.2. Let δ = β−β0; recall pn(δ) is the posterior density under the

CA prior (5.5), and

An =

{
δ = β − β0 : min

j=1,...,s
|βj| < λ, or max

j=s+1,...,p
|βs| > λ

}
.

In the following steps I – III, we shall upper bound the posterior integral of pn(δ) on

An ∩ Cn and CCn separately, where Cn = {∥G1/2δ∥ ≤ 4q0}, as defined in the proof of

Theorem IC.1; and in step IV we verify their posterior probabilities are oP ∗(1).

First we provide a decomposition of An. Let Q(δ) = {j = 1, . . . , s : |δj+β0
j | < λ},

and R(δ) = {j = s+1, . . . , p : |δj| > λ} be two index sets; thenAn can be decomposed

into

An ⊆
⋃

0≤q≤s; 0≤r≤p−s
q+r>0

{δ : |Q(δ)| = q, |R(δ)| = r}

≜
⋃

0≤q≤s; 0≤r≤p−s
q+r>0

Eq,r. (ID.12)

Therefore, to provide an upper bound for integrating pn on An ∩ Cn, we first bound

the integral on each of Eq,r ∩ Cn, which is in step I below.

Step I: Bounding the posterior integral on Eq,r∩Cn. We first give upper bounds

for pn(δ) on each of Eq,r ∩ Cn. For the CA prior, on each of δ ∈ Eq,r, we have

πCA(δ + β0) = exp

{
−n

n∑
i=1

pλ(β
0
j + δj)

}
≤ exp{−(s− q + r)nλ2},
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as pλ(x) = exp(−snλ2) for |x| > λ in (5.5). To upper bound the working likelihood,

we rely on the same bound in (IC.4), which, together with the CA prior, implies

pn(δ) ≲P∗ exp
{
−n
8
δTGδ + ϕTXδ − (s− q + r)nλ2

}
= exp

{
2n∆T

pG∆p −
n

8
(δ − 4∆p)

TG(δ − 4∆p)− (s− q + r)nλ2
}

≜ exp
{
2n∆T

pG∆p − (s− q + r)nλ2
}
· pn(δ),

uniformly on δ ∈ Eq,r∩Cn, which followed by completing the squares for δ; recall that

∆p = G−1
∑n

i=1 xiϕτ (yi − xTi β0).

Next, note when δ ∈ Eq,r, we have

∥δ1∥2 ≥
∑

j∈Q(δ)

(|β0
j | − λ)2 ≥

q · b2

4
≥ 32q · λ2

θmin(G)
,

∥δ2∥2 ≥
∑

j∈R(δ)

(λ)2 ≥ r · λ2,

since λ ≪ b · (1 ∧ θmin(G)) as stated in the lemma; hence, we have ∥δ∥2 ≥ λ2(r +

32q/θmin(G)).

Finally, we upper bound the integral of pn(δ) by relying on Gaussian tail bounds,

similar to (IC.6). Let Z̃ ∈ Rp follow

Z̃ ∼ N

(
4∆p,

4

n
G−1

)
;
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as in (IC.6), we have for r + q > 0:

∫
Eq,r∩Cn

pn(δ) dδ ≲P∗ exp{2n∆T
pG∆p − snλ2} ·

(
8π

n

)p/2

· 1√
|G|
·

· exp{(q − r)nλ2} · Pr
(∥∥∥Z̃∥∥∥2 ≥ λ2 ·

[
r +

32q

θmin(G)

])
≤ exp{2n∆T

pG∆p − snλ2} ·
(
8π

n

)p/2

· 1√
|G|
·

· exp
{
−(r + q)nλ2

}
,

where the last inequality holds on the events

E1(γ) =
{
n ·∆T

pG∆p ≤ γ · nλ2 · (θmin(G) ∧ 1)
}
,

E2 =
{
nλ2(θmin(G) ∧ 1)≫ p

}
for small enough γ > 0 by Lemma IA.1.

Step II: Bounding the posterior integral on An ∩Cn Motivated the decompo-

sition (ID.12), the posterior integral on An ∩ Cn is bounded by the following:

∫
An∩Cn

pn(δ) dδ ≤
s∑

q=0

p−s∑
r=0

r+q>0

∫
Eq,r∩Cn

pn(δ) dδ

≲P∗ exp{2n∆T
pG∆p − snλ2} ·

(
8π

n

)p/2

· 1√
|G|
·

·

[
s∑

q=0

p−s∑
r=0

exp
{
−(r + q)nλ2

}
− 1

]

= exp{2n∆T
pG∆p − snλ2} ·

(
8π

n

)p/2

· 1√
|G|

·

[(
1

1− exp{−nλ2}

)2

− 1

]
,
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where the second inequality holds on the event E1(γ) and E2, given by step I; and

the last inequality uses the property of geometric series.

Since θmin(G) ≳ 1/p and λ ≫ p/
√
n, the deterministic event E2 always holds;

furthermore, Lemma IC.4 implies that E1(γ) has P
∗-probability tending to 1. Thus,

the previous displayed equation holds with P∗-probability tending to 1.

Step III: Bounding the posterior integral on CCn . On δ ∈ CCn , note that

πCA(δ + β0) ≤ 1; using a similar argument that leads to (IC.9), we have

∫
CC
n

pn(δ) dδ ≲P∗
1√
|G|
·
(
4q0√
p

)p

exp{p− nε0},

by invoking a Cramér-Chernoff device.

Step IV: Final bound for posterior probability Finally we verify the posterior

probability for An ∩ Cn and CCn are both oP ∗(1).

First, Lemma IC.1 gives

∫
Rp

pn(δ) dδ ≳P∗

(
2π

n

)s/2(
2

nλ

)p−s

·
exp

(
∆T

sG11∆s − snλ2
)√

|G11|

≳

(
1

n

)p

· exp
(
−snλ2

)
· 1√
|G11|

≜ P̃n,

since λ≪ 1. Therefore, following the proof of Theorem IC.1 (step IV), it suffices to

show that both ∫
An∩Cn

pn(δ) dδ, and

∫
CC
n

pn(δ) dδ,

are oP ∗(P̃n).

On An ∩ Cn, we bound the integral of pn(δ) as in step II; comparing it with P̃n
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gives

∫
An∩Cn

pn(δ) dδ

P̃n

≲P∗ (
√
8πn)p · 1√

|G̃22|
· exp

{
2n∆T

pG∆p

}
·
[(
1− exp{−nλ2}

)−2 − 1
]

≤ exp
{
c1 · p log n+ c2p log p+ 2n∆T

pG∆p

}
· 8 exp

{
−nλ2

}
≲P∗ exp

{
−nλ2/4

}
,

where c1, c2 are some positive constants, and G̃22 is the Schur complement of G22; the

second inequality follows from (IC.10) and that (1−x)−2−1 ≤ 8x for all 0 < x < 1/2;

and the last inequality holds by Lemma IC.4, since p log(p ∨ n)≪ nλ2.

On CCn , we bound the integral of pn(δ) as in step III; comparaing it with P̃n gives

∫
CC
n

pn(δ) dδ

P̃n

≲P∗ exp
{
c3 · p log n+ c4 · p log p+ snλ2 − nε0

}
≤ exp {−nε0/4} ,

which followed exactly as (IC.10) for some constant c3, c4 > 0; since p log(p∨n)≪ n

and λ2 ≪ 1/s.

Finally, note that both of the above two displayed equations are oP ∗(1), the proof

is now complete.

Proof of Lemma IC.5. We introduce some notations first. Recall hn(δ) and fn(δ)

from (IC.12), we further define

f̃n(δ) = Tn · exp
{
−n
2
(δ1 −∆s)

TG11(δ1 −∆s)− snλ2 − nλ∥δ2∥1
}
,

where ∆s and Tn are defined before (IC.12). Let F̃n =
∫
f̃n(δ) dδ. Fix a diverging
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sequence Kn → +∞ to be specified later, we define

Bn =

{
δ ∈ Rp : ∥δ1∥2 ≤ Kn

√
s

n
, and ∥δ2∥∞ ≤ Kn

log p

nλ

}
.

Following the proof of Theorem IC.2, we first show that

∫
Rp

∣∣∣hn(δ)− f̃n(δ)∣∣∣ dδ
F̃n

P ∗
−→ 0,

which implies hn converges to f̃n in total variation; to achieve this, in the following

steps I - II we bound the integral of |f̃n − hn| on Bn and its complement separately;

finally in step III, we show that f̃n converges to fn in total variation, which concludes

the proof.

First, the normalizing constant of f̃n(δ), i.e., F̃n, can be explicitly computed; using

the normalizing constant of Gaussian and Laplace distributions:

F̃n =

∫
Rp

f̃n(δ) dδ

= Tn · exp{−snλ2} ·
1√
|G11|

·
(
2π

n

)s/2

·
(

2

nλ

)p−s

.

Step I: Bounding
∫
|f̃n − hn| dδ on Bn. Recall ∆p = G−1XTϕ, ∆s = G−1

11 X
T
1 ϕ.

First we observe that G ·∆p = [(G11 ·∆s)
T , ϕTX2/n]

T , which implies

∣∣∣∣∣log
(
hn(δ)

f̃n(δ)

)∣∣∣∣∣ =
n

2

∣∣δT
1 G11δ1 − 2δT

1 G11∆s − δTGδ + 2δTG∆p

∣∣
≤ n

2

∣∣δTGδ − δT1 G11δ1
∣∣+ |ϕTX2δ2|

≜ R1(δ) +R2(δ).
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In what follows, we shall prove that R1(δ) and R2(δ) are all oP ∗(1), uniformly when

δ ∈ Bn. For R1(δ), Corollary IB.2 directly implies that

sup
δ∈Bn

R1(δ) = o(1).

For R2(δ), by Holder’s inequality and Lemma IC.3,

sup
δ∈Bn

R2(δ) ≤ p ·

∥∥∥∥∥
n∑

i=1

ϕix2i

∥∥∥∥∥
∞

· sup
δ∈Bn

∥δ2∥∞

= p ·OP ∗(
√
n log p) ·Kn

log p

nλ

= oP ∗(1),

if we choose Kn ≪ (
√
nλ)/(p log3/2 p), provided that λ≫ (p log3/2 p)/

√
n as required

in the theorem.

Combining the results for R1 and R2, we have shown

sup
δ∈Bn

∣∣∣∣∣log
(
hn(δ)

f̃n(δ)

)∣∣∣∣∣ = oP ∗(1),

which further implies |hn(δ)/f̃n(δ)− 1| = oP ∗(1) uniformly when δ ∈ Bn. Therefore,

we have:

∫
Bn

∣∣∣hn(δ)− f̃n(δ)∣∣∣ dδ =

∫
Bn

f̃n(δ)

∣∣∣∣∣1−
(
hn(δ)

f̃n(δ)

)∣∣∣∣∣ dδ
= oP ∗

(∫
Rp

f̃n(δ) dδ

)
.

Step II: Bounding
∫
|f̃n − hn| dδ on BC

n . Here we show that both
∫
BC
n
hn(δ) dδ,

and
∫
BC
n
f̃n(δ) dδ are oP ∗(F̃n).

For f̃n, an argument similar to (IC.6) applies. Note that F̃n normalizes f̃n(δ) as
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a probability density function, we have,

∫
BC
n

f̃n(δ) dδ

F̃n

= Pr

(
∥Z∥2 ≥ Kn

√
s

n
or ∥ξ∥∞ ≥

Kn log p

nλ

)
≲

(
p · exp {−Kn log p}+ exp

{
−θ11K

2
ns

4

})
, (ID.13)

by Lemma IA.1 and IA.2, similar to (IC.6); θ11 is the minimal eigenvalue of G11; the

above equations hold on the event E1 = {8n∆T
sG11∆s ≤ θ11K

2
ns}.

For hn(δ), by relating the integral with probabilistic tail bounds as in (IC.14), we

have ∫
BC
n

hn(δ) dδ

F̃n

≲

(
nλ

nλ− αn

)p−s

· exp {−c0Kn(s ∧ log p)}

≲ exp {−c0Kn} ,

for some constant c0 > 0, where the last inequality follows from (IC.8). The displayed

equations hold provided that both of the events

E2(γ) = {p · αn ≤ γ · nλ},

E3 =

{
8n · sup

∥δ2∥∞≤Kn log p/(nλ)

[
µ̃(δ2)

TG11µ̃(δ2)
]
≤ Knsθmin(G11)

}
,

are true for a small enough constant γ > 0, where µ̃(δ2) = ∆s − A2δ2 and αn =

∥ϕTX2 − ϕTX1A2∥∞.

Similar to proof of Theorem IC.1, we can show the events E1 through E3 happens

with P∗-probability tending to 1. Therefore, we have

∫
BC
n

|hn(δ)− f̃n(δ)| dδ = oP ∗(F̃n).
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Combining steps I and II, we obtain

∫
Rp

∣∣∣hn(δ)− f̃n(δ)∣∣∣ dδ
F̃n

= oP ∗(1),

which further implies

∥∥∥∥∥∥∥∥
f̃n(β)∫
f̃n(β) dβ

− hn(β)∫
hn(β) dβ

∥∥∥∥∥∥∥∥
TV

P ∗
−→ 0,

by Theorem 1 of Chernozhukov and Hong (2003).

Step III: Convergence of f̃n to fn. Here we show that f̃n converges to fn in total

variation by bounding their KL divergence.

First note that ∫
Rp

fn(δ) dδ =

∫
Rp

f̃n(δ) dδ = F̃n,

by using the normalizing constants for Gaussian and Laplace distributions. Further-

more,

log

(
f̃n(δ)

fn(δ)

)
=

n

2
(δ1 − δ̃1)

TG11(δ1 − δ̃1)−
n

2
(δ1 −∆s)

TG11(δ1 −∆s)

=
n

2
(∆s − δ̃1)

TG11(∆s − δ̃1)− n(∆s − δ̃1)
TG11(δ1 −∆s).

Recall that f̃n(δ1, δ2)/Fn coincides with the joint density of (Z, ξ), as defined in

step II. Now, by Pinsker’s inequality (Tsybakov , 2008, Lemma 2.5), we can bound
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the total variation distance by their KL divergence,

∥∥∥∥∥∥∥∥
f̃n(δ)∫
f̃n(δ) dδ

− fn(δ)∫
fn(δ) dδ

∥∥∥∥∥∥∥∥
TV

≲

(
E(Z,ξ)

[
log

fn(Z, ξ)

f̃n(Z, ξ)

])1/2

=
(n
2
(∆s − δ̃1)

TG11(∆s − δ̃1)
)1/2

≲
√
n∥∆s − δ̃1∥

= oP ∗(1),

where the first equality holds since EZ(Z−∆s) = 0; the penultimate inequality holds

by Assumption E.3′; and the last inequality follows from the Bahadur representation

of the quantile regression estimators (He and Shao, 2000).

Thus, the proof is now complete.

5.9.6.3 Proof of Lemmas ID.1, ID.2 and ID.3 under the AL prior

Proof of Lemma ID.1. Recall that the posterior density for δ = β − β0 is

pn(δ) = πAL(β
0 + δ) · exp

{
Ln(β

0)− Ln(δ + β0)
}
,

under the Adaptive Lasso prior (5.4). We provide a lower bound of the integral∫
pn(δ) dδ by restricting to the area

Bn = {δ ∈ Rp : ∥δ1∥ ≤ Kn/
√
n; ∥δ2∥∞ ≤ Kn/(nλ)},

for a sequence Kn such that Corollary IB.1 holds. We define

P̃n = exp
{n
2
∆T

sG11∆s −wT
1 β

0
1

}
·
(

2π

nθM

)s/2

·
p∏

j=s+1

(
2

wj

)
.
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In step I, we first lower bound the posterior density by p
n
(δ) on Bn, and in step II

we compute the integration of p
n
(δ) to conclude the proof.

Step I: Lower bounding the posterior density pn(δ) We first analyze the

adaptive Lasso prior when δ ∈ Bn. By Assumption E.5, we have δ1 +β0
1 > 0 for any

δ ∈ Bn. Recalling δ2 = (δs+1, . . . , δp), the adaptive Lasso prior becomes

πAL(δ + β0) = exp

{
−wT

1 (δ1 + β0
1)−

p∑
j=s+1

wj|δj|

}
,

for all δ ∈ Bn. Second, the likelihood is lower bounded by (ID.11) as in the proof of

Lemma IC.1. Therefore, we have the following lower bound of the posterior density:

pn(δ) ≳P∗ exp
{n
2
∆T

sG11∆s −wT
1 β

0
1

}
· exp

{
−nθM

2
∥δ1 −∆s∥2 −wT

1 δ1

}
· exp

{
−

p∑
j=s+1

(αn + wj)|δj|

}
≜ exp

{n
2
∆T

sG11∆s −wT
1 β

0
1

}
· p

n
(δ1, δ2),

where θM = θmax(G11), αn = ∥ϕTX2∥∞ and ∆s = G−1
11 X

T
1 ϕ.

Step II: Lower bounding the integral Similar to the proof of Lemma IC.1,

we relate the integral of p
n
(δ) to probabilistic calculations. Let Z ∈ Rs and ξ =

(ξs+1, . . . , ξp) be distributed as

ξj
ind.∼ Laplace

(
1

wj + αn

)
, j = s+ 1, . . . , p,

Z ∼ N

(
∆s,

1

nθM
Is

)
,

301



where Z and ξ are independent; the function p
n
(δ1, δ2) can be related to the moment

of (Z, ξ). Similar to (ID.3) in the proof of Theorem ID.1, we have

∫
Rp

pn(δ) dδ ≳P∗ exp
{n
2
∆T

sG11∆s −wT
1 β

0
1

}
·

p∏
j=s+1

(
2

wj + αn

)
·
(

2π

nθM

)s/2

·E
(
exp

{
−wT

1 Z
}
· 1[∥Z∥ ≤ Kn/

√
n]
)
· Pr

(
∥ξ∥∞ ≤

Kn

nλ

)
,

(ID.14)

by inserting the normalizing constants for Gaussian and Laplace distributions.

Next we show that both the expectation and probability terms in (ID.14) are

bounded from below by a constant. First, for the expectation with respect to Z, we

have

E

(
exp

{
−

s∑
j=1

wjZj

}
· 1[∥Z∥ ≤ Kn/

√
n]

)

≳ 1− 4γ − 5 exp

{
−K

2
nθM
8

}
≳ 1,

which holds for large enough n on the events

E1(γ) =

{
∥w1∥ ≤ γ ·

(√
2nθM ∧

1

∥∆s∥

)}
, and E2(γ) =

{
n∥∆s∥2 ≤ γ ·K2

n

}
,

by Lemma IA.3. Second, for the probability with respect to ξ, using an argument

similar to the proof of Theorem ID.1 (Step II) gives

Pr

(
∥ξ∥∞ ≥

Kn

nλ

)
≥ 1− p · exp

{
−
√
Mn

2

}
≳ 1,

which holds on the event E3(γ) =
{√

Mn · (wmin + αn) ≥ γ · nλ
}
.
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Combining the above lower bounds, the integration (ID.14) becomes

∫
Rp

pn(δ) dδ ≳P∗ P̃n ·
p∏

j=s+1

(
1

1 + αn/wj

)
≥ P̃n · exp

{
−p · αn

wmin

}
≳ P̃n,

where the second inequality owns to (1 + x)−1 ≥ exp{−x}; and the last inequality

holds on the event E4(γ) = {pαn ≤ γ · wmin}.

As in the proof of Theorem ID.1, the events E1(γ) through E4(γ) holds with

P∗-probability going to 1; Therefore, the proof is now complete.

Proof of Lemma ID.2. Let δ = β − β0, the posterior density is

pn(δ) ∝ πAL(δ + β0) · exp
{
Ln(β

0)− Ln

(
δ + β0

)}
,

Let

An = {δ = β − β0 : sgn(β1) = sgn(β0
1) }.

In the following steps I - II, we shall upper bound the posterior integral of pn(δ) on

AC
n ∩Cn and AC

n ∩CCn separately, where Cn = {∥G1/2δ∥ ≤ 4q0} as defined in the proof

of Theorem V.2; in step III we show the desired posterior probabilities are oP ∗(1).

Step I: Bounding the posterior integral on AC
n ∩Cn We first provide an upper

bound of the posterior density pn(δ). The working likelihood can be bounded by

(ID.1) when δ ∈ Cn. Furthermore, the adaptive Lasso prior is

πAL(δ + β0) ≤ exp

{
−

p∑
j=s+1

wj|δj|

}
,
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as β0
2 = 0. Therefore, similar to (ID.1), we have

pn(δ) ≲P∗ exp

{
2

nθm
∥XT

1 ϕ∥2
}
· exp

{
−nθm

8
∥δ1 − µ1∥2

}
· exp

{
−

p∑
j=s+1

(wj − αn)|δj|

}

≜ exp

{
nθm
8
∥µ1∥2

}
· pn(δ),

when δ ∈ Cn, where αn = ∥ϕTXk∥∞ and µ1 = 4XT
1 ϕ/(nθm).

Now we bound the integral of pn(δ) by using its upper bound pn(δ). Similar to

(ID.3), we can relate the integration to probabilistic tail bounds Note when δ ∈ AC
n ,

we have ∥δ1∥ ≥ b0, as in Assumption E.5. Therefore, the posterior integral on AC
n ∩Cn

is bounded by

∫
Cn∩AC

n

pn(δ) dδ ≲P∗ exp

{
nθm
8
∥µ1∥2

}
·
(

8π

nθm

)s/2

·
p∏

j=s+1

(
2

wj − αn

)
·Pr (∥Z∥ ≥ b0)

≲P∗ exp

{
nθm
8
∥µ1∥2 −

nθmb
2
0

16

}
·
(

8π

nθm

)s/2

·
p∏

j=s+1

(
2

wj

)
,

where we rely on two techniques: (i) we bound the tail probability with Lemma IA.1,

which holds on the event E2(γ) =
{
n · µT

1µ1 ≤ γ ·M2
n

}
; (ii) we bound the normalizing

constant 2/(wj − αn) similar to (IC.8), which holds on the event E1(γ). Since both

events E1(γ) and E2(γ) have P∗-probability tending to 1 as in the proof of Theorem

V.2 (Step V), the last inequality takes hold.

Step II: Bounding the posterior integral on AC
n ∩ CCn In this step, we use the

exact same argument as in (ID.6), since πAL(δ + β0) ≤ 1 on AC
n , which gives

∫
CC
n ∩AC

n

pn(δ) dδ ≲P∗ exp{−nε0/4}.
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Step III: Bounding the posterior probabilities Here we show that the posterior

probabilities of both AC
n ∩ Cn and AC

n ∩ CCn are oP ∗(1). Let

P̃n =

p∏
j=s+1

(
2

wj

)
·
(

2π

nθM

)s/2

· exp
(
−wT

1 β
0
1 +

n

2
∆T

sG11∆s

)
;

following the proof of Theorem V.2, it then suffices to show that both

∫
AC

n∩Cn
pn(δ) dδ and

∫
AC

n∩CC
n

pn(δ) dδ,

are oP ∗(P̃n).

For the first integral on AC
n ∩ Cn, we use its upper bound derived in step I; com-

paring it with P̃n gives

∫
AC

n∩Cn
pn(δ) dδ

P̃n

≲P∗ exp

{
wT

1 β
0 +

nθm
8
∥µ1∥2 −

nθmb
2
0

16

}
·
(
4θM
θm

)s/2

= oP ∗(1),

which holds since ∥w1∥ = OP ∗(
√
n) and µ1 = OP ∗(1/

√
n), as in the proof of Theorem

V.2 (Step V).

For the second integral on AC
n ∩ CCn , we have the exact same result as in (ID.7),

implying

∫
AC

n∩CC
n

pn(δ) dδ

P̃n

= oP ∗(1).

Therefore, the proof is now complete.

Proof of Lemma ID.3. Fix a diverging sequence Kn → +∞ to be specified later, we

define

Bn =

{
δ ∈ Rp : ∥δ1∥2 ≤

Kn√
n
, and ∥δ2∥∞ ≤

Kn

nλ

}
.
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Let F̃n =
∫
Rp fn(δ) dδ. Following the proof of Theorem V.2, we ought to show that

∫
Rp

∣∣∣hn(δ)− f̃n(δ)∣∣∣ dδ
F̃n

P ∗
−→ 0.

In the following steps I - II, we bound the integral of |fn−hn| on Bn and its complement

separately.

First, similar to the proof of Lemma IC.5, F̃n can be explicitly computed as

F̃n =

∫
Rp

fn(δ) dδ

= Tn ·
1√
|G11|

·
(
2π

n

)s/2

·
p∏

j=s+1

(
2

wj

)
.

Step I: Bounding
∫
|fn − hn| dδ on Bn. First we observe that G · ∆p = [(G11 ·

∆s)
T , ϕTX2/n]

T , which implies

∣∣∣∣log(hn(δ)fn(δ)

)∣∣∣∣ =
n

2

∣∣∣δT
1 G11δ1 − 2δT

1 G11δ̃1 − δTGδ + 2δT
1 G11∆s + 2δT

2 X
T
2 ϕ/n

∣∣∣
≤ n

2

∣∣δTGδ − δT
1 G11δ1

∣∣+ ∣∣∣δT
1 G11(δ̃1 −∆s)

∣∣∣+ |δT
2 X

T
2 ϕ|

≜ R1(δ) +R2(δ) +R3(δ).

As in the proof of Lemma IC.5, R1(δ) and R3(δ) are both oP ∗(1), uniformly when δ ∈

Bn. For R2(δ), it follows from the Bahadur representation of the quantile regression

estimators (Koenker , 2005, Section 4.2) that

sup
δ∈Bn

R2(δ) ≤ sup
δ∈Bn

∥δ1∥ ·
∥∥∥G11(δ̃1 −∆s)

∥∥∥
≤ Kn√

n
· oP ∗

(
1√
n

)
= oP ∗(1),
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if we choose a sequence Kn that grows slow enough. Therefore, we have shown

sup
δ∈Bn

∣∣∣∣log(hn(δ)fn(δ)

)∣∣∣∣ = oP ∗(1),

which further implies |hn(δ)/f̃n(δ)− 1| = oP ∗(1) uniformly when δ ∈ Bn. Thus,

∫
Bn

|hn(δ)− fn(δ)| dδ =

∫
Bn

fn(δ)

∣∣∣∣1− (hn(δ)fn(δ)

)∣∣∣∣ dδ
= oP ∗

(∫
Rp

fn(δ) dδ

)
.

Step II: Bounding
∫
|fn − hn| dδ on BC

n . Here we show that both
∫
BC
n
hn(δ) dδ,

and
∫
BC
n
fn(δ) dδ are oP ∗(F̃n).

Let µ1 = XT
1 ϕ/n and αn = ∥XT

2 ϕ∥∞. For hn(δ), similar to (ID.10), we can show

that ∫
BC
n

hn(δ) dδ

F̃n

≲ exp

{
nθm
2
∥µ1∥2 −

√
Kn

}
,

by relating the integral with probabilistic tail bounds; provided that all of the events

E1(γ) = {αn ≤ γ · wmin}, E2(γ) =
{
n · µT

1µ1 ≤ γ ·K2
n

}
, and

E3(γ) =
{√

Kn · (wmin − αn) ≥ γ · nλ
}

holds

For fn, note that F̃n normalizes fn(δ); therefore, using a similar argument to

(ID.4), we have

∫
BC
n

fn(δ) dδ

F̃n

= Pr

(
∥Z∥2 ≥

Kn√
n

or ∥ξ∥∞ ≥
Kn

nλ

)
≲ exp

{
−
√
Kn

}
,
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which holds on the events E3(γ) and E4(γ) =
{
n · δ̃T

1 G11δ̃1 ≤ γ ·K2
n

}
, by Lemma

IA.1 and IA.2.

As in the proof of Theorem ID.1 (Step V), the events E1(γ) through E3(γ) happens

with P∗-probability tending to 1. For E4(γ), standard asymptotic results on quantile

regression (Koenker , 2005, Section 4.2) shows that

nδ̃T
1 G11δ̃1 ≤ θM

∥∥∥√nδ̃1∥∥∥ = OP ∗(1),

which implies P∗(E4(γ))→ 1. Therefore, we have shown

∫
BC
n

|hn(δ)− fn(δ)| dδ = oP ∗(F̃n).

Combining steps I and II, we obtain

∫
Rp

|hn(δ)− fn(δ)| dδ

F̃n

= oP ∗(1),

which completes the proof by Theorem 1 of Chernozhukov and Hong (2003).
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