
Deep Generative Models for Single-Cell
Perturbation Experiments

by

Hengshi Yu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in The University of Michigan
2022

Doctoral Committee:

Assistant Professor Joshua D. Welch, Co-Chair
Associate Professor Xiang Zhou, Co-Chair
Professor Veerabhadran Baladandayuthapani
Assistant Professor Jie Liu



Hengshi Yu

hengshi@umich.edu

ORCID iD: 0000-0001-9850-9347

© Hengshi Yu 2022

All Rights Reserved



To my parents, Jie Yu and Mingxia Zhang,

who showed me unconditional love and support,

and taught me the values of hard work and integrity.

ii



ACKNOWLEDGEMENTS

It was my greatest honor and pleasure to pursue my Ph.D. degree in biostatistics at

the University of Michigan. My Ph.D. life was challenging and rewarding, and having

it was one of the best decisions that I have ever made. Over the past five years of

pursuing my doctoral degree, I was extremely fortunate to have many mentors and

friends by my side supporting and encouraging me to become a qualified researcher.

I would like to express my sincere gratitude to my co-advisor Prof. Joshua Welch,

for his continuous guidance, instruction and support. I am deeply indebted to Prof.

Joshua Welch who led me into the interesting world of deep learning and his ex-

ceptional research group as the first group member. Josh taught me how to define

research problems, how to do research, how to write academic papers and give talks.

I have thoroughly enjoyed working with Josh, who helped and motivated me to bring

innovative solutions to challenging topics. Thank you for always being supportive

and giving me the freedom to design various solutions for many interesting research

problems.

The completion of my dissertation would not have been possible without the sup-

port and encouragement of my co-advisor, Prof. Xiang Zhou, who first introduced me

to computational biology research with Bayesian modeling. I am extremely grateful

to Prof. Xiang Zhou for his kind help with the resources necessary to thrive during

my Ph.D. program, as well as for his generous guidance on my research problems and

invaluable feedback on my research work.

I would also like to show my appreciation for my dissertation committee members,

iii



Prof. Veera Baladandayuthapani and Prof. Jie Liu, for their time and effort to serve

on my dissertation committee. Thanks for providing me with insightful comments,

feedback and encouragements on my research along the way.

I want to thank all our biostatistics faculty members, especially for Profs. Thomas

Braun, Peter Xuekun Song, Brisa Sánchez, Michael Boehnke, Trivellore Raghunathan,

Kevin Zhi He, Susan Murray, Veronica Berrocal and Lili Zhao. I sincerely thank

Prof. Lu Wang, for her help while I was a junior student. Further thanks go to

our biostatistics staff members, Nicole Fenech, Fatma-Zohra Nedjari, Kerry Sprague,

Amanda Larson, Andrea Hill and Tara Smith, for their help and support. I would also

like to express my deep appreciation to Kirsten Herold for her help on my scientific

writing.

I want to thank Prof. Richard Gonzalez from the statistics department for giving

me great advice on bringing innovative dissertation topics. I would also like to thank

Prof. Fan Li from Yale University and Prof. Elizabeth Turner from Duke University

who supervised my master’s thesis research and encouraged me to pursue my Ph.D.

study in biostatistics. I am grateful to Prof. John Preisser from the University of

North Carolina at Chapel Hill, who is a role model as an enthusiastic researcher. I also

want to thank Joseph Replogle from Jonathan Weissman’s lab at MIT for providing

the genome-scale Perturb-seq data in Chapter IV.

I would like to extend my sincere thanks to my colleagues in the Welch Lab

for discussions and encouragement. I have always been inspired to discuss with my

fabulous colleagues on many interesting bio-AI projects and I am honored to be the

first Ph.D. graduated from our research group. I would like to express my thanks to

Jane Wiesner for her valuable and insightful advice for my dissertation. I want to

thank Profs. Jun Li, Jeffrey Regier and Ivo Dinov for helpful discussions in research.

I want to thank Ken Weiss and Brock Palen for assisting our computing clusters.

I want to thank my fellow biostatistics students and friends during my study at

iv



the University of Michigan. I am grateful to have interesting academic discussions

and work on homework problems with my fabulous classmates and friends. Amongst

many others, this includes Yilun Sun, Yaoyuan Vincent Tan, Boxian Wei, Kelly

Speth, Summer Xia, Christopher Lee, Lili Wang, Ming Tang, Nina Zhou, Yingchao

Zhong, Yan-Cheng Chao, Jiaqiang Zhu, Dylan Sun, Wenbo Wu, Jung Yeon Won,

Ketian Yu, Emily Roberts, Jonathan Boss, Andrew Whiteman, Daiwei David Zhang,

Guangyu Yang, Xubo Yue, Holly Hartman, Woosub Shin, Abhay Hukku, Tianwen

Ma, Catherine Smith, Yuqi Zhai, Pedro Orozco del Pino and Mengbing Li, for their

help in and outside research and coursework. I would also like to extend my gratitude

to the excellent academic and research environment of Michigan Biostatistics.

Lastly, I want to thank my parents, Jie Yu and Mingxia Zhang. Although my

parents are on the other side of Earth, they are always by my side, giving me the best

assistance and cheers. Thanks for always believing in me, and giving me unconditional

love, support and joy. To my parents, I dedicate this dissertation.

The research work in this dissertation was partially supported by the National In-

stitutes of Health (NIH) grant R01-HG010883. The content is solely the responsibility

of the authors and does not necessarily represent the official views of the National

Institutes of Health.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xxii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Molecular Biology Overview . . . . . . . . . . . . . . . . . . . 1
1.2 Single-Cell Transcriptome . . . . . . . . . . . . . . . . . . . . 3
1.3 Single-Cell Imaging . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Chemical Perturbations . . . . . . . . . . . . . . . . . . . . . 7
1.5 Genetic Perturbations . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Measuring Single-Cell Responses to Perturbations . . . . . . . 10
1.7 Predicting Single-Cell Responses to Perturbations . . . . . . . 11
1.8 Deep Generative Models . . . . . . . . . . . . . . . . . . . . . 12
1.9 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . 14

II. Sampling from Disentangled Representations of Single-Cell
Data using Generative Adversarial Networks . . . . . . . . . . 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Variational Autoencoders . . . . . . . . . . . . . . . 20
2.2.2 β-TCVAE . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Generative Adversarial Networks . . . . . . . . . . . 22
2.2.4 Conditional GAN and PCGAN . . . . . . . . . . . . 22

vi



2.2.5 MichiGAN: Combining the Strengths of VAEs and
GANs . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.6 Latent Space Vector Arithmetic . . . . . . . . . . . 25
2.2.7 Latent Space Entropy . . . . . . . . . . . . . . . . . 26
2.2.8 Related Work . . . . . . . . . . . . . . . . . . . . . 27

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Variational Autoencoders Learn Disentangled Rep-

resentations of Single-Cell Data . . . . . . . . . . . 27
2.3.2 GANs Generate More Realistic Single-Cell Expres-

sion Profiles than VAEs . . . . . . . . . . . . . . . . 31
2.3.3 MichiGAN Samples from Disentangled Representa-

tions without Sacrificing Generation Performance . 35
2.3.4 MichiGAN Enables Semantically Meaningful Latent

Traversals . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.5 MichiGAN Predicts Single-Cell Gene Expression Data

under Unseen Drug Treatments . . . . . . . . . . . 41
2.3.6 Accuracy of Latent Space Arithmetic Influences Michi-

GAN Prediction Accuracy . . . . . . . . . . . . . . 44
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Supplementary Materials . . . . . . . . . . . . . . . . . . . . 48

2.5.1 Real scRNA-seq Datasets . . . . . . . . . . . . . . . 48
2.5.2 Simulated scRNA-seq Datasets . . . . . . . . . . . . 48
2.5.3 InfoGAN and ssInfoGAN . . . . . . . . . . . . . . . 49
2.5.4 Disentanglement Metrics . . . . . . . . . . . . . . . 50
2.5.5 Generation Metrics . . . . . . . . . . . . . . . . . . 51
2.5.6 Tuning β values in β-TCVAE . . . . . . . . . . . . 52
2.5.7 Implementation . . . . . . . . . . . . . . . . . . . . 53
2.5.8 Supplementary Tables and Figures . . . . . . . . . . 54

III. Predicting Single-Cell Responses to Drug Perturbations . . . 70

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 Drug Treatment Encoder and ChemicalVAE . . . . 72
3.2.2 Baseline KNN and Random Models . . . . . . . . . 73
3.2.3 Conditional Invertible Neural Networks . . . . . . . 74
3.2.4 PerturbNet . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.5 ChemicalVAE Fine-Tuning . . . . . . . . . . . . . . 77
3.2.6 Related Work . . . . . . . . . . . . . . . . . . . . . 80

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.1 ChemicalVAE Gives Meaningful Perturbation Rep-

resentations . . . . . . . . . . . . . . . . . . . . . . 82
3.3.2 KNN Models Have Better Generation than Random

Models . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



3.3.3 PerturbNet Predicts Single-Cell Perturbation Responses
to Drug Treatments . . . . . . . . . . . . . . . . . . 84

3.3.4 Covariate Adjustment Gives Better Predictions for
PerturbNet . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.5 Adjusting Confounders of Perturbations in PerturbNet 87
3.3.6 Fine-Tuned ChemicalVAE Improves the Performance

of PerturbNet . . . . . . . . . . . . . . . . . . . . . 92
3.3.7 PerturbNet Recovers the Perturbation and Cell La-

tent Spaces . . . . . . . . . . . . . . . . . . . . . . . 93
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5 Supplementary Materials . . . . . . . . . . . . . . . . . . . . 96

3.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . 96
3.5.2 Neural Network Architectures . . . . . . . . . . . . 97
3.5.3 Prediction Metrics . . . . . . . . . . . . . . . . . . . 99
3.5.4 Supplementary Figures . . . . . . . . . . . . . . . . 100

IV. Predicting Single-Cell Responses to Genetic Perturbations . 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 Genetic Perturbations and GenotypeVAE . . . . . . 103
4.2.2 Protein Perturbations and ESM . . . . . . . . . . . 104

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.1 PerturbNet Models Latent Representations of Ge-

netic Perturbations . . . . . . . . . . . . . . . . . . 107
4.3.2 PerturbNet Predicts Single-Cell Response to Genetic

Perturbations . . . . . . . . . . . . . . . . . . . . . 109
4.3.3 Fine-Tuned GenotypeVAE Improves the Performance

of PerturbNet for Genetic Perturbations . . . . . . . 112
4.3.4 PerturbNet Models Latent Representations of Pro-

tein Perturbations . . . . . . . . . . . . . . . . . . . 114
4.3.5 PerturbNet Predicts Single-Cell Responses to Coding

Sequence Mutations . . . . . . . . . . . . . . . . . . 116
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.5 Supplementary Materials . . . . . . . . . . . . . . . . . . . . 118

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5.2 Neural Network Architectures . . . . . . . . . . . . 119
4.5.3 Supplementary Figures . . . . . . . . . . . . . . . . 120

V. Perturbation Design and Biological Discovery with PerturbNet122

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1 Optimal Perturbation Design . . . . . . . . . . . . . 125
5.2.2 Continuous Optimal Translation . . . . . . . . . . . 125

viii



5.2.3 Discrete Optimal Translation . . . . . . . . . . . . . 128
5.2.4 Model Interpretation Using Integrated Gradients . . 129

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.1 Continuous Optimal Translation for Perturbation Rep-

resentations . . . . . . . . . . . . . . . . . . . . . . 130
5.3.2 Discrete Optimal Translation for Optimal Perturba-

tion Selections . . . . . . . . . . . . . . . . . . . . . 134
5.3.3 Perturbation Attributions of Cell States for Atomic

Scores . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.4 Perturbation Attributions of Cell States for Gene On-

tology Scores . . . . . . . . . . . . . . . . . . . . . . 143
5.3.5 Perturbation Attributions for Optimal Translations 145
5.3.6 Perturbation Attributions of Genetic Perturbations

for Shifting Cell State Distributions . . . . . . . . . 150
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.5 Supplementary Materials . . . . . . . . . . . . . . . . . . . . 154

5.5.1 Atomic Attributions Visualizations . . . . . . . . . 154
5.5.2 Classification Models . . . . . . . . . . . . . . . . . 155
5.5.3 Supplementary Figures . . . . . . . . . . . . . . . . 155

VI. Summary and Future Work . . . . . . . . . . . . . . . . . . . . . 157

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3 Closing Remarks and Perspectives . . . . . . . . . . . . . . . 163

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

ix



LIST OF FIGURES

Figure

1.1 Overview of single-cell transcriptomic technology (Lee et al., 2019). 5
1.2 Overview of CRISPR/Cas, CRISPRa, CRISPRi technologies. . . . . 9
2.1 Overview of the MichiGAN architecture. We first train a model, such

as β-TCVAE, to learn a disentangled representation of the real data.
We then use the resulting latent codes to train a conditional GAN
with projection discriminator, so that the GAN generator becomes
a more accurate decoder. Because the VAE and GAN are trained
separately, training is just as stable as training each one individually,
but the combined approach inherits the strengths of each individual
technique. After training, we can generate high-quality samples from
the disentangled representation using the GAN generator. . . . . . . 32

2.2 Evaluating disentanglement performance on simulated data. a UMAP
plots of simulated data colored by batch, path, step and library size
quartile. b UMAP plots of data colored by the 10 latent variables
learned by PCA, VAE and β-TCVAE. c Bar plots of Spearman corre-
lations between 10 latent variables and each of the four ground-truth
variables for PCA, VAE and β-TCVAE. d Bar plots of normalized
mutual information between 10 representations and each of the four
ground-truth variables for PCA, VAE and β-TCVAE. . . . . . . . . 33

2.3 Generation performance of VAE, β-TCVAE, WGAN-GP, PCA and
GMM on the Tabula Muris heart data and the whole Tabula Muris
data. a Random forest error for the five methods on the Tabula
Muris heart data during training. b Random forest error for the five
methods on the whole Tabula Muris data during training. c Inception
score for the five methods on the Tabula Muris heart data during
training. d Inception score for the five methods on the whole Tabula
Muris data during training. Error bars indicate standard deviation
across five runs. For clarity, the error bars for PCA and GMM are
omitted because of their small and large variability. . . . . . . . . . 36

x



2.4 Disentanglement and generation performance of WGAN-GP, β-TCVAE
and MichiGAN. a UMAP plots of real data colored by the 10 repre-
sentations of β-TCVAE and generated data colored by the 10 repre-
sentations of WGAN-GP and MichiGAN on the simulated data with
non-linear step. The β-TCVAE panel is reproduced from Figure 2.2b
for clarity. b Bar plots of Spearman correlations between 10 repre-
sentations and each of the four ground-truth or inferred variables for
WGAN-GP, β-TCVAE and MichiGAN on the simulated data with
non-linear step. The β-TCVAE panel is reproduced from Figure 2.2c
for clarity. c Random forest error of PCA, GMM, VAE, β-TCVAE,
WGAN-GP and MichiGAN on the whole Tabula Muris data during
training. d Inception score of PCA, GMM, VAE, β-TCVAE, WGAN-
GP and MichiGAN on the whole Tabula Muris data during training.
Error bars indicate standard deviation across five runs. For clarity,
the error bars for MichiGAN are shown only for the last 100 epochs
because the convergence speed in earlier epochs is variable, and the
error bars for PCA and GMM are omitted because of their small and
large variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Latent traversals of WGAN-GP and MichiGAN on Tabula Muris and
sci-Plex datasets. a UMAP plot of latent traversals of the 10 rep-
resentations of latent values that generate data closest to fibroblast
cells in the heart within the Tabula Muris data using WGAN-GP
with 128 dimensions. b UMAP plot of latent traversals of the 10 rep-
resentations of latent values of fibroblast cells in the heart within the
Tabula Muris data using MichiGAN. c UMAP plot of latent traversals
of the 10 representations of latent values that generate data closest
to MCF7-S7259 cells within the sci-Plex data using WGAN-GP with
128 dimensions. d UMAP plot of latent traversals of the 10 repre-
sentations of latent values of MCF7-S7259 cells within the sci-Plex
data using MichiGAN. . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Predicting single-cell gene expression effects of unseen drugs using
MichiGAN. a UMAP plots of sci-Plex dataset colored by cell type
(left) and treatment (right). b UMAP plots of the predicted (green),
real (blue) and control (red) cells for six predictions of three missing
cell type/drug combinations (A549-S1628, K562-S1096 and MCF7-
S7259). c Random forest errors between MichiGAN and β-TCVAE
for all combinations. MichiGAN was trained using mean representa-
tions (left) or representations sampled from the posterior distribution
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi



2.7 MichiGAN predicts unseen or observed combinations in the large
screen sci-Plex data. a Scatter plots of random forest errors’ dif-
ference between MichiGAN and β-TCVAE versus delta entropy for
MichiGAN with mean representations (left) and sampled representa-
tions (right) on the large screen sci-Plex data without three combina-
tions of A549-S1628, K562-S1096 and MCF7-S7259. b UMAP plots
of the predicted (green), real (blue) and control (red) cells for six pre-
dictions of the three missing combinations of MCF7-S1262, MCF7-
S1259 and MCF7-S7207. c Random forest errors between MichiGAN
and β-TCVAE for MichiGAN with mean representations (left) and
sampled representations (right) after selecting held-out combinations
with low ∆H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Evaluating disentanglement performance on a simulated dataset with
linear step. a UMAP plots of simulated data colored by batch, path,
step and library size quartile. b UMAP plots of data colored by the
10 latent variables learned by PCA, VAE and β-TCVAE. c Bar plots
of Spearman correlations between 10 latent variables and each of the
four ground-truth variables for PCA, VAE and β-TCVAE. d Bar
plots of normalized mutual information between 10 latent variables
and each of the four ground-truth variables for PCA, VAE and β-
TCVAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.9 Disentanglement and generation performance of WGAN-GP, β-TCVAE
and MichiGAN. a UMAP plots of real data colored by the 10 repre-
sentations of β-TCVAE and generated data colored by the 10 repre-
sentations of WGAN-GP and MichiGAN on the simulated data with
linear step. The β-TCVAE panel is reproduced from Supplementary
Figure 2.8b for clarity. b Bar plots of Spearman correlations between
10 representations and each of the four ground-truth or inferred vari-
ables for WGAN, β-TCVAE and MichiGAN on the simulated data
with linear step. The β-TCVAE panel is reproduced from Supple-
mentary Figure 2.8c for clarity. . . . . . . . . . . . . . . . . . . . . 56

2.10 Disentanglement performance of PCA and MichiGAN-PCA. a UMAP
plots of real data colored by 10 representations of PCA and generated
data colored by the MichiGAN-PCA representations on the simulated
data with linear step. b UMAP plots of real data colored by 10 rep-
resentations of PCA and generated data colored by the MichiGAN-
PCA representations on the simulated data with non-linear step. c
Bar plots of Spearman correlations between 10 representations and
each of the four ground-truth or inferred variables for PCA and
MichiGAN-PCA on the simulated data with linear step. d Bar plots
of Spearman correlations between 10 representations and each of the
four ground-truth or inferred variables for PCA and MichiGAN-PCA
on the simulated data with non-linear step. The PCA panels are re-
produced from Figure 2.2b-c and Supplementary Figure 2.8b-c for
clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xii



2.11 Representations learned by InfoWGAN-GP from the simulated single-
cell data. a UMAP plots of the simulated data with linear step col-
ored by the 10 representations learned by InfoWGAN-GP. b UMAP
plots of the simulated data with non-linear step colored by the 10
representations learned by InfoWGAN-GP. c Bar plots of Spearman
correlations between 10 representations and each of the four ground-
truth variables for InfoWGAN-GP on the simulated data with linear
step. d Bar plots of Spearman correlations between 10 representa-
tions and each of the four ground-truth variables for InfoWGAN-GP
on the simulated data with non-linear step. . . . . . . . . . . . . . . 58

2.12 The whole Tabula Muris data and the large sci-Plex data. a UMAP
plot of the whole Tabula Muris data colored by cell type. b UMAP
plot of the 2026 fibroblast cells in the heart within the whole Tabula
Muris data. c UMAP plot of the sci-Plex data colored by cell type. d
UMAP plot of the sci-Plex data colored by drug treatment. e UMAP
plot of the 2014 cells with MCF7 cell type and S7259 treatment within
the sci-Plex data. For clarity, c and d are reproduced from Figure 2.6a. 59

2.13 UMAP plots of data generated via latent traversals. a UMAP plot
of latent traversals of the 10 representations of latent values that
generate data closest to fibroblast cells in heart within the Tabula
Muris data using WGAN-GP with 10 dimensions. b UMAP plot
of latent traversals of the 10 representations of latent values that
generate data closest to MCF7-S7259 cells within the sci-Plex data
using WGAN-GP with 10 dimensions. . . . . . . . . . . . . . . . . . 60

2.14 Comparison of conditional GAN strategies. a UMAP plots of recon-
structed cardiac fibroblast cells using β-TCVAE. b UMAP plots of re-
constructed cardiac fibroblast cells using MichiGAN with PCWGAN-
GP. c UMAP plots of reconstructed cardiac fibroblast cells using
MichiGAN with ssInfoWGAN-GP. d UMAP plots of reconstructed
cardiac fibroblast cells using MichiGAN with CWGAN-GP. . . . . . 61

2.15 Evaluating disentanglement performance on simulated dataset with
non-linear step. a UMAP plots of simulated data colored by batch,
path, step and library size quartile. b UMAP plots of data colored
by the four latent variables learned by PCA, VAE and β-TCVAE.
c Bar plots of Spearman correlations between four latent variables
and each of the four ground-truth variables for PCA, VAE and β-
TCVAE. d Bar plots of normalized mutual information between four
latent variables and each of the four ground-truth variables for PCA,
VAE and β-TCVAE. For clarity, a is reproduced from Figure 2.2a. . 62

xiii



2.16 Evaluating disentanglement performance on simulated dataset with
linear step. a UMAP plots of simulated data colored by batch, path,
step and library size quartile. b UMAP plots of data colored by the
four latent variables learned by PCA, VAE and β-TCVAE. c Bar plots
of Spearman correlations between four latent variables and each of
the four ground-truth variables for PCA, VAE and β-TCVAE. d Bar
plots of normalized mutual information between four latent variables
and each of the four ground-truth variables for PCA, VAE and β-
TCVAE. For clarity, a is reproduced from Figure 2.8a. . . . . . . . . 63

2.17 Evaluating disentanglement performance on simulated dataset by
PROSSTT with three main trajectories. a UMAP plots of simu-
lated data colored by branch, time quartile and library size quartile.
b Bar plots of normalized mutual information between 10 latent vari-
ables and each of the three ground-truth variables for PCA, VAE and
β-TCVAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.18 Evaluating disentanglement performance on simulated dataset by
PROSSTT with four main trajectories. a UMAP plots of simulated
data colored by branch, time quartile and library size quartile. b
Bar plots of normalized mutual information between 10 latent vari-
ables and each of the three ground-truth variables for PCA, VAE and
β-TCVAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.19 Evaluating disentanglement performance on simulated dataset by
PROSSTT with five main trajectories. a UMAP plots of simulated
data colored by branch, time quartile and library size quartile. b
Bar plots of normalized mutual information between 10 latent vari-
ables and each of the three ground-truth variables for PCA, VAE and
β-TCVAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.20 Disentanglement and generation performance on pancreas endocrino-
genesis. a UMAP plots of data colored by latent time quartile and
the quartile of the difference between the G2M and S cycle scores.
b UMAP plots of data colored by the 10 latent variables learned by
PCA, VAE and β-TCVAE. c Bar plots of FactorVAE metric, MIG for
PCA, VAE and β-TCVAE, as well as random forest error for PCA,
GMM, VAE, β-TCVAE, MichiGAN and WGAN-GP. For clarity, the
2 variables refer to latent time quartile and (G2M - S) score quartile,
and the 1 variable means only latent time quartile. . . . . . . . . . . 67

2.21 Robustness of disentanglement performance: MIG of VAE and β-
TCVAE (β = 10, 50) on simulated datasets. . . . . . . . . . . . . . . 68

2.22 MichiGAN based on VAE predicts unseen or observed combinations
in the sci-Plex dataset. a UMAP plots of the predicted (green), real
(blue) and control (red) cells for six predictions of the three missing
combinations of MCF7-S1262, MCF7-S1259 and MCF7-S7207. b
Random forest errors values for MichiGAN trained on VAE and VAE
alone after selecting held-out combinations with low ∆H. . . . . . . 69

3.1 Overview of the ChemicalVAE architecture. . . . . . . . . . . . . . 78

xiv



3.2 Overview of the PerturbNet architecture. . . . . . . . . . . . . . . . 78
3.3 a UMAP plots of perturbation representations and cellular represen-

tations of S1628 and S1007 in the sci-Plex data. b UMAP plots
of perturbation representations and cellular representations of two
drugs in the LINCS-Drug data. . . . . . . . . . . . . . . . . . . . . 82

3.4 R squared and FID of KNN model over random model for unseen
and observed drug treatments of the sci-Plex (a) and LINCS-Drug
(b) data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 R squared and FID of PerturbNet over baseline random model for
unseen and observed drug treatments of the sci-Plex (a) and LINCS-
Drug (b) data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 R squared and FID of PerturbNet adjusted for cell state covariates
over the unadjusted PerturbNet for 30 unseen and 158 observed drug
treatments of the sci-Plex data. . . . . . . . . . . . . . . . . . . . . 86

3.7 R squared and FID of KNN (a, b) and PerturbNet adjusted for co-
variates (c, d) over the random model for 30 unseen and 158 observed
drug treatments in each stratum of cell type by dose of the sci-Plex
data, visualized by cell type (a, c) and dose (b, d). . . . . . . . . 88

3.8 a R squared of predictions of cell type/treatment combinations using
latent space vector arithmetic (latent algorithm), cell type transla-
tion, treatment translation and PerturbNet. b R squared of predicted
cell type/treatment combinations between PerturbNet and each of la-
tent algorithm, cell type translation and treatment translation. The
p-values are from the one-sided Wilcoxon test. . . . . . . . . . . . . 90

3.9 UMAP plots of predicted MCF7-S1259 using latent space vector al-
gorithm (a), cell type translation (b) treatment translation (c) and
PerturbNet (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.10 R squared and FID of KNN and PerturbNet with fine-tuned Chemi-
calVAE across different λ values for the 2000 unseen drug treatments
of the LINCS-Drug data. . . . . . . . . . . . . . . . . . . . . . . . . 93

3.11 R squared and FID metrics of KNN and PerturbNet with fine-tuned
ChemicalVAE of λ = 1 over non-fine-tuned PerturbNet for 2000 un-
seen drug treatments of the LINCS-Drug data. . . . . . . . . . . . . 93

3.12 a, b UMAP plots of perturbation representations and reconstructed
cellular representations (a) as well as sampled cellular representations
(b) for S1628 and S1007 in the sci-Plex data. c, d UMAP plots of
perturbation representations and reconstructed cellular representa-
tions (c) as well as sampled cellular representations (d) for two drugs
in the LINCS-Drug data. . . . . . . . . . . . . . . . . . . . . . . . . 95

3.13 R squared and FID of PerturbNet over baseline KNN model for un-
seen and observed drug treatments of the sci-Plex (a) and LINCS-
Drug (b) data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.14 R squared and FID of PerturbNet adjusted for covariates over KNN
for 30 unseen and 158 observed drug treatments in each stratum of
cell type by dose of the sci-Plex data, visualized by cell type and dose.100

xv



4.1 Overview of the GenotypeVAE architecture. . . . . . . . . . . . . . 105
4.2 Sketch of the ESM architecture. . . . . . . . . . . . . . . . . . . . . 106
4.3 UMAP plots of perturbation representations and cellular represen-

tations (a) as well as reconstructed cellular representations (b) of
three pairs of genetic perturbations in the GI, LINCS-Gene and GSPS
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 R squared and FID of KNN (a) and PerturbNet (b) over the random
model for 50 unseen and 180 observed genetic perturbations of the
GI data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 R squared and FID of KNN (a) and PerturbNet (b) over the random
model for 400 unseen and 3709 observed genetic perturbations of the
LINCS-Gene data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 R squared and FID of KNN (a) and PerturbNet (b) over the random
model for 802 unseen and 6859 observed genetic perturbations with
more than 100 cells of the GSPS data. . . . . . . . . . . . . . . . . 111

4.7 R squared and FID of KNN (a) and PerturbNet (b) with fine-tuned
ChemicalVAE across different λ values for 400 unseen and 3709 ob-
served genetic perturbations of the LINCS-Gene data. . . . . . . . . 113

4.8 R squared and FID metrics of KNN and PerturbNet with fine-tuned
GenotypeVAE of λ = 1 over non-fine-tuned PerturbNet for 400 un-
seen and 3709 observed genetic perturbations of the LINCS-Gene data.114

4.9 UMAP plots of ESM representations and perturbation representa-
tions for protein perturbations of the Ursu data. . . . . . . . . . . . 115

4.10 UMAP plots of perturbation representations and cellular representa-
tions (a) as well as reconstructed cellular representations (b) for two
protein perturbations in the Ursu data. . . . . . . . . . . . . . . . . 115

4.11 R squared and FID of KNN (a) and PerturbNet (b) over the random
model for 16 unseen and 145 observed coding variants with more than
400 cells of the Ursu data. . . . . . . . . . . . . . . . . . . . . . . . 116

4.12 R squared and FID of PerturbNet over KNN for unseen and observed
genetic perturbations of the GI (a), LINCS-Gene (b), GSPS (c) and
Ursu (d) data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Overview of the translation optimization. . . . . . . . . . . . . . . . 127
5.2 a UMAP plots of latent values of cells treated by S1007, their trans-

lated latent values to treatment S1628, and latent values of real cells
treated by S1628 in the sci-Plex data. b Diagram of evaluation mea-
sures for a continuous optimal translation experiment. c Diagram of
evaluation measures for a discrete optimal translation experiment. . 131

xvi



5.3 Continuous optimal translations of the sci-Plex and LINCS-Drug
data. a Scatter plot of normalized fitted W2 and normalized tar-
get W2 for 158 continuous optimal translations of the sci-Plex data.
b Scatter plot of normalized fitted W2 and normalized target W2
for 200 continuous optimal translations of the LINCS-Drug data. c
Scatter plot of fitted W2 percentile and target W2 percentile for 158
continuous optimal translations of the sci-Plex data. d Scatter plot
of fitted W2 percentile and target W2 percentile for 200 continuous
optimal translations of the LINCS-Drug data. e Histogram of the W2
distances between the target latent space of S1628 and the translated
latent space from cells treated by S1172 to each of the 158 observed
drug treatments, along with fitted W2, target W2 and their per-
centiles in the histogram. f Histogram of the W2 distances between
the target latent space of a target drug treatment and the translated
latent space from the cells treated by a starting drug treatment to
each of the 2000 sampled observed drug treatments, along with fitted
W2, target W2 and their percentiles in the histogram. . . . . . . . . 133

5.4 Discrete optimal translations of the sci-Plex data. a Scatter plot of
normalized fitted W2 and normalized target W2 for 1580 discrete
optimal translations. b Scatter plot of normalized fitted W2 and
normalized target W2 for the 1580 discrete optimal translations by
residual distance tertile. c Histogram of KNN indices of target pertur-
bation to fitted perturbation for 1580 discrete optimal translations. d
Histogram of percentiles of W2 distances between the latent spaces of
the real cells treated by fitted perturbation and target perturbation
in the distribution of the W2 distances between the latent spaces of
the real cells treated by the target perturbation and other perturba-
tions across the 1580 discrete optimal translations. e Histogram of
the W2 distances between the target latent space of S1703 and the
translated latent space from the cells treated by S1515 to each of the
158 observed drug treatments, along with fitted W2, target W2 and
their percentiles in the histogram. . . . . . . . . . . . . . . . . . . . 136

xvii



5.5 Stratified discrete optimal translations of the sci-Plex data. a-c Scat-
ter plot of normalized fitted W2 and normalized target W2 for 18,960
discrete optimal translations by cell type, dose and residual distance
tertile. d Histogram of KNN indices of target perturbation to fitted
perturbation for 18,960 discrete optimal translations. e Histogram of
percentiles of W2 distances between the latent spaces of the real cells
treated by fitted perturbation and target perturbation in the distri-
bution of the W2 distances between the latent spaces of the real cells
treated by the target perturbation and other perturbations across
the 18,960 discrete optimal translations. f Histogram of the W2 dis-
tances between the target latent space of S1315 and the translated
latent space from the cells treated by S1122 to each of the 158 ob-
served drug treatments with cell type K562 and dose 10, along with
fitted W2, target W2 and their percentiles in the histogram. . . . . 137

5.6 Discrete optimal translations of the LINCS-Drug data. a Scatter plot
of normalized fitted W2 and normalized target W2 for 1435 discrete
optimal translations. b Scatter plot of normalized fitted W2 and nor-
malized target W2 for 1435 discrete optimal translations by residual
distance tertile. c Histogram of KNN indices of target perturbation
to fitted perturbation for 1435 discrete optimal translations. d His-
togram of percentiles of W2 distances between the latent spaces of
the real cells treated by fitted perturbation and target perturbation
in the distribution of the W2 distances between the latent spaces of
the real cells treated by target perturbation and other perturbations
across the 1435 discrete optimal translations. e Histogram of the W2
distances between the target latent space of a drug treatment and
the translated latent space from the cells treated by a starting drug
treatment to each of the 205 observed drug treatments, along with
fitted W2, target W2 and their percentiles in the histogram. . . . . 139

5.7 UMAP plots of latent values of K562 cells treated by the starting
perturbation S1122 with dose 100, target perturbation S2692 with
dose 100, fitted perturbation S2736 with dose 100, as well as trans-
lated latent values from K562 cells treated by S1122 with dose 100
to S2736 and S2692. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.8 UMAP plots of latent values of cells treated by the starting pertur-
bation G1, target perturbation G2, fitted perturbation G3, as well as
translated latent values from cells treated by G1 to G3 and G2. . . 141

5.9 Model interpretation of the chemical perturbation G1 for latent clus-
tering of the LINCS-Drug data. a UMAP plot of latent values. b
UMAP plot of latent values by cluster label assigned by k-means
clustering with k = 20. c UMAP plots of latent clusters 4, 11, 16
and 20. d Molecular structures of G1 colored by atomic attributions
to the formations of latent clusters 4, 11, 16 and 20. . . . . . . . . . 142

5.10 Overview of Interpreting Perturbations for Latent Clustering. . . . . 143

xviii



5.11 Model interpretation of the genetic perturbation ‘ERG’ for latent
clustering of the LINCS-Gene for clusters 9 and 17. a UMAP plot of
latent values. b UMAP plot of latent values by cluster label assigned
by k-means clustering with k = 20. c UMAP plots of latent clusters
9 and 17. d Bar plots of the 10 highest attributions of GO annota-
tions colored by being in ERG or not, with percentages in baseline
perturbations for clusters 9 and 17. . . . . . . . . . . . . . . . . . . 145

5.12 Plots of GO terms from the attributions of the genetic perturbation
with target gene ERG for forming latent clusters 9 and 17, showing
biological process, molecular function and cellular component. . . . 146

5.13 Overview of Interpreting Perturbations for Optimal Translations. . . 147
5.14 Model interpretation for three discrete optimal translations of the sci-

Plex. a Scatter plot of normalized fitted W2 and normalized target
W2 for 18,960 discrete optimal translations and three selected scenar-
ios. b Molecular structures of fitted and target perturbations colored
by atomic attributions to translate the starting latent space to the
target latent space for each of the three scenarios. c Bar plots of
attributions of perturbation representations of fitted and target per-
turbations to translate the starting latent space to the target latent
space for each of the three scenarios. . . . . . . . . . . . . . . . . . 149

5.15 Model interpretation for a discrete optimal translation of the LINCS-
Drug. a Scatter plot of normalized fitted W2 and normalized target
W2 for 1435 discrete optimal translations and the selected scenario.
b Bar plots of attributions of perturbation representations of fitted
and target perturbations to translate the starting latent space to the
target latent space for the scenario. c Molecular structures of fitted
and target perturbations colored by atomic attributions to translate
the starting latent space to the target latent space for the scenario. 150

5.16 Overview of Interpreting Perturbations for Shifting Cell State Distri-
butions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.17 Model interpretation of pairs of genetic perturbations for shifting cell
state distributions. a UMAP plot of latent values of cells treated by
three pairs of genetic perturbations. b Bar plots of the 10 highest
attributions of GO annotations colored by being in the input pertur-
bation or not, for the three pairs of perturbations. c Plots of GO
terms from the attributions of a genetic perturbation for shifting the
cell state of a baseline perturbation to its cell state for the three pairs
of perturbations, showing biological process, molecular function and
cellular component. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xix



5.18 Model interpretation of the genetic perturbation ERG for latent clus-
tering of LINCS-Gene for clusters 1 and 5. a UMAP plots of latent
clusters 1 and 5. b Bar plots of the 10 highest attributions of GO
annotations colored by being in ERG or not, with percentages in
baseline perturbations for clusters 1 and 5. c Plots of GO terms from
the attributions of the genetic perturbation with target gene ERG
for generating latent clusters 1 and 5, showing biological process,
molecular function and cellular component. . . . . . . . . . . . . . . 156

xx



LIST OF TABLES

Table

2.1 Disentanglement metrics for two splatter-simulated scRNA-seq datasets
with four ground-truth variables. The mean and standard deviation
over five runs are presented for each method. The dimensionality of
the latent space was 10 for all three approaches. . . . . . . . . . . . 32

2.2 Disentanglement metrics for two splatter-simulated scRNA-seq datasets
with four ground-truth variables. The dimensionality of the latent
space was four for all three approaches. . . . . . . . . . . . . . . . 32

2.3 Disentanglement metrics for three PROSSTT-simulated scRNA-seq
datasets with three ground-truth variables . . . . . . . . . . . . . . 36

2.4 Spearman correlation gap for the methods of WGAN-GP, InfoWGAN-
GP, PCA, MichiGAN-PCA, VAE, β-TCVAE and MichiGAN on the
two splatter-simulated scRNA-seq datasets. The mean and standard
deviation are presented for each method over five runs. . . . . . . . 39

2.5 Number of cells for each the cell type/drug combinations selected
from the sci-Plex dataset. . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 High-Throughput Gene Expression Datasets with Chemical Pertur-
bations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 High-Throughput Gene Expression Datasets with Genetic Perturba-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Selected Scenarios of Discrete Optimal Translations of the sci-Plex
and LINCS-Drug data. . . . . . . . . . . . . . . . . . . . . . . . . 147

xxi



LIST OF ABBREVIATIONS

DNA Deoxyribonucleic Acid

RNA Ribonucleic Acid

A Adenine

G Guanine

C Cytosine

T Thymine

U Uracil

tRNA Transfer RNA

NGS Next-Generation Sequencing

RNA-seq RNA Sequencing

cDNA Complementary DNA

scRNA-seq Single-Cell RNA-seq

ISH In Situ Hybridization

FISH Fluorescence In Situ Hybridization

smFISH Single Molecule FISH

seqFISH Sequential FISH

MERFISH Multiplexed Error-Robust FISH

HTS High-Throughput Screen

ADME Absorption, Distribution, Metabolism and Excretion

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

xxii



PAM Protospacer Adjacent Motif

CRISPRa CRISPR-Mediated Activation

CRISPRi CRISPR Interference

dCas9 Deactivated Cas9

ITE Individual Treatment Effect

VAEs Variational Autoencoders

GANs Generative Adversarial Networks

ELBO Evidence Lower Bound

KL Kullback-Leibler

MI Mutual Information

TC Total Correlation

MIG Mutual Information Gap

MLP Multilayer Perceptron

FC Fully-Connected

ReLU Rectified Linear Unit

SMILES Simplified Molecular-Input Line-Entry System

KNN k-Nearest Neighbors

cINN Conditional Invertible Neural Network
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ABSTRACT

Recent developments in deep learning have enabled generation of novel and real-

istic images or sentences from low-dimensional representations. In addition, a revolu-

tion in biotechnology has enabled high-throughput measurement of gene expression

in thousands to millions of single cells. Several deep generative models have been de-

veloped to learn latent representations of cells and generate realistic high-dimensional

single-cell data. However, these deep generative models primarily generate data sim-

ilar to that seen during training and have limited ability to predict gene expression

of unseen cell states. In consequence, it constrains the applicability of deep genera-

tive models for single-cell data, which usually have a relatively small set of observed

conditions. Therefore, this dissertation aims to develop flexible and accurate deep

generative models for single-cell data that learn representations characterizing how

cells respond to various perturbation conditions and predict unobserved cell states.

In Chapter II, we study two main classes of deep generative models for single-cell

RNA-seq data: variational autoencoders (VAEs) and generative adversarial networks

(GANs). We systematically assess their disentanglement and generation performance

and show that VAEs excel at learning cellular representations, while GANs excel at

generating realistic single-cell gene expression data. We also develop MichiGAN, a

novel neural network architecture that combines the strengths of VAEs and GANs to

sample from disentangled representations without sacrificing data generation quality.

We learn disentangled representations of three large single-cell RNA-seq datasets

and use MichiGAN to sample from these representations to manipulate semantically

distinct aspects of cellular identity and predict single-cell gene expression responses

xxiv



to drug treatments.

In Chapter III, we develop PerturbNet, a novel deep generative model to generate

single-cell data under unseen drug treatments. Existing approaches attempt to learn

drug effects independently of cell state and cannot predict results for unseen drug

treatments. To address these limitations, our PerturbNet framework learns mapping

from a continuous representation of drug treatment to cellular states. PerturbNet

can then generate single-cell data for both observed and unseen drug treatments. We

show that PerturbNet accurately predicts single-cell RNA-seq data resulting from

unseen drug treatments. We also fine-tune PerturbNet using cellular properties to

improve the continuous representations of drug treatments.

In Chapter IV, we extend PerturbNet to learn single-cell responses to genetic

perturbations, including pooled CRISPR genetic inactivations and genetic mutations.

Existing approaches attempt to learn genetic perturbation effects independently of

cell state and rely on one-hot encodings of genetic perturbations. Although this type

of representation allows different combinations of observed target genes to be learned,

it cannot generalize to unseen target genes. We develop a GenotypeVAE model and

also employ a state-of-the-art protein sequence embedding model to encode genetic

perturbations into continuous representations, allowing prediction for both unseen

genes and unseen gene combinations.

In Chapter V, we extend PerturbNet to design optimal perturbations and attribute

perturbation outcomes to specific perturbation features. We consider the translation

of a group of cells to a target cell state, and propose two algorithms to design pertur-

bations that achieve this desired target cell state. We show that the algorithms are

effective at designing perturbations that achieve the cell state translation of interest.

We also employ model interpretability methods to attribute the effects of chemical or

genetic perturbations to specific atoms or gene functional annotations.

xxv



CHAPTER I

Introduction

1.1 Molecular Biology Overview

The cell is the fundamental unit of biological life. A biological organism consists

of one or multiple cells, corresponding to unicellular and multicellular organisms. A

multicellular organism, the main focus of this dissertation, has tens to millions of cells

with the same machinery for their most basic functions (Alberts et al., 2002). Addi-

tionally, an organism has extraordinary capacity of reproducing itself called heredity

when a parent organism hands down detailed information to specify offspring charac-

teristics. These properties make a multicellular organism distinguishable from others,

giving rise to many species on Earth.

The information stored in cells and passed from a parent multicellular organism

to its offspring is encoded in the form of double-stranded nucleotide molecules of

DNA. The complete set of DNA sequences in an organism serves as its genome,

and the genetic constitution defines its genotype. The organism’s genotype guides

its basic functions by decoding the information in the genome to use for cells. The

genome’s guidance to cells forms the central dogma of molecule biology. Basically, the

genetic information from the DNA sequences of most multicellular organisms is first

transcribed to RNA molecules, and then the RNA molecules translate the information

to proteins, which are building blocks of cells. With these two processes of the central
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dogma, the genetic information flows from genome to cellular functional products.

Although a multicellular organism can consist of a large number of cells with

the same genotype, its cells exhibit varying functions across time and space. For

example, a red blood cell in a human body delivers oxygen to body tissues through

the circulatory system, while a nerve cell transmits information through synapses.

The varying characteristics of cells in a multicellular organism are diverse cellular

phenotypes expressed from the same genotype, enabling the complex functions of

life.

A key goal of molecular biology is to understand how a genotype encodes myriad

and diverse phenotypes of cells. Both DNA and RNA are linear polymers made

of four types of nucleotide subunits linked together by phosphodiester bonds. The

four nucleotide subunits of a double-stranded DNA sequence are bases adenine (A),

guanine (G), cytosine (C) and thymine (T). In contrast, RNA is a single-stranded

sequence and its nucleotides are ribonucleotides with three similar bases and the

fourth base of uracil (U) rather than thymine (T) in DNA. The bases of DNA can

be paired with those of RNA by hydrogen-bonding so that the DNA bases A, G, C

and T have their complementary RNA bases U, C, G and A. In the transcription

phase, a small portion of the DNA double helix is exposed through opening and

unwinding, and one of its two strands functions as a template to grow an RNA chain

through base-pairing. Then the RNA chain is released from the DNA template and

the DNA helix re-forms. Next in the translation phase, an RNA molecule is attached

with ribosomes and its nucleotide sequence is converted to an amino acid sequence

to form proteins. The conversion follows rules known as the genetic code, where a

group of three consecutive nucleotides in RNA (a codon) is paired with a specific

kind of molecule called a transfer RNA (tRNA) or defines a signal to terminate the

translation. Each tRNA is bound with a type of amino acid and has a region of three

consecutive nucleotides, forming an anti-codon that can pair with a codon. Therefore,
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the nucleotide sequence in an RNA molecule is translated to an amino acid sequence

through codon pairing with tRNAs (Alberts et al., 2002). The amino acid sequences

fold into proteins that serve enzymatic or structural functions within the cell.

Thus, in the two phases of the central dogma, RNA serves as an intermediate

element to convey the genetic information from DNA to proteins. The final protein

profiles across cells correspond to their diverse phenotypes. Measuring protein levels

of individual cells can directly dissect their heterogeneous phenotypic patterns, but

contemporary technologies have not been able to provide single-cell protein profiles.

As proteins are generated in translation of RNA molecules, their levels are correlated

with RNA profiles. Therefore, understanding the gene expression profile of RNA

molecules facilitates studying the diverse cellular phenotypes in a multicellular or-

ganism. The gene expression profile of a cell defines its cell state or identity, and can

be used to infer its phenotypic functions and properties.

1.2 Single-Cell Transcriptome

The gene expression profile of a cell is typically a query with each entry repre-

senting the number of RNA molecule copies from a gene. The expression profile of

a set of cells is represented as an expression matrix by stacking the gene expression

profiles across the cells. The gene expression matrices are usually high-dimensional

and with large sample sizes. For example, Tabula Muris is a compendium with gene

expression data for around 105 cells and 20, 000 genes collected from 20 organs and

tissues (Consortium et al., 2018). The abundance of gene expression profiles gives

rich information for learning heterogeneity and diversity of cellular functions and

phenotypes. The transcriptome is the complete set of RNA molecules from a bio-

logical sample. This collection is often a large and and high-dimensional dataset.

Sequencing technologies have largely advanced transcriptome collection by determin-

ing the precise nucleotide sequences of many RNA molecules. The first-generation
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sequencing technology originated in the 1970’s and was based on the automated

Sanger method (Metzker , 2005; Hutchison III , 2007). Despite many improvements,

the first-generation Sanger sequencing has limited power for sequencing large num-

bers of molecules. Recent advances created the next-generation sequencing (NGS)

technologies that combine procedures of template preparation, sequencing and imag-

ing, and genome alignment and assembly methods to produce enormous datasets

at a much lower expense (Metzker , 2010). The NGS technologies sequence massive

numbers of DNA strands in parallel (Goodwin et al., 2016).

NGS technologies greatly accelerate profiling of transcriptomes, enabling RNA

sequencing (RNA-seq) methods to profile and interpret the functional elements of

genome (Wang et al., 2009). In RNA-seq, RNA molecules are converted to a library of

complementary DNA (cDNA) molecules with amplification, and are subsequently se-

quenced in a high-throughput manner (Tang et al., 2010). Numerous high-throughput

RNA-seq methods are available to quantify RNA molecules for tens of thousands of

genes in biological samples, bringing many biological applications (Islam et al., 2011).

The earliest RNA-seq experiments sequenced RNA molecules in bulk, measuring the

average expression profile of an entire group of cells.

However, such bulk profiling obscures the distinct properties of cells within a

heterogeneous population (Lee et al., 2019). The improvement of sequencing tech-

nology has made it possible to bring many RNA-seq methods to single-cell resolution

(Shapiro et al., 2013). Single-cell RNA-seq (scRNA-seq) technologies have revolution-

ized transcriptome analysis by providing a comprehensive catalogue of gene expression

in mixed cell populations or complex tissues such as the brain.

Figure 1.1 from Lee et al. (2019) shows the general procedures of single-cell tran-

scriptome technology. First, cells are dissociated from solid tissues using mechanical

or enzymatic dissociation methods, and are isolated to individual cells by pipetting,

laser-capture microdissection or microfluidic approaches. RNA molecules in single
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cells are converted to cDNA and amplified to create a cDNA library. Finally, the

cDNA library is sequenced via NGS platforms to obtain the single-cell transcriptome.

Single-cell sequencing was named the method of the Year 2013 by Nature Methods

(Anonymous , 2014). Recent novel scRNA-seq methods such as Drop-seq (Macosko

et al., 2015; Rodriques et al., 2019) have largely enhanced sequencing efficiency and

scalability. In addition, many large scRNA-seq datasets have been generated, such as

the Tabula Muris compendium (Consortium et al., 2018).

Modern developments in scRNA-seq technologies have also enabled comprehensive

single-cell profiling methods for simultaneously measuring multiple molecular modal-

ities. Researchers have combined scRNA-seq with other biomolecular assays such as

protein profiling, chromatin accessibility, DNA methylation and spatial positions (Li

et al., 2019; Swanson et al., 2021; Burgess , 2019). Single-cell multimodal omics was

named the method of the Year 2019 by Nature Methods (Anonymous , 2020).

Figure 1.1: Overview of single-cell transcriptomic technology (Lee et al., 2019).
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1.3 Single-Cell Imaging

Single-cell imaging approaches represent a complementary approach to investi-

gating cellular form and function. Fluorescent microscopy technologies employ flu-

orescence to study the physical appearance of cells (Hamilton, 2009). Fluorophore

imaging of cells can be used to study molecular localization and subcellular structures.

In situ hybridization (ISH) technology hybridizes a radioactive nucleotide sequence in

solution and detects native nucleic acid sequences in cells by microautoradiography

(Pardue and Gall , 1969; John et al., 1969). Fluorescence in situ hybridization (FISH)

further extends ISH to fluorescent labels rather than radioactive labels (Pinkel et al.,

1986, 1988). With fluorescent probes labeled with dyes, fluorescent microscopy tech-

nologies allow simultaneous visualization, identification, enumeration and localization

of individual DNA or RNA molecules within single cells (Pinkel et al., 1988; Amann

et al., 1990).

Many FISH extensions provide high-quality imaging modalities for cells. Single

molecule FISH (smFISH) employs single molecules labeled with gene-specific probes

to precisely quantify transcripts and locations (Raj et al., 2008). The sequential FISH

(seqFISH) protocol improved the accuracy, scalability and resolution of transcriptome

imaging using multiple hybridization rounds (Eng et al., 2019). The multiplexed

error-robust FISH (MERFISH) approach uses an error-correcting code to measure

subcellular localization of transcripts and spatial context of large numbers of cells

(Chen et al., 2015). Both seqFish and MERFISH give morphological profiles of single

cells and can be applied to cultured cells or complex tissues (Asp et al., 2020).

Hyperspectral imaging obtains a wide spectrum of light for each pixel in the im-

age (Grahn and Geladi , 2007), and can provide diagnostic information about tissue

composition, morphology, physiology, and diagnostic information (Lu and Fei , 2014).

Immunofluorescence techniques utilize antibodies labeled with fluorescent dyes to

visualize molecules under a light microscope (Odell and Cook , 2013). Immunofluo-
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rescence can amplify chemical signals, detect and localize specific antigens in various

tissue types (Im et al., 2019).

Imaging-based screening can bring high-content cellular data and their image fea-

tures bring multi-dimensional information (Bickle, 2010; Singh et al., 2014). Cell

painting is another type of cell imaging technology that quantifies a very large set

of features in cell morphology (Bray et al., 2016). It utilizes different dyes on a sin-

gle microscopy-based assay to illuminate biological components or compartments in

fluorescent channels. The single-cell resolution from cell painting experiments can

provide multidimensional and rich profiles for detecting subtle phenotypes.

Single-cell imaging technologies generate abundant measurements of cellular struc-

ture, activities and subcellular localization. Therefore, the single-cell imaging data

can be used to study responses to various conditions such as drug treatments or

genetic perturbations (Chandrasekaran et al., 2021).

1.4 Chemical Perturbations

Cells can be exposed to various conditions in high-throughput screen (HTS) ex-

periments. A screen experiment usually involves multiple complex chemical or genetic

perturbations that potentially change cells’ phenotypic characteristics (Devlin, 1997).

Chemical perturbations are widely used to impact cellular activities, and a chemical

perturbation is usually delivered as a drug treatment on cells. The HTS technologies

originated in natural product screening and were then utilized to identify molecules

that modulated therapeutic targets (Pereira and Williams , 2007). HTS experienced

steady improvements to incorporate absorption, distribution, metabolism and excre-

tion (ADME) targets (Banker et al., 2003). Advances of scalability and efficiency of

HTS have enabled many new methods for pharmaceutical drug discovery (Janzen,

2001; Minor , 2006).

HTS technologies have been employed to identify cellular elements with prolifera-
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tion properties (Yu et al., 2016). Researchers have also implemented HTS experiments

in imaging responses with high-content morphology responses (Perlman et al., 2004;

Futamura et al., 2012). Additionally, HTS identifies optimal cell lines with highly

specific readouts (Kang et al., 2016).

1.5 Genetic Perturbations

Genetic perturbations are performed directly on genes to impact their functions.

Clustered regularly interspaced short palindromic repeats (CRISPR) is a family of

proteins that contribute to the immune system of prokaryotic organisms. CRISPR

has been adapted to perform gene-editing with Cas9, a widely used protein in bacteria

that can easily find and bind to most of the desired sequences with a piece of guide

RNA (Jinek et al., 2012). The CRISPR/Cas9 system has been shown to perform

RNA-guided site-specific DNA cleavages (Cong et al., 2013). As shown in Figure 1.2,

the CRISPR/Cas9 method delivers Cas9, guide RNA, and an associated complex to

cells. The specified guide RNA molecule can locate a particular segment of host DNA

and bind with the protospacer adjacent motif (PAM) sequence to induce double-

stranded breaks of a DNA sequence. The Cas9 enzyme then precisely knocks out

target genomic loci. The cleaved DNA sequences are repaired to form new sequences.

The CRISPR/Cas9 method also facilitates simultaneous cleavages of multiple target

loci, improving the efficiency and flexibility of gene editing activity (Bialk et al., 2015).

Figure 1.2 also shows two main derivatives of CRISPR/Cas9 including CRISPR-

mediated activation (CRISPRa) and CRISPR interference (CRISPRi). The two

methods use a deactivated version of Cas9 (dCas9) to bind target DNA but not cut

the DNA (Gilbert et al., 2014). CRISPRa directs dCas9 fused with transcriptional

activators to promoter regions to upregulate expression (Cheng et al., 2013; Koner-

mann et al., 2015). In contrast, CRISPRi uses dCas9 fused with a transcriptional

repressor to interfere with the transcription process of target genes by generating
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a DNA recognition complex (Qi et al., 2013). The activation and repression effects

from CRISPRa and CRISPRi are reversible and can also be applied to multiple target

genes (Horlbeck et al., 2016).

Figure 1.2: Overview of CRISPR/Cas, CRISPRa, CRISPRi technologies.

The genetic perturbations from CRISPR gene editing technologies usually involve

complex experimental procedures, while the chemical perturbations from drug treat-

ments have overall easier delivery procedures. CRISPR gene editing technologies have

experienced rapid developments in human cells to precisely target genes and induce

specific genomic effects (Ran et al., 2013; Shalem et al., 2014). Both the chemical and

genetic perturbations can reveal fundamental biological properties of cells and mod-

ify cellular phenotypes. An optimal chemical or genetic perturbation can even cure

disease by transforming cells to healthy cell states (Meissner et al., 2022; Jain et al.,
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2016). Publicly available chemical databases contain many kinds of drugs with dif-

ferent properties (Gaulton et al., 2012), and detailed chemical information of millions

of drugs (Irwin and Shoichet , 2005; Kim et al., 2016). In addition, the set of possi-

ble genetic perturbations is huge. The human genome comprises approximately 3.2

billion nucleotides (Brown, 2018). Considering genetic perturbations with multiple

target genes, the space of genetic perturbations is essentially infinite.

1.6 Measuring Single-Cell Responses to Perturbations

It has been challenging to bridge the gap between single-cell profiles and com-

plex cellular perturbations, but recent pioneering experimental work has enabled

high-throughput measurement of single-cell perturbation effects. On the one hand,

large screen experiments designed with specific cellular perturbations can expose sin-

gle cells to various biochemical conditions, where the cells’ phenotypic changes are

measured and examined. These perturbations provide single-cell measurements with

various kinds of conditions, helping biomedical discovery and development. On the

other hand, single-cell technologies bring rich high-throughput profiles for the cel-

lular perturbations. The measured single-cell responses detail the high-dimensional

perturbation effects. Measuring and learning single-cell responses to complex pertur-

bations holds great promise for biological understanding and ultimately therapeutic

intervention.

In a high-throughput chemical screen experiment, many cells receive drug treat-

ments, and then their single-cell transcriptional responses are measured using single-

cell technologies. A high-throughput chemical screen experiment such as sci-Plex can

collect scRNA-seq responses to hundreds of drugs on multiple cell types (Srivatsan

et al., 2020). The single-cell responses to chemical perturbations are typically cell by

gene matrices, with each entry representing the gene’s transcription count in the cell.

The identity and dose of the drug each cell receives are known.
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Single-cell technologies also enable measuring the effects of using CRISPR gene

editing methods to knock out, activate or knock down target genes. These CRISPR

perturbations modify the activities of other genes through a complex network of

genetic interactions in which genes regulate each other’s expression levels (Statello

et al., 2021). As a result, a genetic perturbation exerts changes in the overall gene

expression profile and molecular state of a cell. The Perturb-seq technologies com-

bine scRNA-seq and CRISPR/Cas9 (Dixit et al., 2016) or combine scRNA-seq and

CRISPRi (Adamson et al., 2016) to measure responses to genetic perturbations. As

with sci-Plex, scRNA-seq responses to genetic perturbations are usually cell by gene

matrices. The identity of the perturbation applied to each cell is known. Apart

from Perturb-seq, other techniques such as CRISP-seq and CROP-seq also combine

CRISPR perturbations with scRNA-seq, but have slightly different experimental and

technical approaches (Jaitin et al., 2016; Datlinger et al., 2017).

The effects of CRISPR perturbations can also be measured with single-cell epige-

nomic profiling (Rubin et al., 2019) and single-cell multimodal profiling (Mimitou

et al., 2019; Frangieh et al., 2021; Papalexi et al., 2021). CaRPool-seq combines

CRISPR perturbations with multimodal single-cell profiling (Wessels et al., 2022).

In addition, single-cell imaging data with perturbations can reveal substantial infor-

mation for mining and identifying cellular mechanisms (Danuser , 2011). CRISPR

methods can also be paired with morphological profiling at scale in image-based

screens (Feldman et al., 2019). High-throughput cell painting experiments can also

incorporate chemical or genetic perturbations to study cell responses and identify

potential therapeutics (Perlman et al., 2004).

1.7 Predicting Single-Cell Responses to Perturbations

The set of perturbations is usually limited in both chemical and genetic screen

experiments. Although the delivery of a drug treatment is experimentally easier, a
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multiplex chemical experiment usually involves several drug treatments and each drug

treats a large number of cells with different experimental conditions (Gehring et al.,

2020). The CRIPSR genetic perturbations have much more byzantine procedures

where the perturbations are usually delivered with deliberately planned biomedical

processes. The single-cell CRISPR screen experiments generally have been limited

to studying a few hundred genetic perturbations (Replogle et al., 2022), while the

genome contains tens of thousands genes, leaving behind massive combinations of

genes. Therefore, a model that can predict single-cell responses to various unobserved

perturbations would be tremendously valuable.

Predicting single-cell responses to perturbations, however, has some unique chal-

lenges. First, cells have heterogeneous responses to a perturbation Altschuler and

Wu (2010); Snijder and Pelkmans (2011) and show varying individual perturbation

responses. A more specific focus of perturbation responses might involve the individ-

ual treatment effect (ITE, Shalit et al., 2017) in causal inference to predict single-cell

perturbation responses of an individual cell or a cell subpopulation. Second, mea-

suring single-cell responses usually destroys the cells, and each cell only provides a

static snapshot of its profile after a specified perturbation. It is not immediately

apparent to display the cell subpopulation within a perturbation. Third, the as-

signment of perturbations might be correlated with some cell state covariates char-

acterizing the cell subpopulation under each perturbation, which further confounds

attempts to model the perturbation responses. A model accurately predicting indi-

vidual single-cell perturbation responses needs to debias the confounding effects from

between-perturbation cellular characteristics.

1.8 Deep Generative Models

Many machine learning models have been developed for single-cell data. Two

main branches of machine learning models are discriminative models and generative

12



models. A discriminative model, like a classification tree, predicts target variables

from observable variables. On the other hand, a generative model such as a Gaussian

mixture model (GMM) learns to generate the observed variables from latent variables.

Generative models give a way of understanding the real-world data, and their latent

variables serve as representations learned from the observable variables. However,

most of the machine-learning-based generative models have limited performance to

generate complex high-dimensional data such as those in single-cell transcriptome or

imaging.

The deep learning era brought much more powerful generative models that are

constructed with deep neural networks from latent variables to data samples, and are

stochastically optimized. Some of the early deep generative models such as restricted

Boltzmann machines (Hinton, 2002) and sigmoid belief networks (Neal , 1992) were

very efficient in data modeling (Welling et al., 2004) and their extensions have been

applied to different types of data (Hinton et al., 2006; Hinton and Salakhutdinov , 2009;

Salakhutdinov and Larochelle, 2010; Mnih and Gregor , 2014). Three commonly-used

classes of deep generative models are variational autoencoders (VAEs) (Kingma and

Welling , 2013), generative adversarial networks (GANs) (Goodfellow et al., 2014) and

auto-regressive models such as PixelCNN and PixelRNN (Oord et al., 2016a,b,c).

These state-of-the-art deep generative models have achieved tremendous success

in the domains of images and natural language. Frameworks such as InfoGAN learn

interpretable latent representations from images that manipulate semantically mean-

ingful image generation (Chen et al., 2016). Many derivatives of GANs such as WGAN

(Arjovsky et al., 2017), Progressive GAN (Karras et al., 2017) and LOGAN (Wu

et al., 2019) improve the training stability and generation quality for high-resolution

images. Conditional generation enables text-to-image synthesis (Reed et al., 2016) or

image-to-image translation (Isola et al., 2017; Zhu et al., 2017). VAEs coupled with

normalizing flows improve variational inference for images (Rezende and Mohamed ,
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2015; Kingma et al., 2016). Conditional VAEs can learn text attributes to perform

attribute specific data generation or interpolation (Yan et al., 2016). VAEs can also

generate coherent novel sentences from interpretable latent representations (Bowman

et al., 2015). In addition, the normalizing flows of autoregressive models delineate the

complex high-dimensional densities of images (Dinh et al., 2014, 2016; Grover et al.,

2018). More recently, models such as transformers achieve excellent performance in

both natural language processing and computer vision (Vaswani et al., 2017; Brown

et al., 2020). Single-cell data have also utilized deep generative models to gener-

ate realistic samples and learn representations. The scVI framework (Lopez et al.,

2018) combines probabilistic modeling of scRNA-seq data and variational inference

to learn low-dimensional latent representations and generate realistic single-cell re-

sponses. Other methods have also facilitated the prediction of single-cell responses

to perturbations (Lotfollahi et al., 2019). The current deep generative models for

single-cell perturbation experiments, however, are usually unable to deal with the

heterogeneity of perturbation responses, identification of pre-perturbation cell state

distributions, or confounding bias in modeling perturbation responses. Additionally,

most of existing methods only deal with limited numbers of perturbations, and can

hardly extend to unseen perturbations. Therefore, new methods that effectively learn

pre-perturbation cell state information, and accurately model single-cell perturbation

responses for various perturbations, are needed.

1.9 Dissertation Overview

In this dissertation, we develop deep generative models for modeling single-cell

perturbation data. We aim to accurately capture the cell state of individual cells

from their single-cell perturbation responses. Then we precisely predict single-cell

responses to various chemical or genetic perturbations.

In Chapter II, we study the two main branches of deep generative models–VAEs

14



and GANs–on single-cell data. We evaluate their disentanglement and generation

performance on single-cell data. We propose an integrative framework with excep-

tional performance in both disentanglement and data generation. We then use our

approach to learn semantically disentangled representations of cell states and predict

unseen cell states.

In Chapter III, we propose a novel deep generative model to predict single-cell

responses to unseen drug treatments. The deep generative model precisely captures

drug information and cell state, as well as their relationships. We also propose a

machine-learning method and predict scRNA-seq responses to drug treatments ob-

served in the training data or from an unseen set using the proposed methods. We

show that adjusting for cell state covariates can improve the prediction performance.

We also develop a fine-tuning technique for the framework to improve its prediction

performance.

In Chapter IV, we extend the proposed methods for drug treatments to predict

single-cell responses to genetic perturbations. We consider two kinds of genetic per-

turbations: gene knockout/knockdown and sequence mutation. We predict single-cell

perturbation responses for several large high-throughput screen datasets with genetic

perturbations. We also fine-tune the framework and show improved performance of

the methods.

In Chapter V, we develop methods to design optimal perturbations and interpret

the trained model. We consider the scenarios of finding alternative perturbations

to translate cells to approximate a target cell state. We extend our deep generative

models for chemical and genetic perturbations to predict the counterfactual responses

of cells. In addition, we also employ model interpretability methods to identify im-

portant atoms or gene ontology terms within chemical and genetic perturbations.

Finally, in Chapter VI, we summarize the previous chapters, discuss the implica-

tions of our work and propose potential future research.

15



CHAPTER II

Sampling from Disentangled Representations of

Single-Cell Data using Generative Adversarial

Networks

2.1 Introduction

Deep learning techniques have recently achieved remarkable successes, especially

in vision and language applications (LeCun et al., 2015; Bengio et al., 2013). In

particular, state-of-the-art deep generative models can generate realistic images or

sentences from low-dimensional latent variables (Theis et al., 2015). The generated

images and text data are often nearly indistinguishable from real data, and data

generating performance is rapidly improving (Brock et al., 2018; Wu et al., 2019).

The two most widely used types of deep generative models are variational autoen-

coders (VAEs) and generative adversarial networks (GANs). VAEs use a Bayesian

approach to estimate the posterior distribution of a probabilistic encoder network,

based on a combination of reconstruction error and the prior probability of the en-

coded distribution (Kingma and Welling , 2013). In contrast, the GAN framework

consists of a two-player game between a generator network and a discriminator net-

work (Goodfellow et al., 2014). GANs and VAEs possess complementary strengths

and weaknesses: GANs generate much better samples than VAEs (Goodfellow et al.,
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2016), but VAE training is much more stable and learns more useful “disentangled”

latent representations (Higgins et al., 2017). GANs outperform VAEs in generating

sharp image samples (Goodfellow et al., 2014), while VAEs tend to generate blurry

images (Larsen et al., 2016). GAN training is generally less stable than VAE train-

ing, but some recent derivations of GAN like Wasserstein GAN (Arjovsky et al., 2017;

Gulrajani et al., 2017; Heusel et al., 2017) significantly improve the stability of GAN

training, which is particularly helpful for non-image data.

Achieving a property called “disentanglement”, in which each dimension of the

latent representation controls a semantically distinct factor of variation, is a key fo-

cus of recent research on deep generative models (Desjardins et al., 2012; Ridgeway ,

2016; Denton et al., 2017; Achille and Soatto, 2018; Eastwood and Williams , 2018;

Locatello et al., 2019; Higgins et al., 2018). Disentanglement is important for con-

trolling data generation and generalizing to unseen latent variable combinations. For

example, disentangled representations of image data allow prediction of intermediate

images (Berthelot et al., 2018) and mixing images’ styles (Karras et al., 2019). For

reasons that are not fully understood, VAEs generally learn representations that are

more disentangled than other approaches (Hsu et al., 2017; Dupont , 2018; Bai and

Duan, 2019; Rolinek et al., 2019; Esmaeili et al., 2019; Khemakhem et al., 2020). The

state-of-the-art methods for learning disentangled representations capitalize on this

advantage by employing modified VAE architectures that further improve disentan-

glement, including β-VAE, FactorVAE, and β-TCVAE (Higgins et al., 2017; Kim and

Mnih, 2018; Chen et al., 2018; Gao et al., 2019). In contrast, the latent space of

the traditional GAN is highly entangled. Some modified GAN architectures, such as

InfoGAN (Chen et al., 2016), encourage disentanglement using purely unsupervised

techniques, but these approaches still do not match the disentanglement performance

of VAEs (Ramesh et al., 2018; Kaneko et al., 2018; Jeon et al., 2021; Lin et al., 2019;

Kazemi et al., 2019; Shen et al., 2020; Liu et al., 2020; Lee et al., 2020).
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Disentanglement performance is usually quantitatively evaluated on standard im-

age datasets with known ground-truth factors of variation (Matthey et al., 2017;

Paysan et al., 2009; Aubry et al., 2014; Liu et al., 2015). In addition, disentan-

gled representations can be qualitatively assessed by performing traversals or linear

arithmetic in the latent space and visually inspecting the resulting images (Burgess

et al., 2018; White, 2016; Laine, 2018; Dosovitskiy et al., 2015; Sainburg et al., 2018).

Recently, molecular biology has seen the rapid growth of single-cell RNA-seq

(scRNA-seq) technologies that can measure the expression levels of all genes across

thousands to millions of cells (Efremova and Teichmann, 2020). Like image data,

for which deep generative models have proven so successful, scRNA-seq datasets are

large and high-dimensional. Thus, it seems likely that deep learning will be helpful for

single-cell data. In particular, deep generative models hold great promise for distilling

semantically distinct facets of cellular identity and predicting unseen cell states.

Several papers have already applied VAEs (Lotfollahi et al., 2019; Tan et al., 2014;

Gupta et al., 2015; Way and Greene, 2017; Rampášek et al., 2019; Deng et al., 2018;

Grønbech et al., 2018; Wang and Gu, 2018; Ding et al., 2018; Hu and Greene, 2019;

Cui et al., 2020) and GANs (Marouf et al., 2020) to single-cell data. A representative

VAE method is scGen, which uses the same objective function as β-VAE (Higgins

et al., 2017). The learned latent values in scGen are utilized for out-of-sample pre-

dictions by latent space arithmetic. The cscGAN paper adapts the Wasserstein GAN

approach for single-cell data and shows that it can generate realistic gene expression

profiles, proposing to use it for data augmentation.

Assessing disentanglement performance of models on single-cell data is more chal-

lenging than image data, because humans cannot intuitively understand the data

by looking at it as with images. Previous approaches such as scGen have implic-

itly used the properties of disentangled representations (Lotfollahi et al., 2019), but

disentanglement performance has not been rigorously assessed on single-cell data.
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Here, we systematically assess the disentanglement and generation performance

of deep generative models on scRNA-seq data. We show that the complementary

strengths and weaknesses of VAEs and GANs apply to single-cell data in a similar

way as image data. We develop MichiGAN, a neural network model that combines

the strengths of VAEs and GANs to sample from disentangled representations with-

out sacrificing data generation quality. We employ MichiGAN and other methods

on simulated scRNA-seq data (Zappia et al., 2017) and provide quantitative com-

parisons through several disentanglement metrics (Chen et al., 2018). We also learn

disentangled representations of three real scRNA-seq datasets (Consortium et al.,

2018; Bastidas-Ponce et al., 2019; Srivatsan et al., 2020) and show that the disentan-

gled representations can control semantically distinct aspects of cellular identity and

predict unseen combinations of cell states.

Our work builds upon that of Lotfollahi et al. (2019), who showed that a simple

VAE (which they called scGen) can predict single-cell perturbation responses. They

also showed several specific biological contexts in which this type of approach is

useful. First, they predicted the cell-type-specific gene expression changes induced by

treating immune cells with lipopolysaccharide. Second, they predicted the cell-type-

specific changes that occur when intestinal epithelial cells are infected by Salmonella

or Heligmosomoides polygyrus. Finally, they showed that scGen can use mouse data to

predict perturbation responses in human cells or across other species. For such tasks,

one can gain significant biological insights from the generated scRNA-seq profiles.

Our method, MichiGAN, can make the same kinds of predictions and yield the

same kinds of biological insights as scGen, but we show that MichiGAN has signif-

icant benefits compared to scGen (including disentanglement and data generation

performance). In addition, we show that MichiGAN can predict single-cell response

to drug treatment, a biological application that was not demonstrated in the scGen

paper.
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2.2 Methods

2.2.1 Variational Autoencoders

VAEs have an encoder network with parameters ϕ, which maps the input data X

to a latent space Z, and a decoder network parameterized by θ, which reconstructs

the high-dimensional data from the latent space.

Rather than learning a deterministic function for the encoder as in a conven-

tional autoencoder, a VAE learns the mean and variance parameters of the posterior

distribution pθ(X | Z) over the latent variables and the data sample X are mod-

eled to be drawn from pθ(X | Z). However, even using a factorized Gaussian prior

p(Z) = N (Z | 0, I), the posterior pθ(Z | X) is intractable. Thus, VAEs perform

parameter inference using variational Bayes, where the posterior distribution of la-

tent Z given data X is approximated as qϕ(Z | X) (Kingma and Welling , 2013).

Following a standard mean-field approximation, one can derive an evidence lower

bound (ELBO). Given the data sampling distribution q(X), the objective of VAE is

to maximize the ELBO or minimize its opposite with respect to ϕ and θ:

LVAE(θ,ϕ) = −ELBO = Eq(X)

[
−Eqϕ(Z|X)

{
log pθ(X | Z)

}
+DKL

{
qϕ(Z | X)||p(Z)

}]
.

The ELBO has a nice interpretation: the first term is reconstruction error and the

second term is the Kullback-Leibler (KL) divergence between the posterior and prior

distributions of the latent variables Z. If the prior distribution p(Z) is factorized

Gaussian or uniform distribution, the KL divergence encourages the latent factors

to be statistically independent, which may contribute to the good disentanglement

performance of VAEs. This effect can be further enhanced by introducing a weight β

to place more emphasis on the KL divergence at the cost of reconstruction error, an

approach called β-VAE (Higgins et al., 2017).
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2.2.2 β-TCVAE

The total correlation variational autoencoder (β-TCVAE) is a VAE extension

that further promotes disentanglement. The KL divergence of VAE can be further

decomposed into several parts:

Eq(X)

[
DKL

{
qϕ(Z | X)||p(Z)

}]
= DKL

{
qϕ(Z,X)||qϕ(Z)q(X)

}
+ DKL

{
qϕ(Z)||

∏
j

qϕ(Zj)
}

+
∑
j

DKL

{
qϕ(Zj)||p(Zj)

}
.

The first part is referred to as the index-code mutual information (MI), the second part

is the total correlation (TC) and the third part is the dimension-wise KL divergence

(Chen et al., 2018). The total correlation is the most important term for learning

disentangled representations, while penalizing the two other parts does not directly

improve the disentanglement performance, but increases the reconstruction error.

The β-TCVAE specifically penalizes the TC in the loss function:

Lβ-TCVAE(θ,ϕ; β) = LVAE(θ,ϕ) + βDKL

{
qϕ(Z)||

∏
j

qϕ(Zj)
}
,

where β = 0 gives the VAE loss function. There is no closed form for the total

correlation of the latent representation, so β-TCVAE approximates it as follows:

Eqϕ(Z)

{
log qϕ(Z)

}
≈ Eqϕ(Z)

[
logEq(X){qϕ(Z | X) | Z

}]
and

Eqϕ(Zj)

{
log qϕ(Zj)

}
≈ Eqϕ(Zj)

[
logEq(X)

{
qϕ(Zj | X) | Zj

}]
.

Estimating TC is difficult from a small minibatch, so we utilize the minibatch strat-

ified sampling in Chen et al. (2018) to estimate E{qϕ(Z | X) | Z} during training.
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2.2.3 Generative Adversarial Networks

A generative adversarial network (GAN) consists of a generator network G and a

discriminator network D. There are many types of GANs, but we specifically focus on

Wasserstein GAN with gradient penalty (WGAN-GP, Gulrajani et al., 2017), which

significantly stabilizes GAN training. The discriminator loss function for WGAN-GP

is

LDiscriminator = Ep(Z),q(X)

[
D(X) −D

{
G(Z)

}
+ λ

{
||▽X̃D(X̃)||2 − 1

}2]
,

where ▽X̃D(X̃) is the gradient of the discriminator on input X̃ and X̃ = ϵX +

(1− ϵ)G(Z) with ϵ sampled from a uniform distribution on [0, 1]. The generator loss

function for WGAN-GP is

LGenerator = Ep(Z)

[
D{G(Z)}

]
.

Upon convergence, WGAN-GP gives the generated data distribution {G(Z) : Z ∼

p(Z)} that matches the real data distribution q(X).

2.2.4 Conditional GAN and PCGAN

The conditional GAN extends GANs to respect the relationship between gener-

ated data and known labels (Mirza and Osindero, 2014). There are many different

network architectures for conditional GAN (Mirza and Osindero, 2014; Reed et al.,

2016; Odena et al., 2017), but found the conditional GAN with projection discrim-

inator (PCGAN) (Miyato and Koyama, 2018) works best. A recent paper similarly

found that PCGAN worked well for scRNA-seq data (Marouf et al., 2020). The origi-

nal PCGAN paper mentions that the projection discriminator works most effectively

when the conditional distribution p(C|X) is unimodal. One theoretical reason why

PCGAN may be well-suited for MichiGAN is that the posterior multivariate Gaussian

distributions of latent variables from VAEs are, in fact, unimodal.
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In implementing the PCGAN, we do not use the conditional batch normalization

or spectral normalization mentioned in Miyato and Koyama (2018), but instead use

standard batch normalization and Wasserstein GAN with gradient penalty. Thus we

refer to this approach as PCWGAN-GP.

2.2.5 MichiGAN: Combining the Strengths of VAEs and GANs

As VAEs achieve better disentanglement performance, but GANs achieve bet-

ter generation performance, we sought to develop an approach that combines the

strengths of both techniques. Several previous approaches have combined variational

and adversarial techniques (Larsen et al., 2016; Pu et al., 2017; Mescheder et al.,

2017). However, when we tested these approaches on single-cell data, we found that

attempts to jointly perform variational and adversarial training compromised both

training stability and generation performance. We also investigated the InfoGAN and

semi-supervised InfoGAN with details in Supplementary Materials Section 2.5.3, but

found that the disentanglement performance was still significantly worse than that of

the VAE approaches as shown in Supplementary Figure 2.11.

We thus developed a different approach: We first train a VAE to learn a disen-

tangled representation. Then we use the VAE encoder’s latent representation z for

each cell x as a given code and train a conditional GAN using the (z,x) pairs. After

training, we can generate high-quality samples from the VAE’s disentangled repre-

sentation. Importantly, the training is no less stable than training VAE and GAN

separately, and the GAN generation quality is not compromised by a regulariza-

tion term encouraging disentanglement. In addition, any kind of representation–from

non-linear methods like VAEs or linear methods like PCA–can be incorporated in

our approach. Wanting to follow the convention that the names of many generative

adversarial networks end with “GAN”, but unable to devise a compelling acronym,

we named our approach MichiGAN after our institution. Algorithm 1 summarizes
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the MichiGAN framework:

Algorithm 1: MichiGAN

Input: scRNA-seq data X.

1. Obtain disentangled representations ZX from an approach such as PCA,

VAE or β-TCVAE.

2. Utilize the representations ZX as codes.

3. Train a conditional GAN (Miyato and Koyama, 2018) using the codes.

Result: a generator network that produces high-quality samples from a

disentangled latent representation.

The MichiGAN architecture is also shown in Figure 2.1. We find that MichiGAN

effectively achieves our goal of sampling from a disentangled representation without

compromising generation quality (see results below). Although our approach is con-

ceptually simple, there are several underlying reasons why it performs so well, and

recognizing these led us to pursue this approach. First, training a conditional GAN

maximizes mutual information between the condition variable and the generated data.

This is a similar intuition as the InfoGAN but, unlike InfoGAN, MichiGAN does not

need to learn its own codes, and thus the discriminator can focus exclusively on en-

forcing the relationship between code and data. A nearly optimal discriminator is

crucial for maximizing this mutual information, but the Wasserstein loss also has

this requirement, and we meet it by training the discriminator five times for every

generator update. Second, the adversarial loss allows the GAN generator to cap-

ture complex, multi-modal distributional structure that cannot be modeled by the

factorized Gaussian distribution of the VAE decoder. This is particularly helpful if

multiple distinct types of cells map to a similar latent code, in which case the uni-

modal Gaussian distribution of the VAE decoder will generate the average of these cell

types. In contrast, even though the GAN generates from the same latent representa-

tion as the VAE, the GAN can fit complex, multimodal distributions by minimizing

the Wasserstein distance between generated and true data distributions. Addition-
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ally, a data-dependent code (the posterior of the VAE encoder) allows the GAN to

generate from a flexible latent space that reflects the data distribution, rather than

an arbitrary distribution such as the commonly used standard normal. We believe

this inflexibility contributes significantly to the relatively poor disentanglement per-

formance of InfoGAN. For example, InfoGAN is highly sensitive to the number and

distribution chosen for the latent codes; if classes are imbalanced in the real data but

the prior has balanced classes, it cannot learn a categorical variable that reflects the

true proportions.

Based on the results from our disentanglement comparison (see below), we chose to

use the β-TCVAE to learn the latent representation for MichiGAN. We then use either

the posterior means or the random samples from the posterior as the condition for

the GANs; both choices have been utilized to evaluate disentanglement performance

in previous studies (Higgins et al., 2017; Kim and Mnih, 2018; Chen et al., 2018).

The last step of MichiGAN involves training a conditional GAN. We found that

a conditional Wasserstein GAN with projection discriminator (Miyato and Koyama,

2018) and gradient penalty (Gulrajani et al., 2017) is most effective at enforcing the

condition. We also assessed semi-supervised InfoGAN (Spurr et al., 2017) and a con-

ditional GAN based on simple concatenation, but found that these were less effective

at enforcing the relationship between code and generated data (Supplementary Figure

2.14) and less stable during training.

2.2.6 Latent Space Vector Arithmetic

MichiGAN’s ability to sample from a disentangled representation allows predicting

unseen combinations of latent variables using latent space arithmetic. We perform la-

tent space arithmetic as in Lotfollahi et al. (2019) to predict the single-cell gene expres-

sion of unseen cell states. Specifically, suppose we have m cell types C1, . . . , Cm and n

perturbation D1, . . . , Dn. Denote Z(Ci, Dj) as the latent value corresponding to the
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expression data with combination (Ci, Dj) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. If we want

to predict the unobserved expression profile for the combination (Ci′ , Dj′), we can cal-

culate the average latent difference between cell type Ci′ and another cell type Ck in

the set of observable treatments Ω that ∆Ci′ ,Ck
=

∫
Ω
{Z(Ci′ , Ds) − Z(Ck, Ds)}dP (s)

and then use the latent space Z(Ck, Dj′) of observed combination (Ck, Dj′) to predict

Ẑ(Ci′ , Dj′) = Z(Ck, Dj′) + ∆Ci′ ,Ck
.

The predicted Ẑ(Ci′ , Dj′) is further used to generate predicted data of the unseen

combination. The predicted latent space assumes the average latent difference across

observed treatments is equal to the latent difference of the unobserved treatment,

which may not hold if there is a strong cell type effect for the perturbation.

2.2.7 Latent Space Entropy

We developed a novel metric for assessing the accuracy of latent space arithmetic

for a particular held-out cell type/perturbation combination. For a subset of the data

X ∼ g(X) and the latent space Z ∼ τ(Z), we define the latent space entropy as:

H {τ(Z), g(X)} = −Eτ(Z)

[
logEg(X) {qϕ(Z | X) | Z}

]
.

Intuitively, H quantifies the concentration of Z with respect to X. We can then com-

pare the entropy of the latent embeddings for the held-out data and the latent values

predicted by latent space arithmetic by calculating ∆H = H{τFake(Z), g(X)} −

H{τReal(Z), g(X)}, where τFake is calculated by latent space arithmetic and τReal is

calculated using the encoder. The quantity ∆H then gives a measure of how ac-

curately latent space arithmetic predicts the latent values for the held-out data. If

∆H is positive, then the latent space prediction is less concentrated (and thus more

uncertain) than the encoding of the real data.
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2.2.8 Related Work

To our knowledge, no approach like MichiGAN has been published. Several pre-

vious approaches have combined variational and adversarial techniques, including

VAEGAN (Larsen et al., 2016), adversarial symmetric variational autoencoder (Pu

et al., 2017) and adversarial variational Bayes (Mescheder et al., 2017). InfoGAN

and semi-supervised InfoGAN are also conceptually related to MichiGAN, but we

found that none of these previous approaches produced good results on single-cell

data. Concurrent to our work, another group released a preprint with an approach

called ID-GAN, which also uses a pre-trained VAE to learn a disentangled represen-

tation (Lee et al., 2020). However, they use the reverse KL divergence framework to

enforce mutual information between the VAE representation and the generated data,

which we previously tested and found does work as well as a conditional GAN with

projection discriminator (Miyato and Koyama, 2018). Furthermore, ID-GAN uses

a convolutional architecture and classic GAN loss for image data, whereas we use a

multilayer perceptron architecture and Wasserstein loss for single-cell data.

2.3 Experiments

2.3.1 Variational Autoencoders Learn Disentangled Representations of

Single-Cell Data

Real single-cell datasets usually have unknown, unbalanced, and complex ground-

truth variables, and humans cannot readily distinguish single-cell expression profiles

by eye, making it difficult to assess disentanglement performance by either qualita-

tive or quantitative evaluations. Thus, we first performed simulation experiments to

generate balanced single-cell data with several data generating variables using the

Splatter R package (Zappia et al., 2017). All the datasets were processed using the

SCANPY software (Wolf et al., 2018). Details of the simulation can be found in Sup-
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plementary Materials Section 2.5.2. We measured the disentanglement performances

of different methods on the simulated single-cell data using several disentanglement

metrics and also provided qualitative evaluations on the learned representations using

the real datasets with details in Supplementary Materials Section 2.5.1.

We first estimated simulation parameters to match the Tabula Muris dataset (Con-

sortium et al., 2018). Then, we set the differential expression probability, factor loca-

tion, factor scale, and common biological coefficient of variation to be (0.5, 0.01, 0.5, 0.1).

We then used Splatter (Zappia et al., 2017) to simulate gene expression data of 10, 000

cells with four underlying ground-truth variables: batch, path, step, and library size.

Batch is a categorical variable that simulates linear differences among biological or

technical replicates. Step represents the degree of progression through a simulated

differentiation process, and path represents different branches of the differentiation

process. We simulated two batches, two paths, and 20 steps. The batch and path

variables have linear effects on the simulated expression data, while the step variable

can be related either linearly or non-linearly to the simulated gene expression values.

We tested the effects of this variable by separately simulating a purely linear and a

non-linear differentiation process. We also included library size, the total number of

expressed mRNAs per cell, as a ground-truth variable. A UMAP plot of the simu-

lated data shows that the four ground-truth variables each have complementary and

distinct effects on the resulting gene expression state (Figure 2.2a and Supplementary

Figure 2.8a).

We compared the disentanglement performance of three methods: probabilistic

principal component analysis (PCA) (Tipping and Bishop, 1999), β-VAE and β-

TCVAE. The probabilistic PCA method assumes a linear relationship between data

and representations, while VAE and β-TCVAE can learn non-linear representations.

Note that we use probabilistic PCA to allow calculation of mutual information (see

below). The β-TCVAE approach penalizes the total correlation of the latent represen-
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tation, directly minimizing the mutual information between latent dimensions, which

has been shown to significantly improve disentanglement performance on image data.

The details of choosing β values and implementation are provided in Supplementary

Materials Sections 2.5.6 and 2.5.7.

We used the three methods to learn a 10-dimensional latent representation of the

simulated data (Figure 2.2b and Supplementary Figure 2.8b). Some latent variables

learned by each method showed clear relationships with the ground-truth variables.

For example, the first latent variable Z1 from PCA seemed related to library size,

and Z3, Z4 and Z5 were related to batch, path and step, respectively. The VAE

representations similarly showed some relationships with the ground-truth variables.

Based on the UMAP plots, the latent variables from β-TCVAE appeared to show the

strongest and most clear relationships with the ground-truth variables.

To quantify the disentanglement performance of the three methods, we calculated

the Spearman correlation and normalized mutual information between each represen-

tation and a ground-truth variable (Figure 2.2c-d). Spearman correlation measures

the strength of monotonic relatedness between two random variables. The normalized

mutual information, on the other hand, is a more general and robust metric of statisti-

cal dependence. A disentangled representation should have a bar plot with only four

distinct bars in this case, indicating that each ground-truth variable was captured

by exactly one latent variable. PCA showed the best performance as measured by

Spearman correlation (Figure 2.2c), likely because the metric does not fully charac-

terize the complex statistical dependency between true and inferred latent variables

for the VAE methods, which learn more complex non-linear relationships. Based on

the normalized mutual information metric, both the PCA and VAE representations

achieved some degree of disentanglement, but neither approach fully disentangled

all ground-truth variables. Multiple PCA representations had measurable mutual

information with step and library size quartile, while multiple VAE representations

29



identified batch and path and none of the VAE representations identified step. In

contrast, exactly one β-TCVAE representation had significant mutual information

for each ground-truth variable. Also, β-TCVAE was the only method with a unique

representation for the non-linear step variable.

We also computed the Spearman correlation and normalized mutual information

for the simulated data with linear step (Supplementary Figure 2.8c-d). The results

for the simulated data with linear step were similar and β-TCVAE did the best at

identifying only one representation for each ground-truth variable.

We further calculated the mutual information gap (MIG) metric used in Chen

et al. (2018) and FactorVAE disentanglement metric (Kim and Mnih, 2018) to mea-

sure disentanglement. The MIG metric is defined as the average gap between the

mutual information of the two latent variables that are most related to each ground-

truth variable. If there is a single latent variable that has high mutual information

with each ground-truth variable, the MIG will be high. The FactorVAE metric is

based on the error rate of a linear classifier that identifies which ground-truth vari-

able differs based on data points using latent dimensions. In addition, we calculated a

Spearman correlation gap similar to MIG. We provide details in Supplementary Mate-

rials Section 2.5.4. Table 2.1 summarizes the correlation gap, FactorVAE metric and

MIG of the three models over five runs for the two simulated datasets. As expected

from the bar charts, the PCA representations have the largest Spearman correlation

gap and β-TCVAE has the largest MIG, showing the best disentanglement perfor-

mance for both simulated datasets. The FactorVAE metric also shows that β-TCVAE

has the best disentanglement performance. We also evaluated InfoWGAN-GP on the

simulated data in Supplementary Figure 2.11 and found that the representations

are entangled with the ground-truth variables for simulated datasets with linear and

non-linear step.

We also evaluated the disentanglement performance of the three methods with
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four latent dimensions (the same as the number of ground-truth variables), for the

simulated datasets in Supplementary Figures 2.15 and 2.16. The β-TCVAE rep-

resentations still most effectively disentangle the ground-truth variables. Table 2.2

summarizes the disentanglement metrics of the three methods with four latent di-

mensions. Although FactorVAE metric shows similar values for the three methods,

β-TCVAE consistently has much higher MIG than PCA and VAE.

In addition, we utilized the PROSSTT package (Papadopoulos et al., 2019) to sim-

ulate three single-cell datasets. PROSSTT simulates cells undergoing a continuous

process such as differentiation. As shown in Supplementary Figures 2.17a, 2.18a and

2.19a, the three PROSSTT-simulated datasets have 3, 4 or 5-way branching trajec-

tories, respectively. The three PROSSTT-simulated datasets also have a continuous

time variable. We use three ground-truth variables (branch, time and library size) to

calculate mutual information with the learned latent variables (Supplementary Fig-

ures 2.17b, 2.18b and 2.19b). PCA and VAE have multiple latent dimensions with

moderate mutual information with branch and time quartile, while β-TCVAE cap-

tures each of these quantities mostly in a single variable. We also summarized the

disentanglement metrics of the three methods on the PROSSTT-simulated datasets

in Table 2.3. β-TCVAE has the highest FactorVAE metric and MIG for each of the

three datasets.

In summary, our assessment indicates that β-TCVAE most accurately disentangles

the latent variables underlying single-cell data, consistent with its previously reported

superior disentanglement performance on image data (Chen et al., 2018).

2.3.2 GANs Generate More Realistic Single-Cell Expression Profiles than

VAEs

We next evaluated the data generating performance of several deep generative

models including VAE, β-TCVAE and Wasserstein GAN with gradient penalty (WGAN-
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Figure 2.1: Overview of the MichiGAN architecture. We first train a model, such as
β-TCVAE, to learn a disentangled representation of the real data. We
then use the resulting latent codes to train a conditional GAN with projec-
tion discriminator, so that the GAN generator becomes a more accurate
decoder. Because the VAE and GAN are trained separately, training is
just as stable as training each one individually, but the combined approach
inherits the strengths of each individual technique. After training, we can
generate high-quality samples from the disentangled representation using
the GAN generator.

Table 2.1: Disentanglement metrics for two splatter-simulated scRNA-seq datasets
with four ground-truth variables. The mean and standard deviation over
five runs are presented for each method. The dimensionality of the latent
space was 10 for all three approaches.

Spearman correlation gap ↑ FactorVAE metric ↑ MIG ↑
Linear step PCA 0.68 ± 0.00 0.35 ± 0.01 0.54 ± 0.00

VAE 0.3 ± 0.04 0.4 ± 0.02 0.48 ± 0.13
β-TCVAE 0.18 ± 0.05 0.48 ± 0.03 0.72 ± 0.02

Non-linear PCA 0.72 ± 0.00 0.35 ± 0.01 0.55 ± 0.00
step VAE 0.27 ± 0.07 0.41 ± 0.02 0.43 ± 0.08

β-TCVAE 0.16 ± 0.06 0.51 ± 0.04 0.66 ± 0.16

Table 2.2: Disentanglement metrics for two splatter-simulated scRNA-seq datasets
with four ground-truth variables. The dimensionality of the latent space
was four for all three approaches.

Spearman correlation gap ↑ FactorVAE metric ↑ MIG ↑
Linear step PCA 0.57 0.36 0.56

VAE 0.37 0.44 0.39
β-TCVAE 0.65 0.33 0.72

Non-linear PCA 0.60 0.36 0.58
step VAE 0.4 0.38 0.38

β-TCVAE 0.55 0.34 0.73
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Figure 2.2: Evaluating disentanglement performance on simulated data. a UMAP
plots of simulated data colored by batch, path, step and library size quar-
tile. b UMAP plots of data colored by the 10 latent variables learned by
PCA, VAE and β-TCVAE. c Bar plots of Spearman correlations between
10 latent variables and each of the four ground-truth variables for PCA,
VAE and β-TCVAE. d Bar plots of normalized mutual information be-
tween 10 representations and each of the four ground-truth variables for
PCA, VAE and β-TCVAE.
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GP), as well as traditional methods of PCA and Gaussian mixture models (GMM) on

the Tabula Muris dataset (Consortium et al., 2018). This dataset contains a compre-

hensive collection of single-cell gene expression profiles from nearly all mouse tissues,

and thus represents an appropriate dataset for evaluating data generation, analogous

to the ImageNet dataset in computer vision. We also measured data generation per-

formance on a subset of the Tabula Muris containing only cells from the mouse heart.

We used two metrics to assess data generation performance: random forest error and

inception score. Random forest error was introduced in the cscGAN paper (Marouf

et al., 2020), and quantifies how difficult it is for a random forest classifier to distin-

guish generated cells from real cells. A higher random forest error indicates that the

generated samples are more realistic. We also computed inception score (Barratt and

Sharma, 2018), a metric commonly used for quantifying generation performance on

image data. Intuitively, to achieve a high inception score, a generative model must

generate every class in the training dataset (analogous to recall) and every generated

example must be recognizable as belonging to a particular class (analogous to preci-

sion). Details of these generation metrics can be found in Supplementary Materials

Section 2.5.5.

We show the random forest errors over five runs of VAE, β-TCVAE and WGAN-

GP during training for the Tabula Muris heart subset and the whole Tabula Muris

in Figure 2.3a-b. We also evaluate simpler generative models, including PCA and

GMM. WGAN-GP achieves the best generation performance, as measured by both

metrics, on both the subset and full dataset. The deep generative models significantly

outperform PCA and GMM. VAE achieves second-best generating performance and,

as expected with an endeavour to pursue more disentangled representation, the qual-

ity of β-TCVAE generation is the worst of the three approaches. Figure 2.3c-d show

the inception scores over five runs for the two datasets; this metric reveals the same

trend as with random forest errors, indicating that WGAN-GP has the best genera-
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tion performance and β-TCVAE generates the least realistic data. Additionally, the

generation performance of the GAN is still significantly higher than that of the VAE

even for the smaller Tabula Muris heart dataset. These results match well with previ-

ous results from the image literature, indicating that GANs generate better samples

than VAEs, and VAE modifications to encourage disentanglement come at the cost

of sample quality.

2.3.3 MichiGAN Samples from Disentangled Representations without

Sacrificing Generation Performance

We evaluated the MichiGAN algorithm on the simulated single-cell data with the

trained β-TCVAE models. Figure 2.4a shows the UMAP plots of real data colored

by β-TCVAE latent representations and generated color-coded data using WGAN-

GP and MichiGAN on the simulated data with non-linear step. The WGAN-GP

representations are very entangled and none of the representations shows an identifi-

able coloring pattern. In contrast, the UMAP plots have consistent coloring patterns

between the β-TCVAE and MichiGAN representations. Thus, the generator of Michi-

GAN preserves the relationship between latent code and generated data, effectively

sampling from the disentangled representation learned by the β-TCVAE. Because

there is no inference network for the generated data of either WGAN-GP or Michi-

GAN, we are unable to measure the mutual information for the generators. Therefore,

we used Spearman correlation as an indicator of whether MichiGAN retains the re-

lationship between disentangled latent representation and generated data. Figure

2.4b also shows the bar plots of Spearman correlations between representations and

variables for the three methods. We used the correlations between each representa-

tion and ground-truth variables for β-TCVAE, WGAN-GP and MichiGAN. For GAN

models, we trained a k-nearest neighbor regressor (k = 3) for each variable based on

the real data and predicted the variables for the generated data. The WGAN-GP rep-
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Table 2.3: Disentanglement metrics for three PROSSTT-simulated scRNA-seq
datasets with three ground-truth variables

FactorVAE metric ↑ MIG ↑
3 trajectories PCA 0.54 0.10

VAE 0.58 0.08
β-TCVAE 0.64 0.27

4 trajectories PCA 0.59 0.12
VAE 0.61 0.12
β-TCVAE 0.72 0.15

5 trajectories PCA 0.59 0.06
VAE 0.53 0.06
β-TCVAE 0.62 0.26

Figure 2.3: Generation performance of VAE, β-TCVAE, WGAN-GP, PCA and GMM
on the Tabula Muris heart data and the whole Tabula Muris data. a
Random forest error for the five methods on the Tabula Muris heart data
during training. b Random forest error for the five methods on the whole
Tabula Muris data during training. c Inception score for the five methods
on the Tabula Muris heart data during training. d Inception score for the
five methods on the whole Tabula Muris data during training. Error bars
indicate standard deviation across five runs. For clarity, the error bars for
PCA and GMM are omitted because of their small and large variability.
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resentations do not show large correlation with any inferred ground-truth variable.

In contrast, the representations for β-TCVAE and MichiGAN show nearly identi-

cal correlations to the true variables in the real data and predicted variables in the

generated data, respectively.

We also trained MichiGAN using PCA to obtain the latent code, instead of β-

TCVAE. Supplementary Figure 2.10a-b show the UMAP plots of real data colored by

the PCA representations and generated data colored by the MichiGAN-PCA repre-

sentations on the two simulated datasets. In addition, Supplementary Figure 2.10c-d

show nearly identical Spearman correlation bar plots between PCA and MichiGAN.

MichiGAN trained with principal components preserves the relationship between the

latent representations and real data, underscoring the generalizability of our approach.

We present the UMAP plots colored by the representations as well as bar plots

of correlations for the simulated data with linear step in Supplementary Figure 2.9a-

b. The results for the simulated data with linear step also indicate that MichiGAN

restores the disentanglement performance of β-TCVAE, while the WGAN-GP rep-

resentations are entangled. We further summarize the correlation gaps for the three

methods on two simulated datasets in Table 2.4. For each simulated dataset, the

MichiGAN and β-TCVAE have very similar correlation gaps and WGAN-GP has a

very small correlation gap, as expected.

We evaluated MichiGAN on the whole Tabula Muris dataset (Figure 2.4c). Michi-

GAN greatly improved the data generation performance based using the disentangled

representations of β-TCVAE. The random forest error of MichiGAN was larger than

VAE and nearly as good as the WGAN-GP, while still generating samples from a

disentangled latent space.

Additionally, we applied PCA, GMM, VAE, β-TCVAE, WGAN-GP and Michi-

GAN on the pancreas endocrinogenesis dataset (Bastidas-Ponce et al., 2019). We

obtained the cells’ latent time and cell cycle scores for G2M and S phases from Bergen
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Figure 2.4: Disentanglement and generation performance of WGAN-GP, β-TCVAE
and MichiGAN. a UMAP plots of real data colored by the 10 representa-
tions of β-TCVAE and generated data colored by the 10 representations
of WGAN-GP and MichiGAN on the simulated data with non-linear step.
The β-TCVAE panel is reproduced from Figure 2.2b for clarity. b Bar
plots of Spearman correlations between 10 representations and each of
the four ground-truth or inferred variables for WGAN-GP, β-TCVAE and
MichiGAN on the simulated data with non-linear step. The β-TCVAE
panel is reproduced from Figure 2.2c for clarity. c Random forest error of
PCA, GMM, VAE, β-TCVAE, WGAN-GP and MichiGAN on the whole
Tabula Muris data during training. d Inception score of PCA, GMM,
VAE, β-TCVAE, WGAN-GP and MichiGAN on the whole Tabula Muris
data during training. Error bars indicate standard deviation across five
runs. For clarity, the error bars for MichiGAN are shown only for the last
100 epochs because the convergence speed in earlier epochs is variable,
and the error bars for PCA and GMM are omitted because of their small
and large variability.
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Table 2.4: Spearman correlation gap for the methods of WGAN-GP, InfoWGAN-
GP, PCA, MichiGAN-PCA, VAE, β-TCVAE and MichiGAN on the two
splatter-simulated scRNA-seq datasets. The mean and standard deviation
are presented for each method over five runs.

Model Linear step Non-linear step
WGAN-GP 0.07 ± 0.02 0.10 ± 0.06

InfoWGAN-GP 0.05 ± 0.05 0.04 ± 0.02
PCA 0.68 ± 0.00 0.72 ± 0.00

MichiGAN-PCA 0.65 ± 0.01 0.68 ± 0.00
VAE 0.3 ± 0.04 0.27 ± 0.07

β-TCVAE 0.18 ± 0.05 0.16 ± 0.06
MichiGAN 0.18 ± 0.04 0.15 ± 0.05

et al. (2020). Supplementary Figure 2.20a shows the UMAP plots of data colored by

latent time and the difference between G2M and S scores. The β-TCVAE method

gives qualitatively more disentangled representations (Supplementary Figure 2.20b),

and gives much better disentanglement metrics (Supplementary Figure 2.20c). In ad-

dition, Supplementary Figure 2.20c also shows that MichiGAN significantly improves

the data generation performance of β-TCVAE.

2.3.4 MichiGAN Enables Semantically Meaningful Latent Traversals

Disentangled representations of images are often evaluated qualitatively by per-

forming latent traversals, in which a single latent variable is changed by holding the

others fixed. Looking at the resulting changes in the generated images to see whether

only a single semantic attribute changes provides a way of visually judging the quality

of disentanglement. We wanted to perform a similar assessment of MichiGAN, but

single-cell gene expression values are not individually and visually interpretable in the

same way that images are. Thus, we devised a way of using UMAP plots to visualize

latent traversals on single-cell data.

We performed latent traversals using both the Tabula Muris dataset and data

from the recently published sci-Plex protocol (Srivatsan et al., 2020). After training
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on the Tabula Muris dataset (Supplementary Figure 2.12a), we chose a starting cell

type, cardiac fibroblasts (Supplementary Figure 2.12b). We then varied the value of

each latent variable from low to high, keeping the values of the other variables fixed

to the latent embedding of a particular cell. For the sci-Plex dataset, which contains

scRNA-seq data from cells of three types (A549, K562, MCF7; Supplementary Figure

2.12c) treated with one of 188 drugs, we subsampled the data to include one drug

treatment from each of 18 pathways by selecting the drug with the largest number

of cells (Supplementary Figure 2.12d). This gives one treatment for each pathway;

the numbers of cells for each combination are shown in Supplementary Table 2.5. We

then performed latent traversals on cells with cell type MCF7 and treatment S7259

(Supplementary Figure 2.12e).

To visualize the traversals, we plotted each of the generated cells on a UMAP

plot containing all of the real cells and colored each generated cell by the value

of the latent variable used to generate it. Figure 2.5a-b show how traversing the

latent variables concentrates the generated values on each part of the UMAP plots

for Tabula Muris data using the first 10 dimensions of 128-dimensional WGAN-GP

and MichiGAN, respectively. Figure 2.5c-d are the latent-traversal plots for the sci-

Plex data using WGAN-GP and MichiGAN. As shown in Figure 2.5b, all but three

of the latent variables learned by the β-TCVAE behave like noise when we traverse

them starting from the fibroblast cells, a property previously noted in assessments of

disentangled latent variables learned by VAEs (Kim and Mnih, 2018). The remaining

dimensions, Z3, Z6 and Z10, show semantically meaningful latent traversals. Latent

variable Z3 shows high values for mesenchymal stem cells and fibroblasts, with a

gradual transition to differentiated epithelial cell types from bladder, intestine and

pancreas at lower values of Z3. This is intriguing, because the mesenchymal-epithelial

transition is a key biological process in normal development, wound healing and cell

reprogramming (Pei et al., 2019). Latent variable Z6 generates mesenchymal and
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endothelial cells at low values, and mammary epithelial and cardiac muscle cells at

high values. Latent variable Z10 is clearly related to immune function, generating

immune cells at low and medium values and traversing from hematopoietic stem and

progenitor cells to monocytes, T cells and B cells. In contrast, latent traversals in the

latent space of 128-dimensional WGAN-GP (Figure 2.5a) do not show semantically

meaningful changes along each dimension.

Figure 2.5d also shows that MichiGAN’s latent traversals gives meaningful changes

on the sci-Plex data. Latent variable Z8 has lower values on MCF7 cells and gradually

transitions to higher values on K562 cells. In addition, latent variable Z9 also shows

an A549-MCF7 transition with lower values on the A549 cells. The latent traversals of

the 128-dimensional WGAN-GP, however, do not provide interpretable changes across

the UMAP plot along each dimension. We also provide the latent traversals using

10-dimensional WGAN-GP for the two datasets in Supplementary Figure 2.13a-b and

find that the latent traversals are still not semantically meaningful.

2.3.5 MichiGAN Predicts Single-Cell Gene Expression Data under Un-

seen Drug Treatments

One of the most exciting applications of disentangled representations is predicting

high-dimensional data from unseen combinations of latent variables. We next inves-

tigated whether MichiGAN can predict single-cell gene expression response to drug

treatment for unseen combinations of cell type and drug.

We trained MichiGAN on data from the recently published sci-Plex protocol. The

dataset contains scRNA-seq data from cells of three types (A549, K562, MCF7), each

treated with one of 188 drugs. The drug is known for each scRNA-seq profile. We

subsampled the data to include one drug treatment from each of 18 pathways by

selecting the drug with the largest number of cells (Figure 2.6a). We then have one

treatment for each pathway; the numbers of cells for each combination are shown in
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Figure 2.5: Latent traversals of WGAN-GP and MichiGAN on Tabula Muris and sci-
Plex datasets. a UMAP plot of latent traversals of the 10 representations
of latent values that generate data closest to fibroblast cells in the heart
within the Tabula Muris data using WGAN-GP with 128 dimensions. b
UMAP plot of latent traversals of the 10 representations of latent val-
ues of fibroblast cells in the heart within the Tabula Muris data using
MichiGAN. c UMAP plot of latent traversals of the 10 representations of
latent values that generate data closest to MCF7-S7259 cells within the
sci-Plex data using WGAN-GP with 128 dimensions. d UMAP plot of
latent traversals of the 10 representations of latent values of MCF7-S7259
cells within the sci-Plex data using MichiGAN.
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Supplementary Table 2.5. We also held out three drug/cell type combinations (A549-

S1628, K562-S1096 and MCF7-S7259) to test MichiGAN’s out-of-sample prediction

ability.

We predict single-cell gene expression for each drug/cell type combination in a

two-step process. First, we estimate the mean latent difference between the target

cell type and another control cell type for other treatments using either posterior

means or posterior samples from the β-TCVAE encoder. We then add the average

latent difference to the latent values with the same treatment and the control cell type.

This latent space vector arithmetic assumes the mean cell type latent differences are

homogeneous across different treatments. Note that this assumption may not hold if

there is a strong interaction effect between cell type and drug treatment.

Because there are a total of three cell types, we have a total of six predictions for

the three held-out drug/cell type combinations. Figure 2.6b shows UMAP plots for

these six predictions. For all six predictions, the predicted values are closer to the

true drug treated cells on the UMAP plot than the control cells used to calculate the

latent vector. However, the predicted cells do not overlap with the treated cells for

the combinations A549-S1628 and K562-S1096, while the two predictions for MCF7-

S7259 appear to be more accurate. For both β-TCVAE and MichiGAN, we measure

their random forest errors between the real and predicted cells for each combination.

The random forest scatter plots for sampled representations are shown in Figure 2.6c.

MichiGAN, with sampled representations, has significantly better random forest error

than β-TCVAE (p < 10−4, one-sided Wilcoxon test) and most of the points are

above the diagonal line. We also show the random forest scatter plots for mean

representations in Figure 2.6c, which does not show significantly larger random forest

errors compared to β-TCVAE (p > 0.05, one-sided Wilcoxon test) and might be due to

the remaining correlations among mean representations of β-TCVAE (Locatello et al.,

2019). Thus, MichiGAN, with sampled representations, is able to more accurately
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make predictions from latent space arithmetic than β-TCVAE. However, some of the

six predictions for the missing combinations show low random forest errors from both

methods, and some of the predictions from MichiGAN are only marginally better

than those of β-TCVAE.

2.3.6 Accuracy of Latent Space Arithmetic Influences MichiGAN Pre-

diction Accuracy

We next examined factors influencing the accuracy of MichiGAN predictions from

latent space arithmetic. We suspected that the prediction accuracy might depend on

the accuracy of the latent coordinates calculated by latent space arithmetic, which

could vary depending, for example, on whether the drug exerts a consistent effect

across cell types.

The quantity ∆H measures how accurately latent space arithmetic predicts the

latent values for the held-out data. Thus, we expect that MichiGAN should be able

to more accurately predict drug/cell type combinations with a small ∆H.

As Figure 2.7a shows, ∆H is significantly correlated with the difference in random

forest error between MichiGAN and β-TCVAE, when sampling from either the pos-

terior distribution of the latent representations or the posterior means. This supports

our hypothesis that accuracy of the latent space arithmetic influences MichiGAN

performance. To further test this, we selected the three drug/cell type combinations

with the lowest overall ∆H values, and re-trained the network using all combinations

except these three. Figure 2.7b shows the predicted, real and control cells for the six

predictions of the three new missing combinations based on MichiGAN using sam-

pled representations. The predicted cells (green) overlap most parts of the real cells

(blue) for all six predictions. As expected, MichiGAN predicted each of these low ∆H

held-out combinations significantly more accurately than β-TCVAE (Figure 2.7c).

We also compared the performance of VAE and MichiGAN trained with VAE
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Figure 2.6: Predicting single-cell gene expression effects of unseen drugs using Michi-
GAN. a UMAP plots of sci-Plex dataset colored by cell type (left) and
treatment (right). b UMAP plots of the predicted (green), real (blue) and
control (red) cells for six predictions of three missing cell type/drug com-
binations (A549-S1628, K562-S1096 and MCF7-S7259). c Random forest
errors between MichiGAN and β-TCVAE for all combinations. Michi-
GAN was trained using mean representations (left) or representations
sampled from the posterior distribution (right).
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Figure 2.7: MichiGAN predicts unseen or observed combinations in the large screen
sci-Plex data. a Scatter plots of random forest errors’ difference between
MichiGAN and β-TCVAE versus delta entropy for MichiGAN with mean
representations (left) and sampled representations (right) on the large
screen sci-Plex data without three combinations of A549-S1628, K562-
S1096 and MCF7-S7259. b UMAP plots of the predicted (green), real
(blue) and control (red) cells for six predictions of the three missing com-
binations of MCF7-S1262, MCF7-S1259 and MCF7-S7207. c Random
forest errors between MichiGAN and β-TCVAE for MichiGAN with mean
representations (left) and sampled representations (right) after selecting
held-out combinations with low ∆H.
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on the sci-Plex data after holding out the selected drug/cell type combinations with

lowest overall ∆H values in Supplementary Figure 2.22. MichiGAN trained with

VAE gives accurate prediction of the unseen combinations (Supplementary Figure

2.22a), and also has significantly higher random forest error than that of VAE to

predict different drug/cell type combinations using the latent space vector arithmetic

algorithm (Supplementary Figure 2.22b).

2.4 Discussion

Our work provides fundamental evaluations of disentanglement performances of

deep generative models on scRNA-seq data. We show that combining GANs and

VAEs can provide strong performance in terms of both data generation and disentan-

glement. MichiGAN provides an alternative to the current disentanglement learning

literature, which focuses on learning disentangled representations through improved

VAE-based or GAN-based methods, but rarely by combining them. Additionally,

as the state of the art in disentangled representation advances, we can immediately

incorporate new approaches in the MichiGAN framework, because the training of

representation and GAN are completely separate.

We envision several exciting future directions. First, it would be interesting to

investigate the representations learned by β-VAE or β-TCVAE across a range of

biological contexts. Second, incorporating additional state-of-the-art GAN training

techniques may further improve data generation quality. Additionally, there are many

other biological settings in which predicting unseen combinations of latent variables

may be helpful, such as cross-species analysis or disease state prediction.
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2.5 Supplementary Materials

2.5.1 Real scRNA-seq Datasets

The Tabula Muris dataset is a compendium of single-cell transcriptomic data

from the model organism Mus musculus (Consortium et al., 2018). We processed

the Tabula Muris data using SCANPY (Wolf et al., 2018) and the dataset contains

41, 965 cells and 4062 genes from 64 cell types. The sci-Plex dataset has three cell

types treated with 188 molecules targeting 22 pathways (Srivatsan et al., 2020). We

selected the 18 common pathways among the three cell types and chose the drug

treatment from each pathway with the largest number of cells. We also use SCANPY

to process the data and then have 64, 050 cells and 4295 genes. The pancreatic

endocrinogenesis contains 3696 cells and 27, 998 genes (Bastidas-Ponce et al., 2019).

We filtered and normalized the pancreas data to 2000 genes using the scVelo package

(Bergen et al., 2020). We also obtained the latent time and G2M and S cell cycle

scores for each cell.

2.5.2 Simulated scRNA-seq Datasets

To simulate data with Splatter (Zappia et al., 2017), we first estimated simulation

parameters to match the Tabula Muris data. We set the differential expression proba-

bility, factor location, factor scale and common biological coefficient of variation to be

(0.5, 0.01, 0.5, 0.1). We then used Splatter to simulate gene expression data of 10, 000

cells with four underlying ground-truth variables: batch, path, step and library size.

Using the PROSSTT package, we simulated 2000 genes across 10, 500 (three tra-

jectories), 10, 800 (four trajectories) and 11, 000 cells (five trajectories). We followed

the steps and parameter settings in the PROSSTT tutorial (https://github.com/

soedinglab/prosstt/blob/master/examples/many_branches_cells.ipynb), vary-

ing only the numbers of branches, cells and genes.
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2.5.3 InfoGAN and ssInfoGAN

The Information Maximizing Generative Adversarial Networks (InfoGAN) frame-

work extends the regular GAN to encourage disentanglement (Chen et al., 2016).

The InfoGAN decomposes the latent variables into latent code C and noise Z. To

encourage disentanglement, InfoGAN maximizes the mutual information between the

latent code and the generated data. To estimate mutual information, InfoGAN relies

on an additional network Q that takes generated data as input and predicts the code

Q(C | X) that generated the data. Q(C | X) is very similar to an encoder in a VAE

and estimates a posterior distribution in the same way as the prior distribution of

the code p(C). InfoGAN then maximizes mutual information between the code and

generated data with the following loss functions for the discriminator and generator:

min
G,Q

max
D

L(D,G,Q) = min
G,Q

max
D

{
LGAN(G,D) − λMILMI(G,Q)

}
,

where LMI(G,Q) = EC∼p(C),X∼G(C,Z){logQ(C | X)}+H(C) is a lower bound for the

mutual information between C and X and H(C) is the entropy of the codes. We im-

plemented InfoGAN with the Wasserstein distance, which we refer to as InfoWGAN-

GP. We chose a factorized normal distribution with unit variance for Q(C | X) (the

unit variance stabilizes InfoGAN training (Chen et al., 2016; Lin et al., 2019)).

InfoGAN architecture can also be extended to semi-supervised InfoGAN (ssInfo-

GAN), if labels are available for some or all of the data points (Spurr et al., 2017).

The ssInfoGAN maximizes mutual information not only between the generated data

and the codes, but also between the real data and corresponding labels. This guides

the learned codes to reflect the label information.
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2.5.4 Disentanglement Metrics

2.5.4.1 Mutual Information Gap

Following Chen et al. (2018), we measure the disentanglement performance of

the representations using MIG. Denote p(Vk) and p(X | Vk) as the probability of

a ground-truth variable Vk and the conditional probability of the data X under

Vk. Given qϕ(Zj, Vk) =
∫
X
p(Vk)p(X | Vk)qϕ(Zj | X)dX, the mutual information

between a latent variable Zj and a ground-truth variable Vk is defined as

I(Zj, Vk) = Eqϕ(Zj ,Vk)

{
log

∫
X∈XVk

qϕ(Zj | X)p(X | Vk)dX
}

+ H(Zj),

where XVk
is the support of p(X | Vk) and H(Zj) is the entropy of Zj. Due to the dif-

ferent variabilities of the ground-truth variables, the normalized mutual information

is better when used with a normalization term of H(Vk), the entropy of Vk. The pos-

terior distribution qϕ(Zj | X) is obtained from the encoder (for VAEs) or the derived

posterior distribution for probabilistic PCA (Bishop, 2006). With K ground-truth

variables {V1, . . . , Vk}, the mutual information gap (MIG) is further defined as

MIG =
1

K

K∑
k=1

1

H(Vk)

{
I(Zj(k) , Vk) − max

j ̸=j(k)
I(Zj, Vk)

}
,

where j(k) = arg maxj I(Zj, Vk).

The MIG metric is the average difference between the largest and the second

largest normalized mutual information value across all ground-truth variables. Intu-

itively, this indicates how much each ground-truth variable is captured by a single

latent variable. As described in Chen et al. (2018), the MIG metric has the axis-

alignment property and is unbiased for all hyperparameter settings.
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2.5.4.2 FactorVAE Metric

For completeness, we also calculated the disentanglement metric introduced in

the FactorVAE paper (Kim and Mnih, 2018). In each of the multiple repetitions,

we first randomly chose a ground-truth variable and then generate data, keeping this

variable fixed and other variables at random. We normalized each dimension by the

empirical standard deviation over the whole data and chose the dimension with the

lowest empirical variance. The dimension with the lowest empirical variance and

the fixed ground-truth variable are then used as (j, k) pairs to train a majority vote

classifier. The FactorVAE disentanglement metric is defined as the accuracy of the

resulting classifier.

2.5.4.3 Spearman Correlation

Inspired by the MIG metric, we also utilized the Spearman correlation to quan-

tify disentanglement performance. Although the Spearman correlation is a more

restricted metric of statistical dependence than mutual information, it has the ad-

vantage of being computed without a distributional estimate of a latent represen-

tation, which is not available for GAN models. Given the Spearman correlation

S = cor(Zj, Vk) between inferred representation Zj and ground-truth variable Vk, we

define the corresponding correlation gap as |cor(Zj(k) , Vk)| − maxj ̸=j(k) |cor(Zj, Vk)|,

where j(k) = arg maxj |cor(Zj, Vk)|.

2.5.5 Generation Metrics

2.5.5.1 Random Forest Error

We follow the random forest error metric introduced in the cscGAN paper (Marouf

et al., 2020) to quantify how difficult it is for a random forest classifier to distinguish

generated cells from real cells. A higher random forest error indicates that the gen-
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erated samples are more realistic. We randomly sample 3000 cells and generate 3000

additional cells. Then we train a random forest classifier on the 50 principal com-

ponents of the 6000 cells to predict whether each cell is real or fake. We train with

5-fold cross validation and report the average error across the 5 folds.

2.5.5.2 Inception Score

We also define an inception score metric similar to the one widely used in evalu-

ating performance on image data (Barratt and Sharma, 2018). Intuitively, to achieve

a high inception score, a generative model must generate every class in the training

dataset (analogous to recall) and every generated example must be recognizable as

belonging to a particular class (analogous to precision). We train a random forest

classifier on 3000 randomly-sampled real cells to predict their cell types. Based on the

trained cell-type classifier, we are able to predict the probabilities of being different

cell types for each generated cell. We then input the predicted probabilities to the

calculations of the inception score.

2.5.6 Tuning β values in β-TCVAE

The β value is a hyperparameter in the β-TCVAE model that controls the relative

importance of penalizing the total correlation of the learned representation. Because

β is a hyperparameter in an unsupervised learning approach (no ground truth is avail-

able, in general), there is no direct way to pick a single best value for β. This is not

a problem unique to the β-TCVAE, but is a general challenge with any unsupervised

learning approach. Our best recommendation is to choose a value in the range of

10-50 and use whatever biological prior knowledge is available, such as annotations

of cell time point, condition or cell type, to qualitatively assess the disentanglement

of representations for different values. One of the best things one can hope for with

unsupervised learning algorithms is that the results are robust to different hyperpa-
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rameter settings. To show that this is true in this case, we measured disentanglement

performance of VAE and β-TCVAE for β = 10 and 50 on the simulated datasets as

shown in Supplementary Figure 2.21. We found that β-TCVAE with β = 10 or 50

consistently gives a higher MIG than VAE. In short, even if you do not choose the

perfect value of β, it is still better to use β-TCVAE than VAE.

2.5.7 Implementation

The VAE-based methods use multilayer perceptron (MLP) units and have two

fully-connected (FC) hidden layers with 512 and 256 neurons, followed by separate

parameters for mean and variance of the latent representation. The first two hidden

layers in the decoder have 256 and 512 neurons, while the last layer gives mean gene

expression and has the same number of neurons as the number of genes. Each hidden

layer utilizes batch normalization, activated by Rectified Linear Unit (ReLU) or Leaky

ReLU. Each hidden layer employs dropout regularization, with a dropout probability

of 0.2. We also experimented with three hidden layers for the VAE encoders, but

found that the training became unstable. This is consistent with a previous report

(Hu and Greene, 2019) that found that most VAEs for biological data have only

two hidden layers. The GAN-based methods also use MLP for both generator and

discriminator. There are three FC hidden layers with 256, 512 and 1024 neurons as

well as three hidden layers with 1024, 512 and 10 neurons from data to output. The

hidden layers of GANs also have Batch Normalization and ReLU or Leaky ReLU

activation. The generator uses dropout regularization with dropout probability of 0.2

for each hidden layer. The VAE-based methods are trained with Adam optimization,

while the GAN-based methods are trained with Adam and the gradient prediction

method (Yadav et al., 2017). All the hyperparameters of each method on different

datasets are tuned for the optimal results.

We trained all models for 1000 epochs and used 10 latent variables. We used
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β = 10 for β-TCVAE on all of the splatter-simulated scRNA-seq datasets, except

that we used β = 5 for β-TCVAE with four latent dimensions on the simulated data

with linear step. We used β = 50 for β-TCVAE on the PROSSTT-simulated datasets

and pancreas dataset. For the two real scRNA-seq datasets, we used β = 100. We

used 118-dimensional Gaussian noise for MichiGAN. All models were implemented in

TensorFlow.

2.5.8 Supplementary Tables and Figures

Table 2.5: Number of cells for each the cell type/drug combinations selected from the
sci-Plex dataset.

Cell Type
Pathway Treatment A549 K562 MCF7

Protein Tyrosine Kinase S1010 1014 800 1548
Angiogenesis S1021 791 506 1626

PI3K/Akt/mTOR S1044 700 800 1530
Others S1045 882 787 1849

Cytoskeletal Signaling S1090 1934 643 1928
Epigenetics S1096 879 450 1688
Apoptosis S1130 216 694 79

Neuronal Signaling S1168 1009 1006 1984
Stem Cells & Wnt S1180 934 934 1854

Endocrinology & Hormones S1191 957 982 1945
DNA Damage S1192 808 803 1392

GPCR & G Protein S1259 1061 1083 1682
Proteases S1261 874 964 1759
Cell Cycle S1529 1499 739 1077

Metabolism S1628 902 1162 1899
MAPK S2673 724 730 1823

TGF-beta/Smad S7207 2195 759 1431
JAK/STAT S7259 2846 875 2014
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Figure 2.8: Evaluating disentanglement performance on a simulated dataset with lin-
ear step. a UMAP plots of simulated data colored by batch, path, step
and library size quartile. b UMAP plots of data colored by the 10 latent
variables learned by PCA, VAE and β-TCVAE. c Bar plots of Spearman
correlations between 10 latent variables and each of the four ground-truth
variables for PCA, VAE and β-TCVAE. d Bar plots of normalized mutual
information between 10 latent variables and each of the four ground-truth
variables for PCA, VAE and β-TCVAE.
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Figure 2.9: Disentanglement and generation performance of WGAN-GP, β-TCVAE
and MichiGAN. a UMAP plots of real data colored by the 10 representa-
tions of β-TCVAE and generated data colored by the 10 representations of
WGAN-GP and MichiGAN on the simulated data with linear step. The
β-TCVAE panel is reproduced from Supplementary Figure 2.8b for clar-
ity. b Bar plots of Spearman correlations between 10 representations and
each of the four ground-truth or inferred variables for WGAN, β-TCVAE
and MichiGAN on the simulated data with linear step. The β-TCVAE
panel is reproduced from Supplementary Figure 2.8c for clarity.
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Figure 2.10: Disentanglement performance of PCA and MichiGAN-PCA. a UMAP
plots of real data colored by 10 representations of PCA and generated
data colored by the MichiGAN-PCA representations on the simulated
data with linear step. b UMAP plots of real data colored by 10 repre-
sentations of PCA and generated data colored by the MichiGAN-PCA
representations on the simulated data with non-linear step. c Bar plots
of Spearman correlations between 10 representations and each of the
four ground-truth or inferred variables for PCA and MichiGAN-PCA on
the simulated data with linear step. d Bar plots of Spearman correla-
tions between 10 representations and each of the four ground-truth or
inferred variables for PCA and MichiGAN-PCA on the simulated data
with non-linear step. The PCA panels are reproduced from Figure 2.2b-
c and Supplementary Figure 2.8b-c for clarity.
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Figure 2.11: Representations learned by InfoWGAN-GP from the simulated single-
cell data. a UMAP plots of the simulated data with linear step colored
by the 10 representations learned by InfoWGAN-GP. b UMAP plots of
the simulated data with non-linear step colored by the 10 representa-
tions learned by InfoWGAN-GP. c Bar plots of Spearman correlations
between 10 representations and each of the four ground-truth variables
for InfoWGAN-GP on the simulated data with linear step. d Bar plots
of Spearman correlations between 10 representations and each of the
four ground-truth variables for InfoWGAN-GP on the simulated data
with non-linear step.
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Figure 2.12: The whole Tabula Muris data and the large sci-Plex data. a UMAP
plot of the whole Tabula Muris data colored by cell type. b UMAP plot
of the 2026 fibroblast cells in the heart within the whole Tabula Muris
data. c UMAP plot of the sci-Plex data colored by cell type. d UMAP
plot of the sci-Plex data colored by drug treatment. e UMAP plot of the
2014 cells with MCF7 cell type and S7259 treatment within the sci-Plex
data. For clarity, c and d are reproduced from Figure 2.6a.
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Figure 2.13: UMAP plots of data generated via latent traversals. a UMAP plot of
latent traversals of the 10 representations of latent values that generate
data closest to fibroblast cells in heart within the Tabula Muris data
using WGAN-GP with 10 dimensions. b UMAP plot of latent traversals
of the 10 representations of latent values that generate data closest to
MCF7-S7259 cells within the sci-Plex data using WGAN-GP with 10
dimensions.
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Figure 2.14: Comparison of conditional GAN strategies. a UMAP plots of recon-
structed cardiac fibroblast cells using β-TCVAE. b UMAP plots of recon-
structed cardiac fibroblast cells using MichiGAN with PCWGAN-GP. c
UMAP plots of reconstructed cardiac fibroblast cells using MichiGAN
with ssInfoWGAN-GP. d UMAP plots of reconstructed cardiac fibrob-
last cells using MichiGAN with CWGAN-GP.
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Figure 2.15: Evaluating disentanglement performance on simulated dataset with non-
linear step. a UMAP plots of simulated data colored by batch, path,
step and library size quartile. b UMAP plots of data colored by the
four latent variables learned by PCA, VAE and β-TCVAE. c Bar plots
of Spearman correlations between four latent variables and each of the
four ground-truth variables for PCA, VAE and β-TCVAE. d Bar plots of
normalized mutual information between four latent variables and each
of the four ground-truth variables for PCA, VAE and β-TCVAE. For
clarity, a is reproduced from Figure 2.2a.
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Figure 2.16: Evaluating disentanglement performance on simulated dataset with lin-
ear step. a UMAP plots of simulated data colored by batch, path, step
and library size quartile. b UMAP plots of data colored by the four latent
variables learned by PCA, VAE and β-TCVAE. c Bar plots of Spearman
correlations between four latent variables and each of the four ground-
truth variables for PCA, VAE and β-TCVAE. d Bar plots of normalized
mutual information between four latent variables and each of the four
ground-truth variables for PCA, VAE and β-TCVAE. For clarity, a is
reproduced from Figure 2.8a.
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Figure 2.17: Evaluating disentanglement performance on simulated dataset by
PROSSTT with three main trajectories. a UMAP plots of simulated
data colored by branch, time quartile and library size quartile. b Bar
plots of normalized mutual information between 10 latent variables and
each of the three ground-truth variables for PCA, VAE and β-TCVAE.
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Figure 2.18: Evaluating disentanglement performance on simulated dataset by
PROSSTT with four main trajectories. a UMAP plots of simulated
data colored by branch, time quartile and library size quartile. b Bar
plots of normalized mutual information between 10 latent variables and
each of the three ground-truth variables for PCA, VAE and β-TCVAE.
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Figure 2.19: Evaluating disentanglement performance on simulated dataset by
PROSSTT with five main trajectories. a UMAP plots of simulated data
colored by branch, time quartile and library size quartile. b Bar plots
of normalized mutual information between 10 latent variables and each
of the three ground-truth variables for PCA, VAE and β-TCVAE.
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Figure 2.20: Disentanglement and generation performance on pancreas endocrinogen-
esis. a UMAP plots of data colored by latent time quartile and the
quartile of the difference between the G2M and S cycle scores. b UMAP
plots of data colored by the 10 latent variables learned by PCA, VAE
and β-TCVAE. c Bar plots of FactorVAE metric, MIG for PCA, VAE
and β-TCVAE, as well as random forest error for PCA, GMM, VAE,
β-TCVAE, MichiGAN and WGAN-GP. For clarity, the 2 variables refer
to latent time quartile and (G2M - S) score quartile, and the 1 variable
means only latent time quartile.
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Figure 2.21: Robustness of disentanglement performance: MIG of VAE and β-
TCVAE (β = 10, 50) on simulated datasets.
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Figure 2.22: MichiGAN based on VAE predicts unseen or observed combinations in
the sci-Plex dataset. a UMAP plots of the predicted (green), real (blue)
and control (red) cells for six predictions of the three missing combina-
tions of MCF7-S1262, MCF7-S1259 and MCF7-S7207. b Random forest
errors values for MichiGAN trained on VAE and VAE alone after select-
ing held-out combinations with low ∆H.
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CHAPTER III

Predicting Single-Cell Responses to Drug

Perturbations

3.1 Introduction

Recent experimental developments have enabled high-throughput single-cell molec-

ular measurement of response to drug treatment. A high-throughput chemical screen

experiment usually involves a large number of cells and multiple treatments, where

each cell receives a kind of drug treatment and is impacted in a distinct manner

(Gehring et al., 2020; Srivatsan et al., 2020).

Understanding how drugs influence cellular responses helps discover treatments

with desired effects, potentially benefiting a myriad of therapeutic applications. Vari-

ous methods have been developed to predict cellular responses under drug treatments,

including mechanistic models on protein level changes and phenotype changes (Yuan

et al., 2021), as well as deep learning models on disease outcomes (Cheng et al., 2019;

Kuenzi et al., 2020).

In this study, we are interested in predicting the conditional distribution of cell

states given different drug treatments. In a particular tissue under homeostatic con-

ditions, there is a wild-type distribution of cellular gene expression states p(X). How-

ever, treating cells with a drug G changes their cell state distribution. Our goal is
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to shape these treatment-specific data distributions p(X | G) by developing deep

generative models to sample from the cell state distribution for any drug treatment.

Several deep generative models have generated realistic single-cell data from drug

treatments. Lotfollahi et al. (2020) proposed a conditional variational autoencoder

(VAE) framework with representations under two treatment conditions balanced us-

ing a similarity score of their counterfactual inference developed by Johansson et al.

(2016). In contrast, scGen predicts single-cell data through latent space vector arith-

metic in an unsupervised learning fashion (Lotfollahi et al., 2019). Another method of

Dr.VAE (Rampášek et al., 2019) also explored the dependency of the latent space on

treatments. These methods, however, can only apply to drug treatment experiments

with two treatment conditions, and they are unable to make predictions for unseen

drug treatments. In response, Lotfollahi et al. (2021) proposed compositional pertur-

bation autoencoder (CPA) to extract a basal state in the latent space of VAE, and to

further predict latent values under drug treatments using a linear model. However,

CPA assumes that it is possible to learn the effect of a perturbation independent from

the cell state, which is probably invalid in many cases. For example, if a perturbation

G selectively kills cells in state A, the model will incorrectly generate A cells under

perturbation G. In contrast, our proposed method can model general relationships

between drug treatment and cell state, whether dependent or independent.

In this chapter, we propose PerturbNet, a novel and flexible framework that pre-

dicts single-cell responses to different perturbations. The PerturbNet model connects

drug treatment information and latent space through normalizing flows (Papamakar-

ios et al., 2021), enabling the translation between drug treatment domain and single-

cell domain (Baltrušaitis et al., 2018). The PerturbNet framework is generally appli-

cable to any type of data with drug treatments, such as those of single-cell RNA-seq

(scRNA-seq) data. Furthermore, PerturbNet can make predictions for both observed

and unseen drug treatments.

71



3.2 Methods

3.2.1 Drug Treatment Encoder and ChemicalVAE

The commonly used one-hot encoding approach can transform drug treatment

labels to a vector of 1’s and 0’s, but it needs pre-specifying the total number of

possible drug treatments and cannot encode new treatments after the specification.

Therefore, we consider flexible representations Y for drug treatments to predict drug

treatment effects on single-cell data for unseen perturbations.

A drug treatment contains abundant information more than just a label such

as ‘S1096’. Its pharmacological properties are usually determined by its chemical

structure. We thus aim to encode drugs’ chemical structures to dense representa-

tions. We consider drug treatments’ simplified molecular-input line-entry system

(SMILES) strings, which distinctively represent chemical structures and treatment

information. Although SMILES strings can be encoded to numerical representations

through molecular Morgan fingerprints (Rogers and Hahn, 2010) or through language

models (Xu et al., 2017; Chithrananda et al., 2020), the representations from these

methods are deterministic, meaning that the representations remain the same in repli-

cated encoding implementations. Given that a chemical screen experiment usually

contains a limited number of distinct drug treatments, the use of stochastic represen-

tations of the drug treatments prevents possible model overfitting.

To improve the learning capacity, especially for representations of unseen treat-

ments, we consider using a chemical variational autoencoder (ChemicalVAE) to gen-

erate the stochastic sampled representation Y of each drug’s SMILES string (Kusner

et al., 2017; Zhu et al., 2021). In essence, the ChemicalVAE first transforms and

standardizes SMILES strings to their canonical forms and tokenizes each canonical

SMILES to be encoded as a one-hot matrix. For a canonical SMILES string, the

ith row of its one-hot matrix corresponds to its ith place, and has the jth column
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being 1 and all other columns being 0’s, if its ith place has the jth character in the

collected chemical elements’ library. The one-hot matrices of SMILES strings are

then fitted into ChemicalVAE which provides representations Y for SMILES strings

of drug treatments g. Figure 3.1 summarizes the ChemicalVAE architecture.

3.2.2 Baseline KNN and Random Models

From the perturbation representations, Y , of drug treatments, we can learn the

relationship of several drug treatments in their latent space. We assume that drug

treatments with close latent values tend to also have similar single-cell responses.

Thus, the distributions of perturbation responses p(X | G = g1) and p(X | G = g2)

are similar if g1 and g2 have close representations of y1 and y2.

We then propose our baseline model using the k-nearest neighbors (KNN) al-

gorithm to predict single-cell data under drug treatments in Algorithm 2. From

ChemicalVAE, we can obtain the representation Y for a set of treatments G, each

of which has measured single-cell samples. Then for a drug treatment g /∈ G with

representation y, we can find its k nearest neighbors {g(1), . . . , g(k)} from G based

on Y . We then sample single-cell samples treated with the k nearest treatments in

proportion to their exponentiated negative distances to the treatment of interest in

the latent space of Y . The sampled single-cell data can be regarded as a baseline

prediction for the single-cell data with the treatment of interest.
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Algorithm 2: Baseline KNN Model

Input: Drug treatment of interest g and its representation y. A set of drug

treatments G = {g1, . . . , gm} with their representations {y1, . . . ,ym} as well

as single-cell sample sets {X1, . . . ,Xm}.

1. Train KNN algorithm (k = 5) on {y1, . . . ,ym}.

2. Obtain y’s k neighbors {y(1), . . . ,y(k)} and their pairwise distances

(d(1), . . . , d(k))
T from the trained KNN algorithm.

3. Sample a number of cells X ′ through stratified sampling with replacement

from {X(1), . . . ,X(k)}. Each set X(i) has a proportion of

exp{−d(i)}/
∑k

j=1 exp{−d(j)}.

Result: predicted single cells X ′ under perturbation g.

The key assumption of the baseline KNN model is that the perturbation represen-

tation is informative to infer single-cell data. To test the informativeness assumption

on the perturbation representation, we propose a naive baseline random model in Al-

gorithm 3 that randomly samples single-cell samples under treatments other than the

target treatment. If the perturbation representation is uninformative to inferring cell

state or cellular response, the random model is likely to have a similar performance

to the KNN model.

Algorithm 3: Baseline Random Model

Input: Drug treatment of interest g. A set of single-cell samples {X−g}

receiving drug treatments other than g.

1. Sample a number of cells X ′ with replacement from X−g.

Result: predicted single cells X ′ under perturbation g.

3.2.3 Conditional Invertible Neural Networks

We consider employing more complex normalizing flows of invertible neural net-

works to understand the relationship between perturbation representation and cel-

lular responses. An affine coupling block (Dinh et al., 2016) enables the input
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U = (UT
1 ,U

T
2 )T to be transformed to output W = (W T

1 ,W T
2 )T with:

W1 = U1 ⊙ exp{scale1(U2)} + trans1(U2)

and

W2 = U2 ⊙ exp{scale2(W1)} + trans2(W1),

where scale1(·), scale2(·), trans1(·), trans2(·) are arbitrary scale and transformation

neural networks, and ⊙ is the Hadamard product or element-wise product. The

inverse of the coupling blocking can be represented by

U2 = {W2 − trans2(W1)} ⊘ exp{scale2(W1)}

and

U1 = {W2 − trans1(U2)} ⊘ exp{scale1(U2)},

where ⊘ is the element-wise division. The affine coupling block allows bijective trans-

formations between U and W with strictly upper or lower triangular Jacobian ma-

trices. A conditional coupling block is further adapted to concatenate a conditioning

variable with inputs in scale and transformation networks. A conditional coupling

block preserves the invertibility of the block and the simplicity of the Jacobian deter-

minant.

A conditional invertible neural network (cINN, Ardizzone et al., 2019; Rombach

et al., 2020) is a type of conditional normalizing flow with conditional coupling blocks

and actnorm layers (Kingma and Dhariwal , 2018), with both forward and inverse

translations. Denote representations from two domains as Y ∈ DY and Z ∈ DZ. A

cINN modeling Z over Y gives forward translation

Z = f(V | Y )
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and inverse translation

V = f−1(Z | Y ),

where V ∼ N (0, I). cINN effectively models p(Z | Y ), the probabilistic dependency

of Z over Y with a residual variable V . As a cINN seeks to extract the shared infor-

mation from Y and add residual information V to generate Z, the objective function

to train a cINN is the Kullback-Leibler (KL) divergence between the residual’s pos-

terior q(V | Y ) and its prior p(V ). The objective function can further be derived

to

Ep(Y ) [DKL{q(V | Y )||p(V )}] = Ep(Z,Y )

[
− log p{f−1(V | Y )} − |detJf−1(Z | Y )|

]
−H(Z | Y ),

(3.1)

where detJf−1 is the determinant of the Jacobian matrix of f−1 and H is a constant

entropy. The optimal f that minimizes the objective function in Equation (3.1) gives

q(V | Y ) = p(V ). In addition, the objective is an upper bound of the mutual in-

formation I(V ,Y ). Therefore, a well-trained cINN effectively achieves independence

between V and Y . cINN has the same parameters for forward and inverse transla-

tions, reducing the number of model parameters while still preserving network details

in both translation directions, and has been utilized to translate domain representa-

tions of images and texts (Rombach et al., 2020).

3.2.4 PerturbNet

From ChemicalVAE, a drug treatment g is represented as a dense variable Y ;

we propose a baseline KNN model to make predictions for single-cell perturbation

responses by sampling cells treated by similar perturbations according to their rep-

resentations. To predict single-cell responses, a more powerful predictive model can
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be constructed with deep neural networks on perturbation representations. The deep

learning predictive model can potentially give better predicting performance than the

baseline KNN model, especially when it is trained with a large number of perturba-

tions.

We thus propose our PerturbNet framework in Figure 3.2. The PerturbNet frame-

work has a VAE-based model for single-cell data and ChemicalVAE for drug treat-

ments. The single-cell VAE model can be scVI (Lopez et al., 2018) for count data

or regular VAE for normalized data. The pre-trained single-cell VAE model encodes

single-cell sample X to cellular representation Z. The pre-trained ChemicalVAE

model encodes drug treatment G to perturbation representation Y . Then, the per-

turbation representation Y and cellular representation Z are connected through a

conditional invertible neural network (cINN), where residual representation V pre-

dicts Z with Y as the conditioning variable. The residual representation is indepen-

dent of perturbation in predicting cellular representation and is regarded as noise to

the perturbation effects on cell state.

In addition, we also consider conditioning on known cell state covariates in mod-

eling cell representation. We concatenate perturbation representation and cell state

covariates to serve as an overall condition of cINN and translate between residual

or condition-invariant representation V and cellular representation. The extra con-

ditioning on cell state covariates potentially debiases their confounding effects on

modeling perturbation effects on cellular representation.

3.2.5 ChemicalVAE Fine-Tuning

As both KNN and PerturbNet methods predict cell state based on perturba-

tion representation, it might enhance the prediction performance for cell state from

perturbation to use perturbation representation that learns cellular representation

information.
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Figure 3.1: Overview of the ChemicalVAE architecture.

Figure 3.2: Overview of the PerturbNet architecture.
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We propose an algorithm to fine-tune ChemicalVAE, by adding the evidence lower

bound (ELBO) loss of ChemicalVAE with an extra term for a certain cellular property

quantity (Gómez-Bombarelli et al., 2018). In this study, we compute the Wasserstein-

2 (W2) distance between cellular representations of each pair of perturbations and

penalizing the quantity of the trace of Y ’s second moment weighted by the Lapla-

cian matrix L of the adjacency matrix defined from pairwise distances (Cai et al.,

2010). Denote y and L as the perturbation representations and the Laplacian ma-

trix of the perturbations. The penalizing quantity is defined as trace(yTLy). By

penalizing the proposed quantity, we expect perturbations with similar cell states to

have closer perturbation representations from ChemicalVAE. To implement the fine-

tuning algorithm with cell state property, we alternate the ChemicalVAE training

with a batch of chemical SMILES strings from a large chemical database with the

ELBO loss and another batch of pairs of SMILES strings and cellular representa-

tions from a single-cell chemical screen dataset with the penalized ELBO loss. We

tune a hyperparameter λ on the extra term to adjust the ChemicalVAE fine-tuning

performance. We summarize the ChemicalVAE fine-tuning in Algorithm 4.
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Algorithm 4: ChemicalVAE Fine-Tuning

Input: Set of drug treatments Gs in ZINC or PubChem datasets. Single-cell

samples with perturbations {(x1, g1), . . . , (xn, gn)}. The perturbations’

cell-state Laplacian matrix L. Two Adam optimizers (Kingma and Ba,

2014) Adam1, Adam2.

1. Initialize parameters (ϕ,θ).

2. While (ϕ,θ) has not converged:

1). Sample a batch {(x(i), g(i))}mi=1 from the single-cell samples.

2). Obtain representations y = (y(0), . . . ,y(m))
T for {g(i)}mi=1.

3). Obtain the Laplacian matrix Lg for {g(i)}mi=1.

4). Compute gradient gλ
ϕ,θ = ▽ϕ,θ{-ELBO(ϕ,θ) + λtrace(yTLgy)}

5). Update parameters using gλ
ϕ,θ via Adam1.

6). Sample a batch {g(i)}mi=1 from Gs

7). Compute gradient gϕ,θ = ▽ϕ,θ{-ELBO(ϕ,θ)}

8). Update parameters using gϕ,θ via Adam2.

Result: fine-tuned ChemicalVAE with parameters (ϕ,θ).

3.2.6 Related Work

There has been limited previous work on predicting single-cell responses to multi-

ple perturbations. A related work is compositional perturbation autoencoder (CPA,

Lotfollahi et al., 2021), a VAE-based framework, which also models cellular represen-

tation under cellular perturbation. The CPA framework assumes that perturbation

and known cell state covariates independently influence cellular representation in a

linear model. In contrast, PerturbNet models cellular representation with normal-

izing flows, which flexibly incorporates perturbation, cell state covariates and also

their complex interaction effects. Additionally, the residual representation in Per-

turbNet preserves stochastic noise that is invariant to the conditioning representation

in a single-cell sample, while CPA relies on encoding single-cell data to a basal cel-
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lular representation to provide independent stochastic variability from perturbation

and covariates for individual cells. The encoded basal cell representation of CPA,

however, is very likely to entangle with perturbation and covariates in a one-stage

latent-arithmetic modeling framework. In addition, the translations between residual

representation and cellular representation of PerturbNet are based on complex nor-

malizing flows, while those of CPA are linear functions which are unable to uncover

the complex heterogeneous effects of the same perturbation on different cells.

More importantly, the PerturbNet framework models perturbation responses with

dense perturbation representation, while CPA one-hot-encodes perturbation with cell

state covariates. The dense perturbation representation of PerturbNet qualifies pre-

dicting unobserved perturbations outside of the training data, while labels utilized in

CPA constrain the predictions to only the observed perturbations or their combina-

tions. Thus, the functionality of predicting unseen perturbations greatly extends the

application scope of PerturbNet.

3.3 Experiments

We focus on two datasets with chemical perturbations including the sci-Plex (Sri-

vatsan et al., 2020) and LINCS data (Subramanian et al., 2017). The sci-Plex dataset

has scRNA-seq measurements to 188 drug treatments, and LINCS is a microarray

dataset with cellular measurements of chemical or genetic perturbations approxi-

mately at a single-cell resolution. Thus, we regard both the sci-Plex data and the

LINCS subset with 20,065 chemical perturbations (LINCS-Drug) as single-cell re-

sponses to chemical perturbations. Table 3.1 summarizes the measurement informa-

tion of the two datasets and we provide details of their data preprocessing steps in

Supplementary Materials Section 3.5.1.
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Table 3.1: High-Throughput Gene Expression Datasets with Chemical Perturbations.

Dataset sci-Plex LINCS-Drug
Source scRNA-seq Microarrays
Cell Lines A549, K562, MCF7 ∼100
Number of Measurements 648,857 689,831
Number of Genes 5087 978
Number of Perturbations 188 20,065

3.3.1 ChemicalVAE Gives Meaningful Perturbation Representations

Following Gómez-Bombarelli et al. (2018), we trained ChemicalVAE on the ZINC

database (Irwin and Shoichet , 2005) with around 250,000 drug treatments. From

the trained ChemicalVAE, we obtained the perturbation representations of the drug

treatments in the sci-Plex and LINCS-Drug datasets. As the sci-Plex dataset pos-

sesses integer count scRNA-seq samples and LINCS-Drug has normally distributed

microarray samples, we obtained their cellular representations by training scVI on

the sci-Plex data and VAE on the LINCS data. Figure 3.3a shows the UMAP plots

of the perturbation representations and the cellular representations of two drug treat-

ments of S1628 and S1007 in the sci-Plex data. The two treatments have distinctive

perturbation representations and their cell states are also different.

Figure 3.3: a UMAP plots of perturbation representations and cellular representa-
tions of S1628 and S1007 in the sci-Plex data. b UMAP plots of per-
turbation representations and cellular representations of two drugs in the
LINCS-Drug data.

Figure 3.3b shows the UMAP plots of representations of two drug treatments of

the LINCS-Drug data. The drugs of G1 and G2 have very different latent values
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within the overall perturbation representation space, which map to two unique cell

state distributions. Therefore, the perturbation representations from ChemicalVAE

can reflect the particular perturbation effects on cell states.

3.3.2 KNN Models Have Better Generation than Random Models

We implemented the baseline models on the sci-Plex and LINCS-Drug data to

predict single-cell responses to chemical perturbations. Both baseline KNN and ran-

dom models predict single-cell perturbation responses by sampling from responses of

other perturbations and have relatively consistent performance across perturbations,

while PerturbNet tends to have different performances between perturbations utilized

to train the model and unobserved perturbations. Therefore, we partitioned the set

of perturbations to observed perturbations for model training and unseen perturba-

tions. For the KNN model, we trained a KNN graph on the representations of the

observed perturbations to select five nearest neighbors for each of the observed and

unseen perturbations. To predict responses of each target perturbation in either the

observed or unseen set using the random model, we randomly sampled cells with

observed perturbations other than the target perturbation.

We employed the R squared and Fréchet inception distance (FID) metrics to eval-

uate prediction performance of single-cell responses using the baseline models. A

higher R squared and lower FID values better reflect an alignment between the pre-

dicted samples and real samples. The details of R squared and FID metrics are shown

in Supplementary Materials Section 3.5.3. We compared the prediction performances

between the KNN model and the random model for both unseen and observed per-

turbations, with the one-sided Wilcoxon test. Figure 3.4 shows the performance of

baseline models for both unseen and observed treatments of the sci-Plex and LINCS-

Drug data. For the sci-Plex data, the KNN model has significantly higher R squared

values than the random model, while the FID does not give a significant difference
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between the two baseline models. For the LINCS-Drug data, KNN outperforms the

random model in both R squared and FID for either the 2000 unseen or 18,065 ob-

served perturbations.

Figure 3.4: R squared and FID of KNN model over random model for unseen and
observed drug treatments of the sci-Plex (a) and LINCS-Drug (b) data.

3.3.3 PerturbNet Predicts Single-Cell Perturbation Responses to Drug

Treatments

We employed PerturbNet to predict single-cell responses to drug treatments. We

trained scVI on the sci-Plex count data with 158 observed drug treatments, and

VAE on the LINCS-Drug data with 18,065 observed drug treatments. We utilized

pairs of perturbation and cellular representations of the single-cell subset with ob-

served perturbations to establish the cINN translations of the PerturbNet trained

with translations from perturbation to cell state and cellular response.

After constructing the PerturbNet framework on the two datasets, we predicted

single-cell responses to each of the unseen and observed perturbations. We evaluated

the performances of PerturbNet for the two datasets and compared them to those

of the baseline random model (Figure 3.5). As can be seen, PerturbNet has overall
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better predictions than the baseline random model. Although PerturbNet does not

beat the random model in FID for the unseen perturbations of the sci-Plex data, it has

significantly lower FID than the random model for the observed perturbations. For

the LINCS-Drug data, PerturbNet outperforms the random model with significantly

better R squared and FID. The LINCS-Drug dataset has many more perturbations

than the sci-Plex data for training the cINN translations of the PerturbNet, and

possibly achieves better out-of-sample predictions for unseen perturbations.

Figure 3.5: R squared and FID of PerturbNet over baseline random model for unseen
and observed drug treatments of the sci-Plex (a) and LINCS-Drug (b)
data.

We also compared the performances of PerturbNet and KNN in Supplementary

Figure 3.13. The PerturbNet model has significantly better metric values than the

KNN model for the observed perturbations of the sci-Plex data, while it does not

exceed the KNN model for unseen perturbations of the sci-Plex, LINCS-Drug, or

observed perturbations of the LINCS-Drug. The limited 30 unseen perturbations of

the sci-Plex data might be insufficient to significantly distinguish the performances of

KNN and PerturbNet. In addition, the LINCS-Drug dataset has a smaller variability

with high prediction performances from the random model, and thus might enable

the KNN model as a difficult baseline model to be overcome by PerturbNet.
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3.3.4 Covariate Adjustment Gives Better Predictions for PerturbNet

As the sci-Plex dataset has two cell state covariates of cell type and dose, we

adjusted these covariates in modeling cINN translations of PerturbNet. We encoded

cell type and dose to the one-hot encodings, and concatenated them to the pertur-

bation representation Y as a joint condition representation. Then we trained cINN

with the joint representation of perturbation and covariates as conditions for transla-

tions between residual representation and cellular representation. We then predicted

single-cell responses to a perturbation with the specific values of covariates.

We evaluated the prediction performance of PerturbNet adjusted for covariates

on the unseen and observed perturbations with cell covariates’ values, and compared

its performance with that of the previous PerturbNet trained without the cell state

covariates. As can be seen in Figure 3.6, the PerturbNet adjusted for cell state co-

variates significantly outperforms the PerturbNet without covariate adjustment for

observed perturbations in both R squared and FID. The PerturbNet adjusted for

covariates improves R squared for the unseen perturbations. The cell state covari-

ates are correlated with perturbation assignment and also influence cellular responses,

making them possess confounding effects in modeling perturbation responses. There-

fore, adjusting for covariates in cINN modeling of the PerturbNet helps debias their

confounding effects, and more accurately quantify perturbation effects.

Figure 3.6: R squared and FID of PerturbNet adjusted for cell state covariates over
the unadjusted PerturbNet for 30 unseen and 158 observed drug treat-
ments of the sci-Plex data.

We compared the performance of PerturbNet adjusted for covariates with the
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baseline models. As the PerturbNet adjusted for covariates takes additional covariate

information other than perturbation, we performed a stratified prediction in each cell

type by dose stratum to also adjust covariate information for the baseline models.

Each perturbation has 12 strata with three cell types and four doses. We proceeded

with the sampling procedures of the baseline KNN and random models within each

cell by dose stratum, and made PerturbNet predictions with the corresponding co-

variates’ values in the stratum. Figure 3.7 shows that PerturbNet consistently out-

performs the random model for observed perturbations, while KNN is unable to beat

the random model for either unseen or observed perturbations. As the stratified eval-

uations constrain cellular variability and sample size, which possibly narrows down

the prediction performances of the KNN and random models, we also compared Per-

turbNet adjusted for covariates and KNN in stratified predictions (Supplementary

Figure 3.14). As with their unstratified comparisons in Supplemenetary Figure 3.13,

the PerturbNet has a better performance for observed perturbations but does not

defeat KNN for unseen perturbations.

3.3.5 Adjusting Confounders of Perturbations in PerturbNet

In Section 3.3.4, we adjusted the covariates in PerturbNet to improve the pre-

diction performance for both unseen and observed perturbations. We illustrated

potential confounding effects of the cell state covariates in modeling perturbations

on single-cell responses, and showed that PerturbNet adjusted for covariates achieved

better predictions. In this section, we study impacts of confounding effects of cell

state covariates in learning representations and predicting perturbation responses in

the cINN modeling of the PerturbNet. We considered the sci-Plex subset example in

Section 2.3.6 and Yu and Welch (2021) with 18 drug treatments and three cell types,

where we implemented latent space vector arithmetic algorithm to predict single-cell

data of cell type/drug treatment combinations, including three unseen combinations
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Figure 3.7: R squared and FID of KNN (a, b) and PerturbNet adjusted for covariates
(c, d) over the random model for 30 unseen and 158 observed drug treat-
ments in each stratum of cell type by dose of the sci-Plex data, visualized
by cell type (a, c) and dose (b, d).
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(MCF7-S1259, MCF7-S1262, MCF7-S7207).

We trained VAE on the sci-Plex subset without the three unseen combinations.

We then one-hot-encoded cell type or perturbation, and constructed the cINN trans-

lations between one-hot-encoded cell type or one-hot-encoded perturbation and cel-

lular representation. We then adapted these cINN transitions to perform a similar

procedure to latent space vector arithmetic to predict single-cell data of each cell

type/treatment combination. For the cINN trained between one-hot-encoded cell type

and cellular representation, we utilized a group of control cells of another type and

the same treatment to obtain their residual representations V ’s via the cINN inverse

translation, and predict their counterfactual cellular representation and single-cell

data through the cINN translation with the cell type of the target combination. We

named this prediction cell type translation. For the cINN trained between one-hot-

encoded perturbation and cellular representation, we utilized a group of control cells

of other treatments and the same cell type to obtain their residual representations

V ’s and predict their counterfactual cellular representation and single-cell data using

the perturbation of the target combination through the cINN inverse and forward

translations, respectively. We named this prediction as treatment translation. The

two predictions assumed that the residual representations V ’s in the cell type cINN

translations preserved perturbation information to predicted counterfactual cellular

representation, and vice versa.

We also trained a PerturbNet model on the sci-Plex subset without the three un-

seen combinations with the cINN translations between concatenated one-hot-encoded

representations of perturbation, cell type and dose. We then predicted each combi-

nation by generating cells from PerturbNet. In addition to cell type translation,

treatment translation and PerturbNet, we also predicted each combination using the

latent space vector arithmetic algorithm.

We evaluated the predicted data using the R squared metric and show the R
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squared values of the four methods across the 54 combinations (Figure 3.8a). Per-

turbNet has the highest R squared among the four methods for almost all the combi-

nations. Figure 3.8b also shows that PerturbNet predictions has significantly higher

R squared than latent space vector arithmetic, cell type translation and treatment

translation. It also has higher R squared for the three unseen combinations.

Figure 3.8: a R squared of predictions of cell type/treatment combinations using
latent space vector arithmetic (latent algorithm), cell type translation,
treatment translation and PerturbNet. b R squared of predicted cell
type/treatment combinations between PerturbNet and each of latent al-
gorithm, cell type translation and treatment translation. The p-values
are from the one-sided Wilcoxon test.

Figure 3.9 shows the UMAP plots of predicted MCF7-S1259 unseen combination

from the four methods. The latent space vector arithmetic and PerturbNet generally

recover the real cells of the combination, while cell type translation generate cells of

perturbations other than S1259 and treatment translation gives cells of cell types other

than MCF7. This means that the residual representations V ’s in the cINN trained

with only cell type, and no treatment, does not preserve the treatment information,

nor did the residual representations in the cINN trained with only drug treatment, no

cell type, fail to preserve the cell type. The PerturbNet fully adjusted for perturbation
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and covariates has the best predicted cells of MCF7-S1259, which overlap well with

the real cells.

Figure 3.9: UMAP plots of predicted MCF7-S1259 using latent space vector algo-
rithm (a), cell type translation (b) treatment translation (c) and Per-
turbNet (d).

Therefore, both cell type translation and treatment translation have a more par-

simonious modeling procedure and do not need to adjust for other covariates in their

cINN models, but their residual representations might not preserve meaningful infor-

mation for individual cells. A possible reason for their entangled residual represen-

tations is that a cINN model assumes independence between condition and residual

representation, while cell type is actually correlated with perturbation assignment

in the sci-Plex subset. Thus, the residual representation does not carry meaningful

perturbation or cell type information in the two translations for an individual cell.

On the other hand, modeling cell type/treatment combinations using PerturbNet re-

quires specifying covariates in the cINN modeling, and these covariates help make

more unbiased predictions.
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3.3.6 Fine-Tuned ChemicalVAE Improves the Performance of Perturb-

Net

We performed ChemicalVAE fine-tuning to improve the performance of Perturb-

Net. To construct a cell-state Laplacian matrix L, we computed the Wasserstein-2

(W2) distance between cellular latent values of each pair of drug treatments. As the

number of treatment pairs is extremely large in LINCS-Drug, we first fitted a KNN

algorithm on the 20,065 perturbation representations and selected the 30 nearest

neighbors for each drug treatment to compute their pairwise cellular latent distances.

As the resulting pairwise cell latent distance matrix for all the 20,065 treatments was

not symmetric, we took the average of the matrix and its transposed matrix. We then

calculated the exponential of their opposite values and row-normalized the matrix to

obtain the adjacency matrix with each entry as a transition probability. We then

obtained the Laplacian matrix from the adjacency matrix.

We utilized the Laplacian sub-matrix for the observed drug treatments of LINCS-

Drug to fine-tune ChemicalVAE. We considered values of λ in (0.1, 1, 5, 10, 100, 1000,

10,000) to implement the ChemicalVAE fine-tuning algorithm. After we fine-tuned

the ChemicalVAE, we evaluated the KNN model on the perturbation representations

from these fine-tuned ChemicalVAE. We also constructed the cINN model of the Per-

turbNet between the perturbation representations of the fined-tuned ChemicalVAE

and cellular representations using cells with the observed perturbations. We evalu-

ated the prediction performance of the fine-tuned KNN and PerturbNet models on the

2000 unseen perturbations of the LINCS-Drug data (Figure 3.10). Both R squared

and FID of PerturbNet have small to medium fluctuations across increasing λ values,

while those of KNN do not obviously change with varying λ values. Several λ values

give slight increases of median R squared or decreases of median FID for PerturbNet

over the non-fine-tuned one, such as λ = 0.1, 1, 5, 10, 100.

We compared the fine-tuned KNN and PerturbNet with λ = 1 to their non-
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Figure 3.10: R squared and FID of KNN and PerturbNet with fine-tuned Chemical-
VAE across different λ values for the 2000 unseen drug treatments of the
LINCS-Drug data.

fine-tuned counterparts for the unseen perturbations (Figure 3.11). The fine-tuned

PerturbNet has significant improvements in both R squared and FID, while fine-

tuning ChemicalVAE does not significantly enhance KNN. A possible explanation is

that the cINN of PerturbNet further enforces the prediction capacity from fine-tuned

perturbation representation to cell state.

Figure 3.11: R squared and FID metrics of KNN and PerturbNet with fine-tuned
ChemicalVAE of λ = 1 over non-fine-tuned PerturbNet for 2000 unseen
drug treatments of the LINCS-Drug data.

3.3.7 PerturbNet Recovers the Perturbation and Cell Latent Spaces

We used PerturbNet to generate cellular representation from the perturbation

representation of a drug treatment. We considered reconstructing cellular representa-

tions using V ’s inferred from real cells, or sampling cellular representations using V ’s

from the prior distribution. We used the perturbations of the sci-Plex and LINCS-

Drug data in Figure 3.3 to reconstruct and sample cellular representations and show
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the UMAP plots of these cellular representations in Figure 3.12. As can be seen, the

reconstructed representations recover the observed cellular representations of both

the sci-Plex and LINCS-Drug data in Figure 3.3, while the sampled representations

do not strictly reflect the observed latent distributions. The residual representations

possess condition-invariant information to reconstruct individual cells, and those sam-

pled from the prior distribution generate general cell states of a perturbation.

Therefore, the predicted single-cell responses to a perturbation via PerturbNet by

sampling V ∼ N (0,1) does not specifically recover the observed individual cells to

the perturbation, as they possess specific residual information. PerturbNet predicts

single-cell perturbation responses with a general residual distribution, which maps

to the overall training data in the cINN modeling of PerturbNet. If we have prior

information about the individual residual representation, we can make more precise

predictions on individual perturbation responses for observed cells, especially for un-

seen perturbations. However, cells are usually measured and destroyed in single-cell

experiments before this residual information can be inferred.

3.4 Discussion

In this chapter, we propose a deep generative model, PerturbNet, to predict single-

cell responses to chemical perturbations. We encode cell samples and drug SMILES

strings to dense latent representations using single-cell VAE and ChemicalVAE. We

then connect two representations through cINN. PerturbNet gives a stable training

process, which has two stages of ChemicalVAE and single-cell VAE trained separately

and integrated through cINN. The PerturbNet framework can make predictions for

both unseen and observed drug treatments. We perform experiments to show that

PerturbNet has excellent prediction performance for single-cell responses to both

unseen and observed drug treatments. In addition, our ChemicalVAE fine-tuning

algorithm also improves the prediction performance using fine-tuned perturbation
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Figure 3.12: a, b UMAP plots of perturbation representations and reconstructed
cellular representations (a) as well as sampled cellular representations
(b) for S1628 and S1007 in the sci-Plex data. c, d UMAP plots of
perturbation representations and reconstructed cellular representations
(c) as well as sampled cellular representations (d) for two drugs in the
LINCS-Drug data.

representation.

Our PerturbNet is closely related to the CPA framework, which also predicts

single-cell perturbation responses to chemical perturbations (Lotfollahi et al., 2021).

The CPA framework also utilizes a single-cell VAE and models perturbation effects

on latent values of cells. However, the encoder of CPA only gives a basal cell state,

while perturbation is further incorporated to decode to single-cell data, making it a

very unusual autoencoder framework lying between VAEs and conditional VAEs. In

addition, the latent linear model in CPA takes drug treatments as categories, and thus

cannot make predictions for unseen drug treatments. Therefore, we do not directly

compare CPA and PerturbNet due to their different functionalities.

A limitation of our experiments is with the limited number of chemical pertur-

bations. We find that LINCS-Drug has many more chemical perturbations and a

slightly better prediction performance for unseen perturbations than the sci-Plex

data. Having more chemical perturbations enables more powerful cINN connections
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of the PerturbNet to infer the cellular representation for each unseen perturbation

representation. Therefore, future research can implement PerturbNet on new high-

throughput chemical screen datasets with many more drug treatments.

Another future improvement of PerturbNet is to train ChemicalVAE with larger

chemical databases, such as PubChem (Kim et al., 2016) with millions of drug treat-

ments. In addition, having better preprocessing steps of chemical SMILES strings

might further improve the training of ChemicalVAE to obtain better perturbation rep-

resentations. Other advanced deep generative models for chemical perturbations can

also be employed to replace the ChemicalVAE model of the PerturbNet. For exam-

ple, Jin et al. (2020a) proposed a hierarchical VAE structure for graph generation of

molecules and multi-layer representations of drug treatments. These multi-resolution

perturbation representations can potentially give better single-cell predictions to un-

seen drug treatments.

3.5 Supplementary Materials

3.5.1 Datasets

We obtained the ZINC database with 250,000 compounds (Irwin and Shoichet ,

2005) from the ChemicalVAE model (https://github.com/aspuru-guzik-group/

chemical_vae/tree/main/models/zinc). We transformed the compounds to canon-

ical SMILES following the ChemicalVAE tutorial (https://github.com/aspuru-guzik-group/

chemical_vae/blob/main/examples/intro_to_chemvae.ipynb) via the RDKit pack-

age (Landrum, 2016). We also utilized the chemical elements’ library from this tu-

torial to define the one-hot matrices of drug treatments, where we constrained the

maximum length of canonical SMILES strings to be 120.

We processed the whole sci-Plex data (Srivatsan et al., 2020) using SCANPY

(Wolf et al., 2018) with a lot of 648,857 cells and 5087 genes. There were 634,110
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cells perturbed by 188 drug treatments in total, with 14,627 cells treated by unknown

drug treatments and 120 unperturbed cells. We randomly selected 30 drug treatments

as unseen perturbations and the other 158 drug treatments as observed perturbations.

We obtained the LINCS dataset (Subramanian et al., 2017) from GEO accession

ID GSE92742. The LINCS data had been processed with 1,319,138 cells and 978

landmark genes, containing the LINCS-Drug subset with 689,831 cells treated by

20,329 drug treatments denoted with their SMILES, 20,065 drug treatments of which

had lengths smaller than 120. We randomly selected 2000 drug treatments as unseen

perturbations and the other 18,065 drug treatments as observed perturbations. We

transformed the SMILES strings of drug treatments of the sci-Plex and LINCS-Drug

data to their one-hot matrices according to the chemical elements’ library.

3.5.2 Neural Network Architectures

We followed the ChemicalVAE model utilized in Gómez-Bombarelli et al. (2018)

and adapted it to PyTorch implementations. The ChemicalVAE model takes each

input of size of 120 by 35, and has three one-dimensional convolution layers with

the triplet of number of input channels, number of output channels and kernel size

being (120, 9, 9), (9, 9, 9) and (9, 10, 11), respectively. There are a Tanh activation

function and a batch normalization layer following each convolution layer. After these

transformations, the input is then flattened to a fully-connected (FC) hidden layer

with 196 neurons, and is subsequently activated by a Tanh function, followed by a

dropout regularization with a dropout probability of 0.08 and a batch normalization

layer. Then two hidden layers both with 196 neurons generate means and standard

deviations of the latent variable. The decoder of the ChemicalVAE model has a FC

hidden layer with 196 neurons, followed by a Tanh activation, a dropout regularization

with a dropout probability of 0.08 and a batch normalization layer. Then the elements

of the input are repeated 120 times to be put in a GRU layer with three hidden layers
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of 488 hidden neurons, followed by a Tanh activation. The input is then transformed

to a two-dimensional tensor to be put in a FC layer with 35 neurons and a softmax

activation function. Then each input is reshaped to be the output tensor of 120 by 35.

We implemented the ChemicalVAE training on the ZINC data with different learning

rates. We finally had an optimal training with a batch size of 128 and a learning rate

of 10−4 for 100 epochs.

We trained the cINN translations following Rombach et al. (2020), where a cINN

consists of 20 invertible neural network blocks and an embedding module. Each block

has an alternating affine coupling layer, an activation normalization (actnorm) layer

and a fixed permutation layer. The embedding module consists FC hidden layers and

Leaky Rectified Linear Unit (ReLU) activation functions to embed the conditioning

variable into a 10-dimensional variable. We fixed the batch size of 128, the learning

rate of 4.5×10−6 and varied different numbers of epochs for training cINN. We found

the cINN training generally stabilized after 50 epochs across different datasets.

For cellular VAE models, we utilized scVI version 0.7.1 with 10-dimensional la-

tent space. We trained scVI on both the whole sci-Plex data and its subset with

observed perturbations for 700 epochs with scVI’s default setting of learning rate of

10−3 and batch size of 128. We trained a regular VAE model for the LINCS-Drug

data with a similar multilayer perceptron (MLP) model in Chapter II, which is based

on TensorFlow version 1.14.0. The VAE has two fully-connected (FC) hidden layers

with 512 and 256 neurons, followed by separate hidden layers for means and standard

deviations of the latent variable. The decoder has two hidden layers with 256 and

512 neurons, and its output layer has the same number of neurons as the number

of genes. Each hidden layer is followed by a batch normalization, a ReLU or Leaky

ReLU activation, a dropout regularization with a dropout probability of 0.2. We tried

different learning rates and found that a learning rate of 10−4 and a batch size of 128

work well with the LINCS data. We trained VAE on the whole LINCS data for 200
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epochs, and trained VAE on the LINCS-Drug with observed perturbations for 150

epochs.

3.5.3 Prediction Metrics

3.5.3.1 R Squared

We follow the R Squared metric utilized in several frameworks to predict single-

cell responses to perturbations (Lotfollahi et al., 2019, 2020, 2021). We first obtain

the normalized data of predicted and real single-cell responses to a perturbation for

the sci-Plex data. We conduct similar processing steps to SCANPY (Wolf et al.,

2018). We first normalize the total number of counts of each cell to be 104, take log-

transformation, and scale the values. We directly use LINCS samples as they have

already been normalized. We compute the mean gene expression values of normalized

data of both predicted and real cells to a drug treatment. We then fit a simple linear

regression model on the real mean gene expression values over the predicted mean

gene expression values. The R squared of the fitted linear regression is then reported

to quantify the accuracy of predicted cells.

3.5.3.2 FID Score

We define an FID score metric similar to the FID metric utilized in image data

(Heusel et al., 2017). We train a single-cell VAE model on the whole single-cell dataset

using either scVI or VAE depending on the data type. We obtain the cell latent values

of the predicted and real cells to a perturbation. We then apply the Fréchet distance

to the latent values of predicted and real cells with the Gaussian assumption

FID = ∥µReal − µPredicted∥22 + trace{ΣReal + ΣPredicted − 2(ΣRealΣPredicted)1/2},
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where µReal,µPredicted are means of predicted and real latent values, and ΣReal,ΣPredicted

are covariance matrices of predicted and real latent values.

3.5.4 Supplementary Figures

Figure 3.13: R squared and FID of PerturbNet over baseline KNN model for unseen
and observed drug treatments of the sci-Plex (a) and LINCS-Drug (b)
data.

Figure 3.14: R squared and FID of PerturbNet adjusted for covariates over KNN for
30 unseen and 158 observed drug treatments in each stratum of cell type
by dose of the sci-Plex data, visualized by cell type and dose.

100



CHAPTER IV

Predicting Single-Cell Responses to Genetic

Perturbations

4.1 Introduction

Unlike chemical perturbations, whose direct gene targets are generally unknown,

genetic perturbations are designed to directly knock out or activate one or several

target genes. The genes’ activation or knockout will not only influence their own ex-

pression, but also impact other genes through a complex network of downstream gene

regulatory interactions. The Clustered Regularly Interspaced Short Palindromic Re-

peats (CRISPR) technology allows an easy design of precise genetic mutants through

genome editing (Doudna and Charpentier , 2014). More recently, CRISPR has been

combined with transcriptional activators (CRISPRa) or repressors (CRISPRi) teth-

ered to dCas9 to enable activation or inhibition of target genes. The Perturb-seq

technology combines CRISPR gene editing and single-cell RNA-sequencing (scRNA-

seq) to measure single-cell responses to pooled CRISPR screens (Dixit et al., 2016).

Perturb-seq measures cellular responses at single-cell resolution, which reveals how

cell states are impacted by genetic perturbations, and has been utilized for many

biomedical applications (Wang et al., 2015; Adamson et al., 2016; Datlinger et al.,

2017; Ursu et al., 2020; Jin et al., 2020b). However, as Perturb-seq experiments can
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only measure limited numbers of perturbation loci, while the human genome contains

about 3.2 billion nucleotides of DNA (Brown, 2018), it is not feasible to measure

single-cell responses for each potential genetic perturbation.

Various methods have been proposed to detect perturbations that have inter-

pretable effects on cellular responses to genetic perturbations. Norman et al. (2019)

used Perturb-seq data to identify genetic interaction from paired gene knockouts.

Burkhardt et al. (2021) identified perturbation effects over the cellular manifold, us-

ing graph signal processing tools. Yeo et al. (2021) proposed a generative model

using a diffusion process over a potential energy landscape to learn the underlying

differentiation landscape from time-series scRNA-seq data and to predict cellular tra-

jectories under perturbations. Linear models were also used to estimate the impact of

perturbations on high-dimensional scRNA-seq data (Dixit et al., 2016) or infer gene

regulatory networks (GRNs) from perturbations (Kamimoto et al., 2020). However,

these linear models had limited predictive power on the non-linear gene expression

profiles of perturbations and other cell state variables. The work most closely related

to ours is the compositional perturbation autoencoder (CPA) framework (Lotfollahi

et al., 2021), which generates single-cell data under perturbations based on latent

space linear models. However, as with drug treatment perturbations, CPA assumes

that the effects of genetic perturbations can be estimated independently of a basal

cell state. In addition, although CPA can make predictions on new combinations of

observed target genes, it cannot predict single-cell responses to genetic perturbations

with unseen target genes.

Therefore, in this chapter, we develop a deep generative model that predicts single-

cell responses to combinatorial genetic perturbations, including both observed and

unseen target genes. To do this, we extend the PerturbNet model using a neural

network that learns representations of genetic perturbations. Our network can embed

the two main classes of genetic perturbations: genome edits made with CRISPR/Cas9
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(Dixit et al., 2016) and gene knockdowns or activations using CRISPRi or CRISPRa

(Adamson et al., 2016). This genetic perturbation autoencoder allows us to translate

from the perturbation latent space to the cell state space, then to generate realistic

single-cell gene expression profiles from the cell state space.

4.2 Methods

We extend the PerturbNet framework to genetic perturbations by constructing an

autoencoder for the target genes in combinatorial genetic perturbations. There are

two main types of genetic perturbations. The genetic perturbations using CRISPR

activation (CRISPRa) or CRISPR interference (CRISPRi) do not change the original

DNA sequence (Norman et al., 2019). In contrast, CRISPR/Cas9 directly modifies

the DNA sequence, leading to changes in the protein-coding sequence or non-coding

regulatory sequence. A genetic perturbation can be represented by either the iden-

tities of its target genes (Dixit et al., 2016) or the final sequence induced by genome

editing. For example, Ursu et al. (2020) performed Perturb-seq to assess the impacts

of single amino acid changes in the proteins TP53 and KRAS. In this experiment,

a TP53 variant of ‘Q5R’ means that the fifth amino acid of the TP53 protein se-

quence was changed from ‘Q’ to ‘R’. We construct two types of genetic perturbation

autoencoders–one for each type of perturbation representation (target gene identities

or edited sequences).

4.2.1 Genetic Perturbations and GenotypeVAE

We first consider genetic perturbations represented by target genes. Most of the

existing methods one-hot-encode the target genes across a set of genes (Dixit et al.,

2016) or all genes on a coding sequence (Ma et al., 2018). However, this strategy

cannot generalize to perturbations with an unseen target gene.

To encode genetic perturbations, we propose a more parsimonious framework and
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refer to it as GenotypeVAE (Figure 4.1). Our key insight is that the numerous

functional annotations of each gene (organized into a hierarchy in the gene ontology)

provide features for learning a low-dimensional representation of individual genes and

groups of genes. Using gene ontology (GO) terms, we can represent each target gene

g as a one-hot vector Bg, where 1’s in the vector element correspond to a particular

term indicating that the gene has the annotation. Our approach is inspired by Chicco

et al. (2014). If we have a genetic perturbation with multiple target genes {g1, . . . , gk},

we use annotation-wise union operations to generate a one-hot annotation vector for

the genetic perturbation as follows:

Bg1,...,gk = ∪k
j=1Bgj .

Then, we can train GenotypeVAE using one-hot representations of many possible

genetic perturbations. We use the GO Consortium gene ontology annotation dataset

of human genes. This resource annotates 18,832 genes with 15,988 annotation terms

(after removing some annotations with insufficient information). We take the 15,988-

dimensional annotation vector as the input to the GenotypeVAE encoder consisting

of two hidden layers with 512 and 256 neurons, following output layers for means and

standard deviations, both with 10 neurons. The GenotypeVAE decoder also has two

hidden layers with 256 and 512 neurons, along with an output layer of 15,988 neurons

activated by the sigmoid activation function. We also have a batch normalization

layer, Leaky ReLU activation and a dropout layer with a dropout probability of 0.2

following each hidden layer of GenotypeVAE.

4.2.2 Protein Perturbations and ESM

We also extend the PerturbNet framework to predict single-cell responses to

protein-coding sequence variants. A coding variant can be uniquely represented by the
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Figure 4.1: Overview of the GenotypeVAE architecture.

protein sequence resulting from the nucleotide alterations induced by CRISPR/Cas9

editing. Similar to chemical perturbations, protein perturbations can also be sum-

marized as sequences of strings. A key difference is that each character of a protein

sequence is a naturally occurring character sequence, whereas a chemical structure

is actually a three-dimensional structure (even if it is sometimes represented as a

string).

We therefore consider a state-of-the-art language model for protein sequences.

Rather than designing our own model and training it from scratch, we employ the

previously published Evolutionary Scale Modeling (ESM, Rives et al., 2021) architec-

ture shown in Figure 4.2. ESM is a self-supervised transformer model (Devlin et al.,

2018) and was previously shown to achieve better representations and prediction

performance on protein sequences compared to other language models such as long

short-term memory (LSTM) networks. As with other transformer models (Vaswani

et al., 2017), the ESM model was pre-trained on large protein sequence datasets (Rao

et al., 2021). We adopt a pre-trained ESM model specialized for prediction of single

variant effects (Meier et al., 2021), because this application is most similar to our

scenario.

However, the representation obtained from ESM is deterministic for a given pro-
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Figure 4.2: Sketch of the ESM architecture.

tein sequence. The fixed protein representations limit the amount of training data

available for PerturbNet, especially when there is a small number of protein sequences.

We therefore add low-variance noise ϵ to the ESM representation YESM from ESM.

The final perturbation representation is thus computed as

Y = YESM + ϵ,

where ϵ ∼ N (0,σ2I). We choose the variance σ2 to be a positive constant small

enough that it does not significantly alter the relative distances between proteins in

the ESM latent space.

4.3 Experiments

We applied different prediction methods to several datasets with genetic pertur-

bation. We used the genetic CRISPR screen data to explore genetic interaction

manifolds (GI, Norman et al., 2019), LINCS data with 4,109 genetic perturbations

(Subramanian et al., 2017), genome-scale Perturb-seq data with 9499 perturbations

(GSPS, Replogle et al., 2022), as well as the Perturb-seq data with 1338 coding-
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sequence variants (Ursu, Ursu et al., 2020). The first three datasets have genetic

perturbations of target gene identities, and the Ursu dataset has genetic perturba-

tions of protein-coding sequence variants. The LINCS is a microarray dataset with

cellular measurements approximately at a single-cell resolution, and we used its sub-

set treated by genetic perturbations (LINCS-Gene) as single-cell responses. Table 4.1

summarizes the measurement information of the datasets, and we provide details of

their data preprocessing steps in Supplementary Materials Section 4.5.1.

Table 4.1: High-Throughput Gene Expression Datasets with Genetic Perturbations.

Dataset GI LINCS-Gene GSPS Ursu et al.
Source scRNA-seq Microarrays scRNA-seq scRNA-seq
Cell Lines K562 ∼100 K562 A549
Number of Measurements 109,738 442,684 1,989,373 164,931
Number of Genes 2279 978 2000 1629
Number of Perturbations 230 4109 9499 1338
Perturbation Identity Gene Gene Gene Sequence

4.3.1 PerturbNet Models Latent Representations of Genetic Perturba-

tions

We utilized the ELBO loss and trained GenotypeVAE with a learning rate of 10−4

for 300 epochs. During the training, we considered a probability of 0.5 for an iteration

with a batch of genes to be genetic perturbations with single target genes, and another

probability of 0.5 for the iteration to be used with the next batch of genes to be genetic

perturbations with double target genes. We then evaluated the GenotypeVAE latent

spaces for the genetic perturbations of the GI, LINCS-Gene and GSPS datasets. Both

GI and GSPS have integer count scRNA-seq samples, while LINCS-Gene has normally

distributed microarray samples. We therefore obtained their cellular representations

by training scVI (Lopez et al., 2018) on the GI and GSPS data, as well as VAE

on the LINCS. Figure 4.3a shows the UMAP plots of perturbation representations
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and cellular representations for the two selected genetic perturbations in each of the

three datasets. Both pairs of (KLF1/ctrl, SLC4A1/ctrl) in the GI data and (ERG,

ERBB3) in the LINCS-Gene data have very different perturbation representations

and cell state distributions. The perturbation representations of the pair of (RPL3,

PINK1) in the GSPS data show distinctive distributions, while the difference between

their cellular representations is less obvious. The perturbation representations have

meaningful mappings to the cellular representations for the GI and LINCS-Gene

datasets. The smaller difference in the cellular representation for the GSPS data

might be due to its high batch effects (Replogle et al., 2022).

Figure 4.3: UMAP plots of perturbation representations and cellular representations
(a) as well as reconstructed cellular representations (b) of three pairs of
genetic perturbations in the GI, LINCS-Gene and GSPS datasets
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We trained PerturbNet on the three datasets to recover the cellular representations

from the perturbation representations. We first partitioned the genetic perturbations

to observed and unseen perturbations for each dataset. We then used the cells with

observed perturbations to train scVI on the GI and GSPS subset, as well as to train

VAE on the LINCS-Gene subset. We then connected the GenotypeVAE latent space

and each cell latent space by training a conditional invertible neural network (cINN)

on the cells with observed perturbations. From these steps, we constructed Perturb-

Net for the three datasets. We then utilized PerturbNet to reconstruct the cell latent

values for the three pairs of genetic perturbations in Figure 4.3b. The mappings

between the perturbation representation and the cellular representation of the three

perturbation pairs were precisely modeled by PerturbNet.

4.3.2 PerturbNet Predicts Single-Cell Response to Genetic Perturbations

We predicted single-cell responses to each genetic perturbation using the baseline

KNN, random models and PerturbNet for the three datasets. Figure 4.4 shows the

performance of predicted cell samples evaluated with R squared and FID metrics

of KNN and PerturbNet over random on the GI data. Both KNN and PerturbNet

significantly outperform the random model for the 180 observed perturbations. The

two models are also significantly better than random for unseen perturbations in R

squared, but the KNN model does not have significantly lower FID than the random

model for the 50 unseen perturbations.

Figure 4.5 shows the prediction performance of KNN and PerturbNet over random

for the LINCS-Gene data. Although the KNN model does not outperform the random

model for either unseen or observed perturbations, PerturbNet has significantly lower

FID than the random model for both unseen and observed perturbations, and also

has higher R squared for the observed perturbations. The random model shows very

high R squared values (around 0.75) for the LINCS-Gene data, possibly because
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Figure 4.4: R squared and FID of KNN (a) and PerturbNet (b) over the random
model for 50 unseen and 180 observed genetic perturbations of the GI
data.

most genetic perturbations of the LINCS-Gene have small to medium perturbation

effects. We expect that, if we focus on the subset of perturbations that have some

detectable effect, the random model will be much less accurate and the PerturbNet

will outperform it.

Figure 4.5: R squared and FID of KNN (a) and PerturbNet (b) over the random
model for 400 unseen and 3709 observed genetic perturbations of the
LINCS-Gene data.
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We evaluated the three predictive models on the GSPS data (Replogle et al., 2022),

with a large number of target genes and a substantial proportion of perturbations with

very few cells. We filtered out the genetic perturbations with fewer than or equal to

100 cells before evaluating the KNN and random models. We utilized the batch

key of ‘gemgroups’ to train scVI models for PerturbNet and evaluations. Figure 4.6

shows the performance of the three models on the 802 unseen and 6859 observed

genetic perturbations with more than 100 cells of the GSPS data. Both KNN and

PerturbNet have significantly higher R squared than random for either unseen or

observed perturbations. However, neither shows better FID than random, possibly

due to complex batch effects in this large-scale scRNA-seq data (Replogle et al., 2022).

Figure 4.6: R squared and FID of KNN (a) and PerturbNet (b) over the random
model for 802 unseen and 6859 observed genetic perturbations with more
than 100 cells of the GSPS data.

We also compared the performance between KNN and PerturbNet for the three

datasets of the GI, LINCS-Gene and GSPS data (Supplementary Figure 4.12a-c).

PerturbNet shows better predictions than KNN for the observed perturbations of the

three datasets. PerturbNet also gives significantly better R squared and FID for un-
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seen perturbations of the LINCS-Gene data, and better FID for unseen perturbations

of the GI and GSPS data. However, PerturbNet does not have a significant advan-

tage in R squared over KNN for the unseen perturbations of the GI or GSPS data.

The limited number of 180 observed genetic perturbations learned in the GI data

might not extrapolate well to the 50 unseen perturbations, and the batch effects in

the GSPS data might still have a negative impact on the predictions and evaluations

of PerturbNet.

4.3.3 Fine-Tuned GenotypeVAE Improves the Performance of Perturb-

Net for Genetic Perturbations

We fine-tuned GenotypeVAE using the LINCS-Gene data following similar steps

of the ChemicalVAE fine-tuning algorithm in Algorithm 4 of Chapter III. We first

implemented the KNN algorithm on the perturbation representations of the genetic

perturbations of the LINCS-Gene. We selected the five nearest neighbors of each

perturbation, calculated the pairwise Wasserstein-2 (W2) distances between their

cellular representations and set the distances between non-neighbors as 0’s. We then

averaged the distance matrix and its transposed matrix, calculated the exponential

of their opposite values, and normalized to a unit sum for each row to obtain an adja-

cency matrix with each entry as a transition probability. We calculated the Laplacian

L from the adjacency matrix, and used it as the graph to fine-tune GenotypeVAE.

We alternated the GenotypeVAE training with a batch of genetic perturbations from

the large GO annotation dataset using the evidence lower bound (ELBO) loss and

another batch of genetic perturbations from the LINCS-Gene data using the loss as

follows:

Lossλϕ,θ = -ELBO(ϕ,θ) + λtrace(yTLgy),

where ϕ,θ were the parameters of the encoder and decoder of GenotypeVAE, and

Lg and y were the Laplacian matrix and perturbation representations of the genetic
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perturbations in the batch.

Figure 4.7 shows the R squared and FID of KNN and PerturbNet trained with

fine-tuned GenotypeVAE (λ = 0.1, 1, 5, 10, 100, 1000, 10000). By comparing the eval-

uation metrics obtained from fine-tuned KNN and PerturbNet with different λ val-

ues, we determined that λ = 1 was the optimal hyperparameter. Figure 4.8 shows

the scatter plots of R squared and FID of KNN and PerturbNet with fine-tuned

GenotypeVAE of λ = 1 over those with non-fine-tuned GenotypeVAE. Fine-tuning

GenotypeVAE significantly improves the performance of PerturbNet, especially for

observed perturbations. Somewhat surprisingly, the fine-tuning algorithm improves

only the PerturbNet, but does not significantly improve the performance of the KNN

model.

Figure 4.7: R squared and FID of KNN (a) and PerturbNet (b) with fine-tuned
ChemicalVAE across different λ values for 400 unseen and 3709 observed
genetic perturbations of the LINCS-Gene data.
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Figure 4.8: R squared and FID metrics of KNN and PerturbNet with fine-tuned Geno-
typeVAE of λ = 1 over non-fine-tuned PerturbNet for 400 unseen and
3709 observed genetic perturbations of the LINCS-Gene data.

4.3.4 PerturbNet Models Latent Representations of Protein Perturba-

tions

We evaluated the performance of PerturbNet for predicting single-cell responses to

protein-coding sequence variants. To do this, we used a Perturb-seq dataset of TP53

and KRAS variants introduced into the A549 cancer cell line (Ursu, Ursu et al.,

2020). We preprocessed the detected CRISPR guide RNA sequences to obtain a

single, complete protein sequence for each of the perturbations. We then used the pre-

trained ESM transformer model to obtain deterministic representations of the protein

perturbations. We experimented with the ESM representations by adding a small

amount of Gaussian noise. We found that a noise term sampled from N (0, 0.001I)

effectively preserves the overall distribution of ESM representations (see Figure 4.9).

We trained scVI on the whole Ursu data and obtained the cellular representations

of cells treated by a KRAS variant and a TP53 variant to visualize their mappings

from perturbation representations to cellular representations (Figure 4.10a). Both

the perturbation representations and cellular representations have distinct distribu-
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Figure 4.9: UMAP plots of ESM representations and perturbation representations for
protein perturbations of the Ursu data.

tions for the two variants. We also partitioned the perturbations of coding variants

into 1208 observed and 130 unseen perturbations. We trained scVI on the cells with

the observed perturbations and constructed the cINN translations of the Perturb-

Net using the observed perturbation representation and cellular representation pairs.

We utilized PerturbNet to reconstruct cellular representations from the perturbation

representations (Figure 4.10b). The perturbation-cellular representation mappings of

the two variants were accurately restored.

Figure 4.10: UMAP plots of perturbation representations and cellular representations
(a) as well as reconstructed cellular representations (b) for two protein
perturbations in the Ursu data.
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4.3.5 PerturbNet Predicts Single-Cell Responses to Coding Sequence

Mutations

We employed KNN and PerturbNet to predict the single-cell responses to protein

perturbations in the Ursu data. We found a large variability for the number of cells

per perturbation and small numbers of cells for a substantial proportion of variants.

We filtered the variants to those with more than 400 cells for the baseline KNN and

random models. Figure 4.11 shows the R squared and FID metrics of KNN and

PerturbNet over the random model for both filtered unseen and filtered observed

perturbations. Both KNN and PerturbNet have significantly better metric values

than the random model for either unseen or observed perturbations.

Figure 4.11: R squared and FID of KNN (a) and PerturbNet (b) over the random
model for 16 unseen and 145 observed coding variants with more than
400 cells of the Ursu data.

We also compared the performance between KNN and PerturbNet for the Ursu

data (Supplementary Figure 4.12d). PerturbNet shows better predictions than KNN

for the observed perturbations, and has better FID than KNN for the unseen per-

turbations. However, PerturbNet does not perform better than KNN for the unseen

perturbations in R squared, possibly due to their limited number (16).
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4.4 Discussion

In this chapter, we extend PerturbNet to predict single-cell responses to genetic

perturbations. We consider two types of genetic perturbations from CRISPR gene

editing experiments, including one with a set of target genes, and another with an

edited coding sequence. We develop the GenotypeVAE model to encode the first

kind of genetic perturbations with GO annotation features for the target genes. We

call the second type of genetic perturbations “protein perturbations,” and employ a

state-of-the-art transformer model (Meier et al., 2021) to encode variant sequences.

We demonstrate that both KNN and PerturbNet predict the single-cell responses to

genetic perturbations. We also fine-tune the GenotypeVAE using the LINCS-Gene

data and improve the performance of PerturbNet.

A limitation of the study is that the framework primarily focuses on predict-

ing single-cell responses to genetic perturbations in Perturb-seq data, and does not

generalize to other single-cell data. With new advances in generalizability between

Perturb-seq data and general single-cell data, future research may infer single-cell

perturbation responses for single-cell data such as the Tabula Muris compendium

(Consortium et al., 2018).

As representation learning techniques are rapidly evolving, future improvements

of genetic perturbations can be utilized for PerturbNet. For example, Van Den Oord

et al. (2017) introduced the VQ-VAE framework that learns discrete latent repre-

sentations with very strong semantic meanings. In addition, VQ-VAE can model

sequences with long term dependencies such as those in the coding variants of protein

perturbations. The GenotypeVAE model could also be extended to model the hier-

archical structure of GO terms (Ma et al., 2018), rather than simply using a one-hot

vector as we did here.
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4.5 Supplementary Materials

4.5.1 Datasets

We obtained the GO annotation dataset for proteins of homo sapiens from GO

Consortium at http://geneontology.org/docs/guide-go-evidence-codes. We

removed the annotations of three sources without sufficient information: inferred

from electronic annotation (IEA), no biological data available (ND) and non-traceable

author statement (NAS). The filtered dataset had 15,988 possible annotations for

18,832 genes.

We obtained the GI data on GEO accession ID GSE133344 (Norman et al., 2019).

Each cell was perturbed with 0, 1 or 2 target genes. We processed the GI data using

SCANPY (Wolf et al., 2018) with 109,738 cells and 2279 genes. The processed GI data

contained 236 unique genetic perturbations for 105 target genes and 11,726 cells were

unperturbed. There were 230 out of 236 genetic perturbations that could be mapped

to the GO annotation dataset. We randomly selected 50 genetic perturbations as

unseen and the other 180 perturbations as observed.

We obtained the LINCS dataset (Subramanian et al., 2017) from GEO accession

ID GSE92742. The LINCS data had been processed with 1,319,138 cells and 978

landmark genes. The LINCS-Gene subset of the LINCS data contained 442,684 cells

treated by 4371 genetic perturbations with single target genes. The 4109 out of

4371 genetic perturbations could be mapped to the GO annotation dataset, and we

randomly selected 400 genetic perturbations as unseen perturbations and the other

3709 as observed perturbations.

We used SCANPY to preprocess the GSPS data (Replogle et al., 2022) and to

select the top 2000 highly-variable genes with respect to the batches of ‘gemgroups’.

The GSPS dataset contained 1,989,373 cells treated by 9867 genetic perturbations

with single target genes. There were 9499 genetic perturbations that can be mapped
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to the GO annotation library. We randomly selected 1000 genetic perturbations as

unseen perturbations and the other 8499 as observed perturbations. There were 802

unseen and 6859 observed perturbations, each with more than 100 cells.

We obtained the Ursu data from GEO accession ID GSE161824, and filtered the

raw data according to the processed datasets and concatenated the two datasets with

KRAS variants and TP53 variants, using their common genes. We preprocessed the

concatenated data using SCANPY, containing 164,931 cells and 1629 genes. We also

collected the variants from the modifications on the original KRAS and TP53 protein

sequences. We obtained 596 KRAS sequences and 742 TP53 protein sequences, and

randomly selected 60 KRAS and 70 TP53 variants as unseen perturbations. There

were 16 unseen and 145 observed variants with more than 400 cells.

4.5.2 Neural Network Architectures

The GenotypeVAE model has two fully-connected (FC) hidden layers with 512

and 256 neurons in its encoder, and also has two FC hidden layers with 256 and

512 neurons in its decoder. Each hidden layer is followed by a batch normalization

layer, a Leaky Rectified Linear Unit (ReLU) activation and a dropout regularization

with a dropout probability of 0.2. Two other layers with 10 neurons of the encoder

generate means and standard deviations of the latent variable. An additional output

layer and a sigmoid activation in the decoder output the 15,988-dimensional one-hot

annotation vector. We adjusted different learning rates, batch size and epochs. We

finally trained GenotypeVAE on the annotation vectors of single and double target

genes from the GO annotation dataset with batch size of 128 for 300 epochs at a

learning rate of 10−4.

We utilized the pre-trained ESM model specialized for prediction of variant effects

(Meier et al., 2021) to obtain the perturbation representations of coding sequence

mutations, and trained KNN and PerturbNet models. We utilized the same cINN
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architecture and implementation in Chapter III for training PerturbNet.

For cellular VAE models, we utilized scVI version 0.7.1 with 10-dimensional latent

space and its default setting of learning rate of 10−3 and batch size of 128. We trained

scVI on the whole GI and Ursu data and their subsets with observed perturbations

for 700 epochs. We trained scVI adjusted for the batch key of ‘gemgroups’ on the

whole GSPS dataset and its subset with observed perturbations for 400 epochs. We

trained a regular VAE model with multilayer perceptron (MLP) units in Chapter III

on the LINCS-Gene data with observed perturbations with batch size of 128 and a

learning rate of 10−4 for 150 epochs.

4.5.3 Supplementary Figures
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Figure 4.12: R squared and FID of PerturbNet over KNN for unseen and observed
genetic perturbations of the GI (a), LINCS-Gene (b), GSPS (c) and
Ursu (d) data.
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CHAPTER V

Perturbation Design and Biological Discovery with

PerturbNet

5.1 Introduction

In previous chapters, we have showed that PerturbNet can successfully predict

the effects of unseen perturbations. In this chapter, we use the predictive modeling

capabilities of PerturbNet to (1) design perturbations with desired effects on cell state

and (2) discover the features of perturbations that predict their effects.

To summarize previous chapters: The PerturbNet framework has been shown to

effectively model cellular responses from perturbations. It first learns perturbation

and cellular representations independently through two powerful VAE-based models,

avoiding potential interference of unbalanced joint distribution between perturbation

and cell state of the method by Lotfollahi et al. (2020). Then, conditional invertible

neural networks (cINN) connect the perturbation representation and cellular rep-

resentation from individual cells. Therefore, the PerturbNet framework comprises

a flexible multi-stage modeling process to learn representations and their relation-

ships. The learned relationships among representations can further predict out-of-

distribution or counterfactual cellular representations and cellular responses under

various perturbations.

122



The flexibility of PerturbNet to predict out-of-distribution cellular responses pro-

vides pragmatic guidance on designing perturbations. For instance, characterizing

counterfactual profiles of a group of diseased cells to several drug treatments may

bring a potential cure for the disease or more understanding about an optimal drug

to achieve the desired responses. Additionally, CRISPR genetic perturbations usu-

ally focus on a limited set of target genes due to the time-consuming and expensive

experiments with potential side effects. The counterfactual profiles predicted by Per-

turbNet enhance the understanding of a desired genetic perturbation to shift the cell

state of a group of cells, providing potential therapeutics for genetic diseases such as

HIV. Thus, designing perturbations efficiently advances biomedical development, and

can be guided from counterfactual cell responses predicted by PerturbNet.

These counterfactual responses not only enable perturbation design, but also re-

veal key components or functions in a chemical or genetic perturbation that influence

the cell state. Estimating counterfactual responses is a fundamental problem and has

numerous implications for understanding the heterogeneous effects of drugs (Shalit

et al., 2017; Alaa and van der Schaar , 2017). In these studies, some measurable

quantitative trait serves as the potential outcome variable, and the heterogeneous

effects are quantified and interpreted by individual treatment effect (ITE), which is

the difference between the mean outcomes of a perturbation of interest and a baseline

perturbation. High-dimensional single-cell responses, however, possess complex cel-

lular information, and ITE does not uncover the underlying perturbation effects on

the cell state. As a single-cell expression profile defines its cell state, understanding

single-cell profiles of perturbations directly enables interpreting perturbation effects.

Furthermore, PerturbNet’s ability to predict cell states from perturbation features

(atoms or gene ontology terms) provides an opportunity to hone in on mechanisms

by implicating specific perturbation features. Recent developments in explainable

artificial intelligence (XAI, Gilpin et al., 2018) have improved the transparency of
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model details and reasoning. Many model interpretability methods for neural net-

works can attribute classification decisions to certain key features of the input data

(Shrikumar et al., 2016, 2017; Selvaraju et al., 2017; Mudrakarta et al., 2018). These

model interpretability methods usually involve interpreting the features of an input

tensor compared to a baseline tensor in terms of their effects on the outcome of a

neural network classifcation model (Kokhlikyan et al., 2020). In the context of our ap-

plication, these interpretability methods enable us to determine which input features

make cells more likely to be in a particular cell state.

In this chapter, we use the counterfactual prediction capability of PerturbNet to

design optimal perturbations that achieve desired effects. We consider a group of real

cells treated by some perturbation, and we aim to learn an alternative perturbation

that can translate these cells to approximate a desired cell state. To achieve the cell

state translation, we utilize PerturbNet to extract the residual representation from

pairs of perturbation and cellular representations, and to predict the counterfactual

cellular representation under another perturbation. We propose two algorithms to

design perturbations that optimally translate cells from the starting cell state to the

desired cell state.

In addition, we interpret our predictive model to implicate key perturbation fea-

tures that influence cell state distributions. We employ the method of integrated

gradients to determine, for each input feature, whether the presence of the feature

increases or decreases the probability of cells being in a particular state. We also

interpret the attributions of the optimal chemical perturbation in the optimal trans-

lations. Finally, we identify GO terms that contribute greatly to the formation of

different cell state distributions between two genetic perturbations.
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5.2 Methods

5.2.1 Optimal Perturbation Design

Consider a starting cell state with latent space values τ1(Z), and a target cell

state with latent space values τ2(Z). We want to find a perturbation that changes

the cells in the starting cell state to the target cell state. From PerturbNet trained

with single-cell perturbation responses, we can obtain the encoded representations for

m cells in the starting cell state with the latent values {z1, . . . ,zm} ∼ τ1(Z). Each

starting cell is originally treated with a perturbation. For simplicity, we assume that

these cells are treated with the same perturbation g1. The target cell state can be

represented by the latent values of n cells {zm+1, . . . ,zm+n} ∼ τ2(Z). The optimal

translation task thus aims to find an alternative perturbation g∗ for the starting cells

to change their cell state to be close to τ2(Z).

As PerturbNet translates perturbation representation Y and residual represen-

tation V to cellular representation Z, we can predict the counterfactual cell state

under a new perturbation for each cell with two translation procedures. Denote

cINN forward translation as f(·), B1 as the perturbation matrix of the starting per-

turbation g1 and the perturbation encoder as h(·). First, we obtain residual values

{v1, . . . ,vm} with the inverse translation function vi = f−1(zi | yi) with perturbation

representation yi = h(B1). The translation function then gives each cell’s counter-

factual cellular representation zi,∗ = f(vi | y∗) under an alternative perturbation’s

representation value y∗. We therefore seek the translated counterfactual cell state

{z1,∗, . . . ,zm,∗} ∼ τ∗(Z) to have a similar distribution to {zm+1, . . . ,zm+n} ∼ τ2(Z).

5.2.2 Continuous Optimal Translation

We devise a method to design a perturbation representation y∗ that shifts the cells

in the starting cell state to approximate the target cell state. To quantify the differ-
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ence between the cell state distributions, we use Wasserstein distance, which has been

widely used to quantify cell populations’ distance (Schiebinger et al., 2019; Crowley

et al., 2020; Demetci et al., 2020). We use Wasserstein-2 (W2) distance (Vaserstein,

1969), which is also known as Fréchet distance, to quantify the dissimilarity between

the cell state distributions of τ2(Z) and τ∗(Z). The W2 distance is defined as

d{τ2(Z), τ∗(Z)} =

{
inf

γ∈Π(τ2,τ∗)
E(Z2,Z∗)∼γ ∥Z2 −Z∗∥2

}1/2

,

where Π(τ2, τ∗) is the set of all joint distributions γ(Z2,Z∗) whose marginal distribu-

tions are τ2(Z) and τ∗(Z), respectively.

Evaluating the W2 distance is extremely difficult for general distributions. To

simplify the calculations of the W2 distance, we assume that latent spaces follow

multivariate Gaussian distributions (Dowson and Landau, 1982; Heusel et al., 2017),

which is also commonly assumed in calculating Fréchet inception distance (FID)

in image data (Heusel et al., 2017). Assuming that the latent space τi(Z) has a

multivariate Gaussian distribution N (µi,Σi) for i ∈ {2, ∗}, the squared W2 distance

has a closed form:

d2{τ2(Z), τ∗(Z)} = ∥µ2 − µ∗∥22 + trace{Σ2 + Σ∗ − 2(Σ2Σ∗)
1/2}. (5.1)

Therefore, we can evaluate the squared W2 distance between the translated coun-

terfactual cell state and the target cell state as d2[{zm+j}nj=1, {zi,∗}mi=1]. The problem

of designing a desired perturbation is then to find the optimal y∗
opt that minimizes

the squared W2 distance:

y∗
opt = arg min

y∗
d2

[
{zm+j}nj=1, {zi,∗}mi=1

]
.

We can further infer the optimal perturbation from representation y∗
opt. Figure 5.1
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summarizes the procedure to design the optimal perturbation using PerturbNet.

Figure 5.1: Overview of the translation optimization.

Based on the objective above, we propose what we refer to as “continuous optimal

translation.” We first initialize a value for y∗
opt from the standard multivariate Gaus-

sian distribution and then we perform stochastic gradient descent with momentum

(Kingma and Ba, 2014) to minimize the squared W2 loss over y∗
opt. One important

implementation detail concerns the calculation of the W2 distance. The distance

formula includes the term (Σ2Σ∗)
1/2, which is difficult to calculate and can become

ill-conditioned or approximately singular. We thus rewrite the term as

C2,∗ = Σ
1/2
2

(
Σ

1/2
2 Σ∗Σ

1/2
2

)1/2

Σ
−1/2
2 ,

which allows us to replace the difficult term with C2
2,∗ as C2

2,∗ = Σ2Σ∗.

We use the Adam optimizer to perform stochastic gradient descent with momen-

tum. For the matrix square root terms in C2,∗, Σ
1/2
2 keeps a fixed value during

training, and Σ
1/2
2 Σ∗Σ

1/2
2 is much more likely than the original term Σ2Σ∗ to be

symmetric positive semi-definite and have a square root matrix. After the continuous

optimization, we obtain an optimal perturbation representation y∗
opt that represents

a potential perturbation that achieves the desired shift in cell state distribution.
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5.2.3 Discrete Optimal Translation

The continuous optimal translation model can give an optimal perturbation rep-

resentation y∗
opt that translates the starting cells to have a similar cell state to τ2(Z).

If the real cells in the target cell state {zm+1, . . . ,zm+n} ∼ τ2(Z) are treated by a per-

turbation g2, we can compare it with the fitted optimal perturbation representation

y∗
opt to evaluate if the optimal perturbation representation can achieve the desired

cell state shift like the perturbation g2.

However, the chemical or genetic perturbation from the optimal perturbation rep-

resentation of a continuous optimal translation is not immediately clear, as an infer-

ence model needs to be processed on the perturbation representation. Although it is

possible to employ the perturbation generative model to generate chemical or genetic

perturbations, doing so brings a host of additional challenges related to molecular

structure optimization (Gómez-Bombarelli et al., 2018), which is not the focus of this

dissertation.

To design the optimal perturbation to achieve the desired cell state shift, we

propose another perturbation design strategy that uses discrete optimization. Rather

than optimizing the squared W2 loss in the continuous space, the discrete optimal

translation searches through a constrained set G of perturbations, and calculates

the squared W2 distance d2[{zm+j}nj=1, {zi,∗}mi=1] for each perturbation g ∈ G with

y∗ = h(Bg). Then the optimal perturbation is selected as the one giving the smallest

distance so that

g∗opt = arg min
g∈G

d2[{zm+j}nj=1, {zi,∗}mi=1].

This discrete optimal translation strategy gives both the optimal perturbation repre-

sentation y∗
opt to achieve the desired translation, and also the optimal perturbation

g∗opt. If the cells in the target latent space are treated by a perturbation, we can

evaluate if the optimal perturbation g∗opt matches the one for the target latent space.
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5.2.4 Model Interpretation Using Integrated Gradients

As we connect perturbation and cell state in PerturbNet, we can interpret how a

perturbation changes the cell state distribution by predicting cellular representations

using PerturbNet. We can further interpret the effects of features and components of

the perturbation with the state-of-the-art XAI methods. Denote F (·) as a function

taking input feature vector T = (T1, . . . , Tn)T ∈ Rn to generate output in [0, 1]. Then

its attribution is a vector A = (a1, . . . , an)T and each value ai is the contribution of

Ti to the prediction of F (T ).

Previous attempts to interpret neural network models have focused on gradients

(Baehrens et al., 2010; Simonyan et al., 2013) and back-propagation (Shrikumar et al.,

2016, 2017). We use the method of integrated gradients (Sundararajan et al., 2017),

which has been applied to interpret deep learning models across a range of domains,

including computational chemistry (McCloskey et al., 2019). The attribution score

of the integrated gradients method for the ith dimension of input T is defined as

ai = (Ti − T0,i)

1∫
α=0

∂F{T0 + α(T − T0)}
∂Ti

dα,

where T0 = (T0,0, . . . , T0,n)T is a baseline input.

A prediction neural network model on cellular representation can be formulated

from PerturbNet as Z = f(V | Y ) and Y = h(B). The input T can be formulated

as (V T ,Y T )T or (V T ,BT )T . In addition, a classification neural network model on

Z provides a classification score within [0, 1]. We can then find input features that

increase the probability of generating cells in a particular cell state.
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5.3 Experiments

5.3.1 Continuous Optimal Translation for Perturbation Representations

We performed continuous optimal translation on the chemical perturbations of

the sci-Plex and LINCS-Drug datasets. For PerturbNet trained on sci-Plex without

adjusting for cell state covariates, we used the latent values of cells treated by S1172

as the starting latent space, and considered the target latent space as the latent

values of each of the 158 observed drug treatments. For the LINCS-Drug dataset,

we also fixed a drug treatment as the starting perturbation and used each of the 200

selected observed drug treatments as the target perturbation. For each translation

on the two datasets, we trained the continuous optimization algorithm for 600 epochs

to obtain the optimal perturbation representation. As the cells of the target latent

space are also treated with a perturbation, we also evaluated the translation using

the perturbation representation of the target perturbation.

The target perturbation, however, does not necessarily translate the cells in the

starting latent space to overlap with the target latent space. Figure 5.2a shows a

translation example to translate the cells treated by S1007 to a target latent space

using the target perturbation S1628. As can be seen, the translated counterfactual

latent values from S1007 to S1628 have a distinct distribution from the latent values

of real cells treated by S1628. This distinction is due to the fact that the residual

representation V of the real cells treated by S1007 is different from that of S1628, and

therefore a translation of S1007 cells using S1628 potentially gives a different latent

distribution. Thus, the target perturbation might not perform well in translating the

starting latent space to approximate the target latent space, and might even enlarge

the original distance between the two latent spaces.

Figure 5.3 shows the continuous optimal translations for the sci-Plex and LINCS-

Drug datasets. For simplicity, we named squared W2 distance and W2 distance in-
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Figure 5.2: a UMAP plots of latent values of cells treated by S1007, their translated
latent values to treatment S1628, and latent values of real cells treated
by S1628 in the sci-Plex data. b Diagram of evaluation measures for
a continuous optimal translation experiment. c Diagram of evaluation
measures for a discrete optimal translation experiment.
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terchangeably, both corresponding to the form in Equation (5.1). Figure 5.2b shows

the evaluation measures for each continuous optimal translation experiment. We cal-

culated the W2 distances between the target latent space and the translated latent

space, using either the fitted perturbation representation (d1,∗,2) or the target pertur-

bation representation (d1,2,2). We then normalized the two distances by the original

W2 distance between the starting latent space and target latent space (d1,2), and

called them normalized fitted W2 distance and normalized target W2 distances. A

normalized W2 distance smaller than 1 means that the translation reduces the original

distance between the two latent spaces. We show the scatter plots of the normalized

fitted W2 and normalized target W2 for the sci-Plex (Figure 5.3a) and LINCS-Drug

(Figure 5.3b) data. We found that 99.4% of the translations using either fitted or

target perturbation effectively reduced the original latent distances for sci-Plex data.

The fitted perturbation representation has an overall close performance to the tar-

get perturbation. For the LINCS-Drug data, the target perturbation can shrink the

original latent distances in 67.5% of the 200 translations, while the fitted perturba-

tion representations have a better performance to shrink the distance in 88% of the

translations. For translations shrinking the original latent distance from both target

representation and fitted representation, the fitted representation can sometimes per-

form better than the target perturbation (Figure 5.3b). This means that the target

perturbation is possibly not optimal to reduce the latent distances, and the contin-

uous optimal translation algorithm provides a better perturbation representation to

achieve the latent approximation.

We also plot the percentiles of the fitted W2 (d1,∗,2 in Figure 5.2b) and target W2

(d1,2,2 in Figure 5.2b) in the distribution of W2 distances between the target latent

space and the 2000 translated latent spaces across the 200 translations (d1,g,2 in Fig-

ure 5.2b) for the sci-Plex (Figure 5.3c) and LINCS-Drug (Figure 5.3d) data. Both

the fitted and target perturbations tend to give W2 percentiles of 0’s for the sci-Plex
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Figure 5.3: Continuous optimal translations of the sci-Plex and LINCS-Drug data. a
Scatter plot of normalized fitted W2 and normalized target W2 for 158
continuous optimal translations of the sci-Plex data. b Scatter plot of
normalized fitted W2 and normalized target W2 for 200 continuous op-
timal translations of the LINCS-Drug data. c Scatter plot of fitted W2
percentile and target W2 percentile for 158 continuous optimal transla-
tions of the sci-Plex data. d Scatter plot of fitted W2 percentile and target
W2 percentile for 200 continuous optimal translations of the LINCS-Drug
data. e Histogram of the W2 distances between the target latent space
of S1628 and the translated latent space from cells treated by S1172 to
each of the 158 observed drug treatments, along with fitted W2, target
W2 and their percentiles in the histogram. f Histogram of the W2 dis-
tances between the target latent space of a target drug treatment and the
translated latent space from the cells treated by a starting drug treatment
to each of the 2000 sampled observed drug treatments, along with fitted
W2, target W2 and their percentiles in the histogram.

translations, while LINCS-Drug has small percentile values for fitted W2 but vary-

ing target W2 percentiles. The LINCS-Drug dataset has many more perturbations

than the sci-Plex and most of the perturbations have small numbers of cells. As a

result, the starting and target latent spaces of LINCS-Drug might possess an overall
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larger difference in their residual representations, and the translation using the target

perturbation possibly does not perfectly approximate the target latent space.

To evaluate how well the fitted perturbation representation translates the starting

latent space to approximate the target latent space in a translation, we computed the

W2 distances between the target latent space and a translated latent space using each

of the available perturbations (d1,g,2 in Figure 5.2b). Figure 5.3e shows a translation

example with the histogram of W2 distances for the translation from the starting

perturbation of S1172 to the target perturbation of S1628, where the translations

using both the fitted perturbation representation (d1,∗,2 in Figure 5.2b) and the target

drug treatment S1628 (d1,2,2 in Figure 5.2b) have W2 distances smaller than almost

all of the W2 distances between the target latent space and the translated latent space

via the 158 observed drug treatments. For the LINCS-Drug data, we also randomly

sampled 2000 observed drug treatments to compute the distribution of W2 distances

between the target latent space and the translated latent space, and show a translation

example in Figure 5.3f. Of the 2000 translations, 28.6% have W2 distances smaller

than the target W2, and none of the 2000 translations has a W2 distance smaller

than the fitted W2.

5.3.2 Discrete Optimal Translation for Optimal Perturbation Selections

We performed discrete optimal translations on the sci-Plex and LINCS-Drug data

to select the optimal drug treatment to translate a starting latent space to approx-

imate a target latent space. For the sci-Plex, we randomly selected 10 observed

drug treatments as the set of starting perturbations and considered the 158 observed

drug treatments as the set of target perturbations. We implemented the discrete

optimal translation algorithm on each pair of a starting and target perturbations,

with evaluation measures for each discrete optimal translation experiment shown in

Figure 5.2c. Figure 5.4 shows the 1580 discrete optimal translations of the sci-Plex
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data. The normalized fitted W2 (d1,∗,2/d1,2) and normalized target W2 (d1,2,2/d1,2)

are overall the same, both shrinking the original latent distance in around 99.5% of

the translations. Because the starting latent space and target latent space in each

translation might possess different distributions of residual representation V , we also

computed the W2 distances of residual V ’s between the two latent spaces across the

1580 translations, and categorized the W2 distances to three tertiles (Figure 5.4b).

Most of the translations are with the smallest tertile of residual distance (V Distance

1) and do not show an obvious difference from the translations with other tertiles in

their normalized fitted and target W2 distances. We also trained a KNN algorithm

on the observed treatments and evaluated the nearest neighbor index of the target

perturbation g2 to the fitted perturbation g∗ in each translation. We show KNN

indices of the target perturbation to the fitted perturbation in Figure 5.4c and also

computed the percentile of the W2 distance between the latent spaces of real cells

treated by the target and the fitted perturbations (d∗,2) in the distribution of dg,2,

the W2 distances between the target perturbation and other perturbations (Figure

5.4d). Of the 1580 translations, 82.5% were selected with the target perturbation

as the fitted perturbation, whose KNN indices and W2 distances were 0’s. Figure

5.4e shows a discrete optimal translation example with the W2 distances between

the target latent space of cells treated by S1703 and the translated latent space from

a starting perturbation of S1515, using each of the 158 observed drug treatments

(d1,g,2). The fitted W2 (d1,∗,2) has the smallest W2 among all the translations and

0.6% of the translations have smaller W2 distances than the target W2 (d1,2,2).

We also considered translation optimizations of the sci-Plex data in each cell type

by dose stratum, and employed the PerturbNet adjusting for cell state covariates

to perform the discrete optimal translations between each pair of the 10 starting

perturbations and the 158 target perturbations. Figure 5.5a-c show the normalized

fitted W2 and normalized target W2 of the 18,960 translations by cell type, dose and
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Figure 5.4: Discrete optimal translations of the sci-Plex data. a Scatter plot of nor-
malized fitted W2 and normalized target W2 for 1580 discrete optimal
translations. b Scatter plot of normalized fitted W2 and normalized target
W2 for the 1580 discrete optimal translations by residual distance tertile.
c Histogram of KNN indices of target perturbation to fitted perturba-
tion for 1580 discrete optimal translations. d Histogram of percentiles of
W2 distances between the latent spaces of the real cells treated by fitted
perturbation and target perturbation in the distribution of the W2 dis-
tances between the latent spaces of the real cells treated by the target
perturbation and other perturbations across the 1580 discrete optimal
translations. e Histogram of the W2 distances between the target latent
space of S1703 and the translated latent space from the cells treated by
S1515 to each of the 158 observed drug treatments, along with fitted W2,
target W2 and their percentiles in the histogram.

residual W2 distance tertile. The comparison between the normalized fitted W2 and

normalized target W2 remains similar across different cell types or doses. Most of the

translations have residual distances in the smallest tertile (V Distance 1), while the

translations with residual distances in the second tertile tend to have smaller fitted

W2 than target W2. Around 29.3% of the translations select the target perturbation

as the fitted perturbation (Figure 5.5d-e). Finally, as an example, Figure 5.5f shows

the histogram of the W2 distances between the target latent space of S1315 and the

translated latent space from a starting drug treatment of S1122 to each of the 158
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observed drug treatments with cell type K562 and dose 10. The fitted W2 has a

much better performance than the target W2 that is larger than around half of the

translations.

Figure 5.5: Stratified discrete optimal translations of the sci-Plex data. a-c Scatter
plot of normalized fitted W2 and normalized target W2 for 18,960 dis-
crete optimal translations by cell type, dose and residual distance tertile.
d Histogram of KNN indices of target perturbation to fitted perturbation
for 18,960 discrete optimal translations. e Histogram of percentiles of
W2 distances between the latent spaces of the real cells treated by fitted
perturbation and target perturbation in the distribution of the W2 dis-
tances between the latent spaces of the real cells treated by the target
perturbation and other perturbations across the 18,960 discrete optimal
translations. f Histogram of the W2 distances between the target latent
space of S1315 and the translated latent space from the cells treated by
S1122 to each of the 158 observed drug treatments with cell type K562
and dose 10, along with fitted W2, target W2 and their percentiles in the
histogram.

We previously sampled 200 observed drug treatments from the LINCS-Drug data

for continuous optimal translations, and these perturbations had small numbers of

cells (< 200). Thus, we selected another five drug treatments with relatively large

numbers of cells (> 1000). We utilized the five drug treatments and another two drug

treatments in the previous 200 treatments as the set of starting perturbations. We
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considered the combined set of 205 drug treatments as the set of target perturbations.

Figure 5.6a shows the normalized fitted W2 and normalized target W2 by whether

both the starting and target perturbations have large numbers of cells (> 1000). The

translations with large numbers of cells tend to give close normalized fitted W2 and

normalized target W2. Figure 5.6b shows the normalized fitted W2 and normalized

target W2 by residual distance tertile, and most of the translations have small to

medium residual distances. Only 5.3% of the 1435 translations select the target per-

turbation as the fitted perturbation (Figure 5.6c), and the latent W2 distance from

target perturbation to the fitted perturbation is likely to be smaller than distances

from the target perturbation to other perturbations (Figure 5.6d). Figure 5.6e shows

a discrete optimal translation example between two drugs in LINCS-Drug, where the

fitted perturbation is different from the target perturbation, and the fitted pertur-

bation gives a percentile close to zero in the histogram of W2 distances between the

target latent space and translated latent space using each of the 205 drug treatments,

while the target W2 is larger than around 60% of the W2 distances.

Figure 5.7 shows the UMAP plots of starting latent space, target latent space and

translated latent spaces of a stratified discrete optimal translation example of the sci-

Plex data. The starting latent space of K562 cells treated by S1122 with dose 100 has

a different latent distribution from that of the K562 cells treated by S2692 with dose

100. The starting latent space changes slightly after being translated to latent spaces

using the target treatment S2692 or the fitted treatment S2736. Based on the W2

distance, the translated latent space using the fitted perturbation S2736 is closer to

the target latent space than the one using the target perturbation. Figure 5.8 shows

an discrete optimal translation example for the LINCS-Drug data. The cells treated

by the starting perturbation G1 are translated to different latent distributions using

the fitted perturbation G3 and the target perturbation G2. The translated latent

distribution using the fitted perturbation G3 is closer to the target latent space, and
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Figure 5.6: Discrete optimal translations of the LINCS-Drug data. a Scatter plot of
normalized fitted W2 and normalized target W2 for 1435 discrete optimal
translations. b Scatter plot of normalized fitted W2 and normalized tar-
get W2 for 1435 discrete optimal translations by residual distance tertile.
c Histogram of KNN indices of target perturbation to fitted perturbation
for 1435 discrete optimal translations. d Histogram of percentiles of W2
distances between the latent spaces of the real cells treated by fitted per-
turbation and target perturbation in the distribution of the W2 distances
between the latent spaces of the real cells treated by target perturbation
and other perturbations across the 1435 discrete optimal translations. e
Histogram of the W2 distances between the target latent space of a drug
treatment and the translated latent space from the cells treated by a start-
ing drug treatment to each of the 205 observed drug treatments, along
with fitted W2, target W2 and their percentiles in the histogram.

differs from the real latent distribution treated by the fitted perturbation G3.

5.3.3 Perturbation Attributions of Cell States for Atomic Scores

We utilized the model interpretability method of integrated gradients to interpret

how a perturbation shapes a cell state. We performed k-means clustering on the

latent values of VAE trained on the LINCS-Drug data. We calculated the average

silhouette widths for a range of cluster numbers, and identified 20 as the optimal

number of clusters (Figure 5.9a-b). We trained a neural network model to classify
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Figure 5.7: UMAP plots of latent values of K562 cells treated by the starting per-
turbation S1122 with dose 100, target perturbation S2692 with dose 100,
fitted perturbation S2736 with dose 100, as well as translated latent val-
ues from K562 cells treated by S1122 with dose 100 to S2736 and S2692.

latent values into each of these 20 clusters. We then interpreted the features of

a chemical perturbation in contributing to the probability of generating cells in a

particular cluster.

We utilized an observed drug treatment G1 in the LINCS-Drug dataset and also

selected a random observed drug treatment G0. We employed both G1 and G0 with

the same sampled V from the standard normal prior distribution to translate to cel-

lular representations, which we further treated as inputs to the latent classifier model

to obtain their probabilities of being classified to a cluster. We used the integrated

gradients method to interpret the attributions of features of G1 to contribute to the

probability of generating cells in a latent cluster based on the baseline input G0. Fig-

ure 5.10 summarizes the model interpretation procedure on a perturbation to impact
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Figure 5.8: UMAP plots of latent values of cells treated by the starting perturbation
G1, target perturbation G2, fitted perturbation G3, as well as translated
latent values from cells treated by G1 to G3 and G2.

the formation of a latent cluster. We replicated this model interpretation procedure

3000 times with a fixed G1 and a random G0 in each replication, and then averaged

the attributions of G1 across the replications.

After we obtained the average feature attributions of G1 for each cluster, we

utilized the SimilarityMaps package (Riniker and Landrum, 2013) to visualize the

molecular structure of G1 with its atoms colored by their attributions. We provide

details of implementing SimilarityMaps for plotting molecular structures in Supple-

mentary Materials Section 5.5.1. We utilized four clusters of the LINCS-Drug data

(Figure 5.9c) with test-set accuracy values of {99.78%, 99.86%, 99.93%, 99.97%}

from the classification model. Figure 5.9d shows the annotated molecular structures

of G1 for the four latent clusters. The atomic attributions show atoms that increase

the probability of generating a particular cell state cluster (green) or decrease the
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Figure 5.9: Model interpretation of the chemical perturbation G1 for latent clustering
of the LINCS-Drug data. a UMAP plot of latent values. b UMAP plot of
latent values by cluster label assigned by k-means clustering with k = 20.
c UMAP plots of latent clusters 4, 11, 16 and 20. d Molecular structures
of G1 colored by atomic attributions to the formations of latent clusters
4, 11, 16 and 20.
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Figure 5.10: Overview of Interpreting Perturbations for Latent Clustering.

probability (red). The atoms of G1 have varying contributions to the probabilities of

generating cells in different clusters.

5.3.4 Perturbation Attributions of Cell States for Gene Ontology Scores

We also performed a similar analysis with genetic perturbations. We utilized the

integrated gradients method to determine the gene ontology terms that contribute to

the probability of generating a particular cell state cluster. As with the drug data,

we performed k-means clustering on the latent values of VAE trained on the LINCS-

Gene data, calculated the average silhouette widths for a range of cluster numbers,

and identified 20 as the optimal number of clusters (Figure 5.11a-b). We also trained

a neural network model to classify latent states into each of these clusters. Following

the model interpretation procedure in Figure 5.10, we determined the features of a

genetic perturbation that increased or decreased the probability of generating latent

cell states classified as a particular cluster.

We selected an observed genetic perturbation (knockdown of the gene ‘ERG’) and

a random observed genetic perturbation as input and baseline. We also replicated the

interpretation 3000 times and averaged the attributions across these replications. We

then mapped the attributions to the specific GO terms with which ERG is annotated.
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We show the UMAP plots of two latent clusters 9 and 17 whose test-set accuracy

values are {99.91%, 99.89%} from the classification model (Figure 5.11c), and the

GO terms with the 10 highest attributions for the two clusters (Figure 5.11d). The

two annotations for DNA binding (‘GO:0001228’ and ‘GO:0003677’) of the ERG gene

have the highest attributions to generate latent values in cluster 9 and 17. These

two annotations are present in 5.1% and 6.2% of the baseline genetic perturbations,

respectively.

We further visualized the attributions of the GO annotations of ERG in biological

process, molecular function and cellular component following a similar procedure

to the GO enrichment analysis conducted in Lu and Welch (2022). We performed

multidimensional scaling of the GO terms and plot GO terms as circles with both

color and size indicating the attribution values (Figure 5.12). Some GO terms are

related to the transcription factor activity of ERG, as shown by the DNA-binding

annotations with high attributions in Figure 5.11d.

We also evaluated the attributions of GO terms of ERG for the latent clusters

1 and 5 whose test-set accuracy values are {99.96%, 99.97%} from the classification

model in Supplementary Figure 5.18a. The protein serine kinase/threonine activity

annotation of ‘GO:0004674’ is not an annotation of ERG but is present in 8.9% of

the baseline perturbations. This annotation gives a negative contribution to generate

latent values in cluster 1. The DNA-binding transcription activator activity annota-

tion of ‘GO:0001228’ is only in 5.1% of the baseline perturbations and is the most

important annotation for ERG to the formation of cluster 5 (Supplementary Figure

5.18b). The plots of GO terms also reflect the transcription factor activity of ERG

for cluster 1 and 5 (Figure 5.18c).
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Figure 5.11: Model interpretation of the genetic perturbation ‘ERG’ for latent clus-
tering of the LINCS-Gene for clusters 9 and 17. a UMAP plot of latent
values. b UMAP plot of latent values by cluster label assigned by k-
means clustering with k = 20. c UMAP plots of latent clusters 9 and
17. d Bar plots of the 10 highest attributions of GO annotations colored
by being in ERG or not, with percentages in baseline perturbations for
clusters 9 and 17.

5.3.5 Perturbation Attributions for Optimal Translations

We used the integrated gradients method to interpret the discrete optimal trans-

lations we performed in Section 5.3.2 above. We calculated the attributions of fitted

and target perturbations, compared to a baseline perturbation. We selected three

scenarios of discrete optimal translations of sci-Plex with different fitted and target
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Figure 5.12: Plots of GO terms from the attributions of the genetic perturbation with
target gene ERG for forming latent clusters 9 and 17, showing biological
process, molecular function and cellular component.

perturbations in Table 5.1. For each selected optimal translation, we have a starting

latent space with cells of a certain cell type treated by a starting perturbation at a

certain dose, as well as a target latent space with cells of the same cell type and dose

but a different perturbation. The fitted perturbation is the optimal perturbation ob-

tained in discrete optimal translations, and Figure 5.14a shows the normalized fitted
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W2 and normalized target W2 of the three selected scenarios of the sci-Plex. We

trained a neural network model on the latent values in the starting and target latent

spaces to classify cell state to the target latent space with test-set accuracy values

being {56.76%, 69.23%, 98.81%}. We then interpreted a perturbation to translate to

the target cell state using the V ’s from the starting latent space. Figure 5.13 shows

the model interpretation procedure for discrete optimal translations. This model in-

terpretation procedure evaluates the performance of a perturbation to translate the

cells in the starting latent space to approximate the target latent space in a transla-

tion. We interpreted the perturbation features of the one-hot matrix B and of the

perturbation representation Y .

Table 5.1: Selected Scenarios of Discrete Optimal Translations of the sci-Plex and
LINCS-Drug data.

Dataset Notation Start Cell Type Dose Target Fitted Accuracy
S1 S1180 A549 10 S2219 S7634 56.76%

sci-Plex S2 S1122 K562 100 S2692 S2736 69.23%
S3 S1515 MCF7 10000 S7605 2806 98.81%

LINCS-Drug Scenario G1 — — G2 G3 86.36%

Figure 5.13: Overview of Interpreting Perturbations for Optimal Translations.

For each of the three selected sci-Plex scenarios {S1, S2, S3}, we interpreted the

input and baseline pairs of {Target, Start}, {Fitted, Start} and {Fitted, Target}.
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We obtained the average feature attributions of one-hot matrix B or perturbation

representation Y of fitted and target perturbations. Figure 5.14b shows molecular

structures of fitted and target perturbations colored by their atomic attributions

based on the starting perturbation, along with their structures colored by fitted-

target atomic attributions.

For each scenario, the fitted perturbation has some similar components as the

target perturbation, and they possess different atomic scores to translate the starting

cell state to the target cell state. Both S2 and S3 show that the fitted and target

perturbations have some atoms with positive attribution scores based on the starting

perturbations and have their atomic scores attenuated or diminished when compared

with each other. This phenomenon reflects the fact that the target and fitted per-

turbation have similar performances in shrinking the original latent distances for S2

and S3 in Figure 5.14a. The attenuation of atomic scores of fitted and target per-

turbations of S1 is less obvious, as its fitted perturbation outperforms the target

perturbation in shrinking the latent distance. Figure 5.14c shows the interpretation

of the feature attributions for optimal translations on perturbation representations

Y . In each scenario, the target and fitted perturbations have distinctive attributions

of perturbation representations based on the starting perturbation. However, the at-

tributions of the fitted perturbation compared with the target perturbation in each

scenario show that each dimension diminishes in magnitude, especially for S3, whose

translations using the fitted and target perturbation both effectively approximate the

target latent space. The attributions comparing the fitted and target perturbation of

S2 have also been slightly shrunk, while those of S1 do not change significantly.

We also interpreted one scenario of the discrete optimal translations for the

LINCS-Drug data, as shown in Table 5.1. The classification model gave the test-

set accuracy of 86.36%. The fitted perturbation G3 has a slightly better performance

in shrinking the original latent distance than the target perturbation G2 (Figure
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Figure 5.14: Model interpretation for three discrete optimal translations of the sci-
Plex. a Scatter plot of normalized fitted W2 and normalized target
W2 for 18,960 discrete optimal translations and three selected scenar-
ios. b Molecular structures of fitted and target perturbations colored by
atomic attributions to translate the starting latent space to the target
latent space for each of the three scenarios. c Bar plots of attributions of
perturbation representations of fitted and target perturbations to trans-
late the starting latent space to the target latent space for each of the
three scenarios.

5.15a). Figure 5.15b shows that when G1 serves as the baseline perturbation, the

fitted perturbation G3 has overall higher attributions of perturbation representation

than target perturbation G2. It also shows that G2 attenuates the attributions of

G3. The molecular structure of G3 has more atoms than G2 to show positive attri-

butions to translate the starting latent space to the target latent space, with G1 as

the baseline perturbation (Figure 5.15c).

149



Figure 5.15: Model interpretation for a discrete optimal translation of the LINCS-
Drug. a Scatter plot of normalized fitted W2 and normalized target
W2 for 1435 discrete optimal translations and the selected scenario. b
Bar plots of attributions of perturbation representations of fitted and
target perturbations to translate the starting latent space to the target
latent space for the scenario. c Molecular structures of fitted and target
perturbations colored by atomic attributions to translate the starting
latent space to the target latent space for the scenario.

5.3.6 Perturbation Attributions of Genetic Perturbations for Shifting

Cell State Distributions

We also interpreted the attributions of the features of a genetic perturbation to

forming its cell state distribution, compared to the cell state distribution of another

perturbation. We selected three pairs of genetic perturbations including {(ERG,
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ERBB3), (ERBB3, KRAS), (KRAS, ERG)} in Figure 5.17a. We denoted each pair

as (G0, G1), and trained a neural network model on the latent values of cells treated

by G0 or G1 to classify their cell state to latent space of G1. We utilized G1 and G0 to

translate the cells treated by G0 to new cell state, and then obtained probabilities of

being classified as G1 latent space. Figure 5.16 summarizes the model interpretation

procedure of pairs of genetic perturbations for shifting cell state distributions. The

classification models for the three pairs gave the test-set accuracy values of {92.51%,

62.81%, 93.7%}.

Figure 5.16: Overview of Interpreting Perturbations for Shifting Cell State Distribu-
tions.

We obtained the feature attributions of GO annotation vector of G1 compared to

that of G0 in shifting the cells treated by G0 to cells treated by G1. The common

genetic annotations between G1 and G0 do not provide different feature input and

thus have attributions of 0’s. Figure 5.17b shows the uncommon annotations between

G1 and G0 with the 10 highest attributions. Not having ERG annotations of nucleus

(‘GO:0005634’), protein phosphorylation (‘GO:0006468’), DNA-binding transcription

factor activity (‘GO:0000981’) and regulation of transcription by RNA polymerase II

(‘GO:0006357’) attributes the most for ERBB3 to shift the original ERG cell state

to the ERBB3 cell state. Not having transmembrane receptor protein tyrosine kinase
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signaling pathway annotation (‘GO:0007169’) and having protein phosphorylation

annotation (‘GO:0006468’) for ERG gives the highest attributions to change the cell

states of ERBB3 and KRAS to those of KRAS and ERG, respectively.

Figure 5.17c shows the GO terms using the attributions in shifting a cell latent

space to another cell latent space. Several GO terms give meaningful interpretations

of shifting the cell states. For example, the GO term for ERBB2 signaling pathway

in biological process has a high attribution to shift ERG cells to ERBB3. In addi-

tion, the ‘ERBB3:ERBB2’ annotation in cellular component has a strong signal of

distinguishing two genetic perturbations in the pairs of (ERBB3, ERG) and (KRAS,

ERBB3).

5.4 Discussion

In this chapter, we consider designing perturbations from predicted single-cell re-

sponses using PerturbNet, and also discovering key components within a chemical or

genetic perturbation to the formation of a cell state. We propose two algorithms:

continuous optimal translation of perturbation representation, and discrete optimal

translation to search for the optimal perturbation to translate a starting cell state

to a desired target cell state. We also employ the integrated gradients method to

interpret the feature attributions of a chemical or genetic perturbation in increasing

the probability of generating a specific cell state, with its molecular structures colored

by atomic scores or its plot of GO scores. We also interpret the optimal translation

experiments, and the attributions of a genetic perturbation to shift another pertur-

bation’s cell state.

Our proposed optimal translation algorithms aim to design an optimal perturba-

tion for individual cells, and can be further utilized to perform research in specific

biomedical scenarios. For example, the optimal translation algorithms can discover a

suitable drug treatment to change some diseased cells to approximate a healthy cell
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Figure 5.17: Model interpretation of pairs of genetic perturbations for shifting cell
state distributions. a UMAP plot of latent values of cells treated by three
pairs of genetic perturbations. b Bar plots of the 10 highest attributions
of GO annotations colored by being in the input perturbation or not,
for the three pairs of perturbations. c Plots of GO terms from the
attributions of a genetic perturbation for shifting the cell state of a
baseline perturbation to its cell state for the three pairs of perturbations,
showing biological process, molecular function and cellular component.
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state. In addition to drug treatments, the optimal translation algorithms can also be

utilized to find an optimal genetic perturbation to change genetic functions.

Our experiments perform discrete optimal translations with limited numbers of

drugs due to the computational intensity to search through the discrete drug set and

to demonstrate the properties of optimal perturbation. In practice with a well-defined

perturbation discovery goal, the discrete optimal translations can be implemented in

large chemical databases such as PubChem (Kim et al., 2016). In contrast, the con-

tinuous optimal translation is more computationally efficient. However, the optimal

perturbation representation obtained from the continuous optimal translation needs

to be further engineered to design an optimal chemical or genetic perturbation. For

example, a possible direction for chemical perturbations is to utilize the ChemicalVAE

to generate drug treatments from the perturbation representation (Gómez-Bombarelli

et al., 2018). This is an exciting direction for future work.

A possible limitation of our experiments lies in the fact that we do not have

the counterfactual responses for validation. We find the latent values of starting cells

translated by fitted perturbation approximate the cells of the target perturbation, but

can differ from the real fitted cells. This is due to the difference of individual cellular

residual representation that is invariant from the condition variable between the real

starting cells and real fitted cells. In future work, we hope to design experiments,

such as Perturb-seq, to validate the predictions of our designed perturbations.

5.5 Supplementary Materials

5.5.1 Atomic Attributions Visualizations

We employ the SimilarityMaps package (Riniker and Landrum, 2013) to draw

molecules from canonical SMILES strings. We extract the atomic attributions in the

one-hot perturbation vector using the edited smiview Python package and use them
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as atomic weights for similarity maps.

5.5.2 Classification Models

The neural network classification models use multilayer perceptron (MLP) units

and have a fully-connected (FC) hidden layers with 32 neurons with the Rectified

Linear Unit (ReLU) activation, batch normalization, dropout regularization with a

dropout probability of 0.1. The output layer has one neuron with the sigmoid activa-

tion. We train the classification models in Sections 5.3.3 and 5.3.4 for latent clustering

with batch Adam optimization, and train the classification models in Sections 5.3.5

and 5.3.6 for pairs of perturbations with minibatch Adam optimization with a batch

size of 128. We fixed the training of these classification models with a learning rate of

10−3, batch size of 128, training size of 0.8. We utilized different numbers of epochs

ranging from 30 to 250 for each classification model to achieve its convergence of loss

curves.

5.5.3 Supplementary Figures
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Figure 5.18: Model interpretation of the genetic perturbation ERG for latent cluster-
ing of LINCS-Gene for clusters 1 and 5. a UMAP plots of latent clusters
1 and 5. b Bar plots of the 10 highest attributions of GO annotations
colored by being in ERG or not, with percentages in baseline perturba-
tions for clusters 1 and 5. c Plots of GO terms from the attributions
of the genetic perturbation with target gene ERG for generating latent
clusters 1 and 5, showing biological process, molecular function and cel-
lular component.

156



CHAPTER VI

Summary and Future Work

6.1 Summary

The first project in Chapter II is motivated by state-of-the-art disentangled rep-

resentation learning techniques (Chen et al., 2016). A disentangled representation

captures semantic factors of variation in separate dimensions (Higgins et al., 2018),

and can potentially uncover factors of cellular identity in single-cell data. Most dis-

entangled representation learning techniques strive to attain high disentanglement

without losing the generation performance through either variational autoencoders

(VAEs) methods or generative adversarial networks (GANs) methods (Chen et al.,

2018; Karras et al., 2019), but rarely via an integrative framework. The trade-off

between disentanglement and generation performance of VAE-based and GAN-based

deep generative models motivate an integrative framework to learn disentangled rep-

resentations and achieve high-quality data generation. Our MichiGAN framework

leverages VAE-based and GAN-based deep generating models and provides better

flexibility of deep learning methods on the scRNA-seq data. For scRNA-seq data with

unknown underlying factors of variation, the MichiGAN method efficiently extracts

the disentangled representations through a VAE-based method and subsequently im-

proves the data generation quality using GANs. Our use of PCWGAN-GP, an im-

proved Wasserstein GAN based on PCGAN (Miyato and Koyama, 2018), gives sub-

157



stantially improved data generation performance. The MichiGAN framework can

preserve disentanglement performance of VAE-based methods, and is also applicable

to various disentanglement methods on scRNA-seq data such as PCA, ICA and NMF

without the constraint of an inference model (Khemakhem et al., 2020; Lee et al.,

2020). Unlike the interpretable variables in images or natural languages, the ground-

truth variables in real single-cell data captured by disentangled representations are

usually not immediately known. We therefore perform latent traversals of fibroblast

samples, and find several dimensions with semantically meaningful transitions. We

also predict single-cell data of drug treatments using the latent space vector arith-

metic algorithm. MichiGAN learns disentangled representations from the single-cell

data and gives significantly higher data generation than its VAEs counterpart for

unseen cell type/drug treatment combinations.

The projects in the previous chapters were motivated by the sci-Plex and Perturb-

seq datasets with multiple chemical and genetic perturbations (Srivatsan et al., 2020;

Dixit et al., 2016). As there are limited numbers of perturbations explored in such

data, we wanted to develop deep generative models that predict single-cell responses

to multiple perturbations and also predict unseen perturbations. These out-of-distribution

predictions facilitate exploring distributions of single-cell responses to perturbations

and designing optimal perturbations for cell states.

In Chapter III, we develop PerturbNet, a multi-stage deep generative model to

predict single-cell responses to drug treatments. The PerturbNet framework consists

of a three-stage modeling process with ChemicalVAE on drug treatments, a single-cell

VAE model on single-cell samples, as well as a conditional invertible neural network

(cINN) that connects perturbation representation and cellular representation. We

show that PerturbNet effectively connects perturbation information and cell state.

We demonstrate the excellent prediction performance of PerturbNet, with another

proposed KNN model, to predict single-cell responses to either observed or unseen
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perturbations. By regularizing through properties of cellular representation, we de-

velop an algorithm to fine-tune the learned perturbation representation of Chemical-

VAE, and to further enhance the performance of single-cell predictions for unseen

perturbations. We also show the importance of adjusting for cell state covariates

to better learn the condition-invariant or residual representations for individual cells

and to more accurately generate individual cellular responses through the PerturbNet

framework.

In Chapter IV, we extend PerturbNet to predict single-cell responses to genetic

perturbations. We consider two types of genetic perturbations in CRIPSR gene-

editing experiments. For the genetic perturbations with target gene identification,

we develop a deep generative model called GenotypeVAE to encode the gene ontol-

ogy (GO) annotation vector of target genes to dense representation, and then decode

it to reconstructed vector. For the genetic perturbations with protein-coding se-

quence variants, we employ a pre-trained start-of-the-art protein transformer model

(Rives et al., 2021) to encode coding variants. We evaluate KNN and PerturbNet on

several high-throughput genetic screen datasets, and show their high prediction per-

formances. We also fine-tune GenotypeVAE to improve the prediction performance

of PerturbNet.

In Chapter V, we focus on designing perturbations to the formation of desired cell

states and discovering components of chemical and genetic perturbations that have

important biological effects. The project was motivated by the problem of finding

perturbations to shift some diseased cells to a healthy cell state. We formulate the

objective to design an optimal perturbation to translate a group of cells to approx-

imate a target cell state. We propose two optimal translation algorithms based on

PerturbNet. We show that both continuous optimal translation and discrete opti-

mal translation can find an optimal perturbation to translate a group of observed

cells to approximate a group of target cells in their latent space. We also utilize a
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model interpretability method to interpret atomic scores of a drug treatment and GO

scores in forming a cell state. We also employ the model interpretability method to

atomic scores of fitted optimal perturbations from the discrete optimal translation al-

gorithm. In addition, we interpret and identify GO terms that have high attributions

to distinguish a pair of genetic perturbations in their cell states.

6.2 Future Directions

There are several interesting directions for future research. One may consider our

studies for a broader field of drug or intervention discovery. Both of our MichiGAN

and PerturbNet frameworks predict single-cell responses by learning the perturbation

effects on cellular representations. The MichiGAN framework explores the disentan-

glement of cellular representations with respect to the semantic cellular information

including drug treatments. We show the applications of latent traversals and latent

space vector arithmetic using the disentangled representations. Future research is

needed to learn the semantic cell identity captured by each dimension of a disen-

tangled representation. In addition, methods of boosting the fidelity of predicted

out-of-distribution samples (Berthelot et al., 2018) can be utilized to further improve

the generation performance from disentangled representations.

The PerturbNet framework, on the other hand, connects the perturbation repre-

sentations from perturbation encoders to cellular representations through normalizing

flows. Future improvement can employ other state-of-the-art methods for chemical

and genetic perturbations to obtain better perturbation representations. We can also

consider training these frameworks on larger chemical databases such as PubChem

(Kim et al., 2016) or larger GO annotation sets by incorporating genetic perturba-

tions with more than two target genes as well. From our experiments, we find that

the prediction performance of PerturbNet on cellular responses to unseen perturba-

tions is likely to be impacted by the number of observed perturbations for training
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the cINN. The LINCS dataset has large numbers of chemical (LINCS-Drug) and

genetic (LINCS-Gene) perturbations to train the cINN translations, and generally

have better performance in unseen chemical or genetic perturbations. To improve the

cINN translations for single-cell data with a small number of observed perturbations,

one may consider transfer learning (Lotfollahi et al., 2022) to utilize a cINN model

trained on a dataset with a large number of perturbations such as LINCS-Drug and

LINCS-Gene. The transfer learning between the two datasets might need to integrate

their cellular representations in a comprehensive latent space before employing the

pre-trained cINN model. More future research is needed for this direction.

A possible future direction can combine the disentanglement of deep generative

models studied in Chapter II and the PerturbNet framework. In addition to ob-

taining disentangled perturbation and cellular representations, one can also consider

improving the disentanglement performance of the residual representation in the cINN

translation. The improved disentanglement performance of these condition-invariant

representations further captures the cellular identity in its separate dimensions for

individual cells. The disentangled residual representations might uncover cell states

to a perturbation with semantically meaningful interpretations. In addition, we can

integrate MichiGAN in Chapter II with PerturbNet by having an extra stage to train

a conditional GAN-based model to replace the single-cell VAE model. The extra

stage possibly further improves data generation quality from cellular representations

learned by the single-cell VAE model.

Another direction related to PerturbNet is to learn the relationship between cell

state covariates and a perturbation. Although we find that adjusting for the co-

variates improves the prediction performance of PerturbNet for individual cells, it is

possible that the covariates’ values of an unseen perturbation are not immediately

known in practice. A two-stage process might be performed to model the cellular

response distribution to a perturbation. The first stage learns the covariates’ values
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from the perturbation and the second stage can take the perturbation and predicted

covariates to generate cellular representations. In addition, other methods of causal

representation learning (Schölkopf et al., 2021) can also be utilized to address the

covariates’ relationship with a perturbation such as instrument variables (Hartford

et al., 2017).

Both the MichiGAN and PerturbNet frameworks presented in this dissertation fo-

cus on the prediction accuracy for single-cell perturbation responses, and an additional

fascinating direction is to quantify the uncertainty of predicted single-cell perturba-

tion responses. As both frameworks utilize variational inference to obtain cellular

representations, the posterior probabilities of cellular representations can therefore

be employed for hypothesis testing. For example, the disentangled representations

learned from MichiGAN can be used to test if cells possess certain values for factors of

variation, and the cellular representations of PerturbNet might give the quantified un-

certainty for each cell under a perturbation. In addition, researchers can integrate the

inference models of the perturbation encoder, cINN and cellular VAE in PerturbNet

to derive the posterior distribution of single-cell response to each perturbation. This

measures uncertainty for single-cell data, and can be utilized to perform hypothesis

testing and downstream analyses.

The dissertation focuses on modeling single-cell data in perturbation experiments

with each cell measured after a chemical or genetic perturbation. A future direction

is to predict the trajectories of single-cell responses after a sequence of perturbations

(Bergen et al., 2020). The PerturbNet might be improved to sequentially model

new cellular representation on the new perturbation representation and the previous

cellular representation. This direction also relates to reinforcement learning to find

the optimal perturbations at each stage within a dynamic decision process (Sutton

and Barto, 2018). As the reinforcement learning process usually requires the ability

to observe the effects of actions and the single-cell measurement usually only provides
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one static snapshot of a cell, future research is needed.

6.3 Closing Remarks and Perspectives

Research in deep generative models is fast-moving, and new methods have enabled

many applications in computer vision and natural language processing. Over the last

decade, various deep generative models have been developed to unravel and under-

stand different aspects of single-cell data such as cell identity, cell reprogramming and

perturbation responses. In this dissertation, we evaluate existing methods and also

construct novel frameworks for single-cell data. A principal modeling motivation of

our frameworks is to integrate distinct paradigms of deep generative models. As with

the classical no free lunch theorem in learning theory (Wolpert , 1996; Wolpert and

Macready , 1997), which indicates that different optimization algorithms are equiv-

alent across evaluations over all possible problems, we also find that different deep

generative models have varying strengths and none of them is able to outperform

others in every aspect. Therefore, an integrative framework can inherit the strength

of each algorithm in specific aspects of a problem. For example, MichiGAN integrates

VAEs and GANs for their complementary strengths in disentanglement and genera-

tion. We expect our frameworks to also achieve remarkable performances in vision

and natural languages. Integrative deep generative models are interesting and active

research topics with promising applications in molecular biology, vision and natural

languages.

We employ various deep generative models including VAEs, GANs and normal-

izing flows. We find each paradigm has its own advantages in modeling single-cell

data. VAEs can learn disentangled representations, GANs generate highly realistic

data samples and normalizing flows give stable domain-to-domain translations. Fu-

ture developments of deep generative models for single-cell data can further employ

these advantages and explore myriad applications in molecular biology.
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Finally, we expect more studies on causal inference for modeling single-cell pertur-

bations responses. The dissertation explores disentangled representation, counterfac-

tual responses and deep learning model interpretability for single-cell data. Numerous

applications using causal representation learning techniques are forthcoming to infer

complex cellular components and dynamics under perturbations.
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Rampášek, L., D. Hidru, P. Smirnov, B. Haibe-Kains, and A. Goldenberg (2019), Dr.
vae: improving drug response prediction via modeling of drug perturbation effects,
Bioinformatics, 35 (19), 3743–3751.

Ran, F., P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott, and F. Zhang (2013), Genome
engineering using the crispr-cas9 system, Nature protocols, 8 (11), 2281–2308.

Rao, R. M., J. Liu, R. Verkuil, J. Meier, J. Canny, P. Abbeel, T. Sercu, and A. Rives
(2021), Msa transformer, in International Conference on Machine Learning, pp.
8844–8856, PMLR.

Reed, S., Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee (2016), Generative
adversarial text to image synthesis, arXiv preprint arXiv:1605.05396.

Replogle, J. M., et al. (2022), Mapping information-rich genotype-phenotype land-
scapes with genome-scale perturb-seq, Cell.

Rezende, D., and S. Mohamed (2015), Variational inference with normalizing flows,
in International conference on machine learning, pp. 1530–1538, PMLR.

Ridgeway, K. (2016), A survey of inductive biases for factorial representation-learning,
arXiv preprint arXiv:1612.05299.

Riniker, S., and G. A. Landrum (2013), Similarity maps-a visualization strategy for
molecular fingerprints and machine-learning methods, Journal of cheminformatics,
5 (1), 1–7.

Rives, A., et al. (2021), Biological structure and function emerge from scaling un-
supervised learning to 250 million protein sequences, Proceedings of the National
Academy of Sciences, 118 (15).

Rodriques, S. G., et al. (2019), Slide-seq: A scalable technology for measuring genome-
wide expression at high spatial resolution, Science, 363 (6434), 1463–1467.

Rogers, D., and M. Hahn (2010), Extended-connectivity fingerprints, Journal of
chemical information and modeling, 50 (5), 742–754.

Rolinek, M., D. Zietlow, and G. Martius (2019), Variational autoencoders pursue
pca directions (by accident), in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 12,406–12,415.

Rombach, R., P. Esser, and B. Ommer (2020), Network-to-network translation with
conditional invertible neural networks, arXiv preprint arXiv:2005.13580.

179



Rubin, A. J., et al. (2019), Coupled single-cell crispr screening and epigenomic pro-
filing reveals causal gene regulatory networks, Cell, 176 (1-2), 361–376.

Sainburg, T., M. Thielk, B. Theilman, B. Migliori, and T. Gentner (2018), Generative
adversarial interpolative autoencoding: adversarial training on latent space inter-
polations encourage convex latent distributions, arXiv preprint arXiv:1807.06650.

Salakhutdinov, R., and H. Larochelle (2010), Efficient learning of deep boltzmann
machines, in Proceedings of the thirteenth international conference on artificial in-
telligence and statistics, pp. 693–700, JMLR Workshop and Conference Proceed-
ings.

Schiebinger, G., et al. (2019), Optimal-transport analysis of single-cell gene expression
identifies developmental trajectories in reprogramming, Cell, 176 (4), 928–943.

Schölkopf, B., F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and
Y. Bengio (2021), Toward causal representation learning, Proceedings of the IEEE,
109 (5), 612–634.

Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra (2017),
Grad-cam: Visual explanations from deep networks via gradient-based localization,
in Proceedings of the IEEE international conference on computer vision, pp. 618–
626.

Shalem, O., et al. (2014), Genome-scale crispr-cas9 knockout screening in human cells,
Science, 343 (6166), 84–87.

Shalit, U., F. D. Johansson, and D. Sontag (2017), Estimating individual treatment
effect: generalization bounds and algorithms, in International Conference on Ma-
chine Learning, pp. 3076–3085, PMLR.

Shapiro, E., T. Biezuner, and S. Linnarsson (2013), Single-cell sequencing-based tech-
nologies will revolutionize whole-organism science, Nature Reviews Genetics, 14 (9),
618–630.

Shen, Y., J. Gu, X. Tang, and B. Zhou (2020), Interpreting the latent space of gans for
semantic face editing, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9243–9252.

Shrikumar, A., P. Greenside, A. Shcherbina, and A. Kundaje (2016), Not just a black
box: Learning important features through propagating activation differences, arXiv
preprint arXiv:1605.01713.

Shrikumar, A., P. Greenside, and A. Kundaje (2017), Learning important features
through propagating activation differences, in International conference on machine
learning, pp. 3145–3153, PMLR.

180



Simonyan, K., A. Vedaldi, and A. Zisserman (2013), Deep inside convolutional net-
works: Visualising image classification models and saliency maps, arXiv preprint
arXiv:1312.6034.

Singh, S., A. E. Carpenter, and A. Genovesio (2014), Increasing the content of high-
content screening: an overview, Journal of biomolecular screening, 19 (5), 640–650.

Snijder, B., and L. Pelkmans (2011), Origins of regulated cell-to-cell variability, Na-
ture reviews Molecular cell biology, 12 (2), 119–125.

Spurr, A., E. Aksan, and O. Hilliges (2017), Guiding infogan with semi-supervision,
in Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 119–134, Springer.

Srivatsan, S. R., et al. (2020), Massively multiplex chemical transcriptomics at single-
cell resolution, Science, 367 (6473), 45–51.

Statello, L., C.-J. Guo, L.-L. Chen, and M. Huarte (2021), Gene regulation by long
non-coding rnas and its biological functions, Nature Reviews Molecular Cell Biology,
22 (2), 96–118.

Subramanian, A., et al. (2017), A next generation connectivity map: L1000 platform
and the first 1,000,000 profiles, Cell, 171 (6), 1437–1452.

Sundararajan, M., A. Taly, and Q. Yan (2017), Axiomatic attribution for deep net-
works, in International conference on machine learning, pp. 3319–3328, PMLR.

Sutton, R. S., and A. G. Barto (2018), Reinforcement learning: An introduction, MIT
press.

Swanson, E., et al. (2021), Simultaneous trimodal single-cell measurement of tran-
scripts, epitopes, and chromatin accessibility using tea-seq, Elife, 10, e63,632.

Tan, J., M. Ung, C. Cheng, and C. S. Greene (2014), Unsupervised feature con-
struction and knowledge extraction from genome-wide assays of breast cancer with
denoising autoencoders, in Pacific Symposium on Biocomputing Co-Chairs, pp.
132–143, World Scientific.

Tang, F., C. Barbacioru, E. Nordman, B. Li, N. Xu, V. I. Bashkirov, K. Lao, and
M. A. Surani (2010), Rna-seq analysis to capture the transcriptome landscape of a
single cell, Nature protocols, 5 (3), 516–535.

Theis, L., A. v. d. Oord, and M. Bethge (2015), A note on the evaluation of generative
models, arXiv preprint arXiv:1511.01844.

Tipping, M. E., and C. M. Bishop (1999), Probabilistic principal component analysis,
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61 (3),
611–622.

181



Ursu, O., et al. (2020), Massively parallel phenotyping of variant impact in cancer
with perturb-seq reveals a shift in the spectrum of cell states induced by somatic
mutations, bioRxiv.

Van Den Oord, A., O. Vinyals, et al. (2017), Neural discrete representation learning,
Advances in neural information processing systems, 30.

Vaserstein, L. N. (1969), Markov processes over denumerable products of spaces,
describing large systems of automata, Problemy Peredachi Informatsii, 5 (3), 64–
72.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser,
and I. Polosukhin (2017), Attention is all you need, Advances in neural information
processing systems, 30.

Wang, D., and J. Gu (2018), Vasc: dimension reduction and visualization of single-cell
rna-seq data by deep variational autoencoder, Genomics, proteomics & bioinfor-
matics, 16 (5), 320–331.

Wang, T., K. Birsoy, N. W. Hughes, K. M. Krupczak, Y. Post, J. J. Wei, E. S. Lander,
and D. M. Sabatini (2015), Identification and characterization of essential genes in
the human genome, Science, 350 (6264), 1096–1101.

Wang, Z., M. Gerstein, and M. Snyder (2009), Rna-seq: a revolutionary tool for
transcriptomics, Nature reviews genetics, 10 (1), 57–63.

Way, G. P., and C. S. Greene (2017), Extracting a biologically relevant latent space
from cancer transcriptomes with variational autoencoders, BioRxiv, p. 174474.

Welling, M., M. Rosen-Zvi, and G. E. Hinton (2004), Exponential family harmoni-
ums with an application to information retrieval, Advances in neural information
processing systems, 17.

Wessels, H.-H., et al. (2022), Efficient combinatorial targeting of rna transcripts in
single cells with cas13 rna perturb-seq, bioRxiv.

White, T. (2016), Sampling generative networks, arXiv preprint arXiv:1609.04468.

Wolf, F. A., P. Angerer, and F. J. Theis (2018), Scanpy: large-scale single-cell gene
expression data analysis, Genome biology, 19 (1), 15.

Wolpert, D. H. (1996), The lack of a priori distinctions between learning algorithms,
Neural computation, 8 (7), 1341–1390.

Wolpert, D. H., and W. G. Macready (1997), No free lunch theorems for optimization,
IEEE transactions on evolutionary computation, 1 (1), 67–82.

Wu, Y., J. Donahue, D. Balduzzi, K. Simonyan, and T. Lillicrap (2019), Lo-
gan: Latent optimisation for generative adversarial networks, arXiv preprint
arXiv:1912.00953.

182



Xu, Z., S. Wang, F. Zhu, and J. Huang (2017), Seq2seq fingerprint: An unsuper-
vised deep molecular embedding for drug discovery, in Proceedings of the 8th ACM
international conference on bioinformatics, computational biology, and health in-
formatics, pp. 285–294.

Yadav, A., S. Shah, Z. Xu, D. Jacobs, and T. Goldstein (2017), Stabilizing adversarial
nets with prediction methods, arXiv preprint arXiv:1705.07364.

Yan, X., J. Yang, K. Sohn, and H. Lee (2016), Attribute2image: Conditional image
generation from visual attributes, in European conference on computer vision, pp.
776–791, Springer.

Yeo, G. H. T., S. D. Saksena, and D. K. Gifford (2021), Generative modeling of
single-cell time series with prescient enables prediction of cell trajectories with
interventions, Nature communications, 12 (1), 1–12.

Yu, C., et al. (2016), High-throughput identification of genotype-specific cancer vul-
nerabilities in mixtures of barcoded tumor cell lines, Nature biotechnology, 34 (4),
419–423.

Yu, H., and J. D. Welch (2021), Michigan: sampling from disentangled representations
of single-cell data using generative adversarial networks, Genome biology, 22 (1), 1–
26.

Yuan, B., C. Shen, A. Luna, A. Korkut, D. S. Marks, J. Ingraham, and C. Sander
(2021), Cellbox: interpretable machine learning for perturbation biology with ap-
plication to the design of cancer combination therapy, Cell systems, 12 (2), 128–140.

Zappia, L., B. Phipson, and A. Oshlack (2017), Splatter: simulation of single-cell rna
sequencing data, Genome biology, 18 (1), 174.

Zhu, J., et al. (2021), Prediction of drug efficacy from transcriptional profiles with
deep learning, Nature Biotechnology, pp. 1–9.

Zhu, J.-Y., T. Park, P. Isola, and A. A. Efros (2017), Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks, in Proceedings of the IEEE in-
ternational conference on computer vision, pp. 2223–2232.

183


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Molecular Biology Overview
	Single-Cell Transcriptome
	Single-Cell Imaging
	Chemical Perturbations
	Genetic Perturbations
	Measuring Single-Cell Responses to Perturbations
	Predicting Single-Cell Responses to Perturbations
	Deep Generative Models
	Dissertation Overview

	Sampling from Disentangled Representations of Single-Cell Data using Generative Adversarial Networks
	Introduction
	Methods
	Variational Autoencoders
	Lg-TCVAE
	Generative Adversarial Networks
	Conditional GAN and PCGAN
	MichiGAN: Combining the Strengths of VAEs and GANs
	Latent Space Vector Arithmetic
	Latent Space Entropy
	Related Work

	Experiments
	Variational Autoencoders Learn Disentangled Representations of Single-Cell Data
	GANs Generate More Realistic Single-Cell Expression Profiles than VAEs
	MichiGAN Samples from Disentangled Representations without Sacrificing Generation Performance
	MichiGAN Enables Semantically Meaningful Latent Traversals
	MichiGAN Predicts Single-Cell Gene Expression Data under Unseen Drug Treatments
	Accuracy of Latent Space Arithmetic Influences MichiGAN Prediction Accuracy

	Discussion
	Supplementary Materials
	Real scRNA-seq Datasets
	Simulated scRNA-seq Datasets
	InfoGAN and ssInfoGAN
	Disentanglement Metrics
	Mutual Information Gap
	FactorVAE Metric
	Spearman Correlation

	Generation Metrics
	Random Forest Error
	Inception Score

	Tuning Lg values in Lg-TCVAE
	Implementation
	Supplementary Tables and Figures


	Predicting Single-Cell Responses to Drug Perturbations
	Introduction
	Methods
	Drug Treatment Encoder and ChemicalVAE
	Baseline KNN and Random Models
	Conditional Invertible Neural Networks
	PerturbNet
	ChemicalVAE Fine-Tuning
	Related Work

	Experiments
	ChemicalVAE Gives Meaningful Perturbation Representations
	KNN Models Have Better Generation than Random Models
	PerturbNet Predicts Single-Cell Perturbation Responses to Drug Treatments
	Covariate Adjustment Gives Better Predictions for PerturbNet
	Adjusting Confounders of Perturbations in PerturbNet
	Fine-Tuned ChemicalVAE Improves the Performance of PerturbNet
	PerturbNet Recovers the Perturbation and Cell Latent Spaces

	Discussion
	Supplementary Materials
	Datasets
	Neural Network Architectures
	Prediction Metrics
	R Squared
	FID Score

	Supplementary Figures


	Predicting Single-Cell Responses to Genetic Perturbations
	Introduction
	Methods
	Genetic Perturbations and GenotypeVAE
	Protein Perturbations and ESM

	Experiments
	PerturbNet Models Latent Representations of Genetic Perturbations
	PerturbNet Predicts Single-Cell Response to Genetic Perturbations
	Fine-Tuned GenotypeVAE Improves the Performance of PerturbNet for Genetic Perturbations
	PerturbNet Models Latent Representations of Protein Perturbations
	PerturbNet Predicts Single-Cell Responses to Coding Sequence Mutations

	Discussion
	Supplementary Materials
	Datasets
	Neural Network Architectures
	Supplementary Figures


	Perturbation Design and Biological Discovery with PerturbNet
	Introduction
	Methods
	Optimal Perturbation Design
	Continuous Optimal Translation
	Discrete Optimal Translation
	Model Interpretation Using Integrated Gradients

	Experiments
	Continuous Optimal Translation for Perturbation Representations
	Discrete Optimal Translation for Optimal Perturbation Selections
	Perturbation Attributions of Cell States for Atomic Scores
	Perturbation Attributions of Cell States for Gene Ontology Scores
	Perturbation Attributions for Optimal Translations
	Perturbation Attributions of Genetic Perturbations for Shifting Cell State Distributions

	Discussion
	Supplementary Materials
	Atomic Attributions Visualizations
	Classification Models
	Supplementary Figures


	Summary and Future Work
	Summary
	Future Directions
	Closing Remarks and Perspectives

	BIBLIOGRAPHY

