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ABSTRACT

Breast cancer screening programs using two dimensional (2D) digital mammogra-

phy (DM), have proven effective in early detection of cancer subsequently reducing

breast cancer related deaths. A major drawback of DM arises from large amounts of

overlapping breast tissues which may mimic or conceal abnormalities in a 2D image.

Advanced breast imaging technologies like digital breast tomosynthesis (DBT) gener-

ating 3D information are now being considered as a replacement for DM in screening

programs. However, the benefits of DBT based screening for earlier detection of can-

cer, across the various commercially available detector technologies, are yet to be

established. The aim of this thesis is to investigate the influence of x-ray imager tech-

nologies and imaging modalities on the early detection of breast cancer using in silico

trials. The first part of this thesis focuses on developing computational models that

replicate the growth of cancerous lesions and the detector physics of commercially

available DM/DBT systems. I propose a growth model for breast lesions based on

biological and physiological phenomena accounting for the stiffness of surrounding

anatomical structures. Depending on the breast local anatomical structures, a range

of unique lesion morphology was realized. Imaging physics models were developed to

simulate direct and indirect x-ray detector technology. Image quality metrics were

compared against measured data from three commercially available DM/DBT sys-

tems. Finally, these tools combined with the VICTRE 1.0 in silico framework were

used to design in silico trials to study whether DBT can facilitate the detection of

breast cancer at earlier disease stages and for a range of detector technologies. The

in silico studies suggest that while DBT shows clear advantages for detecting masses
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at earlier stages, its benefits over DM for detecting micro-calcifications depend on the

detector technology.
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CHAPTER I

Introduction

1.1 Breast cancer and screening

Cancer remains the biggest hurdle towards increasing life expectancy in most

countries across the world (Bray et al., 2021). Several factors contribute to the in-

creasing cancer incidence and mortality rates, such as population growth, aging as

well as the distribution of risk factors, which vary with socioeconomic factors across

the world. Compared to the 2018 reports (Sung et al., 2020), female breast cancer

(11.7%) has now overtaken lung cancer (11.4%) as the most commonly diagnosed

cancer worldwide, as per the 2020 Globocan Cancer Statistics (Sung et al., 2020) (see

fig. 1.1 (a)). Amongst women, breast cancer is the most commonly diagnosed cancer

worldwide (24.5%) and leading cause of cancer related deaths (15.5%) (Sung et al.,

2020).

The distribution of cancer related deaths amongst women, as shown in fig. 1.1 (b),

reveals that although breast cancer incidence rates are high in developed countries

in north America and western Europe, it is not the leading cause of cancer mortality

among women. A breast cancer diagnosis is more likely to lead to mortality in the

developing countries of the world. Developing countries account for 50% of the breast

cancer cases and 60% of the deaths (Jemal et al., 2011; Bray et al., 2018). Although

the incidence rates are lower in the developing countries, the mortality to incidence
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(a)

(b)

Figure 1.1: (a) Distribution of incidence and mortality rates for the top 10 most can-
cers and (b) most common cancer mortality amongst women worldwide.
source: Globocan Cancer Statistics 2020 (Sung et al., 2020)
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ratio is much higher. In countries like India, the breast cancer incidence rate in

2017 was found to be 25.8 in 100,000 women and the mortality rate of 12.7 per

100,000 women (Madhav et al., 2018). Moreover, the 5-year survival rate during

2010-2014 was found to be 66.1% in India, the lowest among 71 other countries that

were surveyed (Allemani et al., 2018). In comparison, the 5-year survival rates in

developed countries like Australia and the USA were 89.5% and 90.2% respectively.

In general, the prognosis for a breast cancer diagnosis is good when detected

at an early stage. In countries like India, only 5% of the diagnosed breast cancer

cases are found to be in their earlier stages. This, combined with limited access to

a good healthcare system, accounts for the higher mortality rates observed in these

countries. Breast cancer screening programs have been recognized as an effective

tool for early detection of cancer. In Brazil, introduction of a regional breast cancer

screening program, resulted in an increased (from 14.5% to 43.2%) cancer detection

rate at earlier stages. Additionally, several randomized clinical trials conducted across

Europe and North America (Nystrom et al., 1993; Shapiro et al., 1988; Moss et al.,

1992; Lee et al., 2010; Duffy et al., 2002) concluded that the lower mortality rates

in these countries are a direct consequence of detection of cancer at earlier stages

facilitated through breast cancer screening programs.

1.2 Imaging for breast cancer screening

Currently, there are 4 diagnostic imaging technologies that are used for the detec-

tion of breast cancer: namely, breast tomosynthesis, mammography, magnetic reso-

nance imaging (MRI), and ultrasound. MRI uses strong oscillating magnetic fields to

render images of the breast. While this technique has high sensitivity to cancerous

tumors it also can generate many false positives. Thus, it may not be suitable for

screening programs but may be used as a supplemental imaging modality for women

with extremely dense breasts (with a high content of fibroglandular tissues) (Bakker
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et al., 2019). Breast ultrasound mainly relies on generating images using echos re-

flected from different tissues. This technique is extremely useful for differentiating

between benign cysts and solid masses (Stafford and Whitman, 2011), which are usu-

ally cancerous. Digital breast tomosynthesis (DBT) and mammography (DM), are

both based on generating x-ray images of the breast. DM is the current gold standard

for imaging techniques used in breast cancer screening (Marconi et al., 2019).

1.2.1 Digital Mammography

A mammogram is basically a 2-D x-ray image of the breast. This imaging tech-

nology relies on the fundamental idea that normal and cancerous tissues differ in their

x-ray attenuation properties, leading to varying contrast levels in the DM image. The

x-ray energy levels used for DM are chosen based on linear attenuation coefficients

(µ) of healthy and cancerous breast tissues. A healthy human breast mainly consists

of two types of tissues - adipose and glandular. While there is a large difference be-

tween the µ values for the adipose and cancerous tissues for a range of energy levels

(Bushberg et al., 2012), it is a much narrower gap for glandular tissues, especially for

x-ray energy levels greater than 30 keV. It has also been shown that a higher contrast

for ductal carcinoma relative to a glandular background can be achieved with low en-

ergy x-rays (Bushberg et al., 2012). Hence mammograms generated using low-energy

x rays (18-42 kVp) (Boone et al., 1997), are an effective tool for detecting cancerous

tumors.

Fig 1.2 (a) shows a general setup for the image acquisition process in DM. The x-

ray photons transmitted or scattered by the compressed breast tissues impinge upon

the x-ray detector after passing through the anti-scatter grid. These x-ray photons

are absorbed by the x-ray detector and converted into electrical signals, which are

then processed to create the 2D digital mammogram.

Since its introduction mammography has proven to be very effective in detection
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of breast cancer. In certain populations it has been found to achieve high sensitivity

values of 90.5% - 92.5 % (Jacobsen et al., 2015). However, mammography is also ex-

tremely sensitive to breast density. It has been shown that for women with extremely

fatty breasts, DM could achieve a sensitivity and specificity of 87.0% and 96.9% re-

spectively. On the other hand, for women with extremely dense breasts, both the

sensitivity and specificity reduced to 62.9% and 89.1% respectively (Carney et al.,

2003). High breast density basically means that the ratio of fibroglandular to adipose

tissues is very high. As shown in fig. 1.2 (a), in a 2D x-ray image of the breast,

as is the case with mammography, the presence of a large amount of overlapping

fibroglandular tissues can mimic the presence of a cancerous lesion or hide underlying

masses. This leads to higher false positives and negatives, observed in women with

dense breasts. This is one of the major shortcomings of DM technology. Advanced

versions of DM, DBT, have now been introduced to overcome these shortcomings.

1.2.2 Digital Breast Tomosynthesis

This method is very similar to DM, except that the x-ray tube in DBT systems

is not stationary and instead moves in an arc (15-50◦) (Mackenzie et al., 2017) as

shown in Fig 1.2 (b). As illustrated in the figure, if the x-ray tube is stationary,

two overlapping objects of interest, appear as one in the 2D DM image. However,

if the x-ray tube moves in an arc, it is possible to resolve the two objects in the

projection views - wider the angle, better the resolution. These low-dose projection

views are then reconstructed to create a volume of slices, each containing the breast

information at various depths. Viewing the breast information in a slice by slice

manner thus helps remove any ambiguity that may arise from overlapping layers of

fibroglandular tissues.

As compared to DM, the introduction of DBT has been shown to increase the

cancer detection rate by 15–30% and reduce the recall rate decreases by 15–20%
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(a) (b)

Figure 1.2: Image acquisition process for (a) DM and (b) DBT.

(Iranmakani et al., 2020). Especially for non-calcified masses, DBT can not only

increase the cancer detection rate (Su et al., 2017; Zuley et al., 2013), but also improve

the diagnostic accuracy as compared to DM (Su et al., 2017). It has also been found

that for women with higher breast density, the sensitivity of DBT combined with

2D mammography (93%) was higher than just mammography (86%) (Gilbert et al.,

2015). Furthermore, it has been shown that using a combination of DBT and DM

in screening programs can significantly improve the breast cancer detection rate, as

compared to DM alone (Rafferty et al., 2018; Skaane et al., 2013; Ciatto et al., 2013).

Currently, DBT is also being considered as a replacement for DM in cancer screening

programs. However, to do so, the benefits of DBT over DM for breast cancer breast

screening with the goal to detecting cancer at its earlier stages, must be clearly

demonstrated.

Although higher cancer detection rates in dense breasts can be achieved with the

use of DBT, it has not been yet proven to reduce the incidence of interval cancers
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(Sechopoulos and Athanasiou, 2020). It may be possible that since DBT is quasi-

3D, obtaining projection views over a limited angular range, visibility of smaller

lesions is still poor in DBT slices, especially for dense breasts. A true 3-D imaging

modality, like dedicated breast computed tomography (CT), can overcome many of

the limitations of DBT. Moreover, even though many studies have shown that the

combination of DBT with DM can improve the cancer detection rate even for dense

breasts, the same cannot be concluded about false positive rates. The results of the

To-Be trial (Wei et al., 2017) showed that while the use of DBT with SM (synthetic

mammography, which is similar to DM, but generated using DBT data) reduced

recall rates in low density breasts as compared to DM, the same was not the case

for women with high density breasts. This would mean that using DBT with SM

as compared to DM alone result in equivalent false positive rates. Finally, while it

has been shown that DBT can improve cancer detection, it has not been determined

whether increased cancer detection leads to lower mortality (Jatoi and Pinsky , 2020).

In fact, it can result in over-diagnosis of non-lethal cancers and treatment-related

mortality (Jatoi and Pinsky , 2020). So for all the reasons outlined above, it is evident

that additional studies are required to justify whether the advantages of DBT for

breast cancer screening outweigh the additional costs and training associated with it.

The National Cancer Institute–funded Tomosynthesis Mammographic Imaging

Screening Trial (TMIST) (Pisano, 2018; Lee and McCaskill-Stevens , 2020) aims at

addressing these concerns. The main outcome of the TMIST trial is to ascertain

whether the use of DBT in screening programs can enable radiologists to find ag-

gressive cancers at earlier stages, as compared to DM. This would allow doctors to

remove the cancers before they can advance, and thereby reduce the number of ad-

vanced cancers in the population. The ultimate goal of the TMIST trial is to ascertain

the choice of imaging modality best suited for breast cancer screening programs (Lee

and McCaskill-Stevens , 2020). TMIST, the largest cancer screening trial funded by
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NCI, is currently underway and involves enrolling over 100,000 women across sev-

eral sites throughout North America. This study will include all the commercially

available DBT/DM systems, that have received FDA approvals (Pisano, 2018) to

ascertain whether the study outcomes depend on technology. However, this study is

not expected to report its findings anytime in the near future (Bell , 2020).

The goal of this thesis is to investigate a limited version of TMIST using in silico

imaging methods: (i) the effect of imaging modalities on the early detection of cancer

and (ii) the effect of detector technology on cancer detection. In contrast to TMIST,

we attempt to investigate these topics using a fast and cost-effective approach that

does not involve irradiating asymptomatic women, by conducting these experiments

in silico.

1.3 Available in silico frameworks

Traditionally, to investigate the effect of imaging modalities, imaging systems and

intrinsic detector properties, lengthy clinical trials are conducted. These studies are

time consuming and expensive. Such trials involve exposing asymptomatic women

to unnecessary radiation and significantly slow down the regulatory process delaying

patient access to advanced technologies. Every time there is a new idea or improve-

ment in the imaging system or component, a technological iteration, it would not be

possible to design and conduct another clinical trial. A faster and cost-effective alter-

native would be to implement sophisticated computational techniques, as a preclinical

validation step to conduct such studies.

So far, VICTRE (Badano et al., 2018; Sharma et al., 2019) and OpenVCT (Bakic

et al., 2018) are the two available frameworks for conducting in silico trials involving

breast imaging modalities. The limitations of the OpenVCT framework as compared

to VICTRE arise from the implementation of (i) x-ray transport without scatter,(ii)

an ideal detector model, (iii) breast masses without spiculations, (iv) low resolution
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breast phantoms (0.1-0.2 mm spatial resolution), and (v) lack of detection rates cor-

responding to each breast density category. The goals for both in silico trials were

to compare the performance of DBT and DM in detecting masses and calcifications.

They arrived at similar conclusions that while higher detection rates for non-calcified

masses can be achieved with DBT, detection of lesions with calcifications is com-

parable to DM. Other frameworks (Elangovan et al., 2016b; Vancoillie et al., 2020)

that replicate the DBT image formation process have also been reported. However,

they are yet to implement model observers and hence cannot be used to conduct

completely in silico trials.

The work described in this thesis builds on the VICTRE (Badano et al., 2018;

Sharma et al., 2019) framework and adds lesion growth and detector models to study

the effect of imaging modality, x-ray detector and cancer progression on the final

detection task.

1.4 Thesis Outline

In summary, this thesis will investigate the influence of x-ray imager technologies

and imaging modalities (digital breast tomosynthesis (DBT) and digital mammogra-

phy (DM)) on the early detection of breast cancer. Specifically, we will be addressing

some of the aims of the TMIST trial, such as (i) evaluate DBT as a replacement for

DM across different commercially used x-ray detector technologies and (ii) determine

if DBT can detect breast cancer at earlier stages as compared to DM. None of these

studies have been done before and are vital to determine if DBT can reduce the inci-

dence of advanced cancers by detecting them at earlier stages. These studies will be

extremely useful to make recommendations for breast cancer screening programs, in

terms of the imaging modality of choice.

To perform these studies, we need to develop in silico frameworks that can repli-

cate the different detector technologies and have a provision to include the growth
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Figure 1.3: Contributions to the VICTRE 1.0 pipeline

of cancerous tumors. Currently, none of the in silico frameworks, described in the

previous section have these capabilities. The first goal (Chapters 2 and 3) will be

to develop new in silico tools that are required for our investigations. Fig. 1.3 illus-

trates the current VICTRE 1.0 platform and the modules that will be improved as

part of this thesis. To study how breast cancer evolves in the in silico version, 3D

models that mimic tumor growth and progression were developed (chapter 2). The

imaging physics module in the VICTRE 1.0 pipeline, which currently emulates the

Siemens DBT system, was adapted to mimic other commercially available systems

in terms of detector technology and acquisition geometry (chapter 3). Chapter 4 de-

scribes the development of an open source version of filtered back-projection (FBP)

reconstruction for DBT. The next half of the dissertation (Chapter 5 and 6) focuses

on investigating the impact of detector technology and imaging modality on the de-

tection of breast cancer using the tools developed in the earlier chapters. We first

studied the performance of the commercially available systems. Specifically, we inte-

grated the physics models developed in Chapter 3 with the breast, lesion and reader

models from the VICTRE 1.0 pipeline for this study. The two main objectives of the

study were to ascertain whether DBT outperforms DM across the different detector

technologies and whether the type of imaging detector (direct vs indirect) has any
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significant influence on the task of cancer detection.

1.4.1 Chapter 2: Simulating breast cancer progression

This chapter introduces a 3D voxelized breast lesion model representing different

stages of growth. Several approaches (Dukov et al., 2019; Bliznakova et al., 2019, 2003;

de Sisternes et al., 2015) have been reported in the past for simulating 3D voxelized

breast lesions, as shown in fig. 1.4. These models can be categorized as parameterized

or patient derived. Parameterized models are developed using simple mathematical

or analytical equations to describe the shape or surface of the lesions (see fig. 1.4

(a) to (d)). These lesions are described using either simple shapes like spheres or

ellipsoids (Bliznakova et al., 2003), random walk algorithms (Hintsala et al., 2009),

diffusion limited aggregation algorithms (Rashidnasab et al., 2013) or a Gaussian

sphere model (de Sisternes et al., 2015). While these models allow flexibility in terms

of resolution and range of lesion morphology, realism is a major concern. To address

this concern, Dukov et al. (Dukov et al., 2019) introduced the patient derived model,

which uses real images of breast cancer cases. The lesions are segmented from patient

images generated using 3D imaging modalities like DBT and CT. The 2D lesion

slices are then stacked to create the final lesion morphology. While this approach

may generate more realistic lesions, it suffers from several shortcomings, including

limited resolution of the tumor model, limited number of lesion shapes, and the need

to establish institutional review board (IRB) approvals for obtaining patient data.

Moreover, none of these previous approaches can be extended to incorporate growth

as they are not based on any biological phenomena.

In comparison to the previous efforts, the work described in this chapter accounts

for the biological factors that can affect the growth and morphology of the tumor

such as interstitial tumor pressure, diffusion of metabolites as well as stiffness of the

surrounding tissues. This chapter builds on a previously reported model (Tang et al.,
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(e)

Figure 1.4: Lesion models based on (a) simple shapes like ellipsoids (image source:
Bliznakova et al. (2003)), (b) random walk algorithms, (image source:
Hintsala et al. (2009)) (c) diffusion limited aggregation algorithm (image
source: Rashidnasab et al. (2013)), (d) Gaussian sphere model (image
source: de Sisternes et al. (2015)) and (e) patient data (image source:
Dukov et al. (2019))

2014), incorporating the effect of the stiffness of local anatomical structures on the

final lesion morphology. The model allows preferential proliferation of tumor cells in

the more elastic regions of the breast like pockets of adipose tissues, while stunting

their growth through stiffer structures like ligaments. This approach allows growth

of realistic lesions informed by their local anatomical features.

1.4.2 Chapter 3: Modeling x-ray detector physics

Table. 1.4.2 describes all the commercially available DM/DBT systems that have

received FDA clearance. Currently there are two types of x-ray detector technologies

that are used in these systems - direct (based on amorphous selenium (a-Se)) and

indirect (based on cesium iodide (CsI:Tl)). Currently, a-Se is the photoconductor of

choice for x-ray imagers in most FDA approved DBT and DM systems such as the
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Hologic Selenia Dimensions, the Siemens MAMOMAT Inspiration and the Fujifilm

Innovality (Mackenzie et al., 2017) as reported in table 1.4.2.

Manufacturer Siemens Inspira-
tion

GE
Senographe
Pristina

Hologic
Selenia Di-
mensions

FujiFilm
Innovality

Pixel Pitch (µm) 85 100 70 50
Detector a-Se CsI a-Se a-Se
Detector Thick-
ness (µm)

200 250 200 200

Number of DBT
Projections

25 9 15 15

Angular Range 50◦ 25◦ 15◦ 15◦

Anode/Filter W/Rh Mo/Rh W/(Rh or
Al)

W/(Rh or
Al)

Filter thick-
ness(mm)

0.05 0.025 0.05 (Rh)
or 0.5 (Al)

0.05 (Rh)
or 0.7 (Al)

SID (cm) 65.5 66 70 65

Table 1.1: Description of all FDA approved DBT systems (Mackenzie et al., 2017;
Sechopoulos , 2013). (SID stands for source to imager distance)

Direct detectors, as shown in fig. 1.5, using x-ray sensitive materials like amor-

phous selenium (a-Se), convert the incident x-ray photons to electric charge. A frac-

tion of the incident x-rays, determined by the thickness and attenuation coefficient

of Se, is absorbed in the a-Se detector layer. Each absorbed x-ray photon creates a

primary photo-electron through the photo-electric effect(Que and Rowlands , 1995a).

This primary electron carries a large amount of kinetic energy and as it travels through

the Se layer, it collides randomly with Se atoms and creates thousands of secondary

electron–hole pairs, until all its kinetic energy is lost. The high electric field generated

across the detector, causes the electrons and holes to drift along the field lines to be

collected by the pixel and top electrodes, respectively. The electronic charges are

collected and accumulate on the pixel capacitor and finally read out using back-end

electronics.
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(a)

(b)

Figure 1.5: Cross-sections of (a) direct and (b) indirect x-ray detectors.

14



Indirect x-ray detectors based on scintillating materials like thallium-doped ce-

sium iodide (CsI:Tl) convert the incident x-ray energy to charge in a two step process.

These detectors first absorb the incident x-ray energy and convert it into optical pho-

tons. The photo-electric effect is also the main x-ray interaction in CsI:Tl detectors

(Yaffe and Rowlands , 1997)). However, instead of creating secondary electron-hole

pairs, the primary electrons generate light quanta. The optical photons are then

converted into electric charge by a large photodiode array. The charge stored on the

storage capacitor is then read out using back end electronics, similar to the a-Se based

direct detector.

Our group recently reported on an in silico version of the SIEMENS Mammomat

Inspiration DM and DBT system using an open source GPU-accelerated Monte Carlo

x-ray imaging simulation code, MC-GPU (Badal et al., 2020a). The MC-GPU code

implements a realistic x-ray source model with the tomosynthesis acquisition geometry

and a detector model for the direct-conversion a-Se detector. Chapter 2 builds on the

previous version of the MC-GPU codes to mimic the imaging performances of two

other FDA-approved DM/ DBT systems, such as Hologic Selenia Dimensions and

the General Electric Senographe Pristina systems. Although the Hologic system also

uses a direct-conversion detector, it suffers from resolution loss due to signal crosstalk.

Similarly, spread of optical photons is typical in the CsI:Tl based indirect detector,

used in the GE system. We improved on the current detector model to incorporate

both these phenomena.

The performance of these models were evaluated by simulating standard image

quality metrics used in clinical practice such as modulation transfer function (MTF),

noise power spectrum (NPS) and detective quantum efficiency (DQE) and comparing

them with measured data.
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1.4.3 Chapter 4: Open source FBP reconstruction for DBT

This chapter describes the development of an open source version of the FBP

reconstruction algorithm for DBT using single-threaded C. This is an extention to

the C codes developed by Leeser et al. (Leeser et al., 2014) for cone-beam computed

tomography (CBCT) reconstruction, incorporating the differences in acquisition ge-

ometries between the two imaging technologies. The C based FBP implementation

was tested using mathematical and anatomical phantom data and the results were

compared with a previously verified MATLAB implementation. The C implementa-

tion resulted in significant improvements (up to 9 times) in computational speed over

the MATLAB one, which is crucial for running large in silico trials.

1.4.4 Chapter 5: Investigating the link between DQE and cancer de-

tectability

This chapter integrates computational models of different detector technologies,

developed in chapter 3, with the VICTRE in silico pipeline to evaluate the effect of

detector technology on breast cancer detection. One of the advantages of in silico

approaches is that hypothetical systems can be modeled and compared. So to remove

all other confounding and contributing factors, the same DM/DBT system geometry

and x-ray acquisition parameters, modeled to mimic the Siemens Mammomat Inspi-

ration system, was used to evaluate the three detectors. The effect of the detector

technologies were evaluated for two manifestations of breast cancer: spiculated masses

and micro-calcifications. This study allowed us to gain insight into the relationship

between image quality metrics and the clinical performance that can be achieved

with different detector technologies. While the relationship between detectors’ image

quality metrics and performance in DM may be well understood, the same cannot be

concluded for DBT.
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1.4.5 Chapter 6: The first ever longitudinal trial investigating breast

cancer imaging techniques

Although the advantage of DBT for the detection of larger masses has been demon-

strated through various studies, it remains to be seen if DBT offers similar benefits

at earlier stages of cancer progression, when tumor sizes are smaller. To investigate

this, this chapter describes first ever in silico longitudinal trial reported in literature.

To mimic cancer progression, the computational model for simulating the growth of

breast cancer lesions developed as part of chapter 2, were used. This model, inte-

grated with the VICTRE pipeline is used to create a cohort of in silico patients each

with an unique manifestation of cancer recorded at 5 stages of progression. Digital

patients with varying breast densities, from dense to fatty are considered. This study

demonstrated the benefits of DBT as compared to DM at earlier stages of tumor

development.
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CHAPTER II

In Situ Tumor Model for Longitudinal In Silico

Imaging Trials

2.1 Abstract

In silico trials have garnered widespread support as an alternative way of evaluat-

ing novel imaging technologies as compared to lengthy and expensive clinical studies.

To facilitate in silico studies for assessing the performance for earlier detection of

cancer, a method to simulate tumor growth and morphological variations at vari-

ous stages of disease is needed. We introduce a computational model for simulating

the growth of breast cancer lesions based on biological and physiological phenomena

accounting for the stiffness of surrounding anatomical structures. Ligaments are con-

sidered as the most rigid structures with a elastic modulus in the range of 8x104-4x105

kPa (pressure multiplicative factor of 106), while fat (elastic modulus varying from

0.5 to 25 kPa, and pressure multiplicative factor of 10) and glandular tissues (elastic

modulus varying from 7.5 to 66 kPa, and pressure multiplicative factor of 45) consti-

tute the more elastic regions of the breast. In the model, tumor cells are less likely

to grow through stiffer structures like ligaments and instead preferentially proliferate

in the more elastic regions of the breast. Depending on the breast local anatomi-

cal structures, a range of unique lesion morphology can be realized. We modeled
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the growth of simulated lesions within volumes extracted from 50 µm fatty breast

models generated with the open-source, freely available VICTRE (Virtual Imaging

Clinical Trials for Regulatory Evaluation) imaging pipeline. The imaging component

of the VICTRE pipeline models the Siemens Mammomat Inspiration mammography

system, which was used to generate the digital mammogram (DM) images for each

breast model containing the lesions. Using these DMs, we show the imaging char-

acteristics of the lesions blending with the anatomical backgrounds in DM images

depicting several time points in the growth of the tumor.

2.2 Introduction

Three-dimensional (3D) digital breast tomosynthesis (DBT) is being considered

to replace digital mammography (DM) as the imaging modality of choice in breast

cancer screening programs. As compared to DM, DBT has been shown to increase the

cancer detection rate by 15–30% and reduce the recall rate by 15–20% (Iranmakani

et al., 2020). Especially for non-calcified masses, DBT, compared to DM, not only can

increase the cancer detection rate (Su et al., 2017; Zuley et al., 2013), but also improve

diagnostic accuracy (Su et al., 2017). However, the primary goals of breast cancer

screening programs not only are to increase the cancer detection rate, but also to lower

breast cancer-related mortality by reducing the number of advanced cancers in the

population. Hence, it is imperative to establish whether DBT systems can replace DM

for increasing the detection of aggressive cancers at earlier stages. Traditional clinical

trials designed to conduct such studies usually are very lengthy, expensive and may

involve exposing women to unnecessary radiation. Such trials can significantly slow

down regulatory evaluation, delaying patients access to safe and effective advanced

technologies. New concepts or technological improvements in the imaging system

and its components are currently evaluated by designing and conducting new clinical

trials. A faster and cost-effective alternative is the implementation of sophisticated
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computational techniques, in silico trials (Badano et al., 2018; Bakic et al., 2018;

VICTRE Github Repository , 2018), as an alternative source of regulatory evidence.

The goal of our work, described in this paper, is to model the growth of breast lesions

for longitudinal in silico trials studying the effect of breast cancer progression on

imaging performance.

To facilitate the modeling of cancer progression within computational trial pipelines,

we developed a 3D voxelized breast lesion model representing different stages of

growth. Table 2.1 summarizes approaches that have been reported for simulating 3D

voxelized breast lesions, including patient-derived and parameterized models. While

the patient-derived models contain features from actual patient data and thus may

look more realistic (Dukov et al., 2019; Bliznakova et al., 2019), they suffer from sev-

eral shortcomings, including limited resolution of the tumor model, limited number

of lesion shapes, and the need to establish institutional review board (IRB) approvals

for obtaining patient data. On the other hand, the parameterized mathematical mod-

els enable the generation of a larger number of lesion shapes with variable resolution

(Bliznakova et al., 2003). Additionally, none of the models summarized in table 2.1

are based on biological phenomena. In comparison to the previous efforts, the work

described in this chapter takes into account the biological factors that can affect the

growth and morphology of the tumor such as interstitial tumor pressure, diffusion of

metabolites as well as stiffness of the surrounding tissues.

Patient-Derived Models
Segmentation of 2D slices from DBT or breast computed tomography (bCT) volumes
and stacked to create the final 3D tumor morphology(Dukov et al., 2019; Bliznakova
et al., 2019)

Mathematical Models
Simple shapes (e.g., ellipsoids/spheres) (Bliznakova et al., 2003)
Random walk model(Hintsala et al., 2009)
Diffusion limited aggregation model (Rashidnasab et al., 2013)
Gaussian sphere model with iterative fractal branching (de Sisternes et al., 2015)

Table 2.1: Methods for breast lesion models from the literature.
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Tumor growth consists of avascular and vascular phases. During the avascular

phase, the tumor grows up to a few mm(Chaplain, 1996), depending on the diffusion

of vital nutrients into the tumor from the surrounding tissue. Due to rapid cell

division within a confined region, cells located toward the center experience very high

interstitial pressure. Vasculature and the lymphatic system also play a vital role in the

increase in the interstitial pressure in tumors. In normal tissues, most of the fluid that

filters into the interstitial space, gets reabsorbed into the microvasculature system,

while the rest is taken by the lymphatic system. In tumors, the lymphatic system

is not so well defined and if the reabsorption of the fluids is not rapid enough, while

the tumor cells are still proliferating, the fluid build up could add to the interstitial

pressure(Jain, 1987). In the vascular phase, when blood vessels start to grow into

the tumor, they add to the interstitial pressure as well. The interstitial pressure is

extremely high at the core and reduces toward the tumor periphery. This gradient

in interstitial pressure induces an outward convection of vital nutrients, depriving

the core cells of oxygen (O2) and giving rise to a necrotic core. The cells near the

tumor periphery taking part in cell division are termed ”active cells,” while cells

in the middle of the necrotic core and active cells are called ”quiescent cells.” In

response to hypoxia, tumor cells begin the process of secreting chemicals known as

tumor angiogenesis factors (TAFs), inducing new blood vessels to sprout from existing

ones. The new vessels gradually penetrate the tumor, providing an adequate blood

and nutrient supply required to maintain its growth. The vascular growth phase of

breast cancer represents the moment when lesions become palpable (Gavaghan et al.,

2002). Breast cancer screening programs aim to detect cancer before lesions reach

the vascular stage.

Previous computational and theoretical efforts have attempted to predict pattern

formation in nature. Among them, the reaction-diffusion model developed by Tur-

ing is one of the most popular analytical frameworks for the explanation of spatial
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biological pattern formation (Turing , 1952; Kondo and Asal , 1995). Turing, in his

1952 seminal paper, proposed that the temporal variation of the concentrations of two

different diffusible morphogens, the activator and the inhibitor, can create patterns

by reacting with each other. His model was used by Chaplain et al. (Chaplain, 1996)

to simulate the avascular growth of cancerous tumors, noting that some biological

chemicals could inhibit and promote tumor growth. However, this initial model did

not consider any effect of surrounding interstitial tumor pressure that could affect the

flow rates for the different metabolites and growth factors. Factoring the interstitial

pressure into Turing’s original model led to the advection-reaction-diffusion model.

Advection involves the rate of change of metabolites and growth factors toward the tu-

mor core due to gradual increases in interstitial tumor pressure from rapidly-dividing

cells. This model has been used to simulate the growth of several types of tumors

(Chaplain, 1996; Lujan et al., 2019; Yan et al., 2017; Frieboes et al., 2010; Sauer

et al., 2020; Tang et al., 2014), including aggressive glioblastomas (Yan et al., 2017;

Frieboes et al., 2010). A similar approach has been used to simulate the growth of

breast lesions for MRI studies (Weis et al., 2013a). Although the work by Weis et

al. explored the effect of the lesion’s microenvironment on the diffusion of drugs and

nutrients, it did not account for the growth of anisotropic lesions. This is a major

drawback of previous efforts. In this article, we describe, for the first time, an ap-

proach for modeling the growth of anisotropic breast cancer lesions unique to their

breast environments. We have also developed a method for adding spiculations to

the lesions at various stages of growth. Finally, we show digital mammography (DM)

images of growing lesions within anatomical breast digital models using the freely

available, open-source VICTRE (Virtual Imaging Clinical Trials for Regulatory Eval-

uation) in silico imaging pipeline (Badano et al., 2018; VICTRE Github Repository ,

2018), depicting several stages of tumor growth.
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2.3 Methods

2.3.1 Tumor dynamics

Growth dynamics, based on advection-reaction-diffusion equations of this model,

were adapted from Tang et al. (Tang et al., 2014). As shown in Fig. 1, the model

begins with the calculations of interstitial tumor pressure as a combination of cell and

vessel perfusion induced pressures. For simplicity, we have ignored the contribution

of the lymphtic system to the tumor pressure. Additionally, the vessel perfusion

induced pressure contributes to the interstitial tumor pressure only in the vascular

phase. Since we are focussing on the avascular phase in this work, our model begins

with the calculation of interstitial tumor pressure resulting from rapid cell division

in a confined space. This pressure is calculated as a Gaussian-like function, with the

highest pressure being exerted at locations closer to the tumor cell, as expected. In

other words, the cell- induced pressure P experienced by a tumor cell located at X0,

due to N neighboring cells, located at X i can be expressed as:

PX0 =
N∑
i=1

pi × exp(
−(l(X0, X i))

2

2(σXi)2
). (2.1)

Here, l(X0, X i) is the euclidean distance between two locations in the tumor, and

pi is a constant related to interstitial tumor pressure. Please note that in the original

publication by Tang et al., pi is expressed as a function of the tumor cell density, θ.

However, in the actual computational implementation, pi was defined as a constant.

The value of pi was determined empirically (Tang et al., 2014):

σXi = σ0
θ2

θ2 + 0.52
+ 0.05, (2.2)

where θ is the tumor cell density calculated as the ratio of the number of grid points in
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the surroundings occupied by tumor cells to the total number of neighboring locations

(26 in our implementation). The value of the constant σ0 (0.15) was determined

empirically (Tang et al., 2014).

Figure 2.1: Algorithm for anisotropic tumor growth based on pressure fields.

This model focusses on O2 and carbon dioxide (CO2) as the main macromolecules

that affect the growth of the tumor. Other nutrients such as glucose, amino acids,

fatty acids, vitamins, and micronutrients also play an important role in the growth of

tumors. However, modeling their transport and permeability across the cell’s plasma

membrane is a complex process (Tang et al., 2014). So for simplicity, only the effect of

oxygen O2 is considered in this model. Although O2 is the only nutrient considered,
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it is crucial for aerobic metabolism in cells. Oxygen plays an important role in the

tumor growth process by aiding cell metabolism, angiogenesis and metastasis. The

gradients of pressure affecting the flow rate of the macromolecules such as O2 and

carbon dioxide (CO2) and their final concentrations are calculated using advection-

reaction-diffusion equations, such as:

∂n

∂t
= Dn∇2n−∇.(u.n) + ρ0RiPw − λ0Ai, (2.3)

where n (mol/m3) represents O2 concentration, Dn is the diffusion constant in m2/s

and u is the flow rate, ρ0 is the rate of oxygen supply in mol/(m3sec), Ri is the

radius of a blood vessel and Pw is the pressure gradient through the vessel wall. Ai

is the cell activity and λ0 with units of mol/(m3s). Please note that equation 2.3 is

equivalent to the combination of equations 6, 7 and 8 in the original publication. 1 is

an empirically-determined constant. The first and second terms on the right side of

the equation represent diffusion and advection, respectively, while the third term is a

source of O2 and the fourth represents cell activity consuming O2. The concentration

of CO2 also can be determined using similar equations, but with the cell activities

acting as a source of CO2. All parameter values used in the growth model including

diffusion coefficients, supply and consumption rates of the various metabolites, and

initial values of the nutrient and waste concentrations are summarized in Table 1 in

the original publication by Tang et al.(Tang et al., 2014). References have also been

provided to justify some of these choices, while the others have been optimized to

cover the transition of the tumor from its avascular to vascular phase with reason-

able computational efficiency. Based on the metabolite concentrations, tumor cells

are classified as active, quiescent or necrotic. Only certain active cells with energies

greater than a threshold are allowed to divide. The algorithm is initiated with 5

1The units reported in the original publication by Tang et al. (Tang et al., 2014) are not consis-
tent.
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active cells which are organized in a random anisotropic shape in adjacent voxels. As

the cell enters the division algorithm, it is considered to be placed at the center of a

cube with 26 neighboring locations for potential proliferation. So far this algorithm

is based on the work by Tang et al. The major addition in this work is the cell

proliferation informed by the stiffness of the various tissues in the local microenvi-

ronment of the tumor. In order to achieve this in situ growth, the pressures along

certain directions were manipulated in proportion to the stiffness of the surrounding

tissues, which was determined using their elastic moduli. A proliferation probability,

inversely proportional to the tumor pressure, is assigned to each of the 26 locations.

Finally, the location for cell division is randomly sampled, and a new cell is added.

The simulation time scale for tumor growth is recorded in cell life cycles (CLCs).

One CLC represents approximately 25 iterations of the code, after which cells gain

enough energy to divide based on O2 and CO2 concentrations.

2.3.2 In situ growth

We relied on the assumption that tumor morphology is to some degree corre-

lated with the mechanics of the tumor’s surrounding tissue types, and grew tumors

inside volumes extracted from a breast model comprised of adipose, glandular and

ligament tissues. Other anatomical structures included in the breast volume were

ducts, arteries and veins. The hypothesis is that varying the elasticity of these differ-

ent anatomical structures influences the shape of the growing lesion. This has been

corroborated by previous reports (Stein et al., 2007; Helmlinger et al., 1997) which

showed that tumors are very sensitive to their microenvironments and that their

growth is inhibited when exposed to high mechanical stress. Earlier models depicting

growth of breast lesions (Weis et al., 2013b) and gliomas (Garg and Miga, 2008) have

incorporated the effect of mechanical stress by coupling the stress factor to the cell

diffusion coefficient through an exponential function. One of the major drawbacks
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of the previous approach by Weis et al. (Weis et al., 2013b), is that even after in-

cluding the effect of tissue mechanics, the growth model generated fairly isotropic

tumors with minor perturbations at the edges. The only anisotropic lesions shown

in Weis’ article were generated using morphology derived from patient data. Weis et

al.’s model was developed to predict the number of tumor cells rather than their final

morphology. In addition, Weis’ model described 2D lesion growth and is not suitable

for generating 3D voxelized lesion models required for conducting in silico trials.

In our work, we directly coupled the mechanical constraints exerted by the local

tissue structures to the cell proliferation algorithm. Stiffer tissues do not allow tumor

cells to deform or grow into them. Tumor cells, therefore, preferentially grow into

more elastic regions of the breast. The algorithm is illustrated in Fig 2.1. We varied

the value of k0 proportionally to the elastic constants of the tissues surrounding the

proliferating tumor cell. The local pressures are manipulated by k0:

P n
X0 = k0 × PX0. (2.4)

Here, PX is the total interstitial tumor pressure calculated at X using equations

described in the original publication by Tang et al.(Tang et al., 2014). Following the

algorithm shown in Fig. 2.1, a cell proliferation probability was assigned to each of the

neighboring 26 locations, such that locations that had more elastic tissues (and lower

pressures) had higher probabilities. Finally, a location for cell division was randomly

sampled, and a new cell added in that location.

The elastic modulus for adipose, glandular and ligament tissues (Gefen and Dil-

money , 2007) and corresponding k0 values are shown in Table 2.2. One of the most

frequently-detected types of cancer is ductal carcinoma in situ (DCIS) (Sakorafas

and Tsiotou, 2000), which starts out from within the ducts (Coleman, 2019). If left
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untreated, most cases develop into invasive breast cancer (IBC) (Risom et al., 2021).

DCIS originates from the epithelial cells in the ducts and sometimes grows along the

ducts for a prolonged (up to several years) period of time, after which it invades

the surrounding tissues (Erbas et al., 2006). To simulate lesions representing DCIS,

ductal fluid was assigned a k0 value of 1. Since fat may not be as elastic as ductal

fluid, we assigned a k0 value of 10 to the voxels representing fat. So far we have found

no evidence that tumors that originate in other tissues of the breast, penetrate and

continue growing inside blood vessels. Angiosarcoma of the breast is a rare form of

cancer that originates in the blood vessels. However, this only accounts for 1 % of the

all breast tumors (Arora et al., 2014) and thus we have ignored this type of cancer

for our current study. So in this work, other structures included in the breast model,

such as arteries, veins and skin were considered to be statistically impenetrable, with

a k0 value of 106.

Tissue Type Elastic Modulus Pressure multiplication factor
[kPa] (k0)

Fat 0.5-25 10
Glandular 7.5-66 45
Ligaments 80000-400000 106

Table 2.2: Pressure multiplicative factor based on Elastic Modulus for different tissue
types.

2.3.3 Local anatomy modeling

We used the breast models developed by Graff et al.(Graff , 2016) to simulate

lesion growth in situ. As compared to previous approaches described in literature

(Bakic et al., 2001, 2002, 2003; Bliznakova, 2016; Bliznakova et al., 2003), the breast

model developed by Graff et al.(Graff , 2016) includes anatomical features such as

vasculature, ductal network and a realistic breast shape in addition to the adipose

and glandular tissues. These features make the breast model by Graff et al. an

attractive option for our application.
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In order to create anisotropic pressure maps based on the local anatomy, we

extracted 1cm x 1cm x 1cm volumes from fatty breast models (Graff , 2016) generated

with the VICTRE toolbox (Badano et al., 2018; Sharma et al., 2019; VICTRE Github

Repository , 2018). Locations for volume extraction were chosen randomly from a list

of potential candidates generated for each breast model. Volumes for lesion growth

were selected after confirming that they lay within the breast boundary and had no

overlap with air, muscle, nipple or skin.

The extracted anatomies were 3D voxelized volumes, with each voxel representing

a different tissue type. Fig. 2.2a shows a central slice from one of the extracted

volumes. Adipose and glandular tissues are represented by black and blue, while

the white voxels indicate ligaments. As we can see from the figure, the ligaments

are interspersed with many black (fat) voxels or ”holes.” While the presence of such

minute holes in the breast model may not affect the appearance of the much larger

DM or DBT images, they can affect the shape of tumors growing in their vicinity.

Since these holes are represented as voxels of fat, a significant number of tumor cells

can penetrate the ligaments through these holes resulting in isotropic shapes and

leading to unrealistic morphology.

To address this issue, we developed an algorithm (see Fig. 2.2 b to control the

penetrability of the ligaments. First, the ligaments were segmented and a MATLAB-

based smoothing function (MATLAB Documentation, 2006) was used to fill the holes

and thicken the ligaments. The thicker ligaments then were reinserted into the original

volume by voxel substitution. We used a Gaussian smoothing function. By varying

the standard deviation of the Gaussian function, we could control the number of holes

in the ligaments, and consequently, their effect on tumor shape. An example of the

process for reducing the number of holes in the ligaments is shown in Fig. 2.2 c.

Once the processing of the extracted volume was completed, we translated it into

a 3D map of k0 values corresponding to the voxel tissue types. This map then was
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Figure 2.2: Postprocessing of extracted anatomy volumes to reduce the number of
holes. (a) A central slice from a 1cm x 1cm x 1cm anatomy volume
extracted from a fatty breast model. The black regions are fat, blue is
glandular tissues and white are ligaments. An example of large holes
in the ligaments is encircled. (b) Flowchart for postprocessing of the
extracted volumes to reduce holes and (c) Process for reducing the number
of holes in the ligaments. Fat and glandular tissues are represented by
black and dark blue. Ligaments are indicated in cyan.

used to manipulate the local tumor pressures during the cell proliferation process, as

shown in Fig. 2.1.

2.3.4 Addition of spiculations

One of the most common indicators of breast cancer in DM or DBT images is

the presence of a mass with thin, needle-like lines called spicules, radiating from its
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center (Seto and Mardiyana, 2019). Spicules are formed as a result of direct invasion

of the tumor or through a desmoplastic reaction with its surrounding tissues (Griff

and Dershaw , 2002). To date, no report has addressed the modeling of spicule growth

based on biological processes.

Figure 2.3: Process of generating spiculated lesions for isotropic and anisotropic cen-
tral masses. The spicules are indicated in yellow while the central mass
is blue.

We modeled the growth of spicules following a technique by Elangovan et al.(Elangovan

et al., 2016a). In their work, the authors discussed creating spiculated lesions with

a central mass generated using a diffusion-limited algorithm and attaching a set of

spicules to the mass surface. They generated spicules manually by scrolling through

patient DBT slices with spiculated masses, marking the points where they first ap-

peared, and using 3D interpolation techniques to produce a 3D spicule skeleton. This

method requires access to patient data and appropriate informed consent approvals.

We describe here a similar approach that, instead of relying on patient data, used

our implementation of de Sisterne’s model (de Sisternes et al., 2015) to create a 3D

map of spicules, as shown in Fig. 2.3. Using de Sisterne’s model, we generated a
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3D voxelized spiculated mass with the central mass and spicules represented by voxel

values 1 and 2, respectively. As the central mass (represented in blue in Fig. 2.3) and

spicules (represented in yellow in Fig. 2.3) are differentiated by their voxel values,

we could easily segment and create a 3D map of the spicules. With de Sisterne’s

model for spicules, we could control the number of spicules, their length and cur-

vature. Finally, we attached the segmented spicules of varying lengths to the mass

corresponding to different time points from our lesion growth model. This method

works well for isotropic and most anisotropic masses. In some cases in which the

central mass is highly anisotropic, some gaps (encircled in dotted red in Fig. 2.3) can

be seen.

2.3.5 Imaging

Lesion models were saved at various stages of growth and inserted in the same

fatty breast models using voxel replacement. The DM projections were generated

using the GPU-accelerated Monte Carlo (MC-GPU) x-ray transport simulation code

(Badal et al., 2020b), developed as part of the VICTRE pipeline (Badano et al., 2018;

Sharma et al., 2019; VICTRE Github Repository , 2018). The MC-GPU codes repli-

cated the technical specifications and imaging characteristics of the Siemens Mam-

momat Inspiration system, currently in clinical use for DM and DBT. The MC-GPU

codes were used to model a direct 200 µm amorphous selenium based detector with

2816 × 3584, 85 µm pixels. The radiographic spectrum suitable for the fatty breast

models was simulated using a tungsten anode with a peak tube voltage of 30 kVp,

filtered with 50 µm rhodium and 1 mm beryllium. To generate the DM images for

each breast model containing the lesions, 3.7x1011 histories were used, which took

38 minutes on a system with 2 GeForce GTX 1080 NVI-DIA GPUs and 32 GB of

memory. The lesions were realized as denser (up to x1.5) glandular tissue for visu-

alization purposes. All processing of raw images generated by the MC-GPU codes
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was performed using ImageJ, by first converting them to 16-bit images, followed by

enhancing image contrast.

2.4 Results

2.4.1 Modeling local anatomy

Fig. 2.4 illustrates the effect of preprocessing of ligament holes. The first column

on the left shows slices of volumes extracted from a fatty breast model, postprocessed

with a Gaussian filter-based convolution kernel of varying standard deviations. Adi-

pose and glandular tissues are in black, while ligaments are in green. The lesion itself

is in red. We noted that, as expected, the number of holes in the ligaments decreased

with an increase in the standard deviation of the smoothing function. This enabled

tumor cells (in red) to penetrate into the fatty regions (in black, see Fig. 2.4, 2.5, 2.6)

of the breast, lacking the expected growth inhibition due to the presence of liga-

ments, and resulting in isotropic growth (see row 1 of Fig. 2.4). By increasing the

standard deviation of the Gaussian filter-based convolution kernel, we were able to

thicken the ligaments and obtain a range of breast lesion morphologies at different

breast locations, depicted in column 2 of Fig. 2.4. The third column shows simulated

DMs containing the same lesions. Additional figures showing these effects at different

locations in the breast are included in the supplementary material.

Figs. 2.5 and 2.6 show similar effects of postprocessing of the extracted local

anatomy volumes, discussed in Section 3.1, at other locations in the breast model. In

short, a higher standard deviation would result in more holes in the ligaments being

filled, thus generating more anisotropic shapes controlled by the ligaments. Some of

the differences in the lesion morphology may be quite subtle in the DM ROIs (rows

2 and 3 of Figs. 2.5 and 2.6), owing to the presence of overlapping tissues.
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Figure 2.4: Effect of postprocessing of extracted anatomy volumes on final lesion mor-
phology. Column 1 shows slices of a volume extracted from a fatty breast
model, postprocessed with a Gaussian filter based convolution kernel of
varying standard deviation. The number of holes in the ligaments de-
crease with an increase in standard deviation. Column 2 shows the 3D
voxelized lesion alone while column 3 shows ROIs from simulated DMs
containing the same lesion in column 2.

2.4.2 Effect of local anatomy on morphology

Fig. 2.7 (rows 1, 2 and 3) shows different lesion morphologies realized using

this model. Column 1 shows the lesion shapes while Column 2 includes some local

anatomy information. The green and blue voxels represent ligaments and ducts,

while the lesion is indicated in red. The first two rows show the effect of ligaments

on lesion morphology. Ligaments in the second row had fewer holes compared to

those in the first row, resulting in much more restricted lesion growth. The third row

represents the growth of DCIS, in which the tumors originate within ducts, grow along

them, and then overflow into the surrounding fatty and glandular regions. The third

34



Figure 2.5: Effects of postprocessing of the extracted local anatomy volumes on the
final lesion morphology. Column 1 shows x-y slices of a volume extracted
from location 2 from a fatty breast phantoms, postprocssed with a Gaus-
sian filter based convolution kernel of varying standard deviation. Adipose
and glandular tissues are black, ducts are blue, while ligaments are indi-
cated in green. The number of holes in the ligaments decrease with an
increase in standard deviation. Column 2 shows the 3D voxelized lesion
alone while column 3 shows ROIs from simulated DMs containing the
same lesion in column 2.

column shows ROIs from simulated DMs generated using the VICTRE pipeline. The

lesions,circled in red, are quite difficult to see, as they were imaged with attenuation

coefficients similar to those of normal glandular tissues with a slightly (1.3 times)

higher density.

Fig. 2.7 (rows 4, 5 and 6) shows a variety of models that result in isotropic growth.

Column 1 shows the lesion alone. Columns 2 and 3 include information about the

local anatomy where they were grown. Column 2 shows a central x-y slice of the

volume containing the tumor, while Column 3 depicts the entire volume. As we can
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Figure 2.6: Effects of postprocessing of the extracted local anatomy volumes on the
final lesion morphology. Column 1 shows x-y slices of a volume extracted
from a fatty breast phantom, postprocssed with a Gaussian filter-based
convolution kernel of varying standard deviation. Adipose and glandular
tissues are black, ducts are blue, while ligaments are indicated in green.
Lesions are in red. The number of holes in the ligaments decrease with an
increase in standard deviation. Column 2 shows the 3D voxelized lesion
alone, while Column 3 shows ROIs from simulated DMs containing the
same lesion as that in Column 2.

see in the first two rows, the lesion does not interact with the ligaments, and mostly

grows isotropically. The lesion in the second row does encounter some glandular

tissue; hence, its shape is more irregular in comparison to the growth in the first

row. The third row represents the case in which the tumor encounters a ligament

with a large number of holes. These holes allow the cells to migrate to the other

side of the ligaments, resulting in isotropic growth. Fig. 2.8 shows the generation of

anisotropic and isotropic masses, and the subsequent attachment of a 3D spicule map.

The third column shows projections of the spiculated masses alone, demonstrating

the fine appearance of the spicules in the projections. The last column shows ROIs
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Figure 2.7: Lesions and their appearance in renderings and in the DM images. Lesions
(column 1) grown in situ. The second column includes local anatomy
information. The third column are DM ROIs containing the lesions in
the first column. All lesions were imaged as glandular tissues, but with
higher density. For better visibility, the lesions in all rows were imaged
with 1.3 times higher density, except for the one in the third row, which
was imaged with 1.8 times higher density.
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of the spiculated masses imaged along with their respective breast environments. To

improve contrast and visibility of the spicules in the ROIs, the lesions were imaged

as calcium oxalate masses. In the x-ray projections, locations with a larger density of

lesion cells per unit volume appear brighter. The lesion core is densely packed with

cells, while the spicules are thin hair like structures with relatively low density of cells.

Hence the core appears brightest as compared to the periphery and the spicules.

All ROIs in Figs. 2.4 and 2.7 contain the central masses shown in Column 2, with

3D spicule maps attached to them. However, since these lesions were imaged as dense

glandular tissues, the fine spicules no longer were visible, due to overlapping tissues.

Figure 2.8: Examples of spiculated masses. Column 1 shows the central mass alone,
while the second column shows the mass overlapped with spicules. The
third and fourth columns show projections of the lesions alone and with
appropriate tissue background respectively.

Fig. 2.9 illustrates the ROIs from DM images of breast models with lesions at

different locations and stages of growth. To improve the contrast of the lesions, their

attenuation was set to be similar to that of glandular tissue, but with 1.5 times-

higher density, so that the smallest lesion, at 10 CLCs, could be distinguished from
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the normal anatomy.

Figure 2.9: Lesion growth from an imaging point of view. 250 x 250 pixel ROIs
selected from simulated DM images generated using the VICTRE pipeline
and breast model containing a disc-like lesion at different locations in the
breast model and at different stages of growth (CLCs).

2.4.3 Comparison with patient images

As an initial step toward validating our model, we compared our simulated DMs

of fatty breast models, containing lesions grown at different locations, with real mam-

mograms containing masses with similar shapes. Fig. 2.10 shows real mammograms,

in the left column, containing malignant tumors with ill-defined margins. Column b

shows simulated DMs generated using the VICTRE pipeline with a similar tumor.

The inset ROIs show a magnified version of the same mass, but with higher contrast
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to facilitate better visibility. Column C shows more examples of ROIs from real as

well as simulated DMs containing microlobulated and ill-defined masses. After com-

paring the masses in the left and right columns, we noted that qualitatively our model

could be said to generate masses that are similar to those in real cases.

Figure 2.10: Comparison with patient images. (a) Real mammograms from the
DDSM dataset with a malignant tumor with ill defined margins, (b)
Simulated DM of a fatty breast model with similar lesions tumor grow-
ing inside. The inset 250 X 250 pixel ROI shows a magnified version of
the same mass, but with better contrast, (c) Pairs of ROIs from real as
well as simulated DMs containing malignant tumors with ill-defined and
microlobulated margins.

2.5 Discussion

In this chapter, we presented a novel technique for coupling tumor growth dynam-

ics with tissue mechanics, aimed at generating anisotropic and realistic breast lesions.

Unlike previous approaches that realized lesions as arbitrary shapes, we modeled the

growth of lesions informed by concentrations of neighboring metabolites and the me-

chanical properties of the local microenvironment. This allowed for the creation of
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a range of lesion morphologies unique to their surrounding anatomical structures.

While this was a useful step toward simulating biologically-relevant lesion growth,

our study had some limitations.

Although it has been shown that this model can be used to generate a range of

lesion morphologies, there are several cases in which the lesion looked like an almost

perfect sphere in the simulated DMs, as shown in the third column of Fig. 2.7 (rows 4,

5 and 6). Malignant tumors rarely look as isotropic in the DMs. One way to address

this issue would be to add texture to the fatty and glandular tissues, which currently

appear to be unrealistically uniform throughout the breast models. This would result

in more nonuniformities in the morphology grown in textured environments.

Another shortcoming of this model is the appearance of spicules in the DM ROIs.

We added spiculations to the masses by overlapping the 3D masses with spicule maps

generated using de Sisterne’s algorithm(de Sisternes et al., 2015). Currently our

model does not account for the growth of spicules. Additionally, the spicules are not

visible in DM ROIs when imaged as denser glandular tissues, which is not the case

in real DMs.

The lesion models discussed in this article were generated using breast anatomy

volumes extracted only from fatty breast models. We plan to test the same model

for generation of masses using volumes extracted from other breast types, including

dense, scattered glandularity and heterogeneously dense models. The variation in the

fat and glandular content in the other three breast types could result in increased

variability of lesion morphology.

The growth dynamics that informed tumor growth in this work also tracked the

number of quiescent and necrotic cells. We did not investigate how the presence

of necrosis could affect the appearance of lesions in the DMs. In silico modeling

of other imaging technologies such as contrast enhanced imaging can also benefit

from the simulation of necrotic cells facilitated through our model. Additionally,
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the growth dynamics also modeled the effects of angiogenesis with new blood vessels

penetrating the lesion. However, since we grew the lesions in situ, these new blood

vessels that facilitated angiogenesis must have originated from those already present

in the extracted breast volume. This adds another level of complexity that was not

explored in this chapter.

Currently, this study does not include a rigorous validation of the growth simula-

tion. To pursue an investigation to determine how realistic the simulation is, we would

have to observe the growth of breast lesions within the human body and compare it to

our results. This is impossible to do, because once a breast lesion is detected, it will

most likely be treated and not allowed to develop further. Another approach could be

to compare our simulations to growth of xenograft mouse models of breast cancer(Li

et al., 2015). While this is an avenue that we would like to pursue in the future,

currently it is beyond the scope of this chapter. While it is important to validate

the growth, for our applications, it maybe sufficient to demonstrate that our model

can be used to generate realistic mammograms. To do so, we included a subjective

comparison of our lesion models with patient data by observing simulated DM with

mammograms from the DDSM dataset. In the future, we plan to pursue a more ro-

bust validation of our model via a reader study. One possible design for such a study

is a two-AFC reader study comparing DM ROIs containing lesions generated using

this model with those containing lesions from a previously-validated model(de Sis-

ternes et al., 2015). If the readers are unable to distinguish between the two, it would

follow that the two models generate similar lesion morphology. However, since the

comparison would not involve real cases, we would not be able to make claims about

realism. DM images of breast models containing our lesion model and those from

de Sisterne’s model (de Sisternes et al., 2015) could be generated. All models in the

in silico VICTRE framework (Badano et al., 2018; Sharma et al., 2019) required for

generating the DM images would be the same, except for the lesion models. Readers

42



then could evaluate a side-by-side ROI pair from DM images containing the lesion,

in order to identify differences.

2.6 Conclusions

We have presented a 3D computational model for simulating the growth of breast

cancer lesions. Unique features of this model are the correlations between tumor

morphology and the mechanical properties of breast tissues. With this model, we

generated masses of various shapes unique to the local anatomical structures in which

they grew. Using the VICTRE pipeline, we generated DM images of fatty breast

models containing the lesions at different locations and stages of growth.

The lesion model described here could facilitate longitudinal research studies (Lan-

gendijk et al., 2001; Osoba et al., 2000; Steele et al., 2000) investigating the progression

of cancer. Our interest is in using the growth model as part of an effort to build an in

silico version of the National Cancer Institute-funded Tomosynthesis Mammographic

Imaging Screening Trial (TMIST) (Pisano, 2018). The primary end point of the trial

is to investigate whether DBT can reduce the incidence of advanced breast cancer.

Our model would be used to grow lesions at different stages into breast phantoms of

varying densities. The primary outcome would be the difference in the area under

the curve (AUC) of receiver operating characteristic (ROC) curves for the DM and

DBT imaging modalities at different stages of growth possibly leading to a differen-

tial between the technologies in the detection of earlier, smaller lesions. This would

enable the scientific community to gain insight into whether there are advantages of

replacing DM with DBT for detecting breast cancers at earlier stages. Additionally, a

similar methodology could be applied to studying lesion growth in other parts of the

human body, including the brain and the liver. All codes used in this work (VICTRE

Github Repository , 2018) along with a few extracted anatomy volumes for reproduc-

ing results shown in this article have been made freely available (MATLAB Codes
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Repository , 2022).
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CHAPTER III

Computational Models of Direct and Indirect

X-Ray Breast Imaging Systems for in Silico Trials.

3.1 Abstract

In silico trials have garnered widespread popularity as fast and cost-effective alter-

natives to their clinical counterparts, for evaluating new concepts or improvements in

imaging technology. To facilitate in silico studies that investigate modalities like digi-

tal mammography (DM) and breast tomosynthesis (DBT), it is important to develop

models replicating the variety in imaging performance of the DM and DBT systems,

observed across manufacturers.

We recently reported on an in silico version of the SIEMENS Mammomat In-

spiration DM and DBT system using an open source GPU-accelerated Monte Carlo

x-ray imaging simulation code, MC-GPU. The MC-GPU code implements a realis-

tic x-ray source model with the tomosynthesis acquisition geometry and a detector

model for the direct-conversion amorphous Selenium (a-Se) detector. We build on

the previous version of the MC-GPU codes to mimic the imaging performances of

two other FDA-approved DM/ DBT systems, such as Hologic Selenia Dimensions

(HSD) and the General Electric Senographe Pristina (GSP) systems. Although the

HSD system also uses a direct-conversion detector, it suffers from resolution loss due
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to signal crosstalk. Similarly, spread of optical photons is typical in the thallium-

doped cesium iodide (CsI:Tl) based indirect detector, used in the GSP system. In

this work, we developed a hybrid technique to model the optical spread and signal

crosstalk in these systems. MC simulations are used to track each x-ray photon till

its first interaction within the x-ray detector. On the other hand, the signal spread in

the x-ray detectors is modeled using previously developed analytical equations. This

approach allows us to preserve the modeling accuracy offered by MC methods in the

patient body, while speeding up secondary carrier transport using analytical equa-

tions in the detector. The analytical optical spread model for the indirect detector

includes the depth-dependent spread and collection of optical photons and relies on

a pre-computed set of point response functions that describe the optical spread as

a function of depth. To understand the capabilities of the computational x-ray de-

tector models, we compared image quality metrics typically used in clinical practice,

simulated with our models against measured data. Specifically, we tested the resolu-

tion and noise properties of the models using modulation transfer function (MTF),

normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE).

We found that the simulated image quality metrics such as MTF, NNPS and DQE

were in reasonable agreement with experimental data. To demonstrate the imaging

performance of the three DM/DBT systems, we integrated the detector models with

the VICTRE pipeline and simulated DM images of a fatty breast model containing a

spiculated mass and a calcium oxalate cluster. In general, we found that the images

generated using the indirect model appeared more blurred with a different noise

texture, as compared to the systems with direct detectors.

We have presented computational models of three commercially available FDA-

approved DM/DBT systems, which implement both direct and indirect detector tech-

nology. The updated versions of the MC-GPU codes that can be used to replicate

three systems are available in open source format through GitHub.
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3.2 Introduction

Two dimensional (2D) digital mammography (DM) is currently considered to be

the gold standard for breast cancer screening programs. Since its introduction nearly

30 years ago, it has proven to be very effective in detecting breast cancer, achieving

sensitivities up to 90.5% to 92.5% in certain populations (Jacobsen et al., 2015). How-

ever, mammography is also extremely sensitive to breast density. While sensitivity

rates for women with extremely fatty breasts could be as high as 87%, it drops to

63% for women with dense breasts (Carney et al., 2003). This is mainly due to the

large amounts of overlapping fibroglandular tissues in dense breasts that can mimic

the presence of a cancerous lesion or can hide underlying masses in mammograms, a

major shortcoming of this technology. Digital breast tomosynthesis (DBT), a limited

angle tomographic technique, has been introduced to overcome these shortcomings by

generating 3D information of the breast. However, optimizing image quality for DBT

involves trade-offs between multiple interrelated parameters. For instance, a wide an-

gular range can provide better separation of overlapping tissues, but reduces in-plane

resolution and increases scan time, which is prone to patient motion. Usually long,

time-consuming and expensive experiments are conducted for these studies. A cost

effective and faster alternative is the use of sophisticated computational methods.

Currently there are several systems available in the market that offer both DM and

DBT capabilities, of which the SIEMENS Inspiration Mammomat (SIM), HOLOGIC

Selenia Dimensions (HSD), and General Electric (GE) Senographe Pristina (GSP)

and Fuji Film systems have received FDA approvals. These systems differ from one

another in terms of detector technology, system geometry parameters, x-ray beam

quality, number of projection views and reconstruction algorithms. Table 3.1 shows

characteristics of the SIM, HSD and GSP systems, modeled as part of this chapter.

All systems apart from GSP are based on direct a-Se based x-ray detectors.

Different approaches have been used in the past for modeling x-ray detectors.
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Device SIM GSP HSD
Pixel Pitch (µm) 85 100 70 (binned for DBT)
Detector a-Se CsI a-Se
Conversion layer
thickness (µm)

200 250 200

DBT Projections 25 9 15
Angular Range 50◦ 25◦ 15◦

Anode/Filter W/Rh Mo/Rh W/(Rh or Al)
Filter thickness (mm) 0.05 0.025 0.05 (Rh) or 0.5 (Al)
SSD (cm) 65.5 66 70
Source to COR (cm) 65.5 62 70

Table 3.1: Description of three commercially available and FDA-approved DBT sys-
tems (Mackenzie et al., 2017; Sechopoulos , 2013).

Monte Carlo (MC) simulations, derived from first principles, are the most accurate

as they calculate interactions of every x-ray particle with each material layer within

the detector. Previous MC simulations by Fang et al. (Fang et al., 2012) also include

detailed 3D spatial and temporal transport of charge carriers. Such MC packages

have been developed for both direct a-Se (Adnani et al., 2021; Fang et al., 2012)

and indirect CsI based detectors (Badano and Sempau, 2006; Sharma and Badano,

2013; Sharma et al., 2012), however, they demand high processing power and result

in long computational times. So they are not ideal candidates for use as part of in

silico trials which often require thousands of patient models to be imaged. Analytical

models are another way of simulating imager performance which are faster and do

not require as much processing power. These models study the propagation of the

signal and noise through x-ray detectors as series of blurring and gain stages. Some

analytical models derive the detector statistics and image quality metrics in the spatial

domain (Freed et al., 2010; Badano et al., 2011), while others harness the powers of

Fourier space (Sengupta et al., 2019; Kim et al., 2008; Zhao and Rowlands , 1995)

(see appendix chapter on cascaded modeling). The latter is called cascaded systems

modeling, and is as a relatively simple way of predicting imaging performance of

x-ray detectors. These models, however, can not be directly used for generating
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mammograms and tomosynthesis images and need to be combined with ray tracing

and scatter generation algorithms. Moreover, these models often employ arbitrary

fitting functions, which are not derived from physics, to achieve a reasonable match

with measured data. Post-processing schemes are another approach for modeling

performances of different detectors. Mackenzie et al. described a method for adjusting

real images, using measured data, by altering their sharpness, noise and contrast-

to-noise ratio to represent that of the target systems. Although this is a fast and

convenient method for modeling DM/DBT imaging performance, it is mainly an

algorithm for manipulating images without modeling any detector physics. In this

chapter, we use a hybrid technique for modeling the detector physics. Following

the approach described by Badal et al. (Badal et al., 2020a), based on MC x-ray

simulations, each x-ray photon is tracked till its first interaction within the x-ray

detector. Within the detector, we simplified the interactions a lot. We did not

model Compton scattering and only kα fluorescence emission is considered and tracked

within the detector. We also did not model the transport of the secondary carriers

(either electron-hole pairs or optical photons). For the direct-conversion detector, we

assume that there is negligible charge sharing between pixels due to presence of strong

electric fields. On the other hand, we model the optical spread in indirect detectors

using analytical equations developed and validated by Freed et al. (Freed et al., 2010).

This approach allows us to preserve the modeling accuracy offered by MC methods

in the patient body, while speeding up secondary carrier transport using analytical

equations in the detector.

To understand the capabilities of the computational models, we compared image

quality metrics typically used in clinical practice, simulated with our models against

measured data. Specifically, we tested the resolution and noise properties of the

models using modulation transfer function (MTF), normalized noise power spectrum

(NNPS) and detective quantum efficiency (DQE). For GSP system, we compared our
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simulated curves against data published in literature (Oduko and Mackenzie., 2019).

For the HSD and SIM systems (Andrey et al., 2018; Konstantinidis , 2011), we used

the MTF, NNPS and DQE data measured at our FDA labs.

3.3 Methods

Direct detectors

Currently, a-Se based direct-conversion detectors are the imaging technology of

choice for most FDA approved DM/DBT systems, as noted in Table 3.1. These

detectors directly convert the incident x-ray photons to electric charge pulses. The

photo-electric effect is the main interaction that occurs between the incident x-ray

photons and Se atoms (Que and Rowlands , 1995a), which generates a primary photo-

electron. As this highly energetic photo-electron travels through the Se layer, it

creates several secondary electron-hole pairs by ionizing several Se atoms. These

electrons and holes are directed towards either the top or the bottom electrode by

the strong electric field applied across the detector. Finally, the charges are collected

and accumulated on the pixel capacitor and are read out using back-end electronics.

Our group recently reported on a direct detector model (Badal et al., 2020a), based

on MC x-ray transport simulations, adapted from PENELOPE 2006 (Salvat et al.,

2006). This model was used to emulate the imaging performance of the SIM system,

for an in silico imaging trial evaluating DBT as a replacement for DM (Badano et al.,

2018). In this chapter, we will be first presenting the equations for direct a-Se based

detector, developed for SIM system. The model is mainly adapted from the work by

Badal et al. (Badal et al., 2020a), but includes an improved method for simulating

the additive electronic noise. We will also be presenting modifications to the direct

detector model to emulate performance of the HSD system.
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SIM model

Fig. 3.1 shows the model for the direct a-Se based detector (Badal et al., 2020a).

As shown in the figure, the model includes the effects of fluorescence escape, a-Se

ionization energy as well as additive electronic noise. The complete model and further

details can be found in Badal et al. (Badal et al., 2020a). In each simulation, a large

number of x-ray photons are generated and tracked, in terms of position, energy

and direction, from the source, through the breast model to the detector. Inside the

detector, as shown in Fig. 3.1, an x-ray photon, n, with energy En, is tracked till its

first photoelectric interaction. It is possible that the x-ray photon, depending on its

entrance angle, leaves the detector without any interaction at all. The model also

takes fluorescence effects into account by generating and tracking a new x-ray (based

on the fluorescence yield probability) with energy Ek, in a random direction. The

simulation thus tallies the total energy deposited in each detector pixel (X, Y ) as

shown in Fig. 3.1:

E(X, Y ) =

P (X,Y )∑
0

En +

PFl(X,Y )∑
0

(En − Ek) +

Fl(X,Y )∑
0

Ek. (3.1)

The energy deposited in each pixel is used to sample a mean number of electron-

hole pairs Nehp from a Gaussian distribution, using the a-Se ionization energy W0 and

Swank factor As to calculate the mean and the standard deviation:

Nehp(X, Y ) = G(µehp =
E(X, Y )

W0

, σehp =

√
E(X, Y )

W0

√
1

As − 1
). (3.2)

In the original work by Badal et al. (Badal et al., 2020a), to replicate the presence

of electronic noise, a random sample from a Poisson distribution is added to the mean

detected signal in each pixel:

Nd(X, Y ) = G(µd = µehp +Ne, σd = σehp +
√
Ne). (3.3)
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Please note that we add the standard deviations for each process, and not the

variances. As it is difficult to estimate the contribution of each error component, we

overestimate the variance in the distributions by adding the standard deviations.

However, in this work since we are using an electronic noise value, Ne that is

described as a RMS value (Konstantinidis , 2011), it should be ideally added to only

the standard deviation and not the mean. Moreover, we found that with the original

model, varying the electronic noise, even at lower exposures, did not produce the

expected variations in the noise power spectrum plots. So, we propose the following

electronic noise model:

Nd(X, Y ) = G(µd = µehp, σd = σehp +Ne). (3.4)

The pixel values are calculated using g0, a random number sampled from a Gaus-

sian distribution described with zero mean and a standard deviation of 1, as:

PV (X, Y ) = µd + g0σd (3.5)

Here, µd and σd are the mean and standard deviation of the distribution in equa-

tion 3.4.

The complete set of parameters used in this model are described in Table 3.2.

Badal et al. simulated MTF, NNPS and DQE curves and compared them to mea-

sured data. However, the NNPS and DQE curves were plotted for a single exposure

level. In this work, we show the variation of the NNPS and DQE curves with exposure

and compare them with measured data.

HSD model

The HSD system also employs the a-Se based direct detector technology, similar to

the SIM system. However they differ in system geometry and other image acquisition
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ParameterValue Description
W0 50 eV a-Se Effective Energy
γ 16 eV CsI detector gain (Howansky et al., 2017)
As 0.99 Swank Factor for a-Se and CsI (Howansky

et al., 2017)
Ne 5200

e/pixel
Electronic Noise (Konstantinidis , 2011)

Ek
11.223
keV

Fluorescence Energy for a-Se

33 keV Fluorescence energy for CsI
Oz - Depth-dependent point spread function for

CsI detectors
xo, yo - Pixel coordinates of Oz

En - Energy of x-ray photon n
P (X, Y ) - Number of photons that reach pixel (X, Y )

after only a photoelectric interaction
PFl(X, Y ) - Number of photons that reach pixel (X, Y )

and produce fluorescence
Fl(X, Y ) - Number of fluorescent x-ray photons that

reach pixel (X, Y )
x, y - Coordinates of the x-ray photon’s location of

interaction in the detector
z - Height of interaction
PV - Pixel values
Nehp - Mean number of electron hole pairs
Nd - Mean detected signal
Kcrosstalk - Crosstalk kernel for the HSD system
ρc - Matrix coefficients of the crosstalk kernel for

the HSD system

Table 3.2: Model parameters for the direct and indirect x-ray detectors (Badal et al.,
2020a).
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Figure 3.1: Generic model for x-ray detectors. It is applicable, as is, to direct a-
Se based detectors. For the HSD and GSP systems, the entire x-ray
photon energy is not tallied within a single detector pixel, which affects
the method for tallying energies in the detector pixels (blue boxes). For
the HSD system, a crosstalk kernel is used to distribute a small fraction
of the incident energy to the neighboring 8 pixels. A depth-dependent
point spread function is used to define the extent of the optical blur in
indirect detector based GSP system. For indirect CsI based detectors,the
process of conversion of pixel energy to charge carriers (green boxes) is
also modified.

parameters as noted in Table 3.1. The HSD system has a smaller pixel size (70 µm),

compared to the SIM system (85 µm). Ideally, smaller pixel sizes should translate to

higher spatial resolution of the imaging system, or a better MTF. However previous

studies have shown that the MTF at the Nyquist frequency for the HSD detector
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is 0.35, which is much lower than a MTF of 0.5 for the SIM detector (Mackenzie

et al., 2017). There are several factors that could contribute to the deterioration of

the resolution properties for the HSD system such as: (i) introduction of controlled

blurring to counter noise aliasing issues from smaller pixels, (ii) trapping of charges

within the detector’s blocking layer and (iii) cross talk between detector pixels. For

this model, we assume that the crosstalk between the pixels is the primary cause of

the loss of resolution for the HSD detector.

Crosstalk occurs when a small amount of collected charges during an exposure

in a pixel contaminates its neighbouring pixels. The main type of crosstalk that we

have considered here is electrical crosstalk, which is a result of pixel-to-pixel charge

diffusion. The x-ray generated charges could undergo the lateral movement to the

adjacent charge accumulation areas. This lateral movement strongly depends on the

pixel architecture, charge accumulation areas, and intra-pixel sensitivity distribution.

Electrical crosstalk is a major concern in many imaging technologies, including CMOS

sensors (Mahato et al., 2018).

For the HSD system, we assume that when a single pixel is illuminated, the signal

is mainly located in the incident pixel and the neighboring 8 pixels share a small

fraction of the total signal. To describe this mathematically, we developed a crosstalk

kernel, represented by a 3 × 3 matrix (Mahato et al., 2018):

Kcrosstalk =


α β α

β 1− 4(α + β) β

α β α

 (3.6)

Here, β is the fraction seen by the adjacent pixels, while α is a smaller fraction

seen by the diagonal pixels. In reality, there can exist a noticeable asymmetry along

the rows and columns of the imager which eventually introduces an asymmetry in the

kernel coefficients between rows and columns as well as in the four corners. However,
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physical measurements will have to be performed to verify the true nature of crosstalk

in the the HSD imager. For simplicity, we have assumed a symmetrical crosstalk

kernel, with α = 0.02 and β = 0.04. The values for α and β were estimated to

provide the most reasonable match with the measured data. Thus, the central pixel

would accumulate 76% of the incident signal. So, instead of tallying the entire x-ray

photon energy in a single pixel, a small fraction of it is spread to its neighboring

pixels, to reproduce the detector crosstalk. The total energy aggregated in each pixel

for the HSD detector could be expressed as:

E(X, Y ) =

P (X,Y )∑
0

Enρc +

PFl(X,Y )∑
0

(En − Ek)ρc +

Fl(X,Y )∑
0

Ekρc. (3.7)

Here ρc could be any of the matrix coefficients in Kcrosstalk, based on where the

original signal is collected. The rest of the model is the same as the SIM detector.

Indirect detectors

Indirect x-ray detectors based on scintillating materials like thallium-doped ce-

sium iodide (CsI:Tl) convert the incident x-ray energy to charge in a two step process.

These detectors first absorb the incident x-ray energy and convert it into optical pho-

tons. The photo-electric effect is also the main x-ray interaction in CsI:Tl detectors.

However, instead of creating secondary electron-hole pairs, the primary electrons gen-

erate light quanta. The optical photons are then converted into electric charge by a

large photodiode array. The charge stored on the storage capacitor is then read out

using back-end electronics, similar to the a-Se based direct detector.

Depth-of-interaction effects

Depending on the depth at which the the optical photons are generated, they

can travel longer distances within the scintillator, before they are detected by the

photodiode. This phenomenon introduces an additional spread of the signal, which is
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not observed in direct detectors and needs to be modeled. Previous work by Freed et

al. (Freed et al., 2010) suggests that the depth dependent optical spread of the optical

photons in CsI scintillators is best described by a Lorentzian function:

Lz(x, y) =
1

(1 + c21(x
2 + y2))

. (3.8)

Here, c1 is related to the full-width-at-half-maximum (FWHM) of the spread, τ , as:

c1 =
2

τ
=

2

g0z + g1
. (3.9)

τ is modeled as a linear function of the height of interaction, z measured from the bot-

tom of the detector. Freed et al.(Freed et al., 2010) fit the full-width-at-half-maximum

of the Lorentzian as a linear function of depth to data from a full Monte Carlo model

of the indirect detector, MANTIS(Sharma and Badano, 2013), to estimate g0 and

g1 to be 0.17 and 15.44 µm respectively (Freed et al., 2010). 1D profiles of Lz(x, y)

plotted from the point of interaction as a function of the depth, as shown in fig. 3.2.

The depth-dependent collection efficiency can be approximately modeled as a linear

function of z (Freed et al., 2010):

ζz = 0.01(b0z + b1). (3.10)

Here, b0 and b1 are fitting parameters with values of -0.0029 and 0.9164 (Freed et al.,

2010). These coefficients describe a linear fit(Freed et al., 2010) to the collection

efficiency as a function of depth, generated using MANTIS simulations(Sharma and

Badano, 2013). The resulting collection efficiency as a function of depth is shown in

fig. 3.2.

Finally, the depth-dependent optical point spread function, Oz can be calculated
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(a) (b)

(c) (d)

Figure 3.2: (a) Optical photon spread (Lz(x, y)), (b) Collection efficiencies ζ, (c) Nor-
malized depth dependent optical point spread function, Oz at various
depths inside the detector (25-225 µm) and (d) Variation of MTF with
the kernel size of Oz. The variable, ko, represents the lateral distance
(orthogonal to z) from the point of interaction.

as:

Oz =
ζz
N
Lz(x, y), (3.11)

with a normalization factor

N =
∑

Lz(x, y). (3.12)

Fig. 3.2 (d) includes MTFs generated using O(z) functions computed up to dis-

tance, ko, ranging from 100 - 150 µm from the location of interaction. The variable,

ko, represents the lateral distance (orthogonal to z) from the point of interaction, i. e.,
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the limits for variables x and y in equation 3.12. As expected, more extensive kernel

sizes capture more of the tails in the O(z) function and yield an MTF lower-frequency

drop. MTFs calculated using the response functions computed up to 125 µm differ

from the measured data by 9% on average.

GSP model

Fig. 3.3(a), shows modifications to the direct model (see Fig. 3.1), for replicating

an indirect CsI based detector. Ideally, an unique Oz response function should be

calculated for each x-ray photon based on its depth of interaction. However, this

computation could considerably slow down the entire simulation. So instead, the

optical spread is implemented using a pre-computed set of the Oz functions at var-

ious detector depths of 25, 75, 125, 175 and 225 µm. Based on the x-ray photon’s

depth of interaction, the corresponding Oz function is selected, which determines the

distribution of the x-ray energy in the neighboring detector pixels.

Thus, similar to the direct detector model, the total energy of simulated x-ray

photons aggregated in the indirect detector pixel (X,Y) can be calculated as:

E(X, Y ) =

P (X,Y )∑
0

EnO
z(xo, yo) +

PFl(X,Y )∑
0

(En − Ek)O
z(xo, yo) +

Fl(X,Y )∑
0

EkO
z(xo, yo).

(3.13)

Here, xo, yo denotes the pixel coordinates of Oz, that overlap with the detector

pixel (X,Y), as a function of the physical coordinates x and y of the x-ray photon’s

interaction location within the detector. For cases where Oz does not overlap with

the detector pixel (X,Y), then the photon energy does not contribute to the pixel

signal (Oz = 0). Equation 3.13 is very similar to eq. 3.7, except that for the HSD, the

signal is spread to a fixed number of detector pixels and the kernel is always perfectly

aligned with the detector array. On the other hand, Oz is centered at the point of
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interaction, which may or may not be perfectly at the middle of its corresponding

detector pixel.

As, shown in Fig. 3.3, the pixel energy is then used to sample a mean number of

optical photons Nop, from a Gaussian distribution:

Nop(X, Y ) = G(µop =
E(X, Y )

γ
, σop =

√
E(X, Y )

γ

√
1

As − 1
). (3.14)

The number of charge carriers generated by the photodiode is finally sampled from

a Poisson distribution:

Nehp(X, Y ) = G(µehp = ηµop, σehp = σop +
√
µehp). (3.15)

The electronic noise is added to each pixel using the same equations for the direct

detector:

Nd(X, Y ) = G(µd = µehp, σehp = σehp +Ne. (3.16)

The pixel values are then calculated as follows,

PV (X, Y ) = µd + g0σd. (3.17)

The complete set of parameters used in this model are described in Table 3.2.

Experimental comparison

We compared the imaging performance predicted by the computational models

against measured data using image quality metrics typically used in clinical prac-

tice. There are several metrics that could be used for characterizing DM/DBT sys-

tems such as modulation transfer function (MTF), normalized noise power spectrum

(NNPS), detective quantum efficiency (DQE), signal-to-noise ratio (SNR), contrast

detail curves etc. In this work, we will be focusing sharpness/resolution (MTF) and
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(a) (b)

Figure 3.3: Modifications to flowchart in Fig. 3.1 for modeling an indirect CsI based
detector. (a) Implementation of depth dependent spread of optical energy.
This flowchart will replace the blue boxes in Fig. 3.1. (b) Conversion of
pixel energy to charge carriers in indirect detectors. This will replace the
green box in Fig. 3.1.

noise (NNPS) properties of the DM/DBT systems. Using the MTF and NNPS data,

we will also be generating DQE data:

DQE(f) =
MTF 2(f)

Kaq0NNPS(f)
. (3.18)

Here, q0 is the mean x-ray photon fluence per unit air kerma and Ka is the air kerma

at the detector entrance.

The simulated results for the SIM model were compared to experimental measure-

ments performed on the same ANRAD detector used in the SIM system, previously

published by Makeev et al. (Andrey et al., 2018). The measured data for the GSP

system was obtained from the equipment report for the system released by the Na-

tional Health Service (NHS) in UK (Oduko and Mackenzie., 2019). We measured the

image quality metrics for the HSD system in the labs at the FDA White Oak campus.

All measurements for the HSD system (model number SDM-05000-2DC) were per-

formed using the W/Rh anode and filter combination at 28 kVp with the antiscatter
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grid out as recommended by the IEC standard. A 1mm thick aluminium filter was

attached at the tube head, instead of a thick block of PMMA. We first acquired sev-

eral flat field images at different current and exposure time (mAs) levels, to calculate

the response function of the detector. A freely available ImageJ plugin (Donini et al.,

2014), was used to calculate the response function and linearize all the images to

ensure that the pixel value maintains a linear relationship with energy absorbed per

unit area in the detector. The MTF was measured using the slanted edge method,

with a 120×60 mm2 0.8 mm thick stainless steel plate as a test device. The edge of

the plate was placed at approximately 2.7◦ angle with respect to the detector rows.

The edge spread function, line spread function and subsequently the MTF were cal-

culated using the ImageJ plugin (Donini et al., 2014). The NNPS and finally DQE

curves were calculated using the same plugin with the linearized flat field images at

various exposure levels. The air kerma at the detector level was measured using a

radcal ionization chamber with a dosimeter.

Using the same acquisition parameters as the physical measurements, edge images

were simulated using an in silico version of the steel edge model for the various system

models. Similarly, we also simulated flat-field images at various exposure levels. The

air kerma level was estimated by calculating the average energy deposited in a 2 × 2

× 2 mm3 air volume at the entrance of the detector. The same ImageJ plugin (Donini

et al., 2014) was used to extract the MTF, NNPS and DQE data for the simulated

images.

3.4 Results

Experimental Data

Fig. 3.4 shows all the measurements from the HSD system that we performed. As

expected, the average pixel values, shown in Fig. 3.4 (a), follow a linear relationship
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with the incident air kerma. The response function was calculated to be a straight line

with a slope of 2.208 and y axis intercept of 53.412. The y axis intercept basically

represents an internal offset that the HSD system applies. Fig. 3.4 (b) shows the

system MTFs along two orthogonal directions. For ideal detector with square pixels,

the MTF plots along the two orthogonal directions should coincide. However, for

the HSD system, the MTF along the horizontal direction is lower than that in the

vertical direction, especially in the lower frequencies. Crosstalk between gate lines

along the horizontal direction could possibly contribute to the observed degradation

of spatial resolution. Figs. 3.6 (b) and (c), show the variation in the NNPS and DQE

characteristics with incident air kerma.

(a) (b)

Figure 3.4: Measured data from the HSD system. (a) Response curve (b) MTF plots
along two orthogonal directions

Comparison with experimental data

Fig. 3.5 shows the MTF, NNPS and DQE plots for the GSP system. The red and

black plots represent simulated and measured data respectively. The MTF shown in

Fig. 3.5(a) is simulated using a Oz function computed up to 125 µm from the location

of interaction. In a previous publication (Sengupta et al., 2022), we have shown that

the MTF at lower frequencies drops when longer tails up to 150 µm are included in the
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Oz function. However, we observed that the simulated MTF matched the measured

data for the GSP system best when computed up to 125 µm. On average the difference

between the measured and simulated MTF data is 9%. The simulated NNPS curves

are compared against measured data in Fig. 3.5(b), for three air kerma levels from

20 µGy to 134 µGy. As the figure shows, the shapes of the measured and simulated

NNPS plots match closely and on average the difference between them is 18%. Fig.

3.5(c) shows the simulated DQE plots compared against measured data. While, the

shapes of simulated and experimental plots look similar, the DQE(0) values for the

simulated curves are higher than that of the measured data.

Fig. 3.6 and Fig. 3.7 show the MTF, NNPS and DQE plots for the DM/DBT

systems that use direct detector technology. In previous work (Sengupta et al., 2022),

we simulated the MTF plots for the HSD system using the same model for the SIM

system accounting for their differences in geometry. We found that the there was

significant difference (up to 30 %) between the simulated and measured plots. By

introducing an additional source of signal spread from the inter-pixel cross talk, we

observed that the simulated MTF better represented the measurements (see Fig. 3.6

(a)). On average the difference between the measured and simulated MTF data is

4%. As shown in Fig. 3.6, the difference in the blue and red plots illustrates the effect

of crosstalk and the subsequent degradation of the detector’s resolution properties.

The simulated NNPS curves are compared against measured data in Fig. 3.6(b), for

three air kerma levels from 86 µGy to 210 µGy. As the figure shows, the shapes of

the measured and simulated NNPS plots match closely but the absolute values are

very different. There is a good match at lower exposure levels of 86 µGy. However,

the HSD system seems to introduce additional sources of noise at exposure levels

greater than 100 µGy, which we have not modeled. This is reflected in the DQE

measurements as well, shown in Fig. 3.6(c). Contrary to the expected trend, the

DQE curve for the lowest exposure is higher than those for higher exposure levels.
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(a) (b)

(c)

Figure 3.5: Comparison of simulated image quality metrics with experimental data
for the GSP system. (a) MTF plots computed from vertical edge images
(b) NNPS plots extracted from flatfield images at various air kerma levels
and (c) DQE plots. The red and black plots represent simulated and
measured data respectively.

Moreover, DQE(0) values for the HSD system at similar exposure levels are much

lower than the observed values for the GSP and SIM systems. So there is significant

discrepancy between the measured and simulated DQE curves for the HSD system.
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(a) (b)

(c)

Figure 3.6: Comparison of simulated image quality metrics with experimental data for
the HSD system. (a) MTF plots computed from vertical edge images (b)
NNPS plots extracted from flat-field images at various air kerma levels and
(c) DQE plots.The red and black plots represent simulated and measured
data respectively.

Effect of electronic noise

Fig. 3.8 shows the variation of the NNPS and DQE plots with electronic noise.

Physics suggests that increase in electronic noise should result in increase of the NNPS

plots and reduction of DQE at low exposure levels. We simulated flat-field images

for the HSD system using both noise models described in this chapter. The flat-field
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(a) (b)

(c)

Figure 3.7: Comparison of simulated image quality metrics with experimental data for
the SIM system. (a) MTF plots computed from vertical edge images (b)
NNPS plots extracted from flat-field images at various air kerma levels
and (c) DQE plots. The red and black plots represent simulated and
measured data respectively.

were simulated at an air kerma level of 70 µGy at the detector, which is the lowest

that can be achieved with the HSD system. The electronic noise was varied from a

very low level of 2000 to 8000 electrons RMS. It has been shown that lower levels

of electronic noise of 1250 electrons can be achieved, but with CMOS passive pixel

flat panel sensors (Hamamatsu C9732DK CMOS PPS Detector , 2015), instead of

the traditional TFT based passive pixel sensors used in the DM/DBT systems. As
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shown in Fig. 3.8 (a) and (b), with the older noise model proposed by Badal et al.,

there is no variation in the NNPS plots or in the DQE plots, which is contrary to the

expected trend. The model proposed by Badal et al. increases the mean pixel values

by the electronic noise value (5200 electrons for the HSD model) and their standard

deviation by its square root (72 electrons). Since the standard deviation increases by

a very small amount compared to the average pixel value, which is of the order of 105

electrons, the effect of varying electronic noise is not reflected in the NNPS or DQE

curves. However, instead of changing the mean pixel values, the noise model proposed

in this chapter increases their standard deviation by the electronic noise value. Figs.

3.8 (c) and (d) illustrate the expected trend in the NNPS and DQE characteristics.

With increasing electronic noise, the NNPS plots increase, while DQE drops. Since

electronic noise is white noise, which does not vary with spatial frequency, flattening

of the NNPS curves especially at higher frequencies and electronic noise values can

be observed in Fig. 3.8.

Fig. 3.8 also includes measured data from the HSD system at 86 µGy (black dotted

line). Both the NNPS and DQE data generated using the noise model proposed

by Badal et al. shows a significant deviation, especially at higher frequencies on

the NNPS. In comparison, the curves generated with the noise model introduced in

this work better match the measured data. While the effect of electronic noise is

important, it should be noted that its effect is only significant at very low exposure

levels. At clinically relevant exposure levels for mammograms are acquired, quantum

noise is the dominant component. However, electronic noise could play an important

role in the acquisition of low exposure projections for DBT.

We also investigated the difference in simulation times for the three models for

generating an edge image for MTF calculations. For a total of 1.7 × 1010 primary x

rays, the timings on 4 GeForce GTX 1080 GPUs are 15, 18, and 790 s respectively

for the SIM, HSD, and GSP model. For simulating mammograms of a fatty breast

68



(a) (b)

(c) (d)

Figure 3.8: Variation of NNPS and DQE characteristics with electronic noise at 70
µGy. (a), (b) with noise model proposed by Badal et al. (c) and (d) with
noise model proposed in this chapter.

model shown in fig 3.9, using a total of 3.7× 1011 histories, the timings on 2 GeForce

GTX 1080 GPUs are 3165, 3233 and 42859 s respectively for the SIM, HSD, and

GSP models. As expected, the GSP system slows down the computational speed

considerably, as compared to the SIM and HSD systems due to the need for mapping

each point in the Oz function into the corresponding detector pixel. However, this

method is still faster compared to full MC approaches(Sharma and Badano, 2013;

Sharma et al., 2012) used in the past.

Fig. 3.9 (b) and (c) shows ROIs from fatty breast model, containing spiculated
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masses and microcalcification clusters as the signals, imaged using the three detector

models. An example DM simulated with the SIM model is depicted in Fig. 3.9 (a).

This breast model was generated using the VICTRE (Sharma et al., 2019; VICTRE

Github Repository , 2018) pipeline. For generating these example images, the x-ray

spectrum, source to detector distance, number of histories and other system param-

eters were kept identical and only the detector model was changed to highlight any

differences due to changes in the detector technology without the influence of system

characteristics. For viewing the calcification clusters and masses in the DMs, the

same ROI sizes in the object space and image processing methods were used. As

shown in the fig. 3.9 (b), the ROIs generated using the direct detector models look

quite similar, but since the pixel sizes vary across the 3 systems, the ROI sizes in

pixels are different, In addition, the GSP ROIs look blurred and the noise texture

appears different, as compared to the systems with direct detectors.

3.5 Discussion

In this chapter, we have developed models from first principles to replicate the

performance of three FDA approved DM/DBT systems. These models were used to

simulate standard image quality metrics such as MTF, NNPS and DQE, which are

used to evaluate imaging performances of DM/DBT systems. The simulated image

quality metrics showed a reasonable match with measured data.

While this was an useful first step towards developing in silico versions of DM/DBT

systems available on the market, there are some limitations of the study. Although

the results (see Fig. 3.5 and Fig. 3.7 ) for systems like SIM and GSP show a close

match with the measured data, a significant difference was observed for the HSD

system. It should be noted that the measured data for the HSD system also shows

significant deviation from measured data for the SIM system which uses the same

detector technology. We have accounted for the lower MTF properties by including
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Figure 3.9: (a) A fatty breast model imaged using the SIM system. The inserts
show ROIs with a mass and a calcification cluster. ROIs containing a (b)
spiculated mass and (c) a microcalcification cluster were extracted from
the DM images of the same breast model shown in (a), simulated using
the three DM/DBT models: SIM, HSD and GSP.
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additional signal spread, that we assume originates from crosstalk between pixels.

The DQE data is also lower (0.67 for the SIM system at a spatial frequency of 0,

compared to 0.45 for the HD system) and exhibits an unusual trend with respect to

exposure levels. As seen from the data for the SIM system, as exposure increases the

noise levels drop leading to increase in the DQE plots, which saturate at a certain

exposure level. However, fig. 3.6 (c) for the HSD system shows that with increasing

exposure, the DQE drops. This behavior is unusual and suggests that there are ad-

ditional sources of noise that become significant at higher exposure levels. Since the

exact source of the noise is unknown, it was not possible to include it in our model.

Other approaches that model detector performances such as cascaded systems

modeling (Sengupta et al., 2019; Kim et al., 2008; Zhao and Rowlands , 1995; Fang

et al., 2012) (see appendix chapter on cascaded modeling) have been shown to achieve

much better fits to measured MTF, NNPS as well as DQE data. However, cascaded

systems modeling is a completely different approach that often relies on arbitrary

fitting functions to match simulated resolution properties to the measured data (Sen-

gupta et al., 2019; Zhao and Rowlands , 1995) (see appendix chapter on cascaded

modeling). These fitting functions are not derived from first principles and were not

used in this work, except when proprietary information couldn’t be obtained and

released for systems such as HSD.

The simulated MTF plots, shown in Fig. 3.7(a), for the GSP system matches

the measured data reasonably well. However, the model described in this chapter

uses analytical functions described by Freed et al. (Freed et al., 2010) to estimate

the spread of the optical photons and doesn’t explicitly model the columnar CsI

structures or transport of each optical photon through the columns. Monte Carlo

approaches such as MANTIS (Badano and Sempau, 2006; Sharma and Badano, 2013)

and hybridMANTIS (Sharma et al., 2012) have been developed in the past that model

CsI based x ray detectors in detail. For each x ray photon that travels through
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the columnar CsI structure, these approaches calculate the probability of it being

absorbed in the bulk or at the top of the detector, getting reflected back from the

bottom of the detector structure and being either transmitted or reflected at the

columnar walls. Although these methods account for all the physical phenomena

that contribute to the x-ray detection process in indirect detectors, they are very

time consuming and thus not suited for use as part of in silico trials. Thus, our

approach using analytical functions, which have been shown to reasonably match

MANTIS results, offers a much faster and efficient alternative for modeling indirect

detectors for in silico trials.

There are a few other limitations of the work presented in this chapter. We have

implemented a simple model to replicate electronic noise in DM/DBT systems as the

exact back-plane circuits are proprietary information and are unknown to us. The

electronic noise for the ANRAD SMAM detector, which is used for the SIM system,

has been reported to be 5200 electrons RMS. Since the GSP and HSD systems also

use amorphous silicon TFT based passive pixel sensors as their readout electronics,

it is reasonable to assume that the electronic noise level is similar in these systems.

So for this work, we have assumed same value of 5200 electrons for the electronic

noise across all systems. In this work, we have only investigated the systems in the

DM mode and have not presented data at different angles or reconstructed volumes.

We plan to include this data in a future chapter. It is also known that indirect

detectors have a lower fill factor, due to presence of additional electronics such as

photodiodes, which reduce the active photosensitive area of the pixels. However, we

haven’t studied the effects of the fill factor in our current model. We expect any fill

factor less than unity will reduce the detected signal in the pixels. The effect will

be similar to lowering the exposure at the detector entrance. In the direct detector

model, we do not explicitly model trapping of electron hole pairs within the detector

and assume that all generated electron hole pairs reach their respective electronics.
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Since we do not model charge trapping, we can not model any temporal effects such

as lag and ghosting. The detector models described in this work also do not account

for any blurring due to patient motion during image acquisition.

3.6 Conclusions

We have presented computational models developed for simulating the imaging

performance in the DM mode of three commercially available DM/DBT systems,

which have received FDA approvals. These systems implement both types of detector

technology - a-Se based direct as well as CsI indirect detectors. We compared the

models’ predictions for image quality metrics including MTF, NNPS and DQE against

measured data. Our models show a reasonable match with measured data across all

systems investigated in this work. The beta versions of the codes for modeling the

various systems are available through GitHub as modules for the VICTRE simulation

pipeline (VICTRE Github Repository , 2018).
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CHAPTER IV

The First Freely Available Open Source Software

Package for Performing 3D Image Reconstruction

for Digital Breast Tomosynthesis.

4.1 Abstract

Digital Breast Tomosynthesis (DBT) improves the visibility of cancerous lesions

as compared to 2D full-field digital mammography (FFDM) by removing the overlap

in breast tissues. An integral and computationally demanding part of the DBT image

acquisition process is the reconstruction of the volume from projections. To facilitate

further research towards improving DBT technology, it is essential to have access to

image reconstruction software that generates volumes within a reasonable amount

of time. We have developed an open source version of the filtered back-projection

(FBP) reconstruction algorithm for DBT using single-threaded C. This is an extention

to the C codes developed by Leeser et al. for cone-beam computed tomography

(CBCT) reconstruction. For each projection angle, the DBT projection view was

interpolated to create an estimation of the corresponding CT projection view for that

angle. The estimated CT projection views were then filtered and backprojected to

generate the DBT volume. We tested our implementation using mathematical and

anatomical phantom data and compared the results with a previously verified pure
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MATLAB implementation. We observed negligible relative differences between the

DBT reconstruction by both methods with a considerable increase (up to 9 times

faster) in speed over the MATLAB code.

4.2 Introduction

One of the popular reconstruction techniques use by commercial DBT and CT

scanners is the Filtered Back-Projection (FBP) method. FBP reconstruction, derived

from the Fourier Slice theorem, first filters the projection views, obtained during the

DBT/ CT image acquisition process, typically using a simple ramp function. However,

due to presence of background noise in the clinically obtained projection views, it is

often necessary to apply an additional filter function to suppress the high-frequency

noise. These filtered projection views are then back-projected in accordance with the

scanner geometry to form a reconstructed volume representing the object.

Previously, our group had developed FBP algorithms for DBT (Zeng et al., 2015),

written in MATLAB, using routines from Fessler’s cone beam computed tomography

(CBCT) reconstruction toolbox (Fessler , 2015). In this work, we have implemented

a similar FBP reconstruction algorithm for DBT using single threaded C. We tested

our implementation using one mathematical as well as an anatomical breast phantom

data and compared the results with the previously verified MATLAB (Zeng et al.,

2015) version. We observed that while the relative differences between the DBT slices

reconstructed by MATLAB and C were negligible, the C implementation offered a

considerable increase in speed over MATLAB. (Note that the MATLAB version used

for the comparison did not include any speedup of utilizing C source MEX file.) The

FBP reconstruction software for DBT, described in this study, is freely available as

open-source research on GitHub.
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4.3 Methods

Our work is an extension of the single-threaded C code by (Leeser et al., 2014),

developed to perfrom FBP reconstruction of CBCT projections, for application in

DBT reconstruction. To use the CBCT code for DBT reconstruction, we had to

account for the differences in the image acquisition schemes between DBT and CT.

First difference, in CT, the x-ray source and imager concentrically rotate around the

object, thus acquiring the projection views in a way such that the x-ray source and

imager are always normal to each other. On the other hand, in most DBT systems, the

x-ray source moves in an arc about the object, while the imager remains stationary.

So other than the 0 degree position, the x-ray source is not perpendicular to the

imager. In addition, the z-axis of the object volume is normal to the detector plane

in DBT whereas it is parallel to the detector’s plane in CT.

To address these differences, as shown in Fig. 4.1, we have implemented the follow-

ing methodology, based on the previously developed MATLAB version (Zeng et al.,

2015), for DBT reconstruction in C:

1. Use the DBT projections to estimate CBCT projection views at the corresponding

projection angles

2. Reconstruct a volume from the estimated CBCT projections using FBP

3. Interchange the z and y axes to retrieve the DBT reconstructed volume

However, we discovered that the open source CT FBP algorithm developed by

(Leeser et al., 2014) could not be directly used due to errors in the implementation.

Upon comparing the open source CT algorithm with Fessler’s CT toolbox (Fessler ,

2015), we corrected the errors, both semantic as well as logical. We tested and

verified the performance of the modified CT code using a mathematical phantom from

Fessler’s image reconstruction toolbox (Fessler , 2015). This mathematical phantom

is designed as a cylindrical object containing spherical inserts of different sizes at
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Figure 4.1: Methodology to perform DBT reconstruction using CBCT reconstruction
algorithm. The block signified in dashed lines is a modified version of the
C code developed by Leeser et al. (2014)

various locations.

Following verifying the correctness of the CBCT code, we extended it using the

methodology shown in fig. 1, for DBT reconstruction. To test the performance of

our DBT FBP code, we simulated DBT projection views of a virtual breast phantom

using the VICTRE MC-GPU simulations (Sharma et al., 2019; Badano et al., 2018).

The simulated DBT acquisition contained 25 projections with an angular range of 50

degrees. We then compared the reconstructed slices against the ones reconstructed

using the MATLAB code, previously developed by (Zeng et al., 2015). To compare

the slices reconstructed using MATLAB and C, we computed the relative error as

the difference between the MATLAB and C slices divided by the pixel values, recon-

structed with the MATLAB code, in percentage.
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4.4 Results

Our first aim was to verify the CBCT reconstruction code using a mathematical

phantom and comparing the reconstruction to that from Fessler’s matlab CBCT

code. Fig. 4.2(a) shows the central slice of the mathematical phantom, 64 x 60 pixels,

reconstructed using our C implementation of the CBCT FBP algorithm. To compare

the C and MATLAB implementations, we plotted the pixel value of the central point

through the 50 reconstructed slices. As shown in Fig. 4.2(b), the C and MATLAB

profiles overlap and are in close agreement.

Upon verification of CBCT code, we modified it for DBT reconstruction of pro-

jection views for a VICTRE breast phantom. Fig. 4.3(a) and (b) illustrate one of the

reconstructed DBT slices of the VICTRE breast phantom, 1136 x 483 pixels, using

both C and MATLAB FBP codes. The differences between them are very small, with

an absolute magnitude of the order of 10-6, Fig. 4.3(c), and relative magnitude mostly

in the level of 0.1%, as shown in the difference image in Fig. 4.4(b) and the histogram

plot in Fig. 4.4(a). Therefore, the difference between the two implementations were

negligible.

FBP reconstruction is computationally intensive, which becomes more challenging

as the resolution of the projection views increases. One of the benefits of implementing

FBP reconstruction in C, is the significant increase in FBP reconstruction speed over

MATLAB - 3 times for the cylindrical and 9 times for the breast phantom. The

speed-up of C over MATLAB is defined as the ratio of the FBP (or total) C run time

to the corresponding MATLAB runtime. (Note that the MATLAB version used for

the comparison did not include any speedup of utilizing c source MEX file.)
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(a)

(b)

Figure 4.2: Central slice of reconstructed volume using single threaded C with pixel
values ranging between -0.00029 and 0.0201 cm-1 and (b) Overlapping z-
profiles from the MATLAB and C codes at coordinates: (31, 33) for all the
reconstructed slices, indicating the similarity between the two versions.

4.5 Conclusion

We have presented our work on an open source DBT reconstruction software us-

ing single-threaded C that can considerably reduce reconstruction time compared

to its MATLAB implementation.The reconstruction software for DBT and the cor-
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(a) (b) (c)

Figure 4.3: (a) Reconstructed using single threaded C with pixel values (attenua-
tion density) ranging between -1.3 and 1.66 cm-1 (b) Reconstructed us-
ing MATLAB with pixel values ranging between -1.3 and 1.66 cm-1 and
(c) Difference between MATLAB and C with pixel values ranging from
−3× 10−6 to 7× 10−6 cm-1.

(a) (b)

Figure 4.4: (a) Histogram of Pixel Values from C reconstruction and (b) Relative
Error in percentage between MATLAB and C.

81



rected FBP reconstruction code for CBCT is available open source through GitHub

(VICTRE Github Repository , 2018).
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CHAPTER V

An in Silico Study to Evaluate the Effect of X Ray

Detector Technology on Breast Cancer Detection

5.1 Abstract

The purpose of this work is to integrate computational models of different detector

technologies with the VICTRE in silico pipeline for breast imaging to evaluate the

effect of detector technology on breast cancer detection. This study would allow us

to gain insight into the relationship between image quality metrics and the clinical

performance that can be achieved with different detector technologies. We developed

three detector models with varying image quality metrics. The DIR and DIR+ models

replicate direct a-Se performance, while IND is based on indirect CsI technology.

The same DM/DBT system geometry and x-ray acquisition parameters, modeled to

mimic the Siemens Mammomat Inspiration system, were used to evaluate the three

detectors. The VICTRE pipeline was used to simulate in silico patient with disease

in form of spiculated masses or micro-calcifications, generate DM/DBT images of

the patients with the three detector models and finally interpret them using 2D/3D

reader models. We analyzed the area under the ROC curves (AUC) for both imaging

modalities and manifestations of breast cancer to characterize the clinical performance

of the detectors. We found that the detector technology did not affect the detection of
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spiculated masses. On the other hand, for micro-calcifications, we noticed a significant

increase in the AUC for DM for the IND detector: 0.95 versus 0.92 and 0.9 with the

DIR and DIR+ detectors. For DBT, the DIR detector exhibited the best performance.

Overall, the AUC differences revealed that while there were benefits of using DBT

with the DIR detector, DM outperformed DBT for the DIR+ and IND detectors.

The detector technologies for the studied system parameters significantly affect the

detection of micro-calcifications and the benefits of using DBT.

5.2 Introduction

X-ray detectors are an integral part of digital mammography (DM) and breast

tomosynthesis (DBT) systems. In general, the objective of DM/DBT systems is to

generate high resolution and low noise images that enhance the visibility of finer de-

tails and low contrast masses for cancer detection. In terms of detector performance,

this translates to a high modulation transfer function (MTF), low noise power spec-

trum (NPS) and consequently a high detective quantum efficiency (DQE). While

these metrics can be used to predict DM clinical performance, compare imaging ca-

pabilities of different detector technologies, they are not complete indicators of 3D

DBT image quality.

There are four commercially available DM/DBT systems including General Elec-

tric, Hologic, Siemens and Fujifilm that have received FDA clearance. While large

clinical trials have attempted to provide insight on the clinical performance of the

various systems, the main goal of these studies was to compare the imaging modali-

ties (Lee and McCaskill-Stevens , 2020; Keavey et al., 2012). Moreover, these studies

compare system performance which is a combination of detector technology, system

geometry, x-ray acquisition techniques and image processing algorithms. To study the

effect of detector technology alone on cancer detection rates via clinical trials would

require extensive device fabrication and integration with a commercial DM/DBT sys-
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tem. Clinical trials are also expensive and time consuming and require institutional

review board (IRB) approvals for handling patient data. A faster and cost-effective

approach would be to conduct these studies in silico (Badano et al., 2018; Bakic et al.,

2018; Warren et al., 2012; Mackenzie et al., 2015).

Hybrid studies, i.e., studies that rely on a combination of clinical and in silico data,

have been developed that evaluate different detectors for detection of breast cancer,

in the form of spiculated masses and calcifications (micro-calcifications) (Mackenzie

et al., 2015; Warren et al., 2012) using DM. However, these studies used DM images

from real patients, which were then post-processed to reflect the noise and resolution

properties of the different detectors evaluated in the articles. In contrast to previous

hybrid approaches, in this work, we propose a completely in silico approach for eval-

uating the clinical performances of x-ray detectors for DM and DBT modalities. We

integrated computational models of different detector technologies with the VICTRE

in silico pipeline (Sharma et al., 2019) for breast imaging to evaluate the the effect

of detector technology on breast cancer detection. A schematic representation of the

modified VICTRE pipeline is depicted in Fig. 5.1.

We evaluated the performance of three x-ray detector models: DIR, DIR+ and

IND. The DIR and DIR+ are based on amorphous selenium (a-Se) direct detector

technology, while the IND replicates the performance of cesium iodide indirect detec-

tors. The DIR system models an ideal a-Se detector, whereas the DIR+ system also

includes inter-pixel crosstalk resulting in poorer resolution properties as compared to

DIR. To focus on the effects of detector technology alone, we used the same DM/DBT

system geometry, x-ray acquisition parameters and reconstruction algorithm deter-

mined by the Siemens Mammomat Inspiration system, to evaluate the three detector

models.
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Figure 5.1: Schematic description of the modifications to the VICTRE pipeline to
evaluate the effect of detector technology on breast cancer detection.

5.3 Methods

Many of the methods used in this work are from the VICTRE pipeline (VICTRE

Github Repository , 2018). First, this study uses the same trial population used for the

VICTRE trial (Badano et al., 2018). The population consists of compressed breast

models based on algorithms developed by Graff et al. (Graff , 2016), of varying breast

densities. These models, generated at a resolution of 50 µm, include anatomical fea-

tures such as vasculature, ductal network and a realistic breast shape in addition to

adipose and glandular tissues. A total of 2986 breast models were created and cate-

gorized as extremely dense, heterogeneously dense, scattered fibroglandular densities

and almost entirely fat. Disease was simulated either as a 5 mm spiculated mass

(de Sisternes et al., 2015) or a cluster of 5 microcalcifications.

The VICTRE study investigated the performance of one direct a-Se detector as

part of the SIEMENS DBT system. In this work, we extend the analysis to three

detector technologies. Three of the detectors are based on a 200 µm a-Se direct

detector technology, while the fourth models a 250 µm indirect CsI detector.
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Trial population Dense Hetero Scattered Fatty

DIR and DIR+ Detectors
All Patients 286 1200 1200 300
Patients with disease 189 780 780 195
DM Cases with lesion 1499 6237 6232 1559
Normal DM Cases 1260 5035 5032 1248
DBT Cases with lesion 1499 6237 6232 1559
Normal DBT cases 1243 4968 5006 1235

IND Detector
All patients 286 300 300 300
Patients with disease 189 195 195 195
DM Cases with lesion 1456 1557 1560 1559
Normal DM cases 1176 1264 1260 1236
DBT Cases with lesion 1451 1557 1560 1559
Normal DBT cases 1149 1275 1243 1234
Glandularity (volume frac-
tion)

0.548 0.339 0.143 0.071

Volume (cm3) 111.5 218.0 441.2 685.6
Compressed thickness (cm) 3.49 4.49 5.50 5.99

Table 5.1: Characteristics of the trial population used in this study. Please note:
more cases for the IND will be included later due to the low computational
efficiency of the model.

5.3.1 Detector models

All our models were developed using MCGPU codes (Badal et al., 2020a). In each

simulation, a large number of x-ray photons are generated and tracked in terms of

energy and direction, from the source, through the breast model and into the detector.

Inside the detector, x-ray photons are tracked till first photoelectric interaction. The

model takes fluorescence effects into account by generating and tracking a secondary

x-ray based on the fluorescence yield in a uniformly random direction. The simulation

tallies the total energy deposited in each detector pixel and calculates the number

of electron-hole pairs generated with an effective ionization energy of 50 eV. Finally,

to add electronic noise with an RMS value of 5200 electrons added to the standard

deviation of pixel level.

The DIR+ model is similar to DIR but includes additional blurring due to inter-
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pixel crosstalk. We assume that when a single pixel is illuminated, the signal (76%)

is mainly located in the incident pixel and the neighboring 8 pixels share a small

fraction of the total signal. So, instead of tallying the entire x-ray photon energy in

a single pixel, a small fraction of it is spread to its neighboring pixels to reproduce

the detector crosstalk.

The IND x-ray detector model is based on a thallium-doped cesium iodide (CsI:Tl)

scintillator that converts incident x-ray energy to charge in a two-step process. The

CsI:Tl layer first absorbs the incident x-ray energy and converts it into optical pho-

tons. Depending on the depth at which the optical photons are generated, we in-

troduce an additional spread of the signal approximated using a Lorentzian depth-

dependent optical spread (Oz) function, as shown previously by Freed et al. (Freed

et al., 2010). The optical spread is implemented using a pre-computed set of the

(Oz) functions at various detector depths. Based on the depth of interaction, the

corresponding (Oz) function is selected and applied to determine the distribution of

the x-ray energy in the neighboring detector pixels.

5.3.2 System parameters

The detector models were evaluated using the same system geometry and x-ray

acquisition parameters modeled to replicate the Siemens Mammomat Inspiration DM

and DBT system. We used a pixel pitch of 85 µm, an angular range of 50◦ with

25 projection views and electronic noise RMS of 5200 electrons. The dosimetric

and x-ray acquisition parameters were selected based on publicly available device

specifications and clinical recommendations for each compressed breast thickness and

glandularity. The focal spot blurring in the source was modeled as 3D Gaussian

probability distribution with a full-width-at-half-maximum of 300 µm. A tungsten

anode filtered with 50-µm rhodium was used with a peak voltage of 28 kV for fatty

and scattered breasts and 30 kV for dense and heterogeneously dense breasts. The
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same analytical antiscatter grid was also included for generating the DM images.

(5:1 ratio, 31 line pairs/mm) (Badal et al., 2020a). Finally, a filtered backprojection

algorithm (Sengupta et al., 2018) was used to generate the DBT volumes (Badano

et al., 2018).

5.3.3 Statistical analysis and trial outcomes

ROIs (regions of interest) and VOIs (volumes of interest), extracted from the

simulated DM/DBT images were interpreted with a computational reader model.

These in silico readers perform a location-known-exactly detection task based on a

channelized Hotelling observer. Thirty computational readers were used to interpret

the ROIs/VOIs with or without a lesion(Zeng et al., 2020). To characterize the

imaging performance of the detectors, the area under the ROC curves (AUC) for

both imaging modalities and manifestations of breast cancer were analyzed for each

density class. The difference in AUCs between the DBT and DM modes were also

calculated to ascertain any potential improvements in cancer detection that can be

achieved using DBT.

5.4 Results

Fig. 5.2 (a) illustrates image quality metrics (MTF, NNPS and DQE) for three

detectors evaluated in this study. As expected, the DIR and DIR+ models based on

amorphous selenium technology exhibit better spatial resolution properties as com-

pared to IND. Since all three detectors were modeled with the same pixel size of 85

µm, the variations in the MTF curves is a result of the detector properties and not

due to pixel size. The NNPS and DQE curves for the direct and indirect systems

were simulated at exposure levels of 188 µGy and 177 µGy respectively.
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Figure 5.2: Image quality metrics (MTF, NNPS and DQE) for the three systems that
were evaluated as part of this study.
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(a)

(b)

Figure 5.3: (a) AUC values, calculated using the imrmc software (B. D. Gallas, IM-
RMC software, 2013), evaluating the detection of masses, calculated for
the DIR, DIR+ and IND systems. The solid symbols represent DM while
the open ones represent DBT. The difference AUCs (AUCDBT−AUCDM)
are plotted in (b). Please note that the reported values for errors are es-
timates and will be updated in the final version.
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(a)

(b)

Figure 5.4: (a) AUC values, calculated using the imrmc software (B. D. Gallas, IM-
RMC software, 2013), evaluating the detection of micro-calcifications,
calculated for the DIR, DIR+ and IND systems. The solid symbols rep-
resent DM while the open ones represent DBT. The difference AUCs
(AUCDBT − AUCDM) are plotted in (b). Please note that the reported
values for errors are estimates and will be updated in the final version.
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Fig. 5.3(a) shows AUC values evaluating the detection of spiculated masses, cal-

culated for the DIR, DIR+ and IND systems. For comparison, the AUC values

calculated as part of the VICTRE trial have also been included. The mean AUC

values shown in table 5.2 suggest that the detector technology has minimal effect on

the detection of spiculated masses. The difference in the AUCs for the two modalities

indicate that detection of masses favours DBT irrespective of detector technology.

Fig. 5.4 (a) shows AUC values evaluating the detection of micro-calcifications,

calculated for the DIR, DIR+ and IND systems. For comparison, the AUC values

calculated as part of the VICTRE trial have also been included. Please note that

the AUC values reported for the VICTRE trial (Badano et al., 2018) are slightly

different from the ones plotted in figure 5.2 a result of larger ROI sizes that are being

used for analyzing micro-calcifications as part of the reader algorithm. As shown in

fig 5.4, the direct detector technology (DIR and DIR+) does not significantly affect

the AUCs in DM, while a significant drop in AUCs is observed especially in the DBT

mode: on average, across all classes, AUC reduced from 0.93 to 0.88 for the DIR

and DIR+ systems, respectively (see table 5.2). For the DIR system, the DM and

DBT modes perform equivalently for with an average AUC difference of 0.001. For

the DIR+ system, the average AUC difference value of -0.02 marginally favors DM

for the detection of micro-calcifications. On the other hand, a significant increase

in AUCs in DM is observed for the IND detector compared to the direct detectors:

0.96 versus 0.92 and 0.91. On average, an AUC difference value of -0.05 is observed,

favoring DM.

For the simulations with direct DIR/DIR+ detector models, generating a complete

set of DM and 25 DBT projections took 11 and 64 min on average for the dense and

fatty classes respectively. The IND model was slower as compared to the DIR and

DIR+ models due to the additional steps to simulate the spread of optical photons

in indirect CsI based detectors. For IND detector models, corresponding simulation
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Type DIR DIR+ IND
Spiculated masses

AUCDM 0.83 (0.01) 0.83 (0.01) 0.83 (0.01)
AUCDBT 0.91 (0.005) 0.91 (0.01) 0.89 (0.01)
∆AUC 0.08 (0.01) 0.09 (0.01) 0.07 (0.02)

Micro-calcification clusters
AUCDM 0.92 (0.01) 0.91 (0.01) 0.96 (0.01)
AUCDBT 0.93 (0.003) 0.88 (0.003) 0.90 (0.01)
∆AUC 0.001 (0.01) -0.02 (0.01) -0.05 (0.01)

Table 5.2: Average AUCs(SE) for DM and DBT modes, calculated using the imrmc
software (B. D. Gallas, IMRMC software, 2013), for detection of spiculated
masses and micro calcifications. Please note that the reported values for
errors are estimates and will be updated in the final version.

times increased to 247 and 669 min for the dense and fatty classes respectively. The

projections were executed with on a system with 4996 CPU cores and 32 Tesla V100-

PCIE GPU nodes with 32 GB RAM.

5.5 Discussion

In general, we found that detector technology has no significant impact on the

detection of spiculated masses (see table 5.2). However, for micro-calcifications,

the AUC differences (see table 5.2 and fig. 5.4) show significant variation indicating

that the benefit of DBT depends on the detector technology. For detecting micro-

calcifications, we observed that the DIR detector exhibits improved performance in

DBT, with positive AUC differences for three of the four breast density classes. How-

ever, we found that DM outperformed DBT for the DIR+ and IND detectors. As

compared to the DIR detector, the DIR+ detector suffered degradation in DM, but

more significantly so in DBT, resulting in negative AUC differences. This could be a

consequence of the lower DQE exhibited by the DIR+ system. On the other hand, a

significant increase in the AUCs for DM was observed for the IND detector as com-

pared to the DIR+ detector, most likely due to the higher DQE performance in spite
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of the reduced spatial resolution. Overall, the IND detector performed better in DM.

5.6 Conclusion

Our findings provide insight into the effects of detector technology on breast can-

cer detection. By performing this study in silico, we were able to remove all other

confounding and contributing factors including system geometry, x-ray acquisition

parameters and image processing algorithms. We found that the detector technology

has an effect on the detection for larger low-contrast targets like masses. On the other

hand, for micro-calcifications, significant variations in detectability across detectors

was observed. The IND and DIR detectors exhibited improved performance for DM

and DBT respectively. While DBT may be the preferred modality for detecting spic-

ulated masses, its benefits for micro-calcifications appear to depend on the detector

technology.
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CHAPTER VI

The First Longitudinal in Silico Imaging Trial for

Early Detection of Breast Cancer

6.1 Abstract

Breast cancer screening programs aim at detecting cancer at earlier stages and

have been instrumental in reducing mortality rates across North America. Digital

breast tomosynthesis (DBT), an imaging technology that relies on the acquisition

of several angular projections is being considered as a replacement for digital mam-

mography (DM), the current gold standard for screening. Although the advantage of

DBT for the detection of larger masses (nominal diameter > 1 cm) has been demon-

strated through various studies, it remains to be seen if DBT offers similar benefits

at earlier stages of cancer progression, when tumor sizes are smaller. The TMIST

trial is currently seeking to address a similar question: can DBT outperform DM in

reducing advanced breast cancer development? However, since this study involves

enrolling hundreds of thousands of women across several sites all over the world, it is

expected to be a slow and expensive process. We propose to conduct our experiments

in silico as a faster and cost-effective alternative. We describe the first ever in silico

longitudinal trial (L Trial) reported in literature. To mimic cancer progression, we

developed a computational model for simulating the growth of breast cancer lesions
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based on biological and physiological phenomena accounting for the stiffness of sur-

rounding anatomical structures for realizing a range of lesion morphology. This model

was integrated with the VICTRE pipeline to create a cohort of in silico patients each

with an unique manifestation of cancer recorded at 5 stages of progression. Digital

patients with varying breast densities, from dense to fatty were considered. The VIC-

TRE pipeline was used to simulate DM and DBT imaging of the patients with an in

silico version of the Siemens Mammomat Inspiration system with image interpreta-

tion relying on using 2D/3D algorithmic readers previously described. We analyzed

the area under the ROC curve (AUC) for both imaging modalities at the 5 stages of

cancer growth to evaluate the performance of DBT and DM along the life of the tu-

mor. The findings suggest that that DBT outperforms DM for all lesion sizes, which

is consistent with studies reported in literature. We observed the mean AUCs grow

from 0.64 to 0.8 for DM and from 0.66 to 0.88 for DBT as the lesion sizes increased

from 0.37 to 1.8 mm. These results demonstrate the benefits of DBT as compared to

DM for detection of smaller masses at earlier stages of tumor development.

6.2 Introduction

Breast cancer remains to be the leading cause of cancer deaths amongst women

worldwide. However, when breast cancer is detected and treated early, the chances

of survival are very high. Two strategies identified by the world health organiza-

tion (WHO)(Ginsburg et al., 2020) to promote the early detection of cancer include

early diagnosis, which is the recognition of symptomatic cancer at an early stage, and

screening, which is the identification of asymptomatic disease in a target population of

apparently healthy individuals. Two dimensional (2D) digital mammography (DM)

is currently the gold standard for imaging techniques used in screening programs.

However, since it is a 2D imaging modality, large amounts of overlapping fibroglan-

dular tissues, especially in dense breasts can hide or mimic the presence of cancerous
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lesions leading to false negatives and false positives. Digital breast tomosynthesis

(DBT) generates three dimensional information of the breast by acquiring several

projection images for a range of projection angles(III , 2009). Previous clinical stud-

ies have demonstrated the advantages of DBT as compared to DM for the detection of

larger masses (McDonald et al., 2016; Asbeutah et al., 2019; Iranmakani et al., 2020)

and reduction of recall rates (McDonald et al., 2016; Iranmakani et al., 2020). For

screening programs, it has been shown that although the overall rate of screening-

detected cancers was similar with DM and DBT, a higher proportion of invasive versus

in situ cancers was detected with DBT. In addition, it has also been hypothesized

that DBT screening could result in earlier detection of cancer. However, it has not yet

been established if the use of DBT in screening programs can lead to finding cancers

in earlier stages.

The National Cancer Institute–funded Tomosynthesis Mammographic Imaging

Screening Trial (TMIST) aims at addressing these concerns. The main outcome of

the TMIST trial is to ascertain whether the use of DBT can enable radiologists to find

aggressive cancers at earlier stages, as compared to DM. However, this study involves

enrolling hundreds of thousands of women and is not expected to report its findings

anytime in the near future. In this work, we study the benefits of DBT at earlier

stages of tumor growth, a limited version of TMIST, but using a fast and cost-effective

approach that does not involve radiating asymptomatic women, by conducting these

experiments in silico.

In the past, in silico trial approaches have been used to evaluate the performance of

DM for detection of breast cancer, in the form of spiculated masses and calcifications

(calcs)(Mackenzie et al., 2015; Warren et al., 2012). However, these studies were

not completely in silico as they used DM images from real patients, which were then

post-processed to reflect the noise and resolution properties of the different detectors

evaluated in the articles. Some simulation frameworks(Badano et al., 2018; Bakic
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et al., 2018) have also been extended to include DBT as well with the goal to compare

the performance of DBT and DM in detecting masses and calcifications. However, to

the best of our knowledge, there has been no report of an longitudinal in silico study

that evaluates and tracks the performance of DM and DBT through the lifetime of a

cancerous lesion for a cohort of diseased patients. The findings of such a trial might

contribute to the demonstration of any benefits DBT might have over DM for earlier

detection of lesions. In this work, we describe the first ever in silico longitudinal trial

(L Trial) reported in literature. We modeled the progression of breast cancer using

a previously developed computational model(Sengupta et al., 2021; Sengupta and

Badano, 2021) for simulating the growth of breast cancer lesions based on biological

and physiological phenomena accounting for the stiffness of surrounding anatomical

structure. We integrated this model with the VICTRE pipeline(Sharma et al., 2019)

to create and image a cohort of in silico patients with and without disease. The disease

patients were imaged at 5 growth time points. The simulated DM/DBT images

were interpreted using 2D/3D model observers described by our group previously. A

schematic representation of the modified VICTRE pipeline is shown in Fig. 6.1.

Figure 6.1: Schematic description of the modifications to the VICTRE pipeline to
evaluate the effect of detector technology on breast cancer detection.
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6.3 Methods

6.3.1 In silico patient population

The patient population used for the VICTRE trial (Badano et al., 2018) was re-

cycled for this study. The VICTRE population consisted of breast models developed

by Graff et al. (Graff , 2016), of varying breast densities. These models, generated at

a resolution of 50 µm include anatomical features such as vasculature, ductal network

and a realistic breast shape in addition to the adipose and glandular tissues. A total

of 1156 breast models were created, categorized as extremely dense (dense), hetero-

geneously dense (hetero), scattered fibroglandular densities (scattered) and almost

entirely fat (fatty). A finite-element solid mechanics software(Maas et al., 2012) was

used to simulate breast compression in craniocaudal orientation. Table 6.1 shows

characteristics of the virtual population used for this study.

Virtual Patients Dense Hetero Scattered Fatty
All Patients 289 969 969 289
Patients with Disease 189 189 189 189
DM Cases with lesion 747 635 699 728
Normal DM Cases 618 2497 2512 618
DBT Cases with lesion 747 635 702 728
Normal DBT Cases 618 2468 2496 617
Glandular Volume Frac-
tion

0.548 0.339 0.143 0.071

Volume (cm3) 111.5 218.0 441.2 685.6
Compressed Thickness 3.49 4.49 5.50 5.99

Table 6.1: Characteristics of the trial population used in the study.

Model of disease progression

To grow the lesions, 1cm x 1cm x 1cm volumes were first extracted from the

breast models. The growth locations were randomly chosen from a list of possibili-

ties governed by the position of the terminal duct lobular units, a common site for

carcinogenesis. Care was taken to ensure that these volumes were located within the
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breast boundary and had no overlap with air, muscle, nipple or skin.

A MATLAB based lesion growth algorithm(Sengupta et al., 2021; Sengupta and

Badano, 2021) was used to simulate tumor growth within each of the extracted vol-

umes. The growth dynamics that govern this model take into account the interstitial

tumor pressure, concentration of metabolites such as oxygen and carbon-dioxide as

well as the stiffness of the of the local tissues. In the model, tumor cells are less likely

to grow through stiffer structures like ligaments and instead preferentially proliferate

in the more elastic regions of the breast. Depending on the breast local anatomi-

cal structures, a range of lesion morphology were achieved. This model was used to

generate lesion morphology at 5 growth time points, with an average radius varying

from 0.32 to 1.8 mm. Lesions at each stage of growth were then inserted into the

corresponding breast locations. For computational efficiency, 4 lesions were grown

and inserted in approximately half of the virtual patients.

6.3.2 Imaging protocol

Similar to the VICTRE study, an in silico version of the Siemens Mammomat

Inspirations system was used to generate the DM/DBT images. The amorphous se-

lenium (a-Se) based x-ray detector was modeled using MCGPU codes(Badal et al.,

2020a) based on Monte Carlo (MC) x-ray transport simulations, adapted from PENE-

LOPE 2006(Salvat et al., 2006). In each simulation, a large number of x-ray photons

were generated and tracked in terms of energy and direction, from the source, through

the breast model, and to the detector. Inside the detector, x-ray photons are tracked

till first photoelectric interaction. The model takes fluorescence effects into account

by generating and tracking a new x-ray depending on the fluorescence yield probabil-

ity, in a uniformly random direction. The simulation tallies the total energy deposited

in each detector pixel, which is used to sample the number of electron-hole pairs from

a Gaussian distribution, with a mean value indicating the charge generated with an
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effective ionization energy of 50 eV and standard deviation represented by the Swank

factor. Finally, to replicate the presence of electronic noise, which is described as a

RMS value, 5200 was added to the standard deviation of each pixel value.

The dosimetric and x-ray acquisition parameters were selected based on pub-

licly available device specifications and clinical recommendations for each compressed

breast thickness and glandularity. The focal spot blurring in the source was modeled

as 3D Gaussian probability distribution with a full-width-at-half-maximum of 300 µm.

A tungsten anode filtered with 50-µm rhodium was used with a peak voltage of 28 kV

for fatty and scattered breasts and 30 kV for dense and hetero breasts. An analytical

antiscatter grid was also included for generating the DM images. (5:1 ratio, 31 line

pairs/mm)(Badal et al., 2020a). Please see the original VICTRE publication(Badano

et al., 2018) for further details.

6.3.3 Image interpretation

ROIs (regions of interest) and VOIs (volumes of interest), extracted from the

simulated DM/DBT images were interpreted with a computational reader model.

These in silico readers were modeled to perform a location-known-exactly detection

task based on a channelized Hotelling observer (cho). This observer used 5 Laguerre-

Gauss channels with widths calibrated to lesion size (Zeng et al., 2015). Since this

study evaluated lesions at different growth time points, the channel sizes were varied

in proportion to the average size of the lesions at each stage. In the VICTRE trial,

channel widths of 30 and 25 pixels were used in the DM and DBT modes respectively

to detect a lesion with a nominal radius of 2.5 mm. The channel widths varied

from 4 to 22 pixels in proportion to the lesion radius, which increased from 0.32 to

1.8 mm. The same channel widths were used for both imaging modalities. Thirty

computational readers were used to interpret the ROIs/VOIs with or without a lesion.

For each density group, 30 computational readers were trained with different sets of
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100 pairs of cases randomly sampled from a larger set of training pairs. For further

details please refer to the original VICTRE publications(Badano et al., 2018).

6.3.4 Trial outcomes and statistical analysis

To evaluate the performance of DBT and DM at earlier stages of tumor growth, the

area under the ROC curves (AUC) for both imaging modalities at the 5 time points of

cancer growth, were analyzed for each density class. The difference in AUCs between

the DBT and DM modes were also calculated to ascertain any potential improvements

in cancer detection that can be achieved using DBT.

6.4 Results

A total of 9121 DM and 9011 DBT cases, generated using 2516 in silico patients

were interpreted by the model observers across the 4 density classes studied. As

expected in a traditional clinical trial, each DM and DBT case with disease presented

a lesion morphology unique to its anatomical background. Fig. 6.2 illustrates sets of

ROIs from DM (left) and DBT (right) images for different masses at 4 growth time

points. Each row in fig. 6.2 represents the progression of the lesion for a different

density class. We found that for the dense and hetero classes, the growth was more

likely to be anisotropic due to larger variation in the tissue types. The growth was a

lot more isotropic for the fatty and scattered fibroglandular classes due to the large

pockets of adipose tissue.

Fig. 6.3 illustrate the variations in the DM and DBT AUCs as well as their differ-

ences across the four breast density classes. The L trial curves represent the results

from the experiments performed as part of this study. For comparison, we have in-

cluded data from the VICTRE trial (Badano et al., 2018), which included a single

2.5 mm radius mass for all DM and DBT cases with disease. Overall, for the largest

mass (radius 1.8 mm) we observed a mean AUC of 0.8 for DM and 0.88 for DBT.
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(a) (b) (c) (d)

Figure 6.2: Sets of DM (left) and (DBT) ROIs showing lesions at four growth time
points with average radii of (a) 0.57 (b) 0.95, (c) 1.5 and (d) 1.8 mm.
Each row corresponds to masses grown in breast models from different
density classes. The density varies from dense (top row) to fatty (bottom
row). Note that these ROIs were generated by simulating the lesions to
be 1.5 times denser than glandular tissues for better visualization.

For the 0.95 mm and 0.32 mm masses, the mean AUCs for DM dropped to 0.76 and

0.64, while for DBT, the mean AUCs were 0.84 and 0.64 respectively. The AUC

difference plots (see fig. 6.4) for the dense and hetero classes show a monotonic rise

with lesion size, but a similar trend is not observed for the two other classes. This

could be a result of the higher AUCs observed in general for the dense and hetero

classes, which leave little room for the mean AUC for DBT to grow. However, in

general we observe that masses greater than those with a radius of 0.57 mm favor

DBT, while DM and DBT perform equivalently for the smallest mass of radius 0.32

mm. The smallest mass in the fatty class (see fig. 6.4) is the only category where DM

marginally outperforms DBT.

We observe that the AUCs approach the numbers reported for the VICTRE trial

for a 2.5 mm mass. The slightly lower numbers that we observe for largest mass (1.8
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Lesion
Size(mm)

Dense Hetero Scattered Fatty Total

AUCDM(SE)
0.32 0.53(0.02) 0.59(0.01) 0.68(0.01) 0.75(0.02) 0.64 (0.02)
0.95 0.61(0.02) 0.7(0.01) 0.81(0.01) 0.91(0.01) 0.76 (0.01)
1.8 0.63(0.02) 0.74(0.01) 0.85(0.01) 0.93(0.01) 0.8 (0.01)

AUCDBT (SE)
0.32 0.54(0.01) 0.61(0.01) 0.67(0.01) 0.75(0.02) 0.64 (0.01)
0.95 0.68(0.02) 0.79(0.01) 0.92(0.01) 0.97(0.01) 0.84 (0.01)
1.8 0.75(0.02) 0.84(0.01) 0.94(0.01) 0.99(0.003) 0.88 (0.01)

∆AUC (SE)
0.32 0.01(0.02) 0.02(0.02) -0.01(0.02) 0(0.02) 0.01 (0.02)
0.95 0.07(0.02) 0.09(0.01) 0.1(0.01) 0.06(0.01) 0.08 (0.02)
1.8 0.11(0.02) 0.09(0.01) 0.09(0.01) 0.05(0.01) 0.09 (0.01)

Table 6.2: Mean AUCs (SE), calculated using the imrmc software (B. D. Gallas,
IMRMC software, 2013), for the DM and DBT modes observed across the
four density classes.

mm radius) studied in this work could be due to a combined effect of the smaller size

and varying lesion morphology, that results in the formation of a less defined mean

signal, used to train the model observers.

The average processing times for each step and density class are shown in Table 6.3.

Please note that the time required for the lesion growth step includes saving the

lesion morphology at five growth time points. On the other hand, the timings for

the projection and reconstruction steps have been recorded for a single breast model

which contains four lesions at different locations at the same stage of growth. In other

words, for each case, the projection and reconstruction steps were executed five times

to account for the various stages of growth. As shown in Table 6.3, the time required

to project and reconstruct increases as we move towards the almost entire fat class,

consists of the largest breast models. The time required to grow the lesions, however,

does not exhibit much variation across the density classes.
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Figure 6.3: Variations in AUCs, calculated using the imrmc software (B. D. Gallas,
IMRMC software, 2013), for DM (black) and DBT (red) across the four
density classes: dense (circle), hetero (square), scattered (triangle) and
fatty (diamond). The data from the VICTRE trial are also included for
the four classes. The VICTRE data are the open symbols, while the solid
symbols represent the L trial data.

Processing
Step

Dense Hetero Scattered Fatty

Lesion Growth 98 87 97 83
Projection 8 14 18 22
Reconstruction 13 19 28 37

Table 6.3: Average timings (in minutes) for the different processing steps for running
a single case from each density category. The various steps were executed
with on a system with 4996 CPU cores and 32 Tesla V100-PCIE GPU
nodes with 32 GB RAM.
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Figure 6.4: Variations in AUC differences (DBT-DM), calculated using the imrmc
software (B. D. Gallas, IMRMC software, 2013), across the four density
classes: dense (circle), hetero (square), scattered (triangle) and fatty (di-
amond). The data from the VICTRE trial are also included for the four
classes. The VICTRE data are the red open symbols, while the black
solid symbols represent the L trial data.

6.5 Discussion

To our knowledge, this is the first report of a longitudinal in silico trial following

the progression of cancer in literature. On one hand, in clinical practice, if a suspicious

mass is detected, it is immediately removed and the appropriate treatment is initiated

to stunt its growth and spread. So this kind of trial that evaluates the performances

of different imaging modalities through the lifetime of cancerous lesions can only

be performed in silico. However, further developments are needed to capture the
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variability in patient and disease manifestation, seen in clinical environments.

In general the mean AUC and difference results indicate that DBT outperforms

DM as the lesion size increases, consistent with studies reported in literature. In fact,

for masses with radius up to 1 mm can be detected using DBT with a 16% higher

AUC as compared to DM, for the dense class, which presents the most challenges due

to presence of large amounts of overlapping fibroglandular tissues. Since the TMIST

trial classifies masses with radii larger than 5 mm to be advanced cases of cancer,

our results clearly demonstrate the benefits of DBT for earlier detection of cancers,

before they can progress and potentially spread to other parts of the body.

While this study demonstrates the power of conducting such experiments in silico,

it suffers from a number of limitations. All masses simulated as part of the L trial

were non spiculated and did not include any characteristics to distinguish between

benign and aggressive malignant tumors. The masses were inserted using simple

voxel replacement, which does not create the tissue distortions around the site of

the tumor, a common indicator used by radiologists for diagnosis of cancer. L trial

only studies the Siemens DM/DBT system, with wide angle geometry known to favor

the detection of masses. This study needs to be replicated for all acquisition geome-

tries, detector technologies and reconstruction algorithms used by other commercially

available DM/DBT systems.

6.6 Conclusion

The L trial is the first ever in silico longitudinal trial reported that evaluates the

performance of imaging modalities such as DM and DBT throughout the lifetime of

cancerous lesions. The findings of the L trial suggest that DBT offers clear benefits

over DM for the early detection of cancer with masses of radii as small as 1 mm.

For smaller masses, DM may present an advantage as is often the case for micro-

calcification detection tasks. In the future, we plan to include larger variability in the
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trial population, a more sophisticated tumor growth model as well as in silico replicas

of other commercially available DM/DBT systems.
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CHAPTER VII

Conclusions and Future Work

7.1 Summary of findings

Digital mammography (DM) based breast cancer screening has proven effective in

reducing mortality rates across North America and Europe. Advanced imaging tech-

niques like digital breast tomosynthesis (DBT) is being considered as a replacement

for DM in screening programs, to address concerns of missed or falsely detected can-

cers in DM. While DBT has been shown to increase cancer detection rates and reduce

recalls, its benefits over DM for earlier detection of cancer, across all commercially

available systems have yet to be established to justify its use in screening programs.

The goal of this thesis was to investigate a limited version of TMIST using in silico

imaging methods: (i) the effect of imaging modalities on the early detection of cancer

and (ii) the effect of detector technology on cancer detection. To do so, we needed

to develop computational models to replicate lesion growth and performance of x-ray

detectors used in commercially available DM/DBT systems.

Chapter 2 introduced the first computational model to simulate growth of breast

lesions. Its unique feature was the correlation between the lesion morphology and the

mechanical properties of its local anatomical structures, that resulted in a great vari-

ety of lesion shapes. While this concept was used specifically for breast lesions in this

thesis, it can be applied to simulate tumor growth in any other part of the body such
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as the lungs and brain. The model also has the provision to simulate angiogenesis,

which involves the effect of peripheral blood vessels. This creates opportunities to

investigate other imaging techniques that involve the use of contrast agents. Overall,

the best feature of this lesion growth model is its versatility.

In Chapter 3, computational models were developed to replicate the DM perfor-

mance of commercially used x-ray detectors. We demonstrated via typically used

image quality metrics that these models were comparable to three popularly used

DM/DBT systems: GE Senographe Pristina, Hologic Selenia Dimensions and Siemens

Mammomat Inspiration. While this is a major scientific contribution, the biggest

takeaway is the hybrid approach for modeling indirect CsI based x-ray detectors.

Other approaches reported in literature are either based on cascaded modeling, which

often involve the use of arbitrary fitting functions or detailed Monte Carlo methods,

which are extremely time consuming. Neither of these approaches were fit for use

as part of in silico trials. The hybrid approach described in chapter 3 harnesses the

accuracy of Monte Carlo methods, without compromising on the computational ef-

ficiency by using analytical functions to model the optical spread in the detector.

Unlike previous Monte Carlo efforts, this model could generate a set of DM/DBT

projection views within a reasonable time frame (4-12 hours depending on the size of

the breast model), that allowed us to incorporate for the first time, an indirect CsI

detector as part of an in silico trial.

Chapters 5 and 6 were aimed at developing in silico trials to study the effects

of detector technology and cancer progression on cancer detection for both imaging

modalities, using the computational models developed as part of Chapters 2 and 3.

Both these trials are great examples that demonstrate the power of conducting ex-

periments in silico. Both Chapters investigate topics that would have been otherwise

impossible or unreasonable to undertake in the physical world. The goal of Chapter

5 was to establish a link between the x-ray detectors’ image quality metrics and their
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clinical performance for DM and DBT. Since we used in silico approaches, we were

able to remove all other contributing and confounding factors of the imaging system

that could affect the cancer detection rates. It would be unreasonable to do the same

with real systems, as it would involve extensive device fabrication and integration

with existing DM/DBT system, which is a complex and time consuming process. On

the other hand, the longitudinal trial described in chapter 6 could never be replicated

in a clinical setting. If a suspicious mass is detected in a patient using DBT or DM,

doctors would never recommend a wait-and-watch approach and would immediately

start the appropriate treatment to curb its growth. Finally, both studies arrived at

important conclusions that could impact decisions regarding the choice of imaging

modalities for breast cancer screening: (i) DBT shows clear advantages over DM

for earlier detection of cancer and (ii) while DBT outperforms DM for detection of

masses, its benefits for micro-calcifications are dependent on detector technology.

7.2 Regulatory Impact

All the computational models developed as part of this thesis will be made open

source via Github. They will be made available freely and in open source form for

manufacturers to create opportunities for additional sources of regulatory evidence.

This could help speed up the regulatory process and allow improvements in technology

to be made available to the public sooner.

7.3 Limitations

While through this thesis the benefit of conducting such studies in silico have

been clearly demonstrated, they are currently not a replacement for clinical trials

and should be used as a supplementary source of evidence to inform their clinical

counterparts. In general, in silico trials lack the variability in patient population and
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cancer manifestations typically observed in a clinical setting. Validating and assessing

realism of each aspect of the in silico framework is also often a challenge.

While the lesion growth model, described in chapter 2, is a great first step that

allows us to investigate the impact of imaging technologies through the lifetime of a

lesion, it currently does not have any provisions for distinguishing between malignant

and benign tumors. A major goal of the TMIST trial is to ascertain if aggressive

cancers can be detected earlier with the help of DBT, which can thereby reduce the

number of advanced cancers in the population. While our studies showed that DBT,

in general, can detect masses at their earlier stages, no conclusions be currently made

about the benefits of DBT for the earlier detection of aggressive masses, which affect

the long-term health of patients.

Additionally, both trials described in chapter 5 and 6, use the wide-angle geometry

from the Siemens DM/DBT system, which is known to favor detection of larger tar-

gets. To develop a complete understanding, the same experiments should be repeated

with a narrow-angle system geometry to ascertain if the outcomes vary.

7.4 Future Work

While this thesis allows the reader to gain insight into the effects of cancer pro-

gression and detector technology on the DM and DBT performance, there are many

other clinical and system parameters that need to be investigated. We are currently

running in silico trials to investigate the effect of electronic noise on the cancer de-

tection rate. We will also be extending the longitudinal study in chapter 6 to include

the other detector technologies currently used in commercial systems.

An interesting future research direction is to improve on the lesion model to ac-

commodate the growth of spiculations, which are one of the common indicators of

aggressive breast cancer and demonstrate the realism of the lesion models. We will

also be working on developing a model to replicate hexagonal detector pixels, which
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are used in the Fujifilm system.
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APPENDIX A

Cascaded Systems Analysis of a-Se/a-Si and

a-InGaZnO TFT Passive and Active Pixel Sensors

for Tomosynthesis

A.1 Abstract

Medical imaging systems like full field digital mammography (FFDM) and digital

breast tomosynthesis (DBT) commonly use amorphous selenium (a-Se) based passive

pixel sensor (PPS) direct conversion x-ray detectors. On one hand, direct conver-

sion detectors inherently offer better resolution characteristics in terms of a higher

modulation transfer function (MTF), in comparison to the indirect CsI:Tl PPS x-

ray imager. On the other hand, especially at lower doses, this superior performance

of the direct imager is seldom retained in its detective quantum efficiency (DQE)

curves. It is well known that a-Se PPS x-ray imagers suffer from high additive elec-

tronic noise originating from the from the amorphous silicon (a-Si) thin film transistor

(TFT) array that is being used in the current back-plane technology. This degrades

the noise power spectrum (NPS) and subsequently the overall DQE. To address this
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deficiency, we propose to replace the PPS back-plane by active pixel sensor (APS)

back-plane technology, which has the potential to reduce the back-plane electronic

noise by amplifying the input signal, especially at low doses. The proposed APS is

based on amorphous In-Ga-Zn-O (a-IGZO) TFT technology, which can offer high mo-

bility (5-20 cm2/V-s), low leakage current (¡ 10−13 A) and low flicker noise (Hooge’s

parameter αH 1.5×10−3), leading to better imager noise performance. To test our hy-

pothesis, we used linear cascaded systems analysis to model the imaging performance

(MTF, NPS and DQE) of the PPS and APS a-Se direct imagers. This model was

first validated using experimentally measured data obtained for a 85 µm pixel pitch

a-Se/a-Si TFT PPS imager. Using this model, we analyzed the noise performance

of the direct a-Se and indirect CsI:Tl x-ray a-IGZO APS imagers at different dose

and electronic noise levels. Obtained results clearly showed that lowering back-plane

electronic noise can significantly improve the performance of the a-Se/a-IGZO TFT

APS imager. Our simulated results showed that a higher DQE at lower radiation

doses (maximum DQE of 0.6 can be achieved at an exposure level of 1 µGy) can

be achieved with the a-Se detector, thereby making this combination a promising

candidate for low dose applications like DBT.

A.2 Introduction

Today the most commonly used imager (The term ‘imager’ is used to describe the

entire x-ray detection system including the x-ray detector and back-plane electronics.)

technology in Digital Breast Tomosynthesis (DBT) systems is based on direct x-ray

detectors. Direct conversion detectors (The term ‘detector’ in this work pertains to

the x-ray converting material like a-Se or CsI:Tl.) using x-ray absorbing materials like

amorphous selenium (a-Se), convert the incident x-ray photons into electron charges

which are collected by a combination of thin-film transistors (TFTs) array (so call

back-plane array) and back-end electronics (Samei and Flynn, 2003b). The a-Se
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is a popular choice for detector material, used by commercial DBT scanners like

Hologic Selenia Dimensions, Siemens MAMOMAT Inspiration and Fujifilm Innovality

(Mackenzie et al., 2017). For breast cancer detection, the objective of DBT is to

acquire a high resolution and a low noise image, at low doses, enabling radiologists

to distinguish finer details and low contrast masses, that can be associated with

breast cancer. In terms of imager performance, this translates to imager having a

high Modulation Transfer Function (MTF), a low Noise Power Spectrum (NPS) and

consequently a high Detective Quantum Efficiency (DQE).

Previously, there have been experimental studies on direct a-Se imagers and their

performances were compared against that of indirect detectors (Samei and Flynn,

2003b; Monnin et al., 2007; Bisogni et al., 2005), which first convert the x-ray photons

absorbed by scintillators, such as CsI:Tl, into light emitting photons that are sub-

sequently detected by amorphous silicon (a-Si) pixel photodiodes(Samei and Flynn,

2003b). A general consensus amongst all these studies is that the direct x-ray con-

version using a-Se has the potential to achieve a higher MTF even at high spatial

frequencies (for example, an a-Se detector with comparable pixel pitch can achieve a

MTF of 0.55 as compared to 0.21 for an indirect CsI:Tl detector at the same spatial

frequency of 3.5 lp/mm)(Samei and Flynn, 2003b). However, it has also been found

that especially at lower radiation doses, the superior performance of the direct imager

is seldom retained in its DQE curves. For example, an a-Se detector irradiated with

comparable exposure of 2.6 µGy can achieve a DQE of 0.23 as compared to 0.3 for an

indirect CsI:Tl detector at the same spatial frequency of 2 lp/mm(Samei and Flynn,

2003b). Hence, it is established that a-Se imagers suffer from a high additive elec-

tronic noise(Zhao, 2007) originating from the back-end electronics, which degrades

the NPS performance and subsequently the overall DQE. This might suggest that

we may have hit a roadblock. It is important to note that the imagers investigated

in these experimental studies, include not only the direct/indirect x-ray converting
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material (or detector) but also different back-end electronics comprising of readout

TFTs, analog to digital converters (ADC), charge amplifiers etc. Therefore, if the

electronic noise originating from the imager’s back-plane (e.g. active-matrix arrays)

were to be reduced, the performance of a-Se direct imager could be improved. Cur-

rently, the back-plane technology used in commercial DBT systems is based on single

a-Si TFT passive pixel sensors (PPS). While a compact structure can be achieved with

PPS arrays, they are also a source of high additive electronic noise5, subsequently

degrading the overall DQE. Moreover, to acquire DBT slices with a higher resolution,

it is necessary to further reduce pixel pitch of the imager. It is difficult to do so using

PPS imagers as the smaller aperture size leads to a weaker signal at low doses, thus

resulting in a low signal-to-noise ratio in the obtained DBT slices(Zhao and Kanicki ,

2014). One way to circumvent this issue is by replacing the PPS back-plane by active

pixel sensor (APS) technology. In contrast to PPS arrays, APS arrays can reduce the

electronic noise contribution by amplifying the input signal(Zhao and Kanicki , 2014;

Karim et al., 2002). In the recent years, numerous APSs based on CMOS technology

have been developed(Esposito et al., 2014; Konstantinidis et al., 2012; Farrier et al.,

2009; RadIcon 2013 RadEye1 , 2013). But CMOS is limited to smaller area imagers.

Alternatively, metal-oxide TFTs array technology can be fabricated over a large areas,

as has already been shown in flat panel displays (Metal Oxide TFT Backplanes for

Displays 2014-2024: Technologies, Forecasts, Players: IDTechX , 2014; Jeong et al.,

2008). The metal oxide TFTs offer a high field effect mobility (5-20 cm2/V-s), a low

leakage current (¡ 10−13 A), low flicker noise (Hooge’s parameter αH 1.5× 10−3) and

thermal and electrical stability6. It has also been shown that amorphous In-Ga-Zn-O

(a-IGZO) TFT APS can be realized(Zhao and Kanicki , 2014). Hence, we propose in

this paper, for the first time, to integrate the a-Se detector with an a-IGZO TFT APS

array, that could result in an improved imager noise performance. This study can be

extended to amorphous InSnZnO (a-ITZO) TFTs (Cheng et al., 2017). Since, as the
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mode of operation, and material and device properties for CMOS APS and a-IGZO

TFT APS are different, the circuitry, the modelling and device parameters for them

are also different and must be determined separately through experiments. Details

about a-IGZO APS modelling have been discussed previously (Zhao and Kanicki ,

2014). As experimental studies of imagers can be expensive and time-consuming, we

propose to use cascaded system analysis (Rabbani et al., 1987; Rabbani and Metter ,

1989; Cunningham et al., 1994; Konstantinidis , 2011) as proof of concept, to model

the imaging performance in terms of MTF, NPS and DQE for the a-Se imager based

on PPS and APS technologies. We validated our model by comparing our simulated

results against the measured MTF, NPS and DQE obtained for the 85 µm SMAM

imager18 from Anrad Corporation. Using this a-Se model and a previously developed

analysis for the CsI:Tl indirect detector (Zhao et al., 2015c,a) we analyzed the two

imagers for various levels of back-end electronic noise and dose levels. Our analysis

showed that if the a-Se imager performed close to its quantum limited behavior, then

indeed it has the potential to show a superior DQE performance, as compared to

current x-ray imaging technology, especially at lower x-ray exposure levels. To fur-

ther consolidate our analysis, we used this model to demonstrate that the improved

performance can be achieved for the proposed combination of the a-Se detector with

a low noise a-IGZO TFT APS back-plane.

A.3 Methods

A.3.1 Novel a-Se/a-IGZO TFT APS imager

Ideally, to achieve the best imaging performance in terms of higher DQE, the

imaging system should be quantum limited, which means that the only source of noise

is the x-ray quantum noise. This can be achieved if either the detector Air Kerma

(DAK) levels are considerably high or the electronic noise component originating
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from the PPS or APS back-plane is low. For intermediate dose applications like

mammography, where only the normal projection view of the breast is obtained,

a higher electronic noise component may be tolerated. Digital breast tomosynthesis

(DBT) delivers a similar mean glandular dose (MGD) to the breast as mammography,

but over several projections. So, to achieve sufficient signal-to-noise ratio (SNR) and

to improve the performance of the current a-Se / a-Si TFT PPS imager in terms of

NNPS, DQE and spatial resolution especially at lower DAK levels, we need to realize

an imager with reduced electronic noise.

One approach to improve the noise performance (NPS) of the a-Se imager is by

employing an APS (Karim et al., 2002) instead of the currently used PPS back-

plane (Konstantinidis , 2011). While we can achieve a compact structure with PPS

arrays, APS arrays can reduce the electronic noise contribution by amplifying the

input signal(Karim et al., 2002; Zhao and Rowlands , 1995). Previously, our group

investigated different APS pixel circuits to enhance the imager performance such

as current-mode (Cheng et al., 2017), voltage-mode (Cheng et al., 2016) and trans-

impedance amplifier (TIA) (Kim, 2017). For this work, we propose to integrate the

a-Se detector with current-mode APS (C-APS).

The equivalent circuit for the a-Se detector layer, as shown in fig. A.1 (a) consists

of a current source (ISe), capacitance (CSe) and reverse biased diode (DSe). As shown

in fig. A.1 (b), in PPS imagers, the pixel circuit consists of only one TFT and a storage

capacitor (Cs). When the TFT is switched on by the gate lines, it transfers the charge

on the storage capacitor to the readout circuit. A schematic of an equivalent circuit

for the novel a-Se a-IGZO 3-T C-APS imager is shown in fig. A.1 (c). The C-APS

circuit consists of three TFTs – reset, amplifying and read (TRST, TAMP and TREAD).

In the reset mode, only TRST is switched on (by VRST), which sets the voltage VIN

to VREF ( chosen to be greater than the threshold voltage of TAMP) Next, in the

integration mode, the charge generated due to the incident x-rays accumulates on the
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storage capacitor (Cs), which changes the voltage VIN. After the integration stage,

TREAD is switched on (by VREAD), which transfers an amplified signal (through TAMP)

to the data-line (consisting of a parasitic resistance RDATA and capacitance CDATA)

and external readout circuit (a switched-capacitor amplifier where SW acts as the

switch). The final output charge is thus stored on the feedback capacitor, CF. Thus,

the APS circuit provides a charge gain. The APS circuit cannot reduce the effect of

any pre-amplifying noise (originating from TRST leakage current, shot noise and reset

noise), but can eliminate the influence of the post-amplifying noise (thermal and

flicker noise from TAMP and TREAD and external readout circuit noise). Moreover, if

the currently used a-Si TFT technology is replaced by a-IGZO TFT technology, the

noise performance of the imager can be further improved.
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(a)

(b)

(c)

Figure A.1: (a) Cross-sectional and top view schematic of a-Se imager (b) Circuit
diagram for a-Se/a-Si TFT PPS and (c) Circuit diagram for a-Se/a-IGZO
TFT APS.
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To analyze the performance of the novel a-Se/a-IGZO TFT C-APS imager, we

have to model it’s signal and noise characteristics at each stage of the detection

process in x-ray imagers. Cascaded linear systems analysis is a useful tool developed

by Rabbani et. al.(Rabbani et al., 1987; Rabbani and Metter , 1989) and Cunningham

et. al.(Cunningham et al., 1994) to study the propagation of the signal and noise

through x-ray detectors as series of blurring and gain stages. Previously, we already

had performed such a cascaded analysis for an indirect 50 µm pixel pitch CsI:Tl

CMOS APS imager (Zhao et al., 2015c,a). Cascaded modelling for a-Se a-Si TFT

PPS imagers has also been studied in the past (Zhao and Rowlands , 1997; Kabir et al.,

2011; Zhao et al., 2003). We will be following a similar, but simplified, approach to

first develop a linear cascaded system model for a direct a-Se a-Si TFT PPS imager

and use it to demonstrate the advantages of the proposed novel a-Se/ a-IGZO TFT

APS imager.

A.3.2 Linear Cascaded Modelling of a-Se X-ray Imagers (PPS and APS)

The schematic of an equivalent circuit of an a-Se x-ray imager with an a-Si TFT

PPS back-plane is shown in fig. A.1 (b). A fraction of the incident x-rays, determined

by the thickness and attenuation coefficient of Se, is absorbed in the a-Se detector

layer. Each absorbed x-ray photon creates a primary photo-electron, through the

photo-electric effect (photons having energy greater than the K-edge of Se, 12.66 keV,

can eject a primary photo-electron form the K-shell) or through Compton scattering

(Que and Rowlands , 1995b). This primary electron carries a large amount of kinetic

energy and as it travels through the Se layer, it collides randomly with Se atoms and

creates thousands of secondary electron-hole pairs, until all its kinetic energy is lost.

The high electric field (up to 10 V/µm across the Se layer) developed between the top

electrode (that could be negatively and positively biased, in fig. A.1 negative voltage

is applied) and the ground plane of the TFT array causes the electrons and holes

124



(positive charges) separation that will drift along the filed lines to be collected by

the pixel and top electrodes, respectively (Konstantinidis , 2011). The pixel electrode

is connected to a storage capacitor electrode which is in series with the a-Se layer

capacitance. The electronic charges are collected and accumulate on combination of

these two capacitors (bias voltage applied to the circuit is divided according to the

capacitance ratios) and, thereby, provides a charge signal that can be read during

self-scanning by back-end electronics. Since a-Se is a photoconductor, each pixel

electrode carries an amount of charge that is proportional to the amount of incident

x-ray radiation. The simplest a-Si TFT PPS technology has only one a-Si TFT per

pixel circuit. When the TFT is switched on for a given period of time, by the gate line,

it transfers the charge stored, across combination of the a-Se and storage capacitor,

to the readout columns, where the charge is amplified and digitized. The entire array

is read in a row-by-row manner (Konstantinidis , 2011).

As shown in fig. A.2, similar to the previously developed cascaded models(Zhao

and Rowlands , 1997; Kabir et al., 2011; Zhao et al., 2003), the x-ray detection mech-

anism in the a-Se / a-Si TFT imager, as described above, can be divided into the

following 8 stages: (i) absorption of x-ray energy in a-Se (ii) inherent stochastic blur-

ring in a-Se (iii) conversion of x-ray photons into electron-hole pairs (iv) collection of

the electron-hole pairs at the respective electrodes (v) blurring due to hole blocking

layer (vi) aperture blurring (vii) noise aliasing and (viii) addition of electronic noise

from the a-Si PPS back-plane. The purpose of this study is to build a simplified

model, taking into consideration the most important x-ray detection mechanisms,

which can be used to reasonably estimate and predict the performance of current and

novel x-ray imager technologies. Thus, the spreading of the electronic signal due to

re-absorption of K -fluorescent x-rays (Que and Rowlands , 1995b) have been ignored

in this model. Although we recognize that the K -fluorescence should not be ignored

in a-Se imagers (Que and Rowlands , 1995b). All the parameter values used for this
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cascaded analysis model are given in Table. A.1.

Figure A.2: Linear Cascaded Modelling of a-Se imager. Stages 0-7 are common for
PPS and APS imagers. Stage 8 is related to only PPS imagers.
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Parameter Value Description
ϕ0 6552 photons/mm2/µGy Mean x-ray photon fluence per unit

DAK
g1 0.68 Energy quantum efficiency
g3 505.17 Conversion gain
g4 0.89 Charge collection efficiency
dSe 200 µm Thickness of a-Se
FF 0.89 Fill factor
a 80 µm Aperture width
d 85 µm Pixel pitch
F 10 V/µm Electric field
µe 0.003 cm2/V.sec Electron mobility
µh 0.12 cm2/V.sec Hole mobility
τ ′e 100 µs Electron lifetime
τ ′h 20 µs Hole lifetime

Table A.1: Parameters used in cascaded analysis of Anrad SMAM a-Se detector

A.3.2.1 Stage 0: Incident x-ray photon fluence

A polychromatic x-ray spectrum using Tungsten (W) anode with a peak voltage

of 28 kVp, total of 2.5 mm Aluminum (Al) filtration was simulated in this study

to achieve a mean photon energy of 22.3 keV, and HVL of 0.83 mm Al, which is

considered standard for mammography (IEC 62220-1-2 2007). The Air Kerma at the

surface of the detector (DAK) was set to be 1 µGy. Using this simulated spectrum,

the mean x-ray photon fluence per unit DAK (ϕ0) is calculated as:

ϕ0 =
Emax∑
E=0

ϕ0 (E) ∆E (A.1)

Here, ϕ0 has the units of photons/mm2/µGy, Eis the x-ray photon energy in keV

and ϕ0 (E)is the x-ray spectrum incident on the detector. So the fluence at a DAK

value of Ka µGy would be Ka× ϕ0 photons/mm2.

Since x-ray quantum noise follows Poisson distribution (Kabir et al., 2011), the

noise for this stage, SN0, can be expressed as:
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SN0 = ϕ0 (A.2)

Here, SN0 is spatially white noise, which means that it is independent of the spatial

frequency. Once the spatial frequency component is included in the later stages, the

noise power spectrum (NPS) will be calculated.

A.3.2.2 Stage 1: Absorption of X-ray Energy in a-Se

This stage describes what fraction of the incident x-ray energy is absorbed (and

could be utilized) by the a-Se detector. Since a-Se detectors are energy integrators2,

the gain for this stage (g1) is called the energy absorption efficiency (EAE), which is

the ratio of the total energy absorbed per unit incident energy. So g1 is calculated as:

g1 =

∑Emax

E=0 ϕ0 (E)×
(
1− e−µ(E)dSe

)
× E × (µen(E)

µ(E)
)×∆E∑Emax

E=0 ϕ0 (E)× E ×∆E
(A.3)

Here, dSe is the a-Se detector thickness in cm, µ and µen are the linear and energy

attenuation coefficients for a-Se. µen describes the fraction of the incident x-ray energy

which can be transferred to the charged particles as kinetic energy, including all the

radiative losses and µis the linear attenuation coefficient. So the term: E × (µen(E)
µ(E)

)

describes the amount of energy absorbed in a-Se per attenuated x-ray photon (Boone,

2000).

Thus the signal and noise of the a-Se imager at this gain stage is given by equations

4 and 5 respectively:

ϕ1 = g1 × ϕ0 (A.4)

SN1 = g1 × ϕ0 (A.5)
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A.3.2.3 Stage 2: Stochastic Blurring by Photo-conductor

The two dominant sources of 3-D spreading of the electronic signal in a-Se are the

photoelectric effect and re-absorption of the K -fluorescent x-rays (Que and Rowlands ,

1995b).

Photoelectric Effect: In the photo-electric effect, the incident x-ray photon gets

completely absorbed and releases a primary electron from a bound state of the Se

atom. This primary electron (also called photo-electron) carries a large amount of

kinetic energy, which is the difference between the incident x-ray photon energy and

the electron’s binding energy. As the photo-electron travels through the selenium

layer, it collides randomly with Se atoms and creates several secondary electrons,

until all its kinetic energy is lost. The size of this electron cloud, which is a function

of how far the photo-electron can travel (range), determines the spreading of charge

and blurring associated with this process.

Previously, Que and Rowlands modelled the blur due to the range of the primary

photoelectron as (Que and Rowlands , 1995b):

Tpe (E, f) = exp(−π2δ2f 2) (A.6)

where,

δ =
Rmax

2.5
(A.7)

and

Rmax =
2.761× 10−5 ×Mat × (E −Kedge) 5

3

ρ× Z 8
9

(A.8)

Here, Mat is the atomic mass in g.mol-1, ρ is the density in g/cm3, Z is the atomic

number of a-Se, f is the spatial frequency in lp/mm and Kedge is the K-edge of a-Se
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in keV (12.66 keV). Rmax (in mm) can be thought of as a measure of the average

distance between where the primary photo-electron was created and where it stops.

Here the Rmax is about 2.1 µm when E = 28keV .

To express Tpe (E, f), only as a function of frequency, Tpe (f) is calculated as the

weighted average of all the absorbed photons:

Tpe (f) =

∑Emax

E=0 ϕ0 (E)Tpe (E, f) ∆E∑Emax

E=0 ϕ0 (E) ∆E
(A.9)

So the signal and NPS after this stochastic blurring stage is given by equation 10

and 11:

ϕ2 (f) = ϕ1.Tpe (f) (A.10)

SN2 (f) = T 2
pe (f)SN1 + (1− T 2

pe (f))ϕ1 (A.11)

Note that this is the first stage where the spatial frequency is also included in the

calculations. So NPS is calculated instead of noise.

A.3.2.4 Effect of Re-absorption of K-fluorescence:

If during the photoelectric process, the primary electron is ejected from an inner

atomic shell, it can result in a cascade of electrons from the outer shells, which

can consequently result in the emission of characteristic x-ray photons. (Que and

Rowlands , 1995b) These characteristic x-rays are called K-fluorescent x-rays when

the primary electron is ejected from the K-shell of the Se atom. These K -rays when

absorbed at a different location in the detector volume, may result in additional

spread of the signal. From previous studies (Que and Rowlands , 1995b),it was found

that for lower energy applications (mean energy of 20 keV), the effect of reabsorption

of K-fluorescence can create up to a 28% change (reduction) in the total MTF for a
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1000 µm thick imager (Que and Rowlands , 1995b). For higher energy spectra (peak

voltage of 75 kVp), the effect of K-fluorescence is negligible (Kabir et al., 2011).

So it is recognized and accepted that for DBT, the effect of K -fluorescence ideally

should not be ignored. However, our analysis showed that the effect of reabsorption

of K-fluorescent rays accounts for about 10% variation in the imager’s MTF which is

tolerable for our study. Hence, to simplify our cascaded systems model, we ignored

the effect of reabsorption of K-fluorescent rays in this work and only considered the

contribution from the photoelectric effect. This assumption can be revisited when

additional analysis of the a-IGZO TFT imager are needed for designing the actual

products.

A.3.2.5 Stage 3: Conversion Gain

The conversion gain g′3 (E) represents the mean number of free electron hole pairs

generated in a-Se by the photo-electric effect following the absorption of an x-ray

photon of energy E. g′3 (E) is calculated as:

g′3 (E) =
E

W±
(A.12)

W± is called the activation energy or the energy required to create a single electron

hole pair (EHP) in a-Se. For most crystalline semiconductors (like HgI2) W± can be

calculated using the Klein rule: W± ≈ 3Eg(Kasap et al., 2011). However, for low

mobility solids, like a-Se, it has been found that W± has a strong dependence on the

applied electric field (F), which can be described by:

W± = W 0
± +B/F (A.13)

where, W 0
± is the intrinsic EHP creation energy at an infinite electric field and B is

a constant. For an electric field of 10V/µm, W± is calculated to be 50 eV (Kasap et al.,
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2011). This value has been verified experimentally by Rowlands et. al. (Rowlands

et al., 1992).

The overall gain for this stage is given as:

g3 =

∑Emax

E=0 ϕ0 (E)× η (E)× g′3 (E)× E ×∆E∑Emax

E=0 ϕ0 (E)× η (E)× E ×∆E
(A.14)

η (E) = 1− e−µ(E)dSe (A.15)

Where, dSe is the a-Se detector thickness in cm, µ and µen are the linear and

energy attenuation coefficients for a-Se. η (E) is also known as the monochromatic

photon energy quantum detection efficiency (QDE).

The variance in gain is:

σ2
g3 = ffactor × g3(E) (A.16)

Where, ffactor is the Fano factor (Darbandi et al., 2012).It has been shown by

Darbandi et. al. (Darbandi et al., 2012), that the intrinsic value of the Fano factor

in a-Se is within 0.03-0.06. However, due to recombination of charges in a-Se these

values are seldom achieved. In fact for an electric field of 10V/µm, the Fano factor

approaches 0.9-1 (Darbandi et al., 2012). Moreover, assuming that mean number of

electron hole pairs released per x-ray photon obey a Poisson process (Kabir et al.,

2011), the Fano factor is determined to be 1 and the variance to be:

σ2
g3 = g3(E) (A.17)

So the signal and the NPS from this gain stage are calculated using equations 14

and 16b as:
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ϕ3(f) = g3 × ϕ2(f) (A.18)

SN3 = g23SN2(f) + σ2
g3ϕ2(f) (A.19)

A.3.2.6 Stage 4: Charge Collection

The average charge collection efficiency, g4, at the pixel electrodes when electron-

hole pairs are created at a distance x from the top electrode, under negative bias, is

given by (Kabir et al., 2011):

g4 =

τh 1∫
0

(1− e−(
x
τh

)
)dx+ τe

1∫
0

(1− e−(
1−x
τe

))dx

 (A.20)

The variance in the gain is given by25:

σ2
g4a = [

1∫
0

τ 2hdx+

1∫
0

τ 2e dx− τ 2h

1∫
0

e
− 2x
τh dx−] (A.21)

σ2
g4 = [σ2

g4a − τ 2e

1∫
0

e−2(
1−x
τe

)dx− 2τh

1∫
0

xe
−( x

τh
)
dx− 2τe

1∫
0

(1− x)(e−(
1−x
τe

))dx] (A.22)

Where,

τe =
µeτ

′
eF

dSe
(A.23)

and

τh =
µhτ

′
hF

dSe
(A.24)

Where, µe (or µh) is the mobility, τ ′e (or τ ′h) is the deep trapping time (lifetime)

of electrons (or holes) in seconds and F is the electric field in V/cm. So τe (or τh)
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is related to the average distance travelled by the electron (or hole) before they are

trapped. The values for µe, µh, τ
′
e and τ ′h are provided in Table 1.

So the gain and variance equations (19 and 20) are used to calculate the signal

and NPS at this stage is given by equations 23 and 24 respectively:

ϕ4 (f) = g4ϕ3 (f) (A.25)

SN4 (f) = g24SN3(f) + σ2
g4ϕ3 (f) (A.26)

A.3.2.7 Stage 5: Blurring due to Hole Blocking Layer

The stochastic blurring stage is due to a hole blocking layer located at the bottom

of the detector; its purpose is to limit the dark leakage current, fig. 1. The interface

between hole blocking layer and the a-Se detection layer traps the drifting electrons

before they can reach the pixel electrodes (Hunter et al., 2007). The trapped electrons

can induce a negative charge, located at a distance l causing a spreading of the signal.

This signal spreading can be expressed as (Hunter et al., 2007) (Zhao et al., 2003):

Tr (f) =
dSe× sinh(2πf(dSe− l))
(dSe− l)× sinh(2πfdSe)

(A.27)

For the cascaded modelling, l can be thought of as a fitting parameter. In this

study, the best value for l was determined to be 10 µm to achieve a good theoretical fit

to the experimental data. While the true value for the hole blocking layer thickness in

this imager is unknown, previous studies (Zhao et al., 2003) (Hunter et al., 2012)have

shown that the thickness of the hole blocking layer is typically ∼ 3-4% of the total

a-Se thickness. So the 10 µm value ofl is reasonable for a 200 µm thick a-Se layer.

It is important to note that the above equation describes the charge trapping at a

single location e.g. at the a-Se/hole blocking layer interface. Of course, it is possible
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that the charge trapping can occur throughout the a-Se thickness as described by

Kabir et. al. (Kabir et al., 2011). In this case, the trapped bulk charges can induce

additional charge that can give rise to additional signal blurring and reduction in the

overall MTF of the imager (Kabir and Kasap, 2003). However, it has been suggested

that for the low exposure rates used in diagnostic applications, the impact of bulk

trapping on signal blurring can be neglected (Hunter et al., 2007).

Since this a stochastic blurring stage, the signal spectrum and NPS can be written

as:

ϕ5 (f) = ϕ4.Tr (f) (A.28)

SN5 (f) = T 2
r (f)SN4 + (1− T 2

r (f))ϕ4 (A.29)

A.3.2.8 Stage 6: Aperture Blurring

In a-Se detectors, the top electrode is continuous, but the bottom electrode is

divided into pixels as shown in fig. 1(a). So, as the a-Se layer is continuous, the signal

spreading within the a-Se layer, before the charge carriers reach the pixel electrodes,

is not affected by the pixel size. On the other hand, the overall MTF of the imager

also includes the MTF due to pixel aperture, which changes with the pixel size. The

deterministic signal spreading associated with the square shape of pixel electrodes is

expressed as

Ta (f) = |sinc(a.f)| (A.30)

Here, a is the pixel electrode width in mm. a is related to the pixel pitch d (in

mm), by the relation:
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a2 = FF × d2 (A.31)

Here, FF is the pixel fill factor, which defines the x-ray sensitive area (a 2) to the

total pixel area (d2).

The signal spectrum and NPS at this stage are given by the following equations:

ϕ6 (f) = a2ϕ5 (f) .Ta (f) (A.32)

SN6 (f) = a4T 2
a (f)SN5 (A.33)

A.3.2.9 Stage 7: Noise Aliasing

The detector Nyquist frequency (also called cut-off frequency) define the maxi-

mum spatial resolution that can be visualized in an image. The objects or details of

objects with a spatial frequency higher than fNyq are visualized in the form of arti-

facts superimposed on lower frequency objects, which is called aliasing. The aliasing

represents additional source of noise in the image that effects the signal-to-noise ra-

tio, hence the image detection process. The noise aliasing is calculated using a comb

function as:

SN7 (f) =
∞∑

m=−∞

SN6

(
f − m

d

)
(A.34)

The signal spectrum and MTF remain unchanged.

The 85 µm pixel pitch of the imager results in aliasing of the NPS at frequencies

above the Nyquist frequency, fNyq = 1
(2×d) = 5.88 ≈ 5.5 line pairs (lp)/mm.

As compared to indirect detectors, the direct detectors having the same pixel size

offer a much higher MTF even at high spatial frequencies2. However this also results

in a much stronger aliasing effect in the NPS. To eliminate aliasing, the MTF of the

136



ideal detector should be equal to zero beyond its fNyq, which is not possible. This

means that the practical detector with a high MTF should have highest possible

spatial resolution (e.g. smallest pixel size) to limit the aliasing and to detect the

smallest possible feature sizes.

A.3.2.10 Stage 8: Read noise

The imager electronics, consisting of back-plane array of TFTs, charge amplifiers

and ADCs, which are used to convert the electronic charge collected at the pixel

electrodes into the final digital number, contribute a spatially white noise component,

Ne (5200 e- rms for a-Si PPS) (Konstantinidis , 2011), to the NPS. So, the final NPS

is given by:

NPS(f) = SN7 (f) + Sr (A.35)

where,

Sr = N2
e × d2 (A.36)

The Ne value related to PPS imagers is an experimentally determined number

(Konstantinidis , 2011).

A.3.2.11 Final MTF, DQE and NNPS calculation (for PPS imagers):

Thus the final MTF, signal spectrum, NNPS and DQE used to characterize the

a-Se imager are calculated using the following equations (Siewerdsen et al., 1997):

MTF (f) = Ta (f)× Tpe (f)× Tr (f) (A.37)

ϕ = a2 × g1 × g3 × g4 × ϕ0 (A.38)
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NNPS (f) =
NPS (f)

ϕ2 (A.39)

DQE (f) =
MTF (f)2

ϕ0 ×NNPS(f)
(A.40)

The NNPS and DQE curves are simulated using equations 37 and 38 and analyzed

for DAK levels ranging from 3 – 53 µGy, which is considered appropriate from low

dose DBT applications (Zhao and Zhao, 2008). Higher DAK values (up to 160 µGy)

are also used, but only to validate the cascaded analysis model against experimental

data.

DQE is influenced by the noise generated by the detector and by its spatial res-

olution. Hence, its reflects degradation of the signa-to-noise ratio (SNR) occurring

between detector input and output.

A.3.2.12 Stage 8 Modifications needed for a-IGZO TFT APS modeling:

To simulate the performance of the a-Se imager in combination with the a-IGZO

TFT APS arrays back-plane, we modify the cascaded analysis model as shown in

Fig. A.3. Replacing the PPS back-plane with an APS does not affect any of stages

in the cascaded model (conversion gain, charge collection etc.) before Stage 8 (Read

Noise). Stage 8 (read noise) is the only stage in the cascaded model shown in fig. 2

which is associated with the PPS back-plane. For simulating an imager with an APS

back-plane, Stage 8 will be replaced by a signal amplification (Stage 8) and a post-

amplification electronic noise (Stage 9) step. Previously, we already had modelled the

noise performance of an a-IGZO TFT APS array that was integrated with a CsI:Tl

scintillator6. In this analysis, we will follow a similar approach to include the signal

amplification and electronic noise component originating from an a-IGZO TFT APS.

Thus, the final NPS and signal spectrum are calculated with the following equations:
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Figure A.3: Linear Cascaded Modelling of a-Se/a-IGZO TFT APS imager.
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NPS (f) = S8 (f) =
(
S7 (f) + σ2

pre−AMP ∗ d2
)
∗ g28 + σ2

post−AMP ∗ d2 (A.41)

ϕ = a2 × g1 × g3 × g4 × g8 × ϕ0 (A.42)

Where, σpre−AMP is the input referred pre-amplifying noise (609 e-), g9 is the

APS gain (69) and σpost−AMP is the output referred post-amplifying noise (137 e-)6.

These values for σpre−AMP , g9 and σpost−AMP have been calculated using the approach

described by Zhao et. al.6. σpre−AMP also includes the shot noise originating from

leakage current in a-Se given by6:

σd =

√
Jdark × a2 × tframe

q
(A.43)

where, Jdark is the leakage current, tframe is the frame time, a is the aperture

width and q is the electronic charge. Assuming Jdark = 1 pA/mm2, a = 80 µm and

tframe= 145 ms, σd = 76 e-. For the PPS imager, σd is a negligible as compared to

the electronic noise of 5200 e-.The total electronic noise of a-Se/ a-IGZO TFT APS

detector is 625 e-.

The NNPS and DQE for the a-Se a-IGZO TFT APS imager are calculated using

equations 37, 38, 39 and 40. The MTF remains the same for both the PPS and APS

back-planes.

A.3.3 Analysis of CsI:Tl indirect and a-Se direct x-ray imagers

Previously, there have been experimental studies to compare the performance of

the CsI:Tl indirect and a-Se direct detectors (Samei and Flynn, 2003b; Monnin et al.,

2007; Bisogni et al., 2005), which showed that while the a-Se x-ray imagers have better

MTF properties, a similar superiority in terms of DQE curves in comparison to CsI:Tl
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x-ray imagers have not been observed. However, these experimental studies include

not only the direct/indirect x-ray converting material (or detector) but also different

back-end and readout electronics. A major component of the measured NPS is the

additive electronic noise originating from the a-Si TFT PPS array that is being used

in the current back-plane technology.

An advantage of using cascaded analysis to compare direct and indirect imagers

is that we can predict their performance at various electronic noise originating from

a PPS back-plane and different DAK levels, without time consuming and expensive

experiments. To perform such an analysis, it is important to pick the right metric

to compare the two imager technologies. One such metric could be the DQE value

at the Nyquist frequency (DQE (fnyq)), which indicates the smallest feature size that

can be resolved. For a 85µm pixel pitch the Nyquist frequency is fNyq = 5.88lp/mm.

However, while DQE (fnyq) is an important metric, it does not include all the points

in the frequency spectrum. So it is important to define a metric that can incorporate

the advantages and disadvantages of both imager technologies for a given frequency

spectrum. Direct detectors boast a higher MTF as compared to indirect ones. But

at the same time direct detectors suffer from a higher aliasing noise as result of their

higher MTF. So if only one point in the frequency spectrum is used to compare the

two detector technologies, the results may be biased – the lower frequencies may favor

direct detector and vice-versa. So it is necessary to use a metric that spans the entire

frequency spectrum to have a complete understanding of the two detectors. Hence, in

this work we are introducing a new figure of merit (FOM) to facilitate such comparison

as:

FOM

(
1

mm3

)
=

γ2

β2
FOM

(A.44)
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β2
FOM =

fNyq∑
f=−fNyq

NPS (f)× df (A.45)

γ2 =

ϕ(k)×
fNyq∑

f=−fNyq

MTF (f)× df

2

(A.46)

where, df is the spatial frequency step size of 0.5 lp/mm.

In our previous work, we have described a novel indirect imager composed of a

CsI:Tl scintillator, organic photodiode (OPD) and a-IGZO TFT APS backplane6.

This indirect imager showed significant improvements as compared to the currently

used CsI:Tl/ a-Si photodiode/ a-Si TFT PPS imager. As compared to the a-Si

technology that achieved a maximum DQE (0) of ∼0.4, our proposed indirect imager

was able to attain up to DQE (0) of ∼ 0.8, for an exposure level at the detector surface

of about 1 mR (Zhao and Kanicki , 2014). One of the goals of this work is to compare

the previously proposed indirect CsI:Tl/ OPD/ a-IGZO TFT APS imager to the

novel a-Se/a-IGZO TFT APS direct imager described in this work. Since, the direct

imager is expected to simplify the x-ray imagers’ fabrication steps and could more

easily transition to flexible / conformable x-ray imaging technology, it is important

to evaluate its feasibility. The parameters used for the cascaded analysis model for

the indirect CsI:Tl/ OPD/ a-IGZO TFT APS imager are shown in Table A.2, while

those used for the direct imager analysis is provided in Table A.1.

Parameter Value Description
g1 0.55 Energy quantum efficiency
g2 580 Scintillator mean quantum gain
g4 0.44 FOP∗ optical coupling efficiency
g6 0.64 OPD EQE
FF 0.87 Fill factor

Table A.2: Parameters used in cascaded analysis of CsI : Tl/ OPD/ a-IGZO TFT
APS imager

The FOM be calculated for the CsI:Tl imager with a 85 µm pixel pitch, previously
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described by Zhao et al (Zhao and Kanicki , 2014; Zhao et al., 2015c).

A.4 Results

A.4.1 Imaging performance of 85 µm a-Se/a-Si TFT PPS imager

Using our a-Se cascaded systems model, we first characterized the performance of

the 85 µm a-Se/a-Si TFT PPS (Anrad SMAM) imager, which has been experimen-

tally evaluated by Konstantinidis Konstantinidis (2011). To validate our model, we

compared the simulated curves (using equation 35) for MTF, NNPS and DQE with

the measured data. Fig. 4 (a) illustrates the measured and simulated MTF curves up

to the Nyquist frequency, fNyq = 5.88 ≈ 5.5lp/mm. As expected, in Fig. 4 (b), the

Anrad SMAM detector exhibits superior resolution characteristics, well beyond fNyq

with a limiting frequency (at which the MTF drops to 0.1) of 10.5 lp/mm. The abso-

lute relative errors between the simulated and measured data (abs( (xsim−xmeas)
xmeas

)) were

calculated at spatial frequencies between 0.5 and 5.5 lp/mm. On average the relative

error between the measured and simulated MTF is 0.3%. The MTF decreases as spa-

tial frequencies in the image increase. This decrease is independent of the pixel size.

Fig. 4(b) also shows the various components that constitute the overall MTF: Tpe (f)

, Tr (f) and Ta (f) calculated using equations 9, 25 and 28 respectively. As shown in

the figure, Tpe (f) is almost always 1 for the entire range of spatial frequencies. This

means that it has very negligible influence on the overall MTF of the imager.
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Figure A.4: Measured (symbols) and simulated (solid line) MTF curves for 85 µm a-
Se/a-Si TFT PPS (Anrad SMAM) imager, obtained for a W/Al spectrum
at 28 kV.
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In fig. 5, the measured and simulated NNPS and DQE curves for the Anrad

SMAM detector forKa values ranging between 38 – 162 µGy are shown. It is observed

that the simulated results are in close agreement with the measured NNPS and DQE.

Similar to the analysis for the MTF curves, the absolute relative errors between the

simulated and measured data for DQE and NNPS for different exposure levels were

calculated at spatial frequencies between 0.5 and 5.5 lp/mm. On average the relative

errors between the measured and simulated NNPS and DQE are 4.4% and 3.1%

respectively. According to the IEC standard (IEC 62220-1-2 2007), the errors between

the measured and simulated DQE curves are within acceptable limits (10%). We

can observe that the NNPS does not change significantly with the spatial frequency.

But DQE decreases with the increase of spatial frequency. This decrease is mainly

associated with the decrease of MTF at higher frequencies, since the NNPS curves

does show much dependence on change in spatial frequency.

A.4.2 Study of FOM for a-Se direct and CsI:Tl indirect a-Si TFT PPS

x-ray imagers

Using equations 35-38, we calculated the DQE (fnyq) for both the passive pixel

sensor direct a-Se a-Si TFT PPS imagers for varying levels of electronic noise resulting

from a PPS backplane and DAK. Our results, plotted in fig. 6, show that for direct

a-Se imagers, at exposure levels higher than 100 µGy, the imager performance is

independent of the electronic noise originating the PPS backplane. This is because

as the DAK level increases, the number of incident x-ray photons increases and while

the absolute noise increases, the relative noise or NNPS reduces. In fact, beyond 10

µGy, DQE (fnyq) shows very little sensitivity to the electronic noise, indicating that

quantum noise is the dominant source of noise making the system quantum limited.

However, at lower exposures, the electronic noise originating from the PPS back-plane

is more dominant since the quantum noise is low and the DQE (fnyq) shows significant
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Figure A.5: Measured (symbols) and simulated (lines) NNPS (a) and DQE (b) curves
for a-Se/a-Si TFT PPS (Anrad SMAM) imager at 38.0 µGy, 54.2 µGy,
84.1 µGy, 108.6 µGy , 130.2 µGy and 162.1 µGy.

146



deterioration as expected when the noise is increased. So there is indeed potential,

in principle, to improve the DQE (fnyq = 5.5 lp/mm) by lowering the back-plane

electronic noise component.

Indeed, as shown in fig. 7, at low DAK levels (¡ 10 µGy), the direct imager displays

a better performance than the indirect one for realistically achievable noise levels (¿

1000 e-) using a PPS backplane. This is a result of the high resolution properties

(high MTF) and high gain of the direct a-Se imager. At the same time, the high

MTF of the a-Se imager results in high aliasing noise which can reduce the DQE.

This is observed at the low DAK levels for low electronic noise levels (¡ 400 e-) and

at higher DAK levels (∼ 100 µGy), where the indirect imager seems to be superior.

Additional details regarding Fig. 7 are provided in Appendix B. Hence, using DQE

(fnyq) as the metric for comparison, it is difficult to conclude if either the direct or

indirect imager is better than the other for a wide range of electronic noise and DAK

levels. This clearly establishes a need for a better metric to perform such comparison.

So, in this work, we introduced FOM as a new parameter to be used for comparison

of different x-ray imaging technologies. A higher FOM (1/mm3) would indicate a

better cumulative performance, taking into consideration all points in the frequency

spectrum.We are applying this FOM parameter to compare a-Se and CsI:Tl based x-

ray imagers evaluated in this work. In fig. 8, we have compared the FOM (1/mm3)

curves for the direct and indirect imagers at varying levels of electronic noise and

DAK. The linear cancaded model For all exposure levels between 0.001 and 100

µGy, the FOM (1/mm3) for the direct imager is consistantly higher (by at least 1.5

times) than that of the indirect imager. This can be due to higher MTF for direct

imagers as compared to indirect ones, which has a direct impact on F.O.M from

equation 42.

To appreciate the significance of the high electronic noise issue, it is important to

study the performance of x-ray imagers at lower DAK levels. Since the signal and
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Figure A.6: Calculated variation of DQE (fnyq) versus electronic noise for a-Se a-
Si TFT PPS direct x-ray imagers at various levels of electronic noise
originating from a PPS back-plane and exposure.

noise response in PPS imagers is linear with respect to DAK variations Samei and

Flynn (2003a) El-Mohri et al. (2007), we have used the linear cascaded systems model

to simulate DQE curves for the a-Se/a-Si TFT PPS imager at DAK levels ranging

from 1 to 25 µGy, which are plotted in fig. 9(a). The equations and noise levels used

to obtain these plots are described in equations 34-38. From this plot, we can see

that as the exposure level is reduced, the DQE decreases. For exposures below 10

µGy the DQE drops very rapidly since the noise is dominated by the PPS back-plane

array electronics. For the higher exposure range the behavior is closer to be quantum

limited. To ensure a quantum limited behavior even for low exposures, we propose

a combination of the a-Se detector with the low noise (625 e-) a-IGZO TFT APS

back-plane array.
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Figure A.7: Comparison of DQE (fnyq=5.5 lp/mm) from direct and indirect a-Si
TFT PPS imagers at different DAK levels.

A.4.3 Study of the proposed novel x-ray imager based on a-Se detector

with a-IGZO TFT APS for back-plane array

To improve the noise performance of the a-Se/ a-Si TFT PPS imager, we propose

to combine the a-Se detector layer, with a low noise a-IGZO TFT APS array. The

DQE of the proposed imager is calculated using equations 37, 42 and 43. As shown in
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Figure A.8: Comparison of calculated FOM from direct and indirect a-Si TFT PPS
detectors at different DAK levels.

fig. 9, even at the lowest exposure level of 1 µGy, the a-IGZO TFT APS back-plane

array, has a higher DQE (DQE(0) increases by 0.48) as compared to the a-Si TFT

PPS DQE. An improvement in a-IGZO TFT APS imager performance compared

to the a-Si PPS imager can be seen by looking at the FOM values. Higher FOM

values (up to 50%), at lower exposures (¡ 2 µGy) is clearly seen in fig. 10(b). To

facilitate better comparisons between the indirect and direct imagers, we have plotted

the DQE curves for the two imagers, at different locations in the frequency spectrum

and exposure levels, as shown in the Fig. 10 (a). These curves were calculated using

equations 38-40 and parameters in table 1 (direct a-Se imager) and table 2 (indirect

CsI:Tl imager). From this figure, we can see that the direct imager has a higher

DQE at lower frequencies, especially at higher exposures (¿ 3 µGy). The DQE at

0 lp/mm is regulated by x-ray absorption gain (Stage 1 or g1), which is higher for

the direct a-Se imager. This forces the DQE(0) for the indirect CsI:Tl imager to
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Figure A.9: (a) Calculated variation in DQE for a-Se/a-Si TFT PPS imager with
decrease in exposure level and (b) DQE versus spatial frequency at 1
µGy, for a low noise a-IGZO TFT APS (625 e) and a-Si TFT PPS back-
planes.

saturate faster as the DAK levels are increased. Perhaps if the x-ray spectrum is

changed to maximize the x-ray absorption gain in the indirect CsI:Tl scintillator,

then DQE(0) can increase beyond its current value (∼ 0.47). However for higher

spatial frequencies, closer to the Nyquist frequency of 5.88 lp/mm, the indirect APS
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imager shows a better performance for DAK levels higher than 30 µGy. This is

mainly due to strong aliasing in the direct a-Se imager, which increases the apparent

noise and thus reduces the DQE. Additional details are provided in Appendix B. It

should be noticed that theFOM metric is dependent on the MTF of the imager and

takes into account the variation in the MTF curve at every point in the frequency

spectrum. Since the MTF of the a-Se imager is higher than that of the CsI:Tl indirect

imager, the overall FOM for the direct PPS imager is slightly higher than that of

the indirect APS imager. Independent of the exposure level, the a-Se/a-IGZO TFT

imager always has a higher FOM values as compared to the indirect CsI:Tl/a-IGZO

TFT imager, shown in fig. 10(b). For low dose DBT applications, DAK levels ranging

from 3 – 53 µGy are considered appropriate for obtaining each projection view (Zhao

and Zhao, 2008). For better visualization, we have zoomed in to this exposure range

in Fig. 10 (b) (inset). As shown in the figure, a-Se/a-IGZO TFT imager has the

best performance in terms of FOM (it is higher by ∼10 times that the a-Se/ a-Si

TFT PPS imager). In fact the a-Se/ a-Si TFT PPS imager also exhibits a better

performance than the CsI:Tl/a-IGZO TFT imager. This is perhaps because FOM

metric is dependent on the MTF of the imager, which is higher for the a-Se direct

imager. This is mainly because for the direct imager, there is very little or almost no

blurring from the photoelectric effect (fig. 4b), but the lateral scattering of optical

photons in the CsI:Tl scintillator results in significant degradation of the indirect

detector’s MTF (Zhao et al., 2015b). The obtained results support the idea that the

proposed a-Se/a-IGZO TFT APS imager is a promising candidate for low dose x-ray

medical imaging applications like DBT.

A.5 Discussion

In this study, we developed a linear cascaded systems model to characterize direct

a-Se x-ray imagers. We found that our simulated results were within the 10% range of
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Figure A.10: (a) Comparison of DQE at various frequency positions such as 0 (f0), 3
(fnyq/2) and 5.5 (fnyq) lp/ mm for a range of exposure levels (10-3 – 103

µGy) and (b) Comparison of FOM (1/mm3) for a-Se/a-Si TFT PPS,
a-Se and CsI:Tl TFT APS imagers with increasing exposure levels.

the data measured for the 85 µm a-Se/a-Si TFT PPS (Anrad SMAM) imager. For the

NNPS and DQE data, the relative errors varied between 1.8% – 6.6% and 1.6%-6.6%
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respectively. In general, it was observed that the relative errors in DQE was higher for

lower exposure levels (38.0 µGy). We believe that the origin of the higher errors at the

lower DAK levels, is the 5% mismatch in the measured and simulated values of mean

x-ray photon fluence per unit DAK (6950 and 6552 photons/mm2/µGy respectively).

This deviation in the measured and simulated values of mean x-ray photon fluence

per unit DAK becomes more prominent as the DAK levels are reduced, leading to

the higher relative errors. It is also important to note that while our model may

be a reasonable estimate of the physical imager, it is a linear model, which does

not account for any non-linearity in the imaging process. However, even for non-

linear systems, our model can be used to predict their behavior in response to small

amplitude signals (or lower DAK levels) Cunningham (2000).

We used the cascaded systems model, quantified against experimental data, to

study and compare the performance of direct (a-Se) and indirect (CsI:Tl) x-ray im-

agers at various electronic noise and DAK levels. In the previous studies Samei and

Flynn (2003a), where physical direct and indirect imagers were compared using mea-

sured data, the additive electronic noise was unknown (or not reported) and different

for the two imagers Samei and Flynn (2003a). Hence, it was difficult to draw a clear

conclusion regarding their relative performance, as the measured data included the

effect of the back-plane and/ or readout electronics. This problem was addressed

through our simulations, by setting the same range of additive electronic noise (50 -

2000 e-) for both x-ray imagers. When only the performance at the Nyquist frequency

is considered, fig. 7 shows that the direct imager performs better than the indirect

one in the following two scenarios: (a) low exposures (¡10 µGy) and (b) high expo-

sures (¿ 100µGy) and high electronic noise (¿ 1000 e-). So, it is difficult to conclude

whether one imager is better than the other using DQE (fnyq) as the comparison met-

ric. It was also observed that this trend was not replicated throughout the frequency

spectrum, especially at lower frequencies. In fact, when the contribution from the
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entire frequency spectrum is considered (through FOM), fig. 10 shows that the direct

imager consistently performs better than the indirect one for a wide range of additive

electronic noise as well as DAK levels. It is possible that a lower DQE of a-Se imagers

at higher frequencies is due to a high aliasing noise observed in a-Se imagers, which

results in higher NNPS curves especially at higher frequencies Ji et al. (1998).

From fig. 8, we can see that by reducing the electronic noise (¡1000 e-), the direct

detector has the potential to perform much better especially at lower DAK levels.

However, as it is difficult to achieve such low electronic noise levels with a a-Si TFT

PPS back-plane, we introduced, for the first time, a low noise a-Se / a-IGZO TFT

APS -imager. As shown in fig. 10 (b), the proposed imager can significantly improve

the DQE at low DAK levels. This can consequently reduce the breast entrance dose

levels, which becomes important for imaging applications such as DBT and computed

tomography (CT) where multiple projection views are required. For the higher DAK

levels, all the imagers exhibit their quantum limited behavior.

A.6 Conclusions and Future Work

In this study, the imaging performance of a-Se x-ray imagers have been analyzed

through cascaded analysis. It has been shown that reducing back-plane electronic

noise is critical factor to achieve improved imager performance. As a possible solution,

a novel low-noise a-Se / a-IGZO TFT APS imager has been proposed and described,

as the next generation x-ray imaging technology. The proposed novel imager, that

can also be based on a-ITZO TFT APS technology, has the potential to significantly

improve the DQE, making it an ideal candidate for low dose applications such DBT

and CT. In the future, it is necessary to fabricate a small prototype based on the

proposed x-ray imaging technology to demonstrate the feasibility and practicality of

the proposed idea.
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