
The Application of Infrared Spectral Radiances and Fluxes for Arctic Climate 

Monitoring and Cloud Phase Determination from Space 
 

by  

 

 

Colten A. Peterson 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Atmospheric, Oceanic, and Space Sciences) 

in The University of Michigan 

2022 

 

 

 

 

 

Doctoral Committee: 

Professor Xianglei Huang, Chair 

Professor Valeriy Ivanov 

Assistant Professor Cheng Li 

Professor Christopher Ruf 

 

 

 

  



Colten A. Peterson 

coltenp@umich.edu 

ORCID iD: 0000-0003-4904-9959 

© Colten A. Peterson 2022 

 

 

 

 

 

 

 

 

 

 

 

 



 

ii 

 

      Dedication 

To the friends that became family and my house jaguars, Cairo and Calypso. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

Acknowledgements 

Arriving at this point in my career could not have been possible without the support and 

guidance of many people. Throughout graduate school, my advisor Professor Xianglei Huang has 

provided me with unwavering support and guidance. He provided me with so much flexibility in 

developing my research projects, which allowed me to follow my passions and actively prepare 

for my future career. At the beginning of graduate school, I told Prof. Huang that I would like to 

pursue a career within the NASA Earth Science Division; he did everything in his power to help 

me actualize that goal. With his support and advocacy, I was able to present at NASA meetings 

and participate in summer NASA internships. These experiences opened many doors for me and 

were instrumental to my development as a researcher. Graduate school has been a very challenging 

experience, but Prof. Huang helped me develop the skills and strength to overcome those 

challenges. I could not have asked for a better advisor. 

I would also like to acknowledge the numerous other individuals that have helped me on 

my graduate school journey. Firstly, I would like to thank the current and former members of my 

research group: Dr. Xiuhong Chen, Dr. Yi-Hsuan Chen, Chongxing Fan, and Yan Xie. I would 

also like to acknowledge the support and research mentorship from Dr. Qing Yue, who was my 

mentor at NASA JPL. I am also very grateful to Prof. Tristan L’Ecuyer for welcoming me to 

participate in the PREFIRE mission and supporting me in my career pursuits. There are many 

others that I cannot list, but I am truly grateful for everyone who has helped me along the way. 

 



 

iv 

 

During graduate school, I have faced numerous challenges in my personal life, including 

five heart surgeries. I am fortunate that I did not have to face everything alone, as I had the strong 

support of friends that I met in graduate school. I would like to acknowledge Alex Rainville, Alan 

Gorchov Negron, and Zach Butterfield. They became my closest family, and I am so lucky to have 

them in my life. Lastly, I would like to acknowledge my two cats that I adopted during graduate 

school, Cairo and Calypso, as they have immeasurably enriched my life and are irreplaceable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

Table of Contents 

Dedication ...................................................................................................................................... ii 

Acknowledgements ...................................................................................................................... iii 

List of Figures ............................................................................................................................. viii 

Abstract ........................................................................................................................................ xv 

Chapter 1 Introduction................................................................................................................. 1 

1.1 The Changing Arctic ............................................................................................................. 1 

1.2 Importance of Radiation in Arctic Climate ........................................................................... 3 
1.3 Cloud-Radiation Interactions and the Role of Cloud Phase in the Arctic ............................. 8 
1.4 Satellite Remote Sensing of Arctic Clouds: Methods and Challenges ............................... 10 

1.5 The Far-IR Observation Gap ............................................................................................... 13 
1.6 Connections and Relevance of Main Chapters ................................................................... 14 

References ................................................................................................................................. 17 

Chapter 2 The Spectral Dimension of Arctic Outgoing Longwave Radiation and 

Greenhouse Efficiency Trends from 2003-2016 ....................................................................... 22 

2.1 Introduction ......................................................................................................................... 22 

2.2 Data and Methods................................................................................................................ 25 
2.2.1 AIRS Observation and Measurement ........................................................................... 25 

2.2.2 The Spectral Longwave Flux Derived from Collocated AIRS and CERES 

Observations .......................................................................................................................... 26 

2.2.3 AIRS Version 6 Retrievals ........................................................................................... 27 

2.2.4 PCRTM Simulation ...................................................................................................... 27 

2.2.5 Selection of Months ...................................................................................................... 29 

2.2.6 Spectral GHE Calculation and Linear Trend Analyses ................................................ 31 

2.3 Results ................................................................................................................................. 31 

2.3.1 Comparisons with Broadband OLR Anomalies and Trends ........................................ 31 

2.3.2 Atmospheric Temperature, Humidity, and Surface Temperature Trends .................... 33 

2.3.3 Spectral OLR Trends .................................................................................................... 35 

2.3.4 Spectral GHE trends ..................................................................................................... 37 

2.3.5 Sensitivity Studies for the Spectral OLR and GHE Trends .......................................... 39 

2.4. Discussion and Conclusion ................................................................................................ 43 
References: ................................................................................................................................ 45 

Chapter 3 Evaluation of AIRS Cloud Phase Classification over the Arctic Ocean Against 

Combined CloudSat-CALIPSO Observations ......................................................................... 51 



 

vi 

 

3.1 Introduction ......................................................................................................................... 51 
3.2. Data and Methods............................................................................................................... 57 

3.2.1 AIRS and its Level 2 Cloud Phase Algorithm .............................................................. 57 

3.2.2 Combined CloudSat-CALIPSO Cloud Retrievals ........................................................ 58 

3.2.3 ERA-5 Total Column Water Vapor and Atmospheric Temperature ............................ 59 

3.2.4 MODIS Cloud Property Retrievals............................................................................... 59 

3.2.5 AIRS, CCL, and MODIS Collocation Strategy ............................................................ 59 

3.2.6 Cloud Amount and Layering Considerations for AIRS Cloud Phase Evaluations ...... 61 

3.3. Results and Discussion ....................................................................................................... 64 
3.3.1 Overview of Arctic Cloud Phase Occurrence using Collocated AIRS and CCL FOVs

 ............................................................................................................................................... 64 

3.3.2 AIRS Arctic Cloud Phase Evaluations ......................................................................... 66 

3.3.3 Climatological Perspectives of AIRS and CCL Arctic Cloud Phase Comparisons ..... 72 

3.4. MODIS-AIRS-CCL Case Study ........................................................................................ 79 
3.5. Conclusion .......................................................................................................................... 82 

References ................................................................................................................................. 85 

Chapter 4 Synergistic use of Far- and Mid-Infrared Spectral Radiances for Satellite-based 

Detection of Polar Ice Clouds over Ocean ................................................................................ 89 

4.1. Introduction ........................................................................................................................ 89 
4.2. Reanalysis Data and Radiative Transfer Modeling ............................................................ 93 

4.2.1 ERA5 Reanalysis Data ................................................................................................. 93 

4.2.2 Simulations of Spectral Radiance ................................................................................. 95 

4.3. Theoretical Basis for Far-IR Ice Phase Determination ...................................................... 98 

4.3.1 Comparison of Far-IR and Mid-IR Ice Cloud Optical Properties ................................ 99 

4.3.2 Role of Absorption, Scattering, and Thermal Emission in Far-IR Ice Phase 

Determination ...................................................................................................................... 100 

4.3.3 Contribution of Water Vapor Absorption and Emission to the Far-IR BTDs ............ 105 

4.3.4 Establishing the BTD449-521 Thresholds for Ice Cloud Detection ............................... 106 

4.4. A Comparison of the Far-IR and Mid-IR Ice Cloud Determination Skill ....................... 108 
4.4.1 Selection of the Mid-IR BTD Test ............................................................................. 108 

4.4.2 Influence of Ice Particle Size on the Performance of Far-IR and Mid-IR BTDs ....... 109 

4.3 Influence of CTP and COD on the Performance of Far-IR and Mid-IR BTD Tests ........ 111 
4.4 Impact of Measurement Uncertainty on the Far-IR and Mid-IR BTDs ............................ 113 
4.5. Summary and Conclusion ................................................................................................ 114 
References ............................................................................................................................... 119 

Appendix ................................................................................................................................. 123 

Chapter 5 Sensitivity of Infrared Brightness Temperature to Precipitating Ice Layer of 

Liquid-Topped Mixed Phase Clouds ....................................................................................... 130 

5.1 Introduction ....................................................................................................................... 130 
5.2 Data and Methods.............................................................................................................. 133 

5.2.1 ERA5 Reanalysis Data and Scene Types ................................................................... 133 

5.2.2 Radiative Transfer Simulations of LTMs for the ERA5 Scenes ................................ 135 

5.3 Results ............................................................................................................................... 136 



 

vii 

 

5.3.1 Analytical Model of 𝐝(𝑹𝑻𝑶𝑨, 𝒗)𝐝(𝐈𝐖𝐏) for an Idealized SMC ............................. 136 

5.3.2 Influence of Cloud Properties and ERA5 Scene Types on 𝒅(𝑩𝑻𝟏𝟏)𝒅(𝑰𝑾𝑷) ......... 139 

5.4 Case Study for Detecting LTMice with the Far-IR BTD Ice Test...................................... 143 

5.5 Summary and Discussion .................................................................................................. 145 
References ............................................................................................................................... 148 

Chapter 6 Summary and Future Outlook .............................................................................. 150 

6.1 Background Overview....................................................................................................... 150 
6.2 Chapter Summaries ........................................................................................................... 152 

6.2.1 Chapter 2 Summary .................................................................................................... 152 

6.2.2 Chapter 3 Summary .................................................................................................... 153 

6.2.3 Chapter 4 Summary .................................................................................................... 155 

6.2.4 Chapter 5 Summary .................................................................................................... 156 

6.3 Future Outlook .................................................................................................................. 158 

References ............................................................................................................................... 161 

 

 

 

 

 

 

 

 

 



 

viii 

 

List of Figures 

Figure 1.1. (a) Annually averaged temperature change over the period of 1960 to 2021. Data was 

obtained from NASA GISS (data.giss.nasa.gov). (b) Average Arctic September sea ice extent for 

the period 1978-2021 from the National Snow and Ice Data Center (nsicd.org). The blue line 

represents the linear least squares regression trend………………………………………………2  

  

Figure 1.2. A schematic of some important radiative and non-radiative processes and feedbacks 

in the polar regions. Yellow and red indicate solar radiation and infrared radiative exchanges, 

respectively. The positive and negative signs represent the sign of the feedback. Gray lines 

represented simplified vertical temperature profiles. Adapted from Figure 1 in Goosse et al. 

(2018).…………………………………………………………………………………………….4 

    

Figure 1.3. (left column) The interdecadal trend of surface-air-temperature (SAT) obtained by 

linear regression of winter (DJF) averaged SAT at each grid point (right column) trend derived 

from regression of SAT onto the downwelling IR flux (d(SAT)/d(𝐼𝑅 ↓); where the downwelling 

IR flux is 𝐼𝑅 ↓) and multiplied by the interdecadal trend in the downwelling IR flux at each grid 

point. Units are in kelvin per winter season. The stippling indicates values that are significant at 

the p <0.05 level for the Student’s t test. Adapted from Figure 2 in Gong et al. (2017)…………..7 

Figure 1.4. Probability density functions of hourly Arctic Ocean net (down minus up) surface 

longwave radiation by season in two climate models (LMDZ5B) [Hourdin et al., 2012], CAM5 

[Neale et al., 2010], and SHEBA observations [Persson et al., 2002]: (a) Fall (SON), (b) Winter 

(DJF), (c) Spring (MAM), and (d) Summer (JJA). Climate model SHEBA points based on averages 

over 70–80 N and 190–240 E, while SHEBA observations are taken along a single ship track. 

LMDZ5B model data are 3-hour averages, while SHEBA observations and CAM5 model data are 

1-hour averages. Adapted from Cesana et al. (2012)……………………………………………...9 

 

Figure 1.5. Imaginary component of refractive index for liquid and ice water from 4 to 50 µm…12 

 

Figure 2.1. Percent of area within each 2o latitudinal zone that has no single clear-sky FOV from 

the collocated AIRS and CERES observations. The results are shown for each calendar month…30 

 

Figure 2.2. (a) Broadband all-sky OLR anomalies averaged over 60◦N - 85◦N for March. The 

CERES Edition 4 result is shown as a red solid line and the result based on the spectral fluxes used 

in this study as a black dashed line. The CERES OLR linear trend is shown with a 95% confidence 

interval. (b) Same as (a) except for July. (c) Same as (b) except for September. (d)-(f) Same as (a)-

(c), respectively, but for clear-sky OLR anomalies. (g) Zonal-mean trends of March broadband 

clear-sky OLR in the Arctic. The red and black shading represents 95% confidence intervals for 



 

ix 

 

the CERES SSF result (red solid line) and the spectral flux product used in this study (black dashed 

line), respectively. (h) same as (g) except for July. (i) same as (g) except for September.………...32 

Figure 2.3. (a)-(c) Zonal-mean trends of qH2O from AIRS L3 retrievals for March, July, and 

September, respectively. The markers indicate statistically significant results (α=0.05). (d)-(f) 

Same as (a)-(c) except for trends of Tatm. (g)-(i) Same as (a)-(c) except for trends of Ts. Solid lines 

are based on AIRS L3 retrievals and dashed lines on ECMWF ERA-Interim reanalysis. Solid 

circles indicate significant trends in (g)-(i)……………………………………………………….33 

Figure 2.4. (a) Observed zonal-mean trends of March all-sky spectral OLR as a function of latitude 

in the Arctic region. Stippling indicates statistically significant trends (α =0.05). Trends are derived 

using data from 2003 to 2016. (b) Same as (a) except for observed clear-sky spectral OLR trends. 

(c) Same as (a) except for simulated clear-sky spectral OLR trends using AIRS L3 retrievals as 

input to the PCRTM. (d) Zonal-mean trends of observed all-sky (red), observed clear-sky (black), 

and simulated clear-sky broadband OLR trends (blue). The corresponding color shading indicates 

95% confidence intervals for the trends. (e-h) Same as (a-d) except for July. (i-l) Same as (a-d) 

except for September……………………………………………………………………………..36 

Figure 2.5. (a) Observed zonal-mean trends of March all-sky spectral GHE in the Arctic region. 

Stippling indicates statistically significant trends (α =0.05). Trends are derived using data from 

2003 to 2016. (b) Same as (a) except for observed clear-sky spectral GHE trends. (c) Same as (a) 

except for simulated clear-sky spectral GHE trends. (d-f) Same as (a-c) except for July. (g-i) Same 

as (a-c) except for September. ……………………………………………………………………38  

Figure 2.6. (a) The simulated spectral OLR trends in March when only qH2O changes with time. 

Stippling indicates statistically significant trends (α =0.05). (b) Same as (a) but for changing Tatm 

only. (c) Same as (a) but for changing Ts only. (d)-(f) Same as (a)-(c) but for the simulated spectral 

GHE trends.……………………………………………………………………………………...40  

Figure 2.7. Same as Figure 2.6 except for July.……………………………………… ………...42 

Figure 2.8. Same as Figure 2.7 except for September.………………………………………….43   

Figure 3.1. (A) Vertical profile of individual cloud layers detected by CCL along an AIRS-CCL 

collocated ground track on January 4, 2007 from (76.26◦N, 106.51◦E) to (76.69◦N, 1.6◦W). The 

horizontal colored bar at 11 km represents AIRS phase decisions for AIRS FOVs overlapping with 

groups of CCL FOVs. (B) Same as for (A) except for July 14, 2007 from (80.8◦N, 60.62◦E) to 

(63.85◦N, 12.1◦E)...………………………………………………………………………………60  

Figure 3.2. Relative frequency of occurrence of overcast CCL FOV groups with a given layering 

number for sea ice and open ocean. For the layers to be counted, ≥90% of CCL FOVs must detect 

cloud and must all have the same number of layers. The normalization is with respect to all FOV 

groups over each surface type, respectively. The counts represent the number of CCL FOV groups 

included for each surface type, respectively.…………………………………………………….62  

Figure 3.3. (A) Counts of AIRS FOVs over sea ice and open ocean separated based on AIRS 

effective cloud fraction (ECF). (B) Counts of CCL FOV groups collocated within AIRS FOVs 

over sea ice and open ocean for four CCL cloud amount categories. CCL clear-sky is defined as 



 

x 

 

≥90% of the CCL FOVs with no cloud layer. CCL partly cloudy is defined as between 10% and 

90% of CCL FOVs with clouds detected. Single layer (SL) overcast is for ≥90% of CCL FOVs 

detected as single-layer clouds and multilayer (ML) overcast is for ≥90% of CCL FOVs with 

clouds detected with at least one FOV having more than one layer of cloud. (C) Same as (A) except 

that only AIRS FOVs corresponding to CCL FOV clear-sky groups are included. (D) Same as (C) 

expect for the CCL FOV group being SL overcast.……………………………………………....63   

Figure 3.4. (A) Frequency of occurrence of AIRS phase decisions over open ocean and sea ice for 

only those AIRS FOVs that coincide with a single-layer-overcast homogenous or heterogeneous 

phase CCL FOV groups. The counts represent the number of AIR FOVs included in the analysis 

for each surface type, respectively and the normalization is with respect to these counts. (B) 

Frequency of occurrence of homogenous and heterogeneous phase groupings of single-layer-

overcast CCL FOV groups collocated with AIRS. Ice, liquid and mixed-phase groups represent 

CCL homogenous-phase groups, while the ice+liquid, ice+mixed, and liquid+mixed are for the 

CCL heterogenous-phase groups. The counts represent the number of CCL FOV groups included 

in the analysis for each surface type, respectively. The normalization is with respect to these 

counts. Numerical percentages for each surface type replace bars when the bars are not 

visible.……………………………………………………………………………………………65 

Figure 3.5. Frequencies of occurrence of AIRS phase classifications for AIRS FOVs 

corresponding to single-layer-overcast groups of CCL FOVs with a homogenous (A-C) or 

heterogenous (D-F) phase type. The counts represent the number of AIRS FOVs included in the 

analysis for each surface type, respectively. Normalization is with respect to these counts……..67 

Figure 3.6. (A) Frequency of occurrence of two-layer-overcast CCL phase groups over open ocean 

and sea ice. The counts represent the number of CCL groups included in the analysis for each 

surface type, respectively. Normalization is with respect to these counts. (A) Frequency of 

occurrence AIRS phase decisions for two-layer-overcast CCL ice-phase-over-liquid-phase for 

open ocean and sea ice. The counts represent the number of AIRS FOVs included in the analysis 

for each surface type, respectively. (C) Same as (B) expect for CCL ice-phase-over-mixed-phase. 

Numerical percentages for each surface type replace bars when the bars are not visible………..70 

Figure 3.7. (A-C) Frequency of occurrence of individual mixed-phase, ice, or liquid CCL layers 

that are binned based on the overlying AIRS phase classification over open ocean and sea ice. 

Each individual CCL layer within a single CCL FOV is counted here separately and there are 39 

altitude bins from 0-10 km. The percentages represent the vertical sums of each phase type 

frequency for each panel, respectively. The normalization is with respect to the total number of 

cloud layers detected by CCL that occur within an AIRS phase category over each surface type, 

respectively………………………………………………………………………………………71 

Figure 3.8. (A-D) Frequency of occurrence of CCL phase using all CCL detected cloud layers 

(solid lines) and AIRS cloud phase (dashed lines) for 5° latitudinal bands (except for 80-83°N) for 

winter, spring, summer, and fall, respectively. All surface types are included. The frequencies are 

relative to the total FOV count in each latitudinal band for each instrument for each season, 

respectively. (E-H) Frequency of occurrence of individual mixed-phase, ice, or liquid CCL layers 

over all surface types during winter, spring, summer, and fall, respectively. Each individual CCL 



 

xi 

 

layer within a single CCL FOV is counted here separately and there are 39 altitude bins from 0-10 

km. The normalization is with respect to the total number of cloud layers detected by CCL during 

a season.…………………………………………………………………………………………73  

Figure 3.9. (A) Frequency of occurrence of CCL cloud phase using all CCL detected cloud layers 

over open ocean for intervals of TCWV. The dotted black line represents the percentage of cloudy 

CCL FOVs that fall within a TCWV interval. Normalization is with respect to all CCL FOVs with 

a cloud phase assigned in a given TCWV interval. (B) Same as (A) expect for sea ice. (C) 

Frequency of occurrence of AIRS cloud phase over open ocean for intervals of TCWV. The dotted 

black line represents the percentage of cloudy AIRS FOVs that fall within a TCWV interval. 

Normalization is with respect to all AIRS FOVs with a cloud phase assigned in a given TCWV 

interval.  (D) Same as (C) expect for sea ice.……………………………………………………..76  

Figure 3.10. (A) Frequency of occurrence of CCL cloud phase using all CCL detected cloud layers 

over open ocean for intervals of the temperature difference between 1000 and 300 hPa (ΔT1000-

300). The dotted black line represents the percentage of cloudy CCL FOVs that fall within a ΔT1000-

300 interval. Normalization is with respect to all CCL FOVs with a cloud phase assigned in a given 

ΔT1000-300 interval. (B) Same as (A) expect for sea ice. (C) Frequency of occurrence of AIRS cloud 

phase over open ocean for intervals of ΔT1000-300. The dotted black line represents the percentage 

of cloudy AIRS FOVs that fall within a ΔT1000-300 interval. Normalization is with respect to all 

AIRS FOVs with a cloud phase assigned in a given ΔT1000-300 interval. (D) Same as (C) expect for 

sea ice..……………………………………….…………………………………………………78   

Figure 3.11. All panels are for July 2009 over open ocean and sea ice and each column is for AIRS 

FOVs that contain single-layer-overcast homogenous ice, liquid or mixed-phase CCL FOV groups, 

respectively: (A-C) Frequency of occurrence of AIRS phase decisions for all AIRS FOVs 

collocated with CCL and MODIS and for which the MODIS cloud fraction (CF) within the AIRS 

FOV is >90%. The counts represent the number of AIRS FOVs included for the “All FOVs” and 

“>90% MODIS CF” categories. The normalization is with respect to these counts. (D) Average 

MODIS cloud phase fraction (the number the MODIS pixels of a given phase divided by all 

MODIS pixels that are assigned a phase in the AIRS FOV and then averaged across all respective 

AIRS FOVs) for 3 intervals of MODIS CF. (E-F) Same as D except for >90% MODIS CF only. 

(G-I) Frequency of occurrence of MODIS CF in three intervals. The normalization here is with 

respect to the number of all AIRS FOVs included in the analysis (count numbers in black, top 

row).……………………………………….……………………………………………………..80 

Figure 4.1. Bulk ice cloud and liquid cloud optical properties (COPs): (a) Extinction efficiency, 

(b) absorption efficiency, (c) scattering efficiency, (d) single scattering albedo, (e) scattering 

asymmetry parameter. Colors as labeled above the plots indicate one liquid droplet diameter and 

four ice effective diameters. Vertical dotted and dashed lines bracket the far-IR dirty window 

region and mid-IR window, respectively. .………………………………………………………96  

Figure 4.2. Visible cloud optical depth (COD) and cloud-top-pressure (CTP) histograms for the 

2102 ice cloud cases using all four Deff_ice and 3860 liquid cloud cases with one droplet size. The 

data includes both the training and testing datasets..…………………………………………….98  



 

xii 

 

Figure 4.3. Brightness temperature (BT) difference (BTD; 449 cm-1 BT minus 521 cm-1 BT) for a 

single-layer cloud. The ice cloud tops are at 500 hPa (blue solid lines) or 700 hPa (pink dashed 

lines) and the liquid cloud top is 775 hPa (solid red line). All ice clouds are 50 hPa thick and the 

liquid cloud is 25 hPa thick. Results are shown for ice clouds with 100 µm, 60 µm and 20 µm 

Deff_ice. A set of typical Arctic winter temperature and humidity profiles from the ERA5 reanalysis 

is used for all calculations..………………………………………………………………….….101  

Figure 4.4. (a) BTD at 449 cm-1 minus 521 cm-1 for a single-layer ice cloud topping at 300 hPa 

and Deff_ice = 20 µm (black line) or 60 µm (red line). The cloud thickness is 50 hPa. (b) BT at 

449 cm-1 (solid lines) for the same cloud as in (a) with Deff_ice = 20 µm and varying optical depth 

as labeled. SSA at 449 cm-1 varies while Qext_ice remains constant. For comparison, the actual 

BT at 521 cm-1 as in (a) is shown as a horizontal dashed line. The vertical dotted line indicates the 

actual SSA for 449 cm-1 as used in (a). (c) Same as (b) but for Deff_ice = 60 µm. The temperature 

and humidity profiles are the same as used in Figure 4.3………………………………………102 

Figure 4.5. (a) The clear-sky optical depth for the far-IR dirty window region. The temperature 

and humidity profiles are the same as in Figure 3. The TCWV of this profile is 3 mm. Red vertical 

lines correspond to three wavenumbers, 449 cm-1, 513 cm-1, and 521 cm-1. (b) BTDs as a function 

of total column water vapor for 500 clear sky profiles from ERA5 data over the polar regions 

(60°N-90°N and 60°S-90°S) for January and July 2005. ………………………………………105 

Figure 4.6. (a) BTDs at 449 cm-1 minus 521 cm-1 from the training dataset. Solid filled circles are 

for different Deff_ice and pink diamonds are for the same profiles with clouds removed. Horizontal 

dashed lines represent the thresholds defined in the BTD449-521 test. (b) Same as in (a) but only for 

the liquid cloud training profiles (black dots) and the same profiles with clouds removed (pink 

diamonds). (c) Similar to (b) but for the same polar clear sky profiles used in Figure 4.5. (d-f) same 

as (a-c) but for the BTD1231-960 test………………………………………………………………107 

Figure 4.7. (a) True postive rates for ice-phase determination when the BTD tests are applied to 

the testing dataset. (b) Percentage of ice cloud cases misclassified by one BTD test but classified 

correctly by the other BTD test. Numbers above bars represent the actual number of cases 

misclassified by a given BTD test. The far-IR and mid-IR tests refer to BTD449-521 and BTD1231-

960, respectively…………………………………………………………………………………109 

Figure 4.8. (a) True positive rates of far-IR BTD test applied to the testing dataset with COD < 

3.6. The results are shown for each CTP group and each Deff_ice. (b) same as (a) except for the mid-

IR test. (c) Difference, (a) minus (b). (d)-(f) Same as (a)-(c), respectively, but for COD ≥ 3.6. The 

gray numbers in (b) and (e) represent the total number of samples in the testing dataset falling into 

each CTP bin. The black number in (f) indicates the true positive rate difference for that bin. The 

far-IR and mid-IR tests refer to BTD449-521 and BTD1231-960, respectively………………………112 

Figure 4.9. A proposed cloud phase determination decision tree that incorporates far-IR and mid-

IR tests. Note that this study only investigates ice phase determination…………………………118 

Figure 4.A1. Sketch of the two-stream approximation for the multiple scattering problem 

discussed here. Only a cloud is considered here and no gaseous absorptions. The extinction optical 

depth of the cloud is t. The blackbody emissions at cloud upper and lower boundaries are B(0) and 

B(t), respectively. All radiances are normalized with respect to the upwelling radiance entering the 

lower boundary. .……………………………………… .……………………………………...127   



 

xiii 

 

Figure 4.A2. Upper panel: k as a function of w, different color lines correspond to different values 

of g as labeled. Lower panel: Same as the upper panel but for R as a function of w. k and R are 

defined in the appendix. .……………………………………………………………………….128   

Figure 4.A3. (a) The first term at the right-hand side of Equation A1 as a function of w for two 

cases, t=1 (blue line) and t=10 (red line). (b)-(c) Same as (a) but for the second and third terms at 

the right-hand side of Equation A1, respectively. (d) Variation of the upwelling radiance at the 

upper boundary (the summation of three terms shown in (a)-(c)) with w for t=1 and t=10. For all 

calculations, g = 0.75, blackbody radiation at upper boundary is 0.65 and at the lower boundary is 

0.7. The upwelling radiance at the lower boundary is set to be 1 and the downwelling radiance at 

the upper boundary is zero. .……………………………………………………………………129   

Figure 5.1. Joint histograms of (a) Ts and ΔT and (b) TCWV and ΔT from ERA5 data over the 

Arctic (60-90°N) for the months of January, March, and July 2003. The color scale represents the 

fraction of total cases which is ~73,000..……………………………………………………….134   

Figure 5.2. Schematic of liquid-topped mixed phase cloud (LTM). The upper cloud layer is 

composed of liquid cloud water having a liquid water path (LWP) and droplet effective diameter 

(Deff_liq), while the lower layer is ice water having an ice water path (IWP) and effective diameter 

(Deff_ice). The temperature of the surface (Ts), ice cloud layer (Tice), and liquid cloud layer (Tliq) are 

labeled. RTOA,v (BTv) represents the upwelling radiance (brightness temperature) as observed from 

the top-of-the-atmosphere (dashed line) at frequency v…………………………………………137  

Figure 5.3. The change of top-of-atmosphere upwelling radiance at 11 μm (RTOA,v) with respect 

to ice water path (IWP) as a function of IWP and liquid water path (LWP) calculated using 

equation 5.4 for (a) 20 µm ice particle effective diameter (Deff_ice) and a difference of 10 K between 

the surface and the LTM ice layer (LTMice) temperature (Ts-Tice). (b) same as (a) except Ts-Tice = 

- 10 K (c) same as (a) but Deff_ice = 60 µm (d) same as (a) except Deff_ice = 60 µm and Ts-Tice = - 10 

K..……………………………………… .……………………………………………………...138

  

Figure 5.4. (a-d) The gradient of BT11 with respect to IWP averaged across all the TCWV and Ts 

ERA5 intervals for each ΔT interval and for high cloud levels. The dotted lines contain the regions 

where 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 > 0.1 K. Here Deff_ice = 20 μm and Deff_liq = 20 µm (e-h) same as (a-d) except for mid-

level clouds (i-l) same as (a-d) expect for low level clouds……………………………………...140 

Figure 5.5. Same as Figure 5.4 but Deff_ice = 60 µm..…………………………………………...141  

Figure 5.6. The gradient of BT11 with respect to IWP when SSAliq and SSAice are jointly varied 

for a low cloud case in which Ts-Tice ~ 5 K, TCWV < 1, and Deff_ice = 60 um. Qext is constant for 

all cases..……………………………………… .……………………………………………...142  

Figure 5.7. (a) The difference between the brightness temperatures at 449 and 521 cm-1 as a 

function of IWP and LWP for a high-level SMC (CTPliq=850 hPa), where Deff_ice=20 µm. For this 

case, Ts-Tice ~ 5 K and TCWV < 1 (b) same as (a) but for CTPliq= (c) same as a but for CTPliq= (d-

f) same as (a-c) expect for Deff_ice=60 µm. .…………………………………………………….144    



 

xiv 

 

Figure 5.8. Liquid water path (LWP) and ice water path (IWP) statistics for liquid-topped mixed 

phase clouds at the DOE ARM site on the north slope of Alaska. The data covers January-August 

2003. The algorithm for the LWP and IWP retrievals is from Zhang et al. (2017)………………145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xv 

 

Abstract 

The Arctic climate is strongly influenced by infrared (IR) radiation emitted and absorbed 

by greenhouse gases, clouds, and the surface. As the Arctic continues to rapidly change, it is crucial 

to further understand how changes in such geophysical variables influence changes in IR flux at 

the Arctic surface and the top-of-atmosphere. Cloud phase (i.e., ice, liquid, and mixed) can affect 

the clouds’ overall contributions to the IR fluxes. However, the spatial and temporal occurrences 

of Arctic cloud phase are not well characterized.   

Satellite observations of spectrally resolved IR fluxes can be used to connect changes in 

the atmosphere and surface to broadband IR flux changes, however, such studies have not been 

performed in the Arctic. Spectral IR radiances can be used for satellite-based cloud phase 

retrievals, but conventional methods using the mid-IR window region (~800-1250 cm-1) have 

limitations in polar regions, especially for mixed phase clouds. It may be possible to improve 

Arctic mid-IR cloud phase retrievals with far-IR (<~600 cm-1) measurements. However, few 

studies have investigated far-IR cloud phase retrievals from space. 

 Overall, this dissertation studies the potential and limitations of spectral mid-IR and far-IR 

radiances and fluxes for monitoring Arctic IR radiation and identifying cloud phase from space. It 

contains four studies. The first study examines the trends of zonal mean spectral outgoing 

longwave radiation (OLR) and greenhouse efficiencies (GHE) in the Arctic from 2003 to 2016 

using spectral flux derived from collocated Atmospheric IR Sounder (AIRS) and the Clouds and 

the Earth's Radiant Energy System observations in conjunction with AIRS retrievals. Positive and 

negative trends in Arctic OLR and GHE are observed across the far-IR and mid-IR spectral 
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regions, depending on the season, and the largest positive OLR and GHE trends occur in spring. 

Sensitivity studies reveal that surface temperature increases contribute most to the OLR and GHE 

trends, but the effects of atmospheric humidity and temperature are discernable. 

In the second study, AIRS cloud phase retrievals, which were never evaluated over the 

Arctic, are evaluated against four years of combined CloudSat and the Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observation measurements over the Arctic Ocean. AIRS classification 

skill for single-layer ice- and liquid-phase clouds ranges from 85%–95% and 22%–32%, 

respectively. Most unknown and liquid AIRS phase classifications correspond to mixed-phase 

clouds.  

The third study explores the synergy between the far- and mid-IR for polar ice cloud 

detection. A far-IR brightness temperature difference (BTD) test is developed and applied to 

simulated IR radiances and the results are compared to those from a mid-IR BTD test. Scattering 

leads to the far-IR being most sensitive to small ice particles, and the increase of cloud optical 

depth contributing to stronger far-IR BTD signals. Synergy between the mid-IR and far-IR is most 

useful for identifying cloud ice particles with an effective diameter around 40 µm. 

The final study examines the sensitivity of simulated 11 µm brightness temperature (BT11) 

to cloud ice changes within Arctic liquid-topped mixed phase clouds (LTMs). It was determined 

that BT11 can be sensitive to cloud ice for a range of commonly observed Arctic LTMs. By utilizing 

channels in the mid- and far-IR, it may be possible to use BTD tests together with a machine 

learning approach to detect Arctic LTMs from space. 
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Chapter 1 Introduction 

1.1 The Changing Arctic  

The Arctic is the northernmost area of the planet and lies north of the Arctic circle 

(66.56°N). Most of the Arctic region is covered by a nearly landlocked ocean surrounded by the 

northern parts of Russia, Canada, Greenland, Scandinavia, and the U.S. state of Alaska. The ocean 

itself consists of open water with areas of floating sea ice typically covered by a thick blanket of 

snow. The sea ice grows and melts seasonally, with a maximum extent typically in March and a 

minimum in September. The Arctic only receives significant amounts of sunlight for a few months 

during the northern hemisphere summer; in other parts of the year the Arctic is extremely cold and 

dark. Even during the sunlit summer months, the highly reflective sea ice reduces that amount of 

sunlight absorbed by the Arctic Ocean. This leads to the Arctic region absorbing much less solar 

radiation during the year compared to the tropics, where it is in excess. This establishes a negative 

temperature gradient from the tropics and Arctic, leading to poleward transport of heat from the 

tropics to Arctic (and the southern hemisphere polar region) via the atmosphere and ocean. The 

Arctic region, and the entire planet for that matter, emits electromagnetic radiation in the thermal 

infrared (IR; wavelengths greater than ~3 µm) part of the spectrum into outer space continuously 

and this acts as a cooling mechanism. Since the Arctic receives so little sunlight, the region emits 

more radiation to space annually than it receives. Overall, this leads to the Arctic venting the excess 

heat deposited by sunlight in the tropics into space. Thus, the Arctic (and its southern hemisphere 

counterpart) act as Earth’s thermostats and changes in these regions can impact global climate. 
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Since the mid-20th century, Arctic surface-air temperatures (i.e., temperature at 2-m above the 

surface; SAT) have increased secularly, most noticeably during winter, at approximately twice the 

rate as the global average temperature (Figure 1.1a), a phenomenon known as Arctic Amplification 

(Serreze & Francis, 2006). Furthermore, during the era of satellite observations, there has been a 

steady decline in the September Arctic sea ice extent and thickness (e.g., Cavalieri & Parkinson, 

2012; Lindsay and Schweiger, 2015). Figure 1.1b shows a 12.7 percent per decade reduction in 

September sea ice extent from 1979-2021 based on satellite passive microwave measurements. 

Many studies suggest that this Arctic sea ice decline may impact northern mid-latitude weather 

(Vihma, 2014). Furthermore, rising temperatures on the Greenland ice sheet have led to 

pronounced surface melt and runoff during this period as well. It is estimated that this melt has 

contributed to 10.6 mm of global sea level rise from 1992 to 2017 (Slater et al., 2020).  

It is evident that the Arctic is transitioning into a regime characterized by higher surface 

temperatures and larger expanses of ice-free ocean than observed in previous decades. A leading 

theory is that the ice albedo feedback, i.e., a positive feedback in which ice melt fosters more solar 

radiation absorption into the Arctic ocean, which melts more ice and so on, is the main contributing 

  
 
Figure 1.1. (a) Annually averaged temperature change over the period of 1960 to 2021. Data was obtained from NASA 

GISS (data.giss.nasa.gov). (b) Average Arctic September sea ice extent for the period 1978-2021 from the National Snow 

and Ice Data Center (nsicd.org). The blue line represents the linear least squares regression trend.  
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factor. It is also certain that numerous radiative and non-radiative processes and feedbacks play a 

role in the changes being observed in the Arctic. However, the relative contribution of such 

processes and feedbacks to the Arctic warming and sea ice decline is still a debated issue. 

Furthermore, the radiative and non-radiative contributions of clouds to current and future Arctic 

climate changes are not fully understood. 

Climate model simulations tend to underestimate the trends in Arctic temperature increases 

and sea ice loss (e.g., Stroeve et al., 2012; Koenigk et al., 2013; Shu et al., 2020). Given that model 

simulations are the only mechanism in which to predict the response of the Arctic and the entire 

planet to anthropogenic greenhouse forcing, it is crucial to improve our understanding of the 

changing Arctic system.  

1.2 Importance of Radiation in Arctic Climate  

At the top-of-atmosphere (TOA; altitude of ~100 km above the Earth’s surface) the sum of 

incoming and reflected solar, also referred to as shortwave (SW) radiative energy flux, and the 

outgoing IR radiative energy flux, also referred to as outgoing longwave radiation (OLR), 

determines the net TOA radiative flux (RTOA) for the planet: it is zero when radiative equilibrium 

exists. For the Arctic, RTOA is generally negative (i.e., more TOA upwelling radiation than 

downwelling radiation), except for a few months in the summer when the incoming SW TOA flux 

is largest (Serreze et al., 2007). At the surface, or at any given vertical level in the atmosphere, the 

sum of upwelling and downwelling SW and IR radiative fluxes determines the radiative heating 

(or cooling) rate, which plays a large role in determining temperatures at the surface and 

throughout the atmosphere. Figure 1.2 illustrates the various radiative processes discussed below. 



 

4 

 

Incoming SW flux is most significant from April to September, with a peak in June. During 

these months, the SW radiation over the Arctic can be absorbed by the surface or reflected into 

space by sea ice, snow, clouds and other atmospheric gases and aerosols (Figure 1.2). While 

incoming SW radiation in the Arctic is only significant during the summer, IR radiative processes 

operate year-round. Both the atmosphere and surface emit IR radiation based on the Stephen 

Boltzmann law, where the emitted IR flux is proportional to the emitter’s absolute temperature to 

the fourth power. The emissivity of either the atmosphere or surface at a given frequency, i.e., the 

difference between actual emission and blackbody emission (i.e., following Planck’s Law) 

normalized by the blackbody emission at that frequency, can be generally equated to the 

 

Figure 1.2. A schematic of some important radiative and non-radiative processes and feedbacks in the polar 

regions. Yellow and red indicate solar radiation and infrared radiative exchanges, respectively. The positive 

and negative signs represent the sign of the feedback. Gray lines represented simplified vertical temperature 

profiles. Adapted from Figure 1 in Goosse et al. (2018).    
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absorptivity, which is the fraction of incident radiation that is absorbed by the atmosphere or 

surface at that frequency.  

While the Arctic surface can be generally considered as a blackbody (ignoring spectral 

variations in surface emissivity), the atmosphere’s emissivity and absorptivity are mostly based on 

the spectroscopic features of atmospheric gases and the amounts of condensed cloud liquid or ice 

water. Water vapor is the main gaseous absorber and emitter of IR radiation in the Arctic 

atmosphere due to water molecule’s many rotational and vibrational energy transitions that can be 

excited by IR photons of many different frequencies. Between about 800 and 1250 cm-1 (or 8 and 

12.5 µm) the water vapor absorption is much smaller; this is referred to as a water vapor “window”. 

This leads to most of the surface emission at these frequencies to be able to escape to space.  

Clouds greatly enhance the emissivity of the Arctic atmosphere and can be completely 

opaque to IR radiation at cloud water paths (cloud water concentration that is vertically integrated) 

greater than ~100 g/m2. The opacity of the cloud also depends on the size of liquid droplets or ice 

crystals within the cloud, where smaller cloud particles tend to lead to more opaque clouds for the 

same cloud water path. As will be discussed later, Arctic clouds and their opacity play a key role 

in warming the surface from their downwelling IR emissions. 

For a given vertical atmospheric column, absorption and emission of IR radiation by the 

atmosphere leads to the origin of most of the photons that eventually escape to space to be at a 

colder temperature than the surface, which results in the OLR being less than the surface emission 

(Figure 1.2). This so-called greenhouse effect “traps” thermal energy in the system that would 

have otherwise escaped to space. The greenhouse effect can be quantified using the greenhouse 

efficiency (GHE) metric, which is the difference between the OLR and upwelling surface IR fluxes 
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normalized by those surface fluxes. For example, a GHE of one at a given frequency would mean 

that the OLR is zero at that frequency.  

Numerous studies have shown that both SW and IR radiation are crucial components of 

the recent changes in Arctic temperature and sea ice extent. For the SW, a leading theory is that, 

as sea ice continues to retreat annually during the summer and autumn, an increased absorption of 

sunlight into the Arctic Ocean can delay the sea ice freeze-onset period, reduce ice thickness, and 

lead to more heat content in the ocean (e.g. Perovich et al., 2007). Since heat generally flows from 

the Arctic Ocean into the atmosphere during the winter months, the increased heat content in the 

ocean deposited in the sunlit seasons can lead to increased SATs in the winter (Screen & Simmonds 

2010b; Serreze et al., 2009; Serreze & Barry 2011). This helps explain the fact that Arctic 

amplification is greatest during the winter months.  

The IR is associated with radiative feedback processes that may contribute to Arctic 

amplification, namely the water vapor and lapse rate feedbacks (e.g. Goosse et al., 2018; Stueker 

et al., 2018; Figure 1.2). The water vapor feedback is based on the Clausius-Clapeyron relation, 

where the atmospheric humidity is exponentially related to the temperature of liquid water at the 

surface. Evaporation of water can lead to an increase in the water vapor GHE, which in turn can 

warm the surface and lead to more evaporation, and so on. The lapse rate is defined as the rate of 

change of temperature with height in the atmosphere. The lapse rate feedback in the Arctic is 

unique in that is positive, where at lower latitudes it is negative. Stable stratification of the Arctic 

atmosphere can result in a “bottom heavy” tropospheric warming profile as the Arctic surface 

warms, leading to a smaller increase in OLR compared to a uniform tropospheric warming, which 

can result in further surface warming (Goosse et al., 2018; Pithan & Mauritsen, 2014).  
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It has been shown through multiple studies that the Arctic atmosphere is becoming warmer 

and wetter (e.g., Boisvert et al., 2015a,b; Screen & Simmonds, 2010a; Serreze et al., 2012). The 

increased downwelling IR emissions from increasing humidity and temperature can increase the 

greenhouse effect, and this can lead to early sea ice melt onset and increased surface warming in 

the winter and spring, when Arctic amplification is most prominent (Kapsch et al., 2013; Cao et 

al., 2017). Both Gong et al. (2017) and Lee et al. (2017) determined that, in recent decades, the 

 

Figure 1.3. (left column) The interdecadal trend of surface-air-temperature (SAT) obtained by linear regression of winter 

(DJF) averaged SAT at each grid point (right column) trend derived from regression of SAT onto the downwelling IR flux 

(d(SAT)/d(𝐼𝑅 ↓); where the downwelling IR flux is 𝐼𝑅 ↓) and multiplied by the interdecadal trend in the downwelling IR flux at 

each grid point. Units are in kelvin per winter season. The stippling indicates values that are significant at the p <0.05 level for 

the Student’s t test. Adapted from Figure 2 in Gong et al. (2017). 
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spatial pattern of winter SAT trends is strongly related to the spatial pattern of downwelling IR 

flux trends. Figure 1.3 shows, for three different 20-year periods, that the linear regression of the 

SAT onto downwelling IR fluxes results in a very similar spatial pattern compared to the SAT 

trends. This highlights the importance of IR radiative processes in understanding current and future 

Arctic climate changes 

1.3 Cloud-Radiation Interactions and the Role of Cloud Phase in the Arctic 

The Arctic has extensive cloud coverage throughout the year that can be greater than 80% 

and 50% in the summer and winter, respectively (Kay et al., 2016). As discussed previously, clouds 

can change both the amount of SW and IR radiative flux that is incident on the surface compared 

to clear sky conditions. This is known as cloud radiative forcing. This cloud radiative forcing can 

be quantified as the difference between all-sky and clear-sky radiative fluxes (IR or SW) and can 

be assessed for the TOA or surface.  

A major summertime radiative role of clouds in the Arctic is the reflection of sunlight and 

modulation of the amount of solar energy absorbed by the ocean (Kay & L’Ecuyer, 2013) and 

hence a negative cloud radiative forcing at the surface. However, the emission and absorption of 

IR radiation by clouds is active year-round, and for most of the year this causes an overall surface 

warming effect of clouds due to the downwelling IR emission (Interieri et al., 2002), which would 

be a positive cloud radiative forcing at the surface. The cloud’s thermodynamic phase, or whether 

it is composed of liquid droplets, ice crystals, or both, can determine the IR surface warming effect 

of clouds in the Arctic. This is because, for the same amount of cloud water, liquid-containing 

clouds tend to be opaquer in the IR compared to ice-only clouds, which leads to liquid clouds 

dominating the surface warming effects in the Arctic (Shupe and Intrieri, 2004; Cesana et al., 

2012). Furthermore, liquid droplets tend to be smaller than ice particles, which leads to liquid 
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clouds being more reflective at visible wavelengths, and thus cloud phase can also influence the 

summer-time radiative effects of clouds (Shupe & Intrieri, 2004). Supercooled liquid cloud 

droplets can exist at temperatures as low as -40°C (Shupe, 2011) and thus mixed phase clouds are 

common in the Arctic. These clouds are produced and maintained by numerous complex 

microphysical processes and radiative and non-radiative feedbacks that interconvert liquid and ice 

particles (Morrison et al., 2012). The typical structure of Arctic mixed phase clouds is a thin liquid 

layer above a precipitating ice cloud layer (de Boer et al., 2011). As will be discussed later, mixed 

phase clouds present a challenge for cloud remote sensing. A lack of understanding of processes 

 
Figure 1.4. Probability density functions of hourly Arctic Ocean net (down minus up) surface longwave radiation by season 

in two climate models (LMDZ5B) [Hourdin et al., 2012], CAM5 [Neale et al., 2010], and SHEBA observations [Persson et 

al., 2002]: (a) Fall (SON), (b) Winter (DJF), (c) Spring (MAM), and (d) Summer (JJA). Climate model SHEBA points based 

on averages over 70–80 N and 190–240 E, while SHEBA observations are taken along a single ship track. LMDZ5B model 

data are 3-hour averages, while SHEBA observations and CAM5 model data are 1-hour averages. Adapted from Cesana et 

al. (2012). 
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involving the interconversion of cloud liquid and ice in the Arctic atmosphere leads to 

misrepresentation of clouds in climate models and their associated IR radiative effects (e.g., 

Cesana et al., 2012; Pithan et al., 2014). For example, Figure 1.4 shows the probability distribution 

of net LW (or IR) radiation (positive downward) at the Arctic surface from in-situ observations 

(black solid line) for each season. Liquid-containing clouds tend to be associated with a net LW 

flux of about 0 W/m2, while ice clouds tend to correspond to more negative values (Morrison et 

al., 2012). These are commonly referred to radiatively opaque and clear states, respectively (e.g., 

Morrison et al., 2012; Stramler et al., 2011). Figure 1.4 also shows climate model simulations that 

aimed to reproduce these radiative states (colored solid and dotted lines). During all seasons except 

for summer (JJA), the models do not capture the probability distribution of net LW flux, which is 

related to the model’s representation of supercooled cloud liquid in the Arctic (e.g., Cesana et al., 

2012). Overall, it is crucial to further the understanding of Arctic cloud processes, especially 

relating to cloud phase, to improve projections of warming and sea ice loss in the Arctic.  

1.4 Satellite Remote Sensing of Arctic Clouds: Methods and Challenges  

To further understand Arctic cloud properties, their radiative effects at the top-of-

atmosphere (TOA) and surface, and how these change over time, observations are needed across 

the vast Arctic region. Ground observations are important but are sparse in the Arctic due to the 

remoteness and harshness of the environment: satellite observations are essential.  

Modern spaceborne measurements of cloud properties, such as cloud phase, generally rely 

on at least one of the following: (1) lidar (i.e., laser) backscatter and depolarization (2) radar 

backscatter (3) spectrally resolved SW radiances that are reflected from the clouds and (4) 

spectrally resolved IR radiances that are either emitted by the cloud or are attenuated by the cloud.  
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Active satellite instruments such as Cloud–Aerosol Lidar and Infrared Pathfinder Satellite 

Observations (CALIPSO) and CloudSat use lidar and radar, respectively, and can be combined for 

cloud property measurements (e.g., Sassen et al., 2008). The major benefit of active measurements 

is that they can provide vertical profiles of cloud properties and more confident cloud phase 

determination compared to IR and SW imagers. However, these measurements are taken along a 

narrow ground track (e.g., ~0.1 km track width for CALIPSO), which means that many Arctic 

cloud scenes are not observed during a given overpass. There are also complicating factors, such 

as multiple scattering of lidar by cloud liquid droplets which can lead to an inaccurate cloud phase 

determination (Hu et al., 2009). Overall, active sensor cloud products are benchmarks for 

comparison with passive imager cloud products, especially cloud phase.   

Spectrally resolved measurements of reflected solar radiance, such as those from the 

Moderate Resolution Imaging Spectroradiometer (MODIS), can provide information on cloud 

properties based on the differences in cloud liquid and ice absorption and scattering at different 

SW wavelengths. For example, the ratio of reflectance at 2.1 and 0.87 µm is used by the MODIS 

Collection 6 Cloud Optical Properties Algorithm (Platnick et al., 2014), as this ratio can provide 

information on cloud phase, cloud opacity, and cloud particle size. A major benefit of SW imagers 

is that the horizontal spatial footprint can be larger than the active sensors (e.g., 1 km MODIS 

pixels). Imagers like MODIS also utilize cross track scanning, which ultimately provides large 

swaths of pixels for a given satellite overpass. However, there are major drawbacks in the Arctic 

for SW cloud remote sensing. Firstly, during the sunlit months in the Arctic, the presence of 

underlying sea ice and snow can complicate cloud detection and property retrievals (Platnick et 

al., 2001). Secondly, there is a lack of sunlight that is usable by spaceborne SW imagers in the 

Arctic throughout much of the year. Even during the summer, the solar zenith angle (angle between 
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the sun and the zenith) only becomes as low as ~66°. Such large zenith angles can also complicate 

SW retrievals of cloud properties (Grosvenor & Wood, 2014). 

Spaceborne measurements of spectral IR radiances are particularly useful in the Arctic 

because they can be used all year-round. Additionally, imagers such as the Atmospheric Infrared 

Sounder (AIRS) aboard the NASA Aqua spacecraft have larger horizontal spatial footprints than 

the active sensors (e.g., ~13.5 km radius footprint for AIRS). Spectral IR radiances can be used 

for cloud detection and cloud retrievals, such as cloud phase. Detection of clouds from spaceborne 

IR measurements is based on the difference in the radiative temperatures between clouds and the 

surface. However, this cloud detection can be difficult in the Arctic because it is not uncommon, 

especially during the winter and spring, for the clouds to exist within a temperature inversion and 

be at the same temperature or warmer than the surface. This can lead to the cloud being 

indistinguishable from nearby clear sky scenes. Cloud phase within an IR imager footprint can be 

determined using spectral IR radiances, and it is a convention to utilize brightness temperature 

differences (BTDs) between two spectral channels within the mid-infrared window (mid-IR; 8-

 
 
Figure 1.5. Imaginary component of refractive index for liquid and ice water from 4 to 50 µm. 
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12.5 µm; 800-1250 cm-1). This is possible because the spectral variations of liquid and ice water 

absorption across the mid-IR are sufficiently different (Figure 1.5). One of the main challenges for 

Arctic cloud phase determination using the mid-IR, besides the cloud detection limitations, is the 

ubiquitous presence of mixed phase clouds in the Arctic (Baum et al., 2000; Cho et al., 2009). This 

can lead to ambiguous cloud phase determination using the mid-IR. Furthermore, due to the larger 

IR imager footprints compared to active sensors, it is possible that clear sky, liquid clouds, ice 

clouds, and mixed phase clouds can exist within the same footprint.  

1.5 The Far-IR Observation Gap 

The far-infrared (far-IR; >15 µm) makes up over 60% of Arctic OLR and thus is an 

important part of the radiative energy processes in the Arctic. There are many water vapor 

absorption lines across the far-IR spectral region, and thus both downwelling IR fluxes and OLR 

are sensitive to water vapor’s far-IR spectroscopic properties (Turner & Mlawyer, 2010).  

There has been a lack of spectrally resolved far-IR radiance measurements from space 

during the modern satellite era, which is largely due to technology limitations. However, two 

upcoming missions will measure the far-IR spectral radiances: the Far‐infrared‐Outgoing‐

Radiation Understanding and Monitoring (FORUM; Palchetti et al., 2020) and the Polar Radiant 

Energy in the Far Infrared Experiment (PREFIRE; L’Ecuyer et al., 2021) missions. 

The spectral region from 400 to 600 cm-1, which is referred to as the “dirty” window region 

(Yang et al., 2003), contains numerous semi-transparent water vapor micro-windows. The cold 

and dry Arctic atmosphere means that some far-IR dirty window channels can be sensitive to lower 

tropospheric water vapor and clouds. Furthermore, the far-IR can be sensitive to cloud properties 

such as cloud phase (Turner et al., 2003; Maestri et al., 2019b; Di Natale et al., 2020) and ice cloud 

particle size (Yang et al., 2003; Libois & Blanchet, 2017; Saito et al., 2020). All the above facts 
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suggest that the spaceborne far-IR radiance measurements can be a useful tool for the remote 

sensing of Arctic atmospheric and cloud properties in the Arctic.  

1.6 Connections and Relevance of Main Chapters 

The following chapters present work that aims to address challenges and knowledge gaps 

relevant to the discussion above. Spectral fluxes are underutilized and represent a tool for 

connecting changes in atmospheric and surface properties to changes in broadband radiative fluxes 

at the top-of-atmosphere. Given that the Arctic is rapidly changing, and IR radiative processes are 

crucial to Arctic climate, such spectral fluxes can provide deeper insight into changes in Arctic 

climate compared to broadband fluxes. The phase of clouds represents an important contributor to 

the IR radiative processes in the Arctic, but the spatial and temporal distribution of cloud phase in 

the Arctic is not well characterized. Since IR imagers are useful for cloud phase determination 

from space, it is important to further understand the limitations of conventional mid-IR cloud phase 

algorithms over the Arctic and the potential for far-IR spectral radiance measurements, which will 

be made for the first time this decade, to improve mid-IR Arctic cloud phase determination. Lastly, 

mixed phase clouds are ubiquitous and not well characterized in the Arctic, and detecting such 

clouds from space is an ongoing challenge for mid-IR imagers. Thus, it is important to investigate 

the potential for mixed phase cloud detection in the Arctic by examining mid-IR limitations and 

the benefits of combined mid-IR and far-IR observations for such detections.  

Chapter 2 investigates 14-year trends in spectrally resolved OLR and GHE over the Arctic 

region. Typically, such studies utilize broadband radiative fluxes: the integration of spectral fluxes 

across the IR spectrum. While the broadband fluxes are useful, the spectral fluxes can be used to 

further assess how changes in the Arctic atmosphere and surface contribute to the broadband 

fluxes. This is because different spectral channels can be sensitive to changes in atmospheric 
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temperature and composition at different vertical levels. Furthermore, spectrally resolved IR fluxes 

are important for observation-model comparisons. If only broadband fluxes are used in such 

comparisons, there can be compensating biases in the spectral fluxes that cause the broadband 

fluxes to agree for the wrong reasons (e.g., Huang et al., 2006; Huang et al., 2014). Overall, spectral 

fluxes are underutilized, especially in the analysis of Arctic IR processes, which suggests that there 

is a lack of knowledge on how changes in the Arctic atmosphere and surface contribute to the 

broadband OLR and GHE. Chapter 2 addresses this lack of knowledge by comparing observed 

spectral OLR and GHE trends to those simulated with a radiative transfer model that uses satellite 

retrieved geophysical variables as inputs. Furthermore, the observed spectral OLR and GHE trends 

are extended using principal component analysis to include trends in the far-IR. Such spectral far-

IR OLR and GHE trends in the Arctic have not been explored and they can ultimately shed light 

onto how changes in tropospheric water vapor and temperature at different atmospheric levels in 

the Arctic can impact OLR and GHE in the far-IR. 

Chapter 2 mainly focuses on clear sky scenes due to the difficulty in simulating OLR and 

GHE in cloudy scenes. As discussed previously, there are complexities and challenges with 

satellite retrievals of cloud properties in the Arctic, especially for cloud phase determinations. 

Improving Arctic cloud phase retrievals can (1) improve knowledge of the cloud meteorological 

and hydrological processes and how they change with Arctic climate and (2) the radiative impacts 

of the clouds at the Arctic TOA and surface. It was previously discussed that cloud remote sensing 

using spectral radiances in the mid-IR window region has advantages in the Arctic, namely that it 

can be used throughout the year. The AIRS instrument aboard the NASA Aqua spacecraft, capable 

of measuring mid-IR radiances at high spectral resolution, has collected such radiances over the 

Arctic for two decades. This suggests that AIRS could be a useful tool for cloud phase studies of 
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the Arctic. However, the AIRS cloud phase product was never evaluated and compared with active 

sensors over the Arctic, which is a necessary step to validate the AIRS product in the region.  

Chapter 3 addresses this challenge by collocating four years of joint CALIPSO-CloudSat 

cloud observations over the Arctic with coincident AIRS footprints to compare cloud phase 

classifications from both products. Additionally, the study compares the climatology of Arctic 

cloud phase between AIRS and the active sensors to understand if AIRS can capture the cloud 

phase seasonality, zonal distribution, and connections with meteorological and thermodynamic 

variables. 

The results of Chapter 3 can further illuminate the advantages and disadvantages of the 

mid-IR spectral radiances for Arctic cloud phase determination. As was discussed previously, the 

far-IR may be useful for retrievals of cloud properties in the Arctic due to the cold and dry 

atmosphere and the sensitivity of the far-IR to cloud properties. Like the mid-IR, the spectral 

variations of liquid and ice absorption have differences across the far-IR dirty window region. This 

suggests that a far-IR BTD method could be applicable for satellite-based Arctic cloud phase 

determination. Furthermore, the spectral variations of ice and liquid scattering properties are larger 

than in the mid-IR, which suggests that far-IR scattering can be taken advantage of in a far-IR 

BTD framework. Recent studies have, using a machine learning approach, indicated that the far-

IR and mid-IR can be used jointly for cloud phase determination (e.g., Maestri et al., 2019b). 

Chapter 4 aims to develop a simple and physically based far-IR BTD polar ice cloud detection test 

that can supplement or even improve the conventional mid-IR BTD approach. 

The detection of mixed phase clouds in the Arctic continues to be a challenge for 

spaceborne IR imagers. This dissertation and previous studies show that the mid-IR and far-IR are 

most useful for ice cloud detection. While detection both cloud phases simultaneously with the IR 
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is a subject of future work, Chapter 5 of this dissertation examines the potential for the use of IR 

spectral radiances to detect the presence of ice in one of the most common mixed phase clouds in 

the Arctic. This chapter also discusses the potential of combining mid- and far-IR spectral 

radiances for mixed phase cloud detection in the Arctic. 
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Chapter 2 The Spectral Dimension of Arctic Outgoing Longwave Radiation and 

Greenhouse Efficiency Trends from 2003-2016 

 

The material in this chapter was published in 

Peterson, C. A., Chen, X., Yue, Q., & Huang, X. (2019). The spectral dimension of Arctic outgoing 

longwave radiation and greenhouse efficiency trends from 2003 to 2016. Journal of Geophysical 

Research: Atmospheres, 124, 8467– 8480. https://doi.org/10.1029/2019JD030428 

 

2.1 Introduction 

Over the last several decades, the Arctic has experienced considerable surface warming, 

the greatest of which has occurred between autumn and spring (Boisvert & Stroeve, 2015). 

Additionally, Arctic sea ice extent has declined steadily in the era of global satellite observations 

(Parkinson & Cavalieri, 2008; Cavalieri & Parkinson, 2012), with September experiencing record 

lows in 2007 and 2012 (Stroeve et al., 2012). It is evident that the Arctic climate is shifting into a 

regime featured with higher surface temperatures and larger expanses of ice-free ocean than 

observed in previous decades.  

In addition to sea ice reduction and surface temperature increase, multiple lines of evidence 

suggest that the Arctic atmosphere has experienced increases in temperature and humidity in recent 

decades. Screen and Simmonds (2010a) reported increases in atmospheric temperature throughout 

all seasons. Serreze et al. (2012), using radiosonde and reanalysis data, found a near Arctic wide 

increase in precipitable water over the period of 1979-2010. Some studies (e.g. Gong et al., 2017) 

indicated that changes in atmospheric circulation have increased moisture flux and warm air 

advection into the Arctic. Recently, it has been suggested that local evaporation, due to a reduction 
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in sea ice, has also substantially contributed to positive trends in Arctic atmospheric humidity (e.g. 

Boisvert & Stroeve, 2015; Boisvert et al., 2015a; Screen & Simmonds, 2010a).  

The increase in Arctic near-surface temperatures has been conventionally linked to 

increased ocean absorption of solar radiation in the summer that leads to a delay of the freeze up 

period and subsequent release of ocean sensible heat during the cold season (e.g. Screen & 

Simmonds, 2010b). In recent years, it also has been proposed that the enhancement of downwelling 

longwave (LW) radiative flux due to an increasing water vapor greenhouse effect and atmospheric 

temperature could contribute to Arctic surface warming. Kapsch et al. (2013) reported that the 

increase of downwelling LW flux in spring due to increased water vapor could play a direct role 

in initiating early sea-ice melt. Cao et al. (2017) also found that increasing Arctic water vapor 

contributed to winter and spring warming. Lee et al. (2017) and Gong et al. (2017) both reported 

that the pattern of surface-air warming could largely be explained by increases in downwelling 

LW flux associated with increases in atmospheric water vapor and air temperatures. 

 Water vapor is the most important greenhouse gas in the atmosphere. The cold Arctic 

atmosphere generally contains less water vapor than the atmosphere in lower latitudes, and 

therefore the LW radiative properties of the polar atmosphere can be different. A notable example 

is the far-IR dirty window around 500 cm-1 (Yang et al., 2003), which opens in high latitudes and 

allows part of the surface emission to reach the top of atmosphere (TOA). This spectral region is 

completely opaque at lower latitudes (except high-elevation regions such as the Andes Mountains). 

As the Arctic atmosphere becomes warmer and wetter, the greenhouse effect of the Arctic 

atmosphere may change accordingly. One metric to quantify the greenhouse effect of an 

atmosphere-surface column at a frequency ν is spectral greenhouse efficiency, GHE(v), which is 

defined as  
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GHE(ν) =
Fs

↑(ν)−OLR(ν)

Fs
↑(ν)

        (eq. 2.1) 

where OLR(v) is the spectrally resolved outgoing LW flux at the TOA, and 𝐹𝑠
↑(v) is the spectrally 

resolved LW flux emitted by the surface. The LW broadband version of GHE(v) is the greenhouse 

efficiency defined in Raval and Ramanathan (1989). Greenhouse efficiency depicts the fraction of 

surface thermal emission trapped within the atmosphere. The GHE metric involves both the upper 

and lower boundaries of the atmospheric radiative transfer and thus can describe the atmospheric 

greenhouse effect in a more informative way than the TOA or surface flux alone.  

 Increases in atmospheric temperature, humidity, or surface temperature impact both OLR 

and GHE. Broadband fluxes integrated over the entire LW spectrum are typically used in such an 

investigation. The spectral fluxes, on the other hand, are underutilized. As far as the TOA spectral 

flux is concerned, different spectral channels have different weighting functions, which means 

they have different sensitivities to emission from different parts of the atmosphere. Different 

spectral channels can also be sensitive to different greenhouse gas species. From this perspective, 

studying the changes of spectral fluxes has its own merits: it connects the understanding of 

broadband flux changes with the changes of actual meteorological variables that are responsible 

for such broadband OLR changes. If only broadband flux is studied, a potential issue is that 

compensating biases from different spectral bands can lead to a seemingly good agreement 

between models (or between model and observation) but for the wrong reasons. Such 

compensations were seen in the evaluation of simulated broadband clear-sky flux by a climate 

model (e.g. Huang et al., 2006) as well as for longwave radiative feedbacks (e.g. Huang et al., 

2014b). The studies of spectral flux, however, can largely avoid issues of compensating biases and 

make the attribution of radiative flux changes more effective. Therefore, studying the changes in 
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spectrally resolved Arctic OLR and GHE can lead to more insight into associated changes in 

surface and atmospheric variables, which hopefully can help indirectly evaluate the relevant 

impacts on polar surface warming.  

This study seeks to use satellite observations and forward radiative transfer calculations to 

understand the zonal-mean changes of clear-sky spectral OLR and GHE in the Arctic over the past 

decade as well as their connection to the changes in atmospheric temperature, humidity, and 

surface temperature. Section 2 describes the data used in this study and the methodology. Section 

3 presents the main results which is followed by further discussions and conclusions in Section 4.  

2.2 Data and Methods 

2.2.1 AIRS Observation and Measurement  

The Atmospheric Infrared Sounder (AIRS) is an infrared grating spectrometer aboard the 

NASA AQUA satellite that was launched in May 2002. The sun-synchronous orbit of the AQUA 

satellite has an equatorial crossing time at 1:30 and 13:30 local time. AIRS is a cross-track 

scanning instrument with a swath range of -49° to 49° in viewing zenith angle and a field of view 

(FOV) of 1.1°, which corresponds to a 13.5-km nadir footprint. AIRS records spectra at 2378 

channels within three bands (3.74-4.61 µm; 6.20-8.22 µm; 8.8-15.4 µm) spanning the thermal IR 

and near IR and has a spectral resolving power of λ/d𝜆 =1200 (Aumann et al., 2003; Chahine et 

al., 2006). Its radiometric accuracy is <0.3 K for a 250 K brightness temperature target (Pagano et 

al., 2003) and its spectral accuracy is <0.01 dv, where dv is the full-width at half-maximum of the 

channel (Gaiser et al., 2003). Since the beginning of its operation, AIRS has exhibited excellent 

stability over the years. Aumann et al. (2006) estimated the stability to be better than 16 mK yr−1 

and the estimate was updated to be ~4 mK yr−1 by Aumann and Pagano (2008). 
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2.2.2 The Spectral Longwave Flux Derived from Collocated AIRS and CERES 

Observations 

This study uses spectrally resolved fluxes derived from collocated AIRS and CERES 

observations (for brevity, hereafter referred as observed spectral flux). The algorithm to derive the 

observed spectral flux has been described in detail in Huang et al. (2008; 2010; 2014a) and Chen 

et al. (2013b). In brief, the AIRS radiances within two thermal-IR bands (6.20-8.22 µm and 8.8-

15.4 µm) are used in the derivation. The scene type info is taken from the collocated CERES SSF 

(Single Satellite Footprint) data product and a spectral anisotropic distribution model (ADM) was 

developed for each scene type defined in the CERES SSF. Spectral flux at each AIRS channel can 

be estimated by applying the spectral ADM to the AIRS spectrum collocated with a CERES FOV. 

Then a multiple linear regression scheme based on the principal component decomposition is used 

to estimate the spectral flux over the spectral regions not covered by the AIRS observations. As a 

result, spectral fluxes over each 10 cm-1 interval for the entire LW spectrum can be derived from 

the collocated AIRS and CERES observations. Note that only the CERES SSF ancillary 

information about the scene type of each collocated AIRS and CERES footprint is used in the 

derivation of the spectral fluxes. The collocated CERES radiometric measurements and CERES 

broadband OLR have not been used in the derivation of spectral fluxes at all. Satisfactory 

comparisons with the CERES OLR at the footprint level and at the monthly gridded average over 

multiple years were demonstrated in Huang et al. (2008; 2010; 2014a) and Chen et al. (2013b).  

Such footprint-level spectral fluxes were further averaged onto 2o latitude by 2.5o longitude grids 

to form monthly averages for both all-sky and clear-sky observations. The monthly mean of clear-

sky spectral flux is an average of the spectral flux from all collocated AIRS and CERES FOVs 
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deemed as clear sky by the CERES SSF algorithm, i.e. the coincident MODIS pixel-level cloud 

coverage within the FOV being less than 0.1% (Geier et al., 2001; Loeb et al., 2005).  

2.2.3 AIRS Version 6 Retrievals  

The monthly-mean surface skin temperature (Ts), atmospheric temperature (Tatm) and 

specific humidity (qH2O) profiles from the AIRS Version 6 Level-3 (L3) monthly (AIRS+AMSU-

A) data products (Olsen. 2017) are used to generate synthetic spectral fluxes and to investigate 

changes in Arctic atmosphere and surface conditions from November 2002 - October 2016. The 

AIRS sounding suite can derive up to 324,000 vertical profiles of Tatm and qH2O per day. Error 

estimates are performed for each retrieval at each vertical level in which quality control (QC) flags 

are assigned. Retrievals are reported on the native ~45km AMSU-A footprint resolution (3×3 

AIRS FOVs) and only included in the L3 monthly mean data and binned into 11 grid cells if 

data are flagged as good (QC = 1) or best (QC = 0) quality. Atmospheric temperature profiles are 

provided at 24 levels from 1000 hPa to 1 hPa and the moisture profiles at 12 vertical levels from 

1000 hPa to 100 hPa. Susskind et al. (2014) provides a detailed explanation of V6 retrieval 

procedure and error estimate methodology. The AIRS system was designed to retrieve Tatm with 1 

K of root mean square uncertainty in 1-km layers in the troposphere and qH2O with 15% absolute 

uncertainty per 2-km layer. The AIRS Tatm and qH2O profiles have been validated against various 

in situ observations and satellite measurements, which shows AIRS has met these prelaunch 

specifications (Fetzer et al., 2006; Yue et al., 2013).  

2.2.4 PCRTM Simulation  

 The Principal Component Based Radiative Transfer Model (PCRTM) was developed by 

Liu et al. (2006). It is used here as the forward model to simulate clear-sky spectra. The PCRTM 
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does fewer monochromatic radiative transfer calculations than a line-by-line radiative transfer 

model, while results for other frequencies are predicted based on the correlations between 

radiances over different frequencies. It has been validated against the line-by-line radiative transfer 

model (LBLRTM) with a root-mean-square error of less than 0.4 K (Liu et al., 2006). Based on 

the PCRTM, Chen et al. (2013a) developed a simulator that can calculate spectral radiance or flux 

using global-scale meteorological fields from climate model simulations, reanalyses and satellite 

retrievals in a computationally affordable way. The details of the simulator can be found in Chen 

et al. (2013a), and it has been used in other published studies (e.g., Huang et al., 2014b;  Bantges 

et al., 2016; Pan et al., 2017; Chen et al., 2018). The same simulator package is used in this study. 

        Daytime and nighttime monthly-mean profiles of Tatm, qH2O, ozone and Ts from AIRS L3 data 

are fed into the PCRTM simulator to compute monthly-mean clear-sky spectral radiances at the 

diffusive angle (i.e. cos=1/1.66, where  is view zenith angle) with a spectral resolution of 1 cm-

1. The same approach of using monthly-mean profiles in the spectral simulation has been adopted 

by previous trend studies of spectral radiances as well (e.g. Huang and Ramaswamy 2009; 

Feldman et al., 2011; Feldman et al., 2015). All calculations use latitude and season dependent 

profiles of CH4, CO, and N2O from McClatchey et al. (1972). For each month, the CO2 vertical 

profiles are scaled by the observed CO2 mixing ratio of the same month as compiled by NOAA 

Earth System Research Laboratory. All calculations use the surface spectral emissivity dataset 

from the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) Spectral 

Library version 2.0 (Baldridge et al., 2009). The surface type on each grid is determined based on 

the 1-km resolution land surface coverage dataset from the U.S. Geological Survey (Loveland et 

al., 2000). The spectral fluxes are then derived by multiplying the simulated monthly-mean 

spectral radiances by a factor of , commonly referred as the diffusivity approximation (Elsasser, 
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1942). To be comparable with the spectral interval in the observed spectral flux described in 

subsection 2.2, the synthetic spectral fluxes are also summed to the 10 cm-1 spectral interval.  

      In addition, we also conducted three separate sets of spectral OLR calculations for sensitivity 

studies. These simulations are performed to further understand how qH2O, Tatm, and Ts respectively 

affect the trends in spectral OLR and GHE. Each sensitivity simulation is identical to the full 

simulation except that only one of the three listed geophysical variables is allowed to vary from 

year to year, while the values of the other two variables are fixed.  

2.2.5 Selection of Months  

As mentioned in subsection 2.2, the CERES clear-sky FOV is identified using a cloud-

fraction threshold (MODIS cloud coverage within a CERES FOV < 0.1%). It is well known that 

Arctic cloud cover can be extensive and persist throughout the entire year, with total cloud fraction 

attaining its maximum in the fall and minimum in the late winter and early spring (e.g. Kato et al., 

2006, Liu et al., 2012). In order to obtain meaningful zonal-mean trends for clear-sky observations, 

a sufficient fraction of clear-sky scenes should be available for a given month and each latitudinal 

zone examined in the study. It should be noted that the fraction of clear-sky footprints seen by 

CERES (with respect to the total number of CERES footprints) is not entirely equivalent to the 

clear-sky fraction seen by CERES because a cloudy CERES footprint can be partly clear-sky as 

well. Only observations from collocated clear-sky footprints are counted here.  
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Figure 2.1 shows the percentage of area without a single collocated clear-sky AIRS and 

CERES observation in a given month from November 2002 to October 2016 for every 2° 

latitudinal band in the Arctic. From October to February, i.e., late fall to winter, the percentage of 

area without clear-sky observations ranges from 15% to 100% and increases rapidly north of 

~75°N. North of 85°N, the clear-sky occurrence is drastically reduced for all calendar months.   

Therefore, in this study, we do not analyze data from October to February. Instead, we analyze the 

trends for three representative months from 2003 to 2016, i.e., March and September (the 

beginning and ending months of melting season, respectively) and July (the peak of the summer 

season), and limit our studies to 60-85°N. Key features of Arctic seasonality (e.g. TOA radiation, 

surface energy processes, and sea ice states) are well represented by the three months (Serreze, 

2007). The percentage of area without clear-sky observations, for March and July, is less than 10% 

Figure 2.1. Percent of area within each 2o latitudinal zone that has no single clear-sky FOV from the 

collocated AIRS and CERES observations. The results are shown for each calendar month.  
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for all the latitudes up to 85°N. For September, it is less than 10% up to 71°N, less than 20% up to 

83°N, and less than 30% at 85°N (Figure 2.1d).  

2.2.6 Spectral GHE Calculation and Linear Trend Analyses 

To compute the clear-sky spectral GHE, the spectral radiative fluxes emitted by the surface, 

𝐹𝑠
↑(𝑣) , are first derived using AIRS L3 Ts and the same spectral surface emissivity dataset 

described in subsection 2.4. Then, the spectral GHE is computed according to Eq. (1) using such 

𝐹𝑠
↑(𝑣) and the TOA spectral OLR from either the observations (i.e. collocated AIRS and CERES) 

or the PCRTM simulations based on the AIRS L3 retrievals. The use of AIRS L3 Ts here ensures 

consistency between simulated spectral GHE and OLR calculations. All trends in this study were 

computed using the standard linear regression technique and the results were deemed statistically 

significant at a significance level of 5%.  

2.3 Results 

2.3.1 Comparisons with Broadband OLR Anomalies and Trends  

Figure 2.2 shows all-sky and clear-sky broadband OLR anomalies (top and middle row of 

Figure 2.2) and zonal-mean clear-sky trends (bottom row of Figure 2.2) derived from the 

summation of spectral fluxes used in this study, as well as their counterparts directly from the 

CERES SSF Edition4 products. As mentioned previously, the spectral fluxes were derived from 

AIRS radiances using only the collocated scene type information from the CERES SSF products 

and no radiometric measurements from CERES were used in this derivation at all. Therefore, this 

comparison can be deemed as an independent consistency check between the spectral flux used in 

this study and the standard CERES broadband products. For both all-sky and clear-sky results, and 

for all three months examined here, there is a robust agreement between the OLR anomaly time 
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series for the two data. Additionally, the zonal-mean trends of broadband clear-sky OLR are 

consistent with each other for all three months. The agreement between the anomalies and zonal-

mean trends from both data sets gives us further confidence to examine the spectral details of 

broadband OLR trends. In the following parts of this section we will first delineate the trends in 

the relevant AIRS L3 retrievals and then describe the trends in the observed and simulated spectral 

OLR and spectral GHE. The final part of this section will discuss the sensitivity studies. 

 

 
Figure 2.2. (a) Broadband all-sky OLR anomalies averaged over 60◦N - 85◦N for March. The CERES Edition 4 result is shown 

as a red solid line and the result based on the spectral fluxes used in this study as a black dashed line. The CERES OLR linear 

trend is shown with a 95% confidence interval. (b) Same as (a) except for July. (c) Same as (b) except for September. (d)-(f) 

Same as (a)-(c), respectively, but for clear-sky OLR anomalies. (g) Zonal-mean trends of March broadband clear-sky OLR in 

the Arctic. The red and black shading represents 95% confidence intervals for the CERES SSF result (red solid line) and the 

spectral flux product used in this study (black dashed line), respectively. (h) same as (g) except for July. (i) same as (g) except 

for September.  
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2.3.2 Atmospheric Temperature, Humidity, and Surface Temperature Trends  

Figure 2.3 shows zonal-mean trends of AIRS L3 Tatm, qH2O, and Ts for March, July, and 

September, respectively. For comparison, Ts trends from the European Centre of Medium-Range 

Weather Forecasts Era-Interim reanalysis (Dee et al., 2011) are also shown in Figure 2.3. The 

trends of vertical profiles are plotted up to 500 hPa as no statistically significant trends are found 

for temperature and humidity above this level.  

Atmospheric temperature in March exhibits statistically significant trends northward of 

70◦N and can be as large as 0.35 K/year (Figure 2.3d). The largest trends are seen in the planetary 

boundary layer and extend to 600 hPa. The positive trends of qH2O are ~0.0175 g/kg/year and 

extend to 500 hPa (Figure 2.3a). AIRS Ts trends for March are much larger than those for July and 

 

Figure 2.3. (a)-(c) Zonal-mean trends of qH2O from AIRS L3 retrievals for March, July, and September, respectively. The 

markers indicate statistically significant results (=0.05). (d)-(f) Same as (a)-(c) except for trends of Tatm. (g)-(i) Same as (a)-

(c) except for trends of Ts. Solid lines are based on AIRS L3 retrievals and dashed lines on ECMWF ERA-Interim reanalysis. 

Solid circles indicate significant trends in (g)-(i). 
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September: monotonically increasing from ~0 K/year at 60°N to 0.4 K/year at 85°N. Surface 

temperature trends from ERA-Interim and AIRS L3 largely agree except for the area north of 83◦N 

(Figure 2.3g). Averaged over the entire Arctic Ocean (70◦N - 90◦N), the AIRS L3 Ts trend in March 

is 0.28 K/year, much larger than the trends in July (0.06 K/year) and September (0.11 K/year).  

 Both July and September show statistically significant Tatm increases in the planetary 

boundary layer from 70 to 80°N (Figure 2.3e and 2.3f), but the magnitude is much smaller than 

the trends in March. For July, statistically significant qH2O trends are only seen between 70-75◦N 

and extend from surface upwards to 600 hPa, with magnitudes comparable to those in March 

(Figure 2.3b). In contrast, the lower tropospheric qH2O trends in September are the largest among 

all three months and peak at more than 0.03 g/kg/year (Figure 2.3c). AIRS Ts trends in July are 

statistically significant from 70◦N to 76◦N and range from 0.075 to 0.1 K/year. AIRS Ts trends in 

September are statistically significant from 78-83◦N and the magnitudes are ~0.15 K/year across 

those latitudes. The ERA-Interim Ts trends in July and September show more disagreement from 

the AIRS trends than in March, but the magnitudes of the AIRS and ERA-interim Ts trends are 

largely comparable to each other (Figure 2.3h and 2.3i).  

For each respective month examined above, all statistically significant trends of Tatm,  qH2O, 

and  Ts occur roughly around the same latitudinal zones. Both ERA-Interim and AIRS L3 Ts trends 

indicate that the surface warming in March is larger than in September and July. Such March 

warming is consistent with previous findings that, during the last several decades, Arctic surface 

warming has been greatest during the cold season (e.g. Serreze et al., 2009). A variety of 

mechanisms have been proposed to explain this seasonally dependent Arctic surface warming. 

One mechanism is related to sea ice-albedo feedback (e.g. Serreze et al., 2009; Simmonds & 

Simmonds, 2010a, 2010b; Serreze & Francis, 2006; Serreze & Barry, 2011; Stroeve et al., 2012). 
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For the period studied here, the statistically significant March Ts and Tatm trends occur northward 

of 70◦N where sea ice coverage is nearly 100% for March in all the years. Therefore, it is unlikely 

that this mechanism alone can explain the warming in March. Other proposed mechanisms include 

(1) the change of temperature profiles in the Arctic lower troposphere (e.g., Bintanja et al., 2011 

and Pithan et al., 2014) and (2) increased downward LW radiative flux due to dynamic interactions 

with extra-Arctic circulations (Gong et al., 2017; Lee et al., 2017).  

Screen and Simmonds (2010a) reported a relatively small increase in summer atmospheric 

temperature compared to other seasons during the period of 1989-2008, a feature seen in Figure 

2.3e as well. The disagreement between July and September surface temperature trends between 

the ERA-Interim and AIRS L3 are not entirely clear. Boisvert et al. (2015b) reported that, when 

compared to a variety of in-situ data, the ERA-Interim surface temperature tends to have twice as 

large root-mean-square errors as the counterpart from the AIRS L3.  

 Numerous studies (e.g., Screen & Simmonds, 2010a) have found that increases in Arctic 

atmospheric water vapor are related to sea-ice reductions, which expose more open water to the 

atmosphere and facilitates more evaporation. Using AIRS L3 data over the period of 2003-2013, 

both Boisvert and Stroeve (2015) and Boisvert et al. (2015a) reported positive trends in 

evaporation rates that peak in the fall season, which is consistent with the fact that the largest 

atmospheric humidity trends in our analysis are seen in September instead of March or July. 

2.3.3 Spectral OLR Trends  

Figure 2.4 shows zonal-mean trends of observed all-sky spectral OLR, observed clear-sky 

spectral OLR, synthetic clear-sky spectral OLR using the AIRS L3 retrievals as input, and the 

zonal-mean broadband OLR trends as derived from observations or simulations, respectively. As 

shown in Fig. 2.4d, 2.4h and 2.4l, except for high Arctic in March, the clear-sky broadband OLR 
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trends are statistically not distinguishable from zero trend at 5% significance level for virtually all 

latitudes and for the three months. The spectral OLR trends, however, do show significant trends 

over certain spectral regions for all three months. This further corroborates the merit of examining 

spectrally resolved fluxes in addition to the broadband fluxes for such a trend analysis.  

Both observed and simulated clear-sky spectral OLR trends in March show statistically 

significant positive trends as large as 1.5x10-2 W per m2 per 10 cm-1 per year north of 75◦N in the 

mid-IR window (800-1200 cm-1) and far-IR dirty window (400-600 cm-1). A slight difference 

between observed and simulated trends can be seen in the far-IR and north of 82◦N, where the 

simulated clear-sky spectral OLR trends are still statistically significant, but the observed ones are 

not. The all-sky spectral OLR trends in general are consistent with the clear-sky spectral OLR 

trends, but the magnitudes are slightly smaller than their clear-sky counterparts.  

Figure 2.4. (a) Observed zonal-mean trends of March all-sky spectral OLR as a function of latitude in the Arctic 

region. Stippling indicates statistically significant trends (=0.05). Trends are derived using data from 2003 to 

2016. (b) Same as (a) except for observed clear-sky spectral OLR trends. (c) Same as (a) except for simulated 

clear-sky spectral OLR trends using AIRS L3 retrievals as input to the PCRTM. (d) Zonal-mean trends of observed 

all-sky (red), observed clear-sky (black), and simulated clear-sky broadband OLR trends (blue). The 

corresponding color shading indicates 95% confidence intervals for the trends. (e-h) Same as (a-d) except for July. 

(i-l) Same as (a-d) except for September. 

 



 

37 

 

The simulated and observed clear-sky spectral OLR trends in July (middle row in Figure 

2.4) show agreement in the mid-IR window region for 70-77◦N, with statistically significant trends 

of ~2x10-3 W per m2 per 10 cm-1 per year. Observed spectral OLR trends also show statistically 

significant negative trends in the water vapor far-IR band and the water vapor v2 band (1300-1900 

cm-1) between 75◦N and 82◦N, as well as positive trends in the far-IR between 60◦N and 70◦N 

(Figure 2.4f). These features can also be seen in the simulated spectral OLR trends (Figure 2.4g), 

but none of them are statistically significant. The observed all-sky spectral OLR trends in July in 

general show a pattern similar to the clear-sky counterparts (Figure 2.4e), but few trends are 

statistically significant. 

There are little statistically significant trends from the observed all-sky and clear-sky 

spectral OLR in September (Figure 2.4i and 2.4j). The simulated clear-sky spectral OLR trends in 

the mid-IR window are statistically significant between 77◦N and 83◦N (Figure 2.4k). The observed 

trends over the same region are comparable but not significant. Note such positive trends in the 

mid-IR window region correlate well with the maximum positive trends of September Ts, Tatm, and 

qH2O in the same latitude zone (Figure 2.3).  

2.3.4 Spectral GHE trends 

  Figure 2.5 shows zonal-mean spectral GHE trends for the same three months. In general, 

the simulated clear-sky spectral GHE trends agree well with the observed ones. The all-sky spectral 

GHE trends bear substantial similarity to the clear-sky counterparts, with some differences in terms 

of statistical significance. For March (top row in Figure 2.5), statistically significant positive GHE 

trends are seen north of 80◦N for both the far-IR bands and the water vapor v2 band in the mid-IR, 

suggesting an increase of trapped surface emission by the atmosphere over such bands. Moreover, 

the positive trends here are the largest among all of the GHE trends examined here: at least four 



 

38 

 

times more than any positive GHE trends seen in July and September. This is consistent with the 

rapid Arctic warming in late winter and early spring.  

For July (middle row in Figure 2.5), statistically significant positive clear-sky GHE trends 

that range from 1.5x10-3 to 3x10-3 year-1 can be seen from 70 to 80◦N in both observation and 

simulation results across the water vapor v2 band and far-IR. For September (bottom row in Figure 

2.5), the observed clear-sky GHE trends exhibit few significant trends except for the positive 

trends above ~80◦N in the far-IR dirty window region and part of the water vapor v2 band, and 

across all latitudes for the positive trends in the wings of the CO2 v2 band (also commonly known 

as the CO2 15 m band). The simulated trend pattern (Fig. 2.5i) is largely consistent with the 

observed counterpart.  

  

Figure 2.5. (a) Observed zonal-mean trends of March all-sky spectral GHE in the Arctic region. Stippling indicates 

statistically significant trends (=0.05). Trends are derived using data from 2003 to 2016. (b) Same as (a) except for observed 

clear-sky spectral GHE trends. (c) Same as (a) except for simulated clear-sky spectral GHE trends. (d-f) Same as (a-c) except 

for July. (g-i) Same as (a-c) except for September.  
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Figures 2.4 and 2.5 consistently show agreement between the spectral trends directly 

derived from the collocated AIRS and CERES observations and those derived from the synthetic 

spectra using the AIRS L3 retrievals. This gives us further confidence to carry out sensitivity 

studies to explore which factors contribute the most to the trends in the OLR and GHE. Meanwhile, 

it is also clear from Figures 2.4 and 2.5 that the spectral GHE trends have distinctively different 

patterns from the spectral OLR trends. Given what directly matters to the surface climate is the 

radiation trapped by the atmosphere, such pattern differences also highlight the merit of analyzing 

both the TOA flux and the GHE for a better understanding of the changes in the Arctic. 

2.3.5 Sensitivity Studies for the Spectral OLR and GHE Trends 

As described in Section 2.2, the sensitivity studies were carried out by respectively 

changing qH2O, Tatm, and Ts in the simulations and then computing the zonal-mean trends 

respectively, the results of which are shown in Figures 2.6-2.8. To focus on the changes of 

temperature and humidity, the CO2 concentration is fixed for all the months in the sensitivity 

simulations and, therefore, the changes in the CO2 v2 band will not be discussed here.  

For all three months, the trends due to changes of Ts largely dominate the overall trends. 

Figure 2.3 shows that the March Ts trends north of 75◦N are the largest ones among all three months. 

Accordingly, the spectral OLR and GHE trends north of 75◦N due to changes of Ts in March 

(Figure 2.6c and 2.6f) are also much larger than the trends caused by Ts alone in July and 

September. For the trends from changing qH2O or Tatm alone, as one would expect, the sign of the 

spectral GHE trends is opposite that of the spectral OLR trends as the denominator in Equation (1) 

is fixed in such cases. In addition to these common features, there are also several noteworthy 

features: 
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(1). For March, between 80◦N - 85◦N, changing qH2O alone leads to a small but statistically 

significant positive trend ~1.5x10-3 W per m2 per 10 cm-1 per year in the far-IR dirty window. Such 

positive trends caused by qH2O are only seen for March results. For the other two months, trends 

caused by qH2O alone are always negative. At high latitudes, the far-IR dirty window is sensitive 

to emission from the lower troposphere as well as surface. Figure 2.3 shows positive qH2O trends 

over 80◦N - 85◦N throughout the entire Arctic lower troposphere in March. Normally an increase 

of qH2O in the troposphere leads to a reduction in OLR. However, if there is a temperature inversion 

layer in the troposphere, then an increase of qH2O can lead to an increase of spectral OLR for the 

channels most sensitive to the emissions from the inversion layer. It is well known that the Arctic 

tends to have lower tropospheric inversions in non-summer months due to the lack of surface 

heating by the Sun, and the inversion layer can reach as high as 600 hPa. These facts explain why 

the positive spectral OLR trends due to qH2O change occurring in a tropospheric inversion layer 

are seen in March but not in July and September.  

 

Figure 2.6. (a) The simulated spectral OLR trends in March when only qH2O changes with time. Stippling indicates statistically 

significant trends (=0.05). (b) Same as (a) but for changing Tatm only. (c) Same as (a) but for changing Ts only. (d)-(f) Same 

as (a)-(c) but for the simulated spectral GHE trends.  
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(2). The statistically significant trends caused by Tatm alone are only seen in the far-IR dirty 

window (for March) and in the mid-IR window region (for March and September), two spectral 

regions that are affected by the lower tropospheric temperature change. For spectral regions 

sensitive to the temperature in the upper and middle troposphere, no significant trends are obtained. 

This is consistent with the fact that no statistically significant trends in AIRS L3 temperature exist 

above 600 hPa (Figure 2.3). 

(3).  The changes of Ts can lead to statistically significant OLR trends not only in the mid-

IR window region but across the water vapor far-IR and v2 bands, especially for north of 75◦N and 

non-summer months. This highlights the contrast between polar regions and low latitudes. The 

polar region has much less column water vapor than lower latitudes, especially in the non-summer 

months; as a result, the atmosphere is not entirely opaque in the water vapor bands and changes of 

surface emission can impact the changes of spectral OLR over these bands, as previous shown in 

Chen et al. (2014).   

(4). As far as the Ts change is concerned, the sign of the spectral OLR trend is not 

necessarily opposite to that of the spectral GHE trend. This is different from the cases of Tatm or 

qH2O changing only. This can be understood by differentiating Equation (1.1), which leads to 

dGHE(ν)

𝑑𝑡
=

𝑂𝐿𝑅(𝑣)

𝐹𝑠
↑(𝑣)

[
𝑑𝐹𝑠

↑(𝑣)/𝑑𝑡

𝐹𝑠
↑(𝑣)

−
𝑑𝑂𝐿𝑅(𝑣)/𝑑𝑡

𝑂𝐿𝑅(𝑣)
]                                    (eq. 2.2) 

Therefore, the magnitude and sign of 
dGHE(ν)

𝑑𝑡
  depends on the difference between  

𝑑𝐹𝑠
↑(𝑣)

𝑑𝑡
 and 

𝑑𝑂𝐿𝑅(𝑣)

𝑑𝑡
. Note that OLR(v) consists of two components: surface emission transmitted through the 

atmosphere and the cumulative contribution from the atmosphere, the latter of which remains the 

same for all spectral regions when only Ts changes. The atmospheric transmittance also does not 

change in this case. Thus, two possibilities can be expected:  
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(a) for spectral regions where atmosphere attenuation of surface emission is small (i.e. 

window band), 
𝑑𝑂𝐿𝑅(𝑣)

𝑑𝑡
 is smaller than but comparable to 

𝑑𝐹𝑠
↑(𝑣)

𝑑𝑡
 . Thus, 

dGHE(ν)

𝑑𝑡
 will be close to zero 

even if  
𝑑𝑂𝐿𝑅(𝑣)

𝑑𝑡
  is noticeably positive or negative, as the window band shown in panels (c) and (f) 

of Fig. 2.6-2.8.  

(b) for spectral regions where atmosphere attenuation is large (i.e. both water vapor bands 

in the far-IR and mid-IR where atmospheric opacity is much larger than one), strong attenuation 

by the atmosphere implies that changes of surface emission have little impact on OLR(v). 

Therefore, 
𝑑𝑂𝐿𝑅(𝑣)

𝑑𝑡
 is nearly zero but 

dGHE(ν)

𝑑𝑡
 has the same sign as 

𝑑𝐹𝑠
↑(𝑣)

𝑑𝑡
, as shown for the water 

vapor bands in panels (c) and (f) in Fig. 2.6-2.8.  

 

 

 

 

 

Figure 2.7. Same as Figure 2.6 except for July.  
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2.4. Discussion and Conclusion 

 For the first time, observational trends of spectrally resolved radiative flux across the entire 

LW spectrum in the Arctic are examined using 14 years of AIRS and CERES observations (2003-

2016). Simulated trends based on the AIRS L3 retrievals of qH2O, Tatm, and Ts agree well with the 

trends directly derived from the collocated AIRS and CERES observations. The agreement 

between simulated and observed clear-sky spectral OLR and GHE trends allows for a clear 

connection to be established between changes (or lack-thereof) in Ts, Tatm, qH2O and trends in 

spectral OLR and GHE. Both March and September exhibit positive trends in spectral OLR over 

the far-IR dirty window and mid-IR window region for majority of the Arctic; while spectral OLR 

in July show negative trends over the far-IR dirty window and a mix of positive and negative trends 

in the mid-IR window region at different latitudes of the Arctic. The spectral GHE trends show an 

increase of clear-sky greenhouse efficiency in July across the water vapor v2 band and far-IR for 

70-80◦N, and a much larger increase of clear-sky greenhouse efficiency occurs in March for 

 

Figure 2.8. Same as Figure 2.7 except for September.  
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regions north of 80◦N. Further sensitivity studies reveal that Ts contributes much more than Tatm 

and qH2O to the spectral OLR and GHE trends, while the contributions from the latter two are also 

discernible over many spectral regions (e.g., the negative trends of spectral flux over the far-IR 

dirty window in July).  

 The results of this study support previous findings that the Arctic climate is shifting to a 

warmer and wetter state and such shift exhibits a strong dependence on season, highlighting the 

need to understand the changes in each seasonal separately instead of a simple examination of 

annual-mean statistics. A salient example is that the increase of qH2O leads to an increase of OLR 

in the far-IR dirty window in March (due to the existence of temperature inversion layer) but a 

decrease of OLR in the same spectral region in July and September. Even though the Ts change 

dominates the spectral OLR and GHE changes over many spectral bands, the contributions from 

Tatm and qH2O changes are not negligible or can even be dominant (e.g. qH2O for the July far-IR 

window OLR trend). Therefore, by a careful selection of spectral regions and comprehensive 

uncertainty analysis, it might be possible to use spectrally resolved flux observations to monitor 

changes of qH2O and Tatm, especially those in the lower troposphere. Such inferred secular changes 

in qH2O and Tatm can then be used to corroborate the change of downward LW flux at surface, 

which has direct relevance to the trend of sea-ice melt and can help improve understandings of the 

actual mechanisms for polar amplification.  

This study is focused on the trends in clear-sky spectral OLR and GHE. Due to the 

complexity and challenges of cloud retrievals at high-latitudes, we did not attempt to simulate 

cloudy spectra and analyze all-sky spectral trends. The all-sky trends from observations shown in 

Figures 4 and 5 are similar to their clear-sky counterparts to a large extent, but differences do exist 

in terms of magnitude and statistical significance. These differences offer some clues to further 
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infer cloud secular changes from all-sky spectral OLR and GHE data, likely in the conjunction 

with cloud observations from active sensors such as CloudSat or CALIPSO, as well as with long-

term in-situ observations such as those from DoE ARM sites in the Arctic. 
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Chapter 3 Evaluation of AIRS Cloud Phase Classification over the Arctic Ocean Against 

Combined CloudSat-CALIPSO Observations 

 

The material in this chapter was published in 

Peterson, C. A., Yue, Q., Kahn, B. H., Fetzer, E., & Huang, X. (2020). Evaluation of AIRS 

Cloud Phase Classification over the Arctic Ocean against Combined CloudSat–CALIPSO 

Observations. Journal of Applied Meteorology and Climatology, 59(8), 1277-1294. 

https://doi.org/10.1175/JAMC-D-20-0016.1 

3.1 Introduction 

The Arctic is an important component of the global climate system, and changes in this 

region can have far-reaching impacts. Recent trends in surface-air warming (e.g., Boisvert & 

Stroeve, 2015; Peterson et al., 2019) and sea ice decline (Cavalieri & Parkinson, 2012) indicate 

that knowledge of the Arctic surface energy budget is critical for understanding future changes in 

the region. The radiative effects of clouds can modify the surface climate in the Arctic, particularly 

through infrared (IR) warming that occurs during most of the year (Intrieri et al., 2002). In the 

summertime, clouds modulate the amount of solar radiation absorbed by the Arctic ocean (Kay & 

L’Ecuyer, 2013). The phase of a cloud, i.e., whether it is composed of liquid droplets, ice particles, 

or both, plays a critical role in the radiative impact of the cloud on surface climate. Liquid clouds 

tend to have a higher opacity and contribute more to IR warming of the surface than ice clouds 

(Shupe & Intrieri, 2004; Cesana et al., 2012). Moreover, liquid droplets tend to be smaller than ice 
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particles, and thus the cloud albedo can also be strongly impacted by cloud phase (Shupe & Intrieri, 

2004).  

Arctic clouds are unique compared to those in lower-latitudes, as mixed-phase clouds are 

ubiquitous in the region and can exist at temperatures as cold as -40°C (Shupe, 2011). Thus, clouds 

containing liquid water can often exist during the Arctic winter. The complexity of Arctic cloud 

microphysics and a lack of understanding of the connections between Arctic cloud phase and other 

geophysical parameters has proved to be a challenge for realistically representing Arctic clouds in 

coupled climate model simulations. For example, Cesana et al. (2012) showed that the 

underestimation of liquid cloud occurrence in two climate models, particularly in the Arctic fall 

and winter, can lead to an underestimation of the frequency of occurrence of “radiatively opaque” 

states in which downwelling longwave radiation from liquid containing clouds nearly balances the 

upwelling longwave emission from the surface. This can lead to an overestimation of “radiatively 

clear” states in which the net surface longwave emission can be 50 to 100 W/m2 larger than the 

downwelling longwave emission from the atmosphere, resulting in rapid surface cooling.  

As it is extremely challenging to maintain long-term ground observation sites in the harsh 

Arctic weather, satellite observations are critically needed for the understanding of connections 

between Arctic cloud phase and other surface and atmospheric parameters. Numerous cloud phase 

algorithms exist for spaceborne instruments such as AVHRR (Key & Intrieri, 2000), POLDER 

(Goloub et al., 2000; Riedi et al., 2010), CALIPSO (Hu et al., 2009), MODIS (Baum et al., 2012; 

Marchant et al., 2016),  and the Atmospheric Infrared Sounder (AIRS; Kahn et al., 2014). The A-

Train constellation includes a suite of instruments whose measurements can be collocated, and this 

presents a valuable opportunity to use multiple observations to study Arctic cloud phase and to 

evaluate the cloud phase algorithm designed for each individual instrument. Instruments like the 



 

53 

 

CALIPSO lidar (which was present in the A-Train from 2006-2011) provide vertical profiles of 

cloud phase using lidar backscatter and depolarization (Hu et al., 2009). CloudSat, a 94 GHz cloud 

profiling radar, orbits the Earth together with CALIPSO, and the combination of CloudSat radar 

and CALIPSO lidar has also been used to estimate cloud phase (Sassen et al., 2008). 

While estimating cloud phase with active sensors is considered a benchmark, such 

estimates are only available along a narrow track (e.g. 90 m – 100 m track width for CALIPSO). 

Passive A-train instruments like MODIS and AIRS have larger horizontal fields of view (FOV; 1 

km and 13.5 km at nadir, respectively) compared to active sensors, and their cross track scanning 

allows for coverage of areas that the active sensors miss during an overpass. Passive cloud phase 

discrimination relies mainly on the differences between ice particles and liquid droplets in terms 

of either IR absorption or shortwave reflection, or both of them. Infrared cloud phase methods are 

fundamentally limited when mixed-phase clouds are present (e.g. Baum et al., 2000), which 

presents a challenge in the Arctic where mixed-phase clouds are ubiquitous. However, because 

solar illumination is scarce throughout the Arctic year, an IR approach is the only practical option 

for passively estimating Arctic cloud phase during all seasons. 

The MODIS Collection 6 products include both an IR only (Baum et al., 2012) and IR-

shortwave (Marchant et al., 2016) cloud phase identification at 1-km spatial resolution. AIRS, 

which estimates cloud phase with IR radiances only (Kahn et al., 2014), differs from MODIS in 

that it has coarser spatial resolution (13.5 km at nadir) but much finer spectral resolution and more 

spectral channels. Kahn et al. (2011) showed that AIRS FOVs that contain both cloudy and clear 

MODIS pixels tended to lead to cloud phase decision errors or unknown-phase classifications by 

AIRS. However, the finer spectral resolution of AIRS allows for a selection of channels that are 

less impacted by water vapor absorption and are more sensitive to the spectrally dependent 
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differences between liquid and ice extinction of IR radiation; this increases the AIRS sensitivity 

to cloud phase compared to the MODIS IR only approach (Nasiri & Kahn, 2008). The high spectral 

resolution and over 17 years of observations from AIRS implies that AIRS could be a useful tool 

for studying Arctic cloud phase climatology. However, AIRS cloud phase retrievals have not been 

rigorously evaluated against benchmark active sensors in the Arctic region. Such a study must be 

undertaken before AIRS cloud phase information can be used for studies of Arctic cloud phase 

climatology.  

Jin & Nasiri (2014) (henceforth referred to as JN14) compared AIRS cloud phase 

classifications to collocated CALIPSO observations on a global scale. Some of the key findings 

from their study were: (1) AIRS cloud phase agrees with CALIPSO cloud phase more for single-

layer systems compared to multilayer systems; (2) AIRS phase tends to agree more with CALIPSO 

ice-phase than CALIPSO liquid-phase; (3) AIRS tends to classify most liquid cloud scenes as 

unknown-phase; and (4) AIRS also tends to classify scenes containing both ice and liquid clouds 

as unknown-phase. These global-scale statistics revealed much about the AIRS phase algorithm’s 

limitations, but performing such an evaluation with a focus on the Arctic region allows for an 

assessment of AIRS phase classification in a region characterized by markedly different cloud 

properties, surface conditions, and atmospheric conditions compared to lower latitudes. Water 

vapor amount is a critical factor for AIRS cloud phase decisions (e.g. Kahn et al., 2011), and the 

relatively dry-Arctic atmosphere may cause AIRS Arctic cloud phase classification skill to be 

different than the global classification skill.  Given the lack of knowledge and globally climatic 

importance of Arctic cloud phase, evaluating AIRS cloud phase retrievals in this region is 

warranted. Also, such an evaluation can provide information for improving the AIRS cloud phase 

algorithm, especially in the Arctic.  
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In this study we systematically evaluate AIRS cloud phase in the Arctic from 2007-2010 

against active sensor observations, but there are several differences compared to the JN14 

approach that make the evaluation of AIRS cloud phase more targeted to the Arctic region:  

(1) We use combined CloudSat and CALIPSO (CCL) observations as opposed to 

CALIPSO only. JN14’s mixed-phase category was based on spatial combinations of ice and liquid 

CALIPSO pixels within the AIRS FOV because CALIPSO cannot detect the coexistence of ice 

and liquid in a single cloud layer. However, because the CloudSat radar is sensitive to ice particles 

within liquid layers that the CALIPSO lidar is sensitive to, the use of CCL allows for an evaluation 

of AIRS phase classification for mixed-phase cloud scenes that exist on smaller spatial scales than 

CALIPSO can detect, as mixed-phase horizontal scales of tens of meters are common in high 

latitudes (e.g., Thompson et al., 2018).  

(2) JN14 characterized AIRS phase classification in the presence of multiple cloud layers 

but assumed that AIRS was most sensitive to the phase of the upper most layers and hence did not 

focus on the underlying cloud layer’s phase. This is a valid assumption when the upper cloud layer 

is optically thick in the IR (e.g. visible optical depths of ~5 or more), but Arctic clouds can be 

semitransparent, especially ice clouds, and thus the phase of the underlying cloud layers could 

influence the AIRS cloud phase classification. Therefore, in this study, we investigate the impact 

of different combinations of phases in multilayer cloud systems on the AIRS phase classification 

statistics.  

(3) JN14 used cloud amount from the narrow CALIPSO track to separate AIRS FOVs into 

cloud amount categories. In this study, AIRS cloud phase is instead evaluated using “overcast” 

groupings of CCL FOVs.  To further investigate how cloud amount and cloud phase distributions 

throughout the entire AIRS FOV impact AIRS cloud phase classifications in the Arctic, a case 
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study of collocated MODIS cloud observations is used to investigate the connections between 

MODIS cloud phase and cloud fraction, CCL phase classification, and AIRS phase classification. 

The case study allows for an evaluation of the representativeness of CCL cloud phase throughout 

the AIRS FOV. Like JN14, the cloud phase along the CCL track is assumed to be statistically 

representative of the cloud phase in the AIRS FOV, which may not always be valid, but is a 

necessary assumption when evaluating AIRS phase with CCL.  

(4) Given the unique characteristics of the Arctic climate system, the AIRS phase 

classification is evaluated over open ocean and sea ice.  These surface types can represent opposite 

extremes in Arctic climate conditions such as atmospheric composition and surface emissivity, 

and such factors may influence AIRS phase classification skill in the Arctic. The relationship 

between vertical distributions of CCL cloud phase occurrence and AIRS phase classifications over 

both surface types is also examined. Lastly, the AIRS and CCL cloud phase occurrences are 

compared at different Arctic zonal bands during different seasons and, using a composite analysis, 

the impacts of temperature difference between 1000 and 300 hPa (ΔT1000-300) and total column 

water vapor (TCWV) on AIRS and CCL cloud phase occurrence over both surface types are 

examined. 

The rest of the paper is organized as follows: section 3.2 describes the instruments and data 

used, the collocation methods, and considerations pertaining to CCL cloud amount and layering in 

the AIRS phase evaluation. Section 3.3 includes the results and discussions of the AIRS phase 

evaluations, section 3.4 discusses the MODIS case study, and section 3.5 describes the conclusions 

and suggestions for improving the AIRS cloud phase algorithm with respect to the Arctic. 
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3.2. Data and Methods  

3.2.1 AIRS and its Level 2 Cloud Phase Algorithm  

The AIRS instrument is an infrared grating spectrometer that is aboard the Aqua satellite 

in the A-train constellation. Aqua has a sun synchronous orbit with equatorial crossing times of 

1:30 and 13:30 local time. AIRS is a cross track scanning instrument with a with a swath range of 

-49 to 49° and has FOV of 1.1° which corresponds to a 13.5 km nadir footprint. AIRS records 

spectra in 2,378 channels in three bands spanning the mid-IR to the near-IR and has a spectral 

resolving power of λ/dλ = 1,200 (Aumann et al., 2003; Chahine et al., 2006).   

 AIRS thermodynamic cloud phase, which is available in the AIRS Version 6  (V6) Level 

2 (L2) Support Product, is based on a set of brightness temperature difference tests and thresholds 

using the channels 960 cm-1, 1231 cm-1, 930 cm-1, and 1227 cm-1 (Nasiri & Kahn, 2008; Kahn et 

al., 2014). The tests are used to classify the AIRS FOV as containing liquid, ice, or unknown cloud 

phase. The phase tests are applied only to AIRS FOVs where the total two-layer effective cloud 

fraction (ECF) is > 0.01. There are 4 ice tests and 2 liquid tests. The results of all tests are summed 

and the classification is ice if the value is positive (+1 to +4), unknown if 0, and liquid if negative 

(-1, -2). The larger negative positive or negative values indicate higher confidence in the phase 

classification. The individual test results are stored in the field called cloud_phase_bits and the 

sum is reported in the field called cloud_phase_3x3.  

  ECF is retrieved after completion of the AIRS V6 cloud clearing steps by comparing 

observed and computed radiances in a set of channels that are sensitive to cloud amount and height. 

ECF is the product of cloud amount and cloud emissivity and is retrieved for up to two layers in 

the AIRS FOV. This is reported in the AIRS L2 Standard Product. The surface characterization 
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for the AIRS FOVs used in the study is based on AMSU retrievals of surface emissivity in the 45 

km AMSU field of regard. The product is called MWSurfType and is an AIRS V6 L2 Standard 

Product. The generalized surface types are unknown, coastline, open ocean, sea ice, non-frozen 

land, and frozen land. Only open ocean and sea ice surface types are used in this study. 

3.2.2 Combined CloudSat-CALIPSO Cloud Retrievals 

 The version R04 2B-CLDCLASS-Lidar (CCL; Wang et al., 2013) product is used as the 

benchmark cloud phase reference. This product uses collocated CloudSat radar reflectively factors 

and CALIPSO attenuated backscatter coefficients (provided in the LIDAR-AUX 004 auxillary 

CCL product), where up to 15 CALIPSO footprints can lie within a 1.8 x 1.5 km CloudSat FOV. 

CALIPSO attenuated backscatter coefficients are averaged to the CloudSat horizontal resolution 

and the native 30-meter vertical CALIPSO resolution is retained. 

Radar and lidar have different sensitivities to cloud properties. The CloudSat 94 GHz radar 

can penetrate deeper into cloud layers and is sensitive to large ice particles, while the CALIPSO 

532nm lidar pulse is more sensitive to cirrus clouds and liquid droplets. By synergizing the 

instruments, CCL can classify up to 10 layers as either ice, liquid, or mixed-phase. Distinct cloud 

layers are identified with a separation of ~480m (Marchand et al., 2008). In this study, we only 

use up to 5 layers because higher layer amounts occur in less than 0.06% of global CCL 

observations during our study period of 2007-2010 (Wang et al., 2016). The CCL product also 

provides the number of cloud layers and the cloud base and top heights in each CCL FOV. To 

avoid potential misidentification of cloudy scenes near the surface, which is called “ground clutter” 

(Tanelli et al., 2008), we only use CCL cloud layers in which the cloud base lies above 0.5 km.  
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3.2.3 ERA-5 Total Column Water Vapor and Atmospheric Temperature  

 Total column water vapor (TCWV) and profiles of atmospheric temperature for January 

2007- December 2010 were obtained from European Centre for Medium-Range Weather Forecast 

(ECWMF) ERA-5 (Hersbach et al., 2018). Data are 1-hourly and at 0.25◦x0.25◦ spatial resolution. 

Profiles of atmospheric temperature are provided at 37 pressure levels from 1000 hPa to 1 hPa.  

3.2.4 MODIS Cloud Property Retrievals 

 Aqua MODIS Collection 6 (MYDO6_L2) L2 cloud 1-km daytime only cloud mask 

(Cloud_Mask_1km; Ackerman et al., 1998). Discriminating clear sky from clouds with MODIS. 

J. Geophys. Res., 103(D24), 32141– 32157.) and cloud phase (Cloud_Phase_Optical_Properties) 

from the Cloud Optical Properties Product (Marchant et al., 2016; Platnick et al., 2017) are used 

in the case study described in section 3.4. The cloud mask flags a pixel as confidently clear, 

probably clear, probably cloudy, or confident cloudy. The cloud phase product flags a pixel as 

either ice, liquid, or unknown. It should be noted that the IR-only MODIS thermodynamic cloud 

phase product is not used at all in this study and thus only daytime MODIS data are used.  

3.2.5 AIRS, CCL, and MODIS Collocation Strategy  

To collocate CCL and AIRS FOVs, collocation indices during 2007-2010 period from the 

MEaSUREs Project (Fetzer, 2012) were used. A nearest neighbor approach was used to match 

CloudSat and AIRS FOVs based on the latitude and longitude pair (Kahn et al., 2008; Yue et al., 

2011; Fetzer, 2012). Due to the orbital configuration and viewing geometries of the instruments, 

CloudSat and CALIPSO FOVs can only overlap with near-nadir AIRS FOVs, and thus only such 

AIRS FOVs are used in this study. Approximately 15-19 CloudSat (and therefore CCL) FOVs lie 

within a 13.5 km near-nadir AIRS FOV. The MEaSUREs collocation indices contain the AIRS 

https://cds.climate.copernicus.eu/cdsapp#!/home
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granule number, FOV indices, and an indexed array of CCL cloud products. Only AIRS granules 

falling between 60-90°N are used. Since the CCL orbit is limited to <83°N, the study area is 

confined to 60-83°N. This provides a sample set of ~4 million near-nadir AIRS FOVs and ~61 

million CCL FOVs over the four-year period. To provide an illustration of the AIRS-CCL 

collocation strategy, Figure 3.1 shows vertical curtains of CCL cloud phase and AIRS phase 

decisions that are collocated with groups of CCL FOVs for two separate granules in summer and 

winter. 

For the MODIS case study described in section 3.3.4, 1-km MODIS pixels are collocated 

within each AIRS FOV where CCL is also collocated in the AIRS FOV during the month of July 

2009 for daytime only. The collocation is based on the method developed by Schreier et al. (2010). 

There are ~200 MODIS 1-km pixels for a 13.5-km nadir AIRS FOV. 

 

Figure 3.1. (A) Vertical profile of individual cloud layers detected by CCL along an AIRS-CCL collocated ground 

track on January 4, 2007 from (76.26◦N, 106.51◦E) to (76.69◦N, 1.6◦W). The horizontal colored bar at 11 km represents 

AIRS phase decisions for AIRS FOVs overlapping with groups of CCL FOVs. (B) Same as for (A) except for July 14, 

2007 from (80.8◦N, 60.62◦E) to (63.85◦N, 12.1◦E). 
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3.2.6 Cloud Amount and Layering Considerations for AIRS Cloud Phase Evaluations 

3.2.6.1 Selection of CCL Cloud Layering in AIRS FOVs 

Cho et al. (2009) and JN14 both reported that, for MODIS and AIRS respectively, a higher 

cloud phase classification skill is achieved for single-layer cloud systems. However, multilayer 

cloud systems occur frequently on a global scale and should not be ignored. Since this study 

focuses on the Arctic, it is important to first evaluate the frequency of occurrence of different cloud 

layer amounts in the Arctic. Figure 3.2 shows the relative frequency of occurrence of the cloud 

layer amount using groups of CCL pixels where ≥90% of the collocated CCL FOVs within the 

AIRS FOVs are either all covered by single-layer clouds or all covered by two-layer clouds over 

open ocean and sea ice. These will be referred to as single-layer-overcast and two-layer-overcast 

CCL FOV groups. Regardless of the surface type, single-layer-overcast systems are the most 

prevalent (75-80%) while two-layer-overcast systems are the second most common (15-20%). A 

similar conclusion is drawn using cloud layer numbers from individual CCL FOVs (not shown). 

CCL FOV groups with more than two layers are scarce in the collocated observations. It is possible 

that some single-layer clouds detected by CCL may have underlying cloud layers, but these lower 

layers may not be detected by CCL due to full attenuation of the CALIPSO lidar, which occurs for 

the cloud layer with a visible optical depth greater than ~3. Given the cloud layering statistics 

described here, we use single-layer and two-layer CCL FOV groupings in the AIRS phase 

evaluation. 

3.2.6.2 Selection of CCL Cloud Cover in AIRS FOVs 



 

62 

 

In addition to assessing the consistency of cloud phase classifications between AIRS and 

CCL, it is also important to assess the qualitative cloud detection consistency of the AIRS and 

CCL products. Such an evaluation will determine if AIRS cloud detection is consistent with the 

single-layer-overcast CCL groups, which are the main CCL groups used in the AIRS cloud phase 

evaluation. Figure 3.3 shows the occurrence of AIRS FOVs within five ECF intervals compared 

with CCL FOV groups with different cloud amounts. Also, the distribution of AIRS ECF 

occurrence within two different CCL cloud amount categories is explored. It is important to note 

that AIRS ECF and CCL cloud amount are physically different and the comparison here is 

qualitative and relative. 

Four single-layer CCL cloud amount categories are created for CCL FOV groups within 

AIRS FOVs: (1) CCL clear-sky when ≥90% of the CCL FOVs indicate no cloud layer; (2) CCL 

partly-cloudy conditions when between 10% and 90% of CCL FOVs are covered by single-layer 

or multilayer clouds; (3) the aforementioned single-layer overcast grouping and (4) multilayer 

 

Figure 3.2. Relative frequency of occurrence of overcast CCL FOV groups with a given layering number for sea ice and 

open ocean. For the layers to be counted, ≥90% of CCL FOVs must detect cloud and must all have the same number of 

layers. The normalization is with respect to all FOV groups over each surface type, respectively. The counts represent the 

number of CCL FOV groups included for each surface type, respectively.  
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overcast conditions which include all cases where ≥90% of CCL FOVs detect clouds with at least 

one FOV having more than one cloud layer.  

Figures 3.3a and 3.3b show a comparison between counts of AIRS FOVs in five ECF 

intervals and CCL groups in four CCL cloud amount categories over sea ice and open ocean. Over 

open ocean, most AIRS FOVs and CCL FOV groups indicate cloud presence, which is consistent 

with the annual peak of cloud amount occurring in the Arctic summer and fall when open ocean 

represents a large fraction of surface area. Over sea ice, both AIRS and CCL show that the fractions 

of cloudy and clear-sky AIRS FOVs, as detected by the AIRS and CCL algorithms respectively, 

are more comparable. This is consistent with the fact the cloud cover minimum in the Arctic occurs 

in the winter and spring when there is more sea ice coverage. CCL partly cloudy groups occur less 

  

Figure 3.3. (A) Counts of AIRS FOVs over sea ice and open ocean separated based on AIRS effective cloud fraction (ECF). 

(B) Counts of CCL FOV groups collocated within AIRS FOVs over sea ice and open ocean for four CCL cloud amount 

categories. CCL clear-sky is defined as ≥90% of the CCL FOVs with no cloud layer. CCL partly cloudy is defined as between 

10% and 90% of CCL FOVs with clouds detected. Single layer (SL) overcast is for ≥90% of CCL FOVs detected as single-

layer clouds and multilayer (ML) overcast is for ≥90% of CCL FOVs with clouds detected with at least one FOV having more 

than one layer of cloud. (C) Same as (A) except that only AIRS FOVs corresponding to CCL FOV clear-sky groups are 

included. (D) Same as (C) expect for the CCL FOV group being SL overcast.  
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often than overcast and clear-sky CCL groups, which is consistent with the overall high cloud 

cover observed in the Arctic throughout the year. Figures 3.3c and 3.3d show AIRS ECF 

occurrence within the CCL clear-sky and CCL single-layer-overcast groups, respectively (CCL 

partly cloudy not included). Most AIRS FOVs in which AIRS detects cloud (ECF>0) fall into the 

CCL overcast category regardless of surface type. However, over sea ice, about half of clear-sky 

AIRS FOVs (ECF=0) fall into the CCL clear-sky category while the rest fall into the CCL overcast 

category, and this suggests that AIRS can misidentify cloudy scenes as clear over sea ice from a 

lack of thermal contrast between the surface and cloud top (Fig. 3.3d). Overall, the single-layer-

overcast CCL FOV groupings are associated with AIRS FOVs that will have a cloud phase 

assigned (i.e. when ECF > 0.01), which further justifies the use of such overcast CCL groupings 

for AIRS cloud phase evaluation. 

3.3. Results and Discussion  

3.3.1 Overview of Arctic Cloud Phase Occurrence using Collocated AIRS and CCL FOVs 

For an initial comparison between AIRS and CCL Arctic cloud phase, the occurrence of 

AIRS and CCL cloud phase over sea ice and open ocean is examined using the collocated AIRS-

CCL FOV dataset. Different homogenous and heterogeneous-phase categories are defined using 

collocated single-layer-overcast CCL FOVs within the AIRS FOV as follows: homogenous ice, 

liquid, and mixed-phase CCL groups when ≥90% of the CCL FOV groups have that phase, 

respectively, and the heterogeneous-phase groups (ice + liquid, liquid + mixed, ice + mixed) when 

each phase in any two-phase-mixture makes up 45-55% of the CCL FOV group. The 

heterogeneous groups are defined similarly to the JN14 mixed-phase category. As was mentioned 

in section 2.1, the AIRS cloud phase algorithm employs 4 ice tests and 2 liquid tests. The results 
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of all tests are summed and the classification is ice if the value is positive (+1 to +4), unknown if 

0, and liquid if negative (-1, -2). 

Figure 3.4 shows the relative frequency of occurrence of cloud phase over sea ice and open 

ocean for the homogenous and heterogeneous-phase CCL groups (Fig. 3.4b) and by the AIRS 

phase algorithm in which the AIRS FOVs are subsampled based on collocation with these CCL 

groups (Fig. 3.4a). Since homogenous-phase CCL occurrence is dominant, only these groups will 

be discussed here. CCL mixed-phase is the most dominant cloud type over open ocean, where its 

occurrence is nearly 50%. Over sea ice, the occurrence of CCL mixed-phase is ~40%. Over open 

 

Figure 3.4. (A) Frequency of occurrence of AIRS phase decisions over open ocean and sea ice for only those AIRS FOVs 

that coincide with a single-layer-overcast homogenous or heterogeneous phase CCL FOV groups. The counts represent the 

number of AIR FOVs included in the analysis for each surface type, respectively and the normalization is with respect to 

these counts. (B) Frequency of occurrence of homogenous and heterogeneous phase groupings of single-layer-overcast CCL 

FOV groups collocated with AIRS. Ice, liquid and mixed-phase groups represent CCL homogenous-phase groups, while the 

ice+liquid, ice+mixed, and liquid+mixed are for the CCL heterogenous-phase groups. The counts represent the number of 

CCL FOV groups included in the analysis for each surface type, respectively. The normalization is with respect to these 

counts. Numerical percentages for each surface type replace bars when the bars are not visible. 
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ocean, 30% of CCL groups are ice-phase, where ice-phase occurrence for AIRS is 27.9%. Over 

sea ice, the ice-phase occurrence is 50% for CCL and 50.7% for AIRS ice-phase. For CCL liquid-

phase over open ocean, the occurrence is 20%, where for AIRS liquid-phase it is 39.5%. Over sea 

ice, the CCL liquid-phase occurrence is 10% and 23.3% for AIRS liquid-phase.  

When considering AIRS FOVs that are collocated with homogenous-phase CCL groups, 

the frequency of occurrence of AIRS and CCL ice-phase agree within 2.5%, while AIRS tends to 

overestimate the occurrence of CCL liquid-phase by as much as 20%. Overall, 27% of the AIRS 

Arctic cloud phase classifications associated with the homogenous and heterogeneous-phase CCL 

groups are unknown-phase, and 42% are unknown-phase when considering all AIRS Arctic FOVs 

with a cloud phase assigned. This prompts a thorough examination of the conditions associated 

with these unknown-phase classifications as well as other AIRS phase classifications, which will 

be discussed in the following section. 

3.3.2 AIRS Arctic Cloud Phase Evaluations 

3.3.2.1 Single Layer Systems 

To evaluate AIRS Arctic cloud phase classifications against single-layer-overcast CCL 

groups, we first assess AIRS classification tendency for various CCL phase groupings and 

subsequently evaluate AIRS phase classification skill for the Arctic.  

Figure 3.5 shows the frequency of occurrence of AIRS phase classifications partitioned 

based on AIRS cloud phase test summations for single-layer-overcast homogenous and 

heterogeneous-phase CCL groupings. Overall, the percentage of homogenous-phase CCL groups 

classified as a particular AIRS phase is not dependent on surface type. AIRS classifies 78% of 

homogeneous CCL ice-phase groups over open ocean (82.4% over sea ice) as ice-phase and the 
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rest as unknown-phase (Fig. 3.5a). This high rate of agreement between AIRS and CCL ice-phase 

scenes is consistent with AIRS being more sensitive to ice-phase than liquid-phase (Kahn et al., 

2014), and JN14 reported a similar result for AIRS comparisons with CALIPSO on the global 

scale. For homogenous CCL liquid-phase groups over open ocean, AIRS classifies 71.5% as 

liquid-phase (71% over sea ice) and the rest as unknown-phase (Fig. 5b). JN14 found that on a 

global scale, ~40% of homogenous CALIPSO liquid-phase groups were classified as liquid-phase 

by AIRS, compared to ~70% in this study. It is possible that a higher fraction of liquid clouds can 

be classified correctly in the Arctic compared to lower latitudes due to the drier Arctic atmosphere, 

especially since liquid clouds tend to occur lower in the atmosphere. 

What is more interesting is the homogenous CCL mixed-phase groups (Fig. 3.5c). Over 

open ocean, AIRS classifies 52% of these groups as liquid, 41% as unknown and 8% as ice-phase. 

 

Figure 3.5. Frequencies of occurrence of AIRS phase classifications for AIRS FOVs corresponding to single-

layer-overcast groups of CCL FOVs with a homogenous (A-C) or heterogenous (D-F) phase type. The counts 

represent the number of AIRS FOVs included in the analysis for each surface type, respectively. Normalization 

is with respect to these counts. 
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For sea ice, it is 55%, 38%, and 8% for AIRS liquid, unknown, and ice-phase, respectively. This 

can be contrasted against the results of JN14 where the majority of CALIPSO mixed-phase groups 

were classified as unknown-phase by AIRS. The tendency for AIRS to classify the homogenous 

mixed-phase CCL groups as liquid-phase could be related to the structure of Arctic mixed-phase 

clouds, as such clouds tend to have a thin liquid layer at the cloud-top (e.g. Morrison et al., 2012). 

The AIRS phase classifications of heterogenous-mixed-phase CCL groups appear to differ 

from that of the homogenous-mixed-phase CCL groups, but it is also important to note that there 

are less samples in the heterogeneous-phase cases. For the heterogeneous ice+liquid and 

ice+mixed CCL groups (Fig. 3.5d,e), most of the AIRS phase classifications are unknown, which 

is similar to the results of JN14. It should be noted that the JN14 CALIPSO mixed-phase groups 

are like the CCL heterogeneous-mixed-phase groups. AIRS classified relatively more of the 

liquid+mixed CCL phase groups as liquid-phase compared to the homogenous-mixed-phase CCL 

groups (Fig. 3.5f), which may simply be a result of more liquid cloud being present in the AIRS 

FOV. The results here suggest that AIRS phase classifications could be dependent on the spatial 

scale of cloud phase mixing.    

Table 3.1 shows percentage composition of all AIRS FOVS classified as AIRS liquid, ice, 

or unknown-phase in terms of the homogenous-phase CCL groups. This represents an assessment 

of AIRS classification skill in the Arctic. Over open ocean, 86% of AIRS FOVs classified as ice-

 
Table 3.1. Percentage composition of all AIRS FOVs with a given phase classification in terms of CCL phase using 

homogenous single-layer-overcast CCL FOV groups over open ocean. The values in parentheses are for sea ice.  
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phase by AIRS were classified as ice-phase by CCL, where over sea ice the ice-phase classification 

skill is 95%. The majority of AIRS liquid-phase classifications correspond to CCL mixed-phase 

over both surface types. For open ocean, the percentage of AIRS FOVs classified as liquid-phase 

by AIRS that are classified as mixed-phase by CCL is 67% and over sea ice the value is 76%. 

AIRS liquid-phase classification skill differs over the surface types, where it is 32% over open 

ocean and 22% over sea ice. It is possible that the ~10% difference in AIRS liquid and ice-phase 

classification skill over the surface types is related to differences in the surface emissivity of the 

surfaces for cases in which the cloud is not entirely opaque. 

AIRS unknown-phase classifications are mainly composed of CCL ice-phase and CCL 

mixed-phase, but the relative contribution of these CCL phase groups is different over each surface 

type. Over sea ice, 40% of AIRS FOVs classified as AIRS unknown-phase are classified as ice-

phase by CCL and 51% are classified as mixed-phase by CCL. Over open ocean, it is 19% and 

65% for CCL ice-phase and mixed-phase, respectively.  

Overall, mixed-phase clouds appear to contribute the most to AIRS unknown and liquid-

phase classifications in the Arctic. As discussed previously, the liquid-topped structure of mixed-

phase clouds could contribute to AIRS liquid-phase classifications, but if the upper region of the 

mixed-phase cloud is more homogenously mixed in terms of ice and liquid particles, this could 

lead to AIRS unknown-phase classifications.    

3.3.2.2 Two-layer Systems  

 Two-layer-overcast CCL groups occur 15-20% of the time in the Arctic compared to all 

overcast CCL groups in which ≥90% CCL FOVs have the same layer number. Figure 3.6a shows 

the frequency of occurrence of two-layer phase combinations in which each layer are overcast 

CCL groups with homogenous-phase. The most common two-layer phase systems are ice-phase-

over-liquid-phase and ice-phase-over-mixed-phase. Such two-layer systems typically consist of 
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ice clouds above 4 km and lower-level liquid and mixed-phase clouds, which is illustrated in Figure 

3.1.  

Figures 3.6b and 3.6c show the relative frequency of occurrence of AIRS phase decisions 

for the ice-phase-over-liquid-phase and ice-phase-over-mixed-phase groups, respectively. For 

both groups, regardless of surface type, most AIRS classifications are unknown-phase, but a non-

negligible amount of AIRS FOVs are classified as liquid and ice-phase for both two-layer groups. 

For the cases in which the upper layer ice cloud is optically thick in the IR, it is expected that most 

of those cases will be classified as ice-phase by AIRS given the high ice-phase classification skill. 

 
Figure 3.6. (A) Frequency of occurrence of two-layer-overcast CCL phase groups over open ocean and sea ice. The counts 

represent the number of CCL groups included in the analysis for each surface type, respectively. Normalization is with respect 

to these counts. (A) Frequency of occurrence AIRS phase decisions for two-layer-overcast CCL ice-phase-over-liquid-phase 

for open ocean and sea ice. The counts represent the number of AIRS FOVs included in the analysis for each surface type, 

respectively. (C) Same as (B) expect for CCL ice-phase-over-mixed-phase. Numerical percentages for each surface type replace 

bars when the bars are not visible. 
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When the upper layer is not completely opaque in the IR, the underlying mixed-phase or liquid-

phase layer could be contributing to the AIRS liquid and unknown-phase classifications.  

3.3.2.3 AIRS Phase Evaluation in the Vertical Dimension  

 Figure 3.7 shows the frequency of occurrence of CCL cloud phase from individual CCL 

cloud layers that are binned based on the overlying AIRS phase decision and surface type. The 

cloud layers are shown for 39 altitude bins from 0-10 km. All CCL FOVs that have successful 

cloud phase detections are used, including those with vertical layer numbers larger than 1. This 

provides another perspective for evaluating AIRS cloud phase classifications compared to the 

overcast CCL FOV grouping methods previously shown.   

  

 
Figure 3.7. (A-C) Frequency of occurrence of individual mixed-phase, ice, or liquid CCL layers that are binned based on 

the overlying AIRS phase classification over open ocean and sea ice. Each individual CCL layer within a single CCL 

FOV is counted here separately and there are 39 altitude bins from 0-10 km. The percentages represent the vertical sums 

of each phase type frequency for each panel, respectively. The normalization is with respect to the total number of cloud 

layers detected by CCL that occur within an AIRS phase category over each surface type, respectively. 
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AIRS FOVs classified as ice-phase by AIRS tend to correspond to the presence of CCL ice 

cloud layers above 4 km (Fig. 3.7c,f), which is consistent with the high ice-phase classification 

skill of AIRS (Table 1). There are also CCL liquid and mixed-phase layers present ~40% of the 

time over open ocean, and ~20% of the time over sea ice (Fig. 3.6c,f), which are mostly excluded 

when selecting only overcast groups of CCL FOVs. The vertical distribution of CCL phase within 

AIRS FOVs classified as liquid-phase by AIRS over open ocean (Fig. 3.7b) shows very little CCL 

ice-phase layers (<5%) and a comparable mixture of liquid (from 0 to 4 km) and mixed-phase 

(from 0 to 6 km) CCL layers. A similar vertical distribution of CCL phase within AIRS FOVS 

classified as liquid by AIRS can also be seen over sea ice (Fig. 3.7e), but in this case mixed-phase 

clouds are more dominant compared to open ocean. This is consistent with AIRS liquid 

classifications having most contributions from CCL liquid and mixed-phase groupings, and more 

AIRS liquid-phase being classified as mixed-phase by CCL over sea ice (Table 3.1). For the AIRS 

unknown-phase category (Fig. 3.7a,d), the occurrence of CCL ice, liquid and mixed-phase cloud 

layers are more comparable from 0 to 10 km, with the largest contributions coming from CCL 

mixed-phase over both surface types, which is a feature also seen in Table 3.1. The larger rate of 

misclassification of CCL ice-phase groups as unknown by AIRS over sea ice (see Table 3.1) is 

also seen here in the vertical cloud information.  

3.3.3 Climatological Perspectives of AIRS and CCL Arctic Cloud Phase Comparisons  

 In this section, the evaluation of AIRS cloud phase retrievals in the Arctic is extended to a 

climatological context in which AIRS and CCL cloud phase from the collocated AIRS-CCL 

dataset is compared seasonally, zonally, and by compositing by TCWV and the temperature 

difference between 1000-300 hPa (ΔT1000-300). The composite with respect to TCWV and ΔT1000-

300 is used to examine the cloud phase classification with respect to large-scale dynamic and 
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thermodynamic factors, in addition to the zonal and seasonal characterization of the cloud phases 

as identified by the AIRS and CCL algorithms. Here, all collocated AIRS and CCL FOVs with a 

cloud phase assigned are used. For the TCWV and ΔT1000-300 composites, AIRS and CCL FOVs 

were matched with the nearest hourly 0.25◦x0.25◦ ERA-5 grid.  

3.3.3.1 Seasonal and Zonal Comparisons 

 Figure 3.8 shows the relative frequency of occurrence of AIRS and CCL cloud phase using 

all CCL cloud layers for 5° zonal bands during all four seasons (top row) and the Arctic-wide 

vertical frequency of occurrence of CCL cloud phase using all layers during each season (bottom 

row). All surface types are used here. 

 
Figure 3.8. (A-D) Frequency of occurrence of CCL phase using all CCL detected cloud layers (solid lines) and AIRS 

cloud phase (dashed lines) for 5° latitudinal bands (except for 80-83°N) for winter, spring, summer, and fall, respectively. 

All surface types are included. The frequencies are relative to the total FOV count in each latitudinal band for each 

instrument for each season, respectively. (E-H) Frequency of occurrence of individual mixed-phase, ice, or liquid CCL 

layers over all surface types during winter, spring, summer, and fall, respectively. Each individual CCL layer within a 

single CCL FOV is counted here separately and there are 39 altitude bins from 0-10 km. The normalization is with 

respect to the total number of cloud layers detected by CCL during a season. 
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For all seasons and latitudes, the relative occurrence of liquid-phase is similar for AIRS 

and CCL (top row of Fig. 3.8), where the differences tend to be within 10%. Furthermore, AIRS 

underestimates ice-phase relative occurrence compared to CCL during all seasons, where the 

difference in relative occurrence between AIRS and CCL ice-phase ranges from ~10-30% 

depending on the latitude and season. It is important to note here that AIRS ice and liquid-phase 

occurrence is relative to AIRS unknown-phase while CCL ice and liquid-phase occurrence is 

relative to CCL mixed-phase. Given that most AIRS unknown-phase classifications correspond to 

CCL ice and mixed-phase groups, it is unsurprising that the liquid-phase relative occurrence agrees 

more between the instruments. When the AIRS and CCL cloud phase is compared seasonally and 

zonally using the single-layer-overcast and homogenous-phase CCL groups only (not shown), the 

ice-phase occurrence between the instruments agrees more than for liquid-phase, which is 

consistent with AIRS phase classification skill shown in Table 3.1.  

Although there are differences in the magnitude of relative occurrence of cloud phase from 

AIRS and CCL, the relative occurrence of cloud phase from each instrument follow a similar 

seasonal cycle (top row of Fig. 3.8), where ice and liquid-phase peak in the winter and summer, 

respectively. Overall, AIRS unknown-phase classifications tend to follow the seasonal change in 

CCL mixed-phase, as most AIRS unknown-phase classifications correspond to CCL mixed-phase 

(Table 3.1). However, a significant fraction of AIRS unknown-phase classifications also 

corresponds to CCL ice-phase as well, and therefore the opposing seasonal cycles of CCL ice and 

mixed/liquid-phase can act to dampen changes in AIRS unknown-phase occurrence across 

seasons.  

The seasonal cycle of the vertical relative frequency of occurrence of CCL phase (bottom 

row of Fig. 3.8) shows agreement with the zonal patterns. In winter and spring, most clouds are 
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ice-phase and occur throughout the atmosphere and peak at ~6 km. In the summer and fall, the 

overall occurrence of liquid-phase increases, mainly below 4 km. CCL mixed-phase occurrence 

peaks in the fall at ~2km.  

3.3.3.2 Total Column Water Vapor Composite 

 Figure 3.9 shows the relative frequency of occurrence of AIRS cloud phase and CCL cloud 

phase using all CCL detected cloud layers over sea ice and open ocean for TCWV intervals 

spanning 1-20 kg/m2. Over open ocean, most cloudy AIRS and CCL FOVs are associated with the 

TCWV range of 4-12 kg/m2 (Fig. 3.9a,c). This can be contrasted with the sea ice scenes, where 

the regime shifts to 1-4 kg/m2 (Fig. 9b,d). This is consistent with sea ice being associated with 

colder and drier regions and the largely reduced local evaporation.  

Over both surface types, CCL liquid-phase occurrence relative to the other CCL phases has 

a similar magnitude and relationship with TCWV, where it increases from 5-10% to 30-35% as 

TCWV is increased (Fig. 3.9,b).  The presence of more liquid clouds relative to the other phases 

at higher TCWV values is likely physical. Over open ocean, mixed-phase cloud relative occurrence 

is largest at 40% in the driest TCWV regimes and decreases to 30% as TCWV is increased. This 

relationship between CCL mixed-phase and TCWV is different over sea ice, where mixed-phase 

cloud relative occurrence is largest in the wettest TCWV regime. Such differences highlight the 

complex relationship between Arctic mixed-phase clouds and humidity. For CCL ice-phase 

occurrence, the relationship between TCWV and ice-phase cloud relative occurrence is similar 

over each surface type, where the relative occurrence of ice clouds decreases with increasing 

TCWV, which could be explained by more of the cloud condensate being allocated to liquid-water 

content.  
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AIRS tends to underestimate the relative occurrence of ice-phase compared to CCL in all 

but the wettest TCWV regime and the relative occurrence of liquid-phase is more comparable 

across the TCWV regimes (Fig. 3.9c,d). Over open ocean, AIRS ice-phase relative occurrence 

increases with TCWV, which is opposite to CCL, and is underestimated compared to CCL by 

~40% in the driest TCWV regime. Over sea-ice, the relationship between AIRS ice-phase relative 

occurrence and TCWV is like CCL, where ice-phase relative occurrence decreases with TCWV. 

For both surface types, AIRS overestimates liquid-phase relative occurrence anywhere from 5-

20% depending on the TCWV regime. However, for each surface type, just like CCL, AIRS liquid-

phase increases with TCWV. Over each surface type, AIRS unknown-phase relative occurrence is 

largest for all TCWV regimes except for 1-4 kg/m2 over sea ice. For open ocean, AIRS unknown 

 

Figure 3.9. (A) Frequency of occurrence of CCL cloud phase using all CCL detected cloud layers over open ocean for 

intervals of TCWV. The dotted black line represents the percentage of cloudy CCL FOVs that fall within a TCWV 

interval. Normalization is with respect to all CCL FOVs with a cloud phase assigned in a given TCWV interval. (B) 

Same as (A) expect for sea ice. (C) Frequency of occurrence of AIRS cloud phase over open ocean for intervals of 

TCWV. The dotted black line represents the percentage of cloudy AIRS FOVs that fall within a TCWV interval. 

Normalization is with respect to all AIRS FOVs with a cloud phase assigned in a given TCWV interval.  (D) Same as (C) 

expect for sea ice. 
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is largest in the driest TCWV regime, which coincides with the peak of CCL mixed-phase, and 

linearly decreases with increasing TCWV. For sea ice, AIRS unknown-phase relative occurrence 

remains between 35-55% for all TCWV regimes, which corresponds to CCL mixed-phase having 

small variations across TCWV regimes. 

3.3.3.3 1000-300 hPa Temperature Difference Composite 

Figure 3.10 shows the frequency of occurrence of AIRS cloud phase and CCL cloud phase 

using all CCL detected cloud layers over sea ice and open ocean for ΔT1000-300 intervals ranging 

from 30-65 K. Over open ocean, the ΔT1000-300 intervals most associated with cloudy AIRS and 

CCL FOVs are 50-55 K (Fig. 3.10a,c). Over sea ice, the ΔT1000-300 occurrence peak shifts to smaller 

values (Fig. 3.10b,d) which is consistent with colder surface conditions producing a more stable 

troposphere. 

Over each surface type, CCL liquid-phase relative occurrence shows a general increasing 

trend from 5-10% to 10-15% with increasing ΔT1000-300. At higher ΔT1000-300, the Arctic 

troposphere can be more unstable and could thus favor the development of liquid cloud water. 

CCL mixed-phase cloud relative occurrence is largest in the smallest ΔT1000-300 regime (30-35 K) 

over open ocean and linearly decreases with increasing ΔT1000-300. Over sea ice, CCL mixed-phase 

relative occurrence varies from 15-30% and peaks between 50-55 K. CCL ice-phase relative 

occurrence has a distinctly different relationship with ΔT1000-300 over each surface type. Over open 

ocean, it increases from ~50% to 60% with increasing ΔT1000-300, and over sea ice it decreases from 

~80% at the most stable ΔT1000-300 regimes, is minimum at 50% between 45-50 K, and then linearly 

increases with increasing ΔT1000-300.  

AIRS underestimates the relative occurrence of ice-phase over open ocean by 20-40% 

when compared to CCL (Fig. 3.10a,c), but the relationship between ice-phase occurrence and 
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ΔT1000-300 is similar to CCL. Over sea ice, AIRS and CCL agree that ice-phase occurrence is larger 

than liquid-phase across the ΔT1000-300 regimes and both AIRS and CCL’s ice-phase relative 

occurrence have a very similar functional relationship with ΔT1000-300 (Fig. 3.10b,d). However, 

AIRS still underestimates ice-phase relative occurrence over sea ice by 10-20%. AIRS tends to 

overestimate the relative occurrence of liquid-phase by 10-20% over open ocean compared to 

CCL. Also, AIRS liquid-phase relative occurrence is largest in the smallest ΔT1000-300 regimes and 

smallest in the highest ΔT1000-300 regime, which is opposite to that of CCL over open ocean. Over 

sea ice, AIRS and CCL liquid-phase occurrence have a similar relationship with ΔT1000-300, but 

AIRS tends to overestimate liquid-phase relative occurrence by 5% to 10% compared to CCL. 

 

Figure 3.10. (A) Frequency of occurrence of CCL cloud phase using all CCL detected cloud layers over open ocean for 

intervals of the temperature difference between 1000 and 300 hPa (ΔT1000-300). The dotted black line represents the 

percentage of cloudy CCL FOVs that fall within a ΔT1000-300 interval. Normalization is with respect to all CCL FOVs with 

a cloud phase assigned in a given ΔT1000-300 interval. (B) Same as (A) expect for sea ice. (C) Frequency of occurrence of 

AIRS cloud phase over open ocean for intervals of ΔT1000-300. The dotted black line represents the percentage of cloudy 

AIRS FOVs that fall within a ΔT1000-300 interval. Normalization is with respect to all AIRS FOVs with a cloud phase 

assigned in a given ΔT1000-300 interval. (D) Same as (C) expect for sea ice.  
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AIRS unknown-phase occurrence is larger than AIRS liquid and ice-phase over all ΔT1000-300 

regimes for open ocean and is not highly dependent on ΔT1000-300. Over sea ice, AIRS unknown-

phase is only greater than AIRS liquid and ice-phase within the 40-55 K regimes.  

The TCWV and ΔT1000-300 composite analyses indicate that AIRS and CCL disagree on the 

magnitude of relative occurrence of liquid and ice-phases in the regimes. The AIRS unknown-

phase is a major contributor to such biases, especially over open ocean where CCL mixed-phase 

clouds are more prevalent. However, the relationship between AIRS cloud phase and TCWV and 

ΔT1000-300 regimes is similar to CCL, mainly over sea ice, and this indicates that AIRS cloud phase 

retrievals can be realistically used in Arctic cloud process studies. Lastly, it was determined that 

neither ΔT1000-300 nor TCWV regime significantly impacted AIRS phase classification skill. 

3.4. MODIS-AIRS-CCL Case Study  

A case study was conducted using daytime only collocated Arctic MODIS-AIRS-CCL 

FOVs for July 2009 in order to understand (1) the relationship between MODIS cloud amount and 

phase and AIRS Arctic cloud phase occurrence statistics and (2) the agreement between MODIS 

and CCL cloud phase classifications. MODIS cloud fraction (CF) within an AIRS FOV is defined 

as the ratio of MODIS pixels within an AIRS FOV that are flagged as probably or confident cloudy 

with respect to the total number of MODIS pixels in the AIRS FOV. Only AIRS FOVs with >95% 

of MODIS pixels having a cloud mask decision are included. 

Figure 3.11 (top row) shows the occurrence frequency of AIRS cloud phase over open and 

sea ice together using all collocated MODIS-AIRS-CCL AIRS FOVs (black bars) and for those in 

which there is only greater than 90% MODIS CF in the AIRS FOVs (gray bars). This is shown for 

collocation with single-layer-overcast and homogeneous CCL ice-phase groups (left column), 

CCL liquid-phase groups (middle column) and for CCL mixed-phase groups (right column). For 
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each of the CCL phase groups (Fig. 3.11a-3.11c), the frequency of occurrence of AIRS phase 

decisions is similar to what is observed for the entire four-year period. This indicates that the AIRS 

cloud phase classification skill determined in Section 3.3 is robust to sampling differences. Figure 

3.11 (middle row) shows the average MODIS cloud phase fraction (CPF) from AIRS FOVs that 

are collocated with each CCL cloud phase group (Fig. 3.11d-3.11f). Here, MODIS CPF is defined 

as the ratio of MODIS pixels of a given phase relative to all MODIS pixels with a phase assigned 

in the AIRS FOV. This shown for three regimes of MODIS CF (CF>10%, 10%<CF<90%, and 

 

Figure 3.11. All panels are for July 2009 over open ocean and sea ice and each column is for AIRS FOVs that contain 

single-layer-overcast homogenous ice, liquid or mixed-phase CCL FOV groups, respectively: (A-C) Frequency of 

occurrence of AIRS phase decisions for all AIRS FOVs collocated with CCL and MODIS and for which the MODIS cloud 

fraction (CF) within the AIRS FOV is >90%. The counts represent the number of AIRS FOVs included for the “All FOVs” 

and “>90% MODIS CF” categories. The normalization is with respect to these counts. (D) Average MODIS cloud phase 

fraction (the number the MODIS pixels of a given phase divided by all MODIS pixels that are assigned a phase in the 

AIRS FOV and then averaged across all respective AIRS FOVs) for 3 intervals of MODIS CF. (E-F) Same as D except for 

>90% MODIS CF only. (G-I) Frequency of occurrence of MODIS CF in three intervals. The normalization here is with 

respect to the number of all AIRS FOVs included in the analysis (count numbers in black, top row) 

 



 

81 

 

CF>90%) in Figure 3.11d. For Figures 3.11e and 3.11f, MODIS CF is greater than 90% only. 

Figure 3.11 (bottom row) shows the frequency of occurrence of MODIS CF within three CF 

regimes. This is shown for collocation with each of the three CCL cloud phase groups (Fig. 3.11g-

3.11i).  

MODIS CF occurrence in Figures 3.11h and 3.11i indicates that most AIRS FOVs 

containing the CCL liquid and mixed-phase groups have greater than 90% cloud cover. Cloud 

amount in the Arctic reaches its peak in July and thus it is reasonable to observe a high occurrence 

of horizontal cloud coverage within these AIRS FOVs. For the AIRS FOVs with CCL liquid-phase 

groups, the average MODIS liquid CPF is ~0.99 (Fig. 3.11e). Marchant et al. (2016) shows that 

when evaluated with CALIPSO, MODIS correctly classifies liquid cloud scenes at a higher rate 

than ice cloud scenes, which could help explain the liquid-phase agreement between MODIS and 

CCL seen in this study. For the AIRS FOVs with CCL mixed-phase groups, average MODIS liquid 

and ice CPF is ~0.75 and ~0.25, respectively (Fig. 3.11f). This indicates that CCL mixed-phase 

clouds tend to correspond to MODIS liquid-phase classifications just as they corresponds to AIRS 

liquid-phase. For the AIRS FOVs with CCL ice groups, greater than 90% MODIS CF occurs about 

60% of the time (Fig. 3.11g), and for such cases the average MODIS ice and liquid CPF is ~0.7 

and ~0.3, respectively.  

When AIRS FOVs with less than 90% MODIS CF are selected in the AIRS cloud phase 

evaluation for the CCL liquid and ice-phase groups, the amount of unknown-phase classifications 

increases. This corroborates the results of Kahn et al. (2011) and Guillaume et al. (2019), who 

presented a similar result for global AIRS observations. However, it should be noted that when 

10-90% MODIS CF is included in the AIRS phase evaluations for the CCL ice-phase groups, the 

average ice and liquid MODIS CPF becomes comparable, and this effect can also be responsible 
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for increasing AIRS unknown-phase classifications, as was shown in Kahn et al. (2011). Overall, 

MODIS cloud phase classification for ice and liquid scenes was consistent with CCL, which 

provides more confidence of the use of CCL for AIRS cloud phase evaluations during the four-

year period. 

3.5. Conclusion  

In this study, AIRS Arctic cloud phase classification was evaluated against combined 

CloudSat-CALIPSO (CCL) observations over a four-year period. Our approach for this AIRS 

phase evaluation was distinctly different compared to the global evaluation performed by JN14, 

especially in our use of CCL mixed-phase classification. Overall, AIRS ice-phase classification 

skill in the Arctic for single-layer clouds is >85% depending on the surface type, which is much 

higher than the classification skill for liquid-phase. However, AIRS tends to classify more liquid-

phase clouds as liquid-phase in the Arctic compared to what was reported for the entire globe in 

JN14. It is possible that dry atmospheres lead to less ambiguous AIRS liquid phase classification, 

and this warrants future investigation. Mixed-phase clouds correspond to AIRS unknown and 

liquid-phases. AIRS phase classification changes with horizontal scale of cloud phase mixing, thus 

the morphology of mixed-phase cloud systems could influence AIRS phase decisions. The results 

of the two-layer AIRS phase evaluation indicate that, in some cases, the upper layer cloud is 

transparent enough in the IR for the lower cloud layer’s phase signal to influence AIRS phase 

decisions. The two-layer systems produce mostly unknown AIRS phase classifications, and such 

systems should be considered when improving the AIRS cloud phase algorithm. 

When using all collocated AIRS and CCL FOVS, AIRS ice-phase occurrence relative to 

the other AIRS phases was less than that for CCL ice-phase relative occurrence across latitudes, 

seasons, and TCWV and ΔT1000-300  regimes over both sea ice and open ocean. However, the liquid-
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phase relative occurrence had more agreement. This result likely is due to AIRS unknown-phase 

classifications corresponding to CCL ice-phase and mixed-phase. The seasonal cycle, and in some 

cases, the dependence of cloud phase relative occurrence on TCWV and ΔT1000-300 regime, was 

similar between CCL and AIRS. This indicates that AIRS cloud phase data can capture the 

connections between the physical properties and processes in the Arctic atmosphere and cloud 

phase. Moreover, the accurate seasonal cycle of AIRS liquid and ice cloud phase indicates that 

AIRS could provide accurate occurrence anomalies on inter-seasonal to inter-annual scales.  

 The MODIS case study indicates that heterogenous cloud cover and cloud phase 

distributions in the AIRS FOV correspond to increased unknown-phase classifications by AIRS, 

which verifies the findings of previous studies. Because MODIS cloud phase throughout the AIRS 

FOVs tended to correspond to cloud phase detected by CCL, and the case-study-based AIRS phase 

decision statistics were similar to that of the entire four-year period, the case study provides more 

confidence in the use of the CCL narrow track for AIRS phase evaluations.  

 Given that 42% of AIRS FOVs over the Arctic Ocean were classified as unknown-phase 

by AIRS, it is pertinent to improve the algorithm. The results of this study both illuminate factors 

to consider for algorithm improvement and factors of secondary importance. For example, both 

TCWV and ΔT1000-300 did not significantly impact AIRS phase classification skill. However, 

surface type did correspond to ~10% differences in AIRS phase classification skill for ice and 

liquid-phase. Given that window channels are used in the AIRS phase algorithm, it is possible that 

differences in the surface emissivity of open ocean and sea ice may play a role in phase 

misclassifications for thin clouds. Channels that are less useful in moist lower latitudes could be 

used to improve cloud phase classifications in the dry Arctic. An information content analysis 
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could shed light onto how cloud phase signatures influence AIRS channels in variable TCWV 

regimes.  

Mixed-phase cloud identification using the IR continues to be a challenge. Over the Arctic, 

AIRS frequently classifies mixed-phase clouds as either liquid or unknown and, according to the 

case study, MODIS frequently classifies them as liquid-phase. However, because CCL can only 

identify the presence of liquid and ice within a single cloud layer, we could not further investigate 

how the influence of mixed-phase cloud vertical structure relates to AIRS or MODIS cloud phase 

decisions. This could be addressed by collocating ground-based high-spatial-resolution lidar 

measurements of Arctic mixed-phase clouds with AIRS and MODIS observations or generating 

synthetic radiances for cloud phase classification from large eddy simulations that capture realistic 

mixed-phase cloud processes. 
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Chapter 4 Synergistic use of Far- and Mid-Infrared Spectral Radiances for Satellite-based 

Detection of Polar Ice Clouds over Ocean 

 

The material in this chapter was published in 

Peterson, A, C., Huang, X., Chen, X., Yang, P. (2022) Synergistic use of Far- and Mid-Infrared 

Spectral Radiances for Satellite-based Detection of Polar Ice Clouds over Ocean. Journal of 

Geophysical Research: Atmosphere. In press. 

4.1. Introduction 

 Clouds play an important role in the energy budget and, hence, climate of the polar regions. 

On average, clouds tend to warm the surfaces of both polar regions through infrared (IR) emission 

(Intrieri et al., 2002; Scott et al., 2017). The thermodynamic phase of a cloud, or whether it is 

composed of liquid droplets, ice particles, or both (mixed phase), influences the radiative effects. 

With the same cloud water content, liquid clouds tend to be optically thicker than ice clouds, which 

can result in a stronger surface warming by liquid clouds than by ice clouds in polar regions (Shupe 

& Intrieri, 2004; Scott et al., 2017; Di Natale et al., 2020; Lubin & Vogelmann, 2006; Garrett & 

Zhao, 2006). Mixed phase clouds, which are common over the Arctic and Southern Oceans 

(Shupe, 2011; Korolev et al., 2017; Lawson & Gettelman, 2014), are produced and maintained by 

complex microphysical and meteorological processes that interconvert liquid droplets and ice 

particles and are not well characterized for the vast and remote polar regions (e.g., Morrison et al., 

2012; Listowski & Lachlan-Cope, 2017). Polar mixed phase clouds are generally stratiform with 

a super-liquid layer of liquid water at the cloud top (de Boer et al., 2011). Based on Arctic ground 
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observations of clouds at Barrow and Eureka sites, ice-phase cloud occurs annually at a frequency 

of 60-70% while liquid-phase cloud occurrence frequency can be as high as 56% (Shupe, 2011). 

Using combined CALIPSO and CloudSat observations for grid boxes of 2∘ in latitude and 5∘ in 

longitude, Listowski et al. (2019) found that Antarctic ice-only cloud occurrence frequency can be 

up to 70% relative to all cloud observations. The occurrence frequency of super-cooled-liquid-

containing clouds relative to all cloud observations can be as high as 85% over the Southern Ocean. 

Overall, a lack of understanding of cloud-phase-related processes leads to biases in simulations of 

radiative fluxes over the Arctic (Cesana et al., 2012; Kay et al., 2016) and Southern Oceans 

(Vergara-Temprado et al., 2018; Listowski & Lachlan-Cope, 2017).  

Satellite observations are needed to estimate the spatial distribution and variability of 

clouds across the vast polar regions, and cloud phase is a key property. While active remote sensing 

techniques such as radar and lidar can be considered as benchmark tools for cloud phase detection, 

such measurements are only available along narrow ground tracks (e.g., ~1.5 km track width for 

CloudSat). Passive remote-sensing measurements such as those from AIRS and MODIS have 

much wider swaths, and thus, larger spatial coverages, than active remote-sensing measurements. 

In the polar regions, there is a limited period of solar illumination and large solar zenith angles 

even at solar noon. Thus, passive IR measurements are generally more useful than reflected 

shortwave measurements in polar regions. The mid-IR window (~800-1250 cm-1) is 

conventionally used for cloud phase retrievals due to weak greenhouse gas absorption and the 

differences in the spectral variations of ice and liquid absorption across this spectral region. These 

differences in absorption variations, normally formulated as brightness temperature differences 

(BTDs) between two spectral channels in the mid-IR, can be used to detect the presence of cloud 

ice or liquid from space. This has been widely known as the “bi-spectral” method (e.g., Ackerman 
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et al., 1990; Baum et al., 2000; Strabala et al., 1994). Both the MODIS Collection 6 (Baum et al., 

2012) and AIRS (Kahn et al., 2014) cloud phase algorithms utilize such mid-IR BTDs to classify 

clouds as ice, liquid, or uncertain phase. 

 The mid-IR has notable limitations when used to determine cloud phase in polar regions. 

A fundamental limitation is related to cloud-surface thermal contrast, i.e., the difference between 

the cloud top temperature (CTT) and the surface skin temperature. In polar regions, especially in 

winter, it is not uncommon for cloud layers to be as warm as or warmer than the surface. This can 

lead to clouds being indistinguishable from nearby clear-sky pixels. Moreover, if the cloud 

becomes increasingly opaque, it can become more difficult to use mid-IR BTDs for cloud phase 

determination, and the mid-IR BTDs approach 0 K as the cloud optical depth approaches infinity 

(if only cloud absorption and emission are considered). Another major limitation is that the mid-

IR cannot determine if a cloud contains both liquid and ice particles (Baum et al., 2000; Cho et al., 

2009). These problems contribute to a misclassification of 70-80% of liquid-containing clouds in 

the Arctic by the AIRS algorithm compared to combined CloudSat-CALIPSO observations 

(Peterson et al., 2020). 

 In the present study, we aim to demonstrate that mid-IR polar cloud phase determination 

can be supplemented, or even improved, by introducing far-infrared (far-IR; <~600 cm-1) spectral 

radiance observations.  The far-IR makes up over 60% of outgoing IR radiation in polar regions, 

and due to the cold and dry conditions, numerous semi-transparent water vapor micro-windows 

between 400 and 600 cm-1 become available for cloud phase detection. In this study, we refer to 

the entire 400-600 cm-1
 band as the dirty window region, a term introduced in Yang et al. (2003). 

The far-IR has been historically underutilized for spaceborne remote sensing due to technological 

limitations. However, two upcoming missions will measure the far-IR radiances, namely the Polar 
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Radiant Energy in the Far Infrared Experiment (PREFIRE) (L’Ecuyer et al., 2021) and the Far‐

infrared‐Outgoing‐Radiation Understanding and Monitoring (FORUM) missions (Palchetti et al., 

2020). The planned spectral range for the sensors used in these missions is 5-54 μm for PREFIRE 

and 100-1600 cm-1 for FORUM, respectively. 

Recent studies have investigated the use of high spectral resolution far-IR radiances for 

cloud phase classification (i.e., Maestri et al 2019a,b; Sgheri et al., 2021; Cossich et al., 2021) 

based on observed downwelling radiances and synthetic satellite observations. These studies 

utilize numerous spectral channels across the far-IR and mid-IR for the radiance inputs to a 

principal component analysis-based machine learning algorithm for cloud identification. 

Meanwhile, it may be possible to use a simple and physically based two-channel bi-spectral 

method for far-IR cloud phase determination because, like the mid-IR, ice and water absorption 

vary across the far-IR spectrum. The spectral variation of ice cloud scattering also varies across 

the far-IR and can be larger in the far-IR compared to the mid-IR, which can potentially provide 

additional information to help discriminate different cloud phases using a bi-spectral approach. 

Furthermore, it is possible that a far-IR BTD cloud phase algorithm can supplement or improve 

the conventional mid-IR BTD approach, as multiple studies have indicated that the far-IR and mid-

IR can be used synergistically for cloud phase determination (e.g., Cossich et al., 2021; Turner, 

2005; Rathke et al., 2002; Rowe et al., 2019). It has also been shown that the prominent far-IR 

scattering can be used synergistically with the mid-IR for ice cloud property retrievals (Merrelli & 

Turner, 2013; Libois & Blanchet, 2017; Saito et al., 2020). All the above facts and studies 

motivated us to further understand and exploit the synergy of the far-IR and mid-IR for polar ice 

cloud detection with a BTD algorithm.  
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This study explores the use of spaceborne far-IR radiances to improve mid-IR based ice 

cloud detection in the polar regions using a simple bi-spectral approach. Section 4.2 describes the 

reanalysis data and radiative transfer simulations used to generate synthetic spectra. Using such 

synthetic outgoing spectra at the top of the atmosphere (TOA), section 4.3 describes the theoretical 

basis for the far-IR ice phase determination and presents a far-IR BTD test for such determination. 

Section 4.4 provides a comparison between the far-IR and mid-IR ice phase determination skills 

and their relationship with ice cloud properties. A summary and conclusions are given in Section 

4.5.   

4.2. Reanalysis Data and Radiative Transfer Modeling 

4.2.1 ERA5 Reanalysis Data  

ECMWF ERA5 reanalysis fields (Hersbach et al., 2020) are used as inputs to MODerate 

Resolution Atmospheric TRANsmission Version 5 (MODTRAN5; Berk at al., 2005), a widely 

used radiative transfer model in optical remote sensing studies, to generate synthetic spectral 

radiances for this study. Data over both polar regions (60°N-90°N and 60°S-90°S) in January and 

July 2005 are used. The months are chosen to represent the contrasting physical features of winter 

and summer seasons. ERA5 data have a 0.25°x0.25° horizontal resolution and hourly temporal 

resolution. Hourly vertical profiles in ERA5 are provided at 37 fixed pressure levels from 1000 

hPa to 1 hPa. The ERA5 surface pressure (Ps) is also used as input MODTRAN5 as well. The 

altitudes of these pressure levels are calculated using the hydrostatic approximation. A similar 

synthetic spectral approach has been used in previous studies of downward spectral radiance 

retrievals such as Rowe et al. (2019) and Rowe et al. (2016).  
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Profiles of atmospheric temperature, specific humidity, specific cloud liquid water content, 

and specific cloud ice water content, as well as surface skin temperature are used as input to the 

MODTRAN5 radiance calculations. In this study we only use “single-phase” clouds profiles (i.e., 

liquid- or ice-only) based on thresholds of ice cloud water path (IWP) and liquid cloud water path 

(LWP). If a cloud profile has IWP > 1 g/m2 and LWP < 1 g/m2, it is treated as an ice-only cloud 

profile. If a cloud profile has LWP > 1 g/m2 and IWP < 1 g/m2, it is treated as a liquid-only cloud 

profile. Based on ERA5 3-hourly IWP and LWP over the polar regions for the entire year of 2005, 

90.9% of IWP values are greater than 1 g/m2. For the LWP, 82.3% of the values are greater than 

1 g/m2
. For the finalized set of cloud profiles (see details below) used in this study, the median 

LWP for the liquid-only clouds is 70.6 g/m2 while the median IWP for the ice-only clouds is 58.1 

g/m2. 

A profile that does not qualify as a liquid- or ice-only cloud profile is not considered for 

this study, which excludes mixed phase clouds. Once a profile is selected, it only has one single 

phase and, for any vertical layer with cloud water content, the cloud coverage is assumed to be 

100% over the grid box. Cloud top pressure (CTP) is defined as the first pressure level from the 

TOA down at which the cloud water mixing ratio exceeds 1x10-3 g/kg.  

A total of 4000 ice-only and 4000 liquid-only ERA5 profiles were selected based on the 

single-phase criteria described above. Land profiles are excluded and the ocean spectral surface 

emissivity from Huang et al. (2016) was used for all simulations. Note that extending this study 

over land would require considering land surface emissivity. The selected profiles only lie over 

the Arctic and Southern Oceans and include cases above sea ice and snow. However, using the 

bare ice emissivity from Huang et al. (2016) for radiance simulations did not significantly impact 

the far-IR and mid-IR BTDs established here (not shown). 
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For input into MODTRAN5, the ERA5 specific cloud water content profiles are first 

converted to cloud water concentration profiles. If the cloud water concentration is greater than 

1x10-5 g/m3 at a given ERA5 model level, the concentration value is directly used in MODTRAN5, 

otherwise that level is assumed to be cloud free. The same set of fixed pressure levels from ERA5 

is directly used in MODTRAN.  Based on whether a given ERA5 cloud water concentration value 

exceeds the 1x10-5 g/m3 threshold, there can be a single cloud consisting of multiple consecutive 

levels in the MODTRAN5, a cloud consisting of only a single layer in the MODTRAN5, or 

multiple layers of clouds separated by clear-sky in between. 

MODTRAN5 limits the number of discrete pressure levels in which cloud water content 

can be specified to between 3 and 16. As we use the original ERA5 vertical levels in the input file 

to MODTRAN5, this cloud layering limitation reduces the total ice and liquid cloud profiles used 

in this study to 2102 and 3860, respectively.  

For both the liquid and ice cloud profiles, 300 profiles are randomly selected and used as 

training samples. These random training profiles consist of samples from both months and polar 

regions and are used to establish far-IR and mid-IR BTD thresholds. The test data for validation 

and evaluation purposes consists of the remaining 1802 ice and 3560 liquid cloud samples.  

4.2.2 Simulations of Spectral Radiance 

Two sets of spectral radiances are simulated using each cloudy profile, one with the clouds 

and the other with the clouds removed. The latter cases are referred to as “clouds-removed” cases 

and are included so that the role of the clouds in the BTDs can be examined. Additionally, a total 

of 500 randomly selected ERA5 polar clear-sky profiles (not the same as clouds-removed) are used 
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for clear-sky radiance simulations so that the role of water vapor in far-IR ice phase determination 

can be assessed.  

Nadir-view outgoing spectral radiances at the TOA are generated from 400 cm-1 to 1300 

cm-1 with a spectral resolution of 1 cm-1. An eight-stream DISORT solver (Stamnes et el., 1988) 

built into MODTRAN5 is used for all scattering calculations.  

The ice bulk absorption and scattering models from Baum et al. (2014) are used in ice cloud 

radiance calculations. These models are based on the ice particle single scattering property 

database developed by Yang et al. (2013). Specifically, the ice cloud optical property (COP) 

models are based on a general habit mixture, which consists of nine common ice habits (Baum et 

 

Figure 4.1. Bulk ice cloud and liquid cloud optical properties (COPs): (a) Extinction efficiency, (b) absorption efficiency, 

(c) scattering efficiency, (d) single scattering albedo, (e) scattering asymmetry parameter. Colors as labeled above the plots 

indicate one liquid droplet diameter and four ice effective diameters. Vertical dotted and dashed lines bracket the far-IR 

dirty window region and mid-IR window, respectively. 
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al., 2014). The bulk ice COP models are developed for a given wavelength by integrating over the 

single scattering properties of individual habit and particle size distributions (PSDs) from 14,000 

aircraft measurements, and the ice COPs are then averaged across the 14,000 cases. The ice PSDs 

were assumed to be gamma distributions. Figure 4.1 shows five COPs: Bulk absorption efficiency 

(Qabs), scattering efficiency (Qscat), extinction efficiency (Qext), single scattering albedo (SSA), and 

scattering asymmetry factor (g). COPs are provided at wavelengths from 3 to 99 µm and for 

effective ice particle diameters (Deff_ice) ranging from 10 to 180 µm at 5 µm increments. Such ice 

COPs are linearly interpolated to the spectral channels in our simulations. Deff_ice values of 20, 40, 

60, and 100 µm are used respectively for ice cloud radiance simulations, so cloudy training and 

test spectra for each Deff_ice value are derived. These groups of spectra are henceforth referred to 

as the Deff_ice groups. Mie scattering is used to derive the COPs for all liquid clouds assuming a 20 

µm droplet diameter. Reducing diameter to 10 µm has a negligible impact on the BTD performance 

on liquid cloud cases (not shown). Thus, for brevity, only the 20 µm droplet diameter is used for 

liquid clouds in the following discussion.  

Figure 4.2 shows the histograms of visible cloud optical depth (COD; see section 4.2.2 for 

details on COD calculation) and CTP for the finalized set of liquid and ice cloud profiles used in 

this study. In addition, to obtain cloud optical depth (COD or ) in each spectral channel mentioned 

above, the cloud extinction optical depth at 0.55 µm is also computed assuming Qext_ice=2 at 0.55 

µm. Following the convention in optical cloud remote sensing, unless specified otherwise, all 

cloud optical depths mentioned hereafter refer to the visible cloud optical depth at 0.55 µm. 
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4.3. Theoretical Basis for Far-IR Ice Phase Determination  

This section first compares the far-IR and mid-IR ice and liquid COPs. The roles of 

scattering, absorption, and water vapor are then discussed in more detail, followed by a description 

of the far-IR ice phase BTD test. In general, the channels of choice should sit within a spectral 

micro window between absorption lines such that the influence of water vapor can be minimized. 

Such channels should have enough contrast in terms of ice vs. liquid COPs (as well as ice COPs 

vs. clear-sky absorption) so the BTD can be used for ice cloud detection. Based on these 

considerations, 449 cm-1 and 521 cm-1 are chosen as the two channels for the far-IR BTD ice cloud 

determination. The far-IR BTD test metric is thus referred to as BTD449-521 (i.e., BT449 – BT521, 

where BT is the brightness temperature of the stated channel). The selection of these two channels 

is determined by optimizing the synergy between far-IR ice absorption and scattering and 

accounting for clear-sky water vapor absorption in each channel, as discussed below. 

  

Figure 4.2. Visible cloud optical depth (COD) and cloud-top-pressure (CTP) histograms for the 2102 ice cloud cases using 

all four Deff_ice and 3860 liquid cloud cases with one droplet size. The data includes both the training and testing datasets.  
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4.3.1 Comparison of Far-IR and Mid-IR Ice Cloud Optical Properties  

Using a BTD test to determine whether a cloud is composed of ice or liquid particles relies 

on the ways that cloud particles can affect the TOA brightness temperature in two different 

channels. Figure 4.1 shows the optical properties of ice cloud particles with the four 

aforementioned Deff_ice values as well as liquid cloud particles with a diameter of 20 µm. 

Comparing the spectral variations of COPs in the far-IR dirty window region to their counterparts 

in the mid-IR window, several noteworthy facts are as follows: 

(1) Except for g, other optical properties of liquid cloud have much smaller spectral 

variations in the far-IR dirty window region than in the mid-IR window. For example, 

Qext_liq varies between 1.67 and 3 in the mid-IR window, but only between 2.37 and 2.5 

in the far-IR dirty window region. The SSA of liquid clouds remain essentially flat in 

the far-IR dirty window region but changes from 0.39 to 0.76 in the mid-IR window.  

(2) In contrast, ice COPs exhibit much larger spectral variations in the far-IR dirty window 

region than liquid cloud counterparts. Qabs_ice monotonically increases from 400 to 600 

cm-1 for all ice particles examined here, and SSA monotonically decreases over the 

same spectral region. The SSA of ice clouds over 400-500 cm-1, part of the far-IR dirty 

window region, can be significantly larger compared to the mid-IR window region, 

especially for small ice cloud particles. This implies that scattering can be more 

important in the far-IR BTDs than in the mid-IR BTDs. Consistent with the SSA 

spectral variation, except for the case of 20-µm Deff_ice, Qscat_ice also monotonically 

decreases from 400 to 600 cm-1.  

(3) Unlike the case in the far-IR dirty window region, ice COPs do not have a monotonic 

dependence with frequency in the mid-IR window. Note that spectral variation of 



 

100 

 

Qabs_ice in the mid-IR window is one motivation for the mid-IR window BTD cloud 

phase classification (e.g., Ackerman et al., 1990).  

(4) A larger ice particle has a larger forward scattering peak, as expected from the 

scattering theory. As a result, g increases with ice particle size for all frequencies. 

Moreover, over the far-IR dirty window region, SSA decreases with ice particle size 

for all frequencies, which is not the case for the mid-IR window. 

4.3.2 Role of Absorption, Scattering, and Thermal Emission in Far-IR Ice Phase 

Determination 

4.3.2.1 Dependence of BTD on cloud optical depth, cloud top pressure, and cloud particle size  

A sufficient difference in ice attenuation of incident radiation between two spectral 

channels v1 and v2 can lead to a large enough BTD between the two channels (BTDv1-v2) to 

confidently determine the cloud phase. For example, assuming the surface is warmer than the cloud 

and the cloud is semi-transparent, then more cloud absorption at v1 than at v2 can lead to a negative 

BTD. However, the far-IR dirty window region Qscat_ice, in general, exhibits an opposite spectral 

dependence compared to Qabs_ice, as described in the previous section. Moreover, thermal emission 

by clouds can further complicate the change of BT. This section focuses on the extent to which 

these radiative processes, namely scattering, absorption, and emission, can negate or support one 

another in far-IR ice phase determination. 

For all four Deff_ice, absorption efficiency at 521 cm-1, denoted as Qabs_ice(521), is greater 

than at 449 cm-1 Qabs_ice(449). Thus, for an ice cloud, absorption and emission alone would always 

result in a non-negative BTD449-521 if the surface is warmer than the cloud, assuming the surface 

emissivity is similar between the far-IR spectral channels, which is the case for the ocean surface 
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emissivity used for all simulations. On the other hand, Qscat_ice(449)  is greater than Qscat_ice(521) 

in all the ice cloud cases. Figure 4.3 shows the simulated BTD449-521 for two single-layer ice clouds 

with different CTPs and a single-layer liquid cloud. The results are shown for a range of CODs 

(0.5-10) and for three different Deff_ice values and one Deff_liq value (20 µm).  The liquid cloud 

BTD449-521 is between -0.2 and -0.3 K, nearly constant, when COD varies from 0.5 to 10. When 

Deff_liq is changed from 20 µm to 10 µm (not shown), the BTD449-521 range only changes from -0.3 

K to -0.35 K. The BTD449-521 range also changes by a negligible amount when the liquid cloud 

CTP is changed to 500 hPa (i.e., cloud base at 550 hPa). 

In ice clouds, both Deff_ice and CTP can impact the sign of BTD449-521. The difference 

between two CTPs shows the influence of water vapor between 500 and 700 hPa on BTD449-521. 

 

Figure 4.3. Brightness temperature (BT) difference (BTD; 449 cm-1 BT minus 521 cm-1 BT) for a single-layer cloud. The 

ice cloud tops are at 500 hPa (blue solid lines) or 700 hPa (pink dashed lines) and the liquid cloud top is 775 hPa (solid red 

line). All ice clouds are 50 hPa thick and the liquid cloud is 25 hPa thick. Results are shown for ice clouds with 100 µm, 60 

µm and 20 µm Deff_ice. A set of typical Arctic winter temperature and humidity profiles from the ERA5 reanalysis is used 

for all calculations.  
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For the same COD and CTP, BTD449-521 increases with Deff_ice. For a Deff_ice of 60 or 100 µm, 

BTD449-521 increases slightly with COD until COD = 1 and then decreases when COD >1. For the 

20 µm case, BTD449-521 decreases monotonically with COD. Note that BTD449-521 can be either 

positive or negative, which is a clear indication that absorption and emission alone cannot be used 

to interpret the variation of BTD449-521 and scattering must play a non-negligible role.  

4.3.2.2 A sensitivity study and its implication for the importance of far-IR scattering 

 To understand the effects of far-IR ice cloud scattering vs. absorption and emission on 

BTD449-521, we performed a sensitivity study with artificially modified SSA at 449 cm-1. The COPs 

at 521 cm-1 are the same as in Figure 4.3, along with Qext_ice and g at 449 cm-1. SSA at 449 cm-1 is 

artificially changed from 0.1 to 0.98. To reduce the influence of water vapor absorption, the CTP 

 

Figure 4.4. (a) BTD at 449 cm-1 minus 521 cm-1 for a single-layer ice cloud topping at 300 hPa and Deff_ice = 20 µm 

(black line) or 60 µm (red line). The cloud thickness is 50 hPa. (b) BT at 449 cm-1 (solid lines) for the same cloud as in (a) 

with Deff_ice = 20 µm and varying optical depth as labeled. SSA at 449 cm-1 varies while Qext_ice remains constant. For 

comparison, the actual BT at 521 cm-1 as in (a) is shown as a horizontal dashed line. The vertical dotted line indicates the 

actual SSA for 449 cm-1 as used in (a). (c) Same as (b) but for Deff_ice = 60 µm. The temperature and humidity profiles are 

the same as used in Figure 4.3. 
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in this sensitivity study is set at 300 hPa (CTT = 214 K). The surface temperature is 249 K. 

Computing BT449 and BT521 using MODTRAN5, Figure 4.4 shows results for a range of CODs 

and Deff_ice values of 20 and 60 µm.  

For both Deff_ice cases, BT449 increases with SSA when the cloud is not opaque enough (i.e., 

when COD < 7 for the 20 µm case and COD < 10 for the 60 µm case). However, when COD ≥ 5 

for the 20 µm Deff_ice case and COD ≥ 7 for the 60 µm Deff_ice case, BT449 first increases and then 

decreases with SSA. For the actual SSA at 449 cm-1 (0.87 for 20 µm and 0.73 for 60 µm; vertical 

dotted lines in Figure 4.4b and 4.4c), BT449 is larger than BT521 for the non-opaque cloud but 

smaller than BT521 for the opaque cloud, leading to a positive BTD449-521 for the non-opaque cloud 

and negative BTD449-521 for the opaque cloud (Figure 4.4a). This confirms that negative BTD449-

521 values seen in Figure 3 indeed can be caused by clouds as water vapor amounts above 300 hPa 

in the polar regions are negligible.  

 As mentioned above, considering only absorption and emission, BTD449-521 should be 

always non-negative if the surface temperature is higher than the CTT (approaching 0 K when 

COD approaches infinity). Negative BTD449-521 implies that scattering must play an important role 

in the far-IR cloudy radiative transfer. To further understand why BT449 changes with SSA in 

different ways for non-opaque and opaque clouds, we employed the two-stream approximation 

method to analytical solve multiple-scattering radiative transfer in the presence of thermal 

emission (Fu et al., 1997). Details can be found in the Appendix. When the COP and the 

atmosphere profile are chosen to be consistent with those used in Figure 4, the two-stream solution 

can reproduce the change of BT449 with SSA for both opaque and non-opaque cases (Figure A3d). 

Moreover, the two-stream solution elucidates on the reasons for such dependence of BT449 on SSA.  
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In brief, upwelling radiance at the cloud top consists of three components, coupled together 

due to the nature of multiple scattering: (1) Upwelling radiance that is originated below the cloud 

but attenuated by the cloud, (2) reflection of downwelling radiance by and throughout the cloud, 

and (3) thermal emission throughout the cloud that reaches the cloud top. The optical thickness of 

the cloud plays an important role for modulating the relative contributions of both components (1) 

and (3) compared to component (2). As SSA increases from zero to one, cloud absorption optical 

depth decreases from ext (cloud extinction optical depth at 449 cm-1) to zero, thus, components (1) 

and (3) always increase regardless of  the cloud optical depth. However, the rate of increase for 

components (1) and (3) with SSA is much slower for an opaque case (i.e., ext  ≫ 1) compared to 

a non-opaque case (i.e., ext~1 or ext <1). This is because when ext  ≫ 1, for a wide range of SSA, 

(1-SSA)ext is much larger than one. As a result, little upwelling radiance originating below the 

cloud base, or in-cloud thermal emission below the cloud top, can reach the cloud top. For the non-

opaque case however, upwelling radiance originating below the cloud base or in-cloud thermal 

emission can always reach the cloud top, and thus the rate of increase of components (1) and (3) 

with SSA is much larger compared to the opaque case. 

Component (2), reflection of downwelling radiance by and throughout the cloud, is 

fundamentally related to multiple scattering. For both the opaque and the non-opaque cases, 

component (2) decreases with SSA due to the upper boundary condition and the dependence of 

multiple scattering with SSA, however, but the rate of decrease is almost the same for both cases, 

at least for the COP studied here. As a result, when all components are combined, the change of 

components (1) and (3) with SSA dominates over the change of component (2) for the non-opaque 

case, increasing BT449 with SSA; the change of component (2) dominates for the opaque case, 

decreasing BT449 with SSA.  
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 Both the two-stream results and MODTRAN5 sensitivity studies shown in Figure 4.4 

indicate that the BTD449-521 is affected by multiple scattering the most when the cloud is opaque, 

where BTD449-521 becomes negative due to the dominance of component (2). 

4.3.3 Contribution of Water Vapor Absorption and Emission to the Far-IR BTDs   

 Over the entire spectral range, the far-IR dirty window region has much stronger water 

vapor absorption than the mid-IR window. However, so-called “micro-windows” exist between 

adjacent water vapor absorption lines within the far-IR window as shown in Figure 4.5a. These 

micro-windows are utilized for BTD channel selections in the far-IR. The contribution of water 

vapor to the BTD signal depends on the amount of water vapor above the cloud, as well as the 

difference in clear-sky optical depths in the two channels caused by this amount of water vapor. It 

is most desirable for the BTD channels to have water vapor optical depths as small as possible so 

the cloud phase throughout the troposphere can be determined. Moreover, the two channels should 

 

Figure 4.5. (a) The clear-sky optical depth for the far-IR dirty window region. The temperature and humidity profiles are the 

same as in Figure 3. The TCWV of this profile is 3 mm. Red vertical lines correspond to three wavenumbers, 449 cm-1, 513 

cm-1, and 521 cm-1. (b) BTDs as a function of total column water vapor for 500 clear sky profiles from ERA5 data over the 

polar regions (60°N-90°N and 60°S-90°S) for January and July 2005.  

 



 

106 

 

have similar water vapor optical depths. For the two channels that we chose for the far-IR BTD 

test (i.e., 449 and 521 cm-1), their clear-sky optical depth is 0.63 and 0.57 (transmissivities of 0.53 

and 0.57), respectively, for a typical Arctic winter profile. 

Figure 4.5b shows BTDs with respect to total column water vapor for 500 clear-sky 

profiles. For comparison, BTDs between 449 cm-1 and another micro-window channel, 513 cm-1, 

are also shown where the clear-sky optical depth for 513 cm-1 is 0.34 (a transmissivity of 0.71) For 

BTD449-513, the clear-sky contribution ranges from 4.25 K to -6 K and becomes more negative as 

total column water vapor (TCWV) is increased, as the clear-sky optical depth is larger at 449 cm-

1 than at 513 cm-1. When 521 cm1 is used instead of 513 cm-1, BTD449-521 has much less variation 

with total column water vapor and is narrowly confined within -1.2 to 0.56 K. This contrast 

between BTD449-521 and BTD449-513, from the point of view of water vapor interference, supports 

the 449 and 521 cm-1 pair. 

4.3.4 Establishing the BTD449-521 Thresholds for Ice Cloud Detection  

Figure 4.6a shows BTD449-521
 computed for all training profiles of the four Deff_ice groups, 

and BTD449-521 values for the training ice cloud-removed profiles. Figure 4.6b shows BTD449-521 

derived from all liquid cloud training profiles and from the liquid-cloud removed profiles. Figure 

4.6c shows BTD449-521 derived from the 500 clear-sky profiles used in Figure 4.5b. BTD449-521 

ranges from -6.5 K to 3.2 K in the four Deff_ice groups, with large particle groups tending to have 

more positive BTD449-521. BTD449-521 values for cloud-removed profiles, liquid cloud training 

profiles, and clear-sky profiles are mostly between -1.5 K and 0 K. Based on these observations, 

two thresholds are chosen by visual inspection for the ice cloud determination: BTD449-521 ≥ 0.5 K 

and BTD449-521 ≤ -1.5 K (two horizontal dashed lines in Figure 4.6a). The conservative thresholds 

are chosen to avoid misclassification of clear sky and liquid cloud scenes as ice clouds, while also 
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accounting for the signs and magnitudes of the ice cloud BTDs. For -1.5 K< BTD449-521 <0.5 K, 

further tests can be made to determine whether the pixel is a liquid cloud, ice cloud, or clear-sky 

scene. Figure 4.6a shows some misclassified ice-cloud cases in the (-1.5 K, 0.5 K) range. The 40 

and 60 µm Deff_ice groups are misclassified more so than the other size groups mainly due to the 

competing effects of absorption and scattering (see Figures 4.3 and 4.4). It should be noted that 

the TCWV of the data used in this study is correlated with COD, where the driest ice-cloud cases 

 

Figure 4.6. (a) BTDs at 449 cm-1 minus 521 cm-1 from the training dataset. Solid filled circles are for different Deff_ice and 

pink diamonds are for the same profiles with clouds removed. Horizontal dashed lines represent the thresholds defined in the 

BTD449-521 test. (b) Same as in (a) but only for the liquid cloud training profiles (black dots) and the same profiles with 

clouds removed (pink diamonds). (c) Similar to (b) but for the same polar clear sky profiles used in Figure 4.5. (d-f) same as 

(a-c) but for the BTD1231-960 test. 
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tend to have CODs smaller than 1, and this causes BTD449-521 to approach zero as the cloud 

becomes less and less opaque. 

4.4. A Comparison of the Far-IR and Mid-IR Ice Cloud Determination Skill 

 Using the test data sets, this section compares the BTD449-521 test performance with a 

comparable mid-IR BTD test. First a mid-IR BTD test that closely follows the AIRS cloud phase 

algorithm is introduced, followed by an assessment of the relative roles of Deff_ice, COD and CTP 

on the performance of the BTD449-521 and mid-IR BTD tests. 

4.4.1 Selection of the Mid-IR BTD Test  

The mid-IR BTD test used here is based on the AIRS ice cloud classification tests described 

in Kahn et al. (2014). For ice cloud classification, AIRS uses three BTD tests: BTD1231-960 >0 K, 

BTD1227-960 >-0.5 K and BTD1231-930 >1.75 K. The mid-IR test will be henceforth referred to as 

BTD1231-960 test because we use the BTs at 1231 and 960 cm-1 directly from our simulation, which 

are not the same as the synthetic AIRS radiances (slightly different spectral frequencies, and no 

convolution with the AIRS individual spectral response function). Nevertheless, with a resolving 

power of =1200, the spectral resolution of the two AIRS channels (1231 cm-1 and 960 cm-1) 

are comparable to the spectral resolution in our simulation. Due to aforementioned differences 

between the “AIRS-Like” mid-IR and true AIRS channels, our BTD1231-960 threshold is modified 

based on inspection of BTD1231-960 values derived using the ice and liquid cloud training profiles 

(Figure 4.6 d-f): BTD1231-960 ≥0.5 K is used to classify an ice-phase cloud. Note that the results 

from the BTD1231-960 test used in this study should not be directly compared to results obtained 

from the true AIRS spectra (i.e., the spectra obtained by convolving the AIRS instrument response 
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function). The same synthetic spectra are used for the BTD449-521 and BTD1231-960 tests so that the 

results can be directly compared. 

4.4.2 Influence of Ice Particle Size on the Performance of Far-IR and Mid-IR BTDs  

Figure 4.7a shows the true positive rates (percentage of cases that ice clouds are correctly 

identified from the simulated BTs) for four different BTD tests: (1) The BTD449-521 test, (2) the 

BTD1231-960 test, (3) a test in which either test is passed, and (4) a test in which both tests are passed 

simultaneously.  

For the BTD449-521 test, the true positive rates are 96.6%, 70.5%, 59.0%, and 87.2% for 20, 

40, 60, and 100 µm Deff_ice, respectively. The results above suggest that the BTD449-521 test is most 

Figure 4.7. (a) True postive rates for ice-phase determination when the BTD tests are applied to the testing dataset. 

(b) Percentage of ice cloud cases misclassified by one BTD test but classified correctly by the other BTD test. 

Numbers above bars represent the actual number of cases misclassified by a given BTD test. The far-IR and mid-IR 

tests refer to BTD449-521 and BTD1231-960, respectively. 
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effective for the 100 and 20 µm Deff_ice groups. This is expected because the 100 µm cases tend to 

have large positive BTDs and the 20 µm cases tend to have large negative BTDs, i.e., well 

separated from the double thresholds defined in Subsection 4.3.4 (shown in Figure 4.6).  

For the BTD1231-960 test, the true positive rate for ice cloud classification is 21.5%, 91.2%, 

96.0%, and 94.0% for 20, 40, 60, and 100 µm Deff_ice, respectively. Such true positive rates are 

larger than the counterparts from the BTD449-521 test for all Deff_ice groups except the 20 µm group. 

For the 20 µm group, the difference in the true positive rate between the two methods is ~ 75%, 

indicating the BTD449-521 test is highly effective for identifying ice clouds consisting of such small 

ice particles. For the rest of the Deff_ice groups, the BTD1231-960 true positive rate exceeds the BTD449-

521 true positive rate by ~7%-37%. When either the BTD449-521 or the BTD1231-960 test is used to 

identify an ice cloud, the true positive rate exceeds 90% for all Deff_ice groups. This suggests a 

synergy in the joint use of the BTD449-521 and BTD1231-960 tests. When both the BTD449-521 and 

BTD1231-960 tests must be passed, the test is much stricter; as a result, the true positive rate largely 

follows the BTD1231-960 test for the 20 µm group, follows the BTD449-521 test for the 60 µm and 100 

µm groups, and is significantly smaller than the true positive rate of both BTD449-521 and BTD1231-

960 tests for the 40 µm group.  

Given the different performances of the BTD449-521 and BTD1231-960 BTD tests shown in 

Figure 4.7a, it is of interest to evaluate the extent to which the two BTD tests can correct for each 

other’s misclassifications. Figure 4.7b shows the percentage of the BTD449-521 test 

misclassifications that can be classified correctly by the other test. The BTD1231-960 test corrects 

25%, 95.1%, 91.5%, and 54.8% of the BTD449-521 misclassification cases for the 20, 40, 60, and 

100 µm Deff_ice, respectively. The BTD449-521 test corrects 96.7%, 83.8%, 12.5%, and 3.7% of the 

BTD1231-960 test misclassifications for the 20, 40, 60, and 100 µm Deff_ice, respectively. These results 
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further show the synergy between the BTD449-521 and BTD1231-960 tests: The BTD449-521 test works 

better than the BTD1231-960 test for cases of smallest ice particle size while the BTD1231-960 test works 

better for cases of larger ice particle sizes.  

Out of all the liquid cloud cases from the test data, the BTD1231-960 test misclassified 14.41 

% of them as ice clouds while the BTD449-521 test misclassified 0.1%. For the 500 clear-sky cases, 

the misclassification rates are 0.2% and 0%, respectively. 

4.3 Influence of CTP and COD on the Performance of Far-IR and Mid-IR BTD Tests 

 This subsection further examines the dependence of the BTD449-521 and BTD1231-960 test skill 

on COD and CTP, using the test dataset. Following International Satellite Cloud Climatology 

Project (ISCCP; Rossow & Schiffer, 1999) conventions, CTP is categorized into three groups (50-

440 hPa, 440-680 hPa, and >680 hPa) and COD into two groups (non-opaque cloud COD < 3.6 

and opaque cloud COD ≥ 3.6). Results are shown in Figure 4.8. Each of the CTP-Deff_ice bins for 

each COD group can have different amounts of cloud cases associated with it (see gray numbers 

in Figure 4.8b and 4.8e), as changing Deff_ice for the cloud cases changes the CODs of those cases. 

It should be noted that the testing data used here is randomly sampled from the cases with COD 

and CTP distributions shown in Figure 4.2. A few notable points in Figure 4.8 are as follows: 

(1) Figure 4.7 shows the superiority of the far-IR to the mid-IR for 20 µm Deff_ice. Figure 4.8 

reveals more pronounced superiority for opaque than for non-opaque cloud cases. The 

BTD1231-960 test has a 40-68% true positive rate for non-opaque clouds depending on CTP 

(Figure 4.8b) but a 9-47% true positive rate for opaque clouds (Figure 4.8e). However, the 

BTD449-521 test has greater than 97% true positive rate for opaque clouds at CTP >680 hPA 
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and an 88% true positive rate for CTP >680, while it is between 80% and 94% for the non-

opaque clouds. 

(2) For the non-opaque group with a 40-µm Deff_ice, the true positive rate of the BTD1231-960 test 

exceeds that of the BTD449-521 test by 47% to 68%, depending on CTP (Fig. 4.8c). However,  

for the opaque group with the same Deff_ice, the situation is opposite: The BTD449-521 test 

true positive rate exceeds the BTD1231-960 test by 11% to 13% for CTP >680 hPa, while 

both tests have equal true positive rates for CTP>680 hPa (Fig. 4.8f). Similar to what has 

been discussed in Section 3.2, the scattering effect on BTD449-521 is more prominent in 

opaque clouds with small particles, while the BTD1231-960 test (based on ice cloud 

absorption) is less useful. For non-opaque clouds with the same ice particle size, the 

absorption effect is strong enough that the BTD1231-960 test has sufficient skill. Such a 

synergy between the BTD449-521 and BTD1231-960 tests can also be seen in Figure 7, where 

 

 

Figure 4.8. (a) True positive rates of far-IR BTD test applied to the testing dataset with COD < 3.6. The results are shown 

for each CTP group and each Deff_ice. (b) same as (a) except for the mid-IR test. (c) Difference, (a) minus (b). (d)-(f) Same 

as (a)-(c), respectively, but for COD ≥ 3.6. The gray numbers in (b) and (e) represent the total number of samples in the 

testing dataset falling into each CTP bin. The black number in (f) indicates the true positive rate difference for that bin. 

The far-IR and mid-IR tests refer to BTD449-521 and BTD1231-960, respectively. 
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the joint use of both BTD tests leads to a true positive rate for 40 µm Deff_ice that exceeds 

the rates of each individual test (which is not the case for the other Deff_ice groups). The 

high (>80%) mutual correction rate between the BTD449-521 and BTD1231-960 tests (see Fig. 

7b) for the 40-µm Deff_ice cases are due to this far-IR and mid-IR synergy.  

(3) In general, Deff_ice appears to be responsible for the most variability in true positive rates 

for both BTD1231-960 and BTD449-521 tests. The dependence on COD and CTP is secondary, 

which indicates that ice cloud microphysical properties are the major determining factor of 

performance of both BTD449-521 and BTD1231-960 tests in this study. 

4.4 Impact of Measurement Uncertainty on the Far-IR and Mid-IR BTDs 

This section briefly addresses the implications of random measurement noise on BTD449-

521 and BTD1231-960 for the ice cloud scenes. Here we use the noise equivalent spectral radiance 

(NeSR) estimates for the FORUM instrument in Ridolfi et al. (2020), i.e., 0.4 mW m-2sr-1cm-1 for 

200–800 cm-1 and 1.0 mW m-2sr-1cm-1 for 800–1,600 cm-1. As usual, the noise distribution in each 

channel is assumed to be gaussian with standard deviations equal to the corresponding NeSR. 

Conversion of “noisy” radiances to BT results in the BT at each channel having a noise equivalent 

differential temperature (NeDT). The resulting variance of the BTD between two channels will be 

the sum of the squared NeDT for each channel used in the BTD.  

To numerically illustrate how the NeSR translates to the BTD449-521 and BTD1231-960 

uncertainty, radiances at 449, 521, 1231, and 960 cm-1 are generated for 500 ice cloud cases (250 

in January and July, respectively). For each ice cloud case and at a given spectral channel, 100 

noise instances are added to the channel radiance to produce 100 instances of BTs at that channel. 

For each channel, the group of 100 noise instances are different. The BTD449-521 and BTD1231-960 

are computed for each of the 100 instances of the BT spectra and the BTD variance is computed 
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directly from the data. Such BTD variances are computed for all 500 ice cloud samples and then 

averaged across all the samples. This results in the uncertainty (defined here as the square root of 

the sum of the squared NeDTs of the two channels in the BTD) of BTD449-521 to be 0.6 K, while it 

is 3.1 K for BTD1231-960. 

These results imply that the estimated FORUM NeSR can result in ice cloud 

misclassifications using the BTD449-521 and BTD1231-960 tests. However, it is important to note that 

the actual FORUM NeSR could be different from the estimates in Ridolfi et al. (2020). It is also 

important to note that these NeSR estimates are for the native 0.36 cm-1 spectral resolution of 

FORUM. To approximately obtain the BT at the 1 cm-1 spectral resolution used in this study, the 

BT between three adjacent FORUM channels can be averaged. This would reduce the NeDT for 

the averaged results and the uncertainty of the BTD between two channels by a factor of √3. 

Assuming the BTD uncertainty estimates in our calculations can be applied to the FORUM channel 

resolution, this would result in a BTD449-521 and BTD1231-960 uncertainty of 0.35 K and 1.79 K, 

respectively. In this sense, a BTD tests with spectral resolution at the order of 1 cm-1 can be still 

applicable for FORUM-like measurements. 

4.5. Summary and Conclusion  

 This study uses synthetic spectra generated from the ERA-5 reanalysis profiles to develop 

a physically based far-IR BTD test (BTD449-521) and to compare this far-IR BTD test with the 

normally used mid-IR BTD test for ice cloud identification. The dry polar atmosphere makes the 

far-IR dirty window region more transparent than elsewhere. As a result, the far-IR dirty window 

region can be used for cloud phase determination. Ice cloud optical properties exhibit different 

spectral dependences between the far-IR dirty window and mid-IR window regions. As a result, 

multiple scattering needs to be considered in the far-IR, especially when the cloud is opaque.  
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The channel selection process for the BTD449-521 test involves accounting for water vapor 

and the variation in ice COPs across the far-IR dirty window region. The resulting BTD449-521 test 

is subjected to competing effects of absorption and scattering, where absorption tends to result in 

positive BTD449-521 and multiple scattering causes negative BTD449-521. Thus, conservative positive 

and negative BTD449-521 thresholds are selected to minimize the chance that a clear-sky or liquid 

cloud scene is misclassified as an ice cloud scene. Our study assumes a spectral resolution of 1 

cm-1, which is about three times as coarse as the spectral resolution of the future FORUM mission. 

Thus, three adjacent FORUM spectral channels can be merged to make such a BTD449-521 test 

applicable. Similarly, for actual observations made at a comparable spectral resolution but 

different spectral sampling grids, channels around 449 and 521 cm-1 can be chosen and the 

thresholds can be adjusted accordingly. 

 Far-IR ice phase determination skill is assessed based on applying the BTD449-521 test to 

test spectra generated with four assumed Deff_ice values. A mid-IR BTD test (BTD1231-960) that 

mimics the BTD test used by the AIRS operational algorithm was used here to evaluate the ice 

phase determination synergy between the far-IR and mid-IR. The BTD449-521 test is more 

successful than the BTD1231-960 test for identifying cloud scenes with the smallest ice particles 

studied here (20 µm). The BTD1231-960 test is more successful than the BTD449-521 test in cloud 

scenes with large particle sizes of 60 and 100 µm. For the intermediate Deff_ice  of 40 µm, the 

synergy between the BTD449-521 and BTD1231-960 tests is most obvious. While both BTD tests show 

some dependence on CTP and COD, they are more sensitive to the ice cloud particle size than 

other factors.  

 This study reveals that far-IR scattering, in addition to far-IR absorption, can be utilized 

for passive IR satellite detection of ice cloud phase in polar regions. Unlike absorption and 
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emission, scattering is not temperature dependent. As a result, when clouds are opaque, and the 

cloud and surface thermal contrast is low, the scattering signal can still be detected by the BTD449-

521 test. Given the ubiquitous existence of near-isothermal and inversion layers in the polar lower 

troposphere during the wintertime, this far-IR scattering effect makes far-IR measurements 

advantageous in cloud phase identification.  

 A couple of factors can affect the applicability of this study in reality. The most important 

assumption made in this study was that the ice COP database used to generate the synthetic 

radiances resembles the actual ice cloud properties in the Arctic. This database represents the state-

of-the-art knowledge of ice cloud single scattering properties for many different habits. The bulk 

ice COPs are generated using a combination of common habits which is based on over 14,000 

aircraft measurements taken over the tropics and midlatitudes, with one field campaign from 

Alaska (Verlinde et al., 2007). Thus, it is possible that, in polar regions, a different combination 

of habits would be more representative of the ice clouds in these regions. However, due in part to 

a limited number of aircraft campaigns in these regions, no bulk ice COP database has been 

produced specifically for the polar regions. The other factor is the fidelity of ERA5 temperature, 

humidity, and cloud water profiles in the Arctic. As reanalysis heavily relies on assimilated 

satellite observations for generating profiles in such regions, especially for cloud water profiles, 

the quality of assimilation can inevitably affect our results. The ERA5 reanalysis profiles were 

chosen for its spatial and temporal coverage. Future validation of ERA5 reanalysis profiles against 

in-situ observations in the Arctic can further improve the confidence of using ERA5 reanalysis in 

such studies.   

This study provides an idealized perspective, and thus a demonstration with actual 

observations is a necessary next step before adoption of the far-IR BTD algorithm. Furthermore, 
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the applicability of this algorithm will be highly dependent on an instrument’s spectral resolution 

and sampling due to the need for the BTD channels to coincide with water vapor micro-windows 

in the far-IR. It should also be noted that the impacts of mixed phase clouds were not addressed in 

this study, and such impacts should be investigated in the future. 

The BTD449-521 test developed here can be added to cloud detection algorithms in future 

space-borne far-IR remote sensing. Figure 4.9 proposes a decision tree. The first test, a cold-scene 

threshold test, passes if the 11µm BT is lower than 238 K, the threshold used in the MODIS 

Collection 6 cloud phase algorithm (Baum et al., 2012). If not passed, the BTD449-521 test can be 

applied, followed by the BTD1231-960 test. The BTD449-521 test should precede the BTD1231-960 test 

because the BTD449-521 test has fewer misclassifications of liquid cloud and clear-sky scenes. Such 

decision tree can be integrated as part of a more comprehensive cloud physical retrieval algorithm 

for future missions with far-IR observational capability.  

The far-IR alone is not suitable for liquid phase detection due to the lack of liquid COP 

spectral variation across the far-IR. However, from the far-IR dirty window to the mid-IR window, 

liquid COPs exhibit a large spectral variation. This indicates a possible use of one channel each 

from the far-IR and mid-IR to detect liquid cloud scenes. When used together with the far-IR ice 
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test in the polar region, there might be even a chance for further identifying mixed-phase cloud 

scenes. 
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Figure 4.9. A proposed cloud phase determination decision tree that incorporates far-IR and mid-IR tests. Note that this 

study only investigates ice phase determination. 
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Appendix  

The middle and right panels of Figure 4.4 show that, for different cloud optical depths, the 

TOA upwelling radiance has varying dependence on the single scattering albedo (ω). Here we use 

analytical solutions of the two-stream approximation to illustrate the physics of this dependence. 

The two-stream solution follows Fu et al. (1997), which assumes only one upwelling stream and 

one downwelling stream and takes thermal emission into account. 

In Figure 4.A1, at a given frequency, the cloud has optical depth , single scattering albedo 

ω, asymmetry factor g, and blackbody radiation B(0) and B() at its top and bottom boundaries, 

respectively. No gaseous absorption is considered here. Based on Fu et al. (1997), the upwelling 

radiance at the cloud upper boundary can be expressed as 

𝐼↑(0) = 𝑔1𝑒−𝑘𝜏 + 𝑔2𝑅 + 𝑍+(0)      ,           (A1) 

where 

𝑘 = (𝑟1
2 − 𝑟2

2)
1

2 = 𝐷√(1 − 𝜔𝑔)(1 − 𝜔), 

𝑅 =
𝑟1−𝑘

𝑟2
, 

𝑍±(𝜏) =
𝐷(1−𝜔)𝐵(𝜏)

𝑘2−𝛽2 (𝑟1 ± 𝛽 + 𝑟2), 

𝑟1 = 𝐷 [1 −
𝜔

2
(1 + 𝑔)], 

𝑟2 = 𝐷
𝜔

2
(1 − 𝑔), 

𝛽 =
1

𝜏
𝑙𝑛 [

𝐵(𝜏)

𝐵(0)
], 
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and 𝐷 = 1.66 is the diffusive factor.  

Assume no downwelling radiance at the cloud top, a reasonable approximation for 449 cm-

1 and a cloud top at 300 hPa, and assume that the upwelling radiance at the lower boundary is 

unity, so all radiance is normalized with respect to the upwelling radiance at the lower boundary. 

Then coefficients 𝑔1 and 𝑔2 can be decided by the boundary conditions as follows: 

𝐼↓(0) = 𝑔1𝑅𝑒−𝑘𝜏 + 𝑔2 + 𝑍−(0) = 0,                  (A2) 

𝐼↑(𝜏) = 𝑔1 + 𝑔2𝑅𝑒−𝑘𝜏 + 𝑍+(𝜏) = 1,                     (A3) 

which yields 

𝑔1 =
[1−𝑍+(𝜏)]−𝑍−(0)𝑅𝑒−𝑘𝜏

1−𝑅2𝑒−2𝑘𝜏  ,      (A4) 

𝑔2 = −
𝑍−(0)+[1−𝑍+(𝜏)]𝑅𝑒−𝑘𝜏

1−𝑅2𝑒−2𝑘𝜏 .    (A5) 

On the right-hand-side of Equation A1, the first term, 𝑔1𝑒−𝑘𝜏 , is related to the upwelling 

stream in the two-stream approximation; the second term, 𝑔2𝑅, is related to the reflection of the 

downwelling stream; the third term, 𝑍+(0), is related to thermal emissions within the cloud layer. 

Based on the definitions of k and R, it is easy to show that k/<0 and R/>0. As shown in 

Figure A2, when  = 0 (pure absorption with no scattering), k=D and R = 0; when  →1, k →0 

and R→1. Neither k nor R is a function of optical depth, but coefficients g1 and g2 are both a 

function of optical depth, as in Equations A4 and A5. Moreover, as long as the blackbody radiation 

at the cloud lower boundary is less than the upwelling radiance enter the lower boundary (which 

is the case of our study),  [1 − 𝑍+(𝜏)] < 0 and thus g2 is always negative.  
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To mimic the 449 cm-1 case shown in Figure 4.4, let g=0.75, B(0) = 0.65 and B() = 0.7, 

while the upwelling radiance at the lower boundary is normalized to unity.  Figure A3 shows how 

the terms vary when ω increases from 0.01 to 0.95. The results are shown for an opaque case 

(=10) and a non-opaque case (=1). As k/ω<0, the first term 𝑔1𝑒−𝑘𝜏 always increases with ω. 

However, given e-10 ~ 0 and e-10«e-1, the rate of increase, [𝑔1𝑒−𝑘𝜏] /ω, is much larger for the 

non-opaque case than for the opaque case. As shown in Figure A3a, for =10, the first term remains 

almost flat until ω reaches 0.8, when k = 0.47 so the rate of increase starts to be visible. For a non-

opaque case, the increase of the first term with ω is always visibly noticeable in Figure A3a. 

 Because g2 is negative and R/ is positive, the second term 𝑔2𝑅 decreases when ω 

increases, shown in Figure A3b. For the parameters used here, the rate of decrease is almost the 

same for both cases. For the opaque case, in-layer emission that can reach the upper boundary 

essentially originates just below the upper boundary. Emissions from farther below this top 

sublayer have little chance to reach the upper boundary due to the cloud opacity. That is why the 

third term 𝑍+(0) for the opaque case (red curve in Figure 4.A3c) is essentially flat and only slightly 

above the B(0)=0.65 line. The red curve still increases with ω, but the rate of increase  𝑍+(0)/ω 

is ~910-5. For the non-opaque case, in-cloud thermal emissions can reach the upper boundary, 

especially with larger ω (or smaller absorption optical depth), as shown in Figure A3c. A salient 

point here is that 𝑍+(0)  contains factor 1/(k2-2). Note that (𝜏 =1) > ( 𝜏 =10), which also 

contributes to a larger 𝑍+(0) for the non-opaque case than for the opaque case.  

Taking all three terms into account (Figure 4.A3d), for the non-opaque case the first and 

third terms increase noticeably with ω, and together they dominate over the decrease of the second 

term with ω, so I(0) increases with ω. For the opaque case, the first and third terms increase little 
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with ω, so the change of the second term dominates and I(0) decreases with ω. These results are 

consistent with Figure 4, which is based on a more accurate 8-stream DISORT solver.  

A physical interpretation of the above analytical solution is summarized as follows. The 

upwelling radiance at the top of a cloud, I(0), has three components, reflection of downwelling 

radiance through the clouds, attenuated upwelling radiance entering the cloud lower boundary, and 

in-cloud thermal emission reaching the upper boundary. For the parameter regimes studied here, 

the decrease of reflection of downwelling radiation with increasing ω is largely similar between 

opaque and non-opaque cases. However, the other two components increase with ω and the rate 

of increase slows down as the optical depth becomes larger. As a result, I(0) shows different 

dependence on ω for the non-opaque and opaque cases.  

This interpretation also highlights the importance of multiple scattering for the opaque 

case, as the reflection of downwelling radiance is the key process in multiple scattering, which 

cannot be represented by the single-scattering approximation or absorption approximation 

methods (e.g., Fu et al., 1997 and Chou et al. 1999. 
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Figure 4.A1. Sketch of the two-stream approximation for the multiple scattering problem discussed here. Only a cloud is considered 

here and no gaseous absorptions. The extinction optical depth of the cloud is . The blackbody emissions at cloud upper and lower 

boundaries are B(0) and B(), respectively. All radiances are normalized with respect to the upwelling radiance entering the lower 

boundary.  
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Figure 4.A2. Upper panel: k as a function of , different color lines correspond to different values of g as labeled. Lower panel: 

Same as the upper panel but for R as a function of . k and R are defined in the appendix.  
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Figure 4.A3. (a) The first term at the right-hand side of Equation A1 as a function of  for two cases, =1 (blue line) and =10 

(red line). (b)-(c) Same as (a) but for the second and third terms at the right-hand side of Equation A1, respectively. (d) Variation 

of the upwelling radiance at the upper boundary (the summation of three terms shown in (a)-(c)) with  for =1 and =10. For all 

calculations, g = 0.75, blackbody radiation at upper boundary is 0.65 and at the lower boundary is 0.7. The upwelling radiance at 

the lower boundary is set to be 1 and the downwelling radiance at the upper boundary is zero.  
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Chapter 5 Sensitivity of Infrared Brightness Temperature to Precipitating Ice Layer of 

Liquid-Topped Mixed Phase Clouds 

5.1 Introduction 

Clouds are important contributors to the Arctic surface energy budget and warm the surface 

throughout much of the year through longwave (LW) emission. Liquid-containing clouds tend to 

be more optically thick compared to ice-only clouds and correspond to “radiatively opaque” scenes 

in which the net LW radiative flux at the surface is nearly balanced in the upwelling and 

downwelling directions (Cesana et al., 2012). Mixed phase clouds are common in the Arctic across 

the entire region and throughout the entire year, as liquid cloud droplets be in a supercooled state 

for temperatures as low as -40°C (Shupe, 2011). Typically, when cloud ice and liquid water are 

coexisting and interacting, the lower saturation vapor pressure of ice tends to result in the amount 

of ice growing at the expense of liquid. This is referred to as the Wegener-Bergeron-Findeisen 

process (WBF; Bergeron, 1935; Findeisen, 1938; Wegener, 1911). However, mixed phase clouds 

in the Arctic can exist for tens of hours (Verlinde et al., 2007; Shupe et al., 2011), much longer 

than expected based on the WBF process alone. Commonly, mixed phase clouds take the form of 

a stratiform layer of supercooled liquid water with ice precipitation below and are maintained by 

a complex web of microphysical and dynamical processes that are not fully understood (Morrison 

et al., 2012). In this study, such clouds are called liquid-topped mixed phase clouds (LTMs) and 

are present in the Arctic anywhere from 4 % to 26% of the time depending on season and location 

(de Boer et al, 2011; Morrison et al., 2012).  
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Arctic LTMs are not well represented in climate models or even cloud resolving models 

(Klein et al., 2009; McCoy et al., 2016). Such a misrepresentation of clouds can lead to radiative 

flux biases in climate models (e.g., Cesana et al., 2012; Cho et al., 2020). Given the remoteness of 

the Arctic region, satellite observations are crucial for understanding the large-scale distribution 

and radiative impacts of LTMs. One of the most reliable ways of detecting LTMs from space is by 

using active sensors. Notably, the CALIPSO lidar and CloudSat radar can be used together to 

detect the presence of both ice and liquid simultaneously (Sassen, 2008) along vertical curtains 

that transect a region during an overpass. This vertically curtain can resolve LTM features but 

lacks horizontal spatial information. Passive infrared (IR) imagers have much larger fields of view 

and can be used during the entire Arctic year in contrast with shortwave imagers. However, IR 

imagers are most sensitive to the cloud top, which in the case of LTMs is liquid water. Thus, any 

cloud phase determination with the IR would be weighted towards liquid. Typically, cloud phase 

determination with the IR consists of taking the difference in brightness temperature between two 

spectral channels in the mid-IR window (~800-1250 cm-1), the spectral region used for the MODIS 

and AIRS cloud phase algorithms. The physical basis is that the absorption and scattering 

properties can vary across the mid-IR window for both liquid and ice water.  

This dissertation, and other studies (e.g., Kahn et al., 2014), have shown that the mid-IR 

cloud phase determination is more accurate for determining ice phase compared to liquid. Thus, it 

may be possible for the mid-IR to be used for detection the underlying ice layer of a LTM, which 

is henceforth referred to as LTMice. The liquid layer is referred to as LTMliq. 

 The purpose of this study is to develop parameter space manifolds for the detection of 

changes in LTMice using the brightness temperature at the mid-IR window channel of 11 µm 

(BT11), which a common metric used for the detection of clouds with satellite observations. The 
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parameters of interest are mainly the liquid and ice water paths (LWP and IWP, respectively) of 

the LTMliq and LTMice, respectively. The LWP and IWP represent the vertical integration of liquid 

and ice cloud water concentration, respectively. The sensitivity of BT11 to changes in the IWP of 

the LTMice, which will be henceforth referred to as 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
), is the metric used in this study to 

determine if BT11 is sensitive to changes in the LTMice. The development of LWP-IWP manifolds 

in which 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 is sufficiently large is thus a major goal of this study. Other parameters considered 

include  surface, and atmospheric variables such as tropospheric temperature structure and surface 

temperature as well as cloud-top-pressure (CTP) 

The BT11 can be dependent on the absorption and scattering properties of both LTMliq and 

LTMice. For example, as the LTMliq LWP approaches infinity, changes in the LTMice will have 

less of an effect on BT11 and thus  
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 would approach zero. Similarly, increasing the IWP of 

the LTMice would eventually lead to the LTMice radiating like a blackbody and 
𝑑(𝐵𝑇11)

𝑑 (𝐼𝑊𝑃)
 approaching 

zero if only absorption and emission are considered. However, because the ice cloud single 

scattering albedo (SSAice) can be as large as ~0.5 based on the cloud optical properties used in this 

study, it is possible that, like what was shown in Chapter 4, for the far-IR, ice cloud scattering can 

have a significant impact on BT11 and the scattering effects can change with IWP. Furthermore, it 

is possible that different atmospheric and surface conditions could impact 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 and thus this 

study uses a range of Arctic scene types when determining 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
.  

 Section 5.2 discusses the reanalysis data and radiative transfer simulations used in this 

study. Section 5.3 presents a simple analytical model for determining the first order factors that 
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influence 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
. Section 5.4 presents the results from radiative transfer simulations. Section 5.5 

provides discussion and conclusions. 

5.2 Data and Methods  

5.2.1 ERA5 Reanalysis Data and Scene Types 

ECMWF ERA5 data is used to generate the synthetic radiances in this study. Data over the 

Arctic (60-90°N), for the year of 2003 and the months of January through August are used. These 

months effectively capture the Arctic winter, spring, and summer seasons. September through 

December are not used because the continuation of the study utilizes ground-based cloud 

observations that are unavailable for those four months. The ERA5 data are hourly and are 

provided with a horizontal spatial resolution 0.25°x0.25°. The data fields used are surface skin 

temperature (Ts), surface pressure (Ps), and vertical profiles of specific humidity (q) and 

temperature (Tatm). Vertical profiles in ERA5 are provided at 37 fixed pressure levels from 1000 

hPa to 1 hPa. The altitudes of these pressure levels are calculated using the hydrostatic 

approximation. 



 

134 

 

To understand how  
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 is influenced by tropospheric and surface conditions, radiances 

are generated for a set of ERA5 scene types based on Ts, the atmospheric temperature difference 

between 1000 hPa and 750 hPa (ΔT), and total column water vapor (TCWV). The TCWV is 

computed from the profiles of q and Tatm. The different ERA5 scenes represent a wide and nearly 

continuous range of Arctic environmental conditions during the period of this study. The ERA5 

scene types are specified as discrete intervals of Ts, ΔT, and TCWV. The Ts intervals are as 

follows: (1) Ts< 245 K, (2) 245 K < Ts < 255 K, (3) 255 K < Ts < 265 K, (4) 265 K < Ts < 285 K 

and (5) Ts  > 285 K. The ΔT intervals are (1) ΔT < -5 K, (2) -5 K < ΔT < 0 K, (3) 0 K < ΔT < 5 K 

and (4) ΔT > 5 K. The TCWV intervals are (1) TCWV < 5 mm, (2) 5 mm < TCWV < 10 mm, (3) 

10 mm < TCWV < 15 mm and (4) TCWV > 15 mm. Figure 5.1 shows joint histograms from which 

these scene types are based. The number of discrete joint intervals (i.e., scene types) of Ts, ΔT, 

and TCWV is 80, but only 57 were found in the 8-month ERA5 dataset. The 23 missing scene 

  

Figure 5.1. Joint histograms of (a) Ts and ΔT and (b) TCWV and ΔT from ERA5 data over the Arctic (60-90°N) for the 

months of January, March, and July 2003. The color scale represents the fraction of total cases which is ~73,000.  
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types represent less likely combinations of Ts, ΔT, and TCWV, such as very cold conditions 

(Ts<245 K) having TCWV>15mm (not shown). 

5.2.2 Radiative Transfer Simulations of LTMs for the ERA5 Scenes 

Synthetic spectral radiances are generated by inputting ECMWF ERA5 reanalysis data and 

prescribed cloud properties into MODerate Resolution Atmospheric TRANsmission Version 5 

(MODTRAN5; Berk at al., 2005), a widely used radiative transfer model. Radiances are generated 

at 1 cm-1 spectral resolution at a channel center of 11 µm.  

The ice bulk absorption and scattering models from Baum et al. (2014) are used in ice cloud 

radiance calculations, just as for Chapter 4. In brief, these models are based on the ice particle 

single scattering property database developed by Yang et al. (2013) and the general habit mixture 

from (Baum et al., 2014). The bulk ice COP models at a given wavelength are developed by 

integrating over in-situ single scattering properties of individual habit and particle size 

distributions (assumed to be gamma distribution for ice) and averaging them across 14,000 flights. 

Figure 4.1 shows five COPs: Bulk absorption efficiency (Qabs), scattering efficiency (Qscat), 

extinction efficiency (Qext), single scattering albedo (SSA), and scattering asymmetry factor (g). 

COPs are provided at wavelengths from 3 to 99 µm and for effective ice particle diameters (Deff_ice) 

ranging from 10 to 180 µm at 5 µm increments. These ice COPs are linearly interpolated to the 

spectral channels in our simulations. Each simulation is performed for Deff_ice values of 20 and 60 

µm. The liquid droplet effective diameter (Deff_liq) is fixed at 20 µm and Mie scattering is used to 

derive the COPs for all liquid clouds.  

Cloud properties are manually prescribed in the exact same way for all ERA5 scenes in the 

radiance simulations. To produce an LTM within a ERA5 scene in MODTRAN5, a single liquid 
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cloud layer is “stacked” onto a single ice cloud layer in the simulation (i.e., the CTP the ice layer 

is equal to the cloud bottom pressure of the liquid layer). The cloud top and bottom pressure levels 

of each cloud layer are equivalent to the geometric boundaries of the cloud in which there is non-

zero cloud water content. Liquid water content and ice water content are prescribed to be vertically 

homogenous and consistent with the prescribed LWP and IWP. In reality, there can be changes in 

cloud particle sizes with height, but the homogenous assumption is adequate for the purposes of 

this study. For each ERA5 scene, the CTPs of an LTM with any given properties will be set such 

that the CTPs are consistent with the three CTP categories (50-440 hPa, 440-680 hPa, and >680 

hPa) defined in the International Satellite Cloud Climatology Project (ISCCP; Rossow & Schiffer, 

1999). In this study, the CTP of the liquid (ice) layer is 825 (850), 550 (600) and 300 (350) hPa to 

be within the low-, mid- and high-level categories, respectively. 

5.3 Results 

5.3.1 Analytical Model of 
𝐝(𝑹𝑻𝑶𝑨,𝒗)

𝐝(𝐈𝐖𝐏)
 for an Idealized SMC  

To understand the first order factors that influence 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
, an analytical model based on a 

simple two-layer atmosphere can be implemented. Figure 5.2 shows a schematic of an LTM. No 

gaseous absorption or emission is included in this simple model, and scattering by the cloud is not 

accounted for, only cloud absorption and emission. Assuming that the temperature of each cloud 

layer is vertically uniform, the upwelling radiance at a frequency v at the TOA can be expressed 
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 as equation 5.1. Here Bv(Ts), Bv(Tice ), and Bv(Tliq) represent the Planck emission from the surface, 

ice cloud, and liquid cloud layer, respectively.  

RTOA,v = [Bv(Ts) e−τice,𝑣+ (1- e−τice,𝑣) Bv(Tice )] e−τliq,𝑣+ (1- e−τliq,𝑣) Bv(Tliq)       (eq. 5.1) 

The optical depth of the ice (liquid) layer at frequency v is represented by τice,𝑣 (τliq,𝑣)  and can be 

equated to the product of the IWP (LWP) and the absorption mass cross section, kabs,ice,v  (kabs,liq,v) 

(see equations 5.2 & 5.3). The kabs,ice,v and kabs,liq,v used in this model is based on the bulk ice and 

liquid cloud absorption efficiency data from Yang et al. (2013) and Baum et al. (2014), and is 

dependent on v and particle effective diameter of ice (Deff_ice) and liquid (Deff_liq) cloud.  

τice,v = IWP*kabs,ice,v     (eq. 5.2) 

τliq,v = LWP*kabs,liq,v    (eq. 5.3) 

Equation 5.1 can be differentiated with respect to IWP to obtain  

d(𝑅𝑇𝑂𝐴,𝑣)

d(IWP)
 = e−τliq,𝑣−τice,𝑣(kabs,ice,v) [Bv(Tice) -Bv(Ts)]       (eq. 5.4) 

 

Figure 5.2. Schematic of liquid-topped mixed phase cloud (LTM). The upper cloud layer is composed of liquid cloud 

water having a liquid water path (LWP) and droplet effective diameter (Deff_liq), while the lower layer is ice water having 

an ice water path (IWP) and effective diameter (Deff_ice). The temperature of the surface (Ts), ice cloud layer (Tice), and 

liquid cloud layer (Tliq) are labeled. RTOA,v (BTv) represents the upwelling radiance (brightness temperature) as observed 

from the top-of-the-atmosphere (dashed line) at frequency v.   
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Thus we can expect the sensitivity of RTOA,11 (proportional to BT11) to the IWP of the LTMice to 

depend on the temperature difference between the LTMice and the surface (Ts-Tice), the combined 

optical depths of both LTM cloud layers, and kabs,ice (and thus Deff_ice). Figures 5.3a-d show the 

results of calculating 
d(𝑅𝑇𝑂𝐴,11)

d(IWP)
 with varying IWP, LWP, Deff_ice, and Ts-Tice using equation 5.4. For 

the case with 20 µm Deff_ice and Ts-Tice being 10 K (Figure 5.3a), 
d(𝑅𝑇𝑂𝐴,11)

d(IWP)
 is negative and largest 

when both LWP and IWP are less than ~20 g/m2
 and decreases to zero when IWP is >~40 g/m2. 

Not surprisingly, when the LTMice is warmer than the surface (Figure 5.3b), which could be the 

case if the LTM was within an Arctic temperature inversion, the situation is opposite for the same 

Deff_ice; 
𝑑(𝑅𝑇𝑂𝐴,11)

𝑑(𝐼𝑊𝑃)
 is always positive or zero. This is because increasing IWP increases the 

emissivity of the LTMice, which increases emission to space if the LTMice is warmer than the 

surface. The effect of the LTMice emissivity increase saturates when IWP is large enough (>~40 

g/m2) or is masked by the overlying liquid layer when LWP becomes greater than ~20 g/m2. When 

 

Figure 5.3. The change of top-of-atmosphere upwelling radiance at 11 μm (RTOA,v) with respect to ice water path (IWP) 

as a function of IWP and liquid water path (LWP) calculated using equation 5.4 for (a) 20 µm ice particle effective 

diameter (Deff_ice) and a difference of 10 K between the surface and the LTM ice layer (LTMice) temperature (Ts-Tice). (b) 

same as (a) except Ts-Tice = - 10 K (c) same as (a) but Deff_ice = 60 µm (d) same as (a) except Deff_ice = 60 µm and Ts-Tice = 

- 10 K. 

 

The  for two Ts-Tice values and two ice particle sizes. The Deff_liq is 20 μm.  
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the Deff_ice is increased to 60 µm (Figure 5c,d), the sign of 
𝑑(𝑅𝑇𝑂𝐴,11)

𝑑(𝐼𝑊𝑃)
 is the same as for the smaller 

particle size, but the area of the nonzero 
𝑑(𝑅𝑇𝑂𝐴,11)

𝑑(𝐼𝑊𝑃)
 shifts to lower and higher LWP and IWP, 

respectively. This is because, for the same IWP, increasing the Deff_ice decreases the optical depth 

of the cloud which causes the 
𝑑(𝑅𝑇𝑂𝐴,11)

𝑑(𝐼𝑊𝑃)
 to be nonzero for larger IWPs. 

 This analytical model illustrates the relationship between RTOA,11 (and thus BT11), IWP, 

LWP, Deff_ice, and Ts-Tice. The model also shows that 
𝑑(𝑅𝑇𝑂𝐴,11)

𝑑(𝐼𝑊𝑃)
 can be nonzero for LWPs and 

IWPs<~40 g/m2.  

5.3.2 Influence of Cloud Properties and ERA5 Scene Types on 
𝒅(𝑩𝑻𝟏𝟏)

𝒅(𝑰𝑾𝑷)
  

 This section focuses on the impacts of cloud properties and ERA5 scene type parameters 

(Ts, ΔT, TCWV) on MODTRAN5 simulations of 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
. Note that these simulations include 

gaseous absorption and emission, as well as cloud scattering. It was found that ΔT had a much 

larger impact on 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 compared to TCWV and Ts (not shown). Note that the ΔT corresponds to 

Ts-Tice when LTMice has a CTP greater than 750 hPa. To account for the latter two scene variables, 

the 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 values as a function of LWP, IWP, CTP and Deff_ice were averaged across all scenes that 

fell into the same ΔT interval (9 to 13 different TCWV and Ts scenes per ΔT interval depending 

on ΔT). A 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 threshold of 0.1 K/g/m2

 was chosen to determine if the BT11 was sufficiently 

sensitive the LTMice IWP changes, as an IWP increase of 10 g/m2 would result in at least a 1 K 

BT11 increase.  
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 Figure 5.4 shows 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 as a function of IWP and LWP for the 20 μm Deff_ice case and for 

the different CTP categories and ΔT intervals. Figure 5.5 shows the same but for the 60 μm Deff_ice 

case. The dotted contours show where the 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
  threshold is exceeded. A few points are notable: 

(1) For the 20 μm Deff_ice high cloud cases (Figure 5.4a-d), not surprisingly, ΔT does not play a 

large role in the 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
. The differences seen are simply due to Ts-Tice being different for each ΔT 

interval (not shown). These high cloud cases show a similar 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 pattern to what was shown 

Figure 5.3a, including the fact that 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 tends to be the most negative for IWP and LWP less 

than ~20 g/m2. For the 60 μm Deff_ice high cloud cases (Fig. 5.5 a-d), the 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 pattern and 

magnitude is like that of the same cases where Deff_ice = 20 μm. However, like what is qualitatively 

shown in the Figures 5.3b and 5.3a, increasing the ice particle size shifts the area of the nonzero 

𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 to lower and higher LWP and IWP, respectively. 

 

Figure 5.4. (a-d) The gradient of BT11 with respect to IWP averaged across all the TCWV and Ts ERA5 intervals for each ΔT 

interval and for high cloud levels. The dotted lines contain the regions where 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 > 0.1 K. Here Deff_ice = 20 μm and Deff_liq = 

20 µm (e-h) same as (a-d) except for mid-level clouds (i-l) same as (a-d) expect for low level clouds. 
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(2) For both Deff_ice cases, low clouds within temperature inversions (Figures 5.4i,j and 5.5i,j) can 

have positive 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
, which is consistent with Figure 5.3.  

(4) For the mid and low-level clouds, for all ΔT intervals, and for both Deff_ice cases, both a positive 

and negative 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 region at higher and lower IWPs, respectively, become noticeable. Figure 5.3 

shows that, for a case where the LTMice is warmer than the surface, 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 is always non-negative 

when scattering is ignored. The fact that 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 can be both positive and negative for these cases 

indicates that absorption and emission cannot alone explain it. Thus, scattering must be playing a 

role. To understand the role of scattering, a case study is performed in which SSAliq,11 and SSAice,11 

are jointly varied from 0.075 to 0.95 and the 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 is computed for the LWP-IWP parameter space 

(Figure 5.6). It should be noted that, for both liquid and ice, SSA11 and Qabs,11 change together such 

that Qext,11 is constant. The case study is for a low cloud case in which the Ts-Tice = 5 K and the 

Deff_ice is 60 μm. Both SSAliq and SSAice are approximately 0.45 for the COPs used in this study, 

and thus panel (e) in Figure 5.6 approximately represents the actual 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 for this case. When 

 

Figure 5.5. Same as Figure 5.4 but Deff_ice = 60 µm. 
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SSAliq and SSAice are both set to 0.075 (Figure 5.6i), the main process impacting 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 is 

absorption and emission by the cloud, which results in the expected negative 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 pattern. When 

the SSAice is increased to 0.95 without changing SSAliq (Figure 5.6c), the negative 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 area 

expands and increases in magnitude, and the positive 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 at larger IWPs becomes prominent. 

This suggests ice scattering is playing a role in producing the opposite sign 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
. Inspection of 

Figures 5.4 and 5.5 reveal that the magnitude and area of the positive and negative 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 regions 

vary with CTP and ΔT. This implies that there is a complex relationship between scattering and 

Ts-Tice which is dependent on the IWP. The positive and negative 
d(BT11)

d(IWP)
 regions are more 

 

Figure 5.6. The gradient of BT11 with respect to IWP when SSAliq and SSAice are jointly varied for a low cloud case in 

which Ts-Tice ~ 5 K, TCWV < 1, and Deff_ice = 60 um. Qext is constant for all cases. 
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noticeable for the 60 μm Deff_ice cases compared to 20 μm Deff_ice cases because SSAice,11 increase 

with particle size for this Deff_ice range.  

Overall, the results here suggest that Deff_ice, the ΔT (and thus cloud-surface temperature 

contrast), IWP, and LWP play the most dominant roles in determining the 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
. Comparisons 

between the MODTRAN5 simulations and the analytical model results, as well as the scattering 

sensitivity study in Figure 5.6, indicate that scattering, absorption, and emission can all play major 

roles in determining 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
. Additionally, the BT11 seems to have the least sensitivity to IWP 

changes for the mid-level clouds, which is possibly due to the absorption and scattering processes 

counteracting. Finally, the  
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 can pass the 0.1 K/g/m2 threshold for IWPs and LWPs up to 

~50 g/m2, depending on Deff_ice and ΔT. 

5.4 Case Study for Detecting LTMice with the Far-IR BTD Ice Test 

A reliable algorithm for the detection of the LTMice should incorporate more channels than 

just 11 µm. One possibility is to use the far-IR brightness temperature difference ice cloud 

detection test developed in Chapter 4 (BTD449-521). Figure 5.7 shows BTD449-521 for a high- (left 

column), mid- (middle column) and low-level (right column) cloud prescribed in an ERA5 scene 

with Ts-Tice ~ 5 K and TCWV < 1 for Deff_ice= 20 µm (top row) and for Deff_ice=60 µm (bottom 

row). The -1.5 K and 0.5 K BTD thresholds are exceeded within the dotted contours. For the 20 

µm Deff_ice case, the most obvious feature is the large negative BTD449-521 that becomes more 

negative with IWP. From Chapter 4, it was shown that multiple scattering can lead to large negative 

BTD449-521 and this effect is strengthened with increasing optical depth, or IWP in this case. The 

larger the IWP, the wider the range of IWP and LWPs for which the negative BTD449-521 threshold 

is exceeded. For the 60 µm Deff_ice case, like what was shown in Chapter 4, BTD449-521 can also 
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become more negative with optical depth (in this case IWP) due to scattering. For the high cloud 

case with 60 µm Deff_ice, BTD449-521 exceeds the 0.5 K threshold for up to IWP ~ 55 g/m2 when the 

liquid layer above is relatively thin (LWP<10 g/m2), and this IWP range decreases with increasing 

CTP. This positive BTD449-521 here represents the absorption regime discussed in Chapter 4, which 

is most prominent when the cloud-surface temperature contrast is large, such as for high cloud 

cases. For the high cloud case with 20 µm Deff_ice (Figure 5.7a), such positive BTD449-521 occurs 

for IWP < ~20 g/m2 and LWP < ~ 7 g/m2, but is not present for the mid- and low-level cases. 

The case study in Figure 5.7 illustrates that the far-IR BTD test can potentially be used for 

detecting the presence of cloud ice in certain LTM cases. However, it is also important to determine 

if the LWP and IWP combinations for which the BTD449-521 and 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 exceed their respective 

thresholds correspond to the actual LWPs and IWPs of LTMs in the Arctic. Figure 5.8 shows a 

joint LWP-IWP histogram for LTM profiles measured from the United States DOE Atmospheric 

 

Figure 5.7. (a) The difference between the brightness temperatures at 449 and 521 cm-1 as a function of IWP and LWP for a 

high-level SMC (CTPliq=850 hPa), where Deff_ice=20 µm. For this case, Ts-Tice ~ 5 K and TCWV < 1 (b) same as (a) but for 

CTPliq= (c) same as a but for CTPliq= (d-f) same as (a-c) expect for Deff_ice=60 µm.   
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Radiation Measurement (ARM) site on the north slope of Alaska. The criteria for LTM 

qualification here is that (1) LWP and IWP are both greater than 1 g/m2 and (2) the cloud profile 

consists of one layer of liquid cloud above a single ice cloud layer. From Figure 5.8, the majority 

of LTMs have IWP < 20 g/m2 and LWP < 50 g/m2, which are ranges in which both the BTD449-

521 and 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 thresholds are exceeded for in this study. 

5.5 Summary and Discussion 

This preliminary study aims to explore the potential of using spaceborne IR radiances to 

detect cloud ice within one of the most common types of mixed phase clouds in the Arctic, liquid-

topped mixed phase clouds, or LTMs. To do so, ERA5 reanalysis data for the Arctic region was 

used as input to MODTRAN5 and BT11 was simulated for various prescribed cases of LTMs and 

the results were compared to a simple analytical model of an idealized LTM case. Using eight 

months of ERA5 data from the year 2003, 57 Arctic scene types were established using discrete 

 

Figure 5.8. Liquid water path (LWP) and ice water path (IWP) statistics for liquid-topped mixed phase clouds at the DOE 

ARM site on the north slope of Alaska. The data covers January-August 2003. The algorithm for the LWP and IWP 

retrievals is from Zhang et al. (2017). 
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intervals of Ts, TCWV, and ΔT. For each one of these scene types, 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 was computed for 

prescribed SMCs with differing LWPs, IWPs, Deff_ice and CTP. 

A simple analytical model of an LTM showed that, when only cloud absorption and 

emission is considered, 
d(𝑅𝑇𝑂𝐴,11)

d(IWP)
 (equivalently, 

𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
) is always negative or zero when the cloud 

is colder than the surface and positive or zero when the cloud is warmer than the surface.  

A threshold of 0.1 K/g/m2 was chosen to determine if  
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 was sufficiently large such 

that LTMice can be considered “detectable” using BT11. The results show that this threshold can be 

exceeded for cases in which IWP and LWP are less than ~50 g/m2, depending on ΔT and Deff_ice. 

On the joint IWP and LWP plot, the area in which the 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 threshold is exceeded represents the 

LWP-IWP manifolds that this study aims to develop. 

It was found that ΔT was the main variable in the ERA5 scene types that corresponded to 

significant changes in 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
, so 

𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 for all ERA5 scenes within each ΔT were averaged. Note 

that the ΔT corresponds to Ts-Tice when LTMice has a CTP greater than 750 hPa. The results showed 

that, for the high clouds, regardless of ΔT or Deff_ice, 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 is always negative or zero, which is 

consistent with the analytical model results. For the low and middle clouds, both positive and 

negative 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 regions in the LWP-IWP parameter space become noticeable, with the magnitude 

and LWP-IWP range in which the threshold is exceeded changing with ΔT and Deff_ice. Through 

sensitivity analyses in which SSAice,11 and SSAliq,11 are varied, it was determined that scattering 

plays an important role in determining the opposite sign values of 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
 and that role changes 
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with the ΔT and Deff_ice. It is also apparent that SSAliq,11 variations can significantly impact 
𝑑(𝐵𝑇11)

𝑑(𝐼𝑊𝑃)
. 

Thus, the role of Deff_liq should be investigated in future studies. 

In this study, it was assumed that the ice COP database used to generate the synthetic 

radiances resembles the actual ice cloud properties in the polar regions. This database represents 

the state-of-the-art knowledge of ice cloud single scattering properties for many different habits. 

The COP database was generated using over 14,000 aircraft measurements, with only a small 

fraction of those measurements coming from polar regions. It is possible that a different 

combination of habits would be more appropriate for representing polar ice clouds, but no ice COP 

database has been produced for the polar regions due to limited aircraft campaigns in such regions.  

Furthermore, the fidelity of the ERA5 reanalysis humidity, temperature, and cloud water profiles, 

which are used in this study due to their temporal and spatial coverage, can also influence the 

applicability of the results of this study in reality. Reanalysis heavily relies on assimilated satellite 

observations, especially for the cloud water profiles, and thus the results of this study will be 

impacted by the quality of the assimilation. Further validation of the ERA5 reanalysis profiles 

against in-situ measurements in the polar regions can improve confidence in the use of such 

profiles for similar studies. 

The case study in section 5.4 illustrates that it may be possible to use the far-IR BTD test 

(BTD449-521) developed in Chapter 4 to detect the LTMice. However, the impacts of variables such 

as ΔT and TCWV on BTD449-521 were not fully addressed. Given that water vapor can impact 

BTD449-521, it necessary to investigate how the BTD449-521 results in Figure 5.7 change for LTM 

cases with differing TCWV and how that impacts the LWP-IWP parameter space in which the 

BTD449-521 test can be passed. It is also of interest to perform the mid-IR BTD (i.e., “AIRS-like”) 

from Chapter 4 on LTM cases, as this test is most useful for ice detection compared to liquid. 
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Furthermore, the spectral variation of SSAliq and Qabs,liq is large from the far-IR to the mid-IR, 

while it can be very small for ice water for the same channel combination. This indicates that a 

BTD test consisting of a far-IR and mid-IR channel may be capable of detecting the presence of 

the LTMliq, while the mid-IR and far-IR BTD ice cloud tests could be used for the detection of 

LTMice. Overall, this allows for the detection of the LTM. 
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Chapter 6 Summary and Future Outlook 

6.1 Background Overview 

As the Arctic continues to become warmer and wetter, it is crucial to monitor the vast and 

remote region using satellite observations. Arctic climate is significantly influenced year-round by 

longwave (LW) radiation emitted and absorbed by the atmosphere, clouds, and surface. 

Atmospheric gases, such as water vapor, absorb and emit LW radiation at specific frequencies, 

and this leads to the outgoing longwave radiation (OLR) being smaller than the surface emission: 

the so-called greenhouse effect. The difference between surface emission the OLR normalized by 

the surface emission is called greenhouse efficiency (GHE), and provides a metric of determining 

how efficient the surface-atmosphere system is at trapping LW radiative energy emitted by the 

surface. Both OLR and GHE are fundamentally spectral quantities and are important metrics for 

Arctic climate studies, but typically both quantities are evaluated in a broadband form (i.e., 

integrated across the LW spectrum). The first study of this dissertation (Chapter 2) seeks to break 

down Arctic OLR and GHE trends spectrally to understand how the spectral components of these 

trends contribute to the broadband trends and understand how changes in the Arctic atmosphere 

and surface are related to the spectral OLR and GHE trends. 

Cloud cover is extensive in the Arctic and clouds tend to warm the Arctic surface through 

LW emission during most of the year. Liquid phase clouds tend to be opaquer than ice phase clouds 

for the same cloud water amount, and thus liquid clouds tend to contribute to more surface 

warming. Mixed phase clouds containing supercooled liquid water are ubiquitous in the Arctic and 
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the processes that produce and maintain them are complex and not well understood. Improving the 

understanding of the large-scale Arctic cloud phase distributions and their radiative impacts 

requires satellite observations. Infrared (IR) imagers are useful for Arctic cloud phase studies 

because they can be used year-round in the Arctic (unlike shortwave imagers) and can have larger 

horizontal spatial footprints compared to spaceborne radar and lidar. The IR can be used for cloud 

phase retrievals based on the different spectral variations of liquid and ice cloud absorption across 

the mid-infrared (mid-IR; ~800-1250 cm-1). However, the mid-IR has limitations in the polar 

regions, especially when mixed phase clouds are present. The second study of this dissertation 

(Chapter 3) evaluates the cloud phase retrievals of the Atmospheric Infrared Sounder (AIRS), a 

hyperspectral instrument, over the Arctic Ocean against combined radar and lidar observations to 

further understand the mid-IR limitations for cloud phase determination in the Arctic region, 

especially for mixed phase clouds. 

The far-infrared (far-IR; <~600 cm-1), makes up over 60% of Arctic OLR and studies have 

shown the potential for using this spectral region for cloud phase determination. There have been 

no spectrally resolved far-IR observations from space during the modern satellite era, however 

there are two upcoming missions that will make such observations: the Far‐infrared‐Outgoing‐

Radiation Understanding and Monitoring (FORUM) and the Polar Radiant Energy in the Far 

Infrared Experiment (PREFIRE) missions. Therefore, it is pertinent to investigate far-IR cloud 

phase retrievals from space. The third study of this dissertation (Chapter 4) presents a physically 

based and simple far-IR ice cloud detection algorithm for polar regions and seeks to understand 

the synergy between the far-IR and mid-IR for polar ice cloud detection. 

The detection of Arctic mixed phase clouds with the IR remains a challenge. One of the 

most common types of mixed phase clouds in the Arctic are liquid-topped stratiform mixed phase 
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clouds (LTMs). Essentially these clouds consist of a single liquid layer above a precipitating ice 

layer. Since the IR is more sensitive to the cloud top, the classification of the cloud can be weighted 

to liquid only. However, this dissertations and multiple studies confirm that the IR is more useful 

for the detection cloud ice as opposed to liquid. In the last study of this dissertation (Chapter 5), 

we investigate the sensitivity of 11 µm brightness temperature (BT11) at the TOA to changes in the 

ice water path (IWP) of LTMs for a range of different atmospheric and cloud conditions. The far-

IR BTD test is also employed in a case study to demonstrate that the far-IR can be useful for the 

detection of the LTM ice layer (LTMice). 

6.2 Chapter Summaries 

6.2.1 Chapter 2 Summary 

Chapter 2 derives, for the first time, zonal mean spectral OLR and GHE trends in the Arctic 

using 14 years of spectrally resolved radiative fluxes from combined AIRS and Clouds and the 

Earth’s Radiative Energy System (CERES) observations. AIRS level 3 (L3) retrievals of 

atmospheric humidity (qH2O), atmospheric temperature (Tatm) and surface temperature (Ts) are used 

as inputs to the Principal Component Radiative Transfer Model (PCRTM) to derive clear sky 

spectral OLR and GHE trends for comparison with their observed counterparts. Chapter 2 focuses 

on the months of March, July, and September, as they represent the onset of the sea ice melt season, 

peak of solar insolation, and the end of the sea ice melt season, respectively. For each month, the 

simulated spectral OLR and GHE trends are similar to the observed ones, which allows for a clear 

connection to be established between changes (or lack thereof) in Ts, Tatm, qH2O, and trends in 

spectral OLR and GHE.  
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For March, the spectral OLR trends are the largest compared to the other months, are 

positive in the mid-IR and far-IR window, and statistically significant north of ~70°N for both all-

sky and clear-sky. The September observed clear-sky and all-sky OLR trends are also positive in 

the same spectral regions for much of the Arctic, but none are statistically significant at the 5% 

confidence level. For July, the spectral OLR trends are negative in the far-IR dirty window and a 

mix of negative and positive trends in the mid-IR for different latitudes in the Arctic. The clear -

sky spectral GHE trends are positive in July across the water vapor ν2 band and far-IR for 70–

80°N. Much larger positive clear-sky spectral GHE trends occur in March for regions north of 

80°N in the same spectral region. Sensitivity studies show that increasing Ts contributes much 

more to the spectral OLR and GHE trends than trends in Tatm and qH2O. However, there are cases 

in which the latter two are discernable over many spectral regions, such as the increase of qH2O 

leading to positive spectral OLR trends due to the existence of a temperature inversion.  

6.2.2 Chapter 3 Summary 

In Chapter 3, the AIRS cloud phase retrievals, which were never evaluated over the Arctic, 

are compared to collocated radar and lidar observations from CloudSat and Cloud–Aerosol Lidar 

and Infrared Pathfinder Satellite Observations (CALIPSO; together CCL), respectively, over the 

Arctic using four years of data. In a previous global evaluation of AIRS cloud phase (Jin & Nasiri, 

2014), AIRS footprints were collocated with CALIPSO only, and the mixed phase category was 

based on the number of liquid and ice phase CALIPSO footprints within the AIRS field of view 

(FOV; ~13.5 km at nadir). However, in this study, the use of CCL allows for mixed phase 

classifications of individual CCL FOVs (~1.5 km) within the AIRS FOV, which is important 

because the scale of cloud phase mixing in for mixed phase clouds can be on the order of tens of 

meters. Also, in contrast to Jin & Nasiri (2014), we mainly use CCL FOVs with a single cloud 
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layer that covers the entire CCL FOV, which we refer to as a single-layer-overcast CCL group. 

These groups are identified as mixed, liquid, or ice phase if enough CCL FOVs (≥90%) with a 

given group are of that phase. There are ~15-19 CCL FOVs within a nadir AIRS FOV, and the 

AIRS cloud phase retrieval for the FOV is compared to the CCL group’s phase. This comparison 

is performed using ~4 million AIRS FOVs and ~61 million CCL FOVs and which are separated 

based on whether the underlying surface type is open ocean or sea ice. 

AIRS ice phase classification skill was >85% depending on the surface type, while for 

liquid it was between 21% and 32%. Mixed phase clouds corresponded to mainly to AIRS liquid 

and unknown phase classifications, and most AIRS unknown phase classifications corresponded 

to mixed phase clouds. The results of the AIRS cloud phase evaluation against two-layer-overcast 

CCL groups suggest that AIRS can detect the underlying layer’s phase, which could be possible if 

the overlying layer is optically thin enough. Overall, the two-layer-overcast systems corresponded 

to AIRS unknown cloud phase. 

Using all CCL and AIRS FOVs, it was determined that seasonal cycle, and in some cases, 

the dependence of cloud phase relative occurrence on total column water vapor and the temperature 

difference between 1000 hPa and 300 hPa, was similar between CCL and AIRS. Thus, it is possible 

that the connections between Arctic atmosphere properties and processes can be captured by the 

AIRS cloud phase data. Moreover, the accurate seasonal cycle of AIRS liquid and ice cloud phase 

indicates that AIRS could provide accurate occurrence anomalies on inter-seasonal to interannual 

scales. 

For the month of July 2009, AIRS, CCL, and the Moderate Resolution Imaging Resolution 

(MODIS) are all collocated together so that the MODIS cloud cover and cloud phase 

classifications (~200 1 km MODIS pixels for each near nadir AIRS FOV) can be compared to the 
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AIRS and CCL cloud phase retrievals. The purposes of this analysis are to understand how cloud 

phase throughout the AIRS FOV compared to the cloud phase of the CCL groups, and how 

heterogeneity of MODIS cloud macrophysical properties impacts AIRS phase decisions. It was 

determined that heterogeneity of cloud cover and cloud phase throughout the AIRS FOV 

corresponded to AIRS unknown phase classifications, which supports previous findings. MODIS 

cloud phase also corresponded to CCL cloud phase, which provides more confidence in use of the 

single-layer-overcast CCL groupings for AIRS cloud phase evaluations. Overall, 42% of AIRS 

Arctic cloud phase classifications were unknown phase, which suggests that further improvements 

to the AIRS cloud phase algorithm may be necessary to reduce the amount of such unknown 

classifications.  

6.2.3 Chapter 4 Summary 

 Chapter 4 develops a physically based and simply far-IR brightness temperature difference 

(BTD) polar ice cloud detection algorithm and compares it to a mid-IR test that is typically used 

for cloud phase classifications. ECMWF ERA5 polar cloud profiles over ocean for the year of 

2005 are used for algorithm development and evaluation. The ERA5 profiles are fed into the 

MODerate Resolution Atmospheric TRANsmission Version 5 (MODTRAN5) to simulate spectra 

from 400-1300 cm-1 with a resolution of 1 cm-1, approximately three times coarser than the 

expected FORUM spectral resolution. The far-IR algorithm is based on the spectral variation of 

ice cloud scattering and absorption across the far-IR dirty window region (400-600 cm-1), a spectral 

region with numerous semi-transparent water vapor micro windows. This spectral region is 

especially transparent in the dry polar atmospheres.  

 The far-IR BTD test is based on the BTD between the channels of 449 cm-1 and 521 cm-1
 

(BTD449-521). These channels were chosen by accounting for the impacts of water vapor and the 
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variation in ice cloud optical properties (COPs) across the far-IR dirty window. The BTD449-521 

test is subject to both ice cloud multiple scattering (leads to negative BTD449-521) and absorption 

(leads to positive BTD449-521), and thus a positive and negative BTD449-521 threshold was used for 

ice cloud detection. The double threshold attempts to conservatively avoid misclassifications in 

the ERA5 dataset. 

 To determine the far-IR polar ice cloud determination skill and for comparison with an 

“AIRS-like” mid-IR BTD test (BTD1231-960), ice cloud test spectra were generated using four 

different effective diameters (Deff_ice), creating four Deff_ice groups with the same number of spectra. 

It was found that the BTD449-521 test is more successful for the smallest Deff_ice used in this study 

(20 µm) compared to the mid-IR test, which was comparable or more successful for larger Deff_ice. 

When the Deff_ice is the intermediate value of 40 µm, the mid-IR and far-IR synergy is most obvious. 

By increasing cloud optical depth (COD), far-IR multiple scattering can increase and lead to 

increasingly negative BTD449-521. Both BTD tests have some dependence on cloud top pressure 

(CTP) and COD, but overall are most dependent on Deff_ice.  

6.2.4 Chapter 5 Summary 

 This chapter presents a preliminary study that aims to explore the potential of spaceborne 

IR spectral radiances for detecting the underlying ice layer of liquid-topped stratiform mixed phase 

clouds (LTMs), which is referred to as LTMice. The overlying liquid layer is referred to as LTMliq. 

The sensitivity of the brightness temperature at 11 µm (BT11) to changes in the ice water path 

(IWP) of the LTMice, which is referred to as 
d(𝐵𝑇11)

d(IWP)
, is used because BT11 is a standard metric for 

satellite-based cloud detection with the IR. The main goal of the study was to develop joint liquid 

water path (LWP) and IWP manifolds in which the absolute value 
d(𝐵𝑇11)

d(IWP)
 exceeds a threshold of 
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0.1 K/g/m2, which represents a limit in which BT11 is sufficiently sensitive to the changes in the 

IWP of the LTMice. The results are compared to a simple analytical model. 

The BT11 is simulated with a radiative transfer model using ERA5 reanalysis data over the 

Arctic and prescribed LTM properties. The BT11 computed for a range of ERA5 scene types based 

on discrete intervals of Ts, TCWV, and the temperature difference between 1000 hPa and 700 hPa 

(ΔT). For each ERA5 scene, BT11 was simulated for a range of LTMliq liquid water paths, LTMice, 

and IWP. The CTP was also varied between high-, mid- and low-level based on the International 

Satellite Cloud Climatology Project (ISCCP), and each simulation was performed for a Deff_ice of 

60 and 20 µm.  

 Of the three scene type parameters, ΔT has the most impact on 
d(𝐵𝑇11)

d(IWP)
, so 

d(BT11)

d(IWP)
 for all 

ERA5 scenes within each ΔT were averaged. Regardless of ΔT and Deff_ice, 
d(𝐵𝑇11)

d(IWP)
 is always 

negative or zero for the high-level clouds, which is consistent with the analytical model results. 

When the clouds are mid-level or low-level, 
d(𝐵𝑇11)

d(IWP)
 can be both positive and negative depending 

on LWP, IWP, ΔT and Deff_ice. It was determined that multiple scattering in the LTMice played a 

key role in determining the sign of  
d(𝐵𝑇11)

d(IWP)
 for the mid- and low-level clouds. Since the 60 µm 

Deff_ice ice particles have a larger ice cloud single scattering albedo at 11µm (SSAice,11) compared 

to the 20 µm case, the larger particle size case showed the most distinct positive and negative 

d(𝐵𝑇11)

d(IWP)
 regions in the LWP-IWP parameter space. It is also apparent that SSAliq,11 variations can 

significantly impact the 
d(𝐵𝑇11)

d(IWP)
  parameter space, and this is a subject of future work.  
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The results show that the 0.1 K/g/m2 
d(𝐵𝑇11)

d(IWP)
 threshold can be exceeded for cases in which 

IWP and LWP are less than ~50 g/m2, depending on ΔT and Deff_ice. Using ground based LTM 

profiles from Barrow, Alaska, it was found that a large fraction of LTM cases have IWP and LWP 

less than ~50 g/m2, which suggests that the result of this study are applicable to realistic LTMs. A 

case study is also performed that illustrates how BTD449-521 varied based on CTP and Deff_ice. The 

results suggest that it may be possible to use the BTD449-521 ice cloud detection test to detect the 

presence of cloud ice in an LTM, but further work is needed. 

6.3 Future Outlook  

One of the most important findings from this thesis are the application of far-IR spectral 

fluxes for Arctic climate and radiation studies. Chapter 2 showed that, due to the dry Arctic 

atmosphere, far-IR spectral fluxes observed at the Arctic TOA have signatures of changing water 

vapor amounts and temperatures at tropospheric levels closer to the surface compared to lower 

latitudes. The far-IR spectral fluxes used in Chapter 2 are estimated using spectral fluxes observed 

at AIRS channels (which do not include far-IR), and thus the far-IR fluxes are not “true” 

observations. Future far-IR missions, such as FORUM, represent an unprecedented opportunity to 

study the Arctic spectral OLR changes as the Arctic troposphere becomes warmer and wetter, 

which is critical due to the far-IR making up the majority of polar OLR. For example, it is known 

that reductions in sea ice can increase evaporation from the Arctic Ocean and lead to an increase 

in the Arctic downwelling IR radiation and the strength of the greenhouse effect (e.g., Screen & 

Simmonds, 2010; Gong et al., 2017; Kapsch et al., 2017). Observations of far-IR spectral OLR 

may allow for the OLR changes to be attributed to changes in Arctic tropospheric humidity that 

correspond to sea ice changes. Furthermore, it has been shown that TOA radiances can be used to 

simultaneously retrieve Tatm, qH2O, and Ts (Palchetti et al., 2008). The measured far-IR spectral 
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radiances and the retrieved profiles can then be used to convert the spectral radiances into spectral 

fluxes (e.g., Palchetti et al., 2008). This allows for the same far-IR radiances to be used for 

retrieving the Arctic atmospheric state and for deriving the spectral fluxes, which provides 

consistency in the relating of changes in far-IR retrieved geophysical variables like qH20 to changes 

in far-IR spectral fluxes.  

Another major finding from this thesis is that the scattering of far-IR photons can be used 

for detection of ice clouds from space. Previous studies of IR cloud phase retrievals only explicitly 

consider the spectral variations of ice and liquid cloud absorption. Thus, this thesis demonstrates 

that an under considered IR cloud radiative process, scattering, can be used for Arctic ice cloud 

detection using passive IR satellite measurements. One major implication of this is the detection 

of polar ice clouds that have a low thermal contrast with the surface, which has been a challenge 

historically for polar cloud detection. Using standard IR cloud detection techniques, such as BT11, 

this cloud would be indistinguishable from nearby clear sky scenes. Absorption based bi-spectral 

IR methods would also fail to detect the ice clouds. However, scattering is virtually not temperature 

dependent, which means that far-IR BTD test from Chapter 4 could be able to detect the ice clouds.  

Another implication of using IR scattering for ice cloud detection is the potential detection of 

mixed phase clouds in polar regions. Figure 5.7 illustrates that the far-IR BTD test can detect the 

presence of ice in polar mixed phase clouds. The simultaneous detection of the liquid cloud water 

component with other IR tests would mean that the mixed phase cloud would be detectable with 

the IR, something that has not been previously accomplished to our best knowledge. Figure 4.1 

shows that the spectral variation of liquid cloud scattering and absorption can be large from the 

mid-IR to the far-IR, while the variation for ice clouds can be small. A BTD test using one channel 
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from the mid-IR and one channel from the far-IR could potentially be used to detect the liquid 

water component of a polar mixed phase cloud.  

The concept of far-IR ice cloud scattering also has applications in Arctic surface energy 

budget studies. Chen et al. (2020) showed that polar ice cloud LW scattering can significantly 

contribute to the downwelling LW fluxes at the polar surface using a climate model with a coupled 

atmosphere and surface. This study also showed that the scattered far-IR radiation was an 

important contributor to such downwelling fluxes. Chapter 4 of this dissertation showed that far-

IR ice cloud scattering is spectrally dependent and is significantly influenced by ice particle size 

and cloud optical depth. However, observational studies on how the ice cloud scattering impacts 

far-IR spectral fluxes at the Arctic surface have not been performed to our best knowledge. In 

future studies, ground-based ice cloud profiles can be fed into a radiative transfer model that 

accounts for multiple scattering. Upwelling and downwelling Far-IR spectral radiances can be 

generated for the cloud profiles and converted to spectral fluxes, which can then be compared with 

contemporaneous downwelling broadband or spectral flux measurements at the ground station. 

This could allow for an assessment of the contribution of the ice cloud scattering on the surface 

far-IR radiative fluxes and how ice cloud microphysics contribute. A radiative closure analysis 

(i.e., finding conditions in which the simulated and observed fluxes match) could then provide 

insight into how to improve the state-of-the-art bulk ice cloud optical property models. Such a 

radiative closure analysis could also be performed using measured TOA far-IR spectral radiances 

collocated with ground-based ice cloud observations from which the far-IR TOA spectral 

radiances can be simulated and compared to the observations. 

Improving bulk ice COP models is crucial for the applying satellite-based IR measurements 

to study polar ice clouds and their impact on polar climate. Currently, to our best knowledge, there 
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are no bulk ice COP models that are designed specifically for polar regions. The state-of-the-art 

models from Yang et al. (2013) and Baum et al. (2014) included measurements from one aircraft 

campaign in Alaska, with the vast majority of the other profiles being from the tropics and mid-

latitudes. Since polar cloud microphysical properties can be different from their counterparts in 

the lower latitudes, it is possible that the habit and particle size distributions of polar ice clouds are 

different than what is assumed in the state-of-the-art models used in this thesis. In the future, more 

aircraft campaigns should be undertaken in the polar regions to develop a comprehensive 

understanding of the habit and particle size distributions of polar ice clouds. 
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