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ABSTRACT

Latent variable models are popularly used in unsupervised learning to uncover

the latent structures underlying observed data and have seen great successes in rep-

resentation learning in many applications and scientific disciplines. Latent attribute

models, also known as cognitive diagnosis models or diagnostic classification models,

are a special family of discrete latent variable models that have been widely applied

in modern psychological and biomedical research with diagnostic purposes. Despite

the wide usage in various fields, the models’ discrete nature and complex restricted

structures pose many new challenges for efficient learning and statistical inference.

Moreover, with the large-scale item and subject pools emerging in modern educational

and psychological measurements, efficient algorithms for uncovering latent structures

of both items and subjects are desired. This dissertation studies four important

problems that arise in this context.

(I) The first part develops novel methodologies and efficient algorithms to learn the

latent and hierarchical structures in latent attribute models. Specifically, researchers

in many applications are interested in hierarchical structures among the latent at-

tributes, such as prerequisite relationships among target skills in educational settings.

However, in most cognitive diagnosis applications, the number of latent attributes, the

attribute-attribute hierarchical structures, the item-attribute dependence structures,

as well as the item-level diagnostic models, need to be fully or partially pre-specified,

which may be subjective and misspecified as noted by many recent studies. In this

part, we consider the problem of jointly learning these latent quantities and hierar-

ix



chical structures from observed data with minimal model assumptions. A penalized

likelihood approach is proposed for joint learning, an Expectation-Maximization (EM)

algorithm is developed for efficient computation, and statistical consistency theory is

established under mild conditions.

(II) The second part generalizes the methodologies in part I to simultaneously

infer the subgroup structures of both subjects and items. We consider the model-

based co-clustering algorithms and aim to automatically select numbers of clusters

and uncover latent block structures. Specifically, based on latent block models, we

propose a penalized co-clustering approach that is capable of learning the numbers

of clusters and inner block structures simultaneously. Efficient EM algorithms have

been developed and comprehensive simulation studies demonstrate their superiority.

(III) The third part concerns the important yet unaddressed problem of testing

the latent hierarchical structures in latent attribute models. Testing the hierarchical

structures is shown to be equivalent to testing the sparsity structure of the proportion

parameter vector. However, due to the irregularity of the problem, the asymptotic

distribution of the popular likelihood ratio test becomes nonstandard and tends to

provide unsatisfactory finite sample performance under practical conditions. To tackle

these challenges, we discuss the conditions of testability issues, provide statistical

understandings of the failures, and propose a practical resampling-based procedure.

(IV) The fourth part introduces a unified estimation framework to bridge the gap

between parametric and nonparametric methods in cognitive diagnosis to better un-

derstand their relationship. In particular, a number of parametric and nonparametric

methods for estimating latent attribute models have been developed and applied in a

wide range of contexts. However, in the literature, a wide chasm exists between these

two families of methods, and their relationship to each other is not well understood.

Driven by this divide, we propose a unified framework and provide both theoretical

analysis and practical recommendations under various cognitive diagnosis settings.

x



CHAPTER I

Introduction

In the past several decades, latent variable models have gained increasing interest

in many machine learning problems and found a wide range of applications in many

scientific disciplines. By supplementing a set of observed variables with additional

latent, or hidden, variables, it allows a way to model unmeasurable structures under-

lying the observed data, such as latent subgroups in social and behavioral sciences

(Templin et al., 2010; de la Torre et al., 2018), and disease etiology in epidemiol-

ogy studies (O’Brien et al., 2019). Moreover, latent variable models are also used

for dimension reduction in machine learning applications (Tipping and Bishop, 1999;

Reynolds, 2009), and have gained huge successes in representation learning in this

“Big Data” era (Bengio et al., 2013; Van Den Oord et al., 2017; Tschannen et al.,

2018).

Latent Attribute Models (LAMs), as known as Cognitive Diagnosis Models (CDMs)

in psychometrics, are a special family of latent variable models widely used in edu-

cational assessment, psychological measurements, and scientifically-structured clus-

tering based on noisy observations. In particular, the goal of cognitive diagnosis is

arriving at a classification-based decision about an individual’s latent attribute pat-

tern, based on his or her observed responses to a set of designed diagnostic items.

Such diagnostic information plays an important role in constructing efficient and fo-
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cused remedial strategies for individuals’ improvement. For instance, in educational

assessment, using LAMs to identify the profiles of mastery/deficiency of the tar-

get abilities of students would help better design curriculum and teaching strategies

(Templin et al., 2010). In psychiatric evaluation, LAMs can help detect the profiles

of the presence/absence of a set of underlying psychological disorders based on the

manifested symptoms of the patients (de la Torre et al., 2018). In disease etiology,

LAMs can be used to determine the configurations of the existence of a set of viruses

based on patients’ biological measurements (O’Brien et al., 2019).

The topic of cognitive diagnosis modeling has gained great popularity in recent

years due to the models’ desirable diagnostic nature of providing informative cognitive

profiles for every respondent. Various cognitive diagnosis models have been developed

with different cognitive diagnostic restrictions on how the responses depend on the

underlying latent attributes. With the rapid developments in information technology

during the past several decades, large-scale item pools and response data tend to

emerge. In this new “big data” era, efficient algorithms for estimation, inference,

and evaluation are desired given the large volume and the complexity of the data.

Moreover, despite the wide use in various fields, the models’ discrete nature and

complex restricted structure make many traditional statistical inference procedures

perform poorly or even become invalid. It is essential and challenging to develop

methodologies under such irregular situations. Lastly, although many different models

and estimation methods have been developed in the past decades, there is a lack of

a unified understanding of them. This dissertation is mostly motivated by these

challenges.

Learning Latent Hierarchical Structures One important yet challenging prob-

lem in latent attribute models is to identify the structure of the latent attributes

from the observed data. This is a critical issue in the applications since the latent

2



structures are unobserved and misspecification of the latent structure will result in

misleading inference and wrong conclusions. Recently researchers are particularly

interested in the hierarchical structures among the latent attributes (Templin and

Bradshaw, 2014). For example, in education, curricula are typically structured based

on students’ hierarchical learning process, where the lower-level skills are prerequisites

for the higher-level skills so that the instructors can teach sequentially and progres-

sively. In chapter II, taking identifiability conditions into consideration, we propose

a penalized likelihood approach starting from an exploratory latent class model to

learn latent structures with minimal model assumptions. This is the first method in

the literature to simultaneously estimate multiple quantities, including the number

of latent attributes, the item-attribute Q-matrix, the latent hierarchical structure,

and item-level diagnosis models. In this chapter, we develop an efficient Expectation-

Maximization (EM) algorithm and establish the consistency theory of the proposed

model under mild conditions. The good performance of the proposed methodology is

illustrated by simulation studies in various settings and applications to two real data

sets. This chapter is based on Ma et al. (2022b).

Learning Latent Block Structures With large-scale item pools and response

data emerging in modern educational and psychological measurements, it also gains

increasing interest in simultaneously inferring the subgroup structures of both sub-

jects and items. This motivates us in chapter III to develop co-clustering algorithms

that simultaneously cluster subjects and items into homogeneous blocks, such as clus-

tering both test takers and test questions in educational assessment jointly to form

clusters with similar target skills. One essential yet difficult problem in clustering

applications is determining the number of clusters. The popularly used information

criteria to select the number of clusters, such as AIC and BIC, can be very computa-

tionally expensive since it needs to explore many possible values. It is especially true

3



for the co-clustering setting, where it needs to compare all the possible combinations

of numbers for both row clusters and column clusters. Moreover, in many applications

in cognitive diagnosis, the inner structures of the latent blocks are of great interest.

Under the latent attribute model framework, one important and common assumption

is that subjects with the same latent attribute pattern have the same response prob-

abilities to the items. With a large pool of items, we can make a further assumption

that items targeting on the same latent attributes also share the same response dis-

tributions. Therefore, among the latent blocks, there are subsets of blocks sharing

the same block distributions, which is also an interesting latent structure of learning.

Motivated by the methods in chapter II, we propose a penalized co-clustering method,

which is capable of learning the numbers of clusters and the inner block structures

simultaneously.

Hypothesis Testing for Latent Hierarchical Structures In previous chapters,

we have developed new methodologies and efficient algorithms to learn latent struc-

tures from observed data. In many applications, these latent structures are often

posited by some domain experts. A natural question is then to test such structure

of the latent attributes of interest, which we study in chapter IV. Specifically, we

consider the statistical hypothesis testing for latent hierarchical structures in latent

attribute models. Such testing can be formulated as testings for nested models, and a

popularly used tool in statistics is the fundamental likelihood ratio test (LRT). How-

ever, due to the induced non-regularity by the hierarchical structures, the LRT may

lose its well-behaved large sample property represented by the famous Wilk’s theo-

rem, and the asymptotic behaviors of LRT for testing hierarchies need to be further

investigated. Moreover, an even more fundamental issue is to understand when the

latent structure is identifiable and testable since if the model is not identifiable, the

latent hierarchical structures cannot be learned no matter how large the data size is.

4



To address this problem, in chapter IV, we specify the conditions needed so that the

latent structure is identifiable and testable. In the testable cases, we further study

the limiting distribution of the LRT and provide insights into why the conventional

theory of the LRT fails in such tests. In addition, we propose a resampling-based

method and demonstrate its effectiveness through comprehensive simulation studies.

This chapter is based on Ma and Xu (2021).

Bridging Parametric and Nonparametric Methods In latent attribute mod-

els, there are two popular families of estimation methods, including parametric and

nonparametric ones. For parametric methods, certain distributional functions in a

parametric form for the item response probabilities need to be assumed, which may

raise validity concerns about the assumed model and the related diagnostic process.

As an alternative, researchers have also explored nonparametric methods for assigning

subjects to latent groups without relying on parametric model assumptions. Despite

the popularity of the parametric and nonparametric methods in cognitive diagnosis,

the relationship between these methods has not been studied in the literature. Al-

though seemingly divergent from the surface, these frameworks are in fact closely

related. To help better understand their relationship, in chapter V, we propose a

unified framework for cognitive diagnosis that subsumes both parametric and non-

parametric methods. In particular, we use a general loss function to measure the

distance between a subject’s responses and the centroid of a latent class. By using

different loss functions, the method can assume different parametric and nonpara-

metric forms. We further develop a unified iterative joint estimation algorithm and

establish the consistency properties of the corresponding estimators. In addition, we

conduct comprehensive simulation studies to compare different methods under a wide

variety of settings and provide practical recommendations. The theoretical analysis

and numerical studies in this work bridge the gap between the two families of methods

5



and provide a novel point of view to better understand latent attribute models. This

chapter is based on Ma et al. (2022a).
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CHAPTER II

Learning Latent and Hierarchical Structures

2.1 Introduction

In many applications of latent attribute models, researchers are interested in hi-

erarchical structures among the latent attributes. For example, in a learning context,

the possession of lower-level skills is often assumed to be the prerequisite for the

possession of higher-level skills in education (Dahlgren et al., 2006; Jimoyiannis and

Komis, 2001; Simon and Tzur, 2004; Wang and Gierl, 2011). Learning such latent

hierarchical structures among the latent attributes is not only useful for educational

research but can also be used to design learning materials and generate recommen-

dations or remedy strategies based on the prerequisite relationships among the latent

attributes. Leighton et al. (2004) proposed the Attribute Hierarchy Model, a vari-

ant of Tatsuoka’s rule-space approach (Tatsuoka, 1983), which explicitly defined the

hierarchical attribute structures through an adjacency matrix. Under the cognitive

diagnosis modeling framework, Templin and Bradshaw (2014) proposed the Hierarchi-

cal Cognitive Diagnosis Models (HCDMs), in which a Directed Acyclic Graph (DAG)

was essentially used to impose hard constraints on possible latent attribute profiles

under hierarchies. In this chapter, we also term HCDMs as Hierarchical Latent At-

tribute Models (HLAMs) in the following.

In the cognitive diagnosis modeling framework, the dependence structure between

7



the observed variables and the latent attributes is encoded through a binary design

matrix, the so-called Q-matrix (Tatsuoka, 1990). Under different item models, the

interactions between the observed variables and the latent attributes are modeled

differently. Two basic models are the Deterministic Input Noisy Output “AND”

gate (DINA; Haertel, 1989) model and the Deterministic Input Noisy Output “OR”

gate (DINO; Templin and Henson, 2006) model, where there are only two levels of

item parameters for each item. de la Torre (2011) proposed the Generalized DINA

(GDINA) model, where the interactions among all the latent attributes were included.

Other popularly used latent attribute models include the General Diagnostic Model

(GDM; von Davier, 2019), the reduced Reparameterized Unified Model (reduced-

RUM; DiBello et al., 1995), and the Log-linear Cognitive Diagnosis Models (LCDM;

Henson et al., 2009).

To fit HLAMs, the Q-matrix, the hierarchical structures among the attributes,

the item-level models, and the number of latent attributes all need to be pre-specified

by domain experts, which however can be subjective and inaccurate. Moreover, in

exploratory data analysis, these prior quantities may be even entirely unknown. An

important problem in cognitive diagnosis modeling then becomes how to efficiently

and accurately learn such latent and hierarchical structures and model specifications

from noisy observations with minimal prior knowledge and assumptions.

In the literature, many methods have been recently developed to learn the Q-

matrix, including methods to directly estimate the Q-matrix from the observational

data, via either frequentist approaches (Liu et al., 2012; Chen et al., 2015; Xu and

Shang, 2018; Li et al., 2022) or Bayesian approaches (Chung and Johnson, 2018;

Chen et al., 2018; Culpepper, 2019), and methods to validate the pre-specified Q-

matrix (de la Torre, 2008; DeCarlo, 2012; Chiu, 2013; de la Torre and Chiu, 2016;

Gu et al., 2018). Many of these Q-matrix learning or validation methods, however,

do not consider the hierarchical structures, or they implicitly assume the hierarchical

8



structure is known; moreover, the number of attributes and the item-level diagnostic

models are often assumed to be known.

In terms of learning attribute hierarchies from observational data, Wang and Lu

(2021) recently studied two exploratory approaches including the latent variable se-

lection (Xu and Shang, 2018) approach and the regularized latent class modeling

(regularized LCM, Chen et al., 2017b) approach. However, the latent variable selec-

tion approach in Wang and Lu (2021) requires specification of the number of latent

attributes and a known identity sub-matrix in the Q-matrix. The regularized LCM

approach may not require the number of latent attributes, but the number of latent

classes needs to be selected. Based on the simulation in Wang and Lu (2021), the

performance of the regularized LCM was less satisfactory – the accuracy of selecting a

correct number of latent classes was often below 50% and the accuracy of recovering

latent hierarchy was almost 0 in some cases. In Gu and Xu (2019a), the authors

proposed a two-step algorithm for structure learning of HLAMs. However, their al-

gorithm also assumed that the number of latent attributes was known and they only

considered the DINA and DINO models.

In this chapter, to overcome the limitations of the aforementioned methods, we

propose a regularized maximum likelihood approach with minimal model assumptions

to achieve the following four goals simultaneously: (1) estimate the number of latent

attributes; (2) learn the latent hierarchies among the attributes; (3) learn the Q-

matrix; and (4) recover item-level diagnostic models. Specifically, we employ two

regularization terms: one penalty on the population proportion parameters to select

significant latent classes, and the other on the differences of item parameters for each

item to learn the structures of the item parameters. After the significant latent classes

and the structure of the item parameters are learned, a latent structure recovery

algorithm is used to estimate the number of latent attributes, the latent hierarchies

among the attributes, the Q-matrix, and the item-level models. For the estimation,
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we develop an efficient Penalized EM algorithm using the Difference Convex (DC)

programming and the Alternating Direction Method of Multipliers (ADMM) method.

Consistent learning theory is established under mild regularity conditions. We also

conduct simulation studies to show the good performance of the proposed method.

Finally, we demonstrate the application of our method to two real datasets and obtain

interpretable results which are consistent with the previous research.

The remaining of this chapter proceeds as follows: the model setup of HLAMs

is provided in Section 2.2. The proposed penalized likelihood approach and its the-

oretical properties are presented in Section 2.3. An efficient algorithm is developed

and related computational issues are discussed in Section 2.4. Simulation studies are

presented in Section 2.5. In Section 2.6, the model is applied to two real data sets

of educational assessment. Finally, Section 2.7 concludes with some discussions. The

proof of the main theorem and detailed derivations for the proposed algorithm are

presented in Appendix A.

2.2 Model Setup

In this section, we introduce the general model setup of HLAMs and illustrate the

connections between HLAMs and restricted latent class models, which motivates the

proposed approach in Section 2.3. In the following, for an integer K, we use [K] to

denote the set {1, 2, . . . , K}, and we use | · | to denote the cardinality of a set.

2.2.1 Hierarchical Latent Attribute Models

In a latent attribute model with J items which depend on K latent attributes of

interest, two types of subject-specific variables are considered, including the responses

R = (R1, . . . , RJ), and the latent binary attribute profile α = (α1, . . . , αK). In this

chapter, both the responses R and the latent attribute profile α are assumed to

be binary. The J-dimensional vector R ∈ {0, 1}J denotes the binary responses to
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a set of J items, and the K-dimensional vector α ∈ {0, 1}K denotes a profile of

possession of K latent attributes of interest. Since each latent attribute αk is binary,

the total number of possible latent attribute profiles α = (α1, . . . , αK) is 2K . For each

latent attribute profile, we use πα to denote its proportion parameter, and the latent

attribute profile α is modeled to follow a categorical distribution with the proportion

parameter vector π = (πα : α ∈ {0, 1}K). The proportion parameter vector lies in

the (2K − 1)-simplex and satisfies πα ∈ [0, 1] and
∑
α∈{0,1}K πα = 1.

A key feature of HLAMs is that there exist certain hierarchical structures among

the latent attributes. For example, in cognitive diagnosis modeling, the possession of

lower-level skills is often regarded as the prerequisite for the possession of higher-level

skills (Leighton et al., 2004; Templin and Bradshaw, 2014). With such an attribute

hierarchy, any latent attribute profile α that does not respect the hierarchy will not

exist and have population proportion πα = 0. For 1 ≤ k 6= l ≤ K, we use αk −→ αl

(or k −→ l) to denote the hierarchy that attribute αk is a prerequisite of attribute αl.

We assume such hierarchy αk −→ αl (or k −→ l) exists if and only if there are no latent

attribute profiles such that αl = 1 but αk = 0, or equivalently, we have πα = 0 if

αl = 1 but αk = 0. We denote an attribute hierarchy by a set of prerequisite relations

E = {k −→ l : attribute k is a prerequisite for attribute l, 1 ≤ k 6= l ≤ K}, and

denote the induced set of existent latent attribute profiles by A = {α ∈ {0, 1}K :

πα 6= 0 under E}. One can see that an attribute hierarchy results in the sparsity

of the proportion parameter vector π, which will significantly reduce the number of

model parameters especially when K is large. Example hierarchical structures and

the corresponding induced sets of existent attribute profiles are shown in Figure II.1.

In latent attribute models, the structural matrix Q = (qj,k) ∈ {0, 1}J×K is an

important component that imposes constraints on items to reflect the dependence

between the items and the latent attributes. To be specific, qj,k = 1 if item j requires

(or depends on) attribute k. Then the jth row vector ofQ denoted by qj describes the

11



Figure II.1: Examples of hierarchical structures of latent attributes. For i = 1, . . . , 4,
each Ai represents the induced set of existent attribute profiles under the hierarchical
structure above it, where each row in Ai represents an attribute profile α with πα 6= 0.

full dependence of item j on K latent attributes. In many applications, the matrix Q

is pre-specified by domain experts (George and Robitzsch, 2015; Junker and Sijtsma,

2001; von Davier, 2005) to reflect some scientific assumptions. See Figure II.2 for an

illustration of the Q-matrix and the corresponding graphical representation.

Figure II.2: Illustration of Q-matrix.

As in classical latent class analysis, given a subject’s latent attribute profile α,

the responses to J items are assumed to be independent, which is known as the

12



local independence assumption, and follow Bernoulli distributions with parameters

θ1,α, . . . , θJ,α, which are called item parameters. Specifically, we have θj,α := P(Rj =

1 | α). We use Θ = (θj,α) to denote the item parameter matrix. Under the local

independence assumption, the probability mass function of a subject’s response vector

R = (R1, . . . , RJ) ∈ {0, 1}J can be written as

P(R | Θ,π) =
∑

α∈{0,1}K
πα

J∏
j=1

θ
Rj
j,α(1− θj,α)1−Rj . (2.1)

So far we have a latent attribute profile α for a subject to indicate the sub-

ject’s possession of K attributes, and a structural vector q for an item to reflect the

item’s dependence on K latent attributes. Moreover, the structural matrix Q puts

constraints on item parameters to reflect the diagnostic model assumptions. One

important common assumption is that the item parameters θj,α only depends on

whether the latent attribute profile α contains the required attributes by item j, that

is, the attributes in the set Kj = {k ∈ [K] : qj,k = 1}, which is the set of the required

attributes of item j. Therefore, for item j, the latent attribute profiles which are only

different in the attributes outside of Kj would have the same item parameters. In

this way, the structural matrix Q forces some entries in the item parameter matrix

Θ to be the same. The dependence of item parameters on the required attributes are

modeled differently in different LAMs, as shown in Example II.1 and Example II.2.

Example II.1 (DINA and DINO Models). We first introduce the Deterministic Input

Noisy output “And” (DINA, Junker and Sijtsma, 2001) and the Deterministic Input

Noisy output “Or” (DINO, Templin and Henson, 2006) models, where there are only

two levels of item parameters for each item. Specifically, we use θ+
j and θ−j to denote

the two levels for item j. We introduce a binary indicator matrix Γ = (Γj,α : j ∈

[J ],α ∈ {0, 1}K) ∈ {0, 1}J×2K , which corresponds to the ideal responses under the

DINA and DINO models. Under the DINA model, which assumes a conjunctive
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“And” relationship among the binary attributes, the indicator matrix is defined as

ΓDINA
j,α =

K∏
k

α
qj,k
k =

∏
k∈Kj

αk. (2.2)

Under the DINO model assuming a conjunctive “Or” relationship among the latent

attributes, we have

ΓDINO
j,α = I

(
∃ k ∈ [K], qj,k = αk = 1

)
. (2.3)

The indicator Γj,α in the DINA model indicates whether a subject possesses all the

required attributes of item j, while that in the DINO model indicates whether a subject

possesses any of the required attributes of item j. In both models, the item parameters

only depend on the set of the required attributes of an item Kj, and they are defined

as:

θ+
j = P(Rj = 1 | Γj,α = 1), θ−j = P(Rj = 1 | Γj,α = 0),

where θ−j is also called the guessing parameter and 1− θ+
j the slipping parameter.

Example II.2 (GDINA model). The Generalized DINA model (GDINA, de la Torre,

2011) is a more general model where all the interactions among the latent attributes

are considered. The item parameters for the GDINA model are written as

θGDINA
j,α = βj,0 +

K∑
k=1

βj,kαkqj,k +
K∑
k=1

K∑
k′=k+1

βj,k,k′αkαk′qj,kqj,k′ + · · ·+ βj,1,2,...,K

K∏
k=1

αkqj,k

= βj,0 +
∑
k∈Kj

βj,kαk +
∑

k,k′∈Kj ,k 6=k′
βj,k,k′αkαk′ + · · ·+ βj,Kj

∏
k∈Kj

αk.

The coefficients in the GDINA model can be interpreted as follows: βj,0 is the proba-

bility of a positive response for the most incapable subjects with no required attributes

present; βj,k is the increase in the probability due to the main effect of latent attribute

αk; βj,1,2,...,K is the change in the positive probability due to the interaction of all the

latent attributes. In the GDINA model, the intercept and main effects are typically

14



assumed to be nonnegative to satisfy the monotonicity assumption, while the inter-

actions may take negative values. By incorporating all the interactions among the

required attributes, the GDINA model is one of the most general cognitive diagnosis

models.

2.2.2 LAMs as Restricted Latent Class Models

Latent attribute models in fact can also be viewed as Restricted Latent Class

Models (RLCM, Xu, 2017), a special family of more general Latent Class Models

(LCMs). We first briefly describe the general model setup of LCMs (Goodman,

1974). In an LCM, we assume that each subject belongs to one of M latent classes.

For each latent class, we use πm to denote its proportion parameter for m ∈ [M ].

The latent classes follow a categorical distribution with the proportion parameter

vector π = (πm : m ∈ [M ], πm ≥ 0,
∑M

m=1 πm = 1). As in classical finite mixture

models, responses to items are assumed to be independent of each other given the

latent class membership, and we use Θ = (θjm) ∈ [0, 1]J×M to denote the item

parameter matrix. To be specific, for a subject’s response R = (R1, R2, . . . , RJ), we

have θjm = P(Rj = 1 | m). Then the probability mass function of an LCM can be

written as

P(R | Θ,π) =
M∑
m=1

πm

J∏
j=1

θ
Rj
jm(1− θjm)1−Rj . (2.4)

This unrestricted LCM is saturated in the sense that no constraints are imposed on

the latent classes’ response distributions.

LAMs can be viewed as special cases of LCMs with M = 2K latent classes and

additional constraints imposed on the components’ distributions. Recall that in LAMs

with K latent attributes, each latent attribute profile α is a K-dimensional binary

vector and has a proportion parameter πα. The relationship between the latent

attribute profiles in LAMs and the latent classes in LCMs can be seen by some one

to one correspondence from {α : α ∈ {0, 1}K} to {m : m = 1, . . . , 2K}, such as
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m =
∑K

k=1 αk · 2k−1 + 1. Therefore in a LAM with K latent attributes and no

hierarchical structure, we have M = 2K latent classes. In HLAMs, the number of

allowed latent attribute profiles is smaller than 2K and we have M = |A|, as discussed

in Section 2.2.1. Moreover, in LAMs, there are additional restrictions on the item

parameter matrix Θ through the Q-matrix. Under these restrictions, for each item,

certain subsets of item-level response probabilities will be constrained to be the same.

Thus, a latent attribute model with or without any hierarchical structure can be

viewed as a sub-model of a saturated LCM.

2.3 Regularized Estimation Method

2.3.1 Motivation and Proposed Method

To fit HLAMs, the Q-matrix, the hierarchical structures among the attributes, the

item-level models, and the number of latent attributes are often needed to be pre-

specified by domain experts, which however can be subjective and inaccurate. An

important problem in cognitive diagnosis modeling then becomes how to efficiently

and accurately learn these quantities from noisy observations.

In this section, we propose a unified modeling and inference approach to learning

the latent structures, including the number of latent attributes K, the attribute-

attribute hierarchical structure, the item-attribute Q-matrix, and the item-level di-

agnostic models. In particular, based on the observation in Section 2.2.2, we propose

to learn an HLAM with minimal model assumptions starting with an unrestricted

LCM. We use the following discussion and examples to further illustrate the key idea.

• As discussed in Section 2.2.1, when there exist hierarchical structures among

the latent attributes, the number of truly existing latent attribute profiles is

smaller than 2K . For example, when K = 4, the total number of possible

attribute profiles without any hierarchical structure is 2K = 16. Under different
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hierarchical structures as shown in Figure II.1, the numbers of existing attribute

profiles are all smaller than 16. Therefore, to learn a hierarchical cognitive

diagnosis model, we need first select significant latent attribute profiles that

truly exist in the population.

• Furthermore, to reconstruct the Q-matrix and item models in hierarchical latent

attribute models, it is also essential to examine the inner structure of the item

parameter matrix. One key challenge here is that under certain model assump-

tions, there may exist some equivalent Q-matrices. Here we say two Q-matrices

are equivalent under certain hierarchical structure E , denoted by Q1
E∼ Q2, if

they give the same item parameter matrices, that is, Θ(Q1,AE) = Θ(Q2,AE),

where AE is the induced latent attribute profile set under hierarchy E .

As we introduced in Example II.1, for the DINA model, the item parameters

only depend on the highest interactions among the required latent attributes.

For such models, we have equivalent Q-matrices under hierarchical structures.

For example, consider three latent attributes with a linear hierarchy, that is,

E =
{

1→ 2→ 3
}

. We have

Q(1) =


1 0 0

0 1 0

0 0 1

 E∼ Q(2) =


1 0 0

1 1 0

1 1 1

 E∼ Q(∗) =


1 0 0

∗ 1 0

∗ ∗ 1

 , (2.5)

where “∗” can be either 0 or 1. However, when the underlying model is the

GDINA model, since all the interactions among the latent attributes are con-

sidered, there would not exist such equivalent Q-matrices. For example, con-

sider the second item of the Q-matrices in (2.5), for Q(1), q
(1)
2 = (0, 1, 0) and

the corresponding item parameter vector under the GDINA model is θ
(1)
2 =

(β0, β0, β0 + β2, β0 + β2). For Q(2), q
(2)
2 = (1, 1, 0) and the corresponding item
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parameter vector under the GDINA model is θ
(2)
2 = ( β0, β0 + β1, β0 + β1 +

β2 + β1,2, β0 + β1 + β2 + β1,2), which is different from that of Q(1), and thus,

the equivalence no longer holds under the GDINA model. Therefore, to learn

the Q-matrix and infer the item models in HLAMs, it is also necessary to learn

the item parameter matrix and investigate its inner constraint structure of it.

Moreover, after learning the item parameter matrix, we can get the partial or-

ders among the selected latent classes, which would in turn enable us to recover

the latent hierarchies, the Q-matrix, and item models. We leave the details of

the reconstruction of these quantities in Section 2.4.2.

Motivated by the above discussions and the fact that LAMs are a special family

of LCMs with additional restrictions, we propose to start with an unrestricted latent

class model and then put additional regularization terms, to select significant latent

classes and learn the item parameter matrix simultaneously. Specifically, we start

with a latent class model with M latent classes, where M is a large number, serving

as an upper bound for the true number of latent classes. If the true number of latent

classes is smaller than M , some of the proportion parameters will be zeros. Let

π = (π1, . . . , πM) be the proportion parameter vector, and Θ = (θjk) ∈ (0, 1)J×M be

the item parameter matrix of the LCM, with θj = (θjk, k = 1, . . . ,M) being the jth

item’s parameter vector. Then for a response data matrix R = (Rij : i ∈ [N ], j ∈

[J ]) ∈ {0, 1}N×J , where N is the sample size, the likelihood can be written as

LN(π,Θ;R) =
N∏
i=1

( M∑
k=1

(
πk

J∏
j=1

θ
Rij
jk (1− θjk)1−Rij

))
. (2.6)

And the log-likelihood is

lN(π,Θ;R) =
N∑
i=1

log
( M∑
k=1

(
πk

J∏
j=1

θ
Rij
jk (1− θjk)1−Rij

))
(2.7)
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We consider the following objective function with two additional penalty terms:

lN(π,Θ;R)− λ1

M∑
k=1

log[ρN ] πk − λ2

J∑
j=1

J (θj), (2.8)

where λ1 and λ2 are two nonnegative tuning parameters. The terms log[ρN ] πk and

J (θj) are two penalties and we discuss them one by one as follows.

The term log[ρN ] πk = log πk ·I
(
πk > ρN

)
+log ρN ·I

(
πk ≤ ρN

)
, is a log-type penalty

(Gu and Xu, 2019b) on the proportion parameters, where ρN is a small threshold to

circumvent the singularity of the log function at zero. Following Gu and Xu (2019b),

we can take ρN to be a small value, such as N−d for some d ≥ 1. The log penalty is

imposed on the proportion parameters, which forces small values in the proportion

parameters to be zero. This log-type penalty also makes computation efficient in the

E-step, as shown in our EM algorithm in Section 2.4.1. We can also interpret this log

penalty from a Bayesian perspective, where we use a Dirichlet prior with parameter

1− λ1 for the proportions. When 1− λ1 < 0, it’s not a proper Dirichlet distribution.

But allowing 1− λ1 < 0 would help us select significant proportion parameters more

efficiently compared to the traditional proper Dirichlet priors. As shown in Figure

II.3, when λ1 < 1, the density concentrates more in the interior of the parameter

space, while with λ1 > 1 the density concentrates more on the boundary, encouraging

sparsity of the proportion parameter vector. Therefore, it is essential to allow λ1 to

be nonnegative and even larger than 1 for the purpose of selecting the significant

latent classes.

The penalty J (θj) is enforced on the item parameters for different latent classes

item-wisely, which aims to learn the inner structure of the item parameter matrix.

In particular, as discussed in Section 2.2.1, due to the restrictions of the Q-matrix

and item model assumptions, for each item, some subset of latent attribute profiles

have the same item parameters; and such constraint structure of the item parameter
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(a) (b)

Figure II.3: Illustration of Dirichlet Prior. (a): probability density function of 3-
dimensional Dirichlet distribution with parameters all equal to 1 − λ1 = 1; (b):
(improper) probability density function of 3-dimensional Dirichlet distribution with
parameters all equal to 1− λ1 = −0.9.

matrix can be used to further estimate the hierarchical structure and the Q-matrix.

Therefore, to learn the set of latent classes that share the same item parameters, we

put the penalty function J (·) on the differences among the item parameters for each

item. A popular choice for shrinkage estimation is the Lasso penalty, which however

is known to produce biased estimation results. To overcome this issue, we propose to

use the grouped truncated Lasso penalty (Shen et al., 2012),

Jτ (θj) =
∑

1≤k<l≤M

TLP(|θjk − θjl|; τ),

where TLP(x; τ) = min(|x|, τ), and τ here is a positive tuning parameter. Figure II.4

(a) provides an example for the TLP with τ = 1. Moreover, since we only focus on

the item parameters for significant latent classes, we use

Jτ,ρN (θj) =
∑

1≤k<l≤M,
πl>ρN ,πk>ρN

TLP(|θjk − θjl|; τ).

A key feature of the truncated Lasso penalty is that it can be regarded as a L1 penalty

for a small |x| ≤ τ , while it does not put further penalization for a large |x| > τ .
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In this way, it corrects the Lasso bias through adaptive shrinkage combined with

thresholding. It discriminates small from large differences through thresholding and

consequently is capable of handling low-resolution differences through tuning τ .

In Chen et al. (2017b), the authors used the Smoothly Clipped Absolute Deviation

(SCAD) penalty (Fan and Li, 2001), which can also be used to merge similar item

probabilities. The SCAD penalty is similar to the TLP, while there is a quadratic

spline function between the L1 penalty for small values and the constant penalty for

large values. Specifically, the SCAD penalty is expressed as below

pSCAD
λ,a (x) =


λ|x| if |x| ≤ λ,

−
(
|x|2−2aλ|x|+λ2

2(a−1)

)
if λ < x < aλ,

(a+1)λ2

2
if |x| ≥ aλ.

Figure II.4 (c) plots the SCAD penalty with λ = 0.5 and a = 2. Here, we want to

mention several additional advantages of using the truncated Lasso penalty. First, it

performs the model selection task of the L0 function by providing a computationally

efficient surrogate. When τ is sufficiently small, the truncated Lasso penalty has a

good approximation to the L0 penalty. Moreover, although it is not a convex function,

it is piecewise linear and can be decomposed into a difference of two convex functions

as illustrated in Figure II.4 (a) and Figure II.4 (b), which allows us to use Difference

Convex (DC) programming (Tuy, 1995), gaining computational advantages. TLP

also has nice likelihood oracle properties studied in previous literature (Shen et al.,

2012).

Remark II.1. Our approach shares some similarities with the regularized LCM ap-

proach in Chen et al. (2017b) that both use exploratory LCMs to estimate the latent

structures. However, in Chen et al. (2017b), the number of latent classes is pre-

specified or selected in a way that all the possible values should be considered. This
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Figure II.4: Illustration of TLP and SCAD. (a): truncated Lasso function TLP(x; τ)
with τ = 1; (b): the DC decomposition into a difference of two convex functions J1(x)
and J2(x; 1); (c): SCAD penalty with λ = 0.5 and a = 2.

could require significantly more computational efforts when the number of latent at-

tributes K is large since there will be 2K possible latent classes. For instance K = 10

would lead to 2K = 1024 possible candidate M values. On the contrary, in our method,

we only need an upper bound for the number of latent classes, and our model would

perform the selection of significant latent classes more efficiently through the added log

penalty. Moreover, in Section 2.4 we also develop a novel estimation algorithm to re-

cover the number of latent attributes, the hierarchical structures among the attributes,

and the Q-matrix, based on the proposed regularization estimation results.

Remark II.2. In Wang and Lu (2021), the authors also studied the latent variable

selection approach, which, however, required a pre-specified number of latent attributes

and a known identity sub-matrix in the Q-matrix. Moreover, a hard cutoff for pro-

portion parameters was used to select significant latent classes. For example, they

chose 0.05 as the cutoff when K = 3 and 0.025 when K = 4. This hard cutoff in fact

played a decisive role in determining the significant latent classes. However, there is

neither a systematical way nor theoretical guarantee to select this cutoff, making it

less practical in real applications.
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2.3.2 Theoretical Proporties

In this section, we present the statistical properties of the regularized estimator

obtained from (2.8). We first present some identifiability results of hierarchical latent

attribute models from Gu and Xu (2019b). Then we will show that, under suitable

conditions, the regularized estimator is consistent for model selection. In the follow-

ing, for two vectors a and b of dimension n, we say a � b if ai ≤ bi for i = 1, . . . , n,

and a � b if ai ≥ bi for i = 1, . . . , n.

The identifiability of the model parameters depends on the restrictions of the

item parameter matrix. To characterize the identifiability conditions, we introduce

an indicator matrix of most capable classes as Γ :=
(
I{θj,m = maxm′∈[M ] θj,m′}, j ∈

[J ],m ∈ [M ]
)
∈ {0, 1}J×M , indicating whether the latent classes possess the highest

level of each item’s positive response probability. Let Γ·,m denote the mth column

vector of the Γ matrix. Based on the indicator matrix, we can define a partial order

among latent classes. For 1 ≤ m1 6= m2 ≤ M , we say latent class m1 is of a larger

order than latent class m2 under Γ if Γ·,m1 � Γ·,m2 . See Figure II.5 for an illustrative

example, where we use a Directed Acyclic Graph (DAG) to represent partial orders,

and Γ·,m1 points to Γ·,m2 if Γ·,m1 � Γ·,m2 .

Figure II.5: Indicator matrix and partial orders.

As in Gu and Xu (2019b), for LAMs, we define the indicator matrix for a set of

latent attribute profiles A as ΓA :=
(
I{θj,α = maxα′∈A θj,α′} : j ∈ [J ], α ∈ A

)
∈

{0, 1}J×|A|. Note that if we take the set of latent classes as the set of attribute profiles,

the indicator matrix of an LCM is equivalent to that of a LAM. Similarly, we define the

proportion parameter vector and item parameter matrix for a set of latent attribute

profiles A as πA =
(
πα : α ∈ A

)
and ΘA =

(
θj,α : j ∈ [J ], α ∈ A

)
. Following Gu
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and Xu (2019b), for any subset of items S ⊂ [J ], we define a partial order among the

latent attribute profiles. For α,α′ ∈ A, we say α �S α′ under ΓA if ΓAj,α ≥ ΓAj,α′ for

j ∈ S. And for two item sets S1 and S2, we say “�S1=�S2” if for any α,α′ ∈ A, we

have α �S1 α
′ if and only if α �S2 α

′. Note that if we take the item set to be the

set of all items, the definitions of indicator matrix and partial orders are the same as

those in Section 2.3.1. For a subset of items S ⊂ [J ] and a set of attribute profiles A,

we define the corresponding indicator matrix Γ(S, A) =
(
Γj,α : j ∈ S, α ∈ A

)
.

We first state the definition of strict identifiability for latent hierarchy and model

parameters.

Definition 2.3.1 (strict identifiability, Gu and Xu (2019b)). Consider an LAM with

a hierarchy E0 and the induced latent attribute profile set A0. A0 is said to be

(strictly) identifiable if for any indicator matrix ΓA of size J×|A| with |A| ≤ |A0|, any

proportion parameter vector πA and any valid item parameter matrix ΘA respecting

constraints given by ΓA, the following equality

P(R | πA,ΘA) = P(R | πA0 ,ΘA0) (2.9)

implies A = A0. Moreover, if (2.9) implies
(
πA,ΘA

)
=
(
πA0 ,ΘA0

)
, then we say the

model parameters
(
πA0 ,ΘA0

)
are (strictly) identifiable.

The following theorem provides sufficient conditions for strict identifiability of

latent hierarchies and model parameters.

Theorem 2.3.2 (strict identifiability, Gu and Xu (2019b)). Consider a LAM with a

hierarchy E0. The hierarchy is identifiable if the following conditions of the indicator

matrix ΓA0 corresponding to the induced latent attribute profile set A0 are satisfied:

(1) There exist two disjoint item sets S1 and S2, such that Γ(Si, A0) has distinct

column vectors for i = 1, 2 and “�S1”=“�S2” under ΓA0.
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(2) For any α,α′ ∈ A0 where α′ �Si α under ΓA0 for i = 1 or 2, there exists some

j ∈
(
S1 ∪ S2

)c
such that ΓA0

j,α 6= ΓA0

j,α′.

(3) Any column vector of ΓA0 is different from any column vector of ΓA
c
0, where

Ac0 = {0, 1}K \ A0.

Moreover, under Conditions (1) - (3), the model parameters
(
πA0 ,ΘA0

)
associated

with A0 are also identifiable.

Theorem 2.3.2 provides conditions for strict identifiability of hierarchical struc-

tures and model parameters. The strict identifiability can be relaxed to generic

identifiability, where the hierarchy and model parameters can be identified except for

a zero-measure set. The definition of generic identifiability is defined below.

Definition 2.3.3 (generic identifiability, Gu and Xu (2019b)). Consider an LAM

with a hierarchy E0 and the induced latent attribute profile set A0. Denote the

parameter space of (πA0 ,ΘA0) constrained by ΓA0 by Ω. We say A0 is generically

identifiable, if there exists a subset V ⊂ Ω that has a Lebesgue measure zero, such

that for any (πA0 ,ΘA0) ∈ Ω \ V , Equation (2.9) implies A = A0. Moreover, for any

(πA0 ,ΘA0) ∈ Ω\V , if (2.9) implies
(
πA,ΘA

)
=
(
πA0 ,ΘA0

)
, then we say

(
πA0 ,ΘA0

)
are generically identifiable.

Theorem 2.3.4 (generic identifiability, Gu and Xu (2019b)). Consider an LAM with

a hierarchy E0. The hierarchy is generically identifiable, if the following conditions of

the indicator matrix ΓA0 corresponding to the induced latent attribute profile set A0

are satisfied:

1. There exist two disjoint item sets S1 and S2, such that altering some entries from

0 to 1 in Γ(S1∪S2, A0) yields a Γ̃
(S1∪S2, A0)

satisfying that Γ̃
(Si, A0)

has distinct

column vectors for i = 1, 2 and “�S1”=“�S2” under Γ̃
A0

.
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2. For any α,α′ ∈ A0 where α′ �Si α under ΓA0 for i = 1 or 2, there exists some

j ∈
(
S1 ∪ S2

)c
such that Γ̃A0

j,α 6= Γ̃A0

j,α′.

3. Any column vector of ΓA0 is different from any column vector of ΓA
c
0, where

Ac0 = {0, 1}K \ A0.

Moreover, under conditions (A) - (C), the model parameters
(
πA0 ,ΘA0

)
associated

with A0 are also generically identifiable.

Theorem 2.3.4 establishes generic identifiability conditions where the hierarchical

structure and model parameters can be identified except for a zero-measure set of

parameters. To establish consistency results, we need to make the following assump-

tion.

Assumption 2.3.5.
[
lN(π̂∗, Θ̂

∗
)−lN(π̂0, Θ̂0)

]
/N = Op(N

−δ), for some 1/2 < δ ≤ 1,

where (π̂∗, Θ̂
∗
) is the maximum likelihood estimator (MLE) directly obtained from

(2.7), and (π̂0, Θ̂0) is the Oracle MLE obtained under the condition that the number

of latent attributes, the hierarchical structure, the Q-matrix and item-level diagnostic

models are known.

When δ = 1, Assumption 1 corresponds to the usual root-N convergence rate of

the estimators, while 1/2 < δ ≤ 1 corresponds to a slower convergence rate. Here we

make a general assumption to cover different situations. In Gu and Xu (2019b), the

authors made a similar assumption about the convergence rate of the likelihood.

We use (π0,Θ0) to denote the true model parameter and M0 := |A0| to denote

the true number of latent classes, where A0 is the reduced latent attribute profile

set under the true hierarchical structure E0. For (π̂, Θ̂) obtained from optimizing

(2.8), we define the selected latent classes as {m : π̂m > ρN , m ∈ [M ]}, and the

number of selected latent classes M̂ :=
∣∣{m : π̂m > ρN , m ∈ [M ]}

∣∣. For the true

item parameter matrix Θ0, we defined the set S0 =
{

(j, k1, k2) : θ0
j,k1

= θ0
j,k2
, 1 ≤
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k1 < k2 ≤M0, 1 ≤ j ≤ J
}

to indicate the constraint structure of the item parameter

matrix. Similarly, for (π̂, Θ̂), we define Ŝ =
{

(j, k1, k2) : θ̂j,k1 = θ̂j,k2 , 1 ≤ k1 < k2 ≤

M, π̂k1 > ρN , π̂k2 > ρN
}

. We say Ŝ ∼ S0 if there exists a column permutation σ of Θ̂

such that Ŝσ = S0. Given the above assumptions, we have the following consistency

results.

Theorem 2.3.6 (consistency). Suppose the identifiability conditions in Theorem

2.3.2 are satisfied and Assumption 2.3.5 holds. For λ1, λ2, τ and ρN satisfying

N1−δ| log ρN |−1 = o(λ1), λ1 = o(N | log ρN |−1) and λ2τ = o(λ1| log ρN |), we can select

the true number of latent classes consistently, that is,

P
(
M̂ 6= M0

)
−→ 0, as N −→∞. (2.10)

Moreover, the estimated parameter (π̂, Θ̂) is also consistent of (π0,Θ0). If we further

assume λ1 = o(N1/2), λ2τ = o(N1/2), λ2N
−1/2 →∞ and τN1/2 →∞, up to a column

permutation, the identical item parameter pair set S0 is also consistently estimated,

P
(
Ŝ � S0

)
→ 0, as N →∞. (2.11)

Theorem 2.3.6 implies that with suitable choices of hyperparameters, we can cor-

rectly select the number of latent classes and learn the inner structure of the item

parameter matrix consistently as sample size N goes to infinity. For example, we can

take ρN ∼ N−d for some d ≥ 1, λ1 ∼ N
1
2
−ε1 , λ2 ∼ N

1
2

+ε2 and τ ∼ N−ε3 for some small

positive constants ε1, ε2, ε3 satisfying that 0 < ε1 < δ − 1/2, 0 < ε2 < ε3 < 1/2 and

ε3 − ε2 > ε1. Moreover, if the conditions in Theorem 2.3.4 are satisfied, we can con-

sistently estimate the true number of latent classes and inner structure of the item

parameter matrix except for a zero-measure set of model parameters. In practice,

we can use information criteria, such as the Bayesian Information Criterion (BIC,

Schwarz et al., 1978), to help select the tuning parameters, which will be further

27



discussed in Section 2.4.1. The proof of the theorem is presented in Appendix A.

Based on the learned latent classes and estimated item parameter matrix, we

develop a latent structure recovery algorithm outlined in Algorithm II.2 in Section

2.4. Specifically, we recover the number of latent attributes, latent hierarchies, and

the Q-matrix based on the partial orders among the selected latent classes. Under

the identifiability conditions, due to the consistency of the item parameter estimator

Θ̂ and the inner structure Ŝ established, we can also consistently recover the partial

orders among the latent classes, which ultimately leads to the consistency of the

estimated number of latent attributes, the hierarchical structures and the Q-matrix.

For algorithm details, please see Section 2.4.

2.4 Learning Algorithms

2.4.1 Penalized EM Algorithm

In this section, we develop an efficient EM algorithm for the proposed model. For

an LCM, the complete data log-likelihood function can be written as

lC(R, z;π,Θ) =
N∑
i=1

M∑
k=1

zik log
(
πkϕ(Ri;θk)

)
, (2.12)

where ϕ(Ri;θk) =
∏J

j=1 θ
Rij
jk (1 − θjk)1−Rij and z ∈ {0, 1}N×M is the latent variable

in which zik indicates whether the ith subject belongs to the kth latent class. Then

in an EM algorithm without additional penalty, we maximize the following objective

function at the (c+ 1)th iteration:

max
π,Θ

Q(π,Θ | π(c),Θ(c)) =
N∑
i=1

M∑
k=1

s
(c)
ik

(
log πk + logϕk(Ri;θk)

)
, (2.13)
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where

s
(c)
ik = Eπ(c),Θ(c) [zik = 1 | Ri] =

π
(c)
k ϕk(Ri;θ

(c)
k )∑

k′ π
(c)
k′ ϕ

(c)
k′ (Ri;θ

(c)
k′ )

.

With the additional penalty terms in (2.8), the new objective function denoted as

G(π,Θ | π(c),Θ(c)) becomes:

min
π,Θ

G(π,Θ | π(c),Θ(c)) =− 1

N
Q(π,Θ | π(c),Θ(c))

+ λ̃1

M∑
k=1

log[ρN ] πk + λ̃2

J∑
j=1

Jτ,ρN (θj),

where λ̃1 = λ1/N and λ̃2 = λ2/N .

As we mentioned in Section 2.3.1, the truncated Lasso penalty can be decomposed

into a difference between two convex functions. Therefore we can utilize DC program-

ming (Tuy, 1995) to optimize G. Moreover, we also exploit the Alternating Direction

Method of Multipliers (ADMM, Boyd et al., 2011) method to facilitate solving the

problem. There are several advantages of using ADMM to perform optimization here.

Updating the parameters in an alternating or sequential fashion takes advantage of

the decomposability of dual ascent while using the method of multipliers enables su-

perior convergence properties (Boyd et al., 2011). In practice, we also observe that

the ADMM algorithm converges within a few tens of iterations in our simulation and

real data studies. The algorithm is summarized in Algorithm II.1 and the derivations

of the algorithm are presented in Appendix A.

We want to note that our algorithm can naturally handle missing values. If

R = (Robs,Rmiss) is the decomposition of the full data matrix into the observed part

Robs and the missing part Rmiss, then after marginalization over the missing values,

the initial likelihood l(R;π,Θ) simplifies to l(Robs;π,Θ). Then a natural imple-

mentation could be based on indexing the inference procedure so that the posterior

conditionals only involve sums over the observed values. The detailed Penalized EM
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Algorithm II.1: PEM: Penalized EM with log-penalty and TLP

Data: Binary response matrix R = (Ri,j)N×J .
Set hyperparameters λ̃1, λ̃2, τ , γ and ρ.
Set an upper bound for the number of latent classes M .
Initialize parameters π, Θ, and the conditional expectations s.
while not converged do

In the (c+ 1)th iteration,
for (i, k) ∈ [N ]× [M ] do

s
(c+1)
ik =

π
(c)
k ϕk(Ri;θ

(c)
k )∑

π
(c)

k′ ϕk′ (Ri;θ
(c)

k′ )
, where ϕ(Ri;θk) =

∏J
j=1 θ

Rij
jk (1− θjk)1−Rij .

end

for k ∈ [M ] and π
(c)
k > ρ do

π
(c+1)
k =

∑N
i=1 s

(c+1)
ik /N−λ̃1

1−Mλ̃1
.

end

for (j, k) ∈ [J ]× [M ] and π
(c+1)
k > ρ do

θ
(c+1)
jk = argmin

θjk

{
−
∑N

i=1 s
(c)
ik Rij

N
log(θjk)

−
∑N

i=1 s
(c)
ik (1−Rij)

N
log(1− θjk)

+
γ

2

∑
l>k

(
d̂

(c)
jkl − (θjk − θ̂(c)

jl ) + µ̂
(c)
jkl

)2

+
γ

2

∑
l<k

(
d̂

(c)
jlk − (θ̂

(c+1)
jl − θjk) + µ̂

(c)
jlk

)2
}

end

for j ∈ [J ], 1 ≤ k < l ≤M and π
(c+1)
k > ρ, π

(c+1)
l > ρ do

d̂
(c+1)
jkl =

{(
θ̂

(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl

)
· I
(
|d̂(c)
jkl| ≥ τ

)
ST
(
θ̂

(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl; λ̃2/γ

)
· I
(
|d̂(c)
jkl| < τ

)
,

where ST(x; γ) = (|x| − γ)+x/|x|.
µ̂

(c+1)
jkl =µ̂

(c)
jkl + d̂

(c+1)
jkl −

(
θ̂

(c+1)
jk − θ̂(c+1)

jl

)
end

end

Output:
{
π̂, Θ̂, ŝ

}
algorithm with missing values is also summarized in Appendix A.

To address the computational bottleneck when faced with large-scale datasets,
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we can also use a stochastic version of the aforementioned EM algorithm. In each

iteration, we randomly subsample a subset Sr of rows (subjects), and a subset Sc

of columns (items). Then update the conditional expectation s
(c)
i for i ∈ Sr with

items in Sc. Updates in M-step remain the same, which will give us an intermediate

model parameter (π̂(c+1/2), Θ̂
(c+1/2)

). Then we use a weighted average of (π̂(c), Θ̂
(c)

)

and (π̂(c+1/2), Θ̂
(c+1/2)

) to update the model parameters. Appropriate weights will

provably lead to convergence to a local optimum (Delyon et al., 1999).

In terms of hyperparameter tuning, we use BIC defined as below:

BIC(π,Θ) = −2lN(π,Θ) + logN
(
MρN − 1 +

J∑
j=1

dim(θj)
)

(2.14)

where lN is the log-likelihood, MρN :=
∣∣{m : πm > ρN ,m ∈ [M ]}

∣∣ is the selected

number of latent classes, and dim(θj) is the number of distinct values in the set

{θj,m : πm > ρN , m ∈ [M ]}, that is, the number of distinct item parameters for item

j corresponding to the selected latent classes. Our simulation results in Section 2.5

show that BIC performed well. We can also use other selection criteria such as EBIC

(Chen and Chen, 2008) when the number of latent attributes K is large. From the

matrix completion perspective, we may also perform cross-validation to choose tuning

parameters.

2.4.2 Recover Latent Hierarchies and Q-matrix

Once we fit the model and get the estimates of the model parameters including the

number of significant latent classes M̂ , proportion parameters π̂ and item parameter

matrix Θ̂, our next goal is to recover the number of latent attributes, the latent

hierarchical structure, the Q-matrix, and item models.
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To this end, we develop an algorithm based on the indicator matrix

Γ :=

(
I{θ̂j,m = max

l∈[M̂ ]
θ̂j,l} : j ∈ [J ], m ∈ [M̂ ]

)
∈ {0, 1}J×M̂ ,

indicating whether a latent class possesses the highest level of an item’s parameters.

One common assumption in LAMs is that more capable subjects have higher item

parameters and thus larger indicator vectors, that is, Γ·.α � Γ·,α∗ , if α � α∗. Based

on this assumption, we can get partial orders among the latent classes. Then we

can find the smallest integer K such that some binary representations with K digits

satisfy these partial orders, and the binary representations can be treated as the

learned latent attribute profiles. With these reconstructed latent attribute profiles,

we can subsequently recover the hierarchical structures among the latent attributes

and the Q-matrix.

Specifically, based on the indicator matrix, we get the partial orders among the

latent classes. We use a matrix P ∈ {0, 1}M̂×M̂ to represent the partial orders, where

Pm1,m2 = 1 indicates that Γ·,m1 � Γ·,m2 . Since we only want to include direct partial

orders, for any (m1,m2) such that
(
P 2
)
m1,m2

> 0, we set Pm1,m2 = 0. For example, if

Γ·,m1 � Γ·,m2 , Γ·,m1 � Γ·,m3 and Γ·,m2 � Γ·,m3 , since m2 here is an intermediate latent

class between m1 and m3, we will not include the partial order Γ·,m1 � Γ·,m3 in P .

From P , we can get a partial order set {m1 → m2 : Pm1,m2 = 1}, based on which a

DAG can be plotted, where Γ·,m1 points to Γ·,m2 if Γ·,m1 � Γ·,m2 . One can see the

partial order matrix P in fact is the adjacency matrix of the DAG. An example of

the indicator matrix, the partial order matrix, and the corresponding DAG is shown

in Figure II.6. In a DAG, we call a node at the start of an arrow as a parent node

and a node at the end of an arrow as a child node. Note that since we always include

the most basic attribute profile with all attributes being 0 and the most capable

attribute profile with all attributes being 1, and any other latent attribute profile will
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lie between them, there is always a path passing each latent attribute profile from the

most basic one to the most capable one. After we plot the DAG, we then recover the

Figure II.6: Indicator matrix, partial order matrix, and corresponding DAG.

binary representations of the latent classes. We start from the most basic one and

move forward layer by layer. Specifically, when we construct binary representations,

we can find its parent nodes, and follow two rules below:

• If the node has only one parent node, then we need to add a dimension in the

binary representations.

• If the node has several parent nodes, then we set the binary representation of

the node to be the union of all of its parent nodes.

We use examples in Figure II.7 and Figure II.8 to illustrate the procedures of re-

covering binary representations. In the upper plot of Figure II.7, Γ·,2 only has one

parent node Γ·,1, then we need to add a dimension in the binary representations. In

the middle plot of Figure II.7, Γ·,3 has two parent nodes Γ·,1 and Γ·,2. Since there

is no partial order between Γ·,1 and Γ·,2, then there are at least two dimensions in

which Γ·,1 and Γ·,2 have different values. Then we should set Γ·,3 to be the union of

Γ·,1 and Γ·,2, which will be larger than Γ·,1 and Γ·,2. A more general case is shown in

the lower plot of Figure II.7. In Figure II.8, we provide a more complicated example.

Since Γ·,2 only has one parent node Γ·,1, we need one binary digit for Γ·,2 and set

Γ·,1 = (0) and Γ·,2 = (1). Since Γ·,3 and Γ·,4 also have only one parent node, we need

two additional dimensions, and set Γ·,3 = (1, 1, 0) and Γ·,4 = (1, 0, 1). Next because

Γ·,5 has two parent nodes Γ·,3 and Γ·,4, we set Γ·,5 = (1, 1, 1). Lastly since Γ·,6 has one

parent node Γ·,5, we need one more dimension and set Γ·,6 = (1, 1, 1, 1). Therefore, in
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total we have four latent attributes and the reconstruction process is highlighted in

blue in Figure II.8. We want to point out that when we recover the latent structures

using Algorithm II.2, we choose the smallest K such that the corresponding binary

representations of the latent classes satisfy the partial orders. A larger value of K is

possible and may not be unique, but here we use the smallest one to make the latent

structure concise. Moreover, researchers can also use their domain knowledge to help

specify these binary representations.

Figure II.7: Examples of binary representations from partial orders.

After we reconstruct binary representations of the latent classes, we can infer

the attribute hierarchy accordingly. Specifically, we can get partial orders among

latent attributes. For the example in Figure II.8, our reconstructed latent attribute

profile matrix A is shown in Figure II.9, where rows of A are the binary repre-

sentations of the latent classes. We can see that A·,1 � A·,k for all k ∈ [K],

which indicates that the first latent attribute is the most basic one and the pre-

requisite for all the other latent attributes. Moreover, the fourth attribute is 1

only if all the other attributes are 1, indicating that the fourth attribute is the
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Figure II.8: A more complicated example of binary representations from partial or-
ders.

highest and requires all the other attributes as prerequisites. Formally, we can use

E = {k → l : attribute k is a prerequisite for attribute l} introduced in Section 2.2.1

to denote the prerequisite relationship set, where k → l if A·,k � A·,l. For latent at-

tribute profile matrix A in Figure II.9, we have E = {1→ 2, 1→ 3, 2→ 4, 3→ 4}.

We can also plot a DAG according to the prerequisite relationship set E as shown in

the right plot of Figure II.9.

Figure II.9: Latent attribute profile matrix and attribute hierarchy; rows of A are
the binary representations of the selected latent classes in Figure II.8.

Finally, we need to reconstruct the Q-matrix, which can be done by comparing the

indicator matrix Γ and the reconstructed latent attribute profile A. Specifically, since
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capable subjects have the same highest item parameters, for each item, the row in the

Q-matrix will equal the smallest latent attribute profile such that the corresponding

indicator is 1. To be more formal, let qj be the jth row of the Q-matrix, we have

qj = Am,· such that Γj,m = 1 and for any m′ with Γj,m′ = 1,Am,· � Am′,·,

where Am,· denotes the mth row vector of the latent attribute profile matrix A, i.e.,

the binary representation of themth latent class in Γ. The procedures are summarized

in Algorithm II.2.

Algorithm II.2: Recover Latent Attribute Profiles, Hierarchical Structure
and Q-matrix

Input : Item parameter Matrix Θ
Step 1 : Construct the indicator matrix Γ =

(
I{θj,m = maxl∈[M ] θj,l}

)
.

Step 2 : Construct P based on the partial orders among the columns of Γ;
plot a DAG based on P .

Step 3 : Reconstruct binary representations and get latent attribute profile
set A:
for node from top to bottom do

if the node has only one parent node then
add a dimension in the binary representations

end
if the node has more than one parent node then
set the binary representation to be the union of all of its parent nodes

end

end
Step 4 : Construct prerequisite relationship set E and thus recover latent
hierarchy.

Step 5 : Reconstruct the Q-matrix Q =
(
qj
)J
j=1

:

qj = Am,· such that Γj,m = 1 and for any m′ with Γj,m′ = 1,Am,· � Am′,·.

Output: Latent attribute profile set A, prerequisite relationship set E and
the Q-matrix Q.
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2.5 Simulation Studies

In this section, we conducted comprehensive simulation studies under various

settings to evaluate the performance of the proposed method.

For the underlying models, we considered three settings. In the first setting, all

the items conformed to the DINA model. In the second setting, half of the items were

from the DINA model and the others followed the DINO model. In the third setting,

we considered the GDINA model as the underlying data-generating model. To satisfy

identifiability conditions (Xu and Zhang, 2016; Gu and Xu, 2019b,c), in the DINA

setting, the Q-matrix contained two identity sub-matrices and the remaining items

were randomly generated. In the DINA + DINO setting, the Q-matrix contained an

identity sub-matrix for each type of the model and the remains were randomly gener-

ated. For the GDINA setting, we had two identity sub-matrices, and the remaining

items were randomly generated and required at most 3 latent attributes.

We considered four hierarchical structures shown in Figure II.1 with K = 4. The

test length was set to 30 (J = 30). For the DINA and DINA + DINO settings, we

considered two sample sizes with N = 500 or 1000. Two different signal strengths

for true item parameters were included: {θ+
j = 0.9, θ−j = 0.1; j ∈ [J ]} and {θ+

j =

0.8, θ−j = 0.2; j ∈ [J ]}. For the GDINA setting, we considered two different sample

sizes, N = 1000 or 2000. The sample sizes considered in the GDINA settings are

relatively larger than those for the DINA and DINA + DINO settings since in the

GDINA model there are more item parameters to be estimated. As before, we set

two different signal strengths, where the highest item parameters were 0.9 or 0.8, and

the lowest item parameter was 0.1 or 0.2. The other item parameters in between

were equally spaced. For each scenario, we performed 50 independent repetitions.

All model parameters were randomly initialized and the implementations were done

in Matlab.

To tune hyper-parameters for the proposed method, we used a two-stage training
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strategy. In the first training stage, we primarily tuned λ̃1 and λ̃2 to select significant

latent classes, and used a fixed relatively large τ . In the second stage, we did not

put penalty on the proportion parameters (i.e. λ̃1 was set to 0), and fine-tuned λ̃2

and τ for the TLP term to further merge identical item parameters. Specifically,

in the first stage, the candidates for λ̃2 were set to relatively small and the value

of the threshold τ was set to relatively large. In this work, we chose τ = 0.3 and

selected λ̃1 ∈ {0.01, 0.015, . . . , 0.05} and λ̃2 ∈ {0.001, 0.005, 0.01, 0.015}. The reason

to use a small penalty coefficient and a relatively large threshold for the TLP during

the first training stage is that we mainly aim to select the correct number of latent

classes instead of learning identical item parameters. A small TLP would facilitate

the shrinkage of the proportion parameters, while a large TLP would merge the latent

classes too fast. After we selected the significant latent classes from the first stage, we

next moved to the second stage where we used a larger λ̃2 and a smaller threshold τ

for the TLP to further merge identical item parameters. Specifically, the penalty for

the proportion parameters λ̃1 was set to 0, and we selected log(λ̃2) ∈ {−1, 0, 1, 2, 3}

and τ ∈ {0.03, 0.05, 0.1}. For the γ parameter, similarly to Wu et al. (2016), we used

a fixed γ for simplicity with γ = 0.02. If computation allows, we could also tune

for γ or adaptively select it in each iteration (Wang and Liao, 2001). The candidate

sets for all tuning parameters were the same across the simulation settings. In total

there were 480 possible combinations of tuning parameters, while using the two-

stage training procedure, the number of combinations was reduced to around 50. On

average, the computation time in our simulation study was less than 2.0 seconds per

repetition per set of hyper-parameters. We can also try larger candidate sets for these

hyper-parameters, but our simulation results below showed that the aforementioned

candidate sets were enough to provide good results.

Following Chen et al. (2017b) and Wang and Lu (2021), we also fitted the regular-

ized LCMs under the same settings for comparison. For the regularized LCM method,

38



the number of latent classes and the coefficient for the penalty term need to be se-

lected according to some information criteria. As suggested in Chen et al. (2017b), we

used GIC2 to select these tuning parameters in regularized LCMs. In our simulation,

for the number of latent classes, we chose M ∈ {M0− 2,M0− 1,M0,M0 + 1,M0 + 2},

where M0 is the true number of latent classes. We also conducted a sensitivity analy-

sis to investigate the impacts of different specifications of the upper bound M on our

algorithm. The results show that our method is robust to the choice of different M .

The detailed results of the sensitivity analysis are included in Appendix A. For the

penalty term, we selected λ ∈ {0.01, 0.02, . . . , 0.1} as in Wang and Lu (2021).

We inspect the results from different aspects. Firstly we examine the accuracy

of selecting the number of latent classes M̂ , which is denoted as Acc(M̂). Based

on the learned item parameters, we reconstruct the indicator matrix Γ̂ =
(
I{θj,m =

maxl∈[M̂ ] θj,l}
)
∈ {0, 1}J×M̂ and the corresponding partial order matrix P̂ . It’s worth

noting that when we extract the partial orders among the latent classes, single mis-

specification of the elements in the indicator matrix may lead to different ordering

results, making the method of directly estimating the partial orders not robust. Based

on this observation, we shall allow for certain tolerance on the estimation errors of

the indicator matrix when reconstructing the partial orders. In particular, we relax

the construction condition of the partial order such that we regard Γ·,k � Γ·,j, if

Γj,k ≥ Γj,l except for a small proportion t of j ∈ [J ]. In our simulation, we used

t = 5% when the noise was small, and t = 10% when the noise was large. Another

issue to note here is that directly comparing two indicator matrices is not straightfor-

ward due to the label switching issue. To address this issue, we apply the Hungarian

algorithm (Kuhn, 1955) to find the best match of the columns of the estimated indi-

cator matrix and the true indicator matrix, based on which the following comparisons

can be made accordingly. We use Acc(P̂ ) to denote the accuracy of reconstruction

of the partial orders. If all the partial orders among the columns of the indicator
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matrix are correctly recovered, then we will successfully reconstruct the binary latent

pattern representations and accordingly the hierarchical structures among the latent

attributes. We use Acc(Ê) to denote the recovery rate of the hierarchical structure.

Here we count it a success only if the entire hierarchical structure is recovered. If the

number of latent classes is successfully selected, we also compute the mean squared

error of the item parameters MSE(Θ̂). Finally, if the hierarchical structure is cor-

rectly recovered, we compute the accuracy of the estimated Q-matrix, denoted by

Acc(Q̂). In summary, we have five evaluation metrics : Acc(M̂), Acc(P̂ ), Acc(Ê),

MSE(Θ̂) and Acc(Q̂).

The simulation results of the DINA, and DINA + DINO settings are presented

in Table 2.1 and Table 2.2. The results of the GDINA model are shown in Table

2.3. The simulations show that compared with the regularized LCM approach, our

method provided much better results in almost all the settings and from all the eval-

uation aspects. In many settings, the proposed method could achieve a nearly perfect

selection of the number of latent classes, reconstruction of the partial orders and hi-

erarchies, and the estimation of the Q-matrix, especially when the noise was small

or there was a sufficiently large data size. Among the four hierarchical structures,

the unstructured hierarchy was the most difficult one, especially when the noise was

large but the sample size was relatively small. This is expected since under the un-

structured hierarchy, there are 9 latent classes, and the hierarchical structure is more

complicated compared with the others. However, with increasing sample sizes, the

proposed method also provided satisfactory results, while the regularized LCM ap-

proach did not. In terms of the underlying data-generating model, the DINA setting

was the most difficult one to learn. This is because the DINA models the conjunctive

“AND” relationship among the latent attributes, which makes it hard to distinguish

the latent classes under hierarchical structures. For example, consider latent classes

α = (1, 0, 0, 0) and α′ = (1, 1, 0, 0). Under the DINA model, only the items with

40



Hierarchy N r Method Acc(M̂) Acc(P̂ ) Acc(Ê) MSE(Θ̂) Acc(Q̂)

Linear

500

0.1
Proposed 1 1 1 0.0004 0.99
RLCM 0.72 0.71 0.60 0.0006 0.96

0.2
Proposed 0.68 0.68 0.66 0.0012 0.95
RLCM 0.42 0.42 0.42 0.0012 0.99

1000

0.1
Proposed 1 1 1 0.0002 1
RLCM 0.80 0.80 0.80 0.0013 0.99

0.2
Proposed 0.96 0.96 0.96 0.0004 0.99
RLCM 0.54 0.53 0.52 0.0025 0.99

Convergent

500

0.1
Proposed 1 1 0.98 0.0005 0.99
RLCM 0.62 0.61 0.48 0.0013 0.96

0.2
Proposed 0.56 0.56 0.50 0.0014 0.93
RLCM 0.20 0.18 0.08 0.0245 0.93

1000

0.1
Proposed 1 1 1 0.0002 1
RLCM 0.48 0.48 0.40 0.0003 0.98

0.2
Proposed 0.84 0.84 0.84 0.0005 0.98
RLCM 0.38 0.37 0.34 0.0062 0.98

Divergent

500

0.1
Proposed 1 1 0.97 0.0005 0.97
RLCM 0.44 0.43 0.28 0.0047 0.93

0.2
Proposed 0.48 0.47 0.34 0.0016 0.88
RLCM 0.22 0.20 0.08 0.0194 0.95

1000

0.1
Proposed 0.98 0.98 0.98 0.0002 1
RLCM 0.48 0.48 0.44 0.0003 0.97

0.2
Proposed 0.86 0.86 0.80 0.0006 0.96
RLCM 0.26 0.25 0.20 0.0108 0.97

Unstructured

500

0.1
Proposed 0.82 0.82 0.66 0.0006 0.93
RLCM 0.22 0.21 0.10 0.0103 0.90

0.2
Proposed 0.06 0.06 0.02 0.0031 0.90
RLCM 0.14 0.13 0.04 0.0126 0.87

1000

0.1
Proposed 0.92 0.92 0.92 0.0002 0.99
RLCM 0.36 0.35 0.18 0.0074 0.98

0.2
Proposed 0.48 0.48 0.48 0.0006 0.94
RLCM 0.28 0.26 0.14 0.0124 0.93

Table 2.1: DINA Results; Acc(M̂), Acc(P̂ ) and Acc(Ê) are calculated for all the
cases; MSE(Θ̂) is calculated for the cases when the number of latent classes are
correctly selected; Acc(Q̂) is calculated for the cases when the hierarchical structure
is successfully recovered.

the q-vector qj = (0, 1, 0, 0) or (1, 1, 0, 0) can distinguish these two latent classes. By

contrast, under the DINO model, the items with qj = (0, 1, ∗, ∗) where ∗ can be either

0 or 1, will distinguish them. And under the GDINA model, the two latent classes

can be differentiated by the items with qj = (∗, 1, ∗, ∗). Therefore, if the underlying

data-generating model is the DINA model, it requires a larger sample size to achieve

good performance. It is also noted that for the Q-matrix estimation, Acc(Q̂) for both
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Hierarchy N r Method Acc(M̂) Acc(P̂ ) Acc(Ê) MSE(Θ̂) Acc(Q̂)

Linear

500

0.1
Proposed 1 1 1 0.0004 0.99
RLCM 0.96 0.93 0.68 0.0006 0.96

0.2
Proposed 0.98 0.98 0.96 0.0010 0.94
RLCM 0.72 0.72 0.70 0.0013 0.97

1000

0.1
Proposed 1 1 1 0.0002 1
RLCM 0.96 0.96 0.94 0.0002 0.98

0.2
Proposed 1 1 1 0.0004 0.99
RLCM 0.78 0.78 0.78 0.0004 0.99

Convergent

500

0.1
Proposed 1 1 0.86 0.0004 0.98
RLCM 0.88 0.84 0.52 0.0012 0.93

0.2
Proposed 0.96 0.94 0.76 0.0013 0.89
RLCM 0.60 0.60 0.54 0.0017 0.92

1000

0.1
Proposed 1 1 1 0.0002 1
RLCM 0.88 0.87 0.76 0.0003 0.97

0.2
Proposed 1 0.99 0.82 0.0004 0.99
RLCM 0.64 0.64 0.58 0.0006 0.98

Divergent

500

0.1
Proposed 0.98 0.98 0.96 0.0005 0.97
RLCM 0.80 0.77 0.40 0.0009 0.92

0.2
Proposed 0.86 0.84 0.46 0.0016 0.86
RLCM 0.40 0.39 0.26 0.0023 0.88

1000

0.1
Proposed 1 1 1 0.0002 1
RLCM 0.82 0.81 0.56 0.0003 0.96

0.2
Proposed 1 0.99 0.78 0.0005 0.97
RLCM 0.48 0.48 0.40 0.0009 0.95

Unstructured

500

0.1
Proposed 0.92 0.91 0.70 0.0006 0.94
RLCM 0.54 0.51 0.14 0.0039 0.88

0.2
Proposed 0.28 0.27 0 0.0010 0.75
RLCM 0.28 0.27 0.08 0.0112 0.88

1000

0.1
Proposed 0.98 0.98 0.96 0.0002 1
RLCM 0.58 0.57 0.34 0.0005 0.94

0.2
Proposed 0.82 0.81 0.48 0.0007 0.92
RLCM 0.18 0.17 0.06 0.0066 0.88

Table 2.2: DINA+DINO Results; Acc(M̂), Acc(P̂ ) and Acc(Ê) are calculated for all
the cases; MSE(Θ̂) is calculated for the cases when the number of latent classes are
correctly selected; Acc(Q̂) is calculated for the cases when the hierarchical structure
is successfully recovered.

methods are similar from the tables. However, since we calculate the accuracy of the

Q-matrix only if the hierarchical structure is correctly recovered, given the worse

performance on hierarchical structure recovery of the regularized LCM method, the

proposed method in fact provided a much better overall Q-matrix estimation.

2.6 Real Data Analysis
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Hierarchy N r Method Acc(M̂) Acc(P̂ ) Acc(Ê) MSE(Θ̂) Acc(Q̂)

Linear

1000

0.1
Proposed 0.98 0.98 0.98 0.0005 1
RLCM 0.76 0.76 0.76 0.0005 0.99

0.2
Proposed 0.96 0.96 0.96 0.0010 0.99
RLCM 0.52 0.51 0.48 0.0036 0.97

2000

0.1
Proposed 0.94 0.94 0.94 0.0003 1
RLCM 0.92 0.92 0.92 0.0002 1

0.2
Proposed 0.96 0.96 0.96 0.0005 1
RLCM 0.62 0.62 0.62 0.0009 1

Convergent

1000

0.1
Proposed 0.98 0.98 0.98 0.0006 1
RLCM 0.68 0.68 0.66 0.0008 0.97

0.2
Proposed 0.90 0.90 0.86 0.0013 0.98
RLCM 0.36 0.35 0.30 0.0161 0.96

2000

0.1
Proposed 0.98 0.98 0.98 0.0003 1
RLCM 0.82 0.82 0.80 0.0003 0.99

0.2
Proposed 1 1 1 0.0005 1
RLCM 0.38 0.38 0.36 0.0029 0.99

Divergent

1000

0.1
Proposed 0.98 0.98 0.98 0.0006 1
RLCM 0.84 0.83 0.66 0.0061 0.94

0.2
Proposed 0.86 0.86 0.82 0.0014 0.96
RLCM 0.38 0.36 0.26 0.0148 0.89

2000

0.1
Proposed 1 1 1 0.0003 1
RLCM 0.76 0.76 0.74 0.0003 0.99

0.2
Proposed 0.98 0.98 0.92 0.0006 0.99
RLCM 0.52 0.51 0.48 0.0018 0.97

Unstructured

1000

0.1
Proposed 1 1 0.98 0.0007 0.99
RLCM 0.62 0.61 0.44 0.0013 0.92

0.2
Proposed 0.48 0.47 0.36 0.0021 0.89
RLCM 0.36 0.34 0.20 0.0220 0.88

2000

0.1
Proposed 1 1 1 0.0003 1
RLCM 0.66 0.66 0.60 0.0005 0.96

0.2
Proposed 0.86 0.85 0.78 0.0008 0.99
RLCM 0.38 0.37 0.24 0.0056 0.94

Table 2.3: GDINA Results; Acc(M̂), Acc(P̂ ) and Acc(Ê) are calculated for all the
cases; MSE(Θ̂) is calculated for the cases when the number of latent classes are
correctly selected; Acc(Q̂) is calculated for the cases when the hierarchical structure
is successfully recovered.

2.6.1 Analysis of ECPE Data

In this section, we apply the proposed approach to the Examination for the Certifi-

cate of Proficiency in English (ECPE) data to learn the latent hierarchical structure.

The ECPE data was collected by the English Language Institute of the University

of Michigan, and there were 2,922 examinees and 28 ECPE items. There were three

target attributes including lexical rules, cohesive rules, and morphosyntactic rules.
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In the literature on the analysis of the ECPE data, Templin and Bradshaw (2014)

fitted an HLAM with the Q-matrix pre-specified by exam designers and tested the

presence of the linear hierarchy through bootstrap, which supports the linear hier-

archy among the three attributes under the cognitive diagnosis modeling framework.

In Wang and Lu (2021), the authors also studied this ECPE data using the latent

variable selection approach and regularized LCM approach respectively. In the latent

variable selection approach, they used three “anchor” items which formed a known

identity sub-matrix in the Q-matrix. The latent variable selection approach selected 5

significant latent classes, and the learned model implied a convergent structure, that

is, two latent attributes were prerequisites for the third one. Though estimations of

the ECPE data have been widely studied under the cognitive diagnosis setting, von

Davier and Haberman (2014) pointed out that ECPE data appeared to have mainly a

unidimensional structure, which may not be suitable for cognitive diagnosis modeling.

Our proposed method uses a penalized exploratory latent class analysis approach,

which does not depend on the cognitive diagnosis models’ settings such as the Q-

matrix structure and multi-dimensionality of the attributes. The proposed method

does not require any prior information except for an upper bound of the number

of latent classes M . Here we took M = 8 and used spectral clustering to initialize

model parameters. Specifically, given the data matrix R ∈ {0, 1}N×J , we calculated

the symmetric normalized Laplacian matrix Lnorm := I −D−1/2RD−1/2, where D =

diag{
∑

j R1j,
∑

j R2j, . . . ,
∑

j RNj}. Then we took the first M eigenvectors of L and

performed k-means clustering on the eigenvectors. Based on the clustering results,

we had an initialization of the partition of the subjects to M classes and then used

class proportions and mean responses to the items as the model initializations. The

clustered data from spectral initialization is shown in Figure II.10b and the final

estimation results with spectral initialization are in Figure II.10d.

For a comparison purpose, we also used the pre-specified Q-matrix to fit a GDINA
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model with 2K latent classes, and then used the learned GDINA estimation results

as initialization, which is shown in Figure II.10c. We found that the GDINA model

initialization using the pre-specified Q-matrix resulted in the same learned models as

the spectral initialization, which does not require the pre-specified Q-matrix informa-

tion. It is also noted that by directly fitting a GDINA model with the pre-designed

Q-matrix and 2K latent classes, it learned four latent groups with large proportions

and all the other proportion parameters were very small, but not exactly zeros. Com-

paring Figure II.10c and Figure II.10d, we can also see that the clustered data based

on our method shows a much clearer ordered structure among the latent classes.

Specifically, using the proposed method, we obtained four significant latent classes,

as shown in Figure II.10d. In the plot, each row represents the response vector from

a subject and each column represents an item, with dark cells standing for “1”’s and

white cells standing for “0”’s. The resulting clusters are separated by red lines. For

ease of visualization, we have rearranged the rows of data to form clusters. From

the clustered results, there seems to be an ordered structure: the subjects in the first

cluster are more likely to give positive responses than those in the second cluster,

the second cluster tends to have more positive responses than the third cluster, and

the same for the results in the third and the fourth clusters. To better identify the

hierarchical structure, we further calculated the indicator matrix. The estimated item

parameter matrix Θ̂ and the reconstructed indicator matrix Γ̂ are shown in Figure

II.11. It is easy to see Γ̂·,1 ≺ Γ̂·,2 ≺ Γ̂·,3 ≺ Γ̂·,4, which indicates a unidimensional lo-

cated latent class model structure, or in other words, a model structure with strictly

ordered latent classes (von Davier and Haberman, 2014). This finding is consistent

with the observation in von Davier and Haberman (2014).

To present the latent class structure under the HLAM framework, we can apply

the proposed Algorithm II.2. Since there are four latent classes and Γ̂·,1 ≺ Γ̂·,2 ≺

Γ̂·,3 ≺ Γ̂·,4, the smallest K will be 3 and the corresponding binary representations of
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(a) (b)

(c) (d)

Figure II.10: Clustering Results for ECPE. (a): the original data; (b): clustered
data from spectral initialization; (c): clustered data from GDINA initialization with
known Q-matrix; (d): clustered data from the proposed method. Note that the rows
of the data matrices in (b), (c), and (d) are permuted differently to better show the
clustering structures. The black points stand for response value 1, and the white ones
stand for response value 0.
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the latent classes will be (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), which is consistent with

the analysis in Templin and Bradshaw (2014) under the cognitive diagnosis modeling

framework. Moreover, we also fitted GDINA models with three latent attributes

and linear hierarchy based on the inferred Q-matrix from our model and the original

designed Q-matrix, respectively. The corresponding indicator matrices are shown in

Figure II.11b and II.11c. From the fitted GDINA models, we found that BIC for

the original designed Q-matrix was 86,117, while BIC for our learned Q-matrix was

86,000, indicating that our learned Q fits the data better in terms of BIC.

(a) (b) (c)

Figure II.11: Recovered Structures of ECPE. (a): estimated Θ̂ matrix; (b): recon-
structed indicator matrix Γ̂; (c): the indicator matrix based on the pre-specified
Q-matrix. Black blocks indicate value 1, and white blocks indicate value 0.

2.6.2 Analysis of PISA Data

To test in a more complex and realistic setting, we also applied the proposed

approach to a dataset from Programme for International Student Assessment (PISA),

an international reading assessment for 15-year-old students. In particular, we used

a PISA 2000 dataset from R package CDM, which was previously studied in Chen and

de la Torre (2014). This dataset contains J = 26 items from six independent articles

assessing 1096 examinees’ reading abilities. Most of the 26 items are dichotomous

items except for some trichotomous items. We converted the trichotomous items to
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dichotomous by combining all non-zero response values as one category, where we

regarded any partial or full credit case as a success and no credit as a failure. In

Chen and de la Torre (2014), the authors specified six latent attributes for the PISA

2000 data: (1) locating information; (2) forming a broad general understanding; (3)

developing a logical interpretation; (4) evaluating a number-rich text with number

sense; (5) evaluating the quality or appropriateness of a text; (6) test speededness.

To apply the proposed method, we set the initial number of latent classes M =

26 = 64 and initialized the model parameters using the pre-specified Q-matrix in

Chen and de la Torre (2014). Specifically, we first fitted a GDINA model using the

pre-specified Q-matrix and then used the estimated item and mixture proportion

parameters as the initial values for the item parameter matrix Θ and the proportion

parameter vector π.

After applying the proposed method to the PISA 2000 data, we learned 10 signifi-

cant latent classes. On average, for each set of hyperparameters, the computation time

was 14.87 seconds. The estimated item parameter matrix Θ̂ and the reconstructed

indicator matrix Γ̂ are shown in Figure II.12(a) and Figure II.12(b), respectively.

Based on the indicator matrix, we recovered the partial orders of these 10 latent

classes in Figure II.12(c), which suggests a multi-dimensional latent structure. With

partial orders recovered, we applied Algorithm II.2 and recovered six latent attributes

with a hierarchical structure as shown in Figure II.12(d).

The six latent attributes and their hierarchical structures learned from the data

may match the prior study in Chen and de la Torre (2014) as follows. The recovered

attributes α1 to α6 may correspond to “locating information”, “forming a broad gen-

eral understanding”, “evaluating a number-rich text with number sense”, “evaluating

the quality or appropriateness of a text”, “Test speededness”, and “Developing a log-

ical interpretation”, respectively. From the hierarchical structure in Figure II.12(d),

α1 can be viewed as a basic prerequisite for other attributes, which makes sense
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Figure II.12: Recovered Structures of PISA. (a): Estimated Θ̂ matrix; (b): Re-
constructed indicator matrix Γ̂. (c): Partial orders; (d): Constructed hierarchical
structure of latent attributes.

because examinees need to first understand the item and correctly identify the key

information in the article before forming an understanding or evaluating the text,

while developing a logical interpretation (α6) can be interpreted as a more advanced

skill.

Besides interpreting the hierarchical structure, we also assessed the model perfor-

mance using the BIC. Specifically, the BIC of our estimation is 7045, while the BIC
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of the full GDINA model with the pre-specified Q-matrix is 31495, indicating that

the proposed method improves the model fitting in terms of BIC.

2.7 Discussion

In this chapter, we propose a penalized likelihood approach to simultaneously

learn the number of latent attributes, the hierarchical structure, the item-attribute

Q-matrix, and item-level diagnostic models in HLAMs. We achieve these goals by

imposing two regularization terms on an exploratory latent class model: one is a log-

type penalty on proportion parameters and the other is a truncated Lasso penalty on

the differences among item parameters. The nice form of the penalty terms facilitates

the computation and an efficient EM-type algorithm is developed. A latent structure

recovery algorithm is also provided based on the learned model parameters. The

simulation study and real data analysis demonstrate the good performance of the

proposed method.

In most existing works of learning LAMs, the hierarchical structures of latent

attributes are either not considered or pre-specified by domain experts. Moreover,

related works using exploratory approaches to learn latent hierarchies also require

additional pre-specifications such as the number of latent attributes. By contrast, in

this work, we develop an exploratory regularized likelihood approach with minimal

model specifications. In particular, we estimate the number of latent attributes and

recover the hierarchical structure, the Q-matrix, and the item-level diagnostic models

simultaneously. The price we have to pay for the minimal model assumptions is that

a set of hyperparameters need to be tuned, while our simulation results show that we

can achieve it computationally efficiently.

In addition to computational efficiency, our proposed method also has theoretical

guarantees. Specifically, we show that the number of latent classes, the model param-

eters, and the constraint structure of the item parameter matrix can be consistently
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estimated. Moreover, based on the assumption that more capable subjects have higher

item parameters, we develop procedures to recover the number of latent attributes,

hierarchical structures, and Q-matrix from the introduced indicator matrix. Due to

the consistency of the item parameter matrix and its constraint structure, under the

identifiability conditions, the indicator matrix is also consistently estimated, which

leads to the consistency of these latent specifications as well. Although the method

is purely data-driven, our analysis also provides sound theoretical support. With the

theoretical foundation established, our method is consistent and robust in learning

the hierarchical structure and other cognitive diagnosis modeling characteristics.

A natural follow-up question would be how we conduct hypothesis testing for

the learned hierarchies. Since the existence of hierarchical structures would result in

the sparsity structure of the proportion parameter vector, it is equivalent to testing

the zero elements in the proportion vector. However, due to the irregularity of the

problem since the true parameter now is lying on the boundary of the parameter

space, the limiting distribution of the likelihood ratio statistic would be complicated.

As noted in the literature (Ma and Xu, 2021), such nonstandard tests need to be

further investigated theoretically. We tackle this problem in Chapter IV.

Currently, the proposed model is applied to a static setting where we only have

a data set for a fixed time point. It would be also interesting to extend it to the

dynamic setting, where multiple measurement data sets for a sequence of time points

are available. We can also learn such hierarchical structures by inferring the learning

trajectories of the subjects. Moreover, considering the hierarchical structures, we

can generate recommendations for learning materials or test items by formulating a

sequential decision problem. We leave these interesting directions for future work.
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CHAPTER III

Learning Latent Block Structures

3.1 Introduction

With large-scale item pools emerging in modern educational and psychological

measurements, it’s gaining increasing interest in simultaneously inferring the sub-

group structures of both subjects and items, which motivates us to consider co-

clustering algorithms. Co-clustering is a data mining technique that allows simul-

taneous clustering of the rows and columns of a data matrix. We encounter such

co-clustering tasks in a wide range of applications. For example, in gene expression

studies, the rows of a data matrix represent genes and columns correspond to various

environmental conditions or samples such as tissues. Then the data matrix contains

gene expression values for the genes under different environmental conditions or of

different samples. Simultaneously clustering rows and columns allows us to discover

both gene groups and condition similarities (Cheng and Church, 2000; Cho et al.,

2004). In collaborative filterings, such as movie rating data, the rows are viewers,

columns are movies, and entries in the data are the corresponding ratings for the

movies from these viewers. Co-clustering then simultaneously clusters movies into

subgroups with similar attractiveness levels and viewers into subgroups of similar

viewing patterns (George and Merugu, 2005; Khoshneshin and Street, 2010). More-

over, such data matrices are also studied in the context of graphs, where they are

52



viewed as adjacency matrices of bipartite graphs. In bipartite network modeling,

there are two types of nodes, and only nodes of different types can be connected. Co-

clustering then can be used to detect communities in these two sets of nodes at the

same time (Barber, 2007; Wyse et al., 2017). Despite the wide usage of co-clustering

algorithms in many applications, this chapter is mainly motivated by applications in

cognitive diagnosis and education assessments that we have introduced previously in

Chapter II, while the amounts of both subjects and items can be very large. Specif-

ically, in such contexts, the rows represent students who take the test, the columns

represent the test questions, and the matrix contains indicators of whether the stu-

dents answer the questions correctly. The students are expected to form groups with

similar skills and the questions are expected to form groups testing similar aspects

(Chen and Li, 2019).

One of the first co-clustering approaches was proposed by Hartigan (1972) and

since then, many have been developed. Generally speaking, approaches to co-clustering

fall into two classes. In the first class, an objective function measuring discrepancy

from an ideal block structure is minimized to produce the clusters of the data matrix,

which is often called deterministic. Example works include Doreian et al. (2004),

Brusco and Steinley (2006), Brusco and Steinley (2011) and Doreian et al. (2013).

The other type is stochastic, which is also referred to as model-based, where the

blocks are modeled by a parameterized distribution. Among them, one attractive

probabilistic model is the Latent Block Model (LBM, Govaert and Nadif, 2010). In

LBMs, each row belongs to a row cluster and each column belongs to a column cluster.

Given the row cluster membership and column cluster membership, the entries in the

corresponding block are conditionally independent and follow the same distribution.

Treating the cluster memberships as latent variables, LBMs are also formulated as

mixture models. Many related works based on LBMs have been developed (Govaert

and Nadif, 2003, 2005, 2008; Keribin et al., 2012, 2015; Rohe et al., 2012; Wyse and
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Friel, 2012). A popular probabilistic model in network analysis called the Stochastic

Block Model (SBM, Nowicki and Snijders, 2001) is very similar to LBMs. However,

as pointed out in Wyse et al. (2017), the LBMs aim to discover relationships between

rows and columns (representing two different sets of objects) while the SBMs focus

on modeling interactions within a set of graph nodes.

In this chapter, we mainly focus on the model-based co-clustering methods, specif-

ically the latent block models. The motivations come from two aspects. Firstly, we

are interested in learning block inner structures, especially subsets of blocks sharing

the same block parameters. This is mostly motivated by cognitive diagnosis applica-

tions, where it is often assumed that the item parameters only depend on whether

the subject possesses the required attributes by the item. In other words, the sub-

jects with the same attributes have the same item response probabilities. Therefore,

there are subsets of blocks sharing the same block parameters, which is however not

assumed in classical LBMs. Secondly, when fitting an LBM, one needs to specify

both the number of row clusters and the number of column clusters. For clustering,

choosing the appropriate number of clusters is of essential importance. Some informa-

tion criteria such as the Bayesian Information Criterion (BIC, Schwarz et al., 1978)

may be used for model selection, and specifically for LBMs, Keribin et al. (2012) has

proposed to use the Integrated Completed Likelihood (ICL) criterion to perform the

model selection. However in the co-clustering setting, since we need to select both

the number of row clusters and the number of column clusters, it is computationally

expensive to try all the possible combinations. Therefore, it is desired to develop

more efficient algorithms of model selection for LBMs.

In this chapter, motivated by the aforementioned challenges, we propose a two-

stage method to achieve the goals of selecting numbers of clusters and learning the

inner structure of the blocks. Specifically, similar to the developed method in Chap-

ter II, we employ two regularization terms: log-type penalty on the population row
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and column proportion parameters to select significant clusters and truncated Lasso

penalty on the block parameter pair differences to learn the inner structure. Efficient

EM-type algorithms are developed based on the Difference Convex (DC) program-

ming and the Alternating Direction Method of Multipliers (ADMM) method. Sim-

ulation studies and a real data application have been conducted to demonstrate the

effectiveness of the method.

This chapter proceeds as follows: the model setup of LBMs and the motivations of

the proposed method are provided in Section 3.2. The proposed approach and com-

putational algorithms are developed in Section 3.3. Simulation studies are presented

in Section 3.4 and an application to a real data set is demonstrated in Section 3.5.

Finally, Section 3.6 concludes with some discussions.

3.2 Model Setup and Motivations

In this section, we first give a brief review of latent block models and then provide

motivations for our method developed in Section 3.3.

3.2.1 Latent Block Models

In LBMs, the distribution of a data matrix R = (rij) is specified by a latent

structure on its rows and columns. Specifically, we assume that each row belongs

to a row cluster, and each column belongs to a column cluster. The underlying row

clusters and column clusters form the latent block structure of the observed data

matrix. Let I be a set of N rows and J be a set of M columns. Assume that there

are K row clusters and L column clusters, and let U denote the set of all possible

assignments of I×J . We use Ξ to denote the parameter of the model. As in classical

mixture models, given the block memberships, the entries in R are assumed to be

conditionally independent. Then the marginal probability mass function for R is
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specified as follows:

P(R; Ξ) =
∑
U∈U

P(U ; Ξ)× P(R | U ; Ξ). (3.1)

Note that the total number of possible assignments of I×J is KN×LM , making Eq.

(3.1) intractable. Even though this combinatorial challenge is shared by many models

with latent structures, the sum here would require a huge computation cost even for

a small data set. For example, considering a data matrix with size N = M = 10 and

K = L = 2, there will be 220 unique configurations, which is not computationally

feasible. To resolve this issue, we can first restrict the assignments of I × J to be

the independent product of assignments of I and J , and assume local independence

as in classical mixture models, which gives the following probability mass function:

P(R; Ξ) =
∑

(Z,W )∈Z×W

P(Z; Ξ)× P(W ; Ξ)× P(R | Z,W ; Ξ), (3.2)

where Z ∈ {0, 1}N×K denotes the row cluster assignments of I, W ∈ {0, 1}M×L

denotes the column cluster assignments of J , Z is the set of all possible assignments

of rows and W is the set of all possible assignments of columns. Further, as in

mixture models, we assume the row cluster assignment and column cluster assignment

follow categorical distributions with proportion parameters π = (π1, ..., πK) and ρ =

(ρ1, ..., ρL), respectively. Moreover, given the memberships, the entries in R are

conditionally independent and follow distribution ψ(·) with parameter Θ = (θk,l; k =

1, . . . , K, l = 1, . . . , L). Specifically, we have the following probability mass function:

P(R; Ξ) =
∑

(Z,W )∈Z×W

[∏
i,k

πzikk
∏
j,l

ρ
wjl
l

∏
i,j,k,l

ψ(rij; θkl)
zikwjl

]
, (3.3)

where Ξ = (π,ρ,Θ) is the model parameter, in which π is the row cluster proportion

vector, ρ is the column cluster proportion vector and Θ is the block parameter matrix
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with θk,l being the parameter for the (k, l)th block. The corresponding log-likelihood

function is

L(Ξ;R) = log
( ∑

(Z,W )∈Z×W

[∏
i,k

πzikk
∏
j,l

ρ
wjl
l

∏
i,j,k,l

ψ(rij; θkl)
zikwjl

])
, (3.4)

which is generally intractable due to the complex dependence structure among the

rows and columns as we need to sum up all the probability masses over a large set

Z × W . In the following of this work, we mainly consider a binary data matrix

R ∈ {0, 1}N×M , and assume the block distributions are Bernoulli distributions, that

is, ψ(rij; θkl) = θ
rij
kl · (1− θkl)1−rij .

3.2.2 Motivations

The motivations behind this work come from two aspects: model selection and

block inner structure learning.

On the one hand, for clustering applications, it is of essential importance to choose

a proper number of clusters, as different choices may lead to different clustering re-

sults. In some deterministic methods such as spectral graph clustering (Chen and Li,

2019), the so-called eigengap heuristic (Azran and Ghahramani, 2006; Von Luxburg,

2007) can be used where a number is identified corresponding to the “gap” of the

eigenvalues of the graph Laplacian matrix. For probabilistic models such as LBMs,

some information criteria can be used. Since the marginal likelihood for an LBM is

intractable and defining statistical units in LBMs can be tricky due to the asymptotic

of rows and columns, Keribin et al. (2012) proposed to use the Integrated Computed

Likelihood criterion (ICL) as the selection criterion. However, selecting the numbers

of clusters in a co-clustering setting could be very computationally expensive, since we

need to consider both row clusters and column clusters simultaneously. For example,

if we consider 10 possible values for the number of row clusters and the number of col-
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umn clusters respectively, then the total number of possible combinations is 10× 10.

Moreover, to select the best values of the numbers of clusters, it is essential to com-

pare as many combinations as possible, which is very computationally challenging in

practice. Therefore, a more efficient way for cluster selection in co-clustering settings

is needed.

On the other hand, in classical LBMs, there are no restrictions on the block

parameters. However, the relationships among the blocks are of interest in many

applications, especially in the cognitive diagnosis contexts. As we have mentioned in

Section 2.2, one important and common assumption in cognitive diagnosis models is

that the item parameters only depend on whether a subject possesses the required

attributes by the item. In other words, the subjects with the same attributes have

the same item response probabilities. For example, in the DINA model, for each

item, subjects with all the required attributes have the same item parameter θ+
j ,

while subjects missing one of the required attributes share the same item parameter

θ−j . Recently with large-scale item pools emerging in modern educational and psy-

chological measurements, it gains increasing interest in simultaneously inferring the

subgroup structures of both subjects and items (Chen et al., 2017a). In such a setting,

we can further assume that items depending on the same set of latent attributes also

share the same item parameters, which suggests a latent block structure underlying

the response data matrix. More importantly, because of the shared item parameter

phenomenon in cognitive diagnosis, we are interested in learning such inner structures

of the latent block parameters as well. Below we show an example from the DINA

model.

Example III.1 (block structure under the DINA model). Assume there are three

binary latent attributes of interest and a set of J items are designed to make inference

on the latent attribute profiles of N subjects. For the subjects, there are 8 possible

latent attribute profiles that are in the set {0, 1}3, while for the items, there are 7
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possible targeting attribute patterns in {0, 1}3 \ {(0, 0, 0)}, since an item should target

at least one attribute. Therefore, we have 7×8 blocks in total with 7 item clusters and

8 subject clusters. Moreover, assuming that for the items targeting the same subset

of latent attributes, the subjects with the same latent attribute profiles share the same

item parameters, we have equal block structures as shown in Figure III.1.

Figure III.1: Block Structure under the DINA Model: rows are for subjects and
columns are for items.

In summary, based on the aforementioned motivations, we aim to achieve two

goals in this chapter: selecting the numbers of clusters efficiently and learning the

inner block structures in co-clustering. Motivated by these two goals, we propose a

new method that will be introduced in Section 3.3.

3.3 Proposed Method and Learning Algorithms

In this section, we introduce the proposed method and develop an EM-type learn-

ing algorithm.

3.3.1 Proposed Method

Based on the motivations in Section 3.2.2, we propose a two-step procedure to

select the numbers of clusters first and learn the block inner structures subsequently.
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In specific, similarly to the regularized likelihood approach proposed in chapter II,

starting with relatively large numbers of clusters, we first apply log-type penalties

(Gu and Xu, 2019b) on both row proportion parameters and column proportion

parameters, to select the numbers of clusters for rows and columns. Then truncated

Lasso penalties (TLP, Shen et al., 2012) are imposed on the differences among the

block parameters to learn the shared parameter structure of latent blocks. Specifically,

the objective function for the first step is specified as below:

Step 1.

(π̂1, ρ̂1, Θ̂1) = arg max
π,ρ,Θ

{
L(π, ρ,Θ | R)− λ1

K∑
k=1

log[εN ] πk − λ2

M∑
l=1

log[δM ] ρl
}
, (3.5)

where L(π, ρ,Θ | R) is the log-likelihood function and log[·](·) is a log-type penalty.

Specifically, log[εN ] πk = log πk · I
(
πk > εN

)
+ log εN · I

(
πk ≤ εN

)
and log[δM ] ρl =

log ρl · I
(
ρl > δM

)
+ log δM · I

(
ρl ≤ δM

)
, are log-type penalties on the proportion

parameters, where εN and δM are small thresholds to circumvent the singularity of

the log function at zero. Similarly to Gu and Xu (2019b), we take εN and δM to be

small values, such as N−d and M−d for some d ≥ 1. The purpose of log-type penalties

on the proportion parameters is to push small values to be zeros, and thus achieve

the goal of selecting the numbers of row and column clusters. As in Chapter II, we

will later show that incorporating log-type penalties in the EM-type algorithm only

requires minor changes in the estimates of proportions.

After selecting the numbers of clusters for rows and columns, we then move forward

to learn the inner structures of the latent blocks. Specifically, we would like to merge

the blocks with equal underlying block parameters. To achieve this goal, we apply

the truncated Lasso penalty to the differences for each pair of block parameters.

Therefore, we perform the following optimization in Step 2:
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Step 2.

(π̂2, ρ̂2, Θ̂2) = arg max
π,ρ,Θ

{
L(π, ρ,Θ | R)−λTLP

∑
(k,l)6=(k′,l′),

TLP
(
|θkl−θk′l′|; τ

)}
, (3.6)

where TLP(x; τ) = min(|x|, τ) and λTLP is a nonnegative coefficient for the TLP. It is

noted that the TLP only penalizes small values which are smaller than the threshold

τ and does not put further penalties on larger differences, which corrects the bias of

Lasso estimates. Other penalties such as the SCAD (Fan and Li, 2001) is also ap-

plicable here. As pointed out in Chapter II, there are additional advantages of using

TLP, including sound theoretical guarantees (Shen et al., 2012) and computational

efficiency. Similar to Section 2.4, we also use Difference Convex (DC) programming

(Tuy, 1995) to perform the optimization due to the fact that the TLP can be decom-

posed into a difference of two convex functions.

3.3.2 Learning Algorithms

3.3.2.1 EM Algorithm for Step 1

For latent variable model estimation, we usually rely on Expectation-Maximization

(EM) type algorithms. Specifically, in the EM algorithm, we consider the following

complete data log-likelihood:

LC(Ξ | R,Z,W ) =
∑
i,k

zik log πk +
∑
j,l

wjl log ρl

+
∑
i,j,k,l

zikwjl
[
rij log θkl + (1− rij) log(1− θkl)

]
.

The EM algorithm iteratively applies two steps: E-step and M-step.

E-step: in the (c + 1)th iteration, from the current estimate Ξ(c), we calculate

the expected complete log-likelihood with respect to the conditional distribution of
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(Z,W ) given observation R:

Q(Ξ | Ξ(c)) := EZ,W |R;Ξ(c)

[
LC(Ξ |X,Z,W )

]
=
∑
i,k

s
(c)
ik log πk +

∑
j,l

t
(c)
j,l log ρl

+
∑
i,j,k,l

e
(c)
ijkl

[
rij log θkl + (1− rij) log(1− θkl)

]
, (3.7)

where s
(c)
ik = EZ,W |R;Ξ(c) [zi,k], t

(c)
ik = EZ,W |R;Ξ(c) [wj,k] and e

(c)
ijkl = EZ,W |R;Ξ(c) [zi,kwj,l].

M-step: find the parameters that maximize Q(Ξ | Ξ(c)):

Ξ(c+1) = arg max
Ξ

Q(Ξ | Ξ(c)). (3.8)

In LBMs, the computation of the expectation in the E-step requires the posterior

distribution of the latent variables Z and W given the observed data R. However,

this conditional distribution is hard to compute as the marginal probability mass

function in Eq (3.3) for an LBM involves a summation over a large set Z ×W , which

makes it intractable. Following Govaert and Nadif (2008), we consider the mean field

approximation where zi and wj given R are assumed to be independent. Moreover,

using Neal and Hinton’s fuzzy criterion (Neal and Hinton, 1998), an alternative view

of the EM algorithm, we consider the new objective function denoted as G:

G(s, t,Ξ) = LC(s, t,Ξ) +H(s) +H(t), (3.9)

where s := (sik; i = 1, . . . , N, k = 1, . . . , K) with sik = P(zik = 1), t := (tjl; j =

1, . . . ,M, l = 1, . . . , L) with tjl = P(wjl = 1), and H(s) = −
∑

ik sik log sik, the

entropy function. To optimize the new objective function (3.9), we use the Block

EM algorithm developed in Govaert and Nadif (2008) where the rows’ and columns’

parameters are updated alternately. Specifically, in the (c+1)th iteration, we perform
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the following alternate updates:

1. update row parameters s(c+1), π(c+1) and block parameter Θ(c+1/2) using the

EM algorithm, given that column parameters t(c) and ρ(c) are fixed;

2. update column parameters t(c+1), ρ(c+1) and block parameter Θ(c+1) using the

EM algorithm, given that row parameters s(c+1) and π(c+1) are fixed.

With column parameters t(c) and ρ(c) fixed, optimizing function (3.9) results in the

following updates:

s
(c+1)
ik =

π
(c)
k

∏
l(θ

(c)
kl )uil(1− θ(c)

kl )ml−uil∑
k′ π

(c)
k′
∏

l(θ
(c)
k′l)

uil(1− θ(c)
k′l)

ml−uil
,

ρ
(c+1)
l =

∑
j t

(c)
jl

M
,

θ
(c+1)
kl =

∑
i,j s

(c+1)
ik t

(c)
jl rij∑

i,j s
(c+1)
ik t

(c)
jl

,

where uil =
∑

j t
(c)
jl rij, ml =

∑
j t

(c)
jl . Similarly, when the row parameters s(c+1)

and π(c+1) are fixed, we obtain updates for the column parameters and the block

parameters as follows:

t
(c+1)
jl =

ρ
(c+1)
l

∏
k(θ

(c+1/2)
kl )vkj(1− θ(c+1/2)

kl )nk−vkj∑
l′ ρ

(c+1)
l′

∏
k(θ

(c+1/2)
kl′ )vkj(1− θ(c+1/2)

kl′ )nk−vkj
,

π
(c+1)
k =

∑
i s

(c+1)
ik

N
,

θ
(c+1)
kl =

∑
i,j s

(c+1)
ik t

(c+1)
jl rij∑

i,j s
(c+1)
ik t

(c+1)
jl

,

where vkj =
∑

i s
(c+1)
ik rij, and nk =

∑
i s

(c+1)
ik . In the following, u := (uil) where

uil =
∑

i tjlrij, m := (ml) where ml =
∑

j tjl, v := (vkj) where vkj =
∑

i sikrij and

n := (nk) where nk =
∑

i sik. Note that u = R · t>, m = t> · 1M , where 1M is a

column vector of length M with all elements being 1; v = s> ·R, and n = s · 1N ,

where 1N is a column vector of length N with all elements being 1.
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In Step 1 of our method, we apply the log-type penalties on the proportion pa-

rameters, and thus consider the following objective function:

min−G(s, t,Ξ)/NM + λ̃1/M
K∑
k=1

log[εN ] πk + λ̃2/N
L∑
l=1

log[δM ] ρl, (3.10)

where λ̃1 = λ1/N and λ̃2 = λ2/M . We follow the same estimation procedures as in

the block EM algorithm for LBMs. The log-type penalty here in fact provides us with

computational convenience, in that only minor modifications for estimating π and ρ

in the block EM algorithm are needed:

πk =

∑N
i=1 sik/N − λ̃1

1−Kλ̃1

, ρl =

∑M
j=1 tjl/M − λ̃2

1− Lλ̃2

. (3.11)

The corresponding algorithm is summarized in Algorithm III.1.

3.3.2.2 EM Algorithm for Step 2

After we perform the estimation for Step 1, we have selected row and column

clusters. In Step 2, we apply the truncated Lasso penalties on the block parameters

to learn the inner structure of them. Specifically, we consider the criterion (3.9) plus

the truncated Lasso penalties as the new objective function:

min −G(s, t,Ξ) + λ̃TLP

∑
(k,l)6=(k′,l′)

TLP(|θkl − θk′l′|; τ). (3.12)

Similar to the block EM algorithm for LBMs, we also develop an alternated opti-

mization algorithm that updates the row and column parameters alternately. As we

mentioned in Section 3.3.1, the truncated Lasso penalty can be decomposed into a

difference of two convex functions, which allows us to utilize the DC programming

(Tuy, 1995) to perform the optimization. Moreover, we also exploit the Alternating

Direction Method of Multipliers (ADMM, Boyd et al., 2011) method to facilitate
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Algorithm III.1: PBEM-1: Penalized Block EM for Step 1

Data: Binary data matrix R = (ri,j)N×M .
Set hyperparameters λ̃1 and λ̃2.
Set upper bounds for the numbers of row clusters K and column clusters L.
Initialize parameters π(0), ρ(0), Θ(0) and posterior expectations s(0) and t(0).
while not converged do

In the (c+ 1)th iteration,

1. update row parameters:

u = R · (t(c))>, m = (t(c))> · 1M .

for (i, k) ∈ [N ]× [K] do

s
(c+1)
ik =

π
(c)
k

∏
l(θ

(c)
kl )uil (1−θ(c)kl )ml−uil∑

k′ π
(c)

k′
∏
l(θ

(c)

k′l)
uil (1−θ(c)

k′l)
ml−uil

.

end

π(c+1) =
[
(s(c+1))> · 1N/N − λ̃11N

]/
(1−Kλ̃1).

2. update block parameters:

for (k, l) ∈ [K]× [L] do

θ
(c+1/2)
kl =

∑
i,j s

(c+1)
ik t

(c)
jl rij

/∑
i,j s

(c+1)
ik t

(c)
jl .

end

3. update column parameters:

v = (s(c+1))> ·R, n = s(c+1) · 1N .

for (j, l) ∈ [M ]× [L] do

t
(c+1)
jl =

ρ
(c)
l

∏
k(θ

(c+1/2)
kl )

vkj (1−θ(c+1/2)
kl )

nk−vkj∑
l′ ρ

(c)

l′
∏
k(θ

(c+1/2)

kl′ )
vkj (1−θ(c+1/2)

kl′ )
nk−vkj

.

end

ρ(c+1) =
[
(t(c+1))> · 1M/M − λ̃21M

]/
(1−Kλ̃2).

4. update block parameters:

for (k, l) ∈ [K]× [L] do

θ
(c+1)
kl =

∑
i,j s

(c+1)
ik t

(c+1)
jl rij

/∑
i,j s

(c+1)
ik t

(c+1)
jl .

end

end

Output:
{
π̂1, ρ̂1, Θ̂1, ŝ1, t̂1

}
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solving the problem.

In the following we derive the updates for the row parameters s, π and block

parameter Θ with fixed column parameters t and ρ. The updates for the column

parameters can be obtained similarly. Specifically, we consider the following objective

function:

min− G(s, π,Θ | t, ρ) + λTLP

∑
(k,l)6=(k′,l′)

TLP(|θkl − θk′l′|; τ)

=− LC(s, π,Θ | t, ρ)−H(s) + λTLP

∑
(k,l) 6=(k′,l′)

TLP(|θkl − θk′l′ |; τ)

=−
∑
i,k

sik log πk −
∑
i,j,k,l

siktjl
[
rij log θkl + (1− rij) log(1− θkl)

]
−
∑
ik

sik log sik

+ λTLP

∑
(k,l) 6=(k′,l′)

TLP(|dkk′ll′|; τ),

such that dkk′ll′ = θkl − θk′l′ , for 1 ≤ k, k′ ≤ K and 1 ≤ l, l′ ≤ L. We use

d := (dkk′ll′ ; 1 ≤ k, k′ ≤ K, 1 ≤ l, l′ ≤ L) to denote the block parameter pair dif-

ference tensor. In the following, we denote the new objective function in Step 2 as

GTLP(s, π,Θ, d | t,ρ) and we decompose it into a difference of two convex functions:

GTLP(s, π,Θ, d | t,ρ) = G1(s, π,Θ, d | t, ρ)− G2(d),

where

G1(s, π,Θ, d | t, ρ) = −LC
(
s, π,Θ | t, ρ

)
+ λTLP

∑
(k,l)6=(k′,l′)

|dkk′ll′ |,

G2(d) = λTLP

∑
(k,l)6=(k′,l′)

(|dkk′ll′ | − τ)+.

Then we construct a sequence of upper approximation of GTLP(s, π,Θ, d | t, ρ)
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iteratively by replacing G2(d) at iteration c+ 1 with its piecewise affine minorization:

G(c)
2 (d) = G2(d̂

(c)
) + λTLP

∑
(k,l)6=(k′,l′)

(
|dkk′ll′ | − |d̂(c)

kk′ll′|
)
· I
(
|d̂(c)
kk′ll′ | ≥ τ

)
,

at the current estimate d̂
(c)

, which leads to an upper convex approximation:

G(c+1)
TLP (s, π,Θ, d | t, ρ)

=− LC
(
s, π,Θ | t, ρ

)
+ λTLP

∑
(k,l)6=(k′,l′)

(
|dkk′ll′ |

)
· I
(
|d̂(c)
kk′ll′ | < τ

)
+ λTLP

∑
(k,l)6=(k′,l′)

τ · I
(
|d̂(c)
kk′ll′| ≥ τ

)
.

Now we apply the ADMM to the above objective. Specifically, at iteration c+ 1, the

augmented Lagrangian is

Lp(s, π,Θ, d | t, ρ)

=− LC
(
s, π,Θ | t, ρ

)
+ λTLP

∑
(k,l)6=(k′,l′)

(
|dkk′ll′ |

)
· I
(
|d̂(c)
kk′ll′ | < τ

)
+ λTLP

∑
(k,l)6=(k′,l′)

τ · I
(
|d̂(c)
kk′ll′ | ≥ τ

)
+ y′

∑
(k,l)6=(k′,l′)

(
dkk′ll′ − (θkl − θk′l′)

)
+
γ

2

∑
(k,l)6=(k′,l′)

(
dkk′ll′ − (θkl − θk′l′)

)2
,

where y is the dual variable and γ is a nonnegative penalty parameter. Using the
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scaled Lagrangian multiplier µ = y/γ, we update the parameters as follows:

π̂
(c+1)
k =

N∑
i=1

s
(c+1)
ik /N ;

θ̂
(c+1)
kl = argmin

a

{
−
( N∑
i=1

M∑
j=1

s
(c+1)
ik t

(c+1)
jl rij

)
log a

−
( N∑
i=1

M∑
j=1

s
(c+1)
ik t

(c+1)
jl (1− rij)

)
log(1− a)

+
γ

2

∑
(k,l) 6=(k′,l′)

(
d̂

(c)
kk′ll′ − (a− θ̂(c)

k′l′) + µ̂
(c)
kk′ll′

)2

+
γ

2

∑
(k,l) 6=(k′,l′)

(
d̂

(c)
kk′ll′ − (a− θ̂(c+1)

k′l′ ) + µ̂
(c)
kk′ll′

)}
; (3.13)

d̂
(c+1)
kk′ll′ =


θ̂

(c+1)
kl − θ̂(c+1)

k′l′ − µ̂
(c)
kk′ll′ , if |d̂(c)

kk′ll′ | ≥ τ

ST
(
θ̂

(c+1)
kl − θ̂(c+1)

k′l′ − µ̂
(c)
kk′ll′ ;λTLP/γ

)
, if |d̂(c)

kk′ll′| < τ,

;

where ST(x; γ) = (||x||2 − γ)+/||x||2.

µ̂
(c+1)
kk′ll′ = µ̂

(c)
kk′ll′ + d̂

(c+1)
kk′ll′ −

(
θ̂

(c)
kl − θ̂

(c)
k′l′

)
.

We summarize the above updates in Algorithm III.2 and denote the function on the

right hand side of Eq. (3.13) as Akl(a | R, s, t,Θ, d, µ).

Remark III.1. The algorithms we have developed in this section can also be con-

sidered as variational EM algorithms. In variational inference, we optimize the ev-

idence lower bound ELBO(q) := Eq
[

log p(Z,W ,R; Ξ)
]
− Eq

[
log q(Z,W )

]
, where

q is the variational distribution over the latent variables (Z,W ). Here we con-

sider the mean field approximation where zi and wj given R are independent, that

is, q(Z,W ) =
∏

i qi(zi) ×
∏

j qj(wj). Then qi(zi) =
∏K

k=1 s
zik
ik · (1 − sik)

1−zik ,

qj(wj) =
∏L

l=1 t
wjl
jl · (1 − tjl)

1−wjl, where sik := P(zik = 1) and tjl = P(wjl = 1),

and ELBO(q) = LC(Ξ | R,S, T ) − Eq
[

log q(Z,W )
]
. In the variational EM algo-

rithm, it is shown that the variational distributions qi(zi) and qj(wj) take the fol-

lowing forms (Blei et al., 2017): qi(zi) ∝ exp
{
E−zi

[
log p(zi | Z−zi ,W ,R)

]}
and
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Algorithm III.2: PBEM-2: Penalized Block EM with TLP for Step 2

Data: Binary data matrix R = (ri,j)N×M .
Set hyperparameters λTLP, τ and γ.
Initialize parameters using the estimates from Step 1

(
π̂1, ρ̂1, Θ̂1, ŝ1, t̂1

)
.

Let K̂ := |{π̂k ∈ π̂1 : π̂k > εN}| and L̂ := |{ρ̂l ∈ ρ̂1 : ρ̂l > δM}|.
while not converged do

In the (c+ 1)th iteration,

1. update row parameters:

u = R · (t(c))>,m = (t(c))> · 1M

s
(c+1)
ik =

π
(c)
k

∏
l(θ

(c)
kl )

uil(1− θ(c)
kl )

ml−uil∑
k′ π

(c)
k′
∏
l(θ

(c)
k′l)

uil(1− θ(c)
k′l)

ml−uil

π(c+1) = (s(c+1))> · 1N/N

2. update block parameters:

θ
(t+1/2)
kl =argmin

a
Akl(a | R, s(c+1), t(c),Θ(c), d(c), µ(c))

d̂
(c+1/2)
kk′ll′ =

{
θ̂

(c+1/2)
kl − θ̂(c+1/2)

k′l′ − µ̂(c)
kk′ll′ , if |d̂(c)

kk′ll′ | ≥ τ ;

ST
(
θ̂

(c+1/2)
kl − θ̂(c+1/2)

k′l′ − µ̂(c)
kk′ll′ ;λTLP/γ

)
, if |d̂(c)

kk′ll′ | < τ,

where ST(x; γ) = (||x||2 − γ)+/||x||2.

µ̂
(c+1/2)
kk′ll′ =µ̂

(c)
kk′ll′ + d̂

(c+1/2)
kk′ll′ −

(
θ̂

(c+1/2)
kl − θ̂(c+1/2)

k′l′
)
.

3. update column parameters:

v = (s(c+1))> ·R, n = s(c+1) · 1N

t
(c+1)
jl =

ρ
(c)
l

∏
k(θ

(c+1/2)
kl )vkj (1− θ(c+1/2)

kl )nk−vkj∑
l′ ρ

(c)
l′
∏
k(θ

(c+1/2)
kl′ )vkj (1− θ(c+1/2)

kl′ )nk−vkj

ρ(c+1) = (t(c+1))> · 1M/M

4. update block parameters:

θ
(t+1)
kl = argmin

a
Akl(a | R, s(c+1), t(c+1),Θ(c+1/2), d(c+1/2), µ(c+1/2))

d̂
(c+1)
kk′ll′ =

{
θ̂

(c+1)
kl − θ̂(c+1)

k′l′ − µ̂
(c+1/2)
kk′ll′ , if |d̂(c+1/2)

kk′ll′ | ≥ τ ;

ST
(
θ̂

(c+1)
kl − θ̂(c+1)

k′l′ − µ̂
(c+1/2)
kk′ll′ ;λTLP/γ

)
, if |d̂(c+1/2)

kk′ll′ | < τ,

where ST(x; γ) = (||x||2 − γ)+/||x||2.

µ̂
(c+1)
kk′ll′ = µ̂

(c)
kk′ll′ + d̂

(c+1)
kk′ll′ −

(
θ̂

(c+1)
kl − θ̂(c+1)

k′l′
)
.

end

Output:
{
π̂2, ρ̂2, Θ̂2, ŝ2, t̂2

}
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qj(wj) ∝ exp
{
E−wj

[
log p(wj | Z,W−wj ,R)

]}
, which leads to the same updates for

s and t as in the Block EM algorithms.

3.3.2.3 Initialization

Initialization plays an important role in EM-type algorithms. To get a good

initialization for our algorithms, we use the spectral co-clustering algorithm (Chen

and Li, 2019) for Step 1. Then we use the estimates from Step 1 as the initializations

for Step 2.

3.3.2.4 Model Selection

As we discussed previously, due to the complex dependence structure among the

rows and columns, the likelihood of an LBM is not numerically tractable. There-

fore the traditional information criteria relying on the marginal log-likelihood are

not applicable here. Instead, following Keribin et al. (2012), we use the Integrated

Completed Likelihood (ICL) criterion to perform model selection for LBMs.

Assuming a factorized prior for the model parameters, p(Ξ) = p(π)p(ρ)p(θ),

with a non-informative Dirichlet distribution D(a, . . . , a) for π and ρ, and a Beta

distribution B(b, . . . , b) for Θ, the ICL for an LBM has the following close form:

log p(R,Z,W ) = log Γ(Ka) + log Γ(La)− (K + L) log Γ(a)

+KL(log Γ(2b)− 2 log Γ(b))− log Γ(N +Ka)− log Γ(M + La)

+
∑
k

log Γ(Nk + a) +
∑
l

log Γ(Ml + a)

+
∑
k,l

[log Γ(Nkl + b) + log Γ(NkMl −Nkl + b)− log Γ(NkMl + 2b)],

(3.14)

where Nk =
∑

i zik is the number of rows in kth row cluster, Ml =
∑

j wjl is the

number of columns in lth column cluster and Nkl =
∑

i rijzikwjl is the number of
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black cells in the klth block. ICL can be easily computed with (Ẑ, Ŵ ) being the

estimated cluster membership.

In Step 1, we use the ICL to tune the coefficients for the log-type penalties to

select the numbers of clusters. In Step 2, since we aim to learn the block inner

structure where subsets of blocks share the same block parameters, to incorporate the

information of distinct block parameters, we propose to modify the ICL by adding a

penalty term:

ICLmodified = ICL− λICL|Θ|, (3.15)

where |Θ| is the number of unique values in Θ. In this work, we choose λICL to be

log(NM)/2, which is similar to BIC (Schwarz et al., 1978).

3.3.2.5 Missing Values

The EM algorithms that we have developed can handle missing values naturally

by marginalizing the likelihood over the missing observations. More precisely, if

R = (Robs,Rmiss) is the decomposition of the full matrix into the observed part

Robs and the missing part Rmiss, then after marginalization, the initial likelihood

L(R |W,Z,Ξ) simplifies to L(Robs |W,Z,Ξ). Then a naive implementation could

be based on indexing the inference procedure so that the posterior conditionals of Z

and W involve only sums over observed elements. To be specific, let M be the mask

matrix which indicates missing data such that Mij = 0 if rij is missing, and Mij = 1

if rij is observed. Then we only need to make minor modifications in our algorithm:

uil =
∑
j

Mijtjlrij, ml =
∑
j

Mijtjl,

vkj =
∑
i

Mijsikrij, nk =
∑
i

Mijsik.
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3.4 Simulation Studies

In this section, we conducted comprehensive simulation studies under various set-

tings to evaluate the performance of the proposed method. For the data generation

process, we considered two settings. In the first setting, the block parameters were

randomly sampled from a set of values. We refer to this setting as “random blocks”.

In the second setting, the block structure followed the DINA model as we intro-

duced in Example III.1. We refer to the second setting as “DINA blocks”. Different

numbers of row clusters and column clusters and different sample sizes were con-

sidered in our simulation studies. To choose tuning parameters, we used the ICL

introduced in Section 3.3.2.4. Specifically, in Step 1, the ICL was used to choose

λ1 = λ2 ∈ {0.001, 0.003, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03}. In Step 2, we applied

the modified ICL in Eq (3.15) to choose λ ∈ {1, 10, 100}, τ ∈ {0.01, 0.02, 0.03, 0.05},

γ ∈ {1, 10, 100}. For each setting, we repeated 100 times.

Three related methods were compared with the proposed one:

1. the original LBM with true numbers of clusters (R package blockcluster);

2. the original LBM initialized at the true values;

3. LBM with truncated Lasso penalty only.

The EM-type algorithms are known to be highly dependent on a good initialization

and the block-EM algorithm for LBMs has a marked tendency to produce empty

clusters using the maximum a posterior (MAP) classification rule (Brault and Mari-

adassou, 2015). Therefore in our simulation study, we also reported the results using

the true values as initializations to evaluate the model performance with the optimal

initials. Moreover, essentially only imposing truncated Lasso penalties on the block

parameters could also achieve the goal of selecting numbers of clusters and learning

inner block structures, since such penalties would merge similar blocks. Therefore, we
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also present the results using TLP only to demonstrate the necessity of the log-type

penalties on the proportions.

To evaluate the results, we considered the following evaluation metrics:

1. Nblocks: the accuracy of the selected number of blocks. We counted it a success

only if both the number of row clusters and the number of column clusters

were correctly selected. For original LBMs using R package blockcluster, we

counted it a success if after using the MAP rule, there were correct numbers of

row clusters and column clusters.

2. MAE(Θ̂): Mean Absolute Error of the estimated block parameters Θ̂.

3. TNR(Θ̂): specificity/true negative rate, TNR = TN/TN+FP = TN/Actual N,

that is, the proportion of estimated equal block parameter pairs out of true

equal block pairs in Θ.

4. FNR(Θ̂): miss rate/false negative rate, FNR = FN/FN+TP = FN/Actual P,

that is, the proportion of wrongly estimated equal block parameter pairs out of

true unequal block pairs in Θ.

5. MER: we determined the cluster memberships by MAP, then calculated the

Misclassification Error Rate (MER) of the cluster memberships.

6. MAE(p̂): Mean Absolute Error of of the estimated positive probabilities p̂ =

(p̂ij)N×M , where pij = P(rij = 1), i = 1, . . . , N , j = 1, . . . ,M .

Among the above evaluation metrics, we use Nblocks to measure the accuracy of

the selected number of clusters and MAE(Θ̂) to measure the accuracy of the estimated

block parameters. To evaluate the learned block inner structure, that is, the blocks

that share the same block parameters, we use TNR(Θ̂) and FNR(Θ̂). Moreover,

to characterize the estimate for a single entry in the data matrix, we use MAE(p̂)

to measure the accuracy of the estimated probability of a single data point. Lastly,
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we also calculate the Misclassification Error Rate (MER) of the cluster membership

using MAP to evaluate the clustering results. Note that we only calculated MAE(Θ̂),

TNR(Θ̂), FNR(Θ̂) and MER for the cases where the numbers of row clusters and

column clusters were estimated correctly.

Remark III.2. In clustering applications, there is always the label switching issue.

Therefore to evaluate the estimated block parameter Θ and the clustering membership

accuracy, we need to match the learned clusters with the original clusters. One way

to do such matching is to minimize the mean squared error between the learned block

parameters and the original block parameters, among all permutations of rows and

columns. However, the number of possible combinations of such permutations is huge,

especially in the co-clustering setting. Therefore, in our simulation, we matched the

clusters using the learned cluster memberships. Specifically, we compared the learned

cluster memberships and the original memberships and determined the matching using

the majority of original clusters in each learned cluster.

3.4.1 Random Blocks

As we introduced in Section 3.4, in the first setting, the block parameters were

randomly generated. More specifically, we randomly chose θk,l ∼ U{0.2, 0.3, . . . , 0.8}.

Since the block parameters were from a finite set, subsets of them shared the same

values as shown in Figure III.2. For the random block setting, we considered two

different numbers of clusters: the true number of clusters was 10× 10 and we started

with 20 × 20 clusters in Step 1; the true number of clusters was 20 × 20 and we

started with 40 × 40 clusters. When the numbers of clusters were relatively small

(K = L = 10), we experimented with relatively small sample sizes (200 × 200 and

500 × 500). When the numbers of clusters were relatively large (K = L = 20), we

considered larger sample sizes (500 × 500 and 1000 × 1000). The simulation results

are presented in Table 3.2. In our empirical experiments, when the sample size and
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the number of clusters were large (N = J = 1000, K = L = 20), the R package for

LBM sometimes failed (6 failures out of 100 repetitions).

(a) (b)

Figure III.2: Random Block Structures. (a) 10 row clusters × 10 column clusters;
(b) 20 row clusters × 20 column clusters.

In terms of selecting numbers of clusters, from the results in Table 3.2, one can

see that the LBMs using block EM algorithms produced empty clusters in most cases

as we expected. In fact, when we looked into the first two cases with relatively small

numbers of clusters (K = L = 10), even though it may not produce empty clusters

using MAP, the biases of the estimated proportions were large. Specifically, when

the sample size was 200× 200, there were 83% of cases where at least one estimated

proportion had an absolute bias larger than the true proportion (i.e. |π̂ − π0| > π0);

while when the sample size was 500 × 500, all of the cases had such large biases.

Therefore, even though using the correctly-specified numbers of clusters, the original

LBMs performed poorly in learning true clusters. By contrast, our method achieved

high accuracy of selecting the correct numbers of clusters across different settings.

Moreover, only using TLP did not perform as well as our method either, demonstrat-

ing that the log-type penalties on the proportions were of essential importance in

Step 1. For block inner structure learning, the proposed method performed well in

terms of both TNR and FNR, while using TLP only produced larger FNRs, meaning

that TLP itself would over-merge blocks. Moreover, the LBMs even starting with

75



true initializations had very small TNRs, which is also expected since we did not put

any restrictions on the block parameters in LBMs. The results here have shown that

our method is capable of selecting the correct numbers of clusters and learning block

inner structures effectively.

3.4.2 DINA Blocks

In this section, we considered the block structures under the DINA model. Specif-

ically, the columns can be seen as the questions targeting certain sets of skills and the

rows are the subjects answering these questions. In the DINA setting, the subjects

with all the required attributes of the question will have the same high probability of

getting a correct response, while the subjects missing some required attributes will

have the same low probability of getting a correct response. Therefore, in the block

structure considered under the DINA setting, for each column cluster, there will be

two levels of positive response probability, as shown in Figure III.3. We considered

two different numbers of latent attributes in the DINA model: K = 3 or 4. When

K = 3, we experimented with different sample sizes N = J = 100, 300, or 500.

When we had relatively more attributes (K = 4), we considered larger sample sizes

N = J = 300, 500, or 800. The simulation results are presented in Table 3.3.

(a) (b)

Figure III.3: Block Structures under DINA. (a) K = 3, 7 row clusters × 8 column
clusters; (b) K = 4, 15 row clusters × 16 column clusters.
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Similarly to the results in Section 3.4.1, the LBMs using R package blockcluster

produced empty clusters under all considered settings, although starting with cor-

rectly specified numbers of clusters. The LBMs with true initializations failed to

learn the block inner structures and only using TLP would have high FNRs. On

the contrary, the proposed method performed consistently well under most of the

considered cases and achieved good results in terms of all the evaluation metrics.

3.5 Real Data Analysis

In this section, we applied our method to the Cattell’s 16 Personality Factors Test

(Cattell and Mead, 2008) data set1. There were 49159 subjects and 163 items in

total. The 163 items were designed to detect 16 personalities, as shown in Table 3.1.

Therefore, this design can serve as a baseline for the clustering of questions. In this

test, all the questions have 5 scales: 1 for strongly disagree, 2 for slightly disagree,

3 for neither agree nor disagree, 4 for slightly agree and 5 for strongly agree. In the

designed questions, there are some reverse questions. For example, “I take an interest

in other people’s lives” and “I am not really interested in others”. Therefore, for the

positive questions, we binarized the responses to be 1 if the responses were bigger or

equal to 3, while for the negative questions, we binarized them to be 1 if the responses

were smaller than 3.

Warmth Intellect Emotional Stability Assertiveness
Q1-10 Q11-23 Q24-33 Q34-43

Gregariousness Dutifulness Friendliness Sensitivity
Q44-53 Q54-63 Q64-73 Q74-83
Distrust Imagination Reserve Anxiety
Q84-93 Q94-103 Q104-113 Q114-123

Complexity Introversion Orderliness Emotionality
Q124-133 Q134-143 Q144-153 Q154-163

Table 3.1: Clusters of items according to the target personalities.

1https://openpsychometrics.org
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We applied our two-stage method to this personality data and used the same

candidate sets of tuning parameters as in the simulation study. We started with

40 row clusters and 40 column clusters respectively. The only difference is that

since the number of subjects was very large, we used the fixed effects for the row

cluster memberships instead of calculating the posteriors. After fitting the model, we

obtained 30 row clusters and 16 column clusters. The resulting number of column

clusters coincided with the original design but the resulting clusters were not exactly

the same. See Figure III.4 for the original data matrix and the rearranged data

according to the clustering results.

Figure III.4: Original and clustered Personality data.

To evaluate clustering performance quantitatively, we consider some internal mea-

sures since the ground truth is unknown. One such measure is called Dunn index

(Dunn, 1974). Specifically, let C =
{
C1, . . . , CK

}
be K clusters of vectors. The

78



Dunn index is defined as

DI =
min1≤k<k′≤K δ(Ck, Ck′)

max1≤k≤K ∆(Ck)
,

where δ(Ck, Ck′) is the intercluster distance metric and ∆(Ck) is intracluster distance

metric. The larger the Dunn index, the better the clustering is. Here we define these

distances as

δ(Ck, Ck′) = min
i∈Ck,j∈Ck′

d(xi, xj),

∆(Ck) = max
i,j∈Ck

d(xi, xj),

where d(·, ·) is a distance measure between two vectors and here we use the Jaccard

similarity. For the originally designed clusters, the Dunn index is 0.061, while for the

clusters obtained by the proposed method, the Dunn index is 0.1281, which indicates

that our result is better than the original design from a quantitative perspective.

3.6 Discussion

In this chapter, we propose a two-step procedure based on the latent block models

to select the numbers of clusters and learn block inner structures in the co-clustering

setting, where we infer the subgroups of items and subjects at the same time. Specifi-

cally, log-type penalties are put on the proportion parameters to select the significant

row and column clusters, and truncated Lasso penalties are imposed on the block

parameter pair differences to learn equal block parameter structures. We develop

EM-type algorithms for these two steps and show its good performance through com-

prehensive simulation studies and a real data analysis.

In this work, we are mainly concerned with learning equal block parameter pairs

as the inner block structure. More complicated block structures such as hierarchical

structures may be considered for future work. For large-scale problems, the developed
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EM algorithms can be easily adapted to stochastic versions where in each iteration,

we randomly choose a subset of rows and a subset of columns to update the model

parameters. Moreover, due to the complex dependence structures in LBMs, theoret-

ical results are difficult to derive without making further independence assumptions.

More theoretical understandings are desired in this double asymptotic regime where

both the number of rows and the number of columns go to infinity, which we leave as

a future direction.
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CHAPTER IV

Hypothesis Testing for Latent Hierarchical

Structures

4.1 Introduction

In chapter II, we have developed an efficient algorithm to learn latent hierarchical

structures from observed data. In many applications, such hierarchical structures

are often posited by domain experts. Hypothesis testing plays an important role

in validating the presence of the suspected attribute hierarchies, which can provide

guidance to practitioners for experiment design or data modeling (Templin and Brad-

shaw, 2014). As we introduced in chapter II, if some hierarchical structure exists, any

latent profile α that does not respect the hierarchy is deemed not to exist with the

corresponding population proportion πα = 0. For 1 ≤ k 6= l ≤ K, we use αk −→ αl (or

k −→ l) to denote the hierarchy that attribute αk is a prerequisite for attribute αl. Un-

der the hierarchy αk −→ αl, the latent profiles with αl = 1 but αk = 0 will not exist in

the population and therefore we have πα = 0 if αl = 1 but αk = 0. The set of prereq-

uisite relationships is denoted by E = {k −→ l : attribute k is a prerequisite for l, 1 ≤

k 6= l ≤ K}, and the induced set of existing latent attribute profiles is denoted by

A = {α ∈ {0, 1}K : πα 6= 0 under E}. It is noted that an attribute hierarchy results

in the sparsity of the proportion parameter vector, which will reduce the number of
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model parameters especially when K is large. Example hierarchical structures and

the corresponding induced latent profile sets are shown in Figure II.1.

In this chapter, we consider the problem of hypothesis testing for the existence

of such pre-specified latent hierarchical structures. As we illustrated above, the hi-

erarchical structure of the latent attributes results in the sparsity structure of the

proportion parameter vector for the latent attribute profiles, since the latent pro-

files that do not follow the hierarchical structure will not exist in the population.

Therefore the problem of testing latent hierarchy is equivalent to testing the spar-

sity structure of the proportion parameter vector. More formally, we aim to test the

following hypothesis:

H0 : πα = 0, ∀α /∈ A0 under hierarchy E0,

where E0 is the hierarchical structure under the null hypothesis and A0 is the induced

latent attribute profile set under E0.

Even though LAMs can be viewed as a special family of finite mixture models,

there is a key difference between testing hierarchical structures in LAMs and testing

the number of components in finite mixture models. When testing the number of

components in finite mixture models, there are no restrictions on the components’

distributions. See Chen (2017) for a review of testing the number of components in

finite mixture models. However, when testing latent hierarchical structures, we are

in fact testing whether the proportion parameters of the nonexistent latent attribute

profiles corresponding to the hierarchy are zeros. Moreover, the constraints imposed

by the structural Q-matrix make it more restrictive and complicated.

To our best knowledge, there are no systematical testing procedures or statistical

theories on hypothesis testing for latent hierarchical structures. Two natural ques-

tions about such testings are (1) when the hierarchical structures are testable and
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(2) how to conduct the hypothesis testing. On the one hand, under the framework of

LAMs, if the hierarchical structure under the null hypothesis cannot be distinguished

from those under the alternative, we cannot test such a hierarchical structure and

therefore it is untestable. In fact, the testability of hierarchical structures is closely

related to the identifiability of the models. On the other hand, under the hierar-

chical constraints, the problem of testing latent hierarchical structures is equivalent

to testing the sparsity structure of the set of latent attribute profiles in the popula-

tion, that is, the sparsity structure of the population proportion parameter vector.

However, due to the identifiability and the irregularity issue that the true proportion

parameters are on the boundary of the parameter space under hierarchical structures,

the conventional asymptotic Chi-squared distribution may not hold for the likelihood

ratio test.

Non-regularity issues of the likelihood ratio test are known to exist in many latent

variable models such as finite mixture models, factor analysis, structural equation

models, and random effects models (Chen, 2017; Chen et al., 2020). In particular,

testing the sparsity structure of the proportion parameter vector in LAMs is closely

related to the problem of testing the number of components in finite mixture models

and latent class models (Nylund et al., 2007; Chen, 2017). However, testing the

hierarchical structures in LAMs is even more challenging, since it tests whether a

specific set of the proportion parameters specified by the hierarchical structure under

the null hypothesis is zero; and such a problem is further complicated due to the

restrictions imposed by the structural Q-matrix and the discrete nature of the latent

variables in LAMs.

In this chapter, we focus on the problem of hypothesis testing for latent hierar-

chical structures. We first discuss the testability of latent hierarchical structures and

present sufficient conditions under which hierarchical structures are testable in LAMs.

Then under such conditions, we examine the asymptotic behaviors of the popularly
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used likelihood ratio test. Since the true proportion parameter is on the boundary of

the parameter space, the asymptotic distribution of LRT becomes nonstandard due

to the lack of regularity (Self and Liang, 1987). Moreover, the nonstandard limiting

distribution of LRT is observed to not provide satisfactory finite-sample results under

practical settings, and we provide statistical insights on such failures. Specifically, we

find that when the number of items is large or the item parameters are close to the

boundary, the convergence of the nonstandard limiting distribution can be very slow

and the test tends to fail. Therefore we do not recommend using the nonstandard

limiting distribution to conduct the hypothesis testing in practice. Instead, based on

these findings, we propose to use resampling-based methods to test hierarchical struc-

tures. We conduct comprehensive simulations and comparisons between parametric

bootstrap and nonparametric bootstrap and recommend using parametric bootstrap

for testing latent hierarchies in LAMs.

The rest of the chapter is organized as follows: we first discuss some sufficient

conditions for the testability of hierarchical structures and provide several illustrative

examples in Section 4.2. Studies on the likelihood ratio test and numerical results are

presented in Section 4.3. Specifically, section 4.3.1 studies the asymptotic behaviors

of LRT and provides insights into its failures in some situations. Section 4.3.2 presents

simulation studies that compare parametric bootstrap and nonparametric bootstrap

for testing hierarchical structures. In Section 4.4, we perform hypothesis testing for a

linear attribute hierarchy in an educational assessment dataset and compare different

testing procedures. Finally Section 4.5 concludes with some discussions.

4.2 Testability Requirements and Conditions

Before we introduce concrete testing procedures, we first need to understand when

the hierarchical structures are testable. For instance, consider the case when the

item parameters are the same for two latent attribute profiles and we want to test
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the nonexistence of one of them. In this situation, we cannot distinguish these two

profiles and thus cannot identify their proportion parameters, not mention testing

whether the corresponding proportion is zero. Example IV.1 provides an illustrative

example. Therefore, the testability issue is of fundamental importance before per-

forming concrete testing procedures. Moreover, the testability conditions would also

provide guidance for practitioners and scientific researchers to design experiments.

Example IV.1. Assume that there are two latent attributes of interest and there is a

linear attribute hierarchy E0 = {1 −→ 2}, which results in the induced attribute profile

set A0 = {(0, 0), (1, 0), (1, 1)}. If the Q-matrix is specified as,

Q =



1 0

1 1

1 0

1 1

1 1


,

then under the DINA model assumption, the item parameter vector for the latent

profile (0, 0), θ(0,0), would be the same as θ(0,1). In this case, we cannot distinguish

the profiles (0, 0) and (0, 1), and therefore the proportion parameters π(0,0) and π(0,1)

cannot be identified. Furthermore, the induced profile set A0 is not identifiable, which

makes the latent hierarchical structure untestable.

To ensure the testability of hierarchical structures, some conditions need to be met.

Before we dive into these conditions, let’s first define the concept of the testability of

latent hierarchies.

Definition 4.2.1 (strict testability of E0). Given the Q-matrix and certain cognitive

diagnosis model assumptions, consider the following hypothesis testing:

H0: the latent attributes respect the hierarchy E0,

87



H1: the latent attributes do not respect the hierarchy E0.

Then the latent hierarchy E0 is said to be testable if there is no parameter under the

alternative hypothesis that gives the same distribution as the parameters under the

null hypothesis.

In fact, the testability is closely related to the identifiability of LAMs (e.g., Xu

and Zhang, 2016; Xu, 2017; Xu and Shang, 2018). The identifiability refers to that

if two parameters give the same distribution, then the two parameters must be the

same. Nevertheless, the testability of hierarchical structure is actually less restrictive

compared with the identifiability. In testing latent hierarchies, we only need to dis-

tinguish the latent attribute profiles under the null hierarchical structure from the

others under the alternative, while in terms of the identifiability, we need to identify

all the model parameters and all the latent attribute profiles. Therefore the concept of

testability is weaker than the definitions of identifiability. In particular, identifiability

is a sufficient but not necessary condition for testability.

We first consider the DINA model. For the DINA model, since the item parameters

only depend on the highest interactions among the required latent attributes, we have

equivalent Q-matrices under hierarchical structures. As introduced in Section 2.3.1,

we say two Q-matrices are equivalent under hierarchical structure E , denoted by Q1
E∼

Q2, if they give the same item parameter matrices, that is, Θ(Q1,AE) = Θ(Q2,AE),

where AE is the induced latent attribute profile set under hierarchy E . For example,

consider three latent attributes with a linear hierarchy, that is, E =
{

1 → 2 → 3
}

.

We have

Q(1) =


1 0 0

0 1 0

0 0 1

 E∼ Q(2) =


1 0 0

1 1 0

1 1 1

 E∼ Q(∗) =


1 0 0

∗ 1 0

∗ ∗ 1

 , (4.1)

where “∗” can be either 0 or 1. Based on this observation, following Gu and Xu
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(2022), we introduce two useful operations on the Q-matrix.

Definition 4.2.2. Given an attribute hierarchy E and a Q-matrixQ. For any qj,l = 1

and k → l, set qj,k to 0 and obtain a modified matrix SE(Q), which is called the

“sparsified” version of Q.

Definition 4.2.3. Given an attribute hierarchy E and a Q-matrixQ. For any qj,l = 1

and k → l, set qj,k to 1 and obtain a modified matrix DE(Q), which is called the

“densified” version of Q.

As we discussed previously, the identifiability conditions are sufficient conditions

for testability. We present some identifiability results in Gu and Xu (2022) for the

DINA model.

Proposition 4.2.1 (strict testability for the DINA model). Consider a DINA model

with a given Q. A hierarchy E0 is testable if Q satisfies the following conditions:

(1) Q contains a K×K identity submatrix IK. (Without loss of generality, assume

the first K rows of Q form IK and denote the remaining submatrix of Q by

Q∗.)

(2) SE0(Q), the sparsified version of Q, has at least three entries of “1” in each

column.

(3) DE0(Q∗), the densified version of Q∗, contains K distinct column vectors.

Among the above conditions, condition (1) is in fact necessary to ensure the

testability of any hierarchy E , which is however not satisfied in Example IV.1. Since

theQ-matrix in Example IV.1 does not contain (0, 1), we can not distinguish the latent

attribute profiles (0, 1) and (0, 0), making the hierarchy not testable. Conditions (2)

and (3), on the other hand, may be further weakened. For example, Gu and Xu

(2022) provided necessary conditions for the identifiability of DINA-based hierarchical
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cognitive diagnosis models and discussed different necessary conditions for different

hierarchical structures. As testability is a less restrictive concept than identifiability,

we would expect the identifiability conditions (2) and (3) can be further weakened for

testability. We leave such an interesting yet challenging question for future study. We

next revisit Example IV.1 with a different Q-matrix and demonstrate its testability.

Example IV.2 (Example IV.1 revisited). Consider the same setting as in Example

IV.1, but with a different Q-matrix specified as below:

Q =

I2

Q∗

 , where I2 =

1 0

0 1

 and Q∗ =



1 0

0 1

1 0

1 1


.

Then the modified Q matrices are:

SE0(Q) =



1 0

0 1

1 0

0 1

1 0

0 1


, DE0(Q∗) =



1 0

1 1

1 0

1 1


.

Since the Q-matrix contains an identity matrix I2, the sparsified version SE0(Q) has

three “1” entries in each column, and the densified version DE0(Q∗) contains two

distinct columns, all three conditions in Theorem 1 are satisfied. Therefore, for a

DINA model with this Q-matrix, the linear hierarchy E0 is strictly testable.

Given an attribute hierarchy E0, if we are interested in testing a subset of prereq-

uisite relations conditioned on that the other prerequisite relations are assumed, we
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can further relax Condition (1) in Proposition 4.2.1. For example, assume that there

are three latent attributes and the full hierarchical structure is E0 = {1 → 2 → 3}.

If we are interested in testing E = {1 → 2} given E0 \ E = {2 → 3}, that is H0 : E0

vs. H1 : E0 \ E , we can relax Condition (1) in Proposition 4.2.1 to Condition (1*) in

Corollary 4.2.1.

Corollary 4.2.1. Consider a DINA model with a given Q and a given attribute

hierarchy E0. Suppose we are interested in testing a subset E ⊂ E0 given that E0 \ E

has already been assumed. It is testable if Condition (2) and (3) in Proposition 4.2.1

and the following condition are satisfied:

(1∗) SE0(Q), the sparsified version of Q, contains an identity submatrix IK and for

any attribute αk involved in E, there is an item which is only targeted on this

attribute.

The proof of Corollary 4.2.1 directly follows Theorem 1 in Gu and Xu (2022). As

we mentioned previously, the testability is a weaker requirement than identifiability,

in that we only need to differentiate the latent attribute profiles between the null

and alternative hypothesis for testability. We next provide examples in which the

hierarchical structures are testable but the models are not identifiable.

Example IV.3 (Testability vs. Identifiability). Consider a DINA model with three

latent attributes. Further, assume the slipping and guessing parameters are known.

We want to test the linear hierarchy which is specified as E0 = {1 → 2 → 3}. Then

the induced latent attribute profile set is A0 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}.

We denote the set of latent attribute profiles that do not exist under the hierarchy as

Ac0 = {(0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}. Consider the following Q-matrix and get

91



the corresponding ideal response matrices for A0 and Ac0:

Q =



0 1 0

0 0 1

1 1 0

1 1 1


; ΓA0 =



0 0 1 1

0 0 0 1

0 0 1 1

0 0 0 1


, ΓA

c
0 =



1 0 0 1

0 1 1 1

0 0 0 0

0 0 0 0


.

Then the ideal response vectors for classes in A0 and Ac0 are different, making the

hierarchical structure testable. However, the ideal response vectors for (0, 0, 0) and

(1, 0, 0) are the same, and those for (0, 0, 1) and (1, 0, 1) are also the same, making

the model not identifiable.

Example IV.4 (Condition on Alternative). Consider the same model and hierarchi-

cal structure in Example IV.3 but with unknown slipping and guessing parameters.

Here we are interested in testing {1→ 2} given {2→ 3}. Consider the Q-matrix:

Q =



1 0 0

0 1 0

1 0 0

0 1 0

1 0 0

1 1 0

1 0 1

0 1 1

1 1 1



.

Since θ(0,0,0) = θ(0,0,1), we cannot distinguish the latent profiles (0, 0, 0) and (0, 0, 1),

and thus not all the latent profiles are identifiable. However, the conditions in Propo-

sition 4.2.1 are satisfied, so the hierarchical structure {1 → 2} given {2 → 3} is
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testable.

For more general LAMs, we adapt the identifiability results from Gu and Xu

(2019b) to establish sufficient conditions for the testability of latent attribute hierar-

chies. Following the same notations in Gu and Xu (2019b) and Section 2.3.2, we use

the so-called constraint matrix Γ. Recall that the constraint matrix for a set of latent

attribute profiles A is defined as ΓA = (I(α � qj) : α ∈ A, j ∈ [J ]) ∈ {0, 1}J×|A|,

which is a binary matrix indicating whether an attribute profile α ∈ A possesses all

the required attributes of item j. Note that for the DINA model, the constraint ma-

trix is also its ideal response matrix, while they are not the same for the DINO model.

The defined constraint matrix is used as a tool to study the testability conditions for

general LAMs. Based on the constraint matrix, we define a partial order among the

latent attribute profiles “�S” for any subset of items S ⊂ [J ]. For α,α′ ∈ A, we say

α �S α′ under ΓA if ΓAj,α ≥ ΓAj,α′ for j ∈ S. And for two item sets S1 and S2, we say

“�S1=�S2” if for any α,α′ ∈ A, we have α �S1 α
′ if and only if α �S2 α

′. Example

IV.5 provides illustrations for the partial orders.

Example IV.5. Consider two latent attributes with a linear hierarchical structure.

The Q-matrix considered and the corresponding constraint matrix for the latent at-

tribute profile set A = {(0, 0), (1, 0), (1, 1)} are specified as :

Q =



1 0

0 1

1 0

1 1


, ΓA =

(0, 0) (1, 0) (1, 1)


0 1 1

0 0 1

0 1 1

0 0 1

.

For the item set S = {1, 2}, we can see that Γj,(1,0) ≥ Γj,(0,0) and Γj,(1,1) ≥ Γj,(1,0) for

j ∈ S. Therefore (1, 0) �S (0, 0) and (1, 1) �S (1, 0). Moreover, if we take S1 = {1, 2}
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and S2 = {3, 4}, then for any α,α′ ∈ A, we have α �S1 α
′ if and only if α �S2 α

′.

Therefore, �S1=�S2.

In the following testability results for general LAMs, we focus on equal size cases

or under-fitted cases when |A| ≤ |A0|, where A0 is the set of the latent attribute

profiles under the null hypothesis and A is the set of the latent attribute profiles

under the alternative hypothesis. Note that for overfitted cases with |A| > |A0|, if A

and A0 lead to the same distribution, the model complexity of A is larger than that

of A0, and therefore practically we can still distinguish them using information-based

criteria or penalized likelihood methods.

Proposition 4.2.2 (Strict testability for general LAMs). Consider a general LAM

with a given Q and an arbitrary hierarchy E0. The hierarchy is testable when the

alternative is restricted to the latent profile sets of the same or smaller size than that

under the null hypothesis, if the following conditions of the constraint matrix ΓA0

corresponding to the induced latent profile set A0 under the hierarchy E0 are satisfied:

(1) There exist two disjoint item sets S1 and S2, such that Γ(Si,A0) has distinct

column vectors for i = 1, 2 and “�S1=�S2” under ΓA0.

(2) For any α, α′ ∈ A0 where α′ �Si α under ΓA0 for i = 1 or 2, there exists

some j ∈
(
S1 ∪ S2

)c
such that ΓA0

j,α 6= ΓA0

j,α′.

(3) Any column vector of ΓA0 is different from any column vector of ΓA
c
0, where

Ac0 = {0, 1}K \ A0

Based on the conditions in Proposition 4.2.2, one can see that having three identity

submatrices in the Q-matrix is sufficient for testability. However, having several

identity submatrices is in fact a strong requirement in practice. Under a general

LAM, these conditions can be further relaxed if we consider E0 to be testable with
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the true model parameter ranging almost everywhere in the restricted parameter space

except a set of Lebesgue measure zero. Specifically, we have the following definition

of generic testability.

Definition 4.2.4 (Generic testability of E0). Denote the parameter space under E0 by

Ω0. The latent hierarchy E0 is said to be generically testable, if there exists a subset

V of Ω0 that has Lebesgue measure zero, such that there is no parameter under the

alternative hypothesis gives the same distribution as the parameters in Ω0 \ V .

For generic testability, following the generic identifiability results in Gu and Xu

(2019b) and Gu and Xu (2020), a nice corollary can be derived where the requirements

are directly characterized by the structure of the Q-matrix.

Corollary 4.2.2. If the Q-matrix satisfies the following conditions, then for any

hierarchy E0 such that the induced latent attribute profile set A0 satisfies Condition

(3) in Proposition 4.2.2, the hierarchy E0 is generically testable:

(1) The Q-matrix contains two K × K sub-matrices Q1 and Q2, such that for

i = 1, 2,

Q =


Q1

Q2

Q′


J×K

; Qi =



1 ∗ · · · ∗

∗ 1 · · · ∗
...

...
. . .

...

∗ ∗ · · · 1


K×K

, i = 1, 2,

where each “∗” can be either zero or one.

(2) With Q in the form as above,
∑J

j=2K+1 qj,k ≥ 1 for each k ∈ [K].

By relaxing strict testability to generic testability, less stringent conditions in

Corollary 4.2.2 have been established. Moreover, the requirements in Corollary 4.2.2
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can be checked directly from the Q-matrix, making it easier to use in practice. Next,

we present an illustrative example of strict testability and generic testability of general

LAMs.

Example IV.6. Consider a general latent attribute model setting with two latent

attributes and a linear attribute hierarchy E0 = {1→ 2}. Consider the Q-matrix:

Q =


I2

I2

Q′

 ; Q′ =

1 0

1 1

 .

By directly looking at the Q-matrix, we know the conditions in Corollary 4.2.2 are

satisfied and therefore the hierarchical structure is generically testable. Moreover, the

constraint matrix under attribute hierarchy E0 = {1→ 2} is

ΓA0 =

(0, 0) (1, 0) (1, 1)

0 1 1



0 0 1

0 1 1

0 0 1

0 1 1

0 0 1

; ΓA
c
0 =

(0, 1)

0



1

0

1

0

0

.

If we set S1 = {1, 2}, S2 = {3, 4}, then Γ(Si,A0) has distinct columns for i = 1, 2.

Moreover, “�S1=�S2” under ΓA0. For (1, 0) �Si (0, 0) for i = 1 or 2, we have

ΓA0

5,(1,0) 6= ΓA0

5,(0,0). For (1, 1) �Si (1, 0) for i = 1 or 2, we have ΓA0

6,(1,1) 6= ΓA0

6,(1,0). For

(1, 1) �Si (0, 0) for i = 1 or 2, we have ΓA0

6,(1,1) 6= ΓA0

6,(0,0). Finally, the columns of

ΓA0 are different from that of ΓA
c
0. Therefore, based on the constraint matrix, we

can see that the conditions in Proposition 4.2.2 are met, and thus the linear attribute
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hierarchy is also strictly testable.

Example IV.7. Consider a general latent attribute model setting with three latent at-

tributes and a linear hierarchical structure E0 = {1→ 2→ 3}. The induced latent at-

tribute profile set under E0 is A0 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}. We denote the

complement set of latent attribute profiles as Ac0 = {(0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}.

Consider the Q-matrix and the corresponding constraint matrices for A0 and Ac0:

Q =



1 1 0

0 1 0

0 0 1

1 1 0

0 1 0

0 0 1

1 1 0

1 0 1

1 1 1



, ΓA0 =



0 0 1 1

0 0 1 1

0 0 0 1

0 0 1 1

0 0 1 1

0 0 0 1

0 0 1 1

0 0 0 1

0 0 0 1



, ΓA
c
0 =



0 0 0 0

1 0 0 1

0 1 1 1

0 0 0 0

1 0 0 1

0 1 1 1

0 0 0 0

0 0 1 0

0 0 0 0



.

Based on the specified Q-matrix and the corresponding constraint matrices, one can

easily see that the conditions in Corollary 4.2.2 are satisfied and therefore the hierar-

chical structure is generically testable. However, Condition (1) in Proposition 4.2.2

is not satisfied and the model is not strictly identifiable since Γ(0,0,0) and Γ(1,0,0) are

the same.

4.3 Likelihood Ratio Test

With the sufficient conditions for the testability of the hierarchical structures

specified in Section 4.2, the next question becomes how to conduct the hypothesis

testing. As we illustrated in Section 2.1 when some hierarchical structure exists,
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the number of truly existing latent attribute profiles will be less than 2K , and the

corresponding model will be a nested model of the full model with all possible latent

attribute profiles. Testing the latent hierarchical structure is then equivalent to testing

the sparsity structure of the proportion parameter vector. A popular choice for testing

a nested model is the likelihood ratio test with an asymptotic Chi-squared distribution

under some regularity conditions. One commonly assumed regularity condition is that

the true parameter vector is in the interior of the parameter space. However, in our

testing problem, the true proportion parameter vector π lies on the boundary of

the simplex under the null hypothesis, making the conventional Chi-squared limiting

distribution no longer hold. In this section, we review the nonstandard asymptotic

behaviors of the LRT statistic and provide statistical insights on the failures of such

limiting distributions under practical conditions. Then we propose to use resampling-

based methods to test hierarchical structures and conduct a comprehensive simulation

study to compare different testing procedures.

4.3.1 Failure of Limiting Distribution of LRT

When the parameter of the null model lies on the boundary of the parameter

space, the LRT statistic has been shown to often follow a mixture of χ2 distributions

asymptotically (Self and Liang, 1987). We first present some general asymptotic

theories on the LRT statistic under such nonstandard conditions and discuss the

application to our testing problem for latent hierarchies.

Let f(x;θ) be the probability density function of a random variable X, where

θ = (θ1, ..., θp) takes values in the parameter space Ω, a subset of Rp. When the model

is identifiable, distinct values of θ correspond to distinct probability distributions. Let

x1, ...,xN be N independent observations ofX and denote the log-likelihood function,
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∑N
i=1 log[f(xi;θ)], by lN(θ). Consider the hypothesis testing

H0 : θ0 ∈ Ω0 vs H1 : θ0 ∈ Ω \Ω0,

where θ0 is the true parameter and Ω0 is a subset of Ω. When Ω0 is an r-dimensional

subset of Ω, θ0 is a boundary point of both Ω0 and Ω\Ω0 but an interior point of Ω,

under some regularity conditions, by the Wilk’s theorem, the asymptotic distribution

of the LRT statistic, λN := −2
(
supθ∈Ω0

lN(θ) − supθ∈ΩlN(θ)
)
, will be χ2(p − r).

However, when θ0 is a boundary point of Ω, the regularity condition is not satisfied

and the conventional Chi-squared limiting distribution does not hold either.

In Self and Liang (1987), the authors studied the nonstandard tests where the pa-

rameter of the null model is on the boundary of the parameter space. It is shown that

when some of the true parameter values are on the boundary of the parameter space,

under certain regularity conditions, the limiting distribution of the LRT statistic is

the same as the distribution of the projection of the Gaussian random variable onto

the region of admissible values for the mean. Specifically, both the whole parameter

space Ω and the null parameter space Ω0 are assumed to be regular enough to be

approximated by cones with vertices at the true parameter θ0, which is defined as

below.

Definition 4.3.1. The set Ω ⊂ Rp is approximated at θ0 by a cone with vertex at

θ0, CΩ, if

(1) inf
x∈CΩ

||x− y|| = o(||y − θ0||), ∀y ∈ Ω,

(2) inf
y∈Ω
||x− y|| = o(||x− θ0||), ∀x ∈ CΩ.

When the model is identifiable, with further regularity conditions (see Section 1 in

Self and Liang (1987) for details), the following asymptotic distribution of the LRT
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statistic is derived.

Theorem 4.3.2 (Self and Liang, 1987). Let Z be a random variable with a mul-

tivariate Gaussian distribution with mean θ0 and covariance matrix I−1(θ0), where

I(θ) = N−1IN(θ) and IN(θ) is the second derivative of the log-likelihood function

lN(θ). Let CΩ0 and CΩ be non-empty cones approximating Ω0 and Ω at θ0, respec-

tively. Then the asymptotic distribution of the likelihood ratio test statistic is the

same as the distribution of the likelihood ratio test of θ ∈ CΩ0 versus the alternative

θ ∈ CΩ based on a single realization Z when θ = θ0.

Following Self and Liang (1987), the asymptotic representation of the LRT statistic

given by Theorem 4.3.2 can be written as

sup
θ∈CΩ−θ0

{−(Z − θ)>I(θ0)(Z − θ)} − sup
θ∈CΩ0

−θ0
{−(Z − θ)>I(θ0)(Z − θ)}, (4.2)

where Z has a multivariate Gaussian distribution with mean 0 and covariance matrix

I−1(θ0). We can further rewrite it as

inf
θ∈C̃0

||Z̃ − θ||2 − inf
θ∈C̃
||Z̃ − θ||2, (4.3)

where C̃ = {θ̃ : θ̃ = Λ1/2P Tθ, ∀ θ ∈ CΩ − θ0}, C̃0 = {θ̃ : θ̃ = Λ1/2P Tθ, ∀ θ ∈

CΩ0 − θ0}, Z̃ follows a multivariate Gaussian distribution with mean 0 and the

identity covariance matrix, and PΛP T represents the spectral decomposition of I(θ0).

Therefore, after the orthogonal transformation, the distribution in equation (4.2) can

be computed using the standard Gaussian distribution.

This result provides a promising direction for the hypothesis testing in the HLAM

setting, and we consider a simple example in Example IV.8.

Example IV.8. Consider the DINA model with two latent attributes. Suppose that

we want to test whether the first attribute is a prerequisite for the second attribute,
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that is, the hierarchical structure E0 = {1→ 2}. Assume that the identifiability condi-

tions in Proposition 4.2.1 are satisfied. The model parameters include the proportion

parameters and item parameters {π(0,0), π(0,1), π(1,0), π(1,1), θ
+
j , θ

−
j , j = 1, . . . , J},

so the total number of parameters is 3 + 2× J , noting that the proportion parameter

vector π = (π(0,0), π(0,1), π(1,0), π(1,1)) lies in the 3-simplex. To test the hierarchy E0,

it is equivalent to test

H0 : π(0,1) = 0 v.s. H1 : π(0,1) 6= 0.

Therefore we have one parameter of interest that has a true value on the boundary

and 2 + 2 × J nuisance parameters with true values, not on the boundary. After an

orthogonal transformation, we have C̃ = [0,∞)×R2+2×J and C̃0 = {0}×R2+2×J and

thus the asymptotic distribution of the LRT statistic is reduced to

Z̃2
1 · I(Z̃1 > 0),

where Z̃1 follows a standard univariate gaussian distribution. Therefore the limiting

distribution of the LRT statistic is a mixture of Chi-squared distribution 1
2
χ2

0 + 1
2
χ2

1.

In Example IV.8, we derive the closed-form of the limiting distribution of the LRT

statistic in the DINA model with two latent attributes and a linear hierarchy. In this

example, we take the advantage of the fact that there is only one boundary parameter

and it occurs as the parameter of interest. However, the asymptotic distribution of the

LRT statistic in fact becomes considerably more complicated if there are more latent

attributes and more complex hierarchical structures. Moreover, even in the simple

setting as in Example IV.8, the convergence may be very slow if the number of items

J is large or the guessing parameter θ−j and slipping parameter 1−θ+
j are close to the

boundary, as illustrated in Figure IV.1. Specifically, in Figure IV.1, we present the

p-values under various settings for Example IV.8. In the titles of these plots, we use

101



sj to denote the slipping parameter 1− θ+
j , and gj to denote the guessing parameter

θ−j for ease of presentation. The observed p-values are plotted by blue points, and

the p-values for the reference distribution 1
2
χ2

0 + 1
2
χ2

1 are plotted as the red lines. The

first row in Figure IV.1 contains three plots of p-values with the same sample size and

item parameters but different numbers of items. It is noted that when the number of

items was small, the observed p-values were very close to those of the mixture Chi-

squared limiting distribution. However, as the number of items increased, the gap

between the observed p-values and the reference limiting distribution became larger.

The second row in Figure IV.1 contains three plots of p-values with more extreme

item parameters. Compared with the plots in the first row, it is shown that when

the item parameters were close to the boundary, the convergence of the LRT statistic

became much slower, and such testing tended to fail even with a large sample size

N = 10, 000.

As pointed out in Self and Liang (1987), even though based on Theorem 4.3.2 we

can derive the asymptotic distribution of the LRT statistic for any fixed θ0 ∈ Ω0, this

distribution is generally different for different θ0. Moreover, these distributions typi-

cally vary over Ω0 in a discontinuous way when some of the nuisance parameters may

also be on the boundary. This discontinuity can affect the quality of the asymptotic

approximation much. As in our example, when the slipping parameter 1−θ+
j and the

guessing parameter θ−j in the DINA model are close to the boundary, the distribution

with a given finite sample may be far away from the weighted Chi-squared mixture

as described in Example IV.8.

We provide further insights on why the convergence was slow when the number of

items was large or the item parameters were close to the boundaries as shown in Figure

IV.1. The average log-likelihood of LAMs is given by lN/N :=
∑N

i=1 log
(∑

α παP(Ri |

α)
)
/N. Consider Example IV.8 where we are interested in the hierarchy {1 −→ 2}

and want to test whether π(0,1) = 0. If we write π(0,0) = 1 −
∑
α 6=(0,0) πα, then
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Figure IV.1: QQ-plots for Example IV.8 under various settings. sj denotes the slip-
ping parameter 1 − θ+

j and gj denotes the guessing parameter θ−j for item j. The
x-axis is the expected percentile of the p-values under the null hypothesis, and the
y-axis is the percentile of the observed p-values. The observed p-values are plotted
by blue points, and the p-values for the reference limiting distribution 1

2
χ2

0 + 1
2
χ2

1 are
plotted as red lines. If the blue points are close to the red lines, it indicates that the
empirical distribution of the observed p-values approximates the asymptotic distri-
bution well.
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lN/N =
∑N

i=1 log
(
(1 −

∑
α 6=(0,0) πα)P

(
Ri | α = (0, 0)

)
+
∑
α 6=(0,0) παP(Ri | α)

)
/N.

The derivative of the log-likelihood w.r.t. π(0,1) becomes

∂lN/N

∂π(0,1)

=
1

N

N∑
i=1

P
(
Ri | α = (0, 1)

)
− P

(
Ri | α = (0, 0)

)∑
α παP

(
Ri | α

)
=

1

N

N∑
i=1

P
(
Ri | α = (0, 1)

)
− P

(
Ri | α = (0, 0)

)
P(Ri)

=
1

N

N∑
i=1

∑
r∈{0,1}J

I(Ri = r)
P
(
r | α = (0, 1)

)
− P

(
r | α = (0, 0)

)
P(r)

. (4.4)

When the null hypothesis that π(0,1) = 0 is true, by the strong law of large number,

we have

∂lN/N

∂π(0,1)

∣∣∣
π(0,1)=0

a.s.−→ E0

[ ∑
r∈{0,1}J

I(R = r)
P
(
r | α = (0, 1)

)
− P

(
r | α = (0, 0)

)
P(r)

]
=

∑
r∈{0,1}J

(
P
(
r | α = (0, 1)

)
− P

(
r | α = (0, 0)

))
=

∑
r∈{0,1}J

P
(
r | α = (0, 1)

)
−

∑
r∈{0,1}J

P
(
r | α = (0, 0)

)
= 0.

However, since the number of possible response patterns is |{0, 1}J | = 2J which grows

exponentially with the number of items J , it requires an exponentially growing sample

size to cover all the possible response patterns, and therefore the convergence can be

slow when J is large.

Next, consider the case when the item parameters are close to the boundary. Note
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that

P
(
R | α

)
=

J∏
j=1

P
(
Rj | α

)
=

J∏
j=1

(
(θ−j )1−Γj,α(θ+

j )Γj,α
)Rj(

(1− θ−j )1−Γj,α(1− θ+
j )Γj,α

)1−Rj
.

When the item parameters are very close to the boundaries, that is, θ−j and 1 − θ+
j

are very close to 0, the model becomes near deterministic. For simplicity, let 1−θ+
j =

θ−j = δ which is very close to 0 for all j ∈ [J ]. Then

P(R = r | α) =
J∏
j=1

(
δ(1−Γj,α)(1− δ)Γj,α

)rj(
(1− δ)(1−Γj,α)δΓj,α

)1−rj

=
∏
rj=1

δ(1−Γj,α)(1− δ)Γj,α
∏
rj=0

(1− δ)(1−Γj,α)δΓj,α

= δ
∑
rj=1(1−Γj,α)+

∑
rj=0 Γj,α · (1− δ)

∑
rj=1 Γj,α+

∑
rj=0(1−Γj,α)

.

For r = Γ·,α, we have P(R = Γ·,α | α) = (1−δ)J . And for any r 6= Γ·,α, δJ ≤ P(R =

r | α) ≤ δ. Moreover, when π(0,1) = 0, since P(R = r) =
∑
α 6=(0,1) παP(R = r | α),

we have

P(R = Γ·,α) ≥ πα(1− δ)J , for α ∈ A = {(0, 0), (1, 0), (1, 1)},

P
(
R 6= Γ·,α, α ∈ A

)
≤ 1− (1− δ)J → 0 as δ → 0.

Therefore from the above discussions, when π(0,1) = 0, the probability mass is con-

centrated around three response patterns Γ·,α for α ∈ A = {(0, 0), (1, 0), (1, 1)}. For
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the terms in the RHS of (4.4), when r = Γ·,(0,0), we have

[
P
(
R = r | α = (0, 1)

)
− P

(
R = r | α = (0, 0)

)](
P(R = r)

)−1

∈
[δJ − (1− δ)J

(1− δ)Jπ(0,0)

,
δ − (1− δ)J

(1− δ)Jπ(0,0) + δ(1− π(0,0))

]
−→ −1/π(0,0) as δ → 0.

When r = Γ·,(1,0) (or Γ·,(1,1)), we have

[
P
(
R = r | α = (0, 1)

)
− P

(
R = r | α = (0, 0)

)](
P(R = r)

)−1

∈
[ δJ − δ

(1− δ)Jπ(1,0)

,
δ − δJ

(1− δ)Jπ(1,0) + δ(1− π(1,0))

]
−→ 0 as δ → 0.

Therefore the terms in the RHS of (4.4) also concentrate around two points, −1/π(0,0)

and 0, making the convergence slow since more data points are needed to have it

converge to 0.

Based on the above discussions about the asymptotic behaviors of the LRT statis-

tic under the nonstandard conditions and in the HLAM setting, it has been shown

that even in the simple setting where we could derive a closed form of the limiting

distribution, the convergence can be very slow. Moreover, the asymptotic distribu-

tion of the LRT will be much more complicated if we have more latent attributes and

more complex hierarchical structures. Therefore, it is not practical to use the theo-

retical limiting distribution of the LRT statistic to test latent hierarchical structures

in LAMs, especially considering that the number of test items is usually relatively

large (e.g. more than 20).

4.3.2 Bootstrap and Numerical Studies

From the discussions about the LRT in Section 4.3.1, we learn that the limiting

distribution of the LRT statistic under latent hierarchical structures can be very

complicated and the convergence can be slow when the number of items is large or
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the item parameters are close to the boundary even in simple settings. To overcome

these difficulties, we propose to use the bootstrap method as an alternative to the

asymptotic limiting distribution method. The bootstrap method (Efron, 1979) has

been shown to be successful in many nonstandard situations. The basic idea of

bootstrap is treating inference of the true probability distribution, given the original

data, as being analogous to the inference of the empirical distribution, given the

resampled data. If the empirical distribution is a reasonable approximation to the

true distribution, then the bootstrap method will provide good inferences.

In this section, we consider two different bootstrap procedures: nonparametric

bootstrap and parametric bootstrap. The idea of nonparametric bootstrap is to

simulate data from the empirical distribution by directly resampling from the original

data. To be specific, in nonparametric bootstrap, we draw samples of the same size

from the original data with replacement. Then the statistic of interest is computed

based on the resampled data set and we repeat this routine many times. The steps

for nonparametric bootstrap are summarized as below:

Step 1. Initially estimate the model with the specified hierarchy under the null hypothe-

sis, and the model under the alternative hypothesis (without the null hypothesis

hierarchy constraints), and calculate the LRT statistic.

Step 2. Draw a sample of the same size with replacement from the original data and

calculate the LRT statistic.

Step 3. Repeat Step 2 independently many times and estimate the distribution of the

LRT statistic.

Step 4. Estimate the p-value by comparing the distribution obtained in Step 3 with

the LRT statistic obtained in Step 1. Then this p-value is used to determine

whether the null model with the specified null hierarchy should be rejected in

favor of the model without the hierarchical constraints.
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The idea of parametric bootstrap is to simulate data based on good estimates

of distribution parameters, often by maximum likelihood. In parametric bootstrap,

a parametric model is fitted to the original data, and samples are drawn from this

fitted model. The steps for parametric bootstrap are similar to those of nonparametric

bootstrap except for Step 2:

Step 2*. Based on the estimates of the model with specified hierarchy from step 1, gen-

erate a bootstrap sample from the fitted model and calculate the LRT statistic.

Next, we conduct comprehensive simulation studies to compare parametric boot-

strap and nonparametric bootstrap for testing latent hierarchical structures under

various settings. We considered four different hierarchical structures shown in Figure

II.1. For the data generating process, we considered the DINA model and the GDINA

model respectively. For both models, we included three different sample sizes (N =

200, 500, or 1000) and the number of items was set to 30 (J = 30). In terms of

uncertainty, two levels of guessing and slipping parameters in the DINA model were

included (θ−j = 1 − θ+
j = 0.1 or 0.2 for j ∈ [J ]). For the GDINA model, we also

considered two different uncertainty levels, where the highest item parameter was 0.9

or 0.8, and the lowest item parameter was 0.1 or 0.2. The other item parameters

in between were equally spaced. To satisfy testability conditions, the Q-matrix con-

tained two identity sub-matrices and the remaining items were randomly generated.

For each scenario, we performed 500 independent repetitions and in each repetition,

we generated bootstrap samples 500 times. To fit the models under the null and

alternative hypotheses, we used R package CDM.

The type I errors with significance level α = 0.05 under different settings are

plotted in Appendix B. There we also provide corresponding error bars for uncertainty

quantification of the Monte Carlo errors. The näıve Chi-squared test is included for

a comprehensive comparison. From the plots, we can see that the type I errors
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for parametric bootstrap were around 0.05 in most cases and therefore parametric

bootstrap controlled the type I errors generally well. By contrast, nonparametric

bootstrap was too conservative and the type I errors for nonparametric bootstrap were

very close to 0. In terms of the näıve Chi-squared test, it was also very conservative

in most cases even though the type I errors for the GDINA model with larger noises

under the “unstructured” hierarchy were closer to the significance level of 0.05.

To further examine the behaviors of the testing procedures, the QQ plots for

p-values under the null hypothesis are provided in Figure IV.2 and Figure IV.4.

For presentation brevity, we only present results of four hierarchies with the same

noise level and sample size. More comprehensive simulation results are presented in

Appendix B. It is known that under the null hypothesis, the p-values should follow

a uniform distribution on [0, 1]. In the QQ-plots, if the points are lying closer to

the identity line, it indicates that it approximates the uniform distribution better.

From Figure IV.2 and IV.4, one can see that under the null hypothesis, the p-values

of parametric bootstrap approximated the uniform distribution on [0, 1] very well in

almost all the settings. By contrast, the p-values of the nonparametric bootstrap and

the näıve Chi-squared test were far away from the uniform distribution, indicating

that these testing procedures are not reliable. We also conducted power analysis

where all the latent attribute profiles existed in the data generation process. The

true proportion parameters were equally assigned. The QQ plots for p-values under

the alternative hypothesis are shown in Figure IV.3 and Figure IV.5 respectively. To

have more power, we expect the p-values to be small so that we would reject the

null hypothesis. Therefore in the QQ-plots, the closer to 0 the points are, the more

powerful the test is. From Figure IV.3 and IV.5, one can see that the p-values of

parametric bootstrap and the näıve Chi-squared test were almost 0 and therefore the

power was close to 1. However, the p-values of the nonparametric bootstrap were

close to or above 0.5, which means we would not reject the null hypothesis, making
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the power almost 0. Taking both the type I error and power into consideration, the

parametric bootstrap outperformed the other two testing procedures.

Figure IV.2: QQ-plots for the p-values of the DINA model under the null hypothesis
where θ+

j = 0.8, θ−j = 0.2 that corresponds to the case with high noises.

Figure IV.3: QQ-plots for the p-values of the DINA model under the alternative
hypothesis where θ+

j = 0.8, θ−j = 0.2 corresponding to high noises. The expected
quantiles are the expected quantiles of the p-values under the null hypothesis, that
is, the uniform distribution on [0,1].

In order for the nonparametric bootstrap to work, the empirical distribution of

the sample data should be close to the true distribution, which may not hold for the

cases here especially when the number of items is relatively large. As we discussed in

Section 4.3.1, the total number of possible response patterns 2J grows exponentially

with the number of items J . Therefore, in nonparametric bootstrap, we need a very

large sample size to cover all the possible response patterns, which may explain the

failures of nonparametric bootstrap. On the contrary, in parametric bootstrap, we

first fit a model from the original data and resample data from the fitted model,

which incorporates the variance in data generation better and thus makes parametric

bootstrap perform better. Note that in Templin and Bradshaw (2014), using the näıve
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Figure IV.4: QQ-plots for the p-values of the GDINA model under the null hypothesis
where θ+

j = 0.8, θ−j = 0.2 corresponding to the case with high noises.

Figure IV.5: QQ-plots for the p-values of the GDINA model under the alternative
hypothesis where θ+

j = 0.8, θ−j = 0.2 corresponding to high noises. The expected
quantiles are the expected quantiles of the p-values under the null hypothesis, that
is, the uniform distribution on [0,1].

Chi-squared test, the authors concluded that “the DINA model cannot detect attribute

hierarchies”. However, through our comprehensive simulation, by using parametric

bootstrap, the attribute hierarchies can also be well detected in the DINA model.

In summary, based on our discussions about the failure of the limiting distribution

of LRT in Section 4.3.1 and the simulation results in Section 4.3.2, we recommend

using parametric bootstrap to perform hypothesis testing for latent hierarchical struc-

tures in LAMs.

4.4 Real Data Analysis

In this section, we perform hypothesis testing procedures on the Examination for

the Certificate of Proficiency in English (ECPE) data, which has been studied using

the proposed method in Chapter II where we learned the latent and hierarchical struc-
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tures from the observed responses. Three target attributes are considered, including

morphosyntactic rules (α1), cohesive rules (α2) and lexical rules (α3). The Q-matrix

of the ECPE data is given in Appendix B. Since the Q-matrix contains four identity

submatrices, the testability conditions are satisfied. A linear hierarchical structure

E0 = {α3 → α2 → α1} is often considered in literature such as Templin and Bradshaw

(2014).

Under the linear hierarchy E0, the latent attribute profile set isA0 = {(0, 0, 0), (0, 0,

1), (0, 1, 1), (1, 1, 1)}. Under the null hypothesis, we fitted a GDINA model with the

profile set A0, and under the alternative, we fitted a saturated GDINA model with all

the possible attribute profiles. We generated bootstrap samples 1000 times in para-

metric bootstrap and nonparametric bootstrap respectively. The p-value obtained

from parametric bootstrap was 0.041, while the p-value obtained from nonparamet-

ric bootstrap was 0.952. Moreover, we also calculated the p-value corresponding to

the näıve test using the conventional Chi-squared limiting distribution and got the

p-value of 0.02. If we set the significance level to be 0.05, then by parametric boot-

strap, we would reject the null hypothesis and conclude the linear hierarchy does not

present in this data set; while if the significance level is set to be 0.01, we would

not reject the null hypothesis and conclude there is such a linear attribute hierarchy.

This conclusion is consistent with that in Templin and Bradshaw (2014). For both

significance levels, the nonparametric bootstrap does not reject the null hypothesis.

To conduct a more comprehensive study of the linear hierarchies among the three

target attributes, we further tested each linear hierarchy relationship separately and

examined which one is the strongest. In particular, we considered the following various

test settings:

• H0 : E0 = {α3 → α2} vs. H1: no hierarchical structure E1 = ∅;

• H0 : E0 = {α2 → α1} vs. H1: no hierarchical structure E1 = ∅;
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• H0 : E0 = {α3 → α1} vs. H1: no hierarchical structure E1 = ∅;

• H0 : E0 = {α3 → α2 → α1} vs. H1 : E1 = {α3 → α2};

• H0 : E0 = {α3 → α2 → α1} vs. H1 : E1 = {α2 → α1};

• H0 : E0 = {α3 → α2 → α1} vs. H1 : E1 = {α3 → α1};

The resulting p-values for parametric bootstrap, nonparametric bootstrap and the

näıve Chi-squared test under different settings are presented in Table 4.1. From

the table, we can see that among all the settings, the p-values of nonparametric

bootstrap are very large and therefore we do not reject the null hypotheses. This is

also consistent with our simulation study where we find nonparametric bootstrap is

more conservative. The p-values of parametric bootstrap are much smaller than those

of nonparametric bootstrap. If we set the significance level to be 0.05, parametric

bootstrap does not reject the null except for the settings “{α3 → α2 → α1} vs. ∅” and

“{α3 → α2 → α1} vs. {α3 → α1}”. The p-values of the näıve Chi-squared test are

of the similar scales of those in parametric bootstrap, and if the significance level is

set to 0.05, the näıve Chi-squared test does not reject the null except for the settings

“{α3 → α2 → α1} vs. {α3 → α2}” and “{α3 → α2 → α1} vs. ∅”. However, as we

have shown in our simulation results, since the true limiting distribution of the LRT

statistic is no longer the conventional Chi-squared distribution, the näıve test is not

reliable.

For testing a single linear hierarchy relationship versus none hierarchical structure

(i.e., the second to the fourth tests in Table 4.1), since the alternative hypothesis is

the same while the null hypothesis varies, a larger p-value suggests a stronger pre-

requisite relationship. Therefore based on the results in Table 4.1 that the p-value

for “{α3 → α1} vs. ∅” is the largest among these three tests, we can see that the

prerequisite relationship between the third attribute and the first attribute is the

strongest. Similarly, for testing the whole linear hierarchical E0 versus a single linear
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Setting Para-boot Nonpara-boot Chi-squared

{α3 → α2 → α1} vs. ∅ 0.041 0.952 0.020
{α3 → α2} vs. ∅ 0.052 0.511 0.072
{α2 → α1} vs. ∅ 0.057 0.722 0.064
{α3 → α1} vs. ∅ 0.169 0.954 0.066

{α3 → α2 → α1} vs. {α3 → α2} 0.098 0.962 0.047
{α3 → α2 → α1} vs. {α2 → α1} 0.073 0.906 0.052
{α3 → α2 → α1} vs. {α3 → α1} 0.026 0.625 0.051

Table 4.1: p-values for different testing settings.

hierarchy (i.e., the last three tests in Table 4.1), since now the null hypothesis is

the same and the alternative hypothesis varies, a smaller p-value indicates a stronger

pre-requisite relationship. In this case, the prerequisite relationship between the third

attribute and the first attribute seems still the strongest.

4.5 Discussion

In this chapter, we consider the hypothesis testing problem for latent hierarchi-

cal structures in latent attribute models. We first discuss the testability issues and

present sufficient conditions for testability. Under the testability conditions, we study

the asymptotic properties of the likelihood ratio test and show the practical difficul-

ties of directly using the limiting distribution of the LRT statistic to test latent

hierarchies. We then compare two resampling-based testing procedures including

parametric bootstrap and nonparametric bootstrap through comprehensive simula-

tions under different settings and recommend using parametric bootstrap for testing

latent hierarchical structures.

We mainly focus on the hypothesis testing where the hierarchical structure is

fully specified and all the latent attribute profiles that respect the hierarchy exist in

the population. In many applications, the number of latent attributes K could be

large, leading to a high-dimensional space for all the possible configurations of the
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attributes, where the number of potential attribute profiles can be even larger than

the sample size. For scientific interpretability and practical use, it is often assumed

that not all the possible attribute profiles exist in the population. In such cases, to test

hierarchical structures, we may perform the selection of significant latent attribute

profiles first and then conduct testing procedures.

This chapter proposes to use parametric bootstrap, which is a resampling-based

procedure and can be computationally expensive, especially for large-scale data sets.

Therefore it would be useful to develop more efficient testing procedures. Moreover,

further theoretical results are needed to better characterize the asymptotic distribu-

tion of the likelihood ratio test with the presence of latent variables and complex

constraint structures as in HLAMs.
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CHAPTER V

Bridging Parametric and Nonparametric Methods

5.1 Introduction

As we introduced in the previous chapters, several parametric models for cognitive

diagnosis have been developed and widely applied in practice. Popular examples

include the deterministic input, noisy “and” gate (DINA) model (Junker and Sijtsma,

2001), the deterministic input, noisy “or” gate (DINO) model (Templin and Henson,

2006), the reduced reparameterized unified model (Reduced RUM; Hartz, 2002), the

general diagnostic model (GDM; von Davier, 2005), the log-linear CDM (LCDM;

Henson et al., 2009), and the generalized DINA model (GDINA; de la Torre, 2011).

To estimate these parametric models, estimators maximizing the marginal likelihood

or joint likelihood functions have been employed (e.g., Chiu et al., 2016; de la Torre,

2009).

Parametric LAMs, such as the DINA or DINO model, invoke certain paramet-

ric assumptions about the item response functions. As pointed out in Chiu and

Douglas (2013), such assumptions may raise validity concerns about the assumed

model and the underlying process. As an alternative, some researchers have explored

nonparametric methods for assigning subjects to latent groups without relying on

parametric model assumptions. For example, Chiu and Douglas (2013) proposed the

nonparametric classification (NPC) method, where a subject is classified to its closet
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latent group by comparing the observed responses with ideal responses either from

the DINA or DINO model. Its generalization, the general NPC (GNPC) method

proposed by Chiu et al. (2018), uses the weighted average of ideal responses from the

DINA and DINO models to accommodate more general settings. Consistency results

for the NPC and the GNPC methods were established by Wang and Douglas (2015)

and Chiu and Köhn (2019a), respectively. Simulation results show that, compared to

parametric methods, nonparametric methods tend to perform better when the sample

sizes are not sufficiently large to provide reliable maximum likelihood estimates.

Even though the aforementioned parametric and nonparametric methods have

been used in many cognitive diagnosis applications, the relationship between these

two families of methods have not been explicitly discussed in the literature. Although

seemingly divergent from the surface, these frameworks are in fact closely related. In

this chapter, we propose a unified estimation framework for cognitive diagnosis that

subsumes both parametric and nonparametric methods. In the proposed framework,

we use a general loss function to measure the distance between a subject’s responses

and the centroid of a latent class. By using different loss functions, the method can

assume different parametric and nonparametric forms. Under the general framework,

we further develop a unified iterative joint estimation algorithm, as well as estab-

lish the consistency properties of the corresponding estimators. Finally, we conduct

comprehensive simulation studies to compare different parametric and nonparametric

methods under a variety of settings and provide relevant practical recommendations

accordingly.

The rest of the chapter is organized as follows. Section 5.2 gives a brief review of

nonparametric methods in cognitive diagnosis assessment. Section 5.3 introduces the

proposed general estimation framework with several illustrative examples. Section

5.4 presents the consistency results of the proposed method, and Section 5.5 presents

the simulation results. Finally, Section 5.6 discusses some future extensions, whereas
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proofs of the main theorems are reported in the Appendix C.

5.2 Nonparametric Methods

Before introducing our proposed estimation framework, we give a brief review of

nonparametric methods that are widely used in the cognitive diagnosis literature.

As the name suggests, nonparametric methods no longer depend on paramet-

ric model assumptions. Instead of modeling item response functions, nonparametric

methods directly classify the subjects into latent classes by minimizing the distance

between the subject’s observed item responses and the centers of the latent classes.

Two popular examples of nonparametric methods are the NPC and the GNPC meth-

ods, which compare the subject’s observed item responses to the so-called ideal re-

sponse vectors of each proficiency class. Different cognitive diagnosis models define

the ideal response vectors differently. For example, as specified in equations (2.2) or

(2.3), the ideal response in the DINA or DINO model will be 1 only if the subject

possesses all the required attributes or one of the required attributes, respectively.

In the following, we give a brief introduction to the NPC and the GNPC methods.

Please refer to Chiu and Köhn (2019b), Chiu and Douglas (2013) and Chiu et al.

(2018) for more details.

For the NPC method, we use M = 2K to denote the total number of pro-

ficiency latent classes (i.e., attribute profiles), and for m = 1, . . . ,M , we write

ηm = (η1,m, η2,m, . . . , ηJ,m) as the ideal response vector for the mth proficiency-class,

where ηj,m can be the DINA or DINO ideal response. We use ri to denote the response

vector of subject i to J items. Given the ideal response vectors for each proficiency

class, a subject is classified to the closest proficiency class that minimizes the distance

between the subject’s observed responses and the ideal responses:

α̂i = arg min
m∈{1,2,...,M}

d(ri,ηm),
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where d(·) is a distance function. For example, in Chiu and Douglas (2013), they

used the Hamming distance:

dH(r,η) =
J∑
j=1

|rj − ηj|.

In the NPC method, the ideal responses are either the DINA ideal responses or the

DINO ideal responses, which are all binary; thus, the absolute difference will be 0

if the observed response is equal to the ideal response, and 1 otherwise. Moreover,

because the observed and the ideal responses are all binary, the L2 distance will lead

to the same results as the Hamming distance in the NPC method.

Due to its dependence on the DINA or DINO model assumptions, which define

two extreme relations between q and α, the NPC method may not be sufficiently

flexible. The GNPC method addresses this issue by considering a more general ideal

response that represents a weighted average of the ideal responses of the DINA and

DINO models, as in:

η
(w)
j,m = wj,mη

DINA
j,m + (1− wj,m)ηDINO

j,m ,

where wj,m is the weight for the jth item and the mth proficiency class. We use

η
(w)
m = (η

(w)
1,m, . . . , η

(w)
J,m) to denote the weighted ideal response vector for the mth

proficiency class in the GNPC method. To get the estimates of the weights, Chiu

et al. (2018) proposed to minimize the L2 distance between the responses to item j

and the weighted ideal responses η
(w)
j,m:

djm =
∑
i∈Cm

(
rij − η(w)

j,m

)2
, (5.1)

where {Cm}Mm=1 is the partition of the subjects into M proficiency classes. Minimizing
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(5.1) leads to

ŵj,m = 1− r̄j,Cm , η̂
(w)
j,m = r̄j,Cm ,

where r̄j,Cm = |Cm|−1
∑

i∈Cm rij, the mean of the jth item responses for subjects

in the mth proficiency class, and |Cm| is the number of subjects in Cm. Because

the true memberships are unknown, they proposed to iteratively estimate the mem-

berships and the ideal response vectors. Specifically, starting with an initial parti-

tion of the subjects, the ideal response vectors are chosen to minimize the L2 dis-

tance
∑M

m=1

∑
i∈Cm

∑J
j=1(rij − η

(w)
j,m)2. The memberships of the subjects are then

determined by minimizing the L2 distance between the observed responses of a sub-

ject and the ideal response vectors estimated from the former step, as in, α̂i =

arg minm∈{1,2,...,M} d
(
ri, η̂

(w)
m

)
.

To implement the GNPC method, start with some initial values at t = 0 step. At

the (t+ 1)th step, update the estimates as follows:

α̂
(t+1)
i = arg min

m∈{1,2,...,M}
d
(
ri, η̂

(w)(t)
m

)
, η̂

(w)(t+1)
j,m = r̄

j,Ĉ
(t+1)
m

,

where η̂(w)(t)
m is the estimated centroids obtained in step t, and Ĉ

(t+1)
m is the partition

of the subjects based on
{
α̂

(t+1)
i

}N
i=1

. Chiu et al. (2018) demonstrated through sim-

ulation studies that, compared to parametric methods, the nonparametric methods

generally performed better in small-scale test settings.

5.3 A General Estimation Framework

In this section, we propose a unified estimation framework that subsumes both

the parametric and nonparametric models considered in Section 5.2. This approach

would facilitate a better statistical understanding of the relationship between the two

families of cognitive diagnosis estimations.
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For the parametric methods, we shall focus on the joint estimation of the subjects’

latent classes (αi)
n
i=1 and the model parameters. Considering the joint maximum like-

lihood estimation for parametric LAMs and the nonparametric estimation approaches

as introduced in Section 5.2, we can see that the item parameters θ in the parametric

models and the ideal response vectors η in the nonparametric methods are closely

related, both denoting a certain “centroid” of the responses of the latent classes under

different model assumptions. For instance, θj,α = P(rj = 1 | α) can be viewed as

the statistical population average (center) of the responses to item j of those subjects

with attribute profile α, whereas ηj,α corresponds to the nonparametric clustering

center of the responses to item j of those in cluster α. Therefore, similarly to the

nonparametric clustering methods, the joint maximum likelihood estimation of the

parametric model can be viewed as the minimization of some “distance” function,

introduced by the negative log-likelihood, between the observed responses and the

“centroid” responses θ.

Motivated by this observation, we propose a unified estimation framework for

both the parametric and nonparametric methods. Specifically, we let A =
(
αi
)N
i=1

denote a class membership matrix for N subjects. Based on the membership matrix

A, we can obtain a partition of N subjects into 2K proficiency classes, denoted by

C(A) =
{
Cα(A) : α ∈ {0, 1}K

}
, where Cα(A) denotes the set of subjects whose

latent patterns are specified as α by A . For each latent class α ∈ {0, 1}K , we

use µα to denote the “centroid” parameters for both parametric and nonparametric

methods. Our proposed estimators for the latent attributes and centroid parameters

are obtained by minimizing a loss function of (A,µ) as follows:

L(A,µ) :=
∑

α∈{0,1}K

∑
i∈Cα(A)

l(ri,µα), (5.2)

and the corresponding estimators are (Â, µ̂) = arg min
(A,µ)

L(A,µ). In (5.2), l(ri,µα) is
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a loss function that measures the distance between the ith subject’s response vector

ri and the centroid of latent class α. Specifically, the loss function takes the additive

form l(ri,µα) =
∑J

j=1 l(rij, µj,α), where we abuse the notation l(·, ·) a little, and

when the loss function takes two vectors, we use it to denote the summation of the

element-wise losses. In this work, we also assume that l(rij, µj,α) is continuous in

µj,α. Note that (5.2) can also be expressed as

L(A,µ) =
∑

α∈{0,1}K

∑
i∈Cα(A)

l(ri,µα) =
N∑
i=1

∑
α∈{0,1}K

I{αi = α}·l(ri,µα) =
N∑
i=1

l(ri,µαi),

(5.3)

which corresponds to a joint estimation of (A,µ) under the loss function l(·, ·). From

the joint estimation perspective, we can show that, with appropriate loss functions

(e.g., L1, L2, cross-entropy) and constraints on the centroids (e.g., centroids based on

the ideal responses, weighted ideal responses, or specific cognitive diagnosis assump-

tions), the proposed framework can provide estimates for all the parametric models

introduced in Section 2.1 and nonparametric methods discussed in Section 5.2. The

examples below demonstrate how the NPC method, the GNPC method, and para-

metric estimation of the DINA and GDINA models can be derived from the proposed

framework using various loss functions and centroid constraints.

Example V.1 (NPC). In the proposed framework, let the ideal responses under the

NPC method be the centroids, that is, µα = ηα. If we use the L1 loss function

l(rij, ηj,α) = |rij − ηj,α|, then our proposed framework will become exactly the NPC

method. Recall that in the NPC method, the ideal response vectors ηα are determined

by pre-specified model assumptions (either the DINA or the DINO); thus, we only

need to classify each subject to the closest proficiency class.

Example V.2 (GNPC). Recall that in the GNPC method, the ideal response is de-

fined as η
(w)
j,m = wj,mη

DINA
j,m + (1 − wj,m)ηDINO

j,m , a weighted average of the DINA ideal

response and the DINO ideal response. Note that for proficiency classes and items
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such that α � qj, we have ηDINA
α,j = ηDINO

α,j = 1, and for α � qj = 0, where �

denotes the elementwise multiplication of vectors, we have ηDINA
α,j = ηDINO

α,j = 0. In

such cases, the weights in fact do not affect the weighted ideal responses since the

DINA and the DINO models have the same ideal responses. Therefore, if we con-

strain µα = (µj,α, j = 1, . . . , J) in (5.2), such that µj,α = 1 if α � qj, µj,α = 0 if

α� qj = 0, and µj,α = η
(w)
j,m as defined in the GNPC for the rest of the items, while

at the same time use the L2 loss function l(rij, ηj,α) = (rij − ηj,α)2, then the criterion

in (5.2) is equivalent to the GNPC method.

Example V.3 (DINA). Let’s consider the cross-entropy loss (i.e., the negative log-

likelihood function),

l(rij, µj,α) = −
(
rij log µj,α + (1− rij) log(1− µj,α)

)
. (5.4)

In addition, if we constrain the centroids to satisfy the following conditions:

max
α:α�qj

µj,α = min
α:α�qj

µj,α ≥ max
α:α�qj

µj,α = min
α:α�qj

µj,α,

that is, all the capable subjects share the same higher item parameters, whereas all

the incapable subjects share the same lower item parameters, then the proposed cri-

terion (5.2) becomes the Joint Maximum Likelihood Estimation (JMLE, Chiu et al.,

2016) criterion for the DINA model. Moreover, the centroids here correspond to item

response parameters θ for each latent class in the DINA model.

Example V.4 (GDINA). In Example V.3, we can put the following constraints on

the centroids: µj,α = µj,α′ , if αKj = α′Kj , where αKj = (αk)k∈Kj is the sub-vector of

α on the set Kj, and Kj = {k ∈ [K] : qj,k = 1} is the set of required attributes by item

j. Equivalently, these constraints will result in the same centroid parameters for any

two latent patterns sharing the same values on the required attributes of item j, which
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is a GDINA model assumption. Furthermore, if we take the same loss functions as

in Example V.3, it will result in the JMLE criterion for the GDINA model. Again,

the centroids correspond to item response parameters θ for each proficiency class.

As demonstrated in the above examples, by taking different loss functions and

different constraints on the centroid of each latent class, our proposal (5.2) provides

a general estimation framework bridging both the parametric and nonparametric

methods in the literature. The parametric estimation approaches mostly use the cross-

entropy loss (negative log-likelihood) function, whereas the nonparametric approaches

use the L1 or L2 distance measures. The analogous roles of negative log-likelihood for a

parametric LAM and the distance function for a nonparametric LAM were also noted

in Chiu et al. (2018). It can be noted that the proposed estimation criterion (5.2)

does not directly use the information pertaining to the population distribution of the

latent attribute profiles, which differentiates it from marginal likelihood estimation.

As the population proportion of each latent class of attribute profiles may also provide

useful information for the model estimation, we propose to further generalize (5.2)

by including the proportion parameters in the loss function as follows:

L(A,µ,π) :=
∑

α∈{0,1}K

∑
i∈Cα(A)

(
l(ri,µα) + h(πα)

)
, (5.5)

where l(·, ·) is the loss function as in (5.2), and h(·) is a continuous nonincreasing

regularization function of the proportion parameter πα, which denotes the population

proportion of latent class α. As can be seen from (5.5), the loss function L depends

on both the centroids and the class proportions, with one part measuring the distance

between a subject’s response ri and the centroid of a latent class µα, and the other

part involving a regularization of class proportions.

Implicitly, Examples V.1–V.4 take h(πα) = 0. When we take the loss function

l(rij, µj,α) to be the cross-entropy loss function as in (5.4), and let h(πα) = − log πα,
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then (5.5) becomes

L(A,µ,π) =
∑

α∈{0,1}K

∑
i∈Cα(A)

(
l(rij, µj,α)− log πα

)
= −

N∑
i=1

log
{
παi ×Lik(ri;µαi)

}
,

(5.6)

where Lik(r;µα) = P(r | µα) is the likelihood function for latent class α and ob-

servation r, and µα = (µj,α, j = 1, . . . , J) is the corresponding model parameters

with µj,α = θj,α = P(rij = 1 | α). Note that παi × Lik(ri;µαi) in the RHS of (5.6)

corresponds to the complete-data likelihood of (αi, ri); therefore, the loss function

(5.6) is in fact the complete-data log-likelihood of (A,R), where R = (rij).

The loss function (5.6) also corresponds to the extension of the classification max-

imum likelihood (CML) criterion (Celeux and Govaert, 1992) applied to the cognitive

diagnosis setting. In Examples V.3 and V.4, using the loss function as in (5.6) cor-

responds to the CML criterion for the DINA or GDINA model respectively. It can

be noted that the CML differs from the JMLE in that the former has an additional

term log πα in the loss function to make use of the information in the proportion

parameters. The CML is also closely related to the EM estimation for the marginal

MLE in that the CML directly maximizes the complete-data log-likelihood whereas

the EM algorithm maximizes the expected complete-data log-likelihood with respect

to the posterior distribution of the latent variables. Finally, it can also be underscored

that, by incorporating a wide range of loss functions, the proposed criterion (5.5) is

a generalization of the CML criterion (5.6).

To implement the unified estimation framework, we develop an algorithm to min-

imize (5.5). The algorithm is a general iterative algorithm to classify each subject

to the closet proficiency class. Starting from initial values, the current loss for each

subject’s responses and the centroid of each latent class is first computed, after which

the subject is assigned to the closest latent class that minimizes the loss. Based on

the assigned memberships, the estimates for the centroids and class proportions are
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updated. The details of the steps are shown in Algorithm V.1.

Algorithm V.1: General Iterative Classification Algorithm

Input : Binary response matrix R ∈ {0, 1}N×J and structural Q-matrix
Q ∈ {0, 1}J×K

Initialize Â
(0)

, µ̂(0) and π̂(0).
while convergence not reached do

At the (t+ 1)th iteration,
Step 1: Compute the current loss between ri and the centroid of each
proficiency class,

l(ri, µ̂
(t)
α ) + h(π̂(t)

α ), i = 1, . . . , N, α ∈ {0, 1}K .

Step 2: Assign each ri to the closest proficiency class, as in,

α̂
(t)
i = arg min

α
l(ri, µ̂

(t)
α ) + h(π̂(t)

α ), i = 1, . . . , N.

and obtain the resulting partition Ĉ
(t)

:= C(Â
(t)

).

Step 3: Compute the centroid and proportion of each proficiency class,

(µ̂(t+1)
α , π̂(t+1)

α ) = arg min
(µ,π)

∑
i∈Ĉ(t)

α

(
l(ri, µ̂

(t)
α ) + h(π̂(t)

α )
)
, α ∈ {0, 1}K .

end

Output: Â, µ̂, and π̂.

In the cognitive diagnosis modeling context, certain proficiency classes share the

same item response parameters for each item given a particular Q-matrix. For ex-

ample, for all LAMs, any α such that α � qj, has the same item parameter; for

the DINA model, there are only two levels of item parameter for each item, and the

capable classes with α � qj share the same item parameter θ+
j , and the incapable

classes with α � qj share the same item parameter θ−j . Based on this observation,

under certain model assumptions, the proficiency classes can be partitioned into some

equivalence classes for each item according to the Q-matrix. Specifically, for item j,

let Ãj =
{
Ãj,α = {α′ : µj,α = µj,α′}

}
. Under this partitioning, the proficiency classes

in the same equivalence class will have the same item response probability for this
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item. For example, in a DINA model with two latent attributes, if qj = (1, 0), then

the proficiency classes can be partitioned into
{{

(0, 0), (0, 1)
}
,
{

(1, 0), (1, 1)
}}

, where

α ∈
{

(0, 0), (0, 1)
}

will have the same item parameter, θ−j , and α ∈
{

(1, 0), (1, 1)
}

will also share the same item parameter, θ+
j . Therefore, by incorporating informa-

tion of the Q-matrix and certain model assumptions, we can develop an iterative

classification algorithm tailored for LAMs that updates the centroids associated with

equivalence classes together.

To illustrate, if we let the negative log-likelihood function be the loss function as

specified in (5.4), then Step 3 in Algorithm V.1 simplifies to

π̂(t+1)
α =

∑N
i=1 I{α̂

(t)
i = α}

N
, µ̂

(t+1)
j,α =

∑
α′∈Ãj,α

∑
i∈Ĉ(t)

α′
rij∑

α′∈Ãj,α |Ĉ
(t)
α′ |

,

where | · | is the cardinality of a set. Based on this simplification, the estimated

proportion parameters are the sample proportions based on the estimated partition

of the subjects, and the estimated centroids are the corresponding sample means

of the equivalence classes also based on the estimated partition. Moreover, if fixed

and equal proportions, together with L2 loss l(rij, µj,α) = (rij − µj,α)2 are used, the

algorithm becomes the iterative algorithm for the GNPC method outlined in Chiu

et al. (2018).

5.4 Analysis of the Proposed Framework

In this section, we provide a theoretical analysis of the proposed framework. We

show that, under certain conditions, the proposed estimation framework will give

consistent estimates. The consistency results can be regarded as extensions of those

for the NPC and the GNPC methods developed in Wang and Douglas (2015) and

Chiu and Köhn (2019a). In addition to the asymptotic results, we also provide an

analysis of the proposed algorithm in the finite sample situations.
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As we introduced in Section 2.3, all the parametric LAMs belong to the family

of latent class models. Hence, in our following analysis, we assume a general latent

class model as the underlying model. Our results below are also easily adapted to

the Q-matrix restricted latent class models. We use θ0
j,α to denote the true item

parameter for the jth item and latent pattern α, as in, θ0
j,α = P(rj = 1 | α), and

we use θ0
α = (θ0

1,α, . . . , θ
0
J,α) to denote item parameter vector for latent pattern α,

and θ =
(
θj,α : j ∈ [J ],α ∈ {0, 1}K

)
to denote the item parameter matrix. We let

A0 = (α0
i )
N
i=1 denote the true latent pattern matrix of the N subjects to be classified.

Before we establish the consistency results, we first make some mild assumptions.

Assumption 5.4.1. The loss function l(x, µ) is Hölder continuous in µ on [τ, 1− τ ]

for any τ ∈ (0, 0.5), and the total loss (5.5) is minimized at class means given the

subjects’ membership, as in, µ̂j,α =
∑

i∈Cα
rij/|Cα|.

Assumption 5.4.2. h(·) in (5.5) is a continuous nonincreasing function of the pro-

portion parameters.

Assumption 5.4.3. There exist constants δ1, δ2 > 0 such that lim
J→∞
{min
α 6=α′

J−1‖θ0
α −

θ0
α′‖1} ≥ δ1, and δ2 ≤ min

j,α
θ0
j,α < max

j,α
θ0
j,α ≤ 1−δ2, where ‖·‖1 denotes the L1 norm.

Assumption 5.4.4. There exists δ ≥ 1 such that

∣∣∣E[l(rij, θ
0
j,α)]− E[l(rij, θ

0
j,α0

i
)]
∣∣∣ ≥ ∣∣θ0

j,α − θ0
j,α0

i

∣∣δ, ∀ α 6= α0
i . (5.7)

One can easily check that the L2 and cross-entropy (negative log-likelihood) loss

functions given in Section 5.3 satisfy Assumption 5.4.1. Note that the second part

of Assumption 5.4.1 is a natural requirement for the consistent estimation of θ0
j,α, as

θ0
j,α represents the population average of the responses of subjects in latent class α,

that is, θ0
j,α = P(rj = 1 | α). Given the true memberships of the subjects, for an

estimator µ̂j,α that is consistent for θ0
j,α, it must satisfy

∣∣µ̂j,α −∑i∈Cα
rij/|Cα|

∣∣→ 0
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in probability by the law of large number. An interesting counterexample is the L1

loss function, which does not satisfy this assumption because given the memberships,

µ̂j,α that minimizes the L1 loss function is the sample median instead of the sample

mean. Since in the cognitive diagnosis setting the responses are binary, the sample

median would be either 0 or 1, which makes µ̂j,α under the L1 loss not a consistent

estimator of θ0
j,α even when the true memberships are known. In other words, the

L1 loss cannot provide a consistent estimation of the centroid parameters while the

L2 and cross-entropy losses can, as to be shown in the following theorems. More

generally, following the M-estimation theory (van der Vaart, 2000), the second part

of Assumption 5.4.1 can be further relaxed to requiring Eθ0j,α [l(rij, µj,α)] has a unique

minima at θ0
j,α and some additional technical conditions. For the presentation brevity,

here we shall use the current assumption, which is already broad enough for practical

use.

Assumptions 5.4.2 and 5.4.3 ensure the identifiability of the model, and also keep

the true parameters away from the boundaries of the parameter space. Particularly,

the assumption lim
J→∞

{
min
α 6=α′

J−1‖θ0
α − θ0

α′‖1

}
≥ δ1 implies that there is sufficient

information to distinguish any two different classes α and α′, thus ensuring the

completeness (Chiu et al., 2009) and identifiability conditions (Gu and Xu, 2020). It

is also similar to Condition (b) in Wang and Douglas (2015):

Condition(b). Define the set Am,m′ = {j | ηmj 6= ηm′j}, where m and m′ index

the attribute profiles of different proficiency classes among all the M = 2K realizable

proficiency classes; Card(Am,m′)→∞ as J →∞.

Condition (b) in Wang and Douglas (2015) and Assumption 5.4.3 in our work are es-

sentially stating that for any two different proficiency classes, there are infinitely many

items such that the item parameters for these two proficiency classes are different.

The condition (5.7) in Assumption 5.4.4 also holds for the aforementioned loss

functions in Section 5.3. For example, it is easy to check the condition (5.7) for
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the L2 loss and the cross-entropy loss. For the L2 loss, we have E
[
l(rij, θ

0
j,α)
]
−

E
[
l(rij, θ

0
j,α0

i
)
]

= (θ0
j,α − θ0

j,α0
i
)2. For the cross-entropy loss, we have

E
[
l(rij, θ

0
j,α)
]
− E

[
l(rij, θ

0
j,α0

i
)
]

=− θ0
j,α0

log(θ0
j,α)− (1− θ0

j,α0
i
) log(1− θ0

j,α) + θ0
j,α0

i
log(θ0

j,α0
i
) + (1− θ0

j,α0
i
) log(1− θ0

j,α0
i
)

= DKL

(
p(θ0

j,α)
∣∣∣∣ p(θ0

j,α0
i
)
)
≥ 1

2

(∣∣θ0
j,α − θ0

j,α0
i

∣∣+
∣∣(1− θ0

j,α)− (1− θ0
j,α0

i
)
∣∣)2

= 2(θ0
j,α − θ0

j,α0
i
)2,

where DKL(· || ·) is the Kullback-Leibler divergence, p(·) is the mass function of a

Bernoulli distribution, and the last inequality follows from Theorem 1.3 in Popescu

et al. (2016).

Similar to the analysis of the joint maximum likelihood estimation in Chiu et al.

(2016), we assume that there is a calibration dataset that would give a statistically

consistent estimator of the calibration subjects’ latent class membership Âc, in the

sense that P(Âc 6= A0
c) → 0 as J → ∞. We use Nc and A0

c to denote the sample

size and the true membership matrix of the calibration dataset, respectively. Here

the subscript c denotes the calibration dataset. A similar assumption is also made in

the consistency theories of the GNPC method in and Chiu and Köhn (2019a). In the

next theorem, we show that the consistent membership estimator will give consistent

estimators for the centroids of the latent classes.

Theorem 5.4.5. Suppose the data conforms to LAMs that can be expressed in terms

of general latent class models, and Assumptions 1-3 hold. Further assume that J exp
(
−

Ncε
)
→ 0 as J,Nc →∞ for any ε > 0. If Âc is a consistent estimator of A0

c, then µ̂

is also consistent for θ0 as J,Nc −→∞, that is, ‖µ̂−θ0‖∞
P−→ 0 as J,Nc −→∞, where

‖ · ‖∞ is the supremum norm.

Theorem 5.4.5 states that if we could get a consistent estimate of the calibration

subjects’ membership Âc, then the estimated centroids µ̂ are also consistent for the
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true item parameters θ0 in a uniform sense that all item parameters can be uniformly

consistently estimated. The detailed proof is in Appendix C.1. This result is similar

to Lemmas 1 and 2 in Chiu and Köhn (2019a) under the GNPC framework, and

Theorem 2 in Chiu et al. (2016) under the JMLE framework. Note that for the GNPC

method, the centroids are weighted averages of the ideal responses from the DINA

and DINO models. As discussed in Example V.2, if the DINA and DINO models

have the same ideal responses (i.e., α � qj or α � qj = 0), then the corresponding

centroid will be fixed to be 0 or 1, which thus does not lead to a consistent estimation

of the corresponding item parameter θ0
j,α; however, note that for the nonparametric

GNPC method, such a fixed centroid does not necessarily lead to inconsistency of α̂.

Here we allow all the centroid parameters to be free, and the consistency estimation

is ensured as in Theorem 5.4.5.

The next theorem shows that if we start with a consistent membership Âc obtained

from the calibration dataset, and use the estimated centroids to classify the subjects,

then the resulting classifications are also consistent for each subject.

Theorem 5.4.6. Suppose Assumptions 1–4 and the assumptions of Theorem 5.4.5

hold. If we start with a consistent Âc obtained from a calibration dataset to estimate

the centroid µ̂, then α̂i obtained by Algorithm V.1 is also a consistent estimator of

αi for each i = 1, . . . , N .

To establish the consistency in Theorem 5.4.6, the following two lemmas are needed.

Lemma 5.4.7. Suppose Assumptions in Theorem 5.4.6 hold. For each subject i, the

true attribute pattern minimizes E[l(ri, µ̂α) + h(π̂α)] with probability approaching 1

as J −→∞, as in,

P
(
α0
i = arg min

α
E
[
l(ri, µ̂α) + h(π̂α)

])
−→ 1 as J −→∞.
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Lemma 5.4.8. Suppose Assumptions in Theorem 5.4.6 hold, then we have

P
(

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− E[l(rij, θ

0
j,α)]

)∣∣∣ ≥ ε
)
−→ 0, as J −→∞.

Lemma 5.4.7 extends Proposition 1 in Wang and Douglas (2015) and Lemma 3 in

Chiu and Köhn (2019a) to more general loss functions. Lemma 5.4.8 generalizes

Proposition 3 in Wang and Douglas (2015) and Lemma 4 in Chiu and Köhn (2019a).

The detailed proofs of Lemma 5.4.7, Lemma 5.4.8, and Theorem 5.4.6 are given in

Appendices C.2 – C.4. Note that Theorem 5.4.6 only gives the consistency for each

αi; however, we can further establish uniform consistency for all αi, i = 1, . . . , N , as

shown in Theorem 5.4.9.

Theorem 5.4.9. Suppose all the assumptions of Theorem 5.4.6 hold. Further assume

that N > J , Nc > J and for any ε > 0, N exp(−Jε) −→ 0. If we start with a

consistent Âc obtained from a calibration dataset, then α̂i obtained from Algorithm

V.1 is uniformly consistent for αi, for all i = 1, . . . , N .

Uniform consistency has also been established for specific nonparametric methods,

such as Theorem 2 in Wang and Douglas (2015) and Theorem 2 in Chiu and Köhn

(2019a). Our uniformly consistent result in Theorem 5.4.9 can be regarded as their

generalization. Specifically, in Wang and Douglas (2015), they showed the uniform

consistency for the NPC method, where the loss function is taken to be L1 loss and

the centroids are fixed, to be the ideal responses of the DINA or DINO model. In

Chiu and Köhn (2019a), the authors generalize the uniform consistency for the NPC

method to the GNPC method, where the loss function is L2 loss and the centroids

are weighted averages of ideal responses from the DINA and the DINO models.

The above analysis pertains to the asymptotic properties of our framework. For

finite-sample situations, we have the following theoretical properties for the proposed

iterative algorithms in Section 5.3, which are established following the theory in
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Celeux and Govaert (1992).

Proposition 5.4.1. Any sequence (A(t),µ(t),π(t)) obtained by Algorithm V.1 de-

creases the criterion (5.5) and the sequence L(A(t),µ(t),π(t)) converges to a station-

ary value. Moreover, if for any fixed A, the minima of the loss function L(A,µ,π) is

well-defined, then the sequence (A(t),µ(t),π(t)) also converges to a stationary point.

Proposition 5.4.1 indicates that the update sequence (A(t),µ(t),π(t)) from the

proposed algorithm converges to a stationary point of the proposed criterion (5.5)

with finite samples. Additionally, all the loss functions in the examples in Section

5.3 satisfy the condition that the minima are well-defined. Now, consider a smoothed

version of L(A,µ,π),

L(U ,µ,π) =
∑

α∈{0,1}K

n∑
i=1

ui,α

(
l(ri,µα) + h(πα)

)
,

where U = {ui,m} ∈ [0, 1]n×2K is a matrix with nonnegative entries and each col-

umn sums to one, which is called a standard classification matrix in Celeux and

Govaert (1992). Recall that L(A,µ,π) =
∑
α

∑
i∈Cα(A)

(
l(ri,µα) + h(πα)

)
=∑

α

∑n
i=1 I(αi = α)

(
l(ri,µα) + h(πα)

)
. Therefore, L(U ,µ,π) can be regarded as a

smoothed version, where the hard membership matrix A is replaced by U . Note that

the minimum of L(U ,µ,π) is attained when U is equal to some hard membership

matrix A.

Proposition 5.4.2. Assume that L(U ,µ,π) has a local minimum at (U ∗,µ∗,π∗) and

that the Hessian of L(U ,µ,π) exists and is positive definite at (U ∗,µ∗,π∗). Then

there is a neighborhood of (U ∗,µ∗,π∗) such that starting with any (U (0),µ(0),π(0))

in that neighborhood, the resulting sequence (A(t),µ(t),π(t)) of the Algorithm V.1

converges to (U ∗,µ∗,π∗) at a linear rate.

Proposition 5.4.2 states that if we start with a good initial value that is close
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enough to the optimal point, then the update sequence will also converge to the opti-

mal point. These two propositions give good finite-sample properties of our proposed

estimation framework. The detailed proofs of Proposition 5.4.1 and Proposition 5.4.2

are given in Appendix C.6 and C.7, respectively.

5.5 Simulation Studies

We conducted comprehensive simulations under a variety of settings to compare

the performance of different methods. The methods compared were:

• NPC: the baseline method, where the centers are the ideal responses from the

DINA model, and the loss function is the L1 loss;

• GNPC: the centers are weighted averages of the ideal responses from the DINA

and DINO models, and the loss function is the L2 loss;

• GNPC + log penalty: add log penalties on the proportion parameters to the

GNPC method, where the loss function is L2 loss for the centroids plus the

summation of the log functions of the proportion parameters;

• JMLE: the Joint Maximum Likelihood Estimate, where the centroid parameters

are to be estimated, and the loss function is the negative log-likelihood;

• CMLE: the Classification Maximum Likelihood Estimate, where the centers and

the loss function are the same as JMLE but with an additional term of class

proportions as specified in (5.6);

• MMLE: the Marginal Maximum Likelihood Estimate obtained from the tradi-

tional EM algorithm under the DINA or GDINA model assumption.

MMLE, as one of, if not the most commonly used estimation algorithm in the cogni-

tive diagnosis literature, was included in the comparison to provide a comprehensive

understanding of how different cognitive diagnosis estimation methods perform.
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For the underlying true models, we considered two different settings: all items

conformed to the DINA, or all items conformed to the GDINA model. Following the

simulation design in Chiu et al. (2018), the subjects’ true latent attribute patterns

were either drawn from a uniform distribution or derived from the multivariate normal

threshold model. More specifically, for the uniform setting, each latent pattern α

had the same probability 1/2K of being drawn. For the multivariate normal setting,

each subject’s attribute profile was linked to a latent continuous ability vector z =

(z1, . . . , zK)′ ∼ N (0,Σ) with values along the main diagonal of Σ setting to 1 and the

off-diagonal entries setting to either r = 0.40 or 0.80 for different levels of correlation.

The latent continuous ability vector z was randomly sampled, and the kth entry of

the attribute pattern was determined by

αik =


1, zik ≥ Φ−1

(
k

K+1

)
0, otherwise,

where Φ is the inverse cumulative distribution function of standard normal distribu-

tion.

We considered different numbers of latent attributes (K = 3 or 5), different sample

sizes (N = 30, 50, 200 or 500) and different number of items (J = 30 or 50). To

ensure identifiability, we set the first two K × K submatrices of the Q-matrix to

be identity matrices. The remaining items were randomly generated from all the

possible latent patterns. When K = 5, the Q-matrix contained items that measured

up to three attributes and was constructed the same way as that for K = 3. When

the underlying model was the DINA or DINO model, different signal strengths were

considered. Specifically we set 1 − θ+
j = θ−j = 0.1 or 0.3. When the true model was

the GDINA model, we also considered two different signal strength levels. One had

the same item parameters as those specified in Chiu et al. (2018), which are listed in

Table 5.1; the other setting contained larger noise as listed in Table 5.2.
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P (α1) P (α2) P (α3) P (α4) P (α5) P (α6) P (α7) P (α8)
0.2 0.9
0.1 0.8
0.1 0.9
0.2 0.5 0.4 0.9
0.1 0.3 0.5 0.9
0.1 0.2 0.6 0.8
0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.9

Table 5.1: Item response parameters for GDINA with small noises.

P (α1) P (α2) P (α3) P (α4) P (α5) P (α6) P (α7) P (α8)
0.3 0.7
0.3 0.8
0.3 0.4 0.7 0.8
0.3 0.4 0.6 0.7
0.2 0.3 0.6 0.7
0.2 0.3 0.3 0.4 0.4 0.5 0.6 0.7

Table 5.2: Item response parameters for GDINA with large noises.

To evaluate the performance of different methods, two metrics were used: the

pattern-wise agreement rate (PAR) and the attribute-wise agreement rate (AAR), as

defined below,

PAR =

∑N
i=1 I{α̂i = αi}

N
, AAR =

∑N
i=1

∑K
k=1 I{α̂ik = αik}
NK

.

For parametric methods including JMLE, CMLE, and MMLE of the DINA and the

GDINA models, we also calculate the Mean Squared Errors (MSEs) for item param-

eters of each latent class. For each setting, we repeated 100 times and reported the

obtained means of PAR, AAR, and MSE. Note that the aforementioned methods are

iterative, hence, would be affected by how they are initialized. For comparability pur-

poses, we treated the NPC method as the baseline in this work and used its results

to initialize all the other methods. Using the NPC to perform the initialization is a

reasonable choice given its non-iterative nature. In the following result plots, we use

DINA or GDINA to stand for the results of MMLE obtained by the EM algorithm
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under the corresponding model assumptions.

Result I: DINA

Figures V.1 and V.2 present the PARs and AARs when the underlying process

followed the DINA model. The same scale of the coordinates was used across different

simulation settings for comparison. We provide zoomed-in versions in the appendix.

Under the independent attribute (i.e., uniform) setting, the NPC performed the best,

as expected, in almost all the cases. The JMLE performed similarly to the CMLE in

most cases, and slightly better than CMLE when there were more latent attributes

(K = 5) - this was so because the JMLE method correctly assumed that the true

latent patterns were uniformly distributed. The GNPC produced similar results to

the JMLE and the CMLE in most cases, but much worse results with large noises

(1 − θ+
j = θ−j = 0.3) and more items (J = 50). Adding log penalty to the GNPC

method degraded the results under the uniform setting especially when the sample

size was large, which is also expected since the GNPC method implicitly assumes a

uniform penalty on the latent classes. In comparison, the MMLE of the DINA and

GDINA models did not perform as well as the others. This was particularly true

when the noise was large and the sample size was small.

Under the dependent attribute (i.e., multivariate normal) settings, although the

NPC still performed the best in almost all the cases with moderate correlation (r =

0.4), it performed poorly with larger correlation (r = 0.8) and sample size (N = 200

or 500) as a consequence of more unequal latent patterns proportions. The MMLE of

the DINA provided the best results when the sample size was larger (N = 200/500)

and the correlation was large (r = 0.8), but did not perform well with smaller sample

sizes. The GNPC and JMLE performed similarly when the noise was small, but

the GNPC was much worse than the JMLE when the noise was large. Adding log

penalty on the proportions improved the performance of the GNPC method under
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the correlated settings, though still not as good as the CMLE method. In contrast,

the CMLE performed uniformly well in almost all cases, and its advantages became

more apparent when there were more latent attributes, and the correlation and the

noise were large. Specifically, the CMLE performed similarly to the NPC when the

sample sizes were small, and the MMLE of the DINA when the sample sizes were

large. In almost all the conditions, the MMLE of the GDINA did not perform as well

as the other methods, which was not unexpected as the DINA was the true model.

Mean Squared Errors (MSEs) for the item parameters using parametric methods

including JMLE, CMLE, and MMLE for the DINA and GDINA models are plotted

in Figure V.3. From the results, we can see that across different settings the MMLE

for the DINA model gave the best item parameter estimates, while the MMLE for

the GDINA model performed the worst. The JMLE and CMLE methods provided

similar results. It is actually not surprising that the MMLE for the DINA performed

the best for item parameter estimation since it correctly assumed a two-level DINA

model and directly estimated the corresponding guessing and slipping parameters,

while other methods did not have such prior knowledge about the underlying model.

Result II: GDINA

Figures V.4 and V.5 show the PARs and the AARs when the data conformed to

the GDINA model under different settings. The zoomed-in versions are provided in

the appendix. Based on the results, when the latent attributes were independent,

the GNPC performed generally the best across the settings, whereas the JMLE, the

CMLE, and the MMLE of the GDINA model improved with increasing sample size.

As in the DINA cases, log penalty on the proportions degraded the performance of the

GNPC method under the independent setting. The JMLE provided comparable or

slightly better results than the CMLE, particularly when K was larger. As mentioned

earlier, this is because the JMLE correctly assumed a uniform prior distribution for
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the latent attributes, whereas the CMLE, although made no assumptions, needed to

estimate additional parameters.

Under the correlated latent attributes settings, adding log penalties on the pro-

portions to the GNPC method greatly improved the performance especially when the

noise was large or the correlation was high. GNPC+log penalty tended to provide the

best results with small sample sizes, and the CMLE and the MMLE of the GDINA

gave the best results with larger samples. Moreover, with larger noises, the CMLE

method provided better results than the MMLE of the GDINA model, particularly

when there were more latent attributes. As the correlation became larger, with large

sample sizes, the performance of the CMLE method became more similar to that of

the MMLE of the GDINA, and better than the JMLE method, due to the proportions

of latent attribute patterns no longer being equal. Based on the above analysis, one

can note that the CMLE method was more robust to large noise.

The MSEs for the parametric methods (JMLE, CMLE, and MMLE) under the

GDINA settings are given in Figure V.6. These three methods gave similar results in

most cases, while JMLE and CMLE performed better than the MMLE of the GDINA

settings especially when the number of attributes was large or noises were large.

Summary and Recommendations

Based on the above simulation results, we can see that there is no dominating

method that performed uniformly better than other methods across all the simulation

settings. Hence, the choice of the method should be based on the specific setting and

other information we have at hand. In the following, we provide recommendations in

practice under different circumstances.

If we can safely assume that the true underlying model is the DINA model, then

the NPC method would give good results if the latent attributes are independent.

When the latent attributes are moderately correlated, either the NPC or the CMLE
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method is recommended. When the correlations are high among the latent attributes,

the NPC and the CMLE would perform well with small sample sizes, whereas the

CMLE and the MMLE of the DINA model would give better results with sufficiently

large data sizes.

In situations where the true model is the GDINA model, the GNPC method will

perform generally well if the latent attributes are independent. When the latent

attributes are correlated and the sample size is small, the GNPC augmented by

log penalties on the proportion parameters is preferred. However, when the sample

is sufficiently large, the CMLE method is more robust. The CMLE method also

performs well with small sample sizes when the noise is large.

Finally, if the true data-generating models are unknown, the CMLE method is

recommended when the latent attributes are correlated. If the latent attributes are

independent, the GNPC method is preferred. Moreover, when the sample size is large

enough, the MMLE method for the GDINA model is also recommended. If the noise

is small, the GNPC method will also perform well when the sample size is small, and

augmenting the GNPC method with log penalties on the proportion parameters will

improve its performance under the correlated setting.
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5.6 Discussion

In this chapter, a unified estimation framework is proposed to bridge the para-

metric and nonparametric methods of cognitive diagnosis, and corresponding com-

putational algorithms are developed. Specifically, by choosing different loss functions

and potentially imposing additional constraints on the centroids of the proficiency

classes, the proposed framework essentially provides estimations for both parametric

cognitive diagnosis models and nonparametric methods for classifying subjects into

proficiency classes. Moreover, we also provide theoretical analysis and establish con-

sistency theories of the proposed framework. The simulation studies under various

settings demonstrate the advantages and disadvantages of different methods

In our proposed framework (5.5), we decompose the loss function into two additive

parts. In addition to the losses between the responses and class centroids, we also put

a regularization term on the class proportions. The regularization term can also play

a role in selecting significant latent classes in the population. For instance, similar to

the CML in Examples V.3 and V.4, a log-type penalty h(πα) = −λ log(πα), where

λ > 0 is a tuning parameter and πα is the proportion parameter for the latent pattern

α, can be used. Such a log-type penalty penalizes smaller proportions more heavily,

and as shown in Chapter II and Chapter III, can effectively select significant latent

classes in the population. Alternatively, to perform such latent class selection, the

use of Lasso or elastic-net type penalty can be explored in the future.

Another interesting problem is the uncertainty quantification of the latent pattern

classification. Since in the proposed framework we directly assign the latent patterns

by minimizing a loss function, the subjects’ latent patterns are treated as fixed effects

instead of random variables. Based on the clustering literature, it is theoretically chal-

lenging to quantify the uncertainty of clustering accuracy. One practical approach

is to use bootstrap, where we resample the data multiple times and use the boot-

strapped samples to quantify the estimation and classification uncertainty. It is also
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possible to further model latent pattern probabilities and use large deviation theory

to approximate the misclassification errors. For instance, Liu et al. (2015) studied

the asymptotic misclassification error rate for LAMs under the assumption that the

item parameters are pre-calibrated. However, in the proposed framework, the item

parameters and the latent patterns are unknown and jointly estimated, and we focus

on a more complicated double asymptotic regime, where the sample size N and the

number of items J both go to infinity, making uncertainty quantification even more

challenging. This interesting problem will be explored further in the future.

One constraint of all the methods discussed in this paper pertain to the assumption

that the Q-matrix is known and accurately specified. In practice, the Q-matrix may

not be given or subjectively specified by domain experts, with possible misspecifica-

tions. There are some existing methods for estimating the Q-matrix in the literature

(Chen, Culpepper, Chen, and Douglas, 2018; Chen, Liu, Xu, and Ying, 2015; Chung

and Johnson, 2018; Culpepper, 2019; Liu, Xu, and Ying, 2012; Li, Ma, and Xu, 2022).

Developing computational methods and theories for estimating LAMs with unknown

Q-matrix under our proposed general framework is a natural next step that is left for

future work. Another possible extension is to consider hierarchical structures among

the latent attributes as we did in Chapter II and Chapter IV, which may exclude

some latent patterns in the subjects’ population. Our proposed framework and com-

putational algorithms should be easily adapted if the latent hierarchical structure is

given. Our theoretical analysis will also be readily carried over to the hierarchical

setting.
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APPENDIX A

Appendix of Chapter II

In this appendix, we provide the proof of the main theorem in chapter II, the

derivations for the penalized EM algorithm and a sensitivity analysis of our algorithm

with variation of the upper bound for the number of latent classes.

A.1 Proof for Theorem 2.3.6

In this section, we provide the proof of Theorem 2.3.6.

Proof. We first introduce some notations. For two sequences {aN} and {bN}, we

denote aN . bN if aN = O(bN), and aN � bN if aN . bN and bN . aN . We use

(π0,Θ0) to denote the true model parameter and use (π̂0, Θ̂
0
) to denote the oracle

MLE obtained by assuming the number of latent attributes, the hierarchical structure,

the Q-matrix and the item-level diagnostic models are known. Let (π̂∗, Θ̂
∗
) be the

MLE obtained by directly optimizing log-likelihood (2.7) and (π̂, Θ̂) be the estimator

obtained by optimizing the regularized log-likelihood (2.8). We define π̂ρN := {π̂m :

π̂m > ρN , m ∈ [M ]} and Θ̂ρN := {θ̂j,m : π̂m > ρN , j ∈ [J ], m ∈ [M ]}, the

model parameters corresponding to the selected latent classes. Let M be the upper

bound for the number of latent classes, M0 be the true number of latent classes, and
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M̂ =
∣∣{m : π̂m > ρN , m ∈ [M ]}

∣∣ be the estimated number of latent classes. Without

loss of generality, let π̂0
full = (π̂0,0M−M0). For the true item parameter matrix Θ0, we

defined the set of identical item parameter pairs S0 =
{

(j, k1, k2) : θ0
j,k1

= θ0
j,k2
, 1 ≤

k1 < k2 ≤ M0

}
. Similarly, for (π̂, Θ̂) we define Ŝ =

{
(j, k1, k2) : θ̂j,k1 = θ̂j,k2 , 1 ≤

k1 < k2 ≤ M, π̂k1 > ρN , π̂k2 > ρN
}

. We say Ŝ ∼ S0 if there exists a column

permutation σ of Θ̂ such that Ŝσ = S0.

The probability P
(
M̂ 6= M0

)
can be decomposed into two parts:

P
(
M̂ 6= M0

)
= P

(
M̂ < M0

)
+
(
M̂ > M0

)
. (A.1)

Similarly, the probability P
(
Ŝ 6= S0

)
can be decomposed into three parts:

P
(
Ŝ � S0

)
= P

(
M̂ < M0

)
+
(
M̂ > M0

)
+ P

(
Ŝ � S0, M̂ = M0

)
. (A.2)

In the following ,we will bound each part in (A.1) and (A.2) respectively. Therefore,

we will consider three cases below:

1. overfitted case: M̂ > M0,

2. underfitted case: M̂ < M0,

3. M̂ = M0 but Ŝ � S0.

The objective function is

GN(π,Θ) =
lN(π,Θ;R)

N
− λ

(1)
N

N

M∑
k=1

log[ρN ] πk −
λ

(2)
N

N

J∑
j=1

Jτ,ρN (θj), (A.3)

where log[ρN ] πk = log πk · I
(
πk > ρN

)
+ log ρN · I

(
πk ≤ ρN

)
. Let log[ρN ](π) =∑M

k=1 log[ρN ] πk.

First consider the overfitted case where M̂ > M0. The event
{
GN

(
π̂, Θ̂

)
>

150



GN

(
π̂0, Θ̂

0)}
implies that

1

N

N∑
i=1

log
[ ∑M

k=1 π̂k
∏J

j=1 θ̂
Rij
j,k (1− θ̂j,k)1−Rij∑M

k=1 π̂
0
k

∏J
j=1(θ̂0

j,k)
Rij(1− θ̂0

j,k)
1−Rij

]
>
λ

(1)
N

N

{
log[ρN ](π̂)− log[ρN ](π̂

0
full)

}
+
λ

(2)
N

N

{ J∑
j=1

Jτ,ρN (θ̂j)−
J∑
j=1

Jτ,ρN (θ̂
0

j)
}

(A.4)

:= J1 + J2.

For the RHS of (A.4), we have J1 & N−1λ
(1)
N | log ρN | and J2 & −N−1λ

(2)
N τJM2. Since

λ
(2)
N τ = o(λ

(1)
N | log ρN |), we have RHS & N−1λ

(1)
N | log ρN |.

For the LHS of (A.4), we have

LHS of (A.4) =
1

N
log
[ M∑
k=1

π̂k

J∏
j=1

θ̂
Rij
j,k (1− θ̂j,k)1−Rij

]
− 1

N
log
[ M∑
k=1

π̂0
k

J∏
j=1

(θ̂0
j,k)

Rij(1− θ̂0
j,k)

1−Rij
]

≤ 1

N
log
[ M∑
k=1

π̂∗k

J∏
j=1

(θ̂∗j,k)
Rij(1− (θ̂∗j,k))

1−Rij
]

− 1

N
log
[ M∑
k=1

π̂0
k

J∏
j=1

(θ̂0
j,k)

Rij(1− θ̂0
j,k)

1−Rij
]

. N−δ,

where the last inequality follows from Assumption 2.3.5. When N1−δ/| log(ρN)| =

o
(
λ

(1)
N

)
, we have N−δ = o

(
N−1λ

(1)
N | log ρN |

)
, which implies that the event described in

(A.4) will happen with probability tending to zero. Therefore we have P
(
M̂ > M0

)
−→

0 as N −→ ∞. That is to say, with the appropriate choice of tuning parameters, the

extent that the log-penalty part favors a smaller model would dominate the extent

that the likelihood part favors a larger model in the overfitted case.
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Now consider the under-fitted case where M̂ < M0. We need to bound

P
(

sup
M̂<M0

[
GN(π̂, Θ̂)−GN(π̂0, Θ̂

0
)
]
> 0
)
. (A.5)

We follow a similar argument to Shen et al. (2012). More specifically, since

P
(

sup
M̂<M0

[
GN(π̂, Θ̂)−GN(π̂0, Θ̂

0
)
]
> 0
)

≤
M0−1∑
m=1

P
(

sup
M̂=m

[
GN(π̂, Θ̂)−GN(π̂0, Θ̂

0
)
]
> 0
)
, (A.6)

we will bound each term in the RHS of (A.6). By the large deviation inequality in

Theorem 1 of Wong et al. (1995), we have

P
(

sup
h2
(

(π̂,Θ̂),(π0,Θ0)
)
≥ε2N

[ 1

N
lN
(
π̂, Θ̂

)
− 1

N
lN
(
π0,Θ0

)]
> −ε2N

)
≤ P

(
sup

h2
(

(π̂,Θ̂),(π0,Θ0)
)
≥ε2N

[ 1

N
lN
(
π̂, Θ̂

)
− 1

N
lN
(
π0,Θ0

)]
> −ε2N

)
≤ exp(−Nε2N),

(A.7)

where h2
(
(π̂, Θ̂), (π0,Θ0)

)
=
∑
R∈{0,1}J

[
P(R | π̂, Θ̂)1/2 − P(R | π0,Θ0)1/2

]
is the

Hellinger distance. From the remark in Wong et al. (1995), the inequality (A.7) holds

for any t > εN .

To use this large deviation inequality, we need to introduce the notion of brack-

eting Hellinger metric entropy H(t,Bm), which characterizes the size of the local

parameter space. Consider the local parameter space Bm =
{(
π̂, Θ̂

)
: M̂ = m ≤

M0, h
2
(
(π̂, Θ̂),

(
π0,Θ0)

)
≤ 2ε2N

}
, then H(t,Bm) is defined as the logarithm of the

cardinality of the t-bracketing of Bm of the smallest size. Specifically, following the

definition in Shen et al. (2012), consider a bracket covering S(t,m) = {f l1, fu1 , · · · , f lm, fum}

such that max1≤j≤m ||fuj − f lj||2 ≤ t and for any f ∈ Bm, there is some j such that
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f lj ≤ f ≤ fuj almost surely. Then H(t,Bm) is defined as log
(

min{m : S(t,m)}
)
.

Following Lemma 3 in Gu and Xu (2019b), for any 2−4ε < t < ε, there is

H(t,Bm) .M0 logM log(2ε/t). (A.8)

Next we need to verify the conditions in Wong et al. (1995). Let’s take εN =√
M0 logM/N and verify the entropy integral condition in Theorem 1 of Wong et al.

(1995) for such εN . The integral of bracketing Hellinger metric entropy on the interval

[2−8ε2N ,
√

2εN ] satisfies the following inequality

√
2εN∫

2−8ε2N

H1/2(t,Bm)dt ≤

√
2εN∫

2−8ε2N

√
M0 logM log(2εN/t)dt

=
√
M0 logM

√
log 29

εN∫
√

log
√

2

4εNu
2e−u

2

du

=
√
M0 logM · 2εN

log 29

εN∫
log
√

2

√
ue−udu

.
√
Nε2N .

Note that εN = o(1) as N →∞.

Following the proof in Gu and Xu (2019b), there exists a constant c0, for some

small constant t > εN , we have

Cmin(π0,Θ0) := inf
(π̂,Θ̂):M̂≤M0

{h2
(
(π̂, Θ̂), (π0,Θ0)

)
max

(
M0 − M̂, 1

) } ≥ c0 & t2 > ε2N .

Moreover, for M̂ = m < M0, there is h2((π̂, Θ̂), (π0,Θ0)) ≥
(
M0 −m

)
Cmin(π0,Θ0).

In order to have the probability of the event (A.4) go to zero in the under-fitted
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case, the log-penalty term should not be too large such that the likelihood part

is dominated by the log-penalty term that favors a smaller model. Here we take

λ
(1)
N = o(N log ρN |−1). Then for (A.6) we have

RHS of (A.6)

≤
M0−1∑
m=1

P
(

sup
h2((π̂,Θ̂),(π0,Θ0))≥(M0−m)Cmin(π0,Θ0),M̂=m

[
GN(π̂, Θ̂)−GN(π̂0, Θ̂

0
)
]
> 0
)

≤
M0−1∑
m=1

P
(

sup
h2((π̂,Θ̂),(π0,Θ0))≥(M0−m)Cmin(π0,Θ0),M̂=m

[
lN(π̂, Θ̂)− lN(π̂0, Θ̂

0
)
]

> −λ
(1)
N M0| log ρN |

N

)
≤

M0−1∑
m=1

P
(

sup
h2((π̂,Θ̂),(π0,Θ0))≥(M0−m)Cmin(π0,Θ0),M̂=m

[
lN(π̂, Θ̂)− lN(π0,Θ0)

]
> −λ

(1)
N M0| log ρN |

N

)
≤

M0−1∑
m=1

P
(

sup
h2((π̂,Θ̂),(π0,Θ0))≥(M0−m)Cmin(π0,Θ0),M̂=m

[
lN(π̂, Θ̂)− lN(π0,Θ0)

]
>

− (M0 −m)Cmin(π0,Θ0)
)

≤
M0−1∑
m=1

exp
(
− c2N(M0 −m)Cmin(π0,Θ0)

)
≤ c3 exp

(
− c2NCmin(π0,Θ0)

)
.

Therefore we have P
(
M̂ < M0

)
−→ 0 as N −→ ∞. So far we have proved (2.10) in

Theorem 2.3.6,

P
(
M̂ 6= M0

)
= P

(
M̂ < M0

)
+ P

(
M̂ > M0

)
−→ 0.

Finally, we consider the third case where M̂ = M0 but Ŝ � S0. The argument

is similar to the proof of Proposition 2 in Xu and Shang (2018). We first show

(π̂ρN , Θ̂ρN ) converge to (π0,Θ0) with rate N−1/2. For (π,Θ) with (πρN ,ΘρN ) in a
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small neighborhood of (π0,Θ0),

G′N(πρN ,ΘρN ) :=
lN(πρN ,ΘρN ;R)

N
− λ

(1)
N

N

∑
k:πk>ρN

log πk −
λ

(2)
N

N

J∑
j=1

Jτ,ρN (θj)

=
lN(πρN ,ΘρN ;R)

N
−O(λ

(1)
N N−1| log ρN |)−O(λ

(2)
N τN−1),

converges uniformly to the same limit of lN(πρN ,ΘρN ;R)/N by the uniform law of

large number, since λ
(1)
N N−1| log ρN | → 0 and λ

(2)
N τN−1 → 0. We use G0(πρN ,ΘρN )

to denote the limit process, which is the expectation of the negative log-likelihood of

a single observation. By Taylor’s expansion, we have G0(πρN ,ΘρN ) − G0(π0,Θ0) =

O(
∣∣∣∣(πρN ,ΘρN ))− (π0,Θ0)

∣∣∣∣2).

For the log-likelihood function lN(π̂, Θ̂;R) =
∑N

i=1 log
(∑M

k=1 π̂k
∏J

j=1 θ̂
Rij
j,k (1 −

θ̂
1−Rij
j,k )

)
, we have

1

N

∣∣lN(π̂, Θ̂;R)− lN(π̂ρN , Θ̂ρN ;R)
∣∣

≤ 1

N

N∑
i=1

∣∣∣ log
( M∑
k=1

π̂k

J∏
j=1

θ̂
Rij
j,k (1− θ̂1−Rij

j,k )
)
− log

( ∑
k:π̂k>ρN

π̂k

J∏
j=1

θ̂
Rij
j,k (1− θ̂1−Rij

j,k )
)∣∣∣

≤ 1

N

N∑
i=1

∣∣(∑M
k=1 π̂k

∏J
j=1 θ̂

Rij
j,k (1− θ̂1−Rij

j,k )
)
−
(∑

k:π̂k>ρN
π̂k
∏J

j=1 θ̂
Rij
j,k (1− θ̂1−Rij

j,k )
)∣∣√(∑M

k=1 π̂k
∏J

j=1 θ̂
Rij
j,k (1− θ̂1−Rij

j,k )
)
×
(∑

k:π̂k>ρN
π̂k
∏J

j=1 θ̂
Rij
j,k (1− θ̂1−Rij

j,k )
)

(A.9)

≤ 1

N

N∑
i=1

(M − M̂)ρN∑
k:π̂k>ρN

π̂k
∏J

j=1 θ̂
Rij
j,k (1− θ̂1−Rij

j,k )

=O(ρN) = O(N−d), d ≥ 1, (A.10)

where inequality (A.9) follows from an upper bound for log function. Specifically, for

x ≥ 1, we know log x ≤ (x−1)/
√
x, and thus for 0 < x ≤ y, we have log y−log x ≤ (y−

x)/
√
xy. From (A.10), G′N(π̂, Θ̂) = G′N(π̂ρN , Θ̂ρN )+O(N−d) ≥ G′N(π0,Θ0) and thus

G′N(π̂ρN , Θ̂ρN ) > G′N(π0,Θ0)−O(N−d) ≥ G′N(π0,Θ0)−O(N−1). Since N−1/2λ
(1)
N →
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0 and N−1/2λ
(2)
N τ → 0, then for sufficiently small ζ, by Taylor’s expansion,

E
(

sup
||(πρN ,ΘρN

)−(π0,Θ0)||≤ζ

[
G′N(πρN ,ΘρN ;R)−G0(πρN ,ΘρN )

−G′N(π0,Θ0;R) +G0(π0,Θ0)
])

=O(ζN−1/2).

By Theorem 3.2.5 in Vaart and Wellner (1996), (π̂ρN , Θ̂ρN )− (π0,Θ0) = Op(N
−1/2).

We next show the selection consistency of S0. If true item parameters θ0
j,k1
6= θ0

j,k2
,

then from the above convergence result, we know θ̂j,k1 → θ0
j,k1

and θ̂j,k2 → θ0
j,k2

, and

thus θ̂j,k1 6= θ̂j,k2 in probability. If true item parameters θ0
j,k1

= θ0
j,k2

but θ̂j,k1 6= θ̂j,k2 , by

the Karush-Kuhn-Tucker (KKT) conditions, we haveN−1/2∂lN(π,Θ;R)/∂θj,k1|(π,Θ)=(π̂,Θ̂)

= N−1/2λ
(2)
N → ∞ in probability. However N−1/2∂lN(π,Θ;R)/∂θj,k1|(π,Θ)=(π̂,Θ̂) =

Op(1). Therefore, if θ0
j,k1

= θ0
j,k2

, we have θ̂j,k1 = θ̂j,k2 in probability, which proved the

selection consistency that P(Ŝ � S0)→ 0 as N →∞.

A.2 Derivations of PEM Algorithm

In this section, we give detailed derivations of the penalized EM algorithm in

Section 2.4.1. First let’s introduce a new variable d = (djkl, j = 1, . . . , J, 1 ≤ k < l ≤

M) to be the differences of the item parameters for each item. Then our problem

becomes

min
π,Θ,d

G(π,Θ,d)

s.t. djkl = θjk − θjl

j = 1, . . . , J, 1 ≤ k < l ≤M.

(A.11)

By using the difference convex property of the truncated Lasso penalty, we can

156



decompose the objective function into two parts:

G(π,Θ,d) = G1(π,Θ,d)−G2(d), (A.12)

where

G1(π,Θ,d) = − 1

N
Q(π,Θ|π(c),Θ(c)) + λ̃1

M∑
k=1

log πk + λ̃2

J∑
j=1

∑
1≤k<l≤M

|djkl|, (A.13)

G2(d) = λ̃2

J∑
j=1

∑
1≤k<l≤M

(
|djkl − τ |

)
+
. (A.14)

Then we construct a sequence of upper approximation of G(π,Θ,d) iteratively

by replacing G2(d) at iteration c+ 1 with its piecewise affine minorization:

G
(c)
2 (d) = G2(d̂

(c)
) + λ̃2

J∑
j=1

∑
1≤k<l≤M

(
|djkl| − |d̂(c)

jkl|
)
· I
(
|d̂(c)
jkl| ≥ τ

)
, (A.15)

at the current estimate d̂
(c)

, which lead to an upper convex approximation:

G(c+1)(π,Θ,d) =− 1

N
Q(π,Θ|π(c),Θ(c)) + λ̃1

M∑
k=1

log πk

+ λ̃2

J∑
j=1

∑
1≤k<l≤M

|djkl| · I
(
|d̂(c)
jkl| < τ

)
+ λ̃2τ

J∑
j=1

∑
1≤k<l≤M

I
(
|d̂(c)
jkl| ≥ τ

)
.

Now we can apply ADMM. At iteration c+ 1, the augmented Lagrangian is

Lγ(π,Θ,d,y) = G(c+1)(π,Θ,d) +
J∑
j=1

∑
1≤k<l≤M

yjkl ·
(
djkl − (θjk − θjl)

)
+
γ

2

J∑
j=1

∑
1≤k<l≤M

∣∣djkl − (θjk − θjl)
∣∣2,

157



where yjkl’s are the dual variables and γ is a nonnegative penalty parameter. Then

ADMM (Boyd et al., 2011) consists of the following iterations:

π(c+1) = argmin
π

Lγ(π,Θ
(c),d(c),y(c)),

Θ(c+1) = argmin
Θ

Lγ(π
(c+1),Θ,d(c),y(c)),

d(c+1) = argmin
d

Lγ(π
(c+1),Θ(c+1),d,y(c)),

y
(c+1)
jkl = y

(c)
jkl + γ(d

(c+1)
jkl −

(
θ

(c+1)
jk − θ(c+1)

jl )
)
, j = 1, ..., J, 1 ≤ k < l ≤M.

Using the scaled Lagrangian multiplier µjkl = yjkl/γ and defining the residual

rjkl = djkl − (θjk − θjl), we have:

yjkl ·
(
djkl − (θjk − θjl)

)
+
γ

2

∣∣djkl − (θjk − θjl)
∣∣2

=yjkl · rjkl +
γ

2
r2
jkl

=
γ

2

(
rjkl + (1/γ)yjkl

)2 − 1

2γ
µ2
jkl

=
γ

2

(
rjkl + µjkl

)2 − 1

2γ
µ2
jkl.

Then using the scaled dual variable, we can express ADMM as:

π(c+1) = argmin
π

G(c+1)(π,Θ(c),d(c)),

Θ(c+1) = argmin
Θ

{
G(c+1)(π(c+1),Θ,d(c))

+
γ

2

J∑
j=1

∑
1≤k<l≤M

(
d

(c)
jkl − (θ

(c)
jk − θ

(c)
jl ) + µ

(c)
jkl

)}
,

d(c+1) = argmin
d

{
G(c+1)(π(c+1),Θ(c+1),d)

+
γ

2

J∑
j=1

∑
1≤k<l≤M

(
djkl − (θ

(c+1)
jk − θ(c+1)

jl ) + µ
(c)
jkl

)}
,

µ
(c+1)
jkl = µ

(c)
jkl + d

(c+1)
jkl −

(
θ

(c+1)
jk − θ(c+1)

jl ), j = 1, . . . , J, 1 ≤ k < l ≤M.
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Specifically, we get the following updates:

(1)

π
(c+1)
k =

∑N
i=1 s

(c+1)
ik /N − λ̃1

1−Mλ̃1

, where s
(c+1)
ik =

π
(c)
k ϕk(Ri; Θ

(c)
k )∑(c)

k′ π
(c)
k′ ϕ

(c)
k′ (Ri;θ

(c)
k′ )

.

(2)

θ̂
(c+1)
jk = argmin

θjk

{
−
∑N

i=1 s
(c)
ik Rij

N
log θjk −

∑N
i=1 s

(c)
ik (1−Rij)

N
log(1− θjk)

+
γ

2

∑
l>k

(
d̂

(c)
jkl − (θjk − θ̂(c)

jl ) + µ̂
(c)
jkl

)2

+
γ

2

∑
l<k

(
d̂

(c)
jlk − (θ̂jl

(c+1)
− θjk) + µ̂

(c)
jlk

)2
}
.

(3)

d̂
(c+1)
jkl =


θ̂

(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl, if |d̂(c)

jkl| ≥ τ

ST
(
θ̂

(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl; λ̃2/γ

)
, if |d̂(c)

jkl| < τ

,

where ST(x; γ) = (|x| − γ)+x/|x|.

(4)

µ̂
(c+1)
jkl = µ̂

(c)
jkl + d̂

(c+1)
jkl −

(
θ̂

(c+1)
jk − θ̂(c+1)

jl

)
.

Note that the objective in step (2) is convex in θjk, therefore we use gradient descent

to perform the minimization.

A.3 PEM Algorithm with Missing Values

In this section, we present the penalized EM algorithm with missing values. Here

we use a mask matrix M ∈ {0, 1}N×J to indicate the locations of the missing values,

where Mi,j = 0 means the ith subject’s response to the jth item is missing. The

details of the algorithm is summarized in Algorithm A.1.
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Algorithm A.1: Penalized EM with missing data

Data: Binary response matrix R = (Ri,j)N×J and the mask matrix
M = (Mij)N×J indicating missing values.

Set hyperparameters λ̃1, λ̃2, τ, γ and ρ.
Set an upper bound of the number of latent classes L.
Initialize parameters π, Θ, and the conditional expectations s.
while not converged do

In the (c+ 1)th iteration,
for (i, k) ∈ [N ]× [L] do

s
(c+1)
ik =

π
(c)
k ϕk(Ri;θ

(c)
k )∑(c)

k′ π
(c)

k′ ϕ
(c)

k′ (Ri;θ
(c)

k′ )
, ϕ(ri;θk) =

∏J
j=1

(
θ
Rij
jk (1− θkj)1−Rij

)mij
end

for k ∈ [L] and π
(c)
k > ρ do

π
(c+1)
k =

∑N
i=1 s

(c+1)
ik /N−λ̃1

1−Lλ̃1
.

end

for (j, k) ∈ [J ]× [L] and π
(c+1)
k > ρ do

θ
(c+1)
jk = argmin

θjk

{
−
∑N

i=1 s
(c)
ik Rijmij∑N
i=1mij

log θjk

−
∑N

i=1 s
(c)
ik (1−ij)mij∑N
i=1mij

log(1− θjk)

+
γ

2

∑
l>k

(
d̂

(c)
jkl − (θjk − θ̂(c)

jl ) + µ̂
(c)
jkl

)2

+
γ

2

∑
l<k

(
d̂

(c)
jlk − (θ̂jl

(c+1)
− θjk) + µ̂

(c)
jlk

)2
}

end

for j ∈ [J ], k, l ∈ [L], k < l and π
(c+1)
k > ρ, π

(c+1)
l > ρ do

d̂
(c+1)
jkl =

{
θ̂

(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl, if |d̂(c)

jkl| ≥ τ

ST
(
θ̂

(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl; λ̃2/γ

)
, if |d̂(c)

jkl| < τ
,

µ̂
(c+1)
jkl = µ̂

(c)
jkl + d̂

(c+1)
jkl −

(
θ̂

(c+1)
jk − θ̂(c+1)

jl

)
.

end

end

Output:
{
π̂, Θ̂, ŝ

}
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A.4 Sensitivity Analysis

In this section, we conduct the sensitivity analysis of our algorithm by investigating

the effects of different inputs of M , the upper bound of the number of latent classes, on

the simulation results. In particular, we focus on two simulation settings: (1) DINA

model with linear hierarchical structure, N = 500 and r = 0.1; (2) GDINA model

with linear hierarchical structure, N = 1000 and r = 0.1. Both two settings have

K = 4 latent attributes and J = 30 test items, and run for 50 repetitions. We keep

the parameter generation process and the hyperparameter tuning strategy consistent

with the simulation studies in the main article. In this sensitivity analysis, we fit

our proposed method with various M = {8, 12, 16, 20, 24, 32} in the two simulations

settings. The evaluation results in DINA and GDINA settings are based on metrics

Acc(M̂), Acc(P̂ ), Acc(Ê), MSE(Θ̂) and Acc(Q̂). Consistent with the simulation

studies in the main article, the Acc(M̂), Acc(P̂ ) and Acc(Ê) are calculated for all

the cases; MSE(Θ̂) is calculated for the cases when the number of latent classes is

correctly selected; Acc(Q̂) is calculated for the cases when the hierarchical structure

is successfully recovered. The results are plotted in Figure A.1.

From the simulation results in Figure A.1, we see our proposed method is robust

to the different specifications of M , in terms of all metrics. Among cases with different

M , our method achieves a high accuracy in estimating the number of latent classes,

and in recovering the partial orders, the hierarchical structures, the item parameter

matrix, and the Q-matrix. In terms of computation time, the average running time

is 0.36 seconds and 1.12 seconds for DINA and GDINA, respectively, per repetition

per set of tuning hyperparameters.
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Figure A.1: Sensitivity analysis results. (a) DINA results; (b) GDINA results. The
red curve captures the Acc(M̂), Acc(P̂ ), Acc(Ê), the blue curve captures MSE(Θ̂)
and the purple curve captures the Acc(Q̂) for various M .
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APPENDIX B

Appendix of Chapter IV

This appendix includes Type 1 Errors in Section 4.3.2, the Q-matrix for ECPE

data in Section 4.4 and additional simulation results. Specifically, bootstrap results

for DINA and GDINA models under both null hypothesis and alternative hypothesis

with different sample sizes and noise levels are presented in Figures B.2 – B.5.
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B.1 Type 1 Errors
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Figure B.1: Type 1 Errors. Different colors indicate different testing procedures.
Different marker shapes stand for different hierarchical structures. The middle points
are the means of the type I errors and the vertical errors bars with ±2 s.e. are
constructed based on 500 replications. θ+

j = 0.9, θ−j = 0.1 corresponds to the case
with low noises, and θ+

j = 0.8, θ−j = 0.2 corresponds to the case with high noises.
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B.2 Q-matrix for ECPE data

Item
Attributes

Mor.rules (α1) Coh.rules (α2) Lex.rules (α3)

1 1 1 0
2 0 1 0
3 1 0 1
4 0 0 1
5 0 0 1
6 0 0 1
7 1 0 1
8 0 1 0
9 0 0 1
10 1 0 0
11 1 0 1
12 1 0 1
13 1 0 0
14 1 0 0
15 0 0 1
16 1 0 1
17 0 1 1
18 0 0 1
19 0 0 1
20 1 0 1
21 1 0 1
22 0 0 1
23 0 1 0
24 0 1 0
25 1 0 0
26 0 0 1
27 1 0 0
28 0 0 1

Table B.1: The Q-matrix for ECPE data. “Mor.” is short for “morphosyntactic”,
“Coh.” is short for “cohesive”, and “Lex.” is short for “lexical”.
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B.3 Bootstrap Results under the DINA model

Figure B.2: Bootstrap results for DINA under null hypothesis
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Figure B.3: Bootstrap results for DINA under alternative hypothesis
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B.4 Bootstrap Results under the GDINA model

Figure B.4: Bootstrap results for GDINA under null hypothesis
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Figure B.5: Bootstrap results for GDINA under alternative hypothesis
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APPENDIX C

Appendix of Chapter V

In this appendix section, we provide detailed proofs of the Lemmas and Theorems

in Section 5.4.

C.1 Proof of Theorem 5.4.5

Proof. Our proof uses similar arguments as in Chiu et al. (2016). First consider the

case when the true membership A0
c is known. Since µ̂j,α =

∑
i∈Cα

rij/|Cα| := r̄j,α,

by Hoeffding’s inequality (Hoeffding, 1994), for any ε > 0,

P
(
‖µ̂α − θ0

α‖∞ ≥ ε
∣∣ Âc = A0

c) = P
(

max
j
|r̄j,α − θ0

j,α| ≥ ε | Âc = A0
c

)
≤

J∑
j=1

P
(
|r̄j,α − θ0

j,α| ≥ ε | Âc = A0
c

)
≤ 2J exp

(
− 2|Cα| · ε2

)
.

Since limn→∞ |Cα|/Nc → πα almost surely and J exp
(
−Ncε

)
→ 0 for any ε > 0, we

have J exp
(
− 2|Cα| · ε2

)
= J exp

(
− 2
(
1 + o(1)

)
Nc · πα · ε2

)
→ 0 almost surely.

Now consider the case when Âc is consistent for A0
c , that is, P (Âc 6= A0

c) → 0.

170



Then for any ε > 0, we have

P
(
‖µ̂α − θ0

α‖∞ ≥ ε
)

≤ P
(
‖µ̂α − θ0

α‖∞ ≥ ε
∣∣ Âc = A0

c) · P
(
Âc = A0

c

)
+ P

(
‖µ̂α − θ0

α‖∞ ≥ ε
∣∣ Âc 6= A0

c) · P
(
Âc 6= A0

c

)
≤ P

(
‖µ̂α − θ0

α‖∞ ≥ ε
∣∣ Âc = A0

c) + P
(
Âc 6= A0

c

)
P−→ 0, as J →∞.

Therefore we have ‖µ̂α − θ0
α‖∞

P−→ 0. Since there are finitely many α’s, we have

‖µ̂− θ0‖∞
P−→ 0.

C.2 Proof of Lemma 5.4.7

Proof. Let α̃i denote the latent attribute pattern that minimizes E[l(ri, µ̂α)+h(π̂α)],

that is,

α̃i :=arg min
α

{
E
[
l(ri, µ̂α) + h(π̂α)

]}
=arg min

α
E
[ J∑
j=1

l(rij, µ̂j,α) + h(π̂α)
]

=arg min
α

{ 1

J

J∑
j=1

E
[
l(rij, µ̂j,α)

]
+

1

J
h(π̂α)

}
.

For the second term, under the Assumption 2, since π̂α is asymptotically bounded

and h(·) is continuous, hence h(π̂α) is also bounded, and we have h(π̂α)/J −→ 0 as

J −→ ∞, which is asymptotically negligible. For the first term, we need to compare

1
J

∑J
j=1 E

[
l(rij, µ̂j,α)

]
and 1

J

∑J
j=1 E

[
l(rij, µ̂j,α0

i
)
]

for any α 6= α0
i .

1

J

J∑
j=1

E
[
l(rij, µ̂j,α)

]
− 1

J

J∑
j=1

E
[
l(rij, µ̂j,α0

i
)
]
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=
( 1

J

J∑
j=1

E
[
l(rij, µ̂j,α)

]
− 1

J

J∑
j=1

E
[
l(rij, θ

0
j,α)
])

+
( 1

J

J∑
j=1

E
[
l(rij, θ

0
j,α)
]
− 1

J

J∑
j=1

E
[
l(rij, θ

0
j,α0

i
)
])

(C.1)

+
( 1

J

J∑
j=1

E
[
l(rij, θ

0
j,α0

i
)
]
− 1

J

J∑
j=1

E
[
l(rij, µ̂j,α0

i
)
])

:= E1 + E2 + E3. (C.2)

Since µ̂ is consistent for θ0, by Assumption 1, we have E1
P−→ 0 and E3

P−→ 0.

Specifically, first consider the case when Âc = A0
c . By Assumption 5.4.3, we know

that the true item parameters are bounded. There exists δ2 ∈ (0, 0.5) such that

δ2 ≤ min
j,α

θ0
j,α < max

j,α
θ0
j,α ≤ 1 − δ2,∀1 ≤ j ≤ J,α ∈ {0, 1}K . Let’s now look at the

probability that µ̂j,α is also bounded. Specifically, we consider P (µ̂j,α ≥ 1 − δ2/2 |

Âc = A0
c) and P (µ̂j,α ≤ δ2/2 | Âc = A0

c) respectively. Since µ̂j,α =
∑

i∈Cα
rij/|Cα| :=

r̄j,α, we have

P (µ̂j,α ≥ 1− δ2/2 | Âc = A0
c) = P (r̄j,α − θ0

j,α ≥ 1− δ2/2− θ0
j,α | Âc = A0

c)

≤ exp
(
− 2|Cα|(1− δ2/2− θ0

j,α)2
)

≤ exp
(
− |Cα|δ2

2/2
)
.

Similarly, we also have P (µ̂j,α ≤ δ2/2 | Âc = A0
c) ≤ exp

(
− |Cα|δ2

2/2
)
. Therefore,

P
(

min
j
µ̂j,α ≤ δ2/2 or max

j
µ̂j,α ≥ 1− δ2/2 | Âc = A0

c

)
≤ 2J exp

(
− |Cα|δ2

2/2
)
.

Moreover, since under the Assumption 5.4.1, the loss function is assumed to be Hölder

continuous, that is, there exist c > 0 and β > 0, such that for any µ1, µ2 ∈ (δ2/2, 1−
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δ2/2), we have |l(x, µ1)− l(x, µ2)| ≤ c|µ1 − µ2|β for x = 0 or 1. Then

|E1| =
∣∣∣ 1
J

J∑
j=1

E
[
l(rij, µ̂j,α)

]
− 1

J

J∑
j=1

E
[
l(rij, θ

0
j,α)
]∣∣∣

≤ 1

J

J∑
j=1

E
[∣∣l(rij, µ̂j,α)− l(rij, θ0

j,α)
∣∣]

≤ 1

J

J∑
j=1

E
[
c|µ̂j,α − θ0

j,α|β
]

≤ cmax
j
{E
[
|µ̂j,α − θ0

j,α|β
]
}

Therefore for any ε > 0,

P (|E1| > ε)

≤ P (|E1| > ε | Âc = A0
c) + P (Âc 6= A0

c)

≤ P (E1| > ε | Âc = A0
c , δ2/2 < µ̂j,α < 1− δ2/2, j = 1, . . . , J)

+ P
(

min
j
µ̂j,α ≤ δ2/2 or max

j
µ̂j,α ≥ 1− δ2/2 | Âc = A0

c

)
+ P (Âc 6= A0

c)

≤ P (||µ̂α − θ0
α||∞ > (ε/c)1/β) + 2J exp(−|Cα|δ2

2/2) + P (Âc 6= A0
c)

≤ 2J exp(−2|Cα|(ε/c)2/β) + 2J exp(−|Cα|δ2
2/2) + P (Âc 6= A0

c) (C.3)

= 2J exp
(
− 2
(
1 + o(1)

)
Nc · πα · (ε/c)2/β

)
+ 2J exp

(
−
(
1 + o(1)

)
Nc · πα · δ2

2/2
)

+ P (Âc 6= A0
c) (C.4)

−→ 0,

where (C.3) follows from Theorem 1. Similarly we can show that E3
P−→ 0 as well.

For the second term, by Assumption 5.4.4, we have

E2 =
1

J

J∑
j=1

E
[
l(rij, θ

0
j,α)
]
− 1

J

J∑
j=1

E
[
l(rij, θ

0
j,α0

i
)
]
≥ 1

J

J∑
j=1

|θ0
j,α0

i
− θ0

j,α|δ, (C.5)
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for anyα 6= α0
i . Since in Assumption 5.4.3, there exists δ1 > 0 such that lim

J→∞
min
α 6=α′
||θ0

α−

θ0
α′ ||1/J > δ1, then for a small enough c0 > 0, there exists c1 > 0 such that∣∣{j : |θ0

j,α − θ0
j,α′ | ≥ c0}

∣∣ ≥ c1J for any α 6= α′ and large enough J . That is, there

should be as many items as of order J that can differentiate two different classes.

Otherwise,
∣∣{j : |θ0

j,α− θ0
j,α′ | ≥ c0}

∣∣/J → 0, which contradicts with Assumption 5.4.3

for a small enough c0. Then in (C.5), we have E2 ≥ c1c
δ
0 as J → ∞. Therefore, the

true attribute pattern minimizes E[l(ri, µ̂α; π̂α)] with probability approaching 1.

C.3 Proof of Lemma 5.4.8

Proof. We first decompose the probability in Lemma 5.4.8 into two parts:

P
(

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− E[l(rij, θ

0
j,α)]

)∣∣∣ ≥ ε
)

≤ P
(

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− l(rij, θ0

j,α)
)∣∣∣ ≥ ε/2

)
+ P

(
max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, θ

0
j,α)− E[l(rij, θ

0
j,α)]

)∣∣∣ ≥ ε/2
)
. (C.6)

The first term in (C.6) goes to zero since θ̂ is uniform consistent for θ0. Specifically,

from Lemma 1, we have P (µ̂j,α ≤ δ2/2 or µ̂j,α ≥ 1 − δ2/2 | Âc = A0
c) ≤ 2 exp

(
−

|Cα|δ2
2/2
)
. Moreover, due to the Hölder continuity of the loss function, we have

|l(x, µ1)− l(x, µ2)| ≤ c|µ1 − µ2|β for x = 0 or 1. Then

P
(

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− l(rij, θ0

j,α)
)∣∣∣ ≥ ε/2

∣∣∣ δ2/2 < µ̂j,α ≤ 1− δ2/2, Âc = A0
c

)
≤
∑
α

P
(∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− l(rij, θ0

j,α)
)∣∣∣ ≥ ε/2

∣∣∣ δ2/2 < µ̂j,α ≤ 1− δ2/2, Âc = A0
c

)
≤ 2K

J∑
j=1

P
(∣∣∣l(rij, µ̂j,α)− l(rij, θ0

j,α)
∣∣∣ ≥ ε/2

∣∣∣ δ2/2 < µ̂j,α ≤ 1− δ2/2, Âc = A0
c

)

174



≤ 2K
J∑
j=1

P
(∣∣∣µ̂j,α − θ0

j,α

∣∣∣β ≥ ε/2c
∣∣∣ δ2/2 < µ̂j,α ≤ 1− δ2/2, Âc = A0

c

)
= 2K

J∑
j=1

P
(∣∣∣r̄j,α − θ0

j,α

∣∣∣ ≥ (ε/2c)1/β
∣∣∣ δ2/2 < µ̂j,α ≤ 1− δ2/2, Âc = A0

c

)

≤ 2K+1J exp
(
− 2|Cα|(ε/2c)2/β

)
.

Then we have

P
(

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− l(rij, θ0

j,α)
)∣∣∣ ≥ ε/2

∣∣∣ Âc = A0
c

)
≤
∑
α

J∑
j=1

[
P (µ̂j,α < δ2/2 or µ̂j,α > 1− δ2/2 | Âc = A0

c)

+ P
(∣∣µ̂j,α − θ0

j,α

∣∣ ≥ (ε/2c)1/β
∣∣ δ2/2 < µ̂j,α ≤ 1− δ2/2, Âc = A0

c

)]
≤ 2K+1J exp(−|Cα|δ2

2/2) + 2K+1J exp(−2|Cα|(ε/2c)2/β)

= 2K+1J exp
(
−
(
1 + o(1)

)
Nc · πα · δ2

2/2
)

+ 2K+1J exp
(
− 2
(
1 + o(1)

)
Nc · πα · (ε/2c)2/β

)
−→ 0, as J →∞.

Therefore, we have

P
(

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− l(rij, θ0

j,α)
)∣∣∣ ≥ ε/2

)
≤ P

(
max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− l(rij, θ0

j,α)
)∣∣∣ ≥ ε/2

∣∣∣ Âc = A0
c

)
· P (Âc = A0

c)

+ P (Âc 6= A0
c)

≤ P
(

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− l(rij, θ0

j,α)
)∣∣∣ ≥ ε/2

∣∣∣ Âc = A0
c

)
+ P (Âc 6= A0

c)

−→ 0, as J −→∞.
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Next we need to bound the second term. By Assumption 5.4.3, θ0
j,α’s are uniformly

bounded and thus l(rij, θ
0
j,α)’s are also uniformly bounded. There exists M > 0 such

that
∣∣l(rij, θ0

j,α)
∣∣ ≤ M for any j and α. Then by Hoeffding’s inequality (Hoeffding,

1994), we have

P
(∣∣∣ 1
J

J∑
j=1

(
l(rij, θ

0
j,α)− E[l(rij, θ

0
j,α)]

)∣∣∣ ≥ ε/2
)
≤ 2 exp

(
− Jε2/2M2

)
,

and therefore

P
(

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, θ

0
j,α)− E[l(rij, θ

0
j,α)]

)∣∣∣ ≥ ε/2
)

≤
∑
α

P
(∣∣∣ 1
J

J∑
j=1

(
l(rij, θ

0
j,α)− E[l(rij, θ

0
j,α)]

)∣∣ ≥ ε/2
)

≤ 2K+1 exp
(
− Jε2/2M2

)
−→ 0, as J −→∞.

C.4 Proof of Theorem 5.4.6

Proof. Since Âc is consistent for A0
c , by Theorem 5.4.5, µ̂ is consistent for θ0. Note

that α̂i 6= α0
i is equivalent to that

1

J

J∑
j=1

l(rij, µ̂j,α0
i
) +

1

J
h(π̂α0

i
) >

1

J

J∑
j=1

l(rij, µ̂j,α̂i) +
1

J
h(π̂α̂i). (C.7)

From Assumptions 5.4.1 and 5.4.4 and the proof of Lemma 5.4.7, we know

1

J

J∑
j=1

E[l(rij, θ
0
j,α0

i
)] <

1

J

J∑
j=1

E[l(rij, θ
0
j,α̂i

)]− c1c
δ
0 (C.8)
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Let c2 = c1c
δ
0 and take ε = c2/4 in Lemma 5.4.8, and consider the event

Bε(J) :=
{

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− E[l(rij, θ

0
j,α)]

)∣∣∣ < ε
}
.

Since h(π̂α) is bounded, there exists some J0 such that for any J ≥ J0, we have∣∣ 1
J
h(π̂α0

i
)− 1

J
h(π̂α̂i)

∣∣ < c2/4. When Bc2/4(J) occurs, it implies that

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α0

i
)− E[l(rij, θ

0
j,α0

i
)]
)∣∣∣ < c2/4,

and ∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α̂i)− E[l(rij, θ

0
j,α̂i

)]
)∣∣∣ < c2/4.

Then in equation (C.7),

LHS <
1

J

J∑
j=1

E[l(rij, θ
0
j,α0

i
)] + c2/4 +

1

J
h(π̂α0

i
),

and

RHS >
1

J

J∑
j=1

E[l(rij, θ
0
j,α̂i

)]− c2/4 +
1

J
h(π̂α̂i),

which implies that

1

J

J∑
j=1

E[l(rij, θ
0
j,α̂i

)] <
1

J

J∑
j=1

E[l(rij, θ
0
j,α0

i
)] + c2/2 +

1

J
h(πα0

i
)− 1

J
h(πα̂i)

<
1

J

J∑
j=1

E[l(rij, θ
0
j,α0

i
)] + 3c2/4

<
1

J

J∑
j=1

E[l(rij, θ
0
j,α̂i

)],
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where the last inequality is from equation (C.7) and results in a contradiction. It

indicates that {α̂i 6= α0
i } ⊂ Bc2/4(J)c for J large enough. And therefore we have

P
(
α̂i 6= α0

i

)
≤P
(
Bc2/4(J)c

)
≤P
(

max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− E[l(rij, θ

0
j,α)]

)∣∣∣ ≥ c2/4
)

−→ 0, as J −→∞. (by Lamma 5.4.8)

C.5 Proof of Theorem 5.4.9

Proof. Following the proof of Theorem 5.4.6, we have

P
(⋃

i

{
α̂i 6= α0

i

} ∣∣∣ Âc = A0
c

)
≤
∑
i

P
({
α̂i 6= α0

i

} ∣∣∣ Âc = A0
c

)
≤ N · P

(
Bc2/4(J)c

∣∣∣ Âc = A0
c

)
≤ N · P

(
max
α

∣∣∣ 1
J

J∑
j=1

(
l(rij, µ̂j,α)− E

[
l(rij, θ

0
j,α)
])∣∣∣ ≥ c2/4

∣∣∣ Âc = A0
c

)
≤ 2K+1NJ exp(−|Cα|δ2

2/2) + 2K+1NJ exp(−2|Cα|(c2/8c)
2/β)

+ 2K+1N exp
(
− Jc2

2/32M2
)

≤ 2K+1N2 exp(−|Cα|δ2
2/2) + 2K+1N2 exp(−2|Cα|(c2/8c)

2/β)

+ 2K+1N exp
(
− Jc2

2/32M2
)
.

Under the Assumption 2, we have limn→∞ |Cα|/Nc → πα almost surely; therefore

N2 exp(−|Cα|δ2
2/2) = N2 exp

(
−
(
1+o(1)

)
Nc·πα·δ2

2/2
)

andN2 exp(−2|Cα|(c2/8c)
2/β)
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= N2 exp
(
− 2
(
1 + o(1)

)
Nc · πα · (c2/8c)

2/β
)

. Then we have

P
(⋃

i

{α̂i 6= α0
i }
)

≤ P
(⋃

i

{α̂i 6= α0
i }
∣∣∣ Âc = A0

c

)
P
(
Âc = A0

c

)
+ P

(⋃
i

{α̂i 6= α0
i }
∣∣∣ Âc 6= A0

c

)
P
(
Âc 6= A0

c

)
≤ P

(⋃
i

{α̂i 6= α0
i }
∣∣∣ Âc = A0

c

)
+ P

(
Âc 6= A0

c

)
≤ 2K+1N2 exp

(
−
(
1 + o(1)

)
Nc · πα · δ2

2/2
)

+ 2K+1N2 exp
(
−
(
1 + o(1)

)
2Nc · πα · (c2/8c)

2/β
)

+ 2K+1N exp
(
− Jc2

2/32M2
)

+ P
(
Âc 6= A0

c

)
≤ 2K+1N2 exp

(
−
(
1 + o(1)

)
J · πα · δ2

2/2
)

+ 2K+1N2 exp
(
− 2
(
1 + o(1)

)
J · πα · (c2/8c)

2/β
)

+ 2K+1N exp
(
− Jc2

2/32M2
)

+ P
(
Âc 6= A0

c

)
= 2K+1

[
N exp

(
−
(
1 + o(1)

)
J · πα · δ2

2/4
)]2

+ 2K+1
[
N exp

(
−
(
1 + o(1)

)
J · πα · (c2/8c)

2/β
)]2

+ 2K+1N exp
(
− Jc2

2/32M2
)

+ P
(
Âc 6= A0

c

)
−→ 0, as J −→∞.

Therefore, α̂i’s are uniformly consistent for αi’s for all i = 1, . . . , N .
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C.6 Proof of Proposition 5.4.1

Proof. Our proof uses similar arguments as in Celeux and Govaert (1992). In Step 3

of Algorithm V.1, we have

L(A(t),µ(t+1),π(t+1)) ≤ L(A(t),µ(t),π(t)).

Moreover, since α̂
(t+1)
i = arg min

α
l(ri, µ̂

(t+1)
α ) + h(π̂

(t+1)
α ), which is equivalent to that

l
(
ri, µ̂

(t+1)

α̂
(t+1)
i

)
+ h
(
π̂

(t+1)

α̂
(t+1)
i

)
≤ l(ri, µ̂

(t+1)
α ) + h(π̂

(t+1)
α ) for any α 6= α̂

(t+1)
i , we have

L(A(t+1),µ(t+1),π(t+1)) ≤ L(A(t),µ(t),π(t)). (C.9)

Therefore the criterion (5.5) is decreasing.

In the finite sample setting, since there is finite number of partitions into 2K

classes, the decreasing sequence L(A(t),µ(t),π(t)) also takes a finite number of values,

which makes it converge to a stationary value. Moreover, since the minima of the

loss function is well-defined, the sequence (A(t),µ(t)f,π(t)) also converges.

C.7 Proof of Proposition 5.4.2

Proof. Our proof directly follows that in Celeux and Govaert (1992). Since

L(U ,µ,π) =
∑

α∈{0,1}K

n∑
i=1

uiα

(
l(ri,µα) + h(πα)

)
≥

∑
α∈{0,1}K

n∑
i=1

uiα min
α′

(
l(ri,µα′) + h(πα′)

)
≥

∑
α∈{0,1}K

n∑
i=1

min
α′

(
l(ri,µα′) + h(πα′)

)
,

where the RHS is attained when U is equivalent to some partition, the Algorithm

V.1 can be regarded as an alternating optimization algorithm to minimize L(U ,µ,π).
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Specifically, the Algorithm V.1 is in fact a grouped coordinate descent method. Fol-

lowing the Theorem 2.2 of Bezdek, Hathaway, Howard, Wilson, and Windham (1987),

the Proposition 5.4.2 is proved.

181



BIBLIOGRAPHY

Azran, A., and Z. Ghahramani (2006), Spectral methods for automatic multiscale
data clustering, in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 1, pp. 190–197, IEEE.

Barber, M. J. (2007), Modularity and community detection in bipartite networks,
Physical Review E, 76 (6), 066,102.

Bengio, Y., A. Courville, and P. Vincent (2013), Representation learning: A review
and new perspectives, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 35 (8), 1798–1828.

Bezdek, J., R. Hathaway, R. Howard, C. Wilson, and M. Windham (1987), Local
convergence analysis of a grouped variable version of coordinate descent, Journal
of Optimization Theory and Applications, 54 (3), 471–477.

Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017), Variational inference: A
review for statisticians, Journal of the American Statistical Association, 112 (518),
859–877.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011), Distributed opti-
mization and statistical learning via the alternating direction method of multipliers,
Foundations and Trends® in Machine learning, 3 (1), 1–122.

Brault, V., and M. Mariadassou (2015), Co-clustering through latent block model: A
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for Kullback-Leibler divergence, Electronic Journal of Differential Equations, 2016.

Reynolds, D. A. (2009), Gaussian mixture models., Encyclopedia of Biometrics,
741 (659-663).

Rohe, K., T. Qin, and B. Yu (2012), Co-clustering for directed graphs: the stochastic
co-blockmodel and spectral algorithm Di-Sim, arXiv preprint arXiv:1204.2296.

Schwarz, G., et al. (1978), Estimating the dimension of a model, The Annals of
Statistics, 6 (2), 461–464.

187



Self, S. G., and K.-Y. Liang (1987), Asymptotic properties of maximum likelihood
estimators and likelihood ratio tests under nonstandard conditions, Journal of the
American Statistical Association, 82 (398), 605–610, doi:10.1080/01621459.1987.
10478472.

Shen, X., W. Pan, and Y. Zhu (2012), Likelihood-based selection and sharp parameter
estimation, Journal of the American Statistical Association, 107 (497), 223–232.

Simon, M. A., and R. Tzur (2004), Explicating the role of mathematical tasks in
conceptual learning: An elaboration of the hypothetical learning trajectory, Math-
ematical Thinking and Learning, 6 (2), 91–104, doi:10.1207/s15327833mtl0602 2.

Tatsuoka, K. K. (1983), Rule space: An approach for dealing with misconceptions
based on item response theory, Journal of Educational Measurement, 20, 345–354,
doi:10.4324/9780203056899-22.

Tatsuoka, K. K. (1990), Toward an integration of item-response theory and cognitive
error diagnosis, in Diagnostic Monitoring of Skill and Knowledge Acquisition, pp.
453–488, Routledge, doi:10.4324/9780203056899-22.

Templin, J., and L. Bradshaw (2014), Hierarchical diagnostic classification models:
A family of models for estimating and testing attribute hierarchies, Psychometrika,
79 (2), 317–339, doi:10.1007/s11336-013-9362-0.

Templin, J., R. A. Henson, et al. (2010), Diagnostic measurement: Theory, methods,
and applications, Guilford Press.

Templin, J. L., and R. A. Henson (2006), Measurement of psychological disorders
using cognitive diagnosis models., Psychological Methods, 11 (3), 287, doi:10.1037/
1082-989X.11.3.287.

Tipping, M. E., and C. M. Bishop (1999), Probabilistic principal component analysis,
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61 (3),
611–622.

Tschannen, M., O. Bachem, and M. Lucic (2018), Recent advances in autoencoder-
based representation learning, arXiv preprint arXiv:1812.05069.

Tuy, H. (1995), DC optimization: theory, methods and algorithms, in Handbook of
Global Optimization, pp. 149–216, Springer.

Vaart, A. W., and J. A. Wellner (1996), Weak convergence, in Weak Convergence and
Empirical Processes, pp. 16–28, Springer.

Van Den Oord, A., O. Vinyals, et al. (2017), Neural discrete representation learning,
Advances in Neural Information Processing Systems, 30.

van der Vaart, A. W. (2000), Asymptotic statistics, vol. 3, Cambridge university press.

188



von Davier, M. (2005), A general diagnostic model applied to language testing data,
ETS Research Report Series, 2005 (2), 1–35, doi:10.1002/j.2333-8504.2005.tb01993.
x.

von Davier, M. (2019), The general diagnostic model, in Handbook of Diagnostic
Classification Models, pp. 133–153, Springer.

von Davier, M., and S. J. Haberman (2014), Hierarchical diagnostic classification
models morphing into unidimensional ‘diagnostic’ classification models — a com-
mentary, Psychometrika, 79 (2), 340–346.

Von Luxburg, U. (2007), A tutorial on spectral clustering, Statistics and Computing,
17 (4), 395–416.

Wang, C., and M. J. Gierl (2011), Using the attribute hierarchy method to make
diagnostic inferences about examinees’ cognitive skills in critical reading, Journal of
Educational Measurement, 48 (2), 165–187, doi:10.1111/j.1745-3984.2011.00142.x.

Wang, C., and J. Lu (2021), Learning attribute hierarchies from data: Two ex-
ploratory approaches, Journal of Educational and Behavioral Statistics, 46 (1), 58–
84.

Wang, S., and J. Douglas (2015), Consistency of nonparametric classification in cog-
nitive diagnosis, Psychometrika, 80 (1), 85–100.

Wang, S., and L. Liao (2001), Decomposition method with a variable parameter for a
class of monotone variational inequality problems, Journal of Optimization Theory
and Applications, 109 (2), 415–429.

Wong, W. H., X. Shen, et al. (1995), Probability inequalities for likelihood ratios and
convergence rates of sieve MLEs, The Annals of Statistics, 23 (2), 339–362.

Wu, C., S. Kwon, X. Shen, and W. Pan (2016), A new algorithm and theory for
penalized regression-based clustering, The Journal of Machine Learning Research,
17 (1), 6479–6503.

Wyse, J., and N. Friel (2012), Block clustering with collapsed latent block models,
Statistics and Computing, 22 (2), 415–428.

Wyse, J., N. Friel, and P. Latouche (2017), Inferring structure in bipartite networks
using the latent block model and exact ICL, Network Science, 5 (1), 45–69.

Xu, G. (2017), Identifiability of restricted latent class models with binary responses,
The Annals of Statistics, 45 (2), 675–707, doi:10.1214/16-AOS1464.

Xu, G., and Z. Shang (2018), Identifying latent structures in restricted latent class
models, Journal of the American Statistical Association, 113 (523), 1284–1295, doi:
10.1080/01621459.2017.1340889.

Xu, G., and S. Zhang (2016), Identifiability of diagnostic classification models, Psy-
chometrika, 81 (3), 625–649, doi:10.1007/s11336-015-9471-z.

189


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Learning Latent and Hierarchical Structures
	Introduction
	Model Setup
	Regularized Estimation Method
	Learning Algorithms
	Simulation Studies
	Real Data Analysis
	Discussion

	Learning Latent Block Structures
	Introduction
	Model Setup and Motivations
	Proposed Method and Learning Algorithms
	Simulation Studies
	Real Data Analysis
	Discussion

	Hypothesis Testing for Latent Hierarchical Structures
	Introduction
	Testability Requirements and Conditions
	Likelihood Ratio Test
	Real Data Analysis
	Discussion

	Bridging Parametric and Nonparametric Methods
	Introduction
	Nonparametric Methods
	A General Estimation Framework
	Analysis of the Proposed Framework
	Simulation Studies
	Discussion
	APPENDICES
	Proof for Theorem 2.3.6
	Derivations of PEM Algorithm
	PEM Algorithm with Missing Values
	Sensitivity Analysis
	Type 1 Errors
	Q-matrix for ECPE data
	Bootstrap Results under the DINA model
	Bootstrap Results under the GDINA model
	Proof of Theorem 5.4.5
	Proof of Lemma 5.4.7
	Proof of Lemma 5.4.8
	Proof of Theorem 5.4.6
	Proof of Theorem 5.4.9
	Proof of Proposition 5.4.1
	Proof of Proposition 5.4.2

	BIBLIOGRAPHY





