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E-Companion

In this Appendix, we present all the mising proofs in the mainbody of the paper. We also prove

the result discussed in Remark 7 of Section 3 for a more general definition of clusters.

EC.1 Proof of Theorem 1

First of all, we define q̃j :=
∑

i∈Nj
qi as the probability that a customer views a product from cluster

j. Then, define the events

EN,t :={N̂t =Nit},

EBj ,t :={||θ̃j,t− θj||2 ≤ B̃j,t},

EV,t :=

⎧⎨⎩λmin

⎛⎝ ∑
s∈˜Tjt,t

usu
′
s

⎞⎠≥ λ1Δ
2
0

√
q̃jtt

8

⎫⎬⎭ ,

where λ1 =min(1, λ0)/(1+ p2) and θ̃j,t is the estimated parameters using data from T̃j,t, and

B̃j,t =:

√
c(d+2) log(1+ t))√

λmin(Ṽj,t)

for some constant c≥ 20/l21 and Ṽj,t = I+
∑

s∈˜Tj,t usu
′
s. These events hold at least with the following

probabilities

�(EN,t)≥1−
2n

t2
for t > t̄,

�(EBj ,t)≥1−
1

t
for any j ∈ [m], t∈ T ,

�(EV,t)≥1−
7n

t
for t > 2t̄,

where t̄ is defined in (EC.13). The first inequality is from our analysis after Lemma EC.4; the

second inequality is from Corollary EC.1; the third inequality is from Lemma EC.5. We further

define EB,t =
⋃

j∈[m] EBj ,t, then it holds with probability at least 1−m/t for any t ∈ T . Now we

define the event Et as the union of EN,t, EB,t, and EV,t. This event holds with probability at least
1− 10n/t obviously according to the probability of each event.
We split the regret by considering t≤ 2t̄ and t > 2t̄, i.e.,

T∑
t=1

�[rt(p
∗
t )− rt(pt)] =

∑
t≤2t̄

�[rt(p
∗
t )− rt(pt)] +

∑
t>2t̄

�[rt(p
∗
t )− rt(pt)].
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Obviously, the regret of the first summation can be bounded above by 2pt̄. We focus on the second

summation. For arbitrary t > 2t̄,

�[rt(p
∗
t )− rt(pt)] =�[(rt(p

∗
t )− rt(pt))111(Et)] +�[(rt(p

∗
t )− rt(pt))111(Ēt)]

≤�[(p∗tμ(α′itxt+βitp
∗
t )− ptμ(α

′
it
xt+βitpt))111(Et)] +

10pn

t

=�[(|2βit μ̇(α
′
it
xt+βit p̄t)+β2

it
p̄tμ̈(α

′
it
xt+βit p̄t)|(p∗t − pt)

2)111(Et)] +
10pn

t

≤�[(L̃2(p
∗
t − p̃t−Δt)

2)111(Et)] +
10pn

t

≤2L̃2L
2
0�[||θ̃N̂t,t−1− θit ||22111(Et)] + 4L̃2�[Δ

2
t111(Et)] +

10pn

t

=2L̃2L
2
0�[||θ̃jt,t−1− θjt ||22111(Et)] + 4L̃2�[Δ

2
t111(Et)] +

10pn

t

≤2L̃2L
2
0�[B̃

2
jt,t−1111(Et)] + 4L̃2�[Δ

2
t111(Et)] +

10pn

t
,

where the first inequality is from the probability of Ēt, the second equality is by applying Taylor’s
theorem (where p̄t is some price between p∗t and pt) with Assumption A-1 and Assumption A-2,

the second inequality is from Assumption A-2 and L̃2 is some constant depending on L,L1,L2, p,

and both the last equality and the last inequality are from the definition of Et (i.e., events EN,t and

EB,t). Therefore, we have

�[rt(p
∗
t )− rt(pt)]≤ 2L̃2L

2
0�[B̃

2
jt,t−1111(Et)] + 4L̃2�[Δ

2
t111(Et)] +

10pn

t
. (EC.1)

Summing over t, the sum of the last terms above obviously lead to the regret O(n logT ). For the

rest, we have

∑
t>2t̄

�[B̃2
jt,t−1111(Et)]≤

k2d logT

Δ2
0

∑
t>2t̄

�

[
1√
q̃jtt

]
=

k2d logT

Δ2
0

∑
t>2t̄

∑
j∈[m]

√
q̃j
t

≤ k2d logT

Δ2
0

∑
j∈[m]

√
q̃jT ≤

k2d logT

Δ2
0

√
mT

for some constant k2, where the first inequality is from Et (i.e., EV,t) and the definition of B̃2
jt,t
, the

equality is by conditioning on jt = j for all j ∈ [m], and the last inequality is because∑j q̃j = 1 and

apply Cauchy-Schwarz. Hence ∑
t>2t̄

�[B̃2
jt,t−1111(Et)]≤

k2d logT

Δ2
0

√
mT. (EC.2)

On the other hand, because N̂t =Nit for all t > 2t̄ on Et,

∑
t>2t̄

�[Δ2
t111(Et)]≤

∑
j∈[m]

�

⎡⎣ ∑
t∈˜Tj,T

Δ2
0√
T̃j,t

⎤⎦≤Δ2
0

∑
j∈[m]

�

[√
T̃j,T

]
≤Δ2

0

√
mT. (EC.3)
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Putting (EC.1), (EC.2), and (EC.3) together, we have∑
t>2t̄

�[(rt(p
∗
t )− rt(pt))]≤ c5d log(T )

√
mT + c5n logT

for some constant c5, and together with the regret for t < 2t̄, we are done with the regret upper

bound.

In the rest of this subsection, we prove the lemmas used in the proof of Theorem 1.

Lemma EC.1. For each j ∈ [m] and t ∈ T , with probability at least 1−Δ, T̃j,t ∈ [q̃jt− D̃(t), q̃jt+

D̃(t)] for all j ∈ [m], t∈ T , where D̃(t) =
√
t log(2/Δ).

Proof. Obviously T̃j,t is a binomial random variable with parameter t and q̃j. Then we simply use

Hoeffding inequality applied on sequence of i.i.d. Bernoulli random variable and a simple union

bound on all j ∈ [m] and t∈ T . �

Lemma EC.2. For any i∈ [n] and t∈ T , let Vi,t = I +
∑

s∈Ti,t usu
′
s, we have that

||θ̂i,t− θi||Vi,t
≤ 2

√
(d+2) log(1+Ti,tR2/(d+2))+2 log(1/Δ)+2l1L

l1

with probability at least 1−Δ.

Proof. We first fix some i∈ [n], and we drop the index dependency on i for convenience of notation.

At round s, the gradient of likelihood function ∇ls(φ) is equal to

∇ls(φ) = (μ(u′sφ)− ds)us. (EC.4)

And its Hessian is

∇2ls(φ) =μ̇(u
′
sφ)usu

′
s. (EC.5)

Applying Taylor’s theorem, we obtain

0≥
∑
s

ls(θ̂t)− ls(θ)

=
∑
s

∇ls(θ)
′(θ̂t− θ)+

1

2

∑
s

μ̇(u′sθ̄t)(u
′
s(θ̂t− θ))2+

l1
2
||θ̂t− θ||22−

l1
2
||θ̂t− θ||22,

(EC.6)

where the first inequality is from the optimality of θ̂t, and θt is a point on line segment between θ̂t

and θ. Note that by our assumption and boundedness of us and θ, we have μ̇(u′sθ̄t)≥ l1. Therefore,

we have ∑
s

μ̇(u′sθ̄t)(u
′
s(θ̂t− θ))2+ l1||θ̂t− θ||22 ≥ l1||θ̂t− θ||2Vt

, (EC.7)
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where Vt = I +
∑

s usu
′
s. On the other hand, we have

∇ls(θi) =− εsus, (EC.8)

where εs is the zero-mean error, which is obviously sub-Gaussian with parameter 1 as it is bounded.

Now combining (EC.6), (EC.7), and (EC.8), we have

l1
2
||θ̂t− θ||2Vt

≤
∑
s

εsu
′
s(θ̂t− θ)+ 2l1L

2 ≤ ||θ̂t− θ||Vt ||Zt||V−1
t

+2l1L
2, (EC.9)

where Zt :=
∑

s εsus, and the second inequality is from Cauchy-Schwarz and ||θ̂t− θ||2 ≤ 2L. This

leads to ||θ̂t− θ||Vt ≤ 2
l1
||Zt||V−1

t
+2L.

To bound ||Zt||V−1
t
, according to Theorem 1 in Abbasi-Yadkori et al. (2011), we have

||Zt||V−1
t
≤
√
(d+2) log(1+

Ti,tR2

d+2
)+2 log(1/Δ)

with probability at least 1−Δ and we are done. �

Corollary EC.1. For any j ∈ [m] and t∈ T , let Ṽj,t := I +
∑

s∈˜Tj,t usu
′
s, we have that

||θ̃j,t− θj||˜Vj,t
≤
2

√
(d+2) log(1+ T̃j,tR2/(d+2))+2 log(1/Δ)+2l1L

l1

with probability at least 1−Δ.

Next result is the minimum eigenvalue of the empirical Fisher’s information matrix.

Lemma EC.3. Denote u′t = (p̃t+Δt, x
′
t). For any i∈ [n] and

t >max

{(
8R log((d+2)T )

λ1Δ2
0mini∈[n] qi

)2

,

(
Δ2

0

c0

)2

,
2t0

mini∈[n] qi

}
,

where R := 2+ p̄2 and λ1 := 1/((1+ p̄/c0)
2+1), we have

�

(
λmin

( ∑
s∈Ti,t

usu
′
s

)
<

λ1Δ
2
0qi
√
t

2

)
<
1

t2
.

Proof. Define

Ms := �[111(is = i)usu
′
s|Fs−1],

and

M :=
t∑

s=1

�[111(is = i)usu
′
s|Fs−1] =

t∑
s=1

Ms =

[
A B

B′ C

]
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where

A :=
t∑

s=1

�[111(is = i)(p̃2s+Δ2
s)|Fs−1]

B :=
t∑

s=1

�[111(is = i)p̃sx
′
s|Fs−1]

C :=
t∑

s=1

�[111(is = i)xsx
′
s|Fs−1]

According to Proposition 3 in Walton and Zhang (2020), we have

λmin(M)≥ λmin(C)
2

(‖B‖2+λmin(C))2+λmin(C)2
min{λmin(A−BC−1B′), λmin(C)}.

Now let us analyze each term individually. By Assumption A-3, qit≥ λmin(C)≥ c0qit. It is also not

difficult to get ‖B‖2 ≤ p̄qit. All we let to show is the lower bound of λmin(A−BC−1B′), which is

summarized in the following claim.

Claim: λmin(A−BC−1B′) =A−BC−1B′ ≥∑t

s=1 �[111(is = i)Δ2
s|Fs−1]

To prove this claim, let us define

ũs := (p̃s, xs) .

That is, ũs is the same as us except without price perturbation. Obviously, M̃ :=
∑t

s=1 �[111(is =

i)ũsũ
′
s|Fs−1] satisfies M̃ ≥ 0. Moreover, by Schur complement, we have Ã − BC−1B′ ≥ 0 where

Ã=
∑t

s=1 �[111(is = i)p̃2s|Fs−1]. Since A−BC−1B′ = Ã−BC−1B′+
∑t

s=1 �[111(is = i)Δ2
s|Fs−1], we are

done with the claim.

Above all, we are able to show that

λmin(M)≥ 1

(1+ p̄/c0)2+1
min{c0qit, qiΔ2

0

√
t} ≥ Δ2

0qi
√
t

(1+ p̄/c0)2+1
= λ1Δ

2
0qi
√
t

where the second inequality is because t > (Δ2
0/c0)

2. Since

∑
s∈Ti,t

usu
′
s =

t∑
s=1

�(is = i)usu
′
s,

then we have that

�

⎛⎝λmin(
∑
s∈Ti,t

usu
′
s)<

λ1Δ
2
0qi
√
t

2

⎞⎠
=�

⎛⎝λmin(
∑
s∈Ti,t

usu
′
s)<

λ1Δ
2
0qi
√
t

2
, λmin

(
t∑

s=1

�[�(is = i)usu
′
s|Fs−1]

)
≥ λ1Δ

2
0qi
√
t

⎞⎠
≤(d+2)e−

λ1Δ
2
0qi
√
t

4R ,
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where the last inequality is from Theorem 3.1 in Tropp (2011) with ζ = 1/2.

So for any i∈ [n] and

t >

(
8R log(T (d+2))

λ1Δ2
0mini∈[n] qi

)2

,

we have the simple union bound over i ∈ [n], t ∈ T , (d+ 2)exp(−λ1Δ
2
0qi
√
t/(4R))< 1/t2, and the

proof is complete. �
Clearly, if we combine Lemma EC.3 and Lemma EC.2, for any i∈ [n], t > t̄1 where

t̄1 =max

{(
8R log((d+2)T )

λ1Δ2
0mini∈[n] qi

)2

,

(
Δ2

0

c0

)2

,
2t0

mini∈[n] qi

}
, (EC.10)

we have that

||θ̂i,t− θi||2 ≤
2
√
(d+2) log(1+ tR2/(d+2))+2 log t2+2l1L

l1
√
λmin(Vi,t)

(EC.11)

≤
√
c(d+2) log(1+ t)√

λmin(Vi,t)
=Bi,t

for some constant c > 20/l21, and

Bi,t ≤
√
2c(d+2) log(1+ t)

Δ0

√
λ1qi

√
t

(EC.12)

with probability at least 1− 2/t2.
The next lemma states that when estimation errors are bounded, under certain conditions we

have N̂t =Nit .

Lemma EC.4. Suppose for all i∈ [n] it holds that ||θ̂i,t−1− θi||2 ≤Bi,t−1 and Bi,t−1 < γ/4. Then

N̂t =Nit .

Proof. First of all, for i1, i2 ∈ [n], if they belong to different clusters and Bi1,t−1+Bi2,t−1 < γ/2, we

must have ||θ̂i1,t−1− θ̂i2,t−1||2 >Bi1,t−1+Bi2,t−1 because

γ ≤||θi1 − θi2 ||2 ≤ ||θi1 − θ̂i1,t−1||2+ ||θ̂i1,t−1− θ̂i2,t−1||2+ ||θ̂i2,t−1− θi2 ||2
≤Bi1,t−1+ ||θ̂i1,t−1− θ̂i2,t−1||2+Bi2,t−1 < γ/2+ ||θ̂i1,t−1− θ̂i2,t−1||2,

which implies that ||θ̂i1,t−1− θ̂i2,t−1||2 > γ/2>Bi1,t−1+Bi2,t−1.

On the other hand, if ||θ̂i1,t−1− θ̂i2,t−1||2 >Bi1,t−1+Bi2,t−1, we must have i1, i2 belongs to different

clusters because

Bi1,t−1+Bi2,t−1 <||θ̂i1,t−1− θ̂i2,t−1||2 ≤ ||θi1 − θ̂i1,t−1||2+ ||θ̂i1,t−1− θ̂i2,t−1||2+ ||θ̂i2,t−1− θi2 ||2
≤Bi1,t−1+ ||θ̂i1,t−1− θ̂i2,t−1||2+Bi2,t−1,

which implies ||θ̂i1,t−1− θ̂i2,t−1||2 > 0, i.e., they belong to different clusters.
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Therefore, if i ∈ N̂t, i.e., ||θ̂it,t−1− θ̂i,t−1|| ≤Bit,t−1+Bi,t−1, we must have that i ∈Nit as well or

Bit,t−1+Bi,t−1 ≥ γ/2 (which is impossible by our assumption that Bi,t−1 < γ/4).

On the other hand, if i∈Nit , then we must have ||θ̂it,t−1− θ̂i,t−1|| ≤Bit,t−1+Bi,t−1, which implies

that i∈ N̂t as well.

Above all, we have shown that N̂it =Nit . �

Note that given (EC.11) and (EC.12), we have that Bi,t−1 < γ/4 for all i if

t > 1+
k1((d+2) log(1+T ))2

γ4λ2
1Δ

4
0mini∈[n] q2i

for some constant k1. Therefore, for each t > t̄ where

t̄=max

{
4t̄1,1+

k1((d+2) log(1+T ))2

γ4λ2
1Δ

4
0mini∈[n] q2i

}
, (EC.13)

and t̄1 is defined in (EC.10), N̂t =Nit with probability at least 1− 2n/t2.

The next lemma shows that the clustered estimation will be quite accurate when most of the N̂t

is actually equal to Nit .

Lemma EC.5. For any t such that t > 2t̄, we have

�

⎛⎝λmin

⎛⎝ ∑
s∈˜Tjt,t

usu
′
s

⎞⎠<
λ1Δ

2
0

√
q̃jtt

8

⎞⎠<
7n

t
,

where t̄ is defined in (EC.13).

Proof. The proof is analogous to Lemma EC.3. Let EN,t be the event such that N̂t =Nit , and Ẽj,t
be the event such that T̃j,t ≤ 3q̃jt/2. From our previous analysis, we know that given t > t̄, EN,t

holds with probability at least 1− 2n/t2. Also, according to Lemma EC.1, event Ẽj,t holds with

probability at least 1− 1/t2 given t≥ 8 log(2T )/minj∈[m] q̃
2
j (which is satisfied by taking t > t̄).

On event Ẽj,t and EN,s for all s∈ [t/2, t] (which holds with probability at least 1−6n/t), we have

λmin

( t∑
s=1

�[�(js = j)usu
′
s|Fs−1]

)
≥λmin

( t∑
s=t/2

�[�(js = j)usu
′
s|Fs−1]

)
≥

t∑
s=t/2

λ1Δ
2
0q̃j(T̃j,s)

−1/2

≥λ1Δ
2
0

√
q̃jt

4
.

by definition of q̃j following a similar procedure as in Lemma EC.3.
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Therefore, we have for any t > 2t̄,

�

⎛⎝λmin

⎛⎝ ∑
s∈˜Tjt,t

usu
′
s

⎞⎠<
λ1Δ

2
0

√
q̃jtt

8

⎞⎠
=
∑
j∈[m]

�

⎛⎝λmin

⎛⎝ ∑
s∈˜Tjt,t

usu
′
s

⎞⎠<
λ1Δ

2
0

√
q̃jtt

8

∣∣∣∣∣jt = j

⎞⎠�(jt = j)

=
∑
j∈[m]

�

⎛⎝λmin

⎛⎝∑
s∈˜Tj,t

usu
′
s

⎞⎠<
λ1Δ

2
0

√
q̃jt

8

⎞⎠ q̃j.

For each j ∈ [m], we have

�

⎛⎝λmin

⎛⎝∑
s∈˜Tj,t

usu
′
s

⎞⎠<
λ1Δ

2
0

√
q̃jt

8

⎞⎠
≤�

⎛⎝λmin

⎛⎝∑
s∈˜Tj,t

usu
′
s

⎞⎠<
λ1Δ

2
0

√
q̃jt

8
,

⋃
s∈[t/2,t]

(EN,t ∪ Ẽj,t)

⎞⎠+
6n

t

=�

⎛⎝λmin

⎛⎝∑
s∈˜Tj,t

usu
′
s

⎞⎠<
λ1Δ

2
0

√
q̃jt

8
, λmin

⎛⎝∑
s∈˜Tj,t

�[usu
′
s|Fs−1]

⎞⎠≥ λ1Δ
2
0

√
q̃jt

4
,

⋃
s∈[t/2,t]

(EN,t ∪ Ẽj,t)

⎞⎠
+
6n

t
≤ 7n

t
,

where the first inequality is from the probability of the complement of
⋃

s∈[t/2,t](EN,t ∪ Ẽj,t), and
the last inequality is by Theorem 3.1 in Tropp (2011), and we take

t >

(
8R log(2(d+2)T )

λ1Δ2
0minj∈[m]

√
q̃j

)2

.

Since t̄ >
(
8R log(2(d+2)T )/(λ1Δ

2
0minj∈[m]

√
q̃j)

)2
by definition, we complete the proof. �

EC.2 Different θi for the Same Cluster

In this section we present the technical lemmas in proving the regret of the modified CSMP when

parameters θi within the same cluster are different. Note that we assume ||θi1 − θi2 ||2 ≤ γ0 for any

i1, i2 in any cluster Nj.

The first result is a corollary of Lemma EC.4.

Corollary EC.2. Suppose for all i ∈ [n] it holds that ||θ̂i,t−1 − θi||2 ≤ Bi,t−1 and Bi,t−1 ∈
(γ0/2, γ/6). Then (with γ > 3γ0) we have that N̂t =Nit . Moreover, if we only have Bi,t−1 < γ/6,

we have N̂t ⊂Nit.
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Proof. For the first part of the corollary, the proof is almost identical to Lemma EC.4. First of

all, for i1, i2 ∈ [n], if they belong to different clusters and Bi1,t−1 + Bi2,t−1 < γ/3, we must have

||θ̂i1,t−1− θ̂i2,t−1||2 > 2Bi1,t−1+2Bi2,t−1 because

γ ≤||θi1 − θi2 ||2 ≤ ||θi1 − θ̂i1,t−1||2+ ||θ̂i1,t−1− θ̂i2,t−1||2+ ||θ̂i2,t−1− θi2 ||2
≤Bi1,t−1+ ||θ̂i1,t−1− θ̂i2,t−1||2+Bi2,t−1 < γ/3+ ||θ̂i1,t−1− θ̂i2,t−1||2,

which implies that ||θ̂i1,t−1− θ̂i2,t−1||2 > 2γ/3> 2Bi1,t−1+2Bi2,t−1.

On the other hand, if ||θ̂i1,t−1 − θ̂i2,t−1||2 > 2Bi1,t−1 + 2Bi2,t−1, we must have i1, i2 belongs to

different clusters because

2Bi1,t−1+2Bi2,t−1 <||θ̂i1,t−1− θ̂i2,t−1||2 ≤ ||θi1 − θ̂i1,t−1||2+ ||θi1,t−1− θi2,t−1||2+ ||θ̂i2,t−1− θi2 ||2
≤Bi1,t−1+ ||θi1,t−1− θi2,t−1||2+Bi2,t−1

which implies ||θi1,t−1 − θi2,t−1||2 > Bi1,t−1 +Bi2,t−1 ≥ γ0 (where the second inequality is because

Bi,t−1 ≥ γ0/2), i.e., they belong to different clusters.

Therefore, if i ∈ N̂t, i.e., ||θ̂it,t−1− θ̂i,t−1|| ≤ 2Bit,t−1+2Bi,t−1, we must have that i ∈Nit as well

or Bit,t−1+Bi,t−1 ≥ γ/3 (which is impossible by our assumption that Bi,t−1 < γ/6).

On the other hand, if i ∈ Nit , then we must have ||θ̂it,t−1 − θ̂i,t−1|| ≤ 2Bit,t−1 + 2Bi,t−1, which

implies that i∈ N̂t as well. Summarizing, we have shown that N̂it =Nit .

For the second part, suppose this is not true. That is, there is some i ∈ N̂t with i 
∈ Nit , which

implies ‖θit − θi‖ ≥ γ and ||θ̂i1,t−1− θ̂i2,t−1||2 ≤ 2Bit,t−1+2Bi,t−1. Note that

γ ≤ ||θit − θi||2 ≤ ||θit − θ̂it,t−1||2+ ||θ̂it,t−1− θ̂i,t−1||2+ ||θ̂i,t−1− θi||2
≤Bit,t−1+ ||θ̂it,t−1− θ̂i,t−1||2+Bi,t−1 < γ/3+ ||θ̂i1,t−1− θ̂i2,t−1||2;

Thus we have ||θ̂i1,t−1 − θ̂i2,t−1||2 > 2γ/3 and we have Bit,t−1 + Bi,t−1 > γ/3, contradicting with

Bi,t−1 < γ/6 for all i. �
Suppose in some time period t, product it is in some neighborhood N̂t which satisfies ||θi1 −

θi2 ||2 ≤ γ̃0 with some constant γ̃0 for any i1, i2 ∈ N̂t. Let θ̃it,t denote the estimated parameter by

clustering all data in neighborhood N̂t. The next lemma measures the confidence bound of θ̃it,t

compared with any true parameter θ̃i ∈ N̂t.

Lemma EC.6. When Ti,t ≥ qit/2 for all i∈ [N ], we have for any i∈ N̂t,

||θ̃it,t− θi||2 ≤
2

√
(d+2) log

(
1+ tR2

d+2

)
+4 log t

l1
√
λmin(VN̂t

)
+

L1R
2γ̃0q̃N̂t

t

l1λmin(VN̂t
)
+

2L√
λmin(VN̂t

)

with probability at least 1−O(1/t2), where VN̂t
= I +

∑
t∈TN̂t

usu
′
s and q̃N̂t

=
∑

i∈N̂t
qi.
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Proof. The proof is quite similar to Lemma EC.2. We drop the index it for convenience. Note that

for an arbitrary parameter φ∈Θ, since θ̃t is the MLE, we have

0≥
∑
s

ls(θ̃t)−
∑
s

ls(φ) =
∑
s

∇ls(φ)
′(θ̃t−φ)+

1

2

∑
s

μ̇(u′sφ̄t)(u
′
s(θ̃t−φ))2

+
l1
2
||θ̃t−φ||22−

l1
2
||θ̃t−φ||22 ≥

∑
s

∇ls(φ)
′(θ̃t−φ)+

l1
2
||θ̃t−φ||2VN̂t

− 2l1L2,
(EC.14)

where the first inequality is from the optimality of θ̃t, and φt is a point on line segment between θ̃t

and φ.

Now we consider ∇ls(φ). By Taylor’s theorem, ∇ls(φ) =∇ls(θs) +∇2ls(θ̌s)
′(φ− θs), where θs is

the true parameter at time s, and θ̌s is a point between φ and θs. As a result,

∇ls(φ) =−εsus+ μ̇(u′sθ̌s)usu
′
s(φ− θs). (EC.15)

Since φ∈Θ is an arbitrary vector, we can let φ= θi for any i∈Nj. Combining (EC.14) and (EC.15),

we have that with probability at least 1− 1/t2.
l1
2
||θ̃t− θi||2VN̂t

≤
∑
s

εsu
′
s(θ̃t− θi)−

∑
s

μ̇(u′sθ̌s)(θi− θs)
′usu

′
s(θ̃t−φ)+ 2l1L

2

≤||
∑
s

εsus||V−1

N̂t

||θ̃t− θi||VN̂t
+
∑
s

||μ̇(u′sθ̌s)usu
′
s(θi− θs)||V−1

N̂t

||θ̃t− θi||VN̂t
+2l1L

2

≤
√
(d+2) log

(
1+

tR2

d+2

)
+4 log t||θ̃t− θi||VN̂t

+

∑
s ||μ̇(u′sθ̌s)usu

′
s(θi− θs)||2||θ̃t− θi||VN̂t√
λmin(VN̂t

)
+ 2l1L

2

≤
√
(d+2) log

(
1+

tR2

d+2

)
+4 log t||θ̃t− θi||VN̂t

+
L1R

2γ̃0q̃N̂t
t||θ̃t− θi||VN̂t

2
√
λmin(VN̂t

)
+ 2l1L

2,

where the second inequality is from Theorem 1 in Abbasi-Yadkori et al. (2011) and the last inequal-

ity is because Ti,t ≥ qit/2. By some simple algebra, above inequality implies that

||θ̃t− θi||VN̂t
≤
2

√
(d+2) log

(
1+ tR2

d+2

)
+4 log t

l1
+

L1R
2γ̃0q̃N̂t

t

l1
√

λmin(VN̂t
)
+ 2L.

This inequality further implies that

||θ̃t− θi||2 ≤
2

√
(d+2) log

(
1+ tR2

d+2

)
+4 log t

l1
√

λmin(VN̂t
)

+
L1R

2γ̃0q̃N̂t
t

l1λmin(VN̂t
)
+

2L√
λmin(VN̂t

)

and we are done. �
The previous lemma shows that the estimation error is basically dependent on the value of

λmin(VN̂t
), which is described by the following lemma.
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Lemma EC.7. The value of λmin(VN̂t
) satisfies the following.

(a) If t≥Ω(t̄) and t≤ k3/(maxi q
2
i γ

4
0) for some constant k3 (so that k3/(maxi q

2
i γ

4
0)≥Ω(t̄) without

loss of generality), λmin(VN̂t
)≥ λ1Δ

2
0

√
q̃jtt/8 with probability at least 1−O(n/t).

(b) If t≥ k3/(maxi q
2
i γ

4
0), λmin(VN̂t

)≥ λ1Δ
2
0

√
q̃N̂t

/q̃jt
√

q̃N̂t
t/8 with probability at least 1−O(n/t).

Proof. For part (a), it follows from the same procedure as Lemma EC.5. The reason we want

t≤O(1/(maxi q
2
i γ

4
0)) is to guarantee Bi,s > γ0/2 for s≤ t so that we will have N̂s =Nis by Corollary

EC.2.

For part (b), with probability at least 1−O(n/t), we have N̂s ⊂Nis for any s≥ k3/(maxi q
2
i γ

4
0)

according to Corollary EC.2. Thus T̃N̂s,s
∈ [Tis,s, T̃js,s] and following the proof of Lemma EC.5, with

probability at least 1−O(n/t), λmin(VN̂t
)≥ λ1Δ

2
0

√
q̃N̂t

/q̃jt
√

q̃N̂t
t/8. �

The implication of the previous lemmas is the following. When t≥ Ω(t̄) and t≤ k3/maxi q
2
i γ

4
0 ,

we have most of the time N̂t =Nit , and thus everything basically resembles the main setting of

this paper. However, as t keeps growing, we start to have only N̂t ⊂ Nit according to Corollary

EC.2. That is, the n products are no longer clustered into the m clusters (with high probability)

as we want. Therefore, the regret after t≥ k3/maxi q
2
i γ

4
0 has to be analyzed more carefully. Now

we provide the proof (sketch) of the theorem of regret of modified algorithm.

Theorem EC.1. The expected regret of the modified algorithm of CSMP is

R(T ) =O

(
d2 log2(dT )

mini∈[n] q2i
+ d logT

√
m̃(T )T +Γ(T )

)
where m̃(T ) and Γ(T ) are functions of T . In particular, when T ≤ k3/maxi q

2
i γ

4
0 , we have m̃(T ) =

m,Γ(T ) = min{γ2
0

∑
j q̃

2
jT

2, T}; as T →∞, m̃→ n, Γ(T )→ Γ̄ where Γ̄ is a constant depending on

the minimum gap between θi1 , θi2 within any of the same neighborhood.

Sketch of the Proof. Note that in this proof, we will calculate everything on all nice events (e.g.,

||θ̂i,t − θi||2 ≤Bi,t−1 for all i ∈N ) as in the proof of Theorem 1 which hold with high probability,

as the regret on their complement can be controlled to at most O(n). Now let the results in

Lemma EC.6 hold. If T ≤ k3/maxi q
2
i γ

4
0 , Corollary EC.2 shows that N̂t =Nit for all t≥Ω(t̄). Thus,

combining part (a) of Lemma EC.7 and Lemma EC.6,

||θit − θ̃jt,t||2 ≤O(
√

d logT/(q̃jtt)
1/4+min{γ0

√
q̃jtt,1}), (EC.16)

where the part min{γ0
√

q̃jtt,1} is because any estimated parameter is bounded. Thus, to bound the
regret when T ≤ k3/maxi q

2
i γ

4
0 , the proof is almost identical to Theorem 1 so we neglect most part

of the proof. We want to bound rt(p
∗
t )−rt(pt) =O(rt(p

∗
t )−rt(p

′
t)+Δ

2
t ). Note that Δ

2
t =O

(
T̃
−1/2

N̂t,t

)
,

thus for the part of regret
∑

tO
(
T̃
−1/2

N̂t,t

)
, it is bounded as in Theorem 1.



ec12

To bound rt(p
∗
t ) − rt(p

′
t), note that we have rt(p

∗
t ) − rt(p

′
t) ≤ O

(
||θit − θ̃jt,t||22

)
. Thus com-

bining (EC.16) and sum over t, we have this part of the regret is at most O(d logT
√
mT +

min{γ2
0

∑
j q̃

2
jT

2, T}).
If T > k3/maxi q

2
i γ

4
0 , for any t≥ k3/maxi q

2
i γ

4
0 , since Corollary EC.2 shows that N̂t ⊂Nit . Thus at

any time t, we can take any subset of all estimated neighborhood of all i (i.e., {N̂i,t : i∈ [n]}) whose
union is equal to N . Without loss of generality, let m̃t denote the number of such neighborhoods

(denoted by {N̂[k],t : k ∈ [m̃t]}) and γ̃0,t denote the maximum distance between any two parameters

within any N̂[k],t (for instance, when all N̂t =Nit , we have m̃t =m, γ̃0,t = γ0). Obviously, we have

m̃t ∈ [m,n] and γ̃0,t ≤ γ0. Then we basically follow the same procedure as earlier, and the regret in

each time t≥ k3/maxi q
2
i γ

4
0 is at most

O

(
�

[
d logT

m̃t∑
k=1

√
q̃j[k]/q̃N̂[k],t

√
q̃N̂[k],t

/t+min

{
γ̃2
0,t

m̃t∑
k=1

q̃2N̂[k],t
t,1

}
+

m̃t∑
k=1

√
q̃N̂[k],t

/t

])

=O

(
�

[
d logT

m̃t∑
k=1

√
q̃j[k]/t+min

{
γ̃2
0,t

m̃t∑
k=1

q̃2N̂[k],t
t,1

}
+
√
m̃t/t

]) (EC.17)

where j[k] denote the index of the true neighborhood that N̂[k],t ⊂Nj[k]
, and the expectation is taken

over the realization of all neighborhoods {N̂i,t : i∈ [n]}. Thus, we can choose the m̃t neighborhood

so that
∑m̃t

k=1

√
q̃j[k] is minimized, and denote m̃ as a number so that

√
m̃≥ �

[∑m̃t

k=1

√
q̃j[k]

]
and

m̃≥ �[m̃t] for all t. Thus (EC.17) is bounded above as

O

(
d logT

√
m̃/t+�

[
min

{
γ̃2
0,t

m̃t∑
k=1

q̃2N̂[k],t
t,1

}]
+
√

m̃/t

)
,

and we are done with the expression of regret by summing over all t. Note that as T →∞, it

is obvious that each N̂i,t becomes {i} itself when Bi,t−1 is sufficiently small compared with the

minimum gap between any two parameters within the same neighborhood. Thus γ̃0,t becomes 0

(implying Γ(T ) is bounded) and m̃→ n as m̃t→ n. �

EC.3 Price Dependency of the Real Dataset

In this section, we conduct a data analysis of the real dataset in Section 4.2. The purpose is to show

that the demand of each product mainly depends on its own price. For illustration of the effect of

price, we exclude the features and adopt a simple logistic regression model for each product, which

is defined as, if we make the dependency on index i implicit,

�[dt(p)] =
1

1+ e−α−βp

where p is the price of interest, which can be the product’s own price or any other product’s price.
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Figure EC.1 P-value of own price versus other prices.

To test the significance of each price, we evaluate the p-value of the hypothesis test with

H0 : β = 0 VS Ha : β 
= 0.

First, for each product i, we calculate the p-value of its own price and the average p-value of other

prices, and results are summarized in Figure EC.1, which is a histogram of the two p-values of

all products. From this histogram, we can clearly see that most products have significantly lower

p-value of its own price than other prices, showing that the demand is mainly dependent on its

own price.

Of course, this experiment mainly shows that overall other products’ prices do not have significant

impact on each product’s demand, but we still do not know how specifically price of product i

affects demand of product i′. Next, we will investigate one by one of each product’s price on other

products. For instance, fix product i, we calculate the p-value of price pi,t on the demand of any

other product i′ 
= i, and then count how many products i′ 
= i that price of product i has significant

(i.e., p-value<0.05) impact on.

Table EC.1 summarize this result. On average, the price of each product only significantly affects

the demand of 9.44 other products, compared with the fact that number of products, whose demand

is significantly affected by its own price, is equal to 51. Note that it is not surprising some products’

demands are not significantly affected by their prices because of the data scarcity due to low sales

and popularity. For the purpose of simulation in Section 4.2, we will still fit the data of these 100

low-sale products as it is for illustrative purposes.
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Mean Standard Deviation Maximum Minimum

Number of significant p-value 9.44 4.49 22 2

Table EC.1 Number of significant p-value on demand of other products.


