
Received: 14 July 2021 Accepted: 19 May 2022

DOI: 10.1111/poms.13783

O R I G I N A L A R T I C L E

Context-based dynamic pricing with online clustering

Sentao Miao1 Xi Chen2 Xiuli Chao3,4 Jiaxi Liu5 Yidong Zhang5

1Desautels Faculty of Management, McGill
University, Montreal, Quebec, Canada

2Leonard N. Stern School of Business, New York
University, New York City, New York, USA

3Department of Industrial and Operations
Engineering, University of Michigan, Ann Arbor,
Michigan, USA

4Supply Chain Optimization Technology (SCOT),
Amazon, Seattle, Washington, USA

5Alibaba Group, Hangzhou, China

Correspondence
Sentao Miao, Desautels Faculty of Management,
McGill University, Montreal, QC H3A 1G5,
Canada.
Email: sentao.miao@mcgill.ca

Handling Editor: Dan Zhang

Abstract
We consider a context-based dynamic pricing problem of online products, which have
low sales. Sales data from Alibaba, a major global online retailer, illustrate the preva-
lence of low-sale products. For these products, existing single-product dynamic pricing
algorithms do not work well due to insufficient data samples. To address this challenge,
we propose pricing policies that concurrently perform clustering over product demand
and set individual pricing decisions on the fly. By clustering data and identifying prod-
ucts that have similar demand patterns, we utilize sales data from products within the
same cluster to improve demand estimation for better pricing decisions. We evaluate
the algorithms using regret, and the result shows that when product demand functions
come from multiple clusters, our algorithms significantly outperform traditional single-
product pricing policies. Numerical experiments using a real data set from Alibaba
demonstrate that the proposed policies, compared with several benchmark policies,
increase the revenue. The results show that online clustering is an effective approach to
tackling dynamic pricing problems associated with low-sale products.

K E Y W O R D S
dynamic pricing, low-sale product, online clustering, regret analysis

1 INTRODUCTION

Over the past several decades, dynamic pricing has been
widely adopted by industries, such as retail, airlines, and
hotels, with great success (see, e.g., Cross, 1995; Smith et al.,
1992). Dynamic pricing has been recognized as an impor-
tant lever not only for balancing supply and demand, but
also for increasing revenue and profit. Recent advances in
online retailing and increased availability of online sales data
have created opportunities for firms to better use customer
information to make pricing decisions, see, for example,
the survey paper by den Boer (2015). Indeed, the advances
in information technology have made the sales data eas-
ily accessible, facilitating the estimation of demand and the
adjustment of price in real time. Increasing availability of
demand data allows for more knowledge to be gained about
the market and customers, as well as the use of advanced
analytics tools to make better pricing decisions.

However, in practice, there are often products with low
sales amount or user views. For these products, few avail-
able data points exist. For example, Tmall Supermarket, a
business division of Alibaba, is a large-scale online store. In
contrast to a typical consumer-to-consumer (C2C) platform

Accepted by Dan Zhang, after two revisions.

(e.g., Taobao under Alibaba) that has millions of products
available, Tmall Supermarket is designed to provide carefully
selected high-quality products to customers. We reviewed the
sales data from May to July of 2018 on Tmall Supermar-
ket with nearly 75,000 products offered during this period of
time, and they show that more than 16,000 products (21.6% of
all products) have a daily average number of unique visitors
(UVs)1 less than 10, and more than 10,000 products (14.3% of
all products) have a daily average number of UVs at most 1.
Although each low-sale product alone may have little impact
on the company’s revenue, the combined sales of all low-sale
products are significant.

Pricing low-sale products is often challenging due to the
limited sales records available for demand estimation. In
fast-evolving markets (e.g., fashion or online advertising),
demand data from the distant past may not be useful for
predicting customers’ purchasing behavior in the near future.
Classical statistical estimation theory has shown that data
insufficiency leads to large estimation error of the underlying
demand, which results in suboptimal pricing decisions. To
overcome the issue of data insufficiency, some literature in
other applications such as customer segmentation cluster the
objects (i.e., customers) using their feature data (see, e.g.,
Su & Chen, 2015). However, clustering low-sale products by

Prod Oper Manag. 2022;31:3559–3575. © 2022 Production and Operations Management Society. 3559wileyonlinelibrary.com/journal/poms

mailto:sentao.miao@mcgill.ca
https://wileyonlinelibrary.com/journal/poms

3560 MIAO ET AL.Production and Operations Management

their features may not always work well. For the following
two reasons, in this paper we choose to define clusters
based on demand patterns rather than features for low-sale
products: (i) Some products with very similar features may
have very different demand, for example, two bags with
same/similar appearance may have totally different demand
because one belongs to a famous brand and the other is a
copycat (only difference is the feature of product brand).
(ii) Some (seemingly) completely unrelated products may
exhibit same or similar demand pattern. In fact, the research
on dynamic pricing of products with little sales data remains
relatively unexplored. To the best of our knowledge, there
exists no dynamic pricing policy in the literature for low-sale
products that admits theoretical performance guarantee. This
paper fills the gap by developing adaptive context-based
dynamic pricing learning algorithms for low-sale products,
and our results show that the algorithms perform well both
theoretically and numerically.

1.1 Contributions of this paper

Although each low-sale product only has a few sales records,
the total number of low-sale products is usually quite large.
In this paper, we address the challenge of pricing low-sale
products using an important idea from machine learning—
clustering. Our starting point is that there are some set of
products out there, though we do not know which ones, that
share similar underlying demand patterns. For these products,
information can be extracted from their collective sales data
to improve the estimation of their demand function. The prob-
lem is formulated as developing adaptive learning algorithms
that identify the products exhibiting similar demand patterns,
and extract the hidden information from sales data of seem-
ingly unrelated products to improve the pricing decisions of
low-sale products and increase revenue. As we mentioned
earlier in the introduction, our method of clustering is based
on similar demand patterns instead of similar product fea-
tures. The reason is that products with similar features may
have different demand.

We consider a generalized linear demand model with arbi-
trary contextual covariate information about products and
develop a learning algorithm that integrates product clus-
tering with pricing decisions. Our policy consists of two
phases. The first phase constructs confidence bounds on the
distance between clusters, which enables dynamic clustering
without any prior knowledge of the cluster structure. The sec-
ond phase carefully controls the price variation based on the
estimated clusters, striking a proper balance between price
exploration and revenue maximization by exploiting the clus-
ter structure. Since the pricing part of the algorithm is inspired
by semimyopic policy proposed by Keskin and Zeevi (2014),
we refer to our algorithm as the Clustered Semi-Myopic Pric-
ing (CSMP) policy. We first establish the theoretical regret
bound of the proposed policy. Specifically, when the demand
functions of the products belong to m clusters, where m is
smaller than the total number of products (denoted by n), the

performance of our algorithm is better than that of existing
dynamic pricing policies that treat each product separately.
Let T denote the length of the selling season; we show in

Theorem 1 that our algorithm achieves the regret of Õ(
√

mT),
where Õ(⋅) hides the logarithmic terms. This result, when m
is much smaller than n, is a significant improvement over
the regret when applying a single-product pricing policy to

individual products, which is typically Õ(
√

nT).
We carry out a thorough numerical experiment using both

synthetic data and a real data set from Alibaba consisting of a
large number of low-sale products. Several benchmarks, one
treats each product separately, one puts all products into a
single cluster, and the other one applies a classical clustering
method (K-means method for illustration), are compared with
our algorithms under various scenarios. The numerical results
show that our algorithms are effective and their performances
are consistent in different scenarios (e.g., with almost static
covariates, model misspecification).

It is well known that providing a performance guarantee for
a clustering method is challenging due to the nonconvexity of
the loss function (e.g., in K-means), which is why there exists
no clustering and pricing policy with theoretical guarantees
in the existing literature. This is the first paper to estab-
lish the regret bound for a dynamic clustering and pricing
policy. Instead of adopting an existing clustering algorithm
from the machine learning literature (e.g., K-means), which
usually requires the number of clusters as an input, our algo-
rithms dynamically update the clusters based on the gathered
information about customers’ purchase behavior. In addi-
tion to significantly improving the theoretical performance
as compared to classical dynamic pricing algorithms without
clustering, our algorithms demonstrate excellent performance
in our simulation study.

1.2 Literature review

In this subsection, we review some related research from both
the revenue management and machine learning literature.

Related literature in dynamic pricing

Due to increasing popularity of online retailing, dynamic
pricing has become an active research area in revenue man-
agement in the past decade. We only briefly review a few
of the most related works and refer the interested readers to
den Boer (2015) and Kumar et al. (2018) for comprehensive
literature surveys. Earlier work and review of dynamic
pricing include Bitran and Caldentey (2003), Elmaghraby
and Keskinocak (2003), Gallego and Van Ryzin (1994), and
Gallego and Van Ryzin (1997). These papers assume that
demand information is known to the retailer a priori and
either characterize or compute the optimal pricing deci-
sions. In some retailing industries, such as fast fashion, this
assumption may not hold due to the quickly changing market

PRICING WITH CLUSTERING 3561
Production and Operations Management

environment. As a result, with the recent development of
information technology, combining dynamic pricing with
demand learning has attracted much interest in research.
Depending on the structure of the underlying demand func-
tions, these works can be roughly divided into two categories:
parametric demand models (see, e.g., Bertsimas & Perakis,
2006; Besbes & Zeevi, 2009; Broder & Rusmevichientong,
2012; Carvalho & Puterman, 2005; Chen, Simchi-Levi, et al.,
2022; den Boer & Zwart, 2013; Farias & Van Roy, 2010;
Harrison et al., 2012; Keskin & Zeevi, 2014; Wang et al.,
2021) and nonparametric demand models (see, e.g., Araman
& Caldentey, 2009; Besbes & Zeevi, 2015; Chen et al., 2015,
2021; Chen & Shi, 2019; Chen & Wang, 2022; Cheung et al.,
2017; Cohen et al., 2018; Lei et al., 2014; Wang et al., 2014).
The aforementioned papers assume that the price is contin-
uous. Other works consider a discrete set of prices, see, for
example, Ferreira et al. (2018), and recent studies examine
pricing problems with strategic customers (e.g., Chen, Gao,
et al., 2022) or in dynamically changing environments (e.g.,
Besbes et al., 2015; Keskin & Zeevi, 2016)

Dynamic pricing and learning with demand covariates (or
contextual information) have received increasing attention in
recent years because of their flexibility and clarity in model-
ing customers and market environment. Research involving
this information include, among others, Ban and Keskin
(2021), Chen, Owen, et al. (2022), Chen and Gallego (2021),
Javanmard and Nazerzadeh (2019), Lobel et al. (2018),
Nambiar et al. (2019), and Qiang and Bayati (2016). In
many online-retailing applications, sellers have access to rich
covariate information reflecting the current market situation.
Moreover, the covariate information is not static but usu-
ally evolves over time. Our paper incorporates time-evolving
covariate information into the demand model. In particular,
given the observable covariate information of a product, we
assume that the customer decision depends on both the sell-
ing price and covariates. Although covariates provide richer
information for accurate demand estimation, a demand model
that incorporates covariate information involves more param-
eters to be estimated. Therefore, it requires more data for
estimation with the presence of covariates, which poses an
additional challenge for low-sale products.

Related literature in clustering for pricing

In the literature, there are some interesting two-stage methods
that first use historical data to determine the cluster structure
of demand functions in an offline manner, and then dynami-
cally make pricing decisions for another product by learning
which cluster it demand belongs to. Ferreira et al. (2015)
study a pricing problem with flash sales on the Rue La La
platform. Using historical information and offline optimiza-
tion, the authors classify the demand of all products into
multiple groups, and use demand information for products
that did not experience lost sales to estimate demand for prod-
ucts that had lost sales. They construct “demand curves” on
the percentage of total sales with respect to the number of

hours after the sales event starts, then classify these curves
into four clusters. For a sold-out product, they check which
one of the four curves is the closest to its sales behavior and
use that to estimate the lost sales. Cheung et al. (2017) con-
sider the single-product pricing problem, where the demand
of the product is assumed to be from one of the K demand
functions (called demand hypothesis in that paper). Those K
demand functions are assumed to be known, and the deci-
sion is to choose which of those functions is the true demand
curve of the product. In their field experiment with Groupon,
they applied K-means clustering to historical demand data to
generate those K demand functions offline. That is, clustering
is conducted offline first using historical data, then dynamic
pricing decisions are made in an online fashion for a new
product, assuming that its demand is one of the K demand
functions. Very recently, Keskin et al. (2020) studied person-
alized pricing in retail electricity market, where they applied
a spectral clustering approach to decide customer types based
on customers’ features. In this paper, as we discussed ear-
lier, instead of using observable features, we cluster products
based on estimated demand patterns.

Related literature in other operations management
problems

The method of clustering is quite popular for many operations
management problems such as demand forecast for new prod-
ucts and customer segmentation. In the following, we give a
brief review of some recent papers on these two topics that
are based on data clustering approach.

Demand forecasting for new products is a prevalent yet
challenging problem. Since new products at launch have no
historical sales data, a commonly used approach is to bor-
row data from “similar old products” for demand forecasting.
To connect the new product with old products, current liter-
ature typically use product features. For instance, Baardman
et al. (2018) assume a demand function, which is a weighted
sum of unknown functions (each representing a cluster) of
product features. While in Ban et al. (2018), similar prod-
ucts are predefined such that common demand parameters are
estimated using sales data of old products. Hu et al. (2018)
investigate the effectiveness of clustering based on product
category, features, or time series of demand, respectively.

Customer segmentation is another application of cluster-
ing. Jagabathula et al. (2018) assume a general parametric
model for customers’ features with unknown parameters,
and use K-means clustering to segment customers. Bernstein
et al. (2018) consider the dynamic personalized assortment
optimization using clustering of customers. They develop
a hierarchical Bayesian model for mapping from customer
profiles to segments.

Compared with these literature, besides a totally different
problem setting, our paper is also different in the approach.
First, we consider an online clustering approach with prov-
able performance instead of an offline setting as in Baardman
et al. (2018), Ban et al. (2018), Hu et al. (2018), and

3562 MIAO ET AL.Production and Operations Management

Jagabathula et al. (2018). Second, we know neither the num-
ber of clusters (in contrast to Baardman et al., 2018; Bernstein
et al., 2018, that assume known number of clusters), nor the
set of products in each cluster (as compared with Ban et al.,
2018, who assume known products in each cluster). Finally,
we do not assume any specific probabilistic structure on the
demand model and clusters (in contrast with Bernstein et al.,
2018, who assign and update the probability for a product
to belong to some cluster), but define clusters using product
neighborhood based on their estimated demand parameters.

Related literature in multiarm bandit problem

A successful dynamic pricing algorithm requires a careful
balancing between exploration (i.e., learning the underlying
demand function) and exploitation (i.e., making the optimal
pricing strategy based on the learned information so far).
The exploration–exploitation trade-off has been extensively
investigated in the multi-armed bandit (MAB) literature; see
Bubeck et al. (2012) for a comprehensive literature review.
Among the vast MAB literature, there is a line of research on
bandit clustering that addresses a different but related prob-
lem (see, e.g., Cesa-Bianchi et al., 2013; Gentile et al., 2014,
2017; Nguyen & Lauw, 2014). The setting is that there is a
finite number of arms, which belong to several unknown clus-
ters, where unknown reward functions of arms in each cluster
are the same. Under this assumption, the MAB algorithms
aim to cluster different arms and learn the reward function
for each cluster. The setting of the bandit-clustering problem
is quite different from ours. In the bandit clustering prob-
lem, the arms belong to different clusters and the decision for
each period is which arm to play. In our setting, the prod-
ucts belong to different clusters and the decision for each
period is what prices to charge for all products, and we have
a continuum set of prices to choose from for each product. In
addition, in contrast to the linear reward in bandit-clustering
problem, the demand functions in our setting follow a gen-
eralized linear model (GLM). As will be seen in Section 3,
we design a price perturbation strategy based on the esti-
mated cluster, which is very different from the algorithms in
bandit-clustering literature.

Related literature in clustering

We end this section by giving a brief overview of clustering
methods in the machine learning literature. To save space, we
only discuss several popular clustering methods, and refer the
interested reader to Saxena et al. (2017) for a recent literature
review on the topic. The first one is called hierarchical cluster-
ing (Murtagh, 1983), which iteratively clusters objects (either
bottom-up, from a single object to several big clusters; or top-
down, from a big cluster to single product). Comparable with
hierarchical clustering, another class of clustering method is
partitional clustering, in which the objects do not have any
hierarchical structure, but rather are grouped into different

clusters horizontally. Among these clustering methods, K-
means clustering is probably the most well-known and most
widely applied method (see, e.g., MacQueen et al., 1967).
Several extensions and modifications of K-means clustering
method have been proposed in the literature, for example, K-
means++ (Arthur & Vassilvitskii, 2007) and fuzzy c-means
clustering (Dunn, 1973). Another important class of clus-
tering method is based on graph theory. For instance, the
spectral clustering uses graph Laplacian to help determine
clusters (Shi & Malik, 2000; Von Luxburg, 2007). Beside
these general methods for clustering, there are many clus-
tering methods for specific problems such as decision tree,
neural network, etc. It should be noted that nearly all the clus-
tering methods in the literature are based on offline data. This
paper, however, integrates clustering into online learning and
decision-making process.

1.3 Organization of the paper

The remainder of this paper is organized as follows. In
Section 2, we present the problem formulation. Our main
algorithm is presented in Section 3 together with the theo-
retical results for the algorithm performance. In Section 4,
we report the results of several numerical experiments based
on both synthetic data and a real data set. We conclude
the paper with a discussion about future research in Sec-
tion 5. Finally, all the technical proofs are presented in the
Supporting Information.

2 PROBLEM FORMULATION

We consider a retailer that sells n products, labeled by i =
1, 2, … , n, with unlimited inventory (e.g., there is an inven-
tory replenishment scheme such that products typically do not
run out of stock). Following the literature, we denote the set
of these products by [n]. We mainly focus on online retail-
ing of low-sale products. These products are typically not
offered to customers as a display; hence we do not consider
substitutability/complementarity of products in our model.
Furthermore, these products are usually not recommended
by the retailer on the platform, and instead, customers search
to view them online. We let qi > 0 denote the percentage of
potential customers who are interested in, or view/search for,
product i ∈ [n]. In this paper, we will treat qi as the proba-
bility an arriving customer views product i; in another word,
qi can be considered as the arrival rate of customers viewing
product i, which are independent from each other.

Customers arrive sequentially at time t = 1, 2, … ,T , and
we denote the set of all time indices by [T]. For simplicity,
we assume without loss of generality that there is exactly one
arrival during each period. In each time period t, the firm first
observes some covariates for each product i, such as product
rating, prices of competitors, average sales in past few weeks,
and promotion-related information (e.g., whether the product
is currently on sale). We denote the covariates of product i

PRICING WITH CLUSTERING 3563
Production and Operations Management

by zi,t ∈ ℝ
d, where d is the dimension of the covariates that

is usually small (as compared to n or T). The covariates zi,t
change over time and satisfy ||zi,t||2 ≤ 1 after normalization.
Then, the retailer sets the price pi,t ∈ [p, p] for each product

i, where 0 ≤ p < p < ∞ (the assumption of the same price
range for all products is without loss of generality). Let it
denote the product that the customer searches in period t (or
customer t). After observing the price and other details of
product it, customer t then decides whether or not to pur-
chase it. The sequence of events in period t is summarized
as follows:

(i) In time t, the retailer observes the covariates zi,t for each
product i ∈ [n], then sets the price pi,t for each i ∈ [n].

(ii) Customer searches for product it ∈ [n] in period t with
probability qit independent of others and then observes
its price pit ,t.

(iii) The customer decides whether or not to purchase
product it.

The customer’s purchasing decision follows a GLM (see,
e.g., McCullagh & Nelder, 1989). That is, given price pit ,t of
product it at time t, the customer’s purchase decision is repre-
sented by a Bernoulli random variable dit ,t(pit ,t; zit ,t) ∈ {0, 1},
where dit ,t(pit ,t; zit ,t) = 1 if the customer purchases product
it and 0 otherwise. The purchase probability, which is the
expectation of dit ,t(pit ,t; zit ,t), takes the form

𝔼[dit ,t(pit ,t; zit ,t)] = 𝜇(𝛼′it xit ,t + 𝛽it pit ,t), (1)

where 𝜇(⋅) is the link function, x′it ,t = (1, z′it ,t) is the corre-
sponding extended demand covariate with the 1 in the first
entry used to model the bias term in a GLM model, and
the expectation is taken with respect to customer purchas-
ing decision. Let 𝜃′it = (𝛼′it , 𝛽it) be the unknown parameter
of product it, which is assumed to be bounded. That is,||𝜃i||2 ≤ L for some constant L for all i ∈ [n].

Remark 1. The commonly used linear and logistic mod-
els are special cases of GLM with link function 𝜇(x) = x
and 𝜇(x) = exp (x)∕(1 + exp(x)), respectively. The paramet-
ric demand model (1) has been used in a number of papers on
pricing with contextual information, see, for example, Qiang
and Bayati (2016) (for a special case of linear demand with
𝜇(x) = x) and Ban and Keskin (2021).

For convenience and with a slight abuse of notation, we
write

pt := pit ,t, zt := zit ,t, xt := xit ,t, dt := dit ,t, (2)

where “:=” stands for “defined as.” Let the feasible sets of xt
and 𝜃i be denoted as  and Θ, respectively. We further define

i,t := {s ≤ t : is = i} (3)

as the set of time periods before t in which product i is
viewed, and Ti,t := |i,t| its cardinality. With this demand
model, the expected revenue rt(pt) of each round t is

rt(pt) := pt𝜇(𝛼′it xt + 𝛽it pt). (4)

Note that we have made the dependency of rt(pt) on
xt implicit.

2.1 The firm’s optimization problem and
regret

The firm’s goal is to decide the price pt ∈ [p, p] at each
time t for each product to maximize the cumulative expected

revenue
∑T

t=1 𝔼[rt(pt)], where the expectation is taken with
respect to the randomness of the pricing policy as well as
the stream of it for t ∈ [T], and for the next section, also the
stochasticity in contextual covariates zt, t ∈ [T]. The goal of
maximizing the expected cumulative revenue is equivalent to
minimizing the so-called regret, which is defined as the rev-
enue gap as compared with the clairvoyant decision maker
who knew the underlying parameters in the demand model a
priori. With the known demand model, the optimal price can
be computed as

p∗t = arg max
p∈[p,p]

rt(p), (5)

and the corresponding revenue gap at time t is 𝔼[rt(p
∗
t) −

rt(pt)] (the dependency of p∗t on xt is again made implicit).
The cumulative regret of a policy 𝜋 with prices {pt}

T
t=1 is

defined by the summation of revenue gaps over the entire time
horizon, that is,

R𝜋(T) :=
T∑

t=1

𝔼[rt(p
∗
t) − rt(pt)]. (6)

Remark 2. For consistency with the online pricing literature,
see, for example, Ban and Keskin (2021), Chen, Owen, et al.
(2022), Javanmard and Nazerzadeh (2019), and Qiang and
Bayati (2016), in this paper we use expected revenue as the
objective to maximize. However, we point out that all our
analyses and results carry over to the objective of profit max-
imization. That is, if ct is the cost of the product in round t,
then the expected profit in (4) can be replaced by

rt(pt) = (pt − ct)𝜇(𝛼′it xt + 𝛽it pt). (7)

2.2 Cluster of products

Two products i1 and i2 are said to be “similar” if they have
similar underlying demand functions, that is, 𝜃i1 and 𝜃i2 are
close. In this paper, we assume that the n products can be

3564 MIAO ET AL.Production and Operations Management

partitioned into m clusters, j for j = 1, 2, … ,m, such that
for arbitrary two products i1 and i2, we have 𝜃i1 = 𝜃i2 if i1
and i2 belong to the same cluster; otherwise, ||𝜃i1 − 𝜃i2 ||2 ≥

𝛾 > 0 for some constant 𝛾. We refer to this cluster structure
as the 𝛾-gap assumption, which will be relaxed in Remark 7
of Section 3.2. For convenience, we denote the set of clusters
by [m], and by a bit abuse of notation, let i be the cluster to
which product i belongs.

It is important to note that the number of clusters m and
each cluster j are unknown to the decision maker a priori.
Indeed, in some applications, such structure may not exist at
all. If such a structure does exist, then our policy can iden-
tify such a cluster structure and make use of it to improve
the practical performance and the regret bound. However, we
point out that the cluster structure is not a requirement for
the pricing policy to be discussed. In other words, our pol-
icy reduces to a standard dynamic pricing algorithm when
demand functions of the products are all different (i.e., when
m = n).

It is also worthwhile to note that our clustering is based on
demand parameters/patterns and not on product categories or
features, since it is the demand of the products that we want to
learn. The clustering approach based on demand is prevalent
in the literature (besides Cheung et al., 2017; Ferreira et al.,
2015, and the references therein, we also refer to Van Kampen
et al., 2012, for a comprehensive review). Clustering based on
category/feature similarity is useful in some problems (see,
e.g., Su & Chen, 2015, investigate customer segmentation
using features of clicking data), but it does not apply to our
setting because, for instance, products with similar feature
for different brands may have very different demand (see
our earlier discussion in the introduction). Moreover, in our
model, motivated by Alibaba’s business the product feature
xi,t is non-stationary, so feature-based clustering can lead to
different clusters in different time.

Remark 3. For its application to the online pricing prob-
lem, the contextual information in our model is about the
product. That is, at the beginning of each period, the firm
observes the contextual information about each product, then
determines the pricing decision for the product, and then the
arriving customer makes a purchasing decision. We point
out that our algorithm and result apply equally to person-
alized pricing in which the contextual information is about
the customer. That is, a customer arrives (e.g., logging on
the website) and reveals his/her contextual information, and
then the firm makes a pricing decision based on that informa-
tion. The objective is to make personalized pricing decisions
to maximize total revenue (see, e.g., Ban & Keskin, 2021).

3 PRICING POLICY AND MAIN
RESULTS

In this section, we discuss the specifics of the learn-
ing algorithm, its theoretical performance, and a

sketch of its proof. Specifically, we describe the pol-
icy procedure and discuss its intuitions in Section 3.1
before presenting its regret and outlining the proof in
Section 3.2.

3.1 Description of the pricing policy

Our policy consists of two phases for each period t ∈ [T]: The
first phase constructs a neighborhood for each product i ∈
[n], and the second phase determines its selling price. In the
first step, our policy uses individual data of each product i ∈
[n] to estimate parameters 𝜃̂i,t−1. This estimation is used only

for construction of the neighborhood ̂i,t for product i. Once
the neighborhood is defined, we consider all the products in
this neighborhood as in the same cluster and use clustered
data to estimate the parameter vector 𝜃

̂i,t ,t−1. The latter is

used in computing the selling price of product i. We refer to
Figure 1 for a flowchart of our policy, and present the detailed
procedure in Algorithm 1.

In the following, we discuss the parameter estimation
of GLM demand functions and the construction of a
neighborhood in detail.

3.1.1 Parameter estimation of GLM

As shown in Figure 1, the parameter estimation is an
important part of our policy construction. We adopt the
classical maximum likelihood estimation (MLE) method
for parameter estimation (see McCullagh & Nelder,
1989). For completeness, we briefly describe the MLE
method here. Let ut := (x′t , pt)

′ ∈ ℝd+2. The conditional
distribution of the demand realization dt, given ut,
belongs to the exponential family and can be written
as

ℙ(dt|ut) = exp

(
dtu
′
t𝜃 − m(u′t𝜃)

g(𝜂)
+ h(dt, 𝜂)

)
. (8)

Here m(⋅), g(⋅), and h(⋅) are some specific functions, where
ṁ(u′t𝜃) = 𝔼[dt] = 𝜇(u′t𝜃) depends on 𝜇(⋅) and h(dt, 𝜂) is the
normalization part, and 𝜂 is some known scale parameter.
Suppose that we have t samples (ds, ps) for s = 1, 2, … , t,
the negative log-likelihood function of 𝜃 under model (8)
is

t∑
s=1

(
m(u′s𝜃) − dsu

′
s𝜃

g(𝜂)
+ h(ds, 𝜂)

)
. (9)

By extracting the terms in (9) that involves 𝜃, the maximum
likelihood estimator 𝜃̂ is

𝜃̂ = arg min
𝜃∈Θ

t∑
s=1

ls(𝜃), ls(𝜃) := m(u′s𝜃) − dsu
′
s𝜃. (10)

PRICING WITH CLUSTERING 3565
Production and Operations Management

Estimate
parameter of
each product

Estimate
parameter

using cluster
data

Determine
neighborhood

of each product

Set selling price
for each
product

Round t
Customer t arrives

and searches
product it

Customer t observes
the price and makes

purchase decision

Record data
and go to t+1 .

……

F I G U R E 1 Flow chart of the algorithm [Color figure can be viewed at wileyonlinelibrary.com]

A L G O R I T H M 1 The CSMP Algorithm

Require: c, the confidence bound parameter; Δ0, price perturbation
parameter;

1: Step 0. Initialization. Initialize i,0 = ∅ and Vi,0 = I for all i ∈ [n].
Let t = 1 and go to Step 1.

2: for t = 1, 2, … ,T do

3: Step 1. Individual Parametric Estimation. Compute the MLE using
individual data

𝜃̂i,t−1 = arg min𝜃∈Θ
∑

s∈i,t−1
ls(𝜃)

for all i ∈ [n]. Go to Step 2.

4: Step 2. Neighborhood Construction. Compute the neighborhood of
each product i as

̂i,t = {i′ ∈ [n] : ||𝜃̂i′ ,t−1 − 𝜃̂i,t−1||2 ≤ Bi′ ,t−1 + Bi,t−1}

where Bi,t−1 is defined in (12) for each i ∈ [n]. Go to Step 3.

5: Step 3. Clustered Parametric Estimation. Compute the MLE using
clustered data

(𝛼̃′
̂i,t ,t−1

, 𝛽
̂i,t ,t−1)′ = 𝜃

̂i,t ,t−1 = arg min𝜃∈Θ
∑

s∈̃
̂i,t ,t−1

ls(𝜃)

for each i ∈ [n]. Go to Step 4.

6: Step 4. Pricing. Compute price for each i ∈ [n] as

p′i,t = arg maxp∈[p,p] 𝜇(𝛼′
̂i,t ,t−1

xi,t + 𝛽̂i,t ,t−1p)p,

then project to p̃i,t = Proj[p+|Δi,t |,p−|Δi,t |](p′i,t) and offer to the customer

price pi,t = p̃i,t + Δi,t where Δi,t = ±Δ0T̃
−1∕4

̂i,t ,t
which takes two signs

with equal probability.

7: Then, customer t arrives, searches for product it , and makes
purchasing decision dit ,t(pit ,t; zit ,t). Update it ,t = it ,t−1 ∪ {t} and
Vit ,t = Vit ,t−1 + utu

′
t .

8: end for

Since ∇2ls(𝜃) = 𝜇̇(u′s𝜃)usu
′
s is positive semidefinite in a

standard GLM model (by Assumption A-2 in the next sub-
section), the optimization problem in (10) is convex and can
be easily solved.

3.1.2 Determining the neighborhood of each
product

The first phase of our policy determines which products to
include in the neighborhood of each product i ∈ [n]. We use
the term “neighborhood” instead of cluster, though closely
related, because clusters are usually assumed to be disjoint
in the machine learning literature. In contrast, by our defini-
tion of neighborhood, some products can belong to different
neighborhoods depending on the estimated parameters. To
define the neighborhood of i, which is denoted by ̂i,t, we
first estimate parameter 𝜃̂i,t−1 of each product i ∈ [n] using
their own data, that is, 𝜃̂i,t−1 is the maximum likelihood esti-
mator using data in i,t−1 defined in (3). Then, we include

a product i′ ∈ [n] in the neighborhood ̂i,t of i if their
estimated parameters are sufficiently close, which is defined
as

||𝜃̂i′,t−1 − 𝜃̂i,t−1||2 ≤ Bi′,t−1 + Bi,t−1, (11)

where Bi,t−1 is a confidence bound for product i given by

Bi,t :=

√
c(d + 2) log(1 + t)√
𝜆min(Vi,t)

. (12)

Here, Vi,t := I +
∑

s∈i,t
usu
′
s is the empirical Fisher’s infor-

mation matrix of product i ∈ [n] at time t and c is some
positive constant, which will be specified in our theory
development. Note that, by the 𝛾-gap assumption dis-
cussed at the end of Section 2, the method will work
even when Ti,t−1 only contains a limited number of sales
records.

3.1.3 Setting the price of each product

Once we define the (estimated) neighborhood ̂i,t of i ∈ [n],

we can pool the demand data of all products in ̂i,t to learn

3566 MIAO ET AL.Production and Operations Management

the parameter vector. That is, we let

̃
̂i,t ,t−1 :=

⋃
i′∈̂i,t

i′,t−1 and T̃
̂i,t ,t−1 := |̃

̂i,t ,t−1|. (13)

The clustered parameter vector 𝜃
̂i,t ,t−1 is the maximum

likelihood estimator using data in ̃
̂i,t ,t−1.

To decide on the price, we first compute p′i,t, which is the
“optimal price” based on the estimated clustered parameters
𝜃
̂i,t ,t−1. Then we restrict p′i,t to the interval [p + |Δi,t|, p −|Δi,t|] by the projection operator. That is, we compute

p̃i,t = Proj[p+|Δi,t|,p−|Δi,t|](p′i,t), where

Proj[a,b](x) := min{max{x, a}, b}. (14)

The reasoning for this restriction is that our final price pi,t
will be pi,t = p̃i,t + Δi,t, and the projection operator forces the
final price pi,t to the range [p, p]. Here, the price perturba-

tion Δi,t = ±Δ0T̃
−1∕4

̂i,t ,t
takes a positive or a negative value with

equal probability, where Δ0 is a positive constant. We add
this price perturbation for the purpose of price exploration.
Intuitively, the more price variation we have, the more accu-
rate the parameter estimation will be. However, too much
price variation leads to loss of revenue because we delib-
erately charged a “wrong” price. Therefore, it is crucial to
find a balance between these two targets by defining an
appropriate Δi,t.

We note that this pricing scheme belongs to the class of
semimyopic pricing (SMP) policies defined in Keskin and
Zeevi (2014). Since our policy combines clustering with
SMP, we refer to it as the CSMP algorithm.

We briefly discuss each step of the algorithm and the intu-
ition behind the theoretical performance. For Steps 1 and 2,
the main purpose is to identify the correct neighborhood of
the product searched in period t; that is, ̂it ,t =it with

high probability (for brevity of notation, we let ̂t := ̂it ,t).
To achieve that, two conditions are necessary. First, the esti-
mator 𝜃̂i,t should converge to 𝜃i as t grows for all i ∈ [n].
Second, the confidence bound Bi,t should converge to 0 as
t grows, such that in Step 2, we are able to identify differ-
ent neighborhood by the 𝛾-gap assumption among clusters.
To satisfy these conditions, classical statistical learning the-
ory (see, e.g., Lemma EC.2 in the Supporting Information)
requires the minimum eigenvalue of the empirical Fisher’s
information matrix Vi,t to be sufficiently above zero, or more

specifically, 𝜆min(Vi,t) ≥ Ω(qi

√
t) (see Lemma EC.3 in the

Supporting Information). This requirement is guaranteed by
the variation assumption on demand covariates xi,t, which
will be imposed in Assumption A-3 in the next subsection,
plus our choice of price perturbation in Step 4.

Following the discussion above, when ̂t =it with high
probability, we can cluster the data within it to increase
the number of samples for it. Because of the increased data

samples, it is expected that the estimator 𝜃it ,t−1 for 𝜃it in

Step 3 is more accurate than 𝜃̂i,t−1. Of course, the estima-
tion accuracy again requires the minimum eigenvalue of the
empirical Fisher’s information matrix over the clustered set
̃it ,t−1, that is, 𝜆min(I +

∑
s∈̃it ,t−1

usu
′
s), to be sufficiently

large, which is again guaranteed by stochastic assumption of
zi,t and the price perturbation in Step 4.

The design of the CSMP algorithm depends critically on
two things. First, by taking an appropriate price perturbation
in Step 4, we balance the exploration and exploitation. If the
perturbation is too much, even though it helps to achieve good
parameter estimation, it may lead to loss of revenue (due to
purposely charging the wrong price). Second, the sequence
of demand covariates zi,t has to satisfy an important vari-
ation assumption (Assumption A-3). Later we will see that
this variation assumption is weaker than the typical stochas-
tic assumption on zi,t, which is commonly seen in the pricing
literature with demand covariates (see, e.g., Ban & Keskin,
2021; Chen, Owen, et al., 2022; Javanmard & Nazerzadeh,
2019; Qiang & Bayati, 2016).

3.2 Theoretical performance of the CSMP
algorithm

This section presents the regret of the CSMP pricing policy.
Before proceeding to the main result, we first make some
technical assumptions that will be needed for the theorem.

Assumption A.

1. The expected revenue function p𝜇(𝛼′x + 𝛽p) has a unique
maximizer p∗(𝛼′x, 𝛽) ∈ [p, p], which is Lipschitz in

(𝛼′x, 𝛽) with parameter L0 for all x ∈  and 𝜃 ∈ Θ. More-
over, the unique maximizer is in the interior (p, p) for the
true 𝜃i for all i ∈ [n] and x ∈  .

2. 𝜇(⋅) is monotonically increasing and twice continuously
differentiable in its feasible region. Moreover, for all
x ∈  , 𝜃 ∈ Θ and p ∈ [p, p], we have that 𝜇̇(𝛼′x +

𝛽p) ∈ [l1,L1], and |𝜇̈(𝛼′x + 𝛽p)| ≤ L2 for some positive
constants l1,L1,L2.

3. There exist some constants c0 > 0 and t0 > 0, such that for
any i ∈ [n] and t ∈ [T], 𝜆min(

∑
s∈i,t

xi,sx
′
i,s) ≥ c0Ti,t when

Ti,t ≥ t0.

The first assumption A-1 is a standard regularity condi-
tion on expected revenue, which is prevalent in the pricing
literature (see, e.g., Broder & Rusmevichientong, 2012). The
second assumption A-2 states that the purchasing probabil-
ity will increase if and only if the utility 𝛼′x + 𝛽p increases,
which is plausible. One can easily verify that the commonly
used demand models, such as linear and logistic demand,
satisfy these two assumptions with appropriate choice of 
and Θ. The last assumption A-3 is a variation assumption
on demand covariates. That is, we require that the covari-
ates of each product have sufficient variation. Such a variation

PRICING WITH CLUSTERING 3567
Production and Operations Management

condition is required for learning in many pricing papers (see,
e.g., Ban & Keskin, 2021; Javanmard & Nazerzadeh, 2019;
Nambiar et al., 2019; Qiang & Bayati, 2016). We emphasize
that in the literature, to guarantee this variation, xi,t is often
assumed to be stochastic (e.g., independent and identically
distributed [i.i.d.]) and 𝜆min(𝔼[xi,tx

′
i,t]) is strictly positive.

With such a stochastic assumption, A-3 is satisfied (with high
probability and it is sufficient for our result to hold); hence
our assumption A-3 is a weaker assumption than the common
stochastic assumption in the literature. In our setting, xi,t can
be arbitrary and even adversarial as long as sufficient varia-
tion is satisfied, and we manage to prove similar theoretical
performance of our algorithm under this relaxed assump-
tion (see Section EC.1 in the Supporting Information). We
note that this relaxed variation assumption is practically more
favorable because in reality, the stochastic assumption may
be difficult to justify. For instance, there can be nearly static
and nonstochastic features in zi,t (e.g., indicator of week-
end/holiday) such that 𝜆min(𝔼[zi,tz

′
i,t]) > 0 is violated. We test

our algorithm numerically against these cases in Section 4.1,
and the results show that our algorithm performs well. One
might argue that assumption A-3 may still be violated if
some features are completely static (such as color, size, and
brand). However, such static features can be removed from
zi,t since the utility corresponding to these static features can
be accounted in the constant term, that is, the intercept in
𝛼′it

(1, zi,t). In other words, if we only include static features
of the products, the context-based pricing problem reduces to
the one without any context.

Under Assumption A, we have the following theoretical
result on the regret of the CSMP algorithm.

Theorem 1. Let input parameter c ≥ 20∕l21; the expected
regret of algorithm CSMP is

R(T) = O

(
d2 log2(dT)

mini∈[n] q2
i

+ d
√

mT log T

)
. (15)

In particular, if qi = Θ(1∕n) for all i ∈ [n] and we hide the
logarithmic terms, then when T ≫ n, the expected regret is at

most Õ(d
√

mT).

Here, we briefly discuss the very high-level ideas of prov-
ing Theorem 1, with the technical details deferred to the
Supporting Information. One key step of proving the main

part of the regret Õ(d
√

mT), as opposed to the typical regret

Õ(d
√

nT) for single-product pricing without clustering, is
that we are able to identify each neighborhood correctly. This
is achieved by our technique of price perturbation, which
guarantees that our estimated parameter 𝜃̂i,t converges to
the true 𝜃i in a sufficiently fast rate. As a result, when t ≥
t̄ = Θ(d2 log2(dT)∕(mini∈[n] q2

i)) (this is why we have regret

O(d2 log2(dT)∕(mini∈[n] q2
i)), which is incurred before t̄), all

neighborhoods are identified correctly with high probabil-
ity. Conditioned on this, our problem is basically reduced

to the pricing of m “products,” which gives us the regret

Õ(d
√

mT).
Although the key ideas are quite simple, the proofs are

technical and involved, which differ from the existing liter-
ature. For instance, compared with the bandit with clustering
literature (see, e.g., Cesa-Bianchi et al., 2013; Gentile et al.,
2014, 2017; Nguyen & Lauw, 2014), our action set (prices)
is continuous instead of finite and we have to exploit unique
structure of revenue function (e.g., Assumption A) by using
price perturbation techniques. Moreover, we do not assume
stochasticity of context xi,t—for example, contexts are i.i.d.,
which is also assumed in contextual pricing literature such as
Ban and Keskin (2021), Chen, Owen, et al. (2022), Nambiar
et al. (2019), Qiang and Bayati (2016) besides the ban-
dit literature mentioned earlier—but only a weaker variation
assumption (see Assumption A-3). This relaxation requires us
to use a different matrix analysis technique instead of directly
applying matrix concentration inequalities (see Lemma EC.3
in the Supporting Information).

We have a number of remarks about the CSMP algorithm
and the result on regret, following in order.

Remark 4 (Comparison with single-product pricing). Our

pricing policy achieves the regret Õ(d
√

mT). A question
arises as to how it compares with the baseline single-product
pricing algorithm that treats each product separately. Ban
and Keskin (2021) consider a single-product pricing problem
with demand covariates. According to Theorem 2 in Ban and
Keskin (2021), their algorithm, when applied to each prod-
uct i in our setting separately, achieves the regret Õ(d

√
Ti,T).

Therefore, adding together all products i ∈ [n], the upper

bound of the total regret is Õ(d
√

nT). When the number

of clusters m is much smaller than n, the regret Õ(d
√

mT)
of CSMP significantly improves the total regret obtained by
treating each product separately.

Remark 5 (Lower bound of regret). To obtain a lower bound
for the regret of our problem, we consider a special case of
our model in which the decision maker knows the underlying
true clusters j. Since this is a special case of our problem
(which is equivalent to single-product pricing for each clus-
ter j), the regret lower bound of this problem applies to
ours as well. Theorem 1 in Ban and Keskin (2021) shows
that the regret lower bound for each cluster j has to be at least

Ω(d
√

T̃j,t). In the case that q̃j = 1∕m for all j ∈ [m], it can be
derived that the regret lower bound for all clusters has to be at

least Ω(d
√

mT). This implies that the regret of the proposed
CSMP policy is optimal up to a logarithmic factor.

Remark 6 (Improving the regret for large n). When n is large,
the first term in our regret bound O(d2 log2(dT)∕mini∈[n] q2

i)
will also become large. For instance, if qi = O(1∕n) for all
i ∈ [n], then this term becomes O(d2n2 log2(dT)). One way
to improve the regret, although it requires prior knowledge
of 𝛾, is to conduct more price exploration during the early

3568 MIAO ET AL.Production and Operations Management

stages. Specifically, if the confidence bound Bi,t−1 of product
i is larger than 𝛾∕4, in Step 4, we let the price perturbation Δi,t
be ±Δ0 to introduce sufficient price variation (otherwise let
Δt be the same as in the original algorithm CSMP). Follow-
ing a similar argument as in Lemma EC.3 in the Supporting
Information, it roughly takes O(d log(dT)∕mini∈[n] qi) time
periods before all Bi,t−1 < 𝛾∕4, so the same proof used
in Theorem 1 applies. Therefore, when qi = O(1∕n) for
all i ∈ [n], the final regret upper bound is O(dn log(dT) +

d log T
√

mT).

Remark 7 (Relaxing the cluster assumption). Our theoretical
development assumes that products within the same cluster
have exactly the same parameters 𝜃i. This assumption can be
relaxed as follows. Without loss of generality, let us assume
all products have different 𝜃i. Define two products i1, i2 as
in the same cluster if they satisfy ||𝜃i1 − 𝜃i2 ||2 ≤ 𝛾0 for some
positive constant 𝛾0 with 𝛾0 < 𝛾∕3. Our policy in Algorithm 1
can adapt to this case by modifying Step 2 to

̂i,t = {i′ ∈ [n] : ||𝜃̂i′,t−1 − 𝜃̂i,t−1||2 ≤ 2Bi′,t−1 + 2Bi,t−1}.

(16)

The reason we make this modification is that when t is within
certain range, ||𝜃̂i′,t−1 − 𝜃̂i,t−1||2 > 2Bi′,t−1 + 2Bi,t−1 implies
that, with high probability, ||𝜃i′,t−1 − 𝜃i,t−1||2 > Bi′,t−1 +
Bi,t−1 > 𝛾0. This shows we can correctly differentiate the
products, which are not in the same cluster. As a result,
under this modification, our algorithm CSMP has the fol-
lowing performance. If T ≤ O(1∕(maxi q2

i 𝛾
4
0)), the regret is

at most Õ(d
√

mT +min{𝛾2
0

∑
j q̃2

j T2,T}). Thus when T is
small, the main difference with Theorem 1 is the extra term
O(min{𝛾2

0

∑
j q̃2

j T2,T}) due to relaxation of clusters, and if 𝛾0

is small, we still have the overall regret better than Õ(d
√

nT)
without any clustering. On the other hand, for large T and
in particular, when T →∞, we show that the regret will

approach Õ(d
√

nT). Intuitively, this is because when the data
are no longer scarce, our clustering actually identifies each
product i as its own cluster, reducing to the single-product
pricing algorithm without clustering. For detailed analysis of
this relaxation, we refer the interested readers to Section EC.2
in the Supporting Information.

One relevant stream of literature to this setting is the so-
called bandit with model mis-specification, which assumes
that the reward function is mis-specified with error 𝜀 (see,
e.g., Crammer & Gentile, 2013; Foster & Rakhlin, 2020;
Foster et al., 2020; Ghosh et al., 2017; Lattimore et al., 2020),
and they show that the part of regret related to 𝜀 has to be
Ω(𝜀T). Our method in this setting is different in that we only
take advantage of the 𝛾0-different parameters (𝛾0 is typically
very small) in the same cluster when data are scarce (i.e., T
is small). As more data are gathered, the algorithm naturally
converges to single-product pricing, making our regret in the
long run still being sublinear in T .

4 SIMULATION RESULTS WITH
SYNTHETIC AND REAL DATA

This section provides the simulation experiment results for
algorithm CSMP. First, we conduct a simulation study using
synthetic data in Section 4.1 to illustrate the effectiveness
and robustness of our algorithms against several bench-
mark approaches. Second, the simulation results using a
real data set from Alibaba are provided in Section 4.2.
Finally, we summarize all numerical experiment results in
Section 4.3.

4.1 Simulation using synthetic data

In this section, we demonstrate the effectiveness of our
algorithms using some synthetic data simulation. We first
show the performance of CSMP against several benchmark
algorithms. Then, several robustness tests are conducted for
CSMP. The first test is for the case when clustering assump-
tion is violated (i.e., parameters within the same cluster
are slightly different). The second test is when the demand
covariates zi,t contain some features that change slowly
in a deterministic manner. Finally, we test CSMP with a
misspecified demand model.

We shall compare the performance of our algorithms with
the following benchmarks:

∙ The SMP algorithm, which treats each product indepen-
dently (IND), and we refer to it as SMP-IND.

∙ The SMP algorithm, which treats all products as one
(ONE) single cluster, and we refer to the algorithm as
SMP-ONE.

∙ The CSMP with K-means Clustering (CSMP-KMeans),
which uses K-means clustering for product clustering in
Step 2 of CSMP.

The first two benchmarks are natural special cases of our
algorithm. Algorithm SMP-IND skips the clustering step in
our algorithm and always sets the neighborhood as ̂t =

{it}; while SMP-ONE keeps ̂t = for all t ∈ [T]. The
last benchmark is to test the effectiveness of other classi-
cal clustering approach for our setting, in which we choose
K-means clustering as an illustrative example because of its
popularity.

4.1.1 Logistic demand with clusters

For illustration of a GLM demand, we simulate using a
logistic function. We set the time horizon T = 30, 000, the
searching probability qi = 1∕n for all i ∈ [n] where n =
100, and the price range p = 0 and p = 10. In this study,
it is assumed that all n = 100 products have m = 10 clus-
ters (with products randomly assigned to clusters). Within
a cluster j, each entry in 𝛼j is generated uniformly from

PRICING WITH CLUSTERING 3569
Production and Operations Management

TA B L E 1 Standard deviation (%) of percentage revenue loss corresponding to different time periods for logistic demand with 10 clusters

t = 5,000 t = 10,000 t = 15,000 t = 20,000 t = 25,000 t = 30,000

CSMP 1.83 0.97 0.70 0.57 0.47 0.40

SMP-IND 1.32 0.88 0.92 0.81 0.78 0.73

SMP-ONE 2.34 2.15 1.75 1.44 1.46 1.44

CSMP-KMeans:K = 5 2.08 1.97 1.95 2.26 2.22 2.19

CSMP-KMeans:K = 10 2.06 1.53 1.09 0.87 0.74 0.66

CSMP-KMeans:K = 20 2.12 1.36 1.15 1.02 0.91 0.82

CSMP-KMeans:K = 30 1.41 0.88 0.77 0.67 0.59 0.49

[−L∕
√

d + 2,L∕
√

d + 2] with L = 10, and 𝛽j is generated

uniformly from [−L∕
√

d + 2, 0) (to guarantee that ||𝜃i||2 ≤

L). For demand covariates, each feature in zi,t, with dimen-
sion d = 5, is generated independently and uniformly from

[−1∕
√

d, 1∕
√

d] (to guarantee that ||zi,t||2 ≤ 1). For the
parameters in the algorithms, we let Δ0 = 1; and for the con-
fidence bound Bi,t =

√
c(d + 2) log(1 + t)∕𝜆min(Vi,t), we first

let c = 0.8 and then test other values of c for sensitivity anal-
ysis. For the benchmark CSMP-KMeans, we need to specify
the number of clusters K; since the true number of clus-
ters m is not known a priori, we test different values of K
in {5, 10, 20, 30}. Note that when K = 10, the performance
of CSMP-KMeans can be considered as an oracle since it
correctly specifies the true number of product clusters.

To evaluate the performance of algorithms, we adopt both
the cumulative regret in (6) and the percentage revenue loss
defined by

L𝜋(T) =
R𝜋(T)∑T

t=1 𝔼[rt(p
∗
t)]
, (17)

which measures the percentage of revenue loss with respect to
the optimal revenue. Obviously, the percentage revenue loss
and cumulative regret are equivalent, and a better policy leads
to a smaller regret and a smaller percentage revenue loss.

For each experiment, we conduct 30 independent runs and
take their average as the output. We also output the stan-
dard deviation of percentage revenue loss for all policies in
Table 1. It can be seen that our policy CSMP has quite small
standard deviation, so we will neglect standard deviation
results in other experiments.

We recognize that a more appropriate measure for evalu-
ating an algorithm is the regret (and percentage of loss) of
expected total profit (instead of expected total revenue). We
choose the latter for the following reasons. First, it is consis-
tent with the objective of this paper, which is the choice of
the existing literature. Second, it is revenue, not profit, that is
being evaluated at our industry partner, Alibaba. Third, even
if we wish to measure it using profit, the cost data of products
are not available to us, since the true costs depend on such
critical things as terms of contracts with suppliers, that are
confidential information.

The results are shown in Figure 2. According to this figure,
our algorithm CSMP outperforms all the benchmarks except
for CSMP-KMeans when K = m = 10. CSMP-KMeans with
K = 10 has the best performance, which is not surprising
because it uses the exact and correct number of clusters.
However, in reality the true cluster number m is not known.
We also test CSMP-KMeans with K = 5, 20, 30. We find that
when K = 20, its performance is similar to (slightly worse
than) our algorithm CSMP. When K = 5, 30, the perfor-
mance of CSMP-KMeans becomes much worse (especially
when K = 5). For the other two benchmarks SMP-ONE and
SMP-IND, their performances are not satisfactory either, with
SMP-ONE has the worst performance because clustering all
products together leads to significant error. Sensitivity results
of CSMP with different parameters c are presented in Table 2,
and it can be seen that CSMP is quite robust with different
values of c.

4.1.2 Logistic demand with relaxed clusters

As we discussed in Section 3.2, strict clustering assumption
might not hold and sometimes products within the same clus-
ter are slightly different. This experiment tests the robustness
of CSMP when parameters of products in the same cluster are
slightly different. To this end, after we generate the m = 10
centers of parameters (with each center represented by 𝜃j),
for each product i in the cluster j, we let 𝜃i = 𝜃j + Δ𝜃i where
Δ𝜃i is a random vector such that each entry is uniformly
drawn from [−L∕(10

√
d + 2),L∕(10

√
d + 2)]. All the other

parameters are the same as in the case with 10 clusters.
Results are summarized in Figure 3, and it can be seen that
the performances of all algorithms are quite similar as in
Figure 2.

4.1.3 Logistic demand with almost static
features

As we discussed after Assumption A-3, in some applica-
tions there might be features that have little variations (nearly

3570 MIAO ET AL.Production and Operations Management

F I G U R E 2 Performance of different policies for logistic demand with 10 clusters. The graph on the left-hand side shows the percentage revenue loss of
all algorithms, and the graph on the right-hand side shows the cumulative regrets for each algorithm [Color figure can be viewed at wileyonlinelibrary.com]

TA B L E 2 Mean and standard deviation (%) of percentage revenue loss of CSMP (logistic demand with 10 clusters) with different parameters c

c = 0.5 c = 0.6 c = 0.7 c = 0.8 c = 0.9 c = 1.0

Mean 8.56 8.28 8.52 8.27 8.56 8.72

Standard deviation 0.73 0.51 0.73 0.40 0.66 0.35

F I G U R E 3 Performance of different policies for logistic demand with relaxed clusters [Color figure can be viewed at wileyonlinelibrary.com]

static). We next test the robustness of our algorithm CSMP
when the feature variations are small. To this end, we assume
that one feature in zi,t ∈ ℝ

d for each i ∈ [n] is almost static.

More specifically, we let this feature be constantly 1∕
√

d

for 100 periods, then change to −1∕
√

d for another 100

periods, then switch back to 1∕
√

d after 100 periods, and
this process continues. The numerical results against bench-
marks are summarized in Figure 4. It can be seen that with
such an almost static feature, the performances of algorithms
with clustering become worse, but they still outperform the
benchmark algorithms. In particular, CSMP (with parameter
c = 0.1 after a few trials of tuning) still has promising perfor-
mance, showing its robustness with small feature variations
of some products.

4.1.4 Logistic demand with model
misspecification

In real applications, it may happen that the demand model
is misspecified. In this experiment, we consider a misspeci-
fied logistic demand model. Specifically, we let the expected
demand of product i be 1∕(1 + exp(fi(zt, pt))), where the
utility function

fi(zt, pt) := ci,0 +

d∑
k=1

c1,i,kzt,k +

d∑
k=1

c2,i,kz2
t,k +

d∑
k=1

c3,i,kz3
t,k

+ 𝛽1,ipt + 𝛽
2
2,ip

2
t + 𝛽3,ip

3
t (18)

PRICING WITH CLUSTERING 3571
Production and Operations Management

F I G U R E 4 Performance of different policies for logistic demand with 10 clusters and almost static features [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 5 Performance of CSMP with (misspecified) logistic demand versus the oracle [Color figure can be viewed at wileyonlinelibrary.com]

is a third degree polynomial of zt, pt, where ci, 𝛽i are
unknown parameters, and zt,k represents the k-th com-
ponent of zt. To generate this misspecified demand
model, we let cl,i,k ∈ [−L∕

√
3(d + 2),L∕

√
3(d + 2)] with l ∈

{1, 2, 3}, k ∈ [d], ci,0 ∈ [−L∕
√

d + 2,L∕
√

d + 2], and 𝛽l,i ∈

[−L∕
√

3(d + 2), 0) with l ∈ {1, 2, 3}, be all drawn uniformly.
All the other input parameters for the problem instance are the
same as in the case of logistic demand with 10 clusters.

To test the robustness of the misspecified CSMP, it is
compared with CSMP, which correctly specifies the demand
model. We call the benchmark the CSMP-Oracle. The
numerical results are summarized in Figure 5. As seen,
when compared with the oracle, the misspecified CSMP
has slightly worse performance as expected. But the overall
difference in percentage revenue loss is only 3.48%, show-
ing that our algorithm CSMP is rather robust with such a
model misspecification.

4.2 Simulation using real data from
Alibaba

This section presents the results of our algorithms (for illus-
tration, we use CSMP with logistic demand) and other

benchmarks using a real data set provided by Alibaba. To
better simulate the real demand process, we fit the demand
data to create a sophisticated ground truth model (hence
our algorithm CSMP may have a model misspecification).
Before presenting the results, we introduce the data set and
preprocessing of the data.

4.2.1 The data set

To motivate our study of pricing for low-sale products, we
extract sales data from May 29, 2018, to July 28, 2018. Dur-
ing this period, nearly 75,000 products were offered by Tmall
Supermarket. There are more than 21.6% (i.e., 16,000) prod-
ucts with average numbers of daily unique visits less than 10.
Among all these low-sale products, Alibaba provided us with
a test data set comprising 100 products that have at least one
sale during the 61-day period, and at least two prices charged
with each price offered to more than 10% of all customers.
Because these selected products have relatively sufficient
variation of prices and different observations of customers’
purchases, demand parameters can be estimated quite accu-
rately using the sales data in the data set. As the focus of this
paper is on single-product pricing where the demand of each

3572 MIAO ET AL.Production and Operations Management

TA B L E 3 Summary statistics of average data of the 100 products

Number
of prices Demand UV IPV

Mean 7.13 0.71 6.88 10.13

Standard deviation 5.16 0.72 2.04 3.38

product depends on its own price, this numerical study using
the real data set is also conducted under this setting. In Sec-
tion EC.3 in the Supporting Information, we conduct a data
analysis to show that this assumption is indeed reasonable for
this data set.

For the features of products, we are provided by Alibaba
with five features (hence d = 5), that are described below:

∙ average gross merchandise volume (GMV, i.e., product
revenue) in past 30 days,

∙ average demand in past 30 days,
∙ average number of unique buyers (UBs, i.e., unique IP,

which makes the purchase) in past 30 days,
∙ average number of UVs in past 30 days, and
∙ average number of independent product views (IPVs, i.e.,

total number of views on the product, including repetitive
views from the same user) in past 30 days.

These features are selected by Alibaba’s feature engineer-
ing team2 (via a recursive feature elimination approach from
a raw set of features). Note that these features are not exoge-
nous, since features in the future can be affected by current
pricing decision. Such endogenous features are often used
in the demand forecasting literature. For instance, a time-
series model uses past demand to predict future demand (see,
e.g., Brown, 1959); an artificial neural network (ANN) model
uses historical demand data of composite products as features
for demand prediction (Chang et al., 2005). In the pricing
literature, some endogenous features have also been used.
For example, in Ban and Keskin (2021) and Bastani et al.
(2022), their model features include auto loan data, for exam-
ple, competitors’ rate, that are affected by the rate offered by
the decision maker (the auto loan company). Incorporating
the impact of pricing decisions on features leads to challeng-
ing dynamic programming problem with partial information.
Hence, features are considered as given and we only opti-
mize for current period (i.e., ignoring the long-run effect of
the current pricing decision).

To understand the data and features better, we provide a
summary statistics on the data and feature. First, we calcu-
lated the number of prices charged during the time horizon,
average demand per day, average UV per day, and aver-
age IPV per day, for each one of the selected 100 products.
Table 3 summarizes the mean and standard deviation of each
of the data. Then, to understand the variation of features, we
calculated the standard deviation of each of the five features
of every product. In Table 4 we summarize the mean and
standard deviation of feature variations of all products.

TA B L E 4 Summary statistics of feature variation of the 100 products

Feature
GMV

Feature
demand

Feature
UB

Feature
UV

Feature
IPV

Mean 12.93 0.34 0.49 5.04 7.73

Standard deviation 17.97 0.60 0.89 9.21 13.95

To run simulation using the real data set, we first create a
ground truth model for the demand. We consider two ground
truth models in this simulation study. The first one is the
commonly used logistic demand function (hence no model
misspecification for our algorithm CSMP), and the second
is a random forest model (as used in simulation study of
Nambiar et al., 2019, hence there is model misspecification
for CSMP). We use the demand data of each product to fit
these two demand models, and then apply them to simulate
the demand process. To test the accuracy of these two demand
models, we calculated the average receiver operating charac-
teristic area under the curve (ROC-AUC) score (among the
selected products) of the logistic and random forest model,
respectively. The results show that the ROC-AUC score of the
random forest model is 11.7% higher than that of the logistic
model (thus the random forest model fits the reality better).

We want to generate customer’s arrival at each time t, that
is, the product it a customer chooses to search. Since the
data set contains the daily number of UVs for each product
i, the arrival process it is simulated by randomly permuting
the UVs of each product on each day. For instance, if on day
1, product 1 and product 2 have 2 and 3 UVs respectively,
then it for t = 1, … , 5 can be 1,2,2,1,2, which is a random
permutation of the UVs for products 1 and 2.

4.2.2 Numerical results for the algorithms

We first provide the specifications of the parameters in the
CSMP algorithm in Algorithm 1.

∙ The confidence bound Bi,t is√
c(d + 2) log(1 + t)∕𝜆min(Vi,t), where c = 0.01 for

logistic demand and c = 0.05 for random forest demand
(selected by a few trials of different values).

∙ The price lower bound of each product is 50% lower than
its lowest price during the 61-day period, and the price
upper bound is 50% higher than its highest price during
this period of time.

∙ The basic price perturbation parameter Δ0 of each product
is set as the length of price range divided by 4, that is, Δ0 =
(p − p)∕4.

For benchmark algorithms, they are the same as those
in the previous subsection, with CSMP-KMeans have K ∈
{5, 10, 20, 30}. In addition, we test another benchmark
proposed in Keskin and Zeevi (2016). More specifically,
this benchmark assumes a simple linear demand model

PRICING WITH CLUSTERING 3573
Production and Operations Management

F I G U R E 6 Plot of cumulative revenue over different dates for two demand models [Color figure can be viewed at wileyonlinelibrary.com]

as 𝔼[di,t] = 𝛼i,t + 𝛽
′
i,tpi,t with changing parameters (CPs)

𝛼i,t, 𝛽i,t but without demand covariates. Since this single-
product pricing algorithm can be considered as a modified
version of SMP, we call it SMP with CPs, or SMP-CP for
short. In particular, among the algorithms proposed in Keskin
and Zeevi (2016), we choose the “Moving Window Pol-
icy” as it has the best empirical performance and choose the
input parameter 𝜅 = 0.5 as in the numerical experiments in
Section 6.3 in Keskin and Zeevi (2016). We plot the results
of cumulative revenue at different dates in Figure 6.

It can be seen that all the methods using clustering have
better performance, and their performances are comparable.
It is interesting to note that for clustering using K-means
method, their performances with different value of K are actu-
ally quite close. Finally, it is observed that the advantage of
using clustering with random forest model (i.e., misspecified
model) is more than that with logistic model.

4.3 Summary of numerical experiments

In this section we first present the simulation results using
synthetic data under various scenarios to test the effective-
ness and robustness of our algorithms, then we present the
simulation results with real data from Alibaba using a more
sophisticated ground truth demand model (for a more realistic
simulation and robustness test under model misspecification).
The main findings from the numerical study are summarized
as follows.

∙ In all the numerical results, pricing with clustering (either
using our method in CSMP or classical K-means clustering
with appropriate choice of K) outperforms the bench-
marks of applying single-product pricing algorithm on
each product or naively putting all products into a single
cluster.

∙ Dynamic pricing with K-means clustering method some-
times works as effectively as (and at times even better than)
our algorithm CSMP. But its performance depends on the
choice of the number of clusters K, which is unknown to
the decision maker.

∙ The CSMP algorithm is quite robust under different sce-
narios: slightly different demand parameters within the
same cluster, near static or slowly changing features, and
misspecified ground truth demand model.

5 CONCLUSION

With the rapid development of e-commerce, data-driven
dynamic pricing is becoming increasingly important due to
the dynamic market environment and easy access to online
sales data. While there is abundant literature on dynamic
pricing of normal products, the pricing of products with low
sales received little attention. The data from Alibaba Group
show that the number of such low-sale products is large,
and that even though the demand for each low-sale prod-
uct is small, the total revenue for all the low-sale products
is quite significant. In this paper, we present data clustering
and dynamic pricing algorithms to address this challenging
problem. We believe that this paper is the first to integrate
online clustering learning in dynamic pricing of low-sale
products.

A learning algorithm is proposed in this paper, which
learns the demand and decides product clustering simultane-
ously on the fly. We have established the regret bound for
this under mild technical conditions. Moreover, we test our
algorithms on a real data set from Alibaba Group by sim-
ulating the demand function. Numerical results show that
our algorithm outperforms the benchmarks, where one either
considers all products separately, or treats all products as a
single cluster.

There are several possible future research directions. The
first one is an in-depth study of the method for product clus-
tering (e.g., Gentile et al., 2014; Nguyen & Lauw, 2014).
Second, to highlight the benefit of clustering techniques for
low-sale products, in this paper we study a dynamic pricing
problem with sufficient inventory. One extension is to apply
the clustering method for the revenue management prob-
lem with inventory constraint. Third, we believe that it will
be interesting to include substitutability/complementarity of
products and even assortment decisions.

3574 MIAO ET AL.Production and Operations Management

AC K N O W L E D G M E N T S
We thank the department editor, senior editor, and anony-
mous referees for their detailed and constructive comments
that have helped to considerably improve the exposition of
this paper.

E N D N O T E S
1 A terminology used within Alibaba to represent a unique user login identi-

fication.
2 We requested to include some other features, such as number/score of cus-

tomer ratings and competitor’s price on similar product, but were unable to
obtain such data due to technical reasons.

R E F E R E N C E S
Abbasi-Yadkori, Y., Pál, D., & Szepesvári, C. (2011). Improved algorithms

for linear stochastic bandits. Advances in Neural Information Processing
Systems, 2312–2320.

Araman, V. F., & Caldentey, R. (2009). Dynamic pricing for nonperish-
able products with demand learning. Operations Research, 57(5), 1169–
1188.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful
seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium
on discrete algorithms (pp. 1027–1035).

Baardman, L., Levin, I., Perakis, G., & Singhvi, D. (2018). Leveraging com-
parables for new product sales forecasting. Production and Operations
Management, 27(12), 2340–2343.

Ban, G.-Y., Gallien, J., & Mersereau, A. J. (2018). Dynamic procure-
ment of new products with covariate information: The residual tree
method. Manufacturing & Service Operations Management, 21(4), 798–
815.

Ban, G.-Y., & Keskin, N. B. (2021). Personalized dynamic pricing with
machine learning: High-dimensional features and heterogeneous elasticity.
Management Science, 67(9), 5549–5568.

Bastani, H., Simchi-Levi, D., & Zhu, R. (2022). Meta dynamic pric-
ing: Transfer learning across experiments. Management Science, 68(3),
1865–1881.

Bernstein, F., Modaresi, S., & Sauré, D. (2018). A dynamic clustering
approach to data-driven assortment personalization. Management Science,
65(5), 2095–2115.

Bertsimas, D., & Perakis, G. (2006). Dynamic pricing: A learning approach.
In Lawphongpanich, Siriphong, Hearn, Donald W., & Smith, Michael J.
(Eds), Mathematical and computational models for congestion charging
(pp. 45–79). Springer.

Besbes, O., Gur, Y., & Zeevi, A. (2015). Non-stationary stochastic
optimization. Operations Research, 63(5), 1227–1244.

Besbes, O., & Zeevi, A. (2009). Dynamic pricing without knowing the demand
function: Risk bounds and near-optimal algorithms. Operations Research,
57(6), 1407–1420.

Besbes, O., & Zeevi, A. (2015). On the (surprising) sufficiency of linear
models for dynamic pricing with demand learning. Management Science,
61(4), 723–739.

Bitran, G., & Caldentey, R. (2003). An overview of pricing models for revenue
management. Manufacturing & Service Operations Management, 5(3),
203–229.

Broder, J., & Rusmevichientong, P. (2012). Dynamic pricing under a general
parametric choice model. Operations Research, 60(4), 965–980.

Brown, R. G. (1959). Statistical forecasting for inventory control.
McGraw/Hill.

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends® in
Machine Learning, 5(1), 1–122.

Carvalho, A. X., & Puterman, M. L. (2005). Learning and pricing in an inter-
net environment with binomial demands. Journal of Revenue and Pricing
Management, 3(4), 320–336.

Cesa-Bianchi, N., Gentile, C., & Zappella, G. (2013). A gang of bandits.
Advances in Neural Information Processing Systems, 26, 737–745.

Chang, P.-C., Wang, Y.-W., & Tsai, C.-Y. (2005). Evolving neural network for
printed circuit board sales forecasting. Expert Systems with Applications,
29(1), 83–92.

Chen, N., & Gallego, G. (2021). Nonparametric pricing analytics with
customer covariates. Operations Research, 69(3), 974–984.

Chen, Q., Jasin, S., & Duenyas, I. (2015). Real-time dynamic pricing with
minimal and flexible price adjustment. Management Science, 62(8), 2437–
2455.

Chen, X., Gao, J., Ge, D., & Wang, Z. (2022). Bayesian dynamic learn-
ing and pricing with strategic customers. Production and Operations
Management, 00, 1–18.

Chen, X., Miao, S., & Wang, Y. (2021). Differential privacy in personalized
pricing with nonparametric demand models. Available at SSRN 3919807.

Chen, X., Owen, Z., Pixton, C., & Simchi-Levi, D. (2022). A statistical learn-
ing approach to personalization in revenue management. Management
Science, 68(3), 1923–1937.

Chen, X., Simchi-Levi, D., & Wang, Y. (2022). Privacy-preserving dynamic
personalized pricing with demand learning. Management Science.

Chen, X., & Wang, Y. (2022). Robust dynamic pricing with demand learning
in the presence of outlier customers. Operations Research.

Chen, Y., & Shi, C. (2019). Network revenue management with online inverse
batch gradient descent method. Available at SSRN 3331939.

Cheung, W. C., Simchi-Levi, D., & Wang, H. (2017). Dynamic pricing
and demand learning with limited price experimentation. Operations
Research, 65(6), 1722–1731.

Cohen, M. C., Lobel, R., & Perakis, G. (2018). Dynamic pricing through data
sampling. Production and Operations Management, 27(6), 1074–1088.

Crammer, K., & Gentile, C. (2013). Multiclass classification with ban-
dit feedback using adaptive regularization. Machine Learning, 90(3),
347–383.

Cross, R. G. (1995). An introduction to revenue management. In Handbook
of airline economics (pp. 443-458). McGraw-Hill, Incorporated.

den Boer, A. V. (2015). Dynamic pricing and learning: Historical origins,
current research, and new directions. Surveys in Operations Research and
Management Science, 20(1), 1–18.

den Boer, A. V., & Zwart, B. (2013). Simultaneously learning and optimizing
using controlled variance pricing. Management Science, 60(3), 770–783.

Dunn, J. C. (1973). A fuzzy relative of the isodata process and its use in
detecting compact well-separated clusters. Journal of Cybernetics, 3(3),
32–57.

Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of
inventory considerations: Research overview, current practices, and future
directions. Management Science, 49(10), 1287–1309.

Farias, V. F., & Van Roy, B. (2010). Dynamic pricing with a prior on market
response. Operations Research, 58(1), 16–29.

Ferreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2015). Analytics for an
online retailer: Demand forecasting and price optimization. Manufacturing
& Service Operations Management, 18(1), 69–88.

Ferreira, K. J., Simchi-Levi, D., & Wang, H. (2018). Online network rev-
enue management using thompson sampling. Operations Research, 66(6),
1586–1602.

Foster, D., & Rakhlin, A. (2020). Beyond UCB: Optimal and efficient con-
textual bandits with regression oracles. In III, Hal Daumé & Singh, Aarti
(Eds.), International conference on machine learning (pp. 3199–3210).
PMLR.

Foster, D. J., Gentile, C., Mohri, M., & Zimmert, J. (2020). Adapting to
misspecification in contextual bandits. Advances in Neural Information
Processing Systems, 33, 11478–11489.

Gallego, G., & Van Ryzin, G. (1994). Optimal dynamic pricing of inventories
with stochastic demand over finite horizons. Management Science, 40(8),
999–1020.

Gallego, G., & Van Ryzin, G. (1997). A multiproduct dynamic pricing
problem and its applications to network yield management. Operations
Research, 45(1), 24–41.

Gentile, C., Li, S., Kar, P., Karatzoglou, A., Zappella, G., & Etrue, E. (2017).
On context-dependent clustering of bandits. In Precup, Doina & Teh, Yee
Whye (Eds.), International conference on machine learning (pp. 1253–
1262). PMLR.

PRICING WITH CLUSTERING 3575
Production and Operations Management

Gentile, C., Li, S., & Zappella, G. (2014). Online clustering of bandits. In
Xing, Eric P. & Jebara, Tony (Eds.), International conference on machine
learning (pp. 757–765).

Ghosh, A., Chowdhury, S. R., & Gopalan, A. (2017). Misspecified linear
bandits. In thirty-first AAAI conference on artificial intelligence.

Harrison, J. M., Keskin, N. B., & Zeevi, A. (2012). Bayesian dynamic
pricing policies: Learning and earning under a binary prior distribution.
Management Science, 58(3), 570–586.

Hu, K., Acimovic, J., Erize, F., Thomas, D. J., & Van Mieghem, J. A. (2018).
Forecasting new product life cycle curves: Practical approach and empiri-
cal analysis: Finalist–2017 M&SOM practice-based research competition.
Manufacturing & Service Operations Management, 21(1), 66–85.

Jagabathula, S., Subramanian, L., & Venkataraman, A. (2018). A model-based
embedding technique for segmenting customers. Operations Research,
66(5), 1247–1267.

Javanmard, A., & Nazerzadeh, H. (2019). Dynamic pricing in high-
dimensions. Journal of Machine Learning Research, 20(9), 1–49.

Keskin, N. B., Li, Y., & Sunar, N. (2020). Data-driven clustering and feature-
based retail electricity pricing with smart meters. Available at SSRN
3686518.

Keskin, N. B., & Zeevi, A. (2014). Dynamic pricing with an unknown
demand model: Asymptotically optimal semi-myopic policies. Operations
Research, 62(5), 1142–1167.

Keskin, N. B., & Zeevi, A. (2016). Chasing demand: Learning and earning
in a changing environment. Mathematics of Operations Research, 42(2),
277–307.

Kumar, S., Mookerjee, V., & Shubham, A. (2018). Research in opera-
tions management and information systems interface. Production and
Operations Management, 27(11), 1893–1905.

Lattimore, T., Szepesvari, C., & Weisz, G. (2020). Learning with good fea-
ture representations in bandits and in RL with a generative model. In III,
Hal Daumé & Singh, Aarti (Eds.), International conference on machine
learning (pp. 5662–5670). PMLR.

Lei, Y. M., Jasin, S., & Sinha, A. (2014). Near-optimal bisection search
for nonparametric dynamic pricing with inventory constraint. Available
at SSRN 2509425.

Lobel, I., Leme, R. P., & Vladu, A. (2018). Multidimensional binary search
for contextual decision-making. Operations Research, 66(5), 1346–1361.

MacQueen, J., et al. (1967). Some methods for classification and analysis of
multivariate observations. In Lucien M. Le Cam, & Jerzy Neyman (Eds.),
Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability (Vol. 1, pp. 281–297).

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models, vol. 37.
CRC press.

Murtagh, F. (1983). A survey of recent advances in hierarchical clustering
algorithms. The Computer Journal, 26(4), 354–359.

Nambiar, M., Simchi-Levi, D., & Wang, H. (2019). Dynamic learning and
pricing with model misspecification. Management Science, 65(11), 4980–
5000.

Nguyen, T. T., & Lauw, H. W. (2014). Dynamic clustering of contextual multi-
armed bandits. In Proceedings of the 23rd ACM international conference
on conference on information and knowledge management (pp. 1959–
1962). ACM.

Qiang, S., & Bayati, M. (2016). Dynamic pricing with demand covariates.
Available at SSRN 2765257.

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M.
J., Ding, W., & Lin, C.-T. (2017). A review of clustering techniques and
developments. Neurocomputing, 267, 664–681.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–
905.

Smith, B. C., Leimkuhler, J. F., & Darrow, R. M. (1992). Yield management
at American airlines. Interfaces, 22(1), 8–31.

Su, Q., & Chen, L. (2015). A method for discovering clusters of e-commerce
interest patterns using click-stream data. Electronic Commerce Research
and Applications, 14(1), 1–13.

Tropp, J. A. (2011). User-friendly tail bounds for matrix martingales. ACM
Report 2011–01, California Inst. of Tech. Pasadena, CA.

Van Kampen, T. J., Akkerman, R., & Pieter van Donk, D. (2012). Sku clas-
sification: A literature review and conceptual framework. International
Journal of Operations & Production Management, 32(7), 850–876.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and
Computing, 17(4), 395–416.

Walton, N., & Zhang, Y. (2020). Perturbed pricing. arXiv preprint
arXiv:2010.12300.

Wang, Y., Chen, X., Chang, X., & Ge, D. (2021). Uncertainty quantifica-
tion for demand prediction in contextual dynamic pricing. Production and
Operations Management, 30(6), 1703–1717.

Wang, Z., Deng, S., & Ye, Y. (2014). Close the gaps: A learning-while-doing
algorithm for single-product revenue management problems. Operations
Research, 62(2), 318–331.

S U P P O R T I N G I N F O R M AT I O N
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Miao, S., Chen, X., Chao,
X., Liu, J., & Zhang, Y. (2022). Context-based
dynamic pricing with online clustering. Production
and Operations Management, 31, 3559–3575.
https://doi.org/10.1111/poms.13783

https://doi.org/10.1111/poms.13783

	Context-based dynamic pricing with online clustering
	Abstract
	1 | INTRODUCTION
	1.1 | Contributions of this paper
	1.2 | Literature review
	Related literature in dynamic pricing
	Related literature in clustering for pricing
	Related literature in other operations management problems
	Related literature in multiarm bandit problem
	Related literature in clustering

	1.3 | Organization of the paper

	2 | PROBLEM FORMULATION
	2.1 | The firm’s optimization problem and regret
	2.2 | Cluster of products

	3 | PRICING POLICY AND MAIN RESULTS
	3.1 | Description of the pricing policy
	3.1.1 | Parameter estimation of GLM
	3.1.2 | Determining the neighborhood of each product
	3.1.3 | Setting the price of each product

	3.2 | Theoretical performance of the CSMP algorithm

	4 | SIMULATION RESULTS WITH SYNTHETIC AND REAL DATA
	4.1 | Simulation using synthetic data
	4.1.1 | Logistic demand with clusters
	4.1.2 | Logistic demand with relaxed clusters
	4.1.3 | Logistic demand with almost static features
	4.1.4 | Logistic demand with model misspecification

	4.2 | Simulation using real data from Alibaba
	4.2.1 | The data set
	4.2.2 | Numerical results for the algorithms

	4.3 | Summary of numerical experiments

	5 | CONCLUSION
	ACKNOWLEDGMENTS
	ENDNOTES
	REFERENCES
	SUPPORTING INFORMATION

