Single-Step Synthesis of Atropisomers with Vicinal $\mathbf{C}-\mathbf{C}$ and $\mathbf{C}-\mathbf{N}$ Diaxes by Cobalt-Catalyzed Atroposelective C-H Annulation

Bing-Jie Wang, Guo-Xiong Xu, Zong-Wei Huang, Xu Wu, Xin Hong,* Qi-Jun Yao,* and Bing-Feng Shi*

Abstract

The atroposelective synthesis of atropisomers with vicinal diaxes remains rare and challenging, due to the steric influence between the two axes and their unique topology. Herein, we disclose a single-step construction of atropisomers with vicinal $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ chiral diaxes by cyclopentadiene (Cp)-free cobalt-catalyzed intramolecular atroposelective $\mathrm{C}-\mathrm{H}$ annulation, providing the desired diaxial atropisomers of unique structures with decent stereocontrols of both axes (up to $>99 \%$ ee and $70: 1 \mathrm{dr}$). The optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being candidate materials for potential CPL applications. Atropisomerization experiments and density function theory (DFT) calculations are conducted to study the rotational barriers and rotation pathways of the diaxes.

Introduction

The past decades have witnessed the emergence of transition metal-catalyzed enantioselective $\mathrm{C}-\mathrm{H}$ activation strategy to access complex chiral molecules in a step- and atomeconomical manner. ${ }^{[1]}$ In particular, enantioselective $\mathrm{C}-\mathrm{H}$ functionalization has provided an efficient strategy for the synthesis of atropisomers, an important class of enantiomers arising from restricted rotation around a single bond. ${ }^{[2]}$ Despite remarkable advances have been achieved, the majority of these studies focus on the enantioselective synthesis of atropisomers with a single axis and only a few examples on the synthesis of atropisomers with isolated

[^0]double or multiple axes have been reported. ${ }^{[3,4]}$ The enantioselective preparation of atropisomers with vicinal chiral diaxes remains a formidable challenge due to the steric influence between the two axes and their unique topology, and of which the successful examples are extremely rare (Figure 1a). ${ }^{[5]}$ In 2018, the group of WencelDelord and Colobert developed a concise synthesis of chiral o-terphenyls by chiral sulfoxide-directed palladium-catalyzed diastereoselective $\mathrm{C}-\mathrm{H}$ arylation. ${ }^{[6]}$ Recently, Zhou and co-workers reported the synthesis of atropisomeric oterphenyls with vicinal diaxes via atroposelective Catellani reaction using palladium/chiral norbornene cooperative catalysis (Figure 1b). ${ }^{[7]}$ Although these elegant studies showcased the concept of enantioselective $\mathrm{C}-\mathrm{H}$ activation strategy in the synthesis of atropisomers with vicinal diaxes, the reactions were limited to the preparation of chiral o terphenyls via the formation of $\mathrm{C}-\mathrm{C}$ axis, and the use of expensive palladium catalyst and chiral ligand/auxiliary. The construction of atropisomers bearing vicinal diaxes with more labile $\mathrm{C}-\mathrm{N}$ axis by $\mathrm{C}-\mathrm{H}$ activation has not been reported yet.

On the basis of our recent interests in the enantioselective synthesis of atropisomeric compounds, such as biaryls, anilides, and styrenes via $\mathrm{C}-\mathrm{H}$ activation strategy, ${ }^{[8]}$ we became interested in the synthesis of more challenging atropisomers with vicinal $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ chiral diaxes via enantioselective $\mathrm{C}-\mathrm{H}$ activation. We designed a type of benzamides $\mathbf{1}$ bearing an 8 -aminoquinoline directing group (DG) ${ }^{[9]}$ and an alkyne moiety tethered at the meta-position. We reasoned that the judicious choice of metal catalyst and chiral ligand might enable the enantioselective intramolecular $\mathrm{C}-\mathrm{H}$ annulation (Figure 1c). In the working hypothesis, $\mathrm{C}-\mathrm{H}$ metalation would lead to the formation of the cyclometalated intermediate Int-1, which might undergo a stereodetermining migratory insertion with the assistance of the ligated chiral ligand (\mathbf{L}^{*}) to afford axially chiral Int-2 with a chiral $\mathrm{C}-\mathrm{C}$ axis. Subsequent $\mathrm{C}-\mathrm{N}$ reductive elimination of Int-2 would construct the isoquinolinone ring and fix the $\mathrm{C}-\mathrm{N}$ axis of the $\mathrm{C}(\mathrm{O})-\mathrm{N}$-quinoline. Although it is strategically feasible, we are aware that the proposed protocol would face several challenges. First, the cleavage of the sterically encumbered ortho- $\mathrm{C}-\mathrm{H}$ bond with a meta-substitution to form Int- $\mathbf{1}$ is a prerequisite to enable the subsequent intramolecular insertion while it is known that $\mathrm{C}-\mathrm{H}$ metalation is generally sterically sensitive and $\mathrm{C}-\mathrm{H}$ bonds with 1,3 -disubstitutions are generally less reactive. We reasoned that cobalt catalyst might be a suitable catalyst due to the small ionic radius. ${ }^{[10]}$ In addition, the O-tethered alkyne side

b) Previous works in the synthesis of atropisomers with vicinal diaxes

Wencel-Delord \& Colobert (2018):
Chiral sulfoxide-direted diastereoselective C-H arylation

Zhou (2021):
Atroposelective Catellani reaction

Figure 1. Construction of atropisomers with vicinal chiral diaxes via atroposelective $\mathrm{C}-\mathrm{H}$ activation.
chain might assist the cleavage of the $\mathrm{C}-\mathrm{H}$ bonds. ${ }^{[11]}$ Second, based on the working hypothesis, both of the migratory insertion ($\mathbf{I n t}-1 \rightarrow \mathbf{I n t - 2}$) and $\mathrm{C}-\mathrm{N}$ reductive elimination (Int$\mathbf{2} \rightarrow \mathbf{2}$) steps should be stereoselective to control the formation of axially chiral $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ diaxes. Therefore, the judicious choice of a well-designed chiral ligand (\mathbf{L}^{*}) that coordinates to the metal catalyst during the whole process of the catalysis to provide a long-lasting chiral environment for stereoinduction is essential to the success of the protocol. Nevertheless, we were encouraged by our recent work on cobalt-catalyzed desymmetrizing $\mathrm{C}-\mathrm{H}$ functionalization of diarylphosphinamides with salicyloxazoline (Salox) as the chiral ligand, in which the Salox ligand enabled the in situ oxidation of cobalt(II) salt to generate the active octahedral cobalt(III) catalyst and acted as a permanent bidentate ligand during the whole process. ${ }^{[12]}$ Third, compared to the well-established $\mathrm{C}-\mathrm{C}$ atropisomers, the $\mathrm{C}-\mathrm{N}$ atropisomeric axes generally bear lower configurational stability, rendering their enantioselective construction more challenging. ${ }^{[13]}$ Especially, the formation of labile $\mathrm{C}-\mathrm{N}$ axis might be significantly affected by the steric interactions between the preformed vicinal C-C axis in Int-2.

Herein, we disclose our strategy to address these challenges and report the enantioselective synthesis of atropisomers with vicinal $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ chiral diaxes by cyclopentadiene (Cp) free cobalt-catalyzed intramolecular atroposelective $\mathrm{C}-\mathrm{H}$ annulation. ${ }^{[14]}$ Cheap and commercially available cobalt(II) salt was used as precatalyst and simple Salox was used as chiral ligand, providing the diaxial atropisomers of unique structures with decent stereocontrols of both axes (up to $>99 \%$ ee and $70: 1 \mathrm{dr}$). The optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being candidate materials
for potential CPL applications. Atropisomerization experiments and DFT calculations are conducted to study the rotational barriers and rotation pathways of the diaxes.

Results and Discussion

Initial Researches

We commenced our study by first investigating the possibility of the construction of chiral $\mathrm{C}-\mathrm{N}$ axis. Our group recently reported the desymmetrizing $\mathrm{C}-\mathrm{H}$ functionalization of diarylphosphinamides to prepare P -stereogenic chirality. ${ }^{[12]}{ }^{1} \mathrm{H}$ NMR spectrum of the product 6 showed two sets of peaks arisen from a pair of atropisomers of $\mathrm{C}-\mathrm{N}$ axis at room temperature; but at $100^{\circ} \mathrm{C}$, this phenomenon could not be seen, indicating an energy barrier for the $\mathrm{C}-\mathrm{N}$ axis that could not be ignored ($\Delta G_{\text {cal. }}^{+}=68.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$). We anticipated that the replacement of the chiral phosphine oxide moiety with a carbonyl would cause a significant increased atropostablility, offering possibilities for the construction of chiral $\mathrm{C}-\mathrm{N}$ axis (Figure 2a).

To explore this idea, the intermolecular $\mathrm{C}-\mathrm{H}$ annulation of benzamide 3 with dipenylacetylene 4 was conducted in trifluoroethanol catalyzed by $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$ and Salox (S)-L1 ($15 \mathrm{~mol} \%$) (Figure 2b) ${ }^{[15]}$ As expected, the desired product 5 a was detected, and much to our surprise, isolated in decent yield and high enantioselectivity (82%, 91% ee). Then an atropisomerization experiment of $\mathbf{5 a}$ was done in isopropanol at $75^{\circ} \mathrm{C}$, revealing an energy barrier of $109.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the atropisomerization of $\mathrm{C}-\mathrm{N}$ axis $\left(\Delta G^{\ddagger}{ }_{\text {cal }}=110.6 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. By Erying equation, the racemization half-life of $\mathbf{5 a}$ was calculated as 8 days at $25^{\circ} \mathrm{C}$ (See
a)

b)

3

4

5a, $82 \%, 91 \%$ ee
$\Delta G^{\ddagger}{ }_{\text {exp. }}=109.2 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G^{\ddagger}{ }_{\text {cal }}=110.6 \mathrm{~kJ} / \mathrm{mol}$

Figure 2. a) Rational Design. b) Exploration of Intermolecular Atroposelective C-H Annulation.

Supporting Information for details). Based on these inspiring results, we reasoned that the introduction of an orthosubstituent (R^{1}) to the aryl at 3-position would not only lead to the formation of a new chiral $\mathrm{C}-\mathrm{C}$ axis but also render the vicinal $\mathrm{C}-\mathrm{N}$ axis more sterically hindered (Figure 2a), which might offer the opportunity to simultaneously construct $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ chiral diaxes.

Optimizing Reaction Conditions

With the feasibility of enantioselective construction of $\mathrm{C}-\mathrm{N}$ atropisomer verified, we then commenced to investigate our hypothesis using the well-designed benzamide 1a as the model substrate. To our delight, 1a reacted smoothly using $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$ as precatalyst and Salox (S)-L1 ($20 \mathrm{~mol} \%$) as the chiral ligand, giving the expected intramolecular $\mathrm{C}-\mathrm{H}$ annulated product 2 a in high yield with noticeable stereocontrols (Table 1, entry 1, 83 \% yield, 93% ee and $4.8 / 1 \mathrm{dr})$. The screening of cobalt(II) salts and solvents revealed that $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ gave better dr value (entry 3, 6.4/1 dr) and n-propanol was the optimal solvent (entries 3-7). Since the atropostability is sensitive to temperature, we then investigated the reaction temperature. When the reaction was conducted at $50^{\circ} \mathrm{C}$, the yield and the enantioselectivity of the major diastereomer remained high (95%, 96% ee) with significantly enhanced diastereoselelctivity (entry $8,23 / 1 \mathrm{dr}$). No better results were obtained when the temperatures were further reduced (entries 9 and 10). Next, a series of chiral Salox ligands were tested. Salox ligand with a methoxy substituent at the para-position of phenolic hydroxyl (L2) led to reduced yield and stereocontrol (entry 11). Salox $\mathbf{L 3}$ with t-butyl at ortho-position of phenol moiety was detrimental to the reaction (entry 12). An isopropyl (L5) or two phenyls (L4) on the oxazoline moiety dramatically reduced the enantioselectivity (entries 13 and 14). Generally, Salox ligands bearing a phenyl group attached to the oxazoine gave high enantioselectivity that comparable to $\mathbf{L 1}$, albeit with lower yield or slightly lower dr (Table S6, L6, L7, and L15-L19). The comparable

Table 1: Reaction optimization. ${ }^{[\text {a] }}$

[a] Reaction conditions: 1 a (0.05 mmol), [Co] ($10 \mathrm{~mol} \%$), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol})$, PivONa$\cdot 2 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$, ligand ($20 \mathrm{~mol} \%$) in 1 mL ${ }^{n} \mathrm{PrOH}$ at $50^{\circ} \mathrm{C}$ under air for 24 h . [b] Isolated yield are provided. [c] Ee major and ee minor are the enantiomer excess of the major and minor diastereomers respectively. [d] The ee and dr were determined based on HPLC analysis. The dr values from HPLC and ${ }^{1} \mathrm{H}$ NMR matched well. [e] Reacted for 36 h . TFE = trifluoroethanol. Ee=enantiomeric excess. $\mathrm{Dr}=$ diastereo ratio.
enantiocontrol could be attributed to the $\pi-\pi$ interaction between the phenyl ring on the oxazoline of $\mathbf{L 1}$ and the quinoline moiety of $\mathbf{1 a}$ (see cobaltacycle quasi-intermediate QI in the Supporting Information for details). ${ }^{[16]} \mathrm{Mn}$ (OAc) $)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, an efficient oxidant first used by Daugulis and co-workers in cobalt-catalyzed $\mathrm{C}-\mathrm{H}$ annulation reactions, ${ }^{[15]}$ was found to be the optimal oxidant (see Table S4 for details). PivONa was the optimal base to promote the $\mathrm{C}-\mathrm{H}$ activation step (see Table S5 for details). ${ }^{[1]}$

Scope of Substrates

With the optimized conditions established, the scope of the protocol was then explored (Table 2). Replacing R^{1} with substituents of different sizes, such as methyl, ethyl, isopropyl, and chloro, did not detract from the good yields and ee values (2a-2d). Surprisingly, ortho-trifluoromethyl substituted benzamide 1e gave relatively lower enantioselectivity and diastereoselectivity. As expected, $\mathbf{2 f}$ with only one $\mathrm{C}-\mathrm{N}$ chiral axis was obtained in high yield with good enantioselectivity (90%, 89% ee). Benzamides with disub-

Table 2: Scope of the cobalt-catalyzed intramolecular atroposelective $\mathrm{C}-\mathrm{H}$ annulation. ${ }^{[\text {a] }}$

(

2t
86\% (30 h)
$>99 \%$ ee (major)
99% ee (minor)
$1.2 / 1 \mathrm{dr}$

2u
94\% (48 h)
66% ee (major) 80% ee (minor)

$2 v$
95\% (48 h)
$>99 \%$ ee (major)
$>99 \%$ ee (major)
$>99 \%$ ee (minor)

2w
86\% (48 h)
$>99 \%$ ee (major)
$>99 \%$ ee (major)
$>99 \%$ ee (minor)

0% (48 h)
[a] Reaction conditions: 1 (0.1 mmol unless otherwise notified), $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1 equiv), PivONa. $2 \mathrm{H}_{2} \mathrm{O}$ (2 equiv), L 1 ($20 \mathrm{~mol} \%$), ${ }^{n} \mathrm{PrOH}\left(0.05 \mathrm{M}\right.$), air, $50^{\circ} \mathrm{C}$, reacted for 24 h unless notified.
stituted terminal aryl and naphthyl also gave the desired products in excellent enantioselectivities and good diastereoselectivities ($\mathbf{2 g - 2 i}, 96 \%$ to 98% ee, $8 / 1$ to $14 / 1 \mathrm{dr}$). A variety of substituents ($\mathrm{R}=\mathrm{OMe}, \mathrm{Cl}, \mathrm{F}, \mathrm{Br}$, aryls) at the $\mathrm{C} 2-$ position of benzamides and on quinoline $\left(\mathrm{R}^{2}=\mathrm{Cl}, \mathrm{Br}, \mathrm{OMe}\right.$, phenyl) were well tolerated, giving the products with good to excellent enantio- and diastereoselectivity ($(\mathbf{2} \mathbf{j} \mathbf{- 2 s}) 89$ to $>99 \%$ ee major and $12 / 1$ to $56 / 1 \mathrm{dr}$), although $\mathbf{2 j}$ with a methoxy group was obtained in a lower yield of 24%. Different linkers were then examined. Benzamide $\mathbf{1 t}$ with a gem-dimethyl group reacted well, giving $\mathbf{2 t}$ in 86% yield with excellent enantioselectivity ($>99 \%$ ee major, 99% ee minor), albeit almost no diastereoselectivity ($1.2 / 1 \mathrm{dr}$). Benzamide 1u with a longer chain significantly reduced the stereo-control ($\mathbf{2 u}, 66 \%$ ee major, 80% ee minor and 1.4/1 dr). Notably, heterocyclic and olefinic $\mathrm{C}-\mathrm{H}$ bonds were both suitable for this reaction, showing excellent enantiocontrols ($\mathbf{2 v}$ and $\mathbf{2 w},>99 \%$ ee for both diastereomers). Unfortunately, no desired product was obtained when benzamide $\mathbf{1 x}$ with sulfonamide moiety was used. The absolute configurations of products $\mathbf{2 a}, \mathbf{2 d}$ and $\mathbf{2 m}$ were unambiguously determined by X-ray crystallographic analysis as $(3 S, 4 R)$, and those of the others were assigned by analogy. ${ }^{[16]}$

Gram-Scale Synthesis

To demonstrate the synthetic applicability, a gram-scale reaction was conducted, providing product $2 \mathbf{2 a}$ without noticeable erosion of both yield and stereoselectivity (Scheme 1). A further purification by simple trituration of the crystals of $\mathbf{2 a}$ in a mixture of acetone and diethyl ether gave 2a with very high optical purity with minimal loss ($1.231 \mathrm{~g}, 76 \%$ overall yield, $>99.9 \%$ ee,$>100 / 1 \mathrm{dr}$).

Chiroptical Properties of Products

Since different aryls could be attached to the C2 position of benzamides, we wondered if a large conjugated aryl would introduce fluorescence properties to the molecules. $\mathbf{2 y}$ and $\mathbf{2 z}$ bearing a triphenylamine and a dibenzofuran moiety were synthesized on a decigram-scale and recrystallized to give higher optical purity ($\mathbf{2 y}, 95 \%$ ee major, $50 / 1 \mathrm{dr} ; \mathbf{2 z}$, 95% ee major, $37 / 1 \mathrm{dr}$). Intrigued by the bright fluorescence of products $2 \mathbf{y}$ and $\mathbf{2 z}$, we set about studying their (chir)optical properties by UV/Visible spectra, fluorescence spectra, electronic circular dichroism (ECD), circularly

Scheme 1. Gram scale synthesis of 2 a .
polarized luminescence (CPL), and photo luminescence quantum yield (PLQY) measurements. The absorption maxima of $\mathbf{2 y}$ is slightly red-shifted compared to those of $\mathbf{2 z}$. Their emissions peak at $475 \mathrm{~nm}(\mathbf{2 y})$ and 438 nm (2z) (Figure 3a). The ECD and CPL spectra of $\mathbf{2 y}$ and $\mathbf{2 z}$ as well as their enantiomers $2 \mathbf{y}$-ent and $2 \mathbf{z}$-ent exhibit as decent mirror images (Figure S1, S2 and Figure 3b). Both 2y and $\mathbf{2 z}$ are CPL-active whose dissymmetry factors $\left|g_{\text {lum }}\right|$ are about 5×10^{-4} and 7×10^{-4} around the emission maxima respectively, comparable to those of reported organic small molecule CPL emitters. ${ }^{[17]}$ Combined with PLQYs of 0.29 $(\mathbf{2 y})$ and $0.09(\mathbf{2 z})$, they could be candidate materials for potential CPL applications.

Investigations on Atropisomerization Mechanism

To gain more mechanistic insights into the atropisomerization of the products, we next performed density functional theory (DFT) calculations to investigate how each axis rotates and whether the concerted rotation pathway exists or not. As shown in Figure 4, from 2a-Conf-1, the C-C axis rotates through 2a-TS12 to give the diastereomer 2a-Conf2, which requires a free energy barrier of $127.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The more facile $\mathrm{C}-\mathrm{N}$ axis rotation in $\mathbf{2 a - C o n f - 2}$ via $\mathbf{2 a - T S 2 3}$ leads to $\mathbf{2 a}$-Conf-3, with a lower free energy barrier of $118.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Then the $\mathrm{C}-\mathrm{C}$ axis rotation in $\mathbf{2 a - C o n f} \mathbf{3}$ takes place through 2a-TS34, leading to 2a-Conf-4. Eventually, a $\mathrm{C}-\mathrm{N}$ axis rotation via $\mathbf{2 a - T S 4 1}$ transfers $\mathbf{2 a}$ a-Conf-4 to $\mathbf{2 a}$-Conf-1, thus completing the conformation inversion of 2 a.

In addition, concerning the steric effect between two vicinal axes, we initially hypothesized a concerted two-axis rotation pathway between two enantiomers (i.e. 2a-Conf-1 to 2a-Conf-3, 2a-Conf-2 to 2a-Conf-4) ${ }^{[5,18]}$ Investigation on the free energy surface of conformation inversion indicates that this assumed concerted rotation pathway does not exist

(c)

	$\mathbf{2 y}$	$\mathbf{2 z}$
ee/\%	95	95
dr	$50 / 1$	$37 / 1$
I gluml	5×10^{-4}	7×10^{-4}
PLQY	0.29	0.09

Figure 3. a) Absorption and emission spectra of $\mathbf{2 y}$ and $\mathbf{2 z}$ (maxima indicated); b) CPL spectra of $\mathbf{2 y}, \mathbf{2 y}$-ent, $\mathbf{2 z}$ and $\mathbf{2 z}$-ent; c) Structure, optical purity, dissymmetry factor and PLQY of $\mathbf{2 y}$ and $\mathbf{2 z}$.

2a-TS12

2a-TS23

2a-TS24a

2a-TS24b

2a-TS34

2a-TS41

2a-TS24b
(141.7) 2a-TS24b
(120.6) (127.9)
$2 \mathrm{a}-\mathrm{TS} 34$

2a-Conf-1 (3S,4R)

2a-Conf-2 (3R,4R)

2a-int24

2a-Conf-3 $(3 R, 4 S)$

2a-Conf-4 (3S,4S)

Figure 4. Free energy profile of conformation inversion pathways of $\mathbf{2 a}$. Solid curve: single-axis rotation pathways. Dashed curve: the stepwise, high-energy but direct inversion pathway between $\mathbf{2 a - C o n f - 2}$ and $\mathbf{2 a - C o n f - 4}$. All energies were calculated at the B3LYP-D3(BJ)/6-311 $+\mathrm{G}(\mathrm{d}, \mathrm{p})$ SMD (o-xylene)//B3LYP-D3(BJ)/6-31G(d)-SMD (o-xylene) level of theory.
(see Figure S5 of the Supporting Information for details). Instead, we have located a stepwise inversion pathway between $\mathbf{2 a - C o n f - 2}$ and $\mathbf{2 a}$-Conf-4, which is unlikely because of a relatively high overall activation free energy of $152.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Figure 4, dashed curves).

Next, we considered the atropisomerization of $\mathbf{2 c}, \mathbf{2 d}$, $\mathbf{2 e}$, and $\mathbf{2 f}$. As shown in Figure 5a, the diastereomers of $\mathbf{2 a}$ and 2c are similar in a low free energy difference of $2.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $2.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. In contrast, the diastereomers of $\mathbf{2 e}$ and $\mathbf{2 d}$ have a more significant free energy difference of $10.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $13.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The $\mathrm{C}-\mathrm{C}$ single-axis rotation barrier is consistent with the steric hindrance of ortho-substituent in the phenyl group $\left(\mathrm{R}^{1}\right)$. The products ($\mathbf{2 a}$ and $\mathbf{2 d}$) with less steric hindered methyl and chloro groups, possess a lower inversion free energy barrier of $127.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $128.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively (Figure 5a, entry 1 and 3), and for products bearing larger isopropyl and trifluoromethyl groups ($\mathbf{2 c}$ and $\mathbf{2 e}$), this inversion barrier increases to $144.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $141.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively (entry 2 and 4). In addition, 2 f with only one chiral $\mathrm{C}-\mathrm{N}$ axis has a rotation free energy barrier of $115.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$, consistent with the experimentally measured free energy barrier of $113.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Figure 5b). Products 2f, 2a, 2d, 2c and 2e, bearing increasingly larger ortho-substituents, ${ }^{[19]}$ show a rising trend of the $\mathrm{C}-\mathrm{N}$ axis rotation barriers, indicating that the steric effect of the $\mathrm{C}-\mathrm{C}$ axis can affect the atropostability of the vicinal $\mathrm{C}-\mathrm{N}$ axis, as we have expected.

Conclusion

In summary, we have presented a cobalt-catalyzed $\mathrm{C}-\mathrm{H}$ annulation by atroposelective intramolecular alkyne insertion for the single-step construction of atropisomers with vicinal $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ chiral diaxes. This protocol provided over 20 examples of products possessing unique structures with two chiral events moderately to well stereocontrolled. Products modified with large conjugated aryls exhibit noticeable CPL-activities, being candidate materials for potential CPL applications. Atropisomerization experiments and DFT calculations revealed that the rotational barriers of the $\mathrm{C}-\mathrm{N}$ axes were of similar magnitude and effected by the steric bulkiness of the ortho-substituents of $\mathrm{C}-\mathrm{C}$ axis, whose rotation barrier varied noticeably with the steric bulkiness of the ortho-substituents. The DFT investigation on the free energy surface of atropisomerization excluded the possibility of concerted rotation of two axes.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21925109 for B.-F. S., and 21873081, 22122109 for X. H.), Zhejiang Provincial NSFC (LD22B030003 for B.-F. S.), National Key R\&D Program of China (2021YFF0701600 for B.-F. S.), Outstanding Young Talents of Zhejiang Province High-level Personnel of Special Support (ZJWR0108 for B.-F. S.), China Postdoctoral Science Foundation (2021 M690133, BX2021257 for
(a)

2a, $\mathrm{R}^{1}=\mathrm{Me}$
C-N axis $\|_{\mid}$
2c, $\mathrm{R}^{1}=\mathrm{i} \mathrm{Pr}$
2d, $\mathrm{R}^{1}=\mathrm{Cl}$
2e, $\mathrm{R}^{1}=\mathrm{CF}_{3}$

Conf-2 (3R,4R)
$\Delta G($ Conf-1/3) $=0.0 \mathrm{~kJ} / \mathrm{mol}$

Entry	Product	$\Delta G($ Conf-2/4 $)$ $(\mathrm{kJ} / \mathrm{mol})$	$\Delta G^{\ddagger}{ }_{\text {cal }}(\mathrm{C}-\mathrm{C}$ axis) $(\mathrm{kJ} / \mathrm{mol})$	$\Delta G^{\ddagger}{ }_{\text {cal }}(\mathrm{C}-\mathrm{N}$ axis $)$ $(\mathrm{kJ} / \mathrm{mol})$
$\mathbf{1}$	2a	2.1	127.9	120.6
2	2c	2.2	144.1	122.5
3	2d	10.0	128.3	122.4
4	2e	13.7	141.0	124.8

(b)

$\Delta G^{\ddagger}{ }_{\text {cal. }}=115.6 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G^{\ddagger}{ }_{\text {exp. }}=113.9 \mathrm{~kJ} / \mathrm{mol}$

PMP = p-methoxyphenyl

Figure 5. a) Atropisomerization of $\mathbf{2 a}, \mathbf{2 c}, \mathbf{2 d}$, and $\mathbf{2 e}$. All energies were calculated at the B3LYP-D3(BJ)/6-311+G(d, p)-SMD (o-xylene)//B3LYP$\mathrm{D} 3(\mathrm{BJ}) / 6-31 \mathrm{G}(\mathrm{d})$-SMD (o-xylene) level of theory. b) Conformation inversion of $\mathbf{2 f}$. All energies were calculated at the B3LYP-D3(BJ)/6-311
$+\mathrm{G}(\mathrm{d}, \mathrm{p})$-SMD (2-propanol)//B3LYP-D3(BJ)/6-31G(d)-SMD (2-propanol) level of theory.
Q.-J. Y), the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (SN-ZJU-SIAS-006 for X. H.), Beijing National Laboratory for Molecular Sciences (BNLMS202102 for X. H.), CAS Youth Interdisciplinary Team (JCTD-2021-11 for X. H.), Fundamental Research Funds for the Central Universities (226-2022-00224), the Center of Chemistry for Frontier Technologies and Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province (PSFM 2021-01 for X. H.), and the State Key Laboratory of Clean Energy Utilization (ZJUCEU2020007 for X. H.). Calculations were performed on the high-performance computing system at Department of Chemistry, Zhejiang University.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: Atroposelectivity • C-H Annulation • Cobalt • Salicyloxazoline •Vicinal Diaxis
[1] a) C. Zheng, S.-L. You, RSC $A d v .2014,4,6173-6214 ;$ b) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908-8976; c) T. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, Science 2018, 359, eaao4798; d) J. Loup, U. Dhawa, F. Pesciaioli, J. Wencel-Delord, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 12803-12818; Angew. Chem. 2019, 131, 12934-12949; e) T. Yoshino, S. Satake, S. Matsunaga, Chem. Eur. J. 2020, 26, 7346-7357; f) T. Achar, S. Maiti, S. Jana, D. Maiti, ACS Catal. 2020, 10, 13748-13793; g) Q. Zhang, B.-F. Shi, Acc. Chem. Res. 2021, 54, 2750-2763.
[2] a) C.-X. Liu, W.-W. Zhang, S.-Y. Yin, Q. Gu, S.-L. You, J. Am. Chem. Soc. 2021, 143, 14025-14040; b) J. K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805-4902; c) J. Wencel-Delord, F. Colobert, SynOpen 2020, 04, 107-115; d) G. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514-8523; e) G. Shan, J. Flegel, H. Li, C. Merten, S. Ziegler, A. P. Antonchick, H. Waldmann, Angew. Chem. Int. Ed. 2018, 57, 14250-14254; Angew. Chem. 2018, 130, 1444614450.
[3] For selected reviews, see: a) X. Bao, J. Rodriguez, D. Bonne, Angew. Chem. Int. Ed. 2020, 59, 12623-12634; Angew. Chem. 2020, 132, 12723-12734; b) T. A. Schmidt, C. Sparr, Acc. Chem. Res. 2021, 54, 2764-2774.
[4] a) L. Jin, P. Zhang, Y. Li, X. Yu, B.-F. Shi, J. Am. Chem. Soc. 2021, 143, 12335-12344; b) G. Liao, T. Zhang, L. Jin, B.-J. Wang, C.-K. Xu, Y. Lan, Y. Zhao, B.-F. Shi, Angew. Chem. Int. Ed. 2022, 61, e202115221; Angew. Chem. 2022, 134, e202115221; c) Z.-S. Liu, P.-P. Xie, Y. Hua, C. Wu, Y. Ma, J. Chen, H.-G. Cheng, X. Hong, Q. Zhou, Chem 2021, 7, 19171932.
[5] a) T. Shibata, K. Tsuchikama M Otsuka, Tetrahedron: Asymmetry 2006, 17, 614-619; b) K. T. Barrett, A. J. Metrano, P. R. Rablen, S. J. Miller, Nature 2014, 509, 71-75; c) D. Lotter, M. Neuburger, M. Rickhaus, D. Häussinger, C. Sparr, Angew. Chem. Int. Ed. 2016, 55, 2920-2923; Angew. Chem. 2016, 128, 2973-2976; d) D. Lotter, A. Castrogiovanni, M. Neuburger, C. Sparr, ACS Cent. Sci. 2018, 4, 656-660; e) Y. Tan, S. Jia, F. Hu, Y. Liu, L. Peng, D. Li, H. Yan, J. Am. Chem. Soc. 2018, 140 , 16893-16898; f) Y.-L. Hu, Z. Wang, H. Yang, J. Chen, Z.-B. Wu, Y. Lei, L. Zhou, Chem. Sci. 2019, 10, 6777-6784.
[6] a) Q. Dherbassy, J.-P. Djukic, J. Wencel-Delord, F. Colobert, Angew. Chem. Int. Ed. 2018, 57, 4668-4672; Angew. Chem. 2018, 130, 4758-4762; b) Q. Dherbassy, J. Wencel-Delord, F. Colobert, Tetrahedron 2018, 74, 6205-6212.
[7] Q. Gao, C. Wu, S. Deng, L. Li, Z.-S. Liu, Y. Hua, J. Ye, C. Liu, H.-G. Cheng, H. Cong, Y. Jiao, Q. Zhou, J. Am. Chem. Soc. 2021, 143, 7253-7260.
[8] a) Q.-J. Yao, S. Zhang, B.-B. Zhan, B.-F. Shi, Angew. Chem. Int. Ed. 2017, 56, 6617-6621; Angew. Chem. 2017, 129, 67176721; b) G. Liao, Q.-J. Yao, Z.-Z. Zhang, Y.-J. Wu, D.-Y. Huang, B.-F. Shi, Angew. Chem. Int. Ed. 2018, 57, 3661-3665;

Angew. Chem. 2018, 130, 3723-3727; c) J. Luo, T. Zhang, L. Wang, G. Liao, Q.-J. Yao, Y.-J. Wu, B.-B. Zhan, Y. Lan, X.-F. Lin, B.-F. Shi, Angew. Chem. Int. Ed. 2019, 58, 6708-6712; Angew. Chem. 2019, 131, 6780-6784; d) L. Jin, Q.-J. Yao, P.-P. Xie, Y. Li, B.-B. Zhan, Y.-Q. Han, X. Hong, B.-F. Shi, Chem 2020, 6, 497-511; e) H. Song, Y. Li, Q.-J. Yao, L. Jin, L. Liu, Y.-H. Liu, B.-F. Shi, Angew. Chem. Int. Ed. 2020, 59, 65766580; Angew. Chem. 2020, 132, 6638-6642; f) Q.-J. Yao, P.-P. Xie, Y.-J. Wu, Y.-L. Feng, M.-Y. Teng, X. Hong, B.-F. Shi, J. Am. Chem. Soc. 2020, 142, 18266-18276.
[9] V. G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2005, 127, 13154-13155.
[10] a) T. Yoshino, S. Matsunaga, Adv. Synth. Catal. 2017, 359, 1245-1262; b) J. Park, S. Chang, Chem. Asian J. 2018, 13, 10891102; c) S. Prakash, R. Kuppusamy, C.-H. Cheng, ChemCatChem 2018, 10, 683-705; d) R. -H Mei, U. Dhawa, R. C. Samanta, W.-B. Ma, J. Wencel-Delord, L. Ackermann, ChemSusChem 2020, 13, 3306-3356.
[11] B. Ye, P. A. Donets, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 507-511; Angew. Chem. 2014, 126, 517-521.
[12] Q.-J. Yao, J.-H. Chen, H. Song, F.-R. Huang, B.-F. Shi, Angew. Chem. Int. Ed. 2022, 61, e202202892; Angew. Chem. 2022, 134, e202202892.
[13] a) I. Takahashi, Y. Suzuki, Org. Prep. Proced. Int. 2014, 46, 123; b) O. Kitagawa, Acc. Chem. Res. 2021, 54, 719-730; c) Y.-J. Wu, G. Liao, B.-F. Shi, Green Synth. Catal. 2022, 3, 117-136.
[14] For examples of $\mathrm{Co}^{\text {III }}$-catalyzed enantioselective $\mathrm{C}-\mathrm{H}$ activation, see: a) F. Pesciaioli, U. Dhawa, J. C. A. Oliveira, R. Yin, M. John, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 15425-15429; Angew. Chem. 2018, 130, 15651-15655; b) S. Fukagawa, Y. Kato, R. Tanaka, M. Kojima, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2019, 58, 1153-1157; Angew. Chem. 2019, 131, 1165-1169; c) D. Sekine, K. Ikeda, S. Fukagawa, M. Kojima, T. Yoshino, S. Matsunaga, Organo-
metallics 2019, 38, 3921-3926; d) Y.-H. Liu, P.-X. Li, Q.-J. Yao, Z.-Z. Zhang, D.-Y. Huang, M.-D. Le, H. Song, L. Liu, B.-F. Shi, Org. Lett. 2019, 21, 1895-1899; e) Y.-H. Liu, P.-P. Xie, L. Liu, J. Fan, Z.-Z. Zhang, X. Hong, B.-F. Shi, J. Am. Chem. Soc. 2021, 143, 19112-19120; f) W.-K. Yuan, B.-F. Shi, Angew. Chem. Int. Ed. 2021, 60, 23187-23192; Angew. Chem. 2021, 133, 23371-23376; g) K. Ozols, Y.-S. Jang, N. Cramer, J. Am. Chem. Soc. 2019, 141, 5675-5680; h) K. Ozols, S. Onodera, Ł. Woźniak, N. Cramer, Angew. Chem. Int. Ed. 2021, 60, 655-659; Angew. Chem. 2021, 133, 665-669; i) A. G. Herraiz, N. Cramer, ACS Catal. 2021, 11, 11938-11944.
[15] a) L. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed. 2014, 53, 10209-10212; Angew. Chem. 2014, 126, 10373-10376; b) L. Grigorjeva, O. Daugulis, Org. Lett. 2014, 16, 4684-4687.
[16] Deposition Numbers 2132392, 2132394, 2132395, and 2132393 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
[17] a) E. M. Sánchez-Carnerero, A. R. Agarrabeitia, F. Moreno, B. L. Maroto, G. Muller, M. J. Ortiz S de la Moya, Chem. Eur. J. 2015, 21, 13488-13500; b) M. Li, W.-B. Lin, L. Fang, C.-F. Chen, Acta Chim. Sin. (Engl. Ed.) 2017, 75, 1150-1163.
[18] a) A. Ahmed, R. A. Bragg, J. Clayden, L. W. Lai, C. McCarthy, J. H. Pink, N. Westlund S A Yasin, Tetrahedron 1998, 54, 13277-13294; b) H. Iwamura, K. Mislow, Acc. Chem. Res. 1988, 21, 175-182.
[19] V. Belot, D. Farran, M. Jean, M. Albalat, N. Vanthuyne, C. Roussel, J. Org. Chem. 2017, 82, 10188-10200.

Manuscript received: June 18, 2022
Accepted manuscript online: August 2, 2022
Version of record online: August 23, 2022

[^0]: *] B.-J. Wang, G.-X. Xu, X. Wu, Prof. Dr. X. Hong, Dr. Q.-J. Yao, Prof. Dr. B.-F. Shi
 Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University
 Hangzhou 310027 (China)
 E-mail: hxchem@zju.edu.cn 3110000156@zju.edu.cn bfshi@zju.edu.cn
 Homepage: http://mypage.zju.edu.cn/en/bfshi/
 Prof. Dr. B.-F. Shi
 Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 (China)
 Z.-W. Huang

 Department of Chemistry, University of Michigan
 Ann Arbor, MI 48109 (USA)

