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Abstract

Conformer-RL is an open-source Python package for applying deep reinforcement

learning (RL) to the task of generating a diverse set of low-energy conformations for a

single molecule. The library features a simple interface to train a deep RL conformer

generation model on any covalently bonded molecule or polymer, including most drug-

like molecules. Under the hood, it implements state-of-the-art RL algorithms and graph

neural network architectures tuned specifically for molecular structures. Conformer-RL

is also a platform for researching new algorithms and neural network architectures for

conformer generation, as the library contains modular class interfaces for RL environ-

ments and agents, allowing users to easily swap components with their own implemen-

tations. Additionally, it comes with tools to visualize and save generated conformers

for further analysis. Conformer-RL is well-tested and thoroughly documented with

tutorials for each of the functionalities mentioned above, and is available on PyPi and

Github: https://github.com/ZimmermanGroup/conformer-rl.
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Conformer-RL is an open-source Python package for generating conformers of molecules and
polymers using deep reinforcement learning. The package includes pretrained models for
generating conformers of several classes of covalently bonded molecules as well as a robust
library for training and evaluating tailored models for custom molecules and tasks.
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INTRODUCTION

Reinforcement learning (RL) is a machine learning technique where an intelligent agent is

trained by being given a “reward” or “penalty” based on the outcome of its actions. Histori-

cally, these methods have seen great success in strategy games like chess1 and StarCraft II.2

Several recent works have applied deep RL to tasks in computational chemistry as well.3–5

One task where deep RL has shown promising results is conformer generation, which involves

finding an ensemble of unique low-energy three-dimensional orientations, or conformers, for

a given molecule.6 Efficient and accurate prediction of low-energy conformers is integral to

molecular modeling, with wide applications from drug development to 3D QSAR.7.

Since molecule conformations are determined by the rotation of their single bonds, the

number of possible conformations grows exponentially as the number of bonds increases. This

situation makes it difficult to come up with efficient algorithms for conformer generation.

For example, existing advanced chemoinformatic methods for conformer generation, such

as molecular dynamics (MD), or the enhanced self-guided molecular dynamics (SGMD)8

simulations, which uses a gradient descent method with momentum and adaptive bias to

find several local minimums in the energy surface of the conformer space, can take several

days to sample conformers with 20+ rotatable bonds.9

Gogineni et al. 9 found that defining the task of conformer generation as a RL problem

leads to models that can generate a diverse set of conformers more efficiently than methods

like Molecular Dynamics and other machine learning methods like generative algorithms. To

evaluate the conformers, the study used a metric that incorporates both the energy of each

conformer and the diversity across the generated conformers (this metric is also implemented

in Conformer-RL as the “Boltzmann Factor Reward” in section RL Environments). Using

this metric, the study found that a trained RL agent is highly effective, even when compared

to specialized sampling methods like SGMD. On the task of generating conformers for a 8-

monomer lignin molecule, the trained RL model consistently performed better than SGMD

(and even better than MD, in terms of finding low-energy conformers), while sampling 10x

fewer conformers and requiring less than 1% of the cpu runtime.

Nevertheless, building and training these models from scratch can be difficult and time
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consuming. While libraries already exist that contain implementations of RL algorithms

and benchmarking tasks, such as RLlib10 and OpenAI gym11, respectively, these packages

do not work out of the box with chemical applications and require significant modification

and programming knowledge to work with molecule structures.

In this paper, we introduce Conformer-RL, a comprehensive and modular Python library

for applying deep RL to conformer generation and other related tasks, using PyTorch12

for deep learning and RDKit13 for chemoinformatic capabilities. Conformer-RL provides

a set of tools to train models for generating conformers without the need for extensive

knowledge of RL and programming. It includes a simple interface where users can train and

save an RL agent given only a molecule file and configurable options for hyperparameters

as input. A sequence of molecule files can also be used as input to train a model that

can better generalize to a specific class of molecules (see Curriculum Learning). Currently,

Conformer-RL works with any covalently bonded molecule, though torsions within rings will

be considered rigid when sampling conformers. The software will then output the trained

model, which can generate conformers for the same or structurally similar molecules as the

one used in training. When generating conformers using the trained model, Conformer-RL

will output the .mol files for each of the generated conformers, which can be used for further

downstream tasks.

Due to the modular nature of Conformer-RL’s source code, it is also a framework where

custom agents, training algorithms, neural networks, and other model components can be

built and evaluated for conformer generation and similar tasks. As the state-of-the-art tech-

niques in deep reinforcement learning are changing rapidly, this framework makes it easy to

develop and test new RL ideas on this specific task. Specifically, Conformer-RL includes a

modular class to easily build interfaces for custom RL tasks for further exploration within

conformer generation and for custom tasks like reaction prediction. Within Conformer-RL,

we include a general agent base class for building agents compatible with conformer gen-

eration tasks, as well as several baseline reinforcement learning algorithms. Conformer-RL

provides analysis and logging modules for recording and visualizing training results, including

conformer-generation specific metrics and visuals.

This software is open-source and free of charge for all users. The source code for
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the library can be found at https://github.com/ZimmermanGroup/conformer-rl, and in-

stallation instructions and full documentation can be found at https://conformer-rl.

readthedocs.io/en/latest/. The project is maintained by graduate students in the Tewari

and Zimmerman groups at the University of Michigan, who will provide support for exter-

nal users and continue to build upon the platform described here. For contributing to

Conformer-RL and for feature requests or bug reports, please see the developer documenta-

tion at https://conformer-rl.readthedocs.io/en/latest/developer.html.

METHODS

In this section, we discuss how Conformer-RL frames conformer generation as a RL problem,

as well as the implementation details for each component of the training framework. The

architecture of Conformer-RL is shown in figure 1.

Figure 1: Architecture of Conformer-RL.

REINFORCEMENT LEARNING

A reinforcement learning system involves an “RL environment”, which is the software inter-

face for simulating the task, as well as an “agent”, which learns by interacting with the RL

environment. Before any interaction, the RL environment will have some starting “state”,
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which we denote as s0. The agent interacts with the RL environment by sequentially select-

ing an “action” on the environment, which we will denote as ai, representing the ith action

performed so far. After each action, the RL environment will update its internal state based

on the action, leading to a new state si. The RL environment will also calculate a ”reward”

ri depending on the action and the previous state. The RL environment will then send the

new state and reward (si, ri) back to the agent, which the agent will use to determine the

next action to take ai+1. The goal of the agent is to maximize the total reward achieved.

RL FOR CONFORMER GENERATION

Conformer-RL makes several assumptions when converting the conformer generation task

into a RL problem. First, we assume that the bond lengths and bond angles are constant

across conformers, so that each conformer is only determined by its torsion angles. This

same assumption is used by other conformer generation algorithms, such as Confab.14 We

further assume that all ring torsions are rigid, so we only sample torsion angles from non-ring

torsions. Finally, we assume that for each non-ring torsion angle, all low-energy conformers

with different angles for that torsion will have a difference in angle of at least 60 degrees for

that same torsion. Using this assumption, we can sample each torsion angle from discrete

“buckets” of 60 degrees, instead of a continuous range of angles. The angle variations can be

easily changed if needed, and future work will address sampling of ring conformers as well.

We now describe the full details for the reinforcement learning system (figure 2). Suppose

that we want to generate C conformers for a molecule which has n rotatable torsions. We

will number the torsions as [t1, t2, . . . tn] where tj represents the jth torsion. The state of

the RL environment corresponds to a conformation of the molecule. The initial state of

the RL environment is a random conformer for the molecule whose conformer structure

has been optimized using a molecular force field. We will denote this initial state as m0.

The reward function, which we will denote as f , depends on the energy of the current

molecule conformation, and in this case f(m0) is the reward associated with the initial

state/conformer. Conformer-RL implements several different reward functions which are

detailed in the RL Environments section. In the ith iteration of the RL environment, the

agent is first given the current state and reward (mi, f(mi)). The agent outputs the next
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action ai+1, which is a vector of length n, where each element of the vector is a multiple

of 60 within the interval [0, 360). We can write ai+1 as [ai+1,1, ai+1,2, . . . , ai+1,n]. Given this

action, the RL environment will generate a new conformer by setting the torsion angle of

torsion tj to ai+1,j for all 1 ≤ j ≤ n. Then, the resulting conformer structure is further

optimized using a force field, and the resulting conformer will be the next state mi+1, and

the corresponding reward will be f(mi+1). This cycle repeats until C cycles are completed,

after which exactly C conformers will have been generated. A diagram of a single iteration

of interaction between the agent and RL environment is shown in figure 2.

Figure 2: Illustration of an agent interacting with the RL environment in a conformer gen-
eration task for a simple molecule with two torsions. At iteration i, the environment state
is the conformation of the molecule with each torsion at 0 degrees. After the agent interacts
with environment with the action [0, 120], the environment sets the first torsion angle to 0
degrees and the second torsion angle to 120 degrees. The conformer is optimized using a
molecular force field to get to the conformer state for the next iteration, where generally the
angles will not be exactly equal to the action-specified angles.

Potential use cases for Conformer-RL include a variety of types of organic molecules

including most drug-like molecules, and also includes linear or branched organic polymers.

Molecules may contain rings but the torsions within these rings are not currently sampled.

Potential future extensions include explicit sampling of ring torsions and sampling of inter-
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molecular interactions between non-covalently bonded molecular species.

RL ENVIRONMENTS

A conformer generation RL environment can be created with any covalently bonded molecule

as input, and also includes configurable options. The molecular structure is specified as an

RDKit13 molecule object. As a mature cheminformatics library, RDKit offers a standard

means of representing and manipulating molecules, and can interface across different formats

from a number of computational chemistry packages including the MOL file format. RDKit

is also at the core of a broad ecosystem of other cheminformatics packages, including Open

Babel, which has extensive conversion capabilities for over 100 formats15.

RL environments are initialized with a MolConfig object, which specifies the RDKit

molecule to be used in the RL environment and any molecule-specific parameters. For con-

venience, Conformer-RL contains scripts for generating MolConfig objects for several classes

of molecules and polymers with conformer generation benchmarks found in Gogineni et al. 9 ,

such as branched alkanes and lignin polymers. Molecule generation scripts utilize several li-

braries depending on the molecule, including stk16, stko17 and Lignin-KMC18, with options

for varying molecule size and structure. The library also includes convenience functions to

automatically convert a molecule in a MOL file into a MolConfig object.

Conformer-RL includes several configurable options for each component of the RL en-

vironment. Due to the flexibility of the design, different component implementations can

be mixed and matched depending on the user’s specific task, and new RL environments for

tasks related to conformer generation, such as protein folding and chemical reaction opti-

mization,19 can be easily built by implementing custom variations of the components. The

main components include:

� Action Handler determines how the molecular structure is modified given an incom-

ing action. The implementation discussed above, where the action is a list of integers

that are multiples of 60, is included. Other implementations include torsion angle

“buckets” of finer granularity than 60 degrees, as well as the option for the angle to be

set to any real number in the continuous range [0, 360). After the torsion angles of the
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molecule are set, the conformer structure is further optimized using the MMFF9420

force field.

� Reward Handler specifies the function for the reward based on the current molecule

conformation. Conformer-RL includes several reward implementations derived from

the energy of the current molecule conformation, such as (but not limited to):

– Basic Energy Reward - reward that is inversely correlated with the energy of

the current conformer. Formally,

f(m) = −E(m)

where f is the reward function, m is the molecule conformer, and E(m) is the

energy of the conformer.

– Pruning Energy Reward - reward that “prunes” (returns a 0 reward) any

conformer generated from an action already seen in the current episode.

– Boltzmann Factor Reward - uses the Boltzmann factor of the conformer as

the reward, and prunes conformers that are too similar to previously generated

conformers using a torsional fingerprint distance (TFD)21 metric. Formally,

f(m) =

0 min{TFD(m,x) : x ∈ S} < threshold

e
−(E(m)−E0)

kT otherwise

where f is the reward function, m is the conformer of interest, S is the set of all

previously generated conformers, E(m) is the energy of m, E0 is a normalizing

factor, and TFD(m,x) is the torsional fingerprint distance between conformers

m and x.

� Observation Handler returns a graph representation for the current molecule con-

formation and specifies what features of the molecule conformation will be sent to the

agent. Conformer-RL contains several methods for extracting features from molecules

and converting a conformation into a PyTorch Geometric graph structure, such as:
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– Node Feature Extractors - extracts information about atoms in a molecule

which can be included in the nodes of the graph representation, such as atom

element and three-dimensional coordinates.

– Edge Feature Extractors - extracts information from molecules that can be

represented as edges in the graph reperesentation, with options for including bonds

between atoms, bond type, Euclidean distances, and more.

– Graph Normalizers - normalizes the graph representation of molecules in terms

of translation, rotation, and/or scaling.

Conformer-RL also includes options for executing multiple environments in parallel for

faster performance on systems with multiple CPU cores.

AGENTS AND MODELS

In deep RL, agents are trained on an RL environment by an RL algorithm, which learns from

the RL environment by interacting with it and receiving feedback (in the form of a reward).

Using this interaction, the agent develops a policy, or strategy for choosing actions, that leads

to higher rewards. Conformer-RL implements several state-of-the-art RL algorithms using

deep neural networks that can be used to train agents on any of the conformer generation RL

environments described above. The RL algorithms include advantage actor critic (A2C)22

and proximal policy optimization (PPO)23. Both algorithms are policy gradient algorithms,

which search for better policies by estimating the gradient of the total reward with respect

to the policy. Both algorithms have been shown to perform well on the conformer generation

task.9 The software also includes implementations of several modern graph neural network

architectures modified to be compatible with molecular inputs, including versions of the

model from the work of Gogineni et al. 9 , which are used by the agent to learn the RL

environment. The networks are built using PyTorch Geometric24 and are compatible with

molecules of variable size.
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CURRICULUM LEARNING

Curriculum learning is a machine learning technique similar to transfer learning, where a

model is trained on easier tasks initially, and then gradually more difficult tasks when the

model has started to learn the current task. Recent empirical results have shown that

curriculum learning significantly improves agent performance of RL agents in game tasks

like Ms. Pac-Man.25 Although transfer learning, which involves reusing a model trained on

a task on a different task, has been used for chemistry applications like drug discovery,26 the

use of curriculum learning is not widely explored.

Conformer-RL allows users to utilize curriculum learning when training agents, simply by

inputting a list of molecules when creating the RL environment rather than a single molecule.

The agent will be first trained on the first molecule in the list, and then sequentially move to

consecutive molecules once a performance threshold is reached. An example of curriculum

learning is discussed in the section Example Usage.

MODEL SELECTION AND EVALUATION

Conformer-RL contains tools for monitoring training progress and evaluating trained mod-

els, to aid in the selection of model hyperparameters. During training, the software’s

TrainLogger module logs information from the agent, such as total reward per episode,

training loss, runtime, etc., and supports logging data directly to TensorBoard27, where the

data can be visualized in real time. To assess the generalization capabilities of the model

during training, the system can also take a second RL environment as input. The model

will not directly train on the second RL environment, but in every set number of training

iterations, the model will be evaluated on the second RL environment. This can be useful

for determining whether the trained model is able to generalize to other molecules besides

the one it is training on, and which training iteration yields the best model on the evaluation

RL environment.
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MOLECULE VISUALIZATION AND ANALYSIS

When evaluating a trained model, Conformer-RL’s EnvLogger module records RL environ-

ment information across a single RL environment interaction/episode, such as the conformers

generated and conformer energies. EnvLogger supports saving the per-episode data and each

generated molecule conformer as a MOL file, so that the generated conformers can be used

in further downstream analysis. It further contains an analysis toolkit for calculating and

visualizing results in a Python notebook. The toolkit provides convenient methods for gen-

erating figures, charts, and interactive 3D visuals for molecule conformers. An example is

shown in figure 3.

Figure 3: Example of using the toolkit to visualize a generated conformer in a Jupyter
notebook.

Example Usage

We now demonstrate an example setup of how Conformer-RL can be used to generate con-

formers for a lignin polymer containing 8 monomers. Since the polymer is quite large and
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contains over 50 rotatable bonds, training an RL agent directly on the lignin polymer can

take several days to achieve similar performance as SGMD. This is the case even when using

a Nvidia Tesla V100 GPU and running 20 RL environments in parallel, since the number

of possible actions scales exponentially with increasing number of rotatable bonds. One

solution to this is to utilize curriculum learning. We will first train an RL agent on lignin

polymers containing only 2-3 monomers. When the agent reached a performance threshold

on the current polymer, it will be able to advanced and train on lignin polymers with se-

quentially larger number of monomers, up to 6 monomers total. The action space for these

smaller lignin polymers are exponentially smaller than the action space for an 8 monomer

lignin, and our experiments indicate that less than one day of training is required for the RL

agent to achieve similar performance using the same hardware. Thus, to utilize curriculum

learning, we create an RL environment using Conformer-RL by inputting a list of 5 lignin

polymer structures, with the first structure containing 2 monomers, the second structure

containing 3 monomers, and so on with the last structure containing 6 monomers. We then

train a RL agent on this environment using the PPO algorithm.

According to experiments reported by Gogineni et al. 9 , the model trained using this

curriculum learning method is able to generalize well and successfully generate conformers

for a lignin polymer with 8 monomers, even outperforming SGMD. We can further use the

saved .mol files dumped by the environment during evaluation to analyze the conformers

generated for the 8-lignin. An example is seen in figure 4.
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Figure 4: Analysis of conformers generated by Conformer-RL of lignin polymer with 8
monomers. Highlighted are the proximity of reactive groups in the polymer, showing a
distribution of interatomic distances for the Maccoll reaction mechanism.

CONCLUSION

Conformer-RL is a comprehensive library for training and testing deep reinforcement learn-

ing agents in the conformer generation task. Conformer-RL’s modular interfaces can increase

research reproducibility and stimulate discovery in conformer generation. We hope the avail-

ability of this library will bolster the computational chemistry community to engage advanced

machine learning techniques for conformational sampling. Full documentation can be found

at https://conformer-rl.readthedocs.io/en/latest/.
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