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0.1 Proof of Theorem 1.

Without loss of generality, consider the normalized quantity
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where op (1) denotes the stochastic version of o (1). Since Un,i is a U-statistic-like quantity,

it again follows from the theory of multivariate U-statistics that:
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By combining (1) and (2), we have:
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0.2 Proof of Theorem 2.

Again consider the normalized quantity
(
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Un. By the theory of multivariate U-statistics

that (Kowalski and Tu, 2008):

∂

∂θ
Un (θ) =




∂
∂θ(1)

Un(1) (θ)
∂

∂θ(1)
Un(2) (θ)

∂
∂θ(2)

Un(1) (θ)
∂

∂θ(2)
Un(2) (θ)


 →p B = E

(
DiV

−1
i

D⊤
i

)
=




B11 B12

B⊤
12 B22


 .

(3)



2 Biometrics, December 2008

It follows from a Taylor’s series expansion and (3) that

0 = Un(1)

(
θ̃(1),θ(20)

)
= Un(1) (θ) +

(
∂⊤

∂θ(1)

Un(1) (θ)

)(
θ̃(1) − θ(1)

)
+ op

(
n− 1

2

)

= Un(1) (θ) +B11

(
θ̃(1) − θ(1)

)
+ op

(
n− 1

2

)
.

Thus,

θ̃(1) − θ(1) = −B−1
11 Un(1) (θ) + op

(
n− 1

2

)
. (4)

Similarly, since B⊤
12 = B21, we have:

Un(2)

(
θ̃(1),θ(20)

)
= Un(2) (θ) +

(
∂⊤

∂θ(1)

Un(2)

)(
θ̃(1) − θ(1)

)
+ op

(
n− 1

2

)
(5)

= Un(2) (θ) +B⊤
12

(
θ̃(1) − θ(1)

)
+ op

(
n− 1

2

)

= Un(2) (θ) +B21

(
θ̃(1) − θ(1)

)
+ op

(
n− 1

2

)
.

It follows from (4) and (5) that

Un(2)

(
θ̃(1),θ(20)

)
= Un(2) (θ) +B21

[
−B−⊤

11 Un(1) (θ) + op

(
n− 1

2

)]
+ op

(
n− 1

2

)

= Un(2) (θ)−
[
B21B

−⊤
11 Un(1) (θ) + op

(
n− 1

2

)]
+ op

(
n− 1

2

)

=

(
−B21B

−1
11 Iq

)
Un (θ) + op

(
n− 1

2

)

= GUn (θ) + op

(
n− 1

2

)
.

By the central limit theorem,
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The asymptotic normality ofUn(2)

(
θ̃(1),θ(20)

)
implies that the score statistic Sn

(
θ̃(1),θ(20)

)

has the asymptotic χ2
q distribution.

0.3 PERMANOVA

If xi consists of only one categorical variable for groups, PERMANOVA can be used to

compare Beta-diversity across different groups. Consider a total of K groups for this cate-

gorical variable, PERMANOVA uses the pseudo-F statistic for inference about overall group
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differences in Beta-diversity:

pseudo-F =
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where tr (·) denotes the trace of a matrix, X is the design matrix that contains the group

information, p is the length of xi, H = X(X⊤X)−1X⊤ is the projection of the design matrix

X, G is the Gower’s centered matrix obtained from the distance matrix D = (di), 1n denotes

a n×1 column vector of 1’s, and In denotes the n×n identity matrix. For example, if K = 2,

and xi = 1 if the ith subject is from diseased group and xi = 0 otherwise, then X =
(
1n,x

⊤),

where x⊤ = (x1, x2, . . . , xn)
⊤.

0.4 Details of Data Generating Procedure with eCDF and Copula

For notational clarity, we use upper-case to denote random variables and lower-case to denote

their values. Consider a random variable X and let F (x) denote the cumulative distribution

function (CDF) of X. Then the probability integral transformation of X, U = F (X) , follows

U (0, 1) , where U (0, 1) is a uniform between 0 and 1 (Kowalski and Tu, 2008). Thus, if F (x)

is known, we can simulate X from X = F−1 (U), where F−1 (u) is the inverse of F (x) defined

by F−1 (u) = inf {x | F (x) > u} , 0 < u < 1. If F (x) is unknown, we can instead use the

empirical CDF (eCDF) of the observed X, i.e., Fn(x) =
1
n

∑n

i=1 I (Xi 6 x), where I (A) is

an indicator with value 1 if A is true and 0 otherwise.

For a p × 1 random vector X = (X1, X2, ..., Xp)
⊤ such as OTU counts, let F (x) =

F (x1, x2, ..., xp) denote the CDF. It can be expressed in terms of uniformly distributed

marginals Fj (Xj) and a copula, defined as the joint CDF of a p × 1 random vector U =

(U1, U2, ..., Up)
⊤ with uniform marginals Uj = Fj (Xj) (1 6 j 6 p) (Sklar, 1959). Similar to

the univariate case, we can simulate correlated multivariate random vectorsX = (X1, X2, ..., Xp)
⊤

where Xj = Fj
−1 (Uj) , with specified marginals Fj (Xj) through copula.
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To simulate X with distributions similar to those OTUs from a real study, we first use

the copula to create a correlated multivariate uniform Un based on the eCDF Fn (x) of the

observed OTUs, with the uniform marginals Unj = Fnj (Xj) = 1
n

∑n

i=1 I (Xij 6 xj). Then

by smoothing Unj (Genest et al., 2017), we apply the copula again to create a multivariate

normal V with correlations similar to those of the original OTUs. Afterward, by simulating

from V, we obtain correlated multivariate uniform U with correlations and marginals similar

to those of Un. Finally, by smoothing Fnj (Xj) and inverting the simulated Uj to Xj with

Xj = Fj
−1 (Uj), where Fj (·) is a smoothed version of Fnj (·), we obtain the simulated OTUs

X = (X1, X2, ..., Xp)
⊤ with a distribution similar to Fn (x) of the real OTUs. Beta-diversity

was then calculated from simulated OTU counts after appropriate normalization.

As this procedure does not involve analytical distributional models, population-level char-

acteristics such as mean and standard deviation are estimated by Monte Carlo (MC) simu-

lation with a large MC size of 5,000.

0.5 Details of Simulation for Group Comparison Accounting for Covariates

We simulate the two covariates from parametric distributions with xg
i ∼ Bern(p) and zai ∼

U (a, b) and then created their respective pairwise counterparts xg
i
and za

i
, where Bern(p)

denotes Bernoulli with mean p and U (a, b) a uniform over (a, b). We set:

p = 0.45, a = 0, b = 1

θ0 =
(
β0, β

d
22, β

d
12, β

g
22, β

g
12, ξ

a
)⊤

= (−0.4595, 0, 0, 0.5, 0.5, 0.5)⊤.

To simulate f (yi) for the regression with covariates, we first simulate Beta-diversity

distance di (yi) and then use the two covariates xg
i
and za

i
to create the mean h (xi, zi;θ0) =

exp
(
u⊤
i
θ0

)
. We next center di (yi) with the true value of β0 (= −0.4595) to create a “residual”

εi = di (yi)− β0, which is then added to u⊤
i
θ0 and expenentiated to create:

d̃i (yi) = exp
(
u⊤
i
θ0 + εi

)
= exp

(
u⊤
i
θ0

)
exp (εi) .
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By setting C0 = E (exp (εi)), we obtain simulated f (yi) = C−1
0 d̃i (yi). This ensures that

E [f (yi) | xi, zi] = h (xi, zi; θ) = exp
(
u⊤
i
θ
)
. We estimate C0 by the sample mean C0 =

(
n

2

)−1 ∑
i∈Cn

2
exp (εi) using a large n = 5, 000, where C0 = 1.000796 in our setting.

0.6 Details to Obtain Parameter Estimates from UGEE

The method to find θ̂ is through Newton-Raphson using the pseudo-score Un (θ). For

example, in a model with

E [fi | xi] = hi(xi;θ) = exp
{
θ⊤g(xi)

}
, i = (i1, i2) ∈ Cn

2 , (8)

where xi = {xi1 , xi2} , g(·) is some symmetric smooth function such as the Euclidean distance.

Let
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}
,
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until convergence, where all relevant quantities of (Di, Vi) are evaluated at the tth step with

θ(t).
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0.7 FDR-corrected Test Results for the Real Data Analyses

We applied the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to control

the family-wise FDR at 5%, and provided comparisons of p-values before and after FDR-

correction for the real data analyses.

Shown in top panel of the table are estimates (Est.) of θ, Wald and score test p-values

(Wald under “W.p”, score under “S.p”, Bootstrap Wald under “B.W.p” and Bootstrap score

under “B.S.p”) for testing the nulls of no difference for the diagnostic groups and no effect

for the two covariates. The bottom panel includes Wald and score test p-values for the three

major types of hypotheses and covariate effects.

The comparisons indicate that major conclusions in the real data application remain

unchanged after FDR-corrections, except for comparing the between-group variability of

AUD-HC pairs vs. the within-group variability of AH-AH pairs with βd
23 = 0, where the

score test p-value (S.p) was .020 before and .060 after correction.

[Table 1 about here.]

0.8 Simulation Details of Power Comparison with the Existing Approach.

To control for the effect size that allows for appropriate power comparisons in the simu-

lation, the data were generated from the alternative using the Dirichlet-Multinomial dis-

tribution (DM) with parameters calibrated from the real data using R package ‘dirmult’

(Tvedebrink, 2010), with effect size estimated with θ̂−0√
nse(θ̂)

as a rough quantification. This

allows us to vary effect sizes more easily for the power comparison and continues to generate

Beta-diversity outcomes with their distributions resembling the real data as shown in the

Figure S2 below.

0.9 Supplemental Figures

[Figure 1 about here.]
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[Figure 2 about here.]
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d = 0.2

Diseased 

HC 

d = 0.2

AH 
AUD 

HC 

Figure S1. Principal Coordinates Analysis (PCoA) plots of Beta-diverisity distance for (1)
combined diseased (AH and AUD patients) group and non-alcoholic controls (HC) (left) and
(2)alcoholic hepatitis (AH) patients, alcohol user disorder (AUD) patients and non-alcoholic
controls (HC) (right)



Supporting Information 9

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ecdf(d.real.HH)

x

F
n
(x

)

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ecdf(d.sim.HH)

x

F
n
(x

)

Figure S2. Empirical CDFs of Real vs. Simulated Beta-diversity.
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Table S1

Table S1. Comparisons of p-values before and after FDR-correction for the Real Data Analyses

Categorical Covariate: Gender (βg), Continuous Covariate: Age (ξa)

Para- Est. p-value FDR-corrected p-value
meter W.p S.p B.W.p B.S.p W.p S.p B.W.p B.S.p

β0 -1.042 <.0001 .0002 <.0001 <.0001 <.0001 .002 <.0001 <.0001
βd
22 .226 .454 .506 .419 .662 .554 .565 .519 .674

βd
33 .572 .002 .130 .007 <.0001 .005 .293 .016 <.0001

βd
12 .114 .554 .565 .519 .674 .554 .565 .519 .674

βd
13 .634 <.0001 .006 .002 <.0001 <.0001 .027 .006 <.0001

βd
23 .672 <.0001 .020 .0004 <.0001 <.0001 .060 .002 <.0001

βg
22 .125 .509 .528 .477 .613 .554 .565 .519 .674

βg
12 .072 .550 .551 .511 .583 .554 .565 .519 .674
ξa .006 .189 .224 .184 .348 .340 .403 .331 .626

Hypothesis p-value FDR-corrected p-value
W.p S.p B.W.p B.S.p W.p S.p B.W.p B.S.p

βd
22 = βd

33 = 0 .007 .071 .017 <.0001 .016 .160 .038 <.0001

βd
12 = βd

13 = βd
23 <.0001 <.0001 .001 <.0001 <.0001 <.0001 .005 <.0001

βd
12 = 0 .554 .565 .519 .674 .623 .636 .584 .758

βd
13 = 0 <.0001 .006 .002 <.0001 <.0001 .027 .006 <.0001

βd
23 = 0 <.0001 .020 .0004 <.0001 <.0001 .060 .004 <.0001

ξa = 0 .189 .224 .184 .613 .340 .403 .331 .758
βg
22 = 0 .509 .528 .477 .583 .623 .636 .584 .758

βg
12 = 0 .550 .551 .511 .348 .623 .636 .584 .626

βg
22 = βg

12 = 0 .733 .886 .732 1.000 .733 .886 .732 1.000


