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Abstract
The human microbiome plays an important role in our health and identifying
factors associated with microbiome composition provides insights into inher-
ent disease mechanisms. By amplifying and sequencing the marker genes in
high-throughput sequencing, with highly similar sequences binned together,
we obtain operational taxonomic units (OTUs) profiles for each subject. Due to
the high-dimensionality and nonnormality features of the OTUs, the measure
of diversity is introduced as a summarization at the microbial community
level, including the distance-based beta-diversity between individuals. Anal-
yses of such between-subject attributes are not amenable to the predominant
within-subject-based statistical paradigm, such as t-tests and linear regres-
sion. In this paper, we propose a new approach to model beta-diversity as
a response within a regression setting by utilizing the functional response
models (FRMs), a class of semiparametric models for between- as well as
within-subject attributes. The new approach not only addresses limitations of
current methods for beta-diversity with cross-sectional data, but also provides a
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premise for extending the approach to longitudinal and other clustered data in
the future. The proposed approach is illustrated with both real and simulated
data.

KEYWORDS
copula, functional response model, high-throughput sequencing, permutational multivariate
analysis of variance using distance matrices (PERMANOVA), semiparametric regression, U-
statistics-based generalized estimating equation (UGEE)

1 INTRODUCTION

This methodological development is motivated by the
problem to test associations between the microbiome
diversity and clinical variables. The human microbiome
refers to all microorganisms on or in the human body,
their genes, and surrounding environmental conditions
(National Academies of Sciences and Medicine, 2018). In
recent years, a preponderance of microbiome studies has
implicated the role of the humanmicrobiome in the patho-
genesis of complex diseases, including diabetes, alcoholic
liver disease (ALD), and even cancers (Lang et al., 2020b;
Holmes et al., 2011). Therefore, identifying potential
biological or clinical variables associated with the micro-
biome and defining their relationships not only enlightens
the inherent disease mechanisms but also enhances
modulating microbiome compositions for therapeutic
purposes.
Fueled by the technological advancement of next-

generation sequencing, the human microbiome can be
interrogatedusinghigh-throughput sequencing. For exam-
ple, one strategy amplifies and sequences the bacterial 16S
ribosomal RNA gene (16S rRNA) for species identification.
These sequences are further clustered into nearly identical
operational taxonomic units (OTUs) and compared with
reference databases to produce OTU counts profiles based
on taxonomic assignments.
The OTU counts are often sparse and high-dimensional.

Direct analysis of such data with limited samples raises
several statistical challenges, including modeling the
skewed and overdispersed count data with a preponder-
ance of zeros. Since the sequencing depth varies, OTU
counts are usually normalized into proportions within
each subject to form the OTU relative abundance. They
can be further summarized at the microbial community
level using diversity metrics, including the “within-
subject” alpha-diversity and “between-subject” beta-
diversity. Unlike alpha-diversity that consists of individual
outcomes, or within-subject attributes, beta-diversity
considers the number of shared taxa between subjects,

thus representing their differences in OTU abundance
profiles. Each beta-diversity outcome is a pairwise distance
between two subjects, or between-subject attribute. The
two major categories of statistical analyses for the micro-
biome, that is, the “individual”-level effect of a single OTU
and the “community”-level effect of microbiome composi-
tionwith summary statistics of diversity, complement each
other.
Notably, a variety of disorders are shown to be associ-

ated with the loss of gut microbial diversity (Durack and
Lynch, 2019). One common approach to evaluate such
associations using beta-diversity is the permutational
multivariate analysis of variance using distance matrices
(PERMANOVA) (McArdle and Anderson, 2001). This
approach partitions the beta-diversity into within- and
between-group variations and implements a permuta-
tion test based on pseudo-𝐹-statistics for inference. A
major limitation is the difficulty to discern the sources
of variation when the null hypothesis is rejected. Also,
it is unsuitable for between-subject covariates in some
applications, such as a dissimilarity measure describing
the difference between subjects’ metabolites abundance
profile. Additionally, it requires a large number of permu-
tations to ensure stable results (Dubitzky et al., 2013). All
these limitations severely circumscribe its applications in
practice.
We propose a new approach to address the aforemen-

tioned limitations of PERMANOVA by utilizing the func-
tional response models (FRM) (Kowalski and Tu, 2008),
which are uniquely positioned to address between-subject
attributes defining the beta-diversity in the current con-
text. In Section 2, we provide a brief overview of the beta-
diversity and PERMANOVA. In Section 3, we develop the
proposed approach for beta-diversity within a regression
setting. In Section 4, we first develop a new approach
to simulate life-like OTU counts and beta-diversity, and
then evaluate the performance of the proposed and exist-
ing approaches. We conclude this section with an applica-
tion to a study on ALD. In Section 5, we give our conclud-
ing remarks.
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2 BETA-DIVERSITY
AND PERMANOVA

2.1 Beta-diversity measures

Beta-diversity captures within- and between-group dif-
ferences by comparing individuals’ distributions of tax-
onomic units. For example, the Bray–Curtis distance
(Sørensen, 1948) is a quantitative measure based on OTU-
relative abundance. For a pair of subjects 𝑖 and 𝑗, the Bray–
Curtis distance is defined by 𝐵𝐶𝑖𝑗 = 1 −

2𝐶𝑖𝑗

𝑆𝑖+𝑆𝑗
, where 𝐶𝑖𝑗

indicates the sum of the OTU-relative abundance that the
pair has in common and 𝑆𝑖 (𝑆𝑗) denotes the total num-
ber of OTU-relative abundance for the 𝑖th (𝑗th) subject.
This measure ranges from 0 to 1, with 0 (1) indicating
exactly the same (completely different) taxonomic abun-
dances. As beta-diversity incorporates taxa information
into distances, its size is determined by the number of
subjects rather than that of taxonomic units for the high-
dimensional OTUs.
Unlike the Euclidean distance, most beta-diversity mea-

sures calculate weighted relative differences, where each
species’ contribution is weighted by the sum of the species’
abundance in the two subjects being compared (Roberts,
2017). Some forms such as the Unifrac can additionally
account for the phylogenetic distances (Lozupone and
Knight, 2005). Hence, non-Euclidean beta-diversity mea-
sures are widely adopted as the basis of statistical analyses
to detect a wider range of biologically relevant changes in
the microbiome (Legendre and Gallagher, 2001).

2.2 Permanova

Consider a sample of 𝑛 subjects with microbiome profiles
(counts) defined by 𝑚 OTUs. Let 𝐲𝑖 denote an 𝑚 × 1 col-
umn vector of OTU-relative abundance (after normaliza-
tion) and 𝐱𝑖 a vector of explanatory variables such as the
status of a disease for the 𝑖th subject. Let 𝑑𝐢 = 𝑑(𝐲𝑖1 , 𝐲𝑖2 )

denote a beta-diversity outcome for a pair of subjects 𝐢 =
(𝑖1, 𝑖2) ∈ 𝐶𝑛

2 , where 𝐶𝑛
𝑞 denotes the set of 𝑞-combinations

(𝑖1, … , 𝑖𝑞) from the integer set {1, … , 𝑛}. We are interested
in testing the association between the beta-diversity 𝑑𝐢 and
some clinical variables such as the status of a disease or,
more generally, a continuous explanatory variable such as
bilirubin, an indication of liver disease progression.
If 𝐱𝑖 is a categorical variable for groups, PERMANOVA

can be used to compare beta-diversity across different
groups, which adopts a pseudo-𝐹-statistic for inference
(McArdle andAnderson, 2001).We provide details and for-
mulas in the Supporting Information.

PERMANOVA has several limitations. First, it does not
provide coefficient estimators for explanatory variables,
which hinders generating interpretable results on both
the direction and size of the effects, or discerning sources
of differences. Second, it describes relationships of beta-
diversity (a between-subject attribute) with within-subject
attributes only, not between-subject attributes such as
metabolites abundance profile. Also, it requires a large
number of permutations for stable results and thus car-
riesmore overheads in terms of the computational burden.
Additionally, it is quite difficult to extend PERMANOVA
to longitudinal studies (with missing data) that are poten-
tially valuable given the dynamic and highly personalized
nature of the microbiome.

3 FUNCTIONAL RESPONSEMODELS
FOR BETA-DIVERSITY

The aforementioned limitations of PERMANOVA result
from a lack of ability to model between-subject attributes
under the predominant statistical paradigm. With a few
exceptions such as the Mann–Whitney–Wilcoxon rank-
sum test (Wu et al., 2014; Lin et al., 2021), all popular sta-
tistical models focus on relationships between variables
from the same subject, or within-subject attributes. As
beta-diversity measures the difference between a pair of
subjects’ OTUs, conventional statistical models are not
amenable to modeling such between-subject attributes. In
this section, we develop a regression framework to model
beta-diversity by utilizing a class of FRMs.

3.1 Functional response models for
between-subject attributes

Consider a class of semiparametric FRMs:

𝐸
{
𝐟
(
𝐲𝑖1 , … , 𝐲𝑖𝑞

)
∣ 𝐱𝑖1 , … , 𝐱𝑖𝑞

}
= 𝐡

(
𝐱𝑖1 , … , 𝐱𝑖𝑞 ; 𝜽

)
, (1)

(
𝑖1, … , 𝑖𝑞

)
∈ 𝐶𝑛

𝑞 , 1 ≤ 𝑞, 1 ≤ 𝑖 ≤ 𝑛,

where 𝐲𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑚)
⊤ ∈ ℝ𝑚 denotes the response vec-

tor from the 𝑖th subject, 𝐟 (⋅) is some vector-valued func-
tion,𝐡(⋅) is some vector-valued smooth function (e.g., with
continuous derivatives up to the second order), 𝜽 is a vector
of parameters, and 𝑞 is some positive integer. The FRM in
(1) extends the semiparametric generalized linear models
(GLM) from within- to between-subject attributes (Kowal-
ski and Tu, 2008). For example, when 𝑞 = 1 and 𝑓(𝑦𝑖) = 𝑦𝑖 ,
(1) immediately reduces to the restricted moment GLM.
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When 𝑞 = 2 and set

𝑓𝐢 = 𝑑
(
𝐲𝑖1 , 𝐲𝑖2

)
, ℎ𝐢(𝜃) = 𝐸

{
𝑑
(
𝐲𝑖1 , 𝐲𝑖2

)}
= 𝜃,

(𝑖1, 𝑖2) ∈ 𝐶𝑛
2 , (2)

theFRM in (1)models the beta-diversity distance𝑑(𝐲𝑖1 , 𝐲𝑖2 )
and provides inference about the mean distance 𝜃.

3.2 Functional response models for
beta-diversity with covariates

3.2.1 Group comparison

We start by comparing beta-diversity across multiple
groups. Consider 𝐾 groups with 𝑛𝑘 denoting the sample
size of the 𝑘th group (1 ≤ 𝑘 ≤ 𝐾), 𝑛 =

∑𝐾

𝑘=1 𝑛𝑘 denoting
the total sample size of all 𝐾 groups combined. Let 𝑥𝑖
denote a categorical variable indicating groupmembership
for subject 𝑖 (1 ≤ 𝑥𝑖 ≤ 𝐾, 1 ≤ 𝑖 ≤ 𝑛).
For each pair, we observe their OTU relative abun-

dance outcomes 𝐲𝐢 = {𝐲𝑖1 , 𝐲𝑖2 } (𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛
2 ), along

with the pairwise group indicators 𝐱𝐢 = {𝑥𝑖1 , 𝑥𝑖2 } (1 ≤

𝑥𝑖1 , 𝑥𝑖2 ≤ 𝐾). Denote all combinations of 𝐱𝐢 with a vector
𝜹(𝐱𝐢) ∈ℝ

𝐾+𝐶𝐾
2 through a one-hot encoding function 𝛿 ∶

{1, … , 𝐾} × {1, … , 𝐾} ↦ {0, 1}𝐾+𝐶𝐾
2 such that for its𝐤th(𝐤 =

{𝑘1, 𝑘2}) entry:

𝛿𝐤(𝐱𝐢) =

{
1 if 𝐱𝐢 =

{
𝑥𝑖1 , 𝑥𝑖2

}
= {𝑘1, 𝑘2} = 𝐤

0 otherwise
,

𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛
2 , (3)

𝜹(𝐱𝐢) =
(
𝛿11(𝑥𝐢), … , 𝛿(𝐾−1)𝐾(𝑥𝐢), 𝛿𝐾𝐾(𝑥𝐢)

)⊤
,

1 ≤ 𝑘1 ≤ 𝑘2 ≤ 𝐾.

Let 𝑓(𝐲𝐢) = 𝑑(𝐲𝑖1 , 𝐲𝑖2 ) and define an FRM:

𝐸{𝑓(𝐲𝐢) ∣ 𝜹(𝐱𝐢)} = exp
{∑

1≤𝑘1≤𝑘2≤𝐾
𝜏𝑘1𝑘2𝛿𝑘1𝑘2(𝐱𝐢)

}

= exp
{
𝜽⊤𝜹(𝐱𝐢)

}
, (4)

where exp(⋅) ensures that the right side of the equation is
positive as 𝑓(𝐲𝐢) ≥ 0. The FRM above is determined by the
parameter vector 𝜽 = (𝜏11, … , 𝜏(𝐾−1)𝐾, 𝜏𝐾𝐾)

⊤.
Unlike conventional analysis for within-subject

attributes, models for between-subject attributes involve
more complex parameters and interpretations. For the
FRM in (4), exp(𝜏𝑘𝑘) is the mean of 𝑓(𝐲𝐢) when both
subjects of the 𝐢th pair are from group 𝑘, and exp(𝜏𝑘1𝑘2) is

the mean of 𝑓(𝐲𝐢) when one (the other) is from group 𝑘1
(𝑘2). Thus, in addition to group means as in conventional
within-subject analysis, we now have (1) within-group
means exp(𝜏𝑘𝑘) and (2) between-group means exp(𝜏𝑘1𝑘2).
For two groups 𝑘1 and 𝑘2 with the same or similar OTU
distributions, their within- and between-group means
are usually similar. However, if they have different OTU
distributions, they may still have similar within-group
means (this can occur, for example, if OTUs have similar
variability within each group), but the between-group
means exp(𝜏𝑘1𝑘2) can be different from within-group
means exp(𝜏𝑘1𝑘1) or exp(𝜏𝑘2𝑘2).
Thus, under the FRM in (4), we are interested in three

types of null hypotheses to describe group differences in
beta-diversity:

(1) Within-group ∶

𝐻01 ∶ 𝜏𝑘𝑘 = 𝜏𝑘′𝑘′ for any (𝑘, 𝑘′), 1 ≤ 𝑘 < 𝑘′ ≤ 𝐾

𝐻𝑎1 ∶ 𝜏𝑘𝑘 ≠ 𝜏𝑘′𝑘′ for some (𝑘, 𝑘′)
, (5)

(2) Between-group ∶

𝐻02∶𝜏𝑘𝑙 = 𝜏𝑘′𝑙′ for any (𝑘, 𝑙, 𝑘′, 𝑙′), 1 ≤ 𝑘, 𝑘′ < 𝑙, 𝑙′ ≤ 𝐾

𝐻𝑎2∶𝜏𝑘𝑙 ≠ 𝜏𝑘′𝑙′ for some (𝑘, 𝑙, 𝑘′, 𝑙′)
,

(3) Within- versus Between-group ∶

𝐻03 ∶ 𝜏𝑘𝑘 = 𝜏𝑘′𝑙′ for any(𝑘, 𝑘′, 𝑙′), 1 ≤ 𝑘 ≤ 𝐾,

1 ≤ 𝑘′ < 𝑙′ ≤ 𝐾

𝐻𝑎3 ∶ 𝜏𝑘𝑘 ≠ 𝜏𝑘′𝑙′ for some (𝑘, 𝑘′, 𝑙′).

.

Hypotheses (2) and (3) are unique to between-subject
attributes, each revealing different aspects. For example, if
the patterns of OTU distribution are “flipped” across two
groups, the difference of beta-diversity could be detected
by the “within- versus “between-” instead of the “within-”
type of hypothesis.
For PERMANOVA, if we obtain an insignificant pseudo-

𝐹-statistic, we concludewith not enough evidence to reject
the null. But, if this test is significant, it is unclear if the dif-
ference occurs in within-group or between-group means
or both. By partitioning sources of variation and building
formal hypotheses to depict the underlying differences of
microbiome diversity across groups, a formal regression
model for between-subject attributes in (4) allows for dis-
cerning sources of differences, potentially leading to more
in-depth scientific findings.
All three types of hypotheses in (5) are readily tested

using linear contrasts: 𝐻0 ∶ 𝐂𝜽 = 𝟎 versus 𝐻𝑎 ∶ 𝐂𝜽 ≠ 𝟎,
where 𝐂 is a matrix of known constants. For example,
when comparing beta-diversity for three groups, we may
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use the following 𝐂matrices to test the hypotheses in (5):

𝐾 = 3, 𝜽 = (𝜏11, 𝜏22, 𝜏33, 𝜏12, 𝜏13, 𝜏23)
⊤
,

(𝑎) ∶ 𝐂1 =
(
𝟏2, (−1) ⋅ 𝐈2, 𝟎2×3

)
;

(𝑏) ∶ 𝐂2 =
(
𝟎2×3, 𝟏2, (−1) ⋅ 𝐈2

)
;

(𝑐) ∶ 𝐂3 =
(
𝟏5, (−1) ⋅ 𝐈5

)
, (6)

where 𝟏𝑛 denotes an 𝑛 × 1 column vector of 1’s, and 𝐈𝑛
denotes the 𝑛 × 𝑛 identity matrix.

3.2.2 Covariates for confounders

As most human population studies of microbiome are
observational due to cost, logistic, and difficulties in
experimental control, it is crucial to control for potential
confounders that may impact group differences, such as
demographics (ethnicity, genetic background), biomet-
rics (medications, diet), molecular measures (microbial
metabolites, gene expression), and environmental expo-
sures (National Academies of Sciences and Medicine,
2018). A more substantial improvement over PER-
MANOVA is FRM’s ease to control for a broader range of
confounders, including between-subject attributes such
as metabolites abundance profiles. This is achieved by
leveraging the regression feature of FRM to include either
within- or between-subject covariates.
As a motivating example for including a within-subject

covariate, consider a linear regression relating a con-
tinuous variable 𝑧𝑖 to a continuous response 𝑦𝑖: 𝑦𝑖 =

𝜂0 + 𝜂1𝑧𝑖 + 𝜖𝑖 , 𝜖𝑖 ∼ (0, 𝜎2), 1 ≤ 𝑖 ≤ 𝑛, where (0, 𝜎2) denotes
some continuous distributionwithmean zero and variance
𝜎2. Now consider the squared difference, 𝑓(𝑦𝐢) = (𝑦𝑖1 −

𝑦𝑖2)
2. It follows that

𝐸
{
𝑓(𝑦𝐢) ∣ 𝑧𝑖1 , 𝑧𝑖2

}
= 𝐸

(
𝜖𝑖1 − 𝜖𝑖2

)2
+ 𝜂21

(
𝑧𝑖1 − 𝑧𝑖2

)2
= 2𝜎2 + 𝜂21

(
𝑧𝑖1 − 𝑧𝑖2

)2
. (7)

Although beta-diversity is more complex, we use the
same rationale to control for covariates by adding (𝑧𝑖1 −

𝑧𝑖2)
2, or a more general nonnegative transformation 𝑔(𝐳𝐢)

of 𝐳𝐢 = {𝑧𝑖1 , 𝑧𝑖2 } to the FRM in (4):

𝐸{𝑓(𝑦𝐢) ∣ 𝜹(𝐱𝐢), 𝐳𝐢}

= exp

{ ∑
1≤𝑘1≤𝑘2≤𝐾

𝜏𝑘1𝑘2𝛿𝑘1𝑘2(𝐱𝐢) + 𝜉1𝑔(𝐳𝐢)

}
,

𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛
2 . (8)

For a categorical covariate, we can define a series
of indicators akin to (3), that is, for the 𝐢th pair,
we observe the pairwise indicators 𝐱𝑙𝐢 = {𝑥𝑙𝑖1 , 𝑥𝑙𝑖2 } (1 ≤

𝑥𝑙𝑖1 , 𝑥𝑙𝑖2 ≤ 𝐾𝑙) for the 𝑙th (1 ≤ 𝑙 ≤ 𝑝) categorical covariate
with 𝐾𝑙 levels. We convert those p categorical covariates

into 𝜹(𝐱𝐢) ∈ ℝ
1+

∑𝑝
𝑙=1

(𝐾𝑙+𝐶
𝐾𝑙
2 −1), with the one-hot encoding

function defined similarly as in (3), but designating a refer-
ent to obtain a similar form as in conventional regression.
Specifically, for the 𝑙th categorical covariate, we define

𝛿𝑙 ∶ {1, … , 𝐾𝑙} × {1, … , 𝐾𝑙} ↦ {0, 1}𝐾𝑙+𝐶
𝐾𝑙
2 −1 (excluding the

case where 𝑘𝑙1 = 𝑘𝑙2 = 1 ) such that for the 𝐤𝑡ℎ
𝑙

(𝐤𝑙 =

{𝑘𝑙1, 𝑘𝑙2}) entry of 𝜹𝑙(𝐱𝑙𝐢) ∶

𝛿𝑙𝐤(𝐱𝑙𝐢) =

{
1 if 𝐱𝑙𝐢 =

{
𝑥𝑙𝑖1 , 𝑥𝑙𝑖2

}
= {𝑘𝑙1, 𝑘𝑙2} = 𝐤𝑙

0 otherwise ,

𝜹𝑙(𝐱𝑙𝐢) =
(
𝛿𝑙12(𝐱𝑙𝐢), … , 𝛿𝑙(𝐾−1)𝐾(𝐱𝑙𝐢), 𝛿𝑙𝐾𝐾(𝐱𝑙𝐢)

)⊤
,

1 ≤ 𝑙 ≤ 𝑝,

𝜹(𝐱𝐢) =
(
1, 𝜹1(𝐱1𝐢)

⊤
, … , 𝜹𝑙(𝐱𝑙𝐢)

⊤
, … , 𝜹𝑝(𝐱𝑝𝐢)

⊤
)⊤

,

𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛
2 , 1 ≤ 𝑘𝑙1 ≤ 𝑘𝑙2 ≤ 𝐾𝑙,

1 = 𝑘𝑙1 ≠ 𝑘𝑙2. (9)

Thus, with 𝑝 categorical covariates (including the one
for diagnostic groups), 𝑥𝑙𝑖 (1 ≤ 𝑙 ≤ 𝑝), and 𝑞 continuous
covariates, 𝑧𝑚𝑖 (1 ≤ 𝑚 ≤ 𝑞) for subject 𝑖, we can, after des-
ignating the first group as the referent by including an
intercept 𝛽0, express the FRM as:

𝐸{𝑓(𝐲𝐢) ∣ 𝐱𝐢, 𝐳𝐢}

= exp

{
𝛽0 +

𝑝∑
𝑙=1

(
1=𝑘𝑙1≠𝑘𝑙2∑

1≤𝑘𝑙1≤𝑘𝑙2≤𝐾𝑙

𝛽𝑙𝑘1𝑘2𝛿𝑙𝑘1𝑘2(𝐱𝑙𝐢)

)

+

𝑞∑
𝑚=1

𝜉𝑚𝑔𝑚(𝐳𝑚𝐢)

}
,

= exp
{
𝜷⊤𝜹(𝐱𝐢)+𝝃

⊤𝐠(𝐳𝐢)
}
, (10)

where 𝐱𝑙𝐢 = {𝑥𝑙𝑖1 , 𝑥𝑙𝑖2 }, 𝐳𝑚𝐢 = {𝑧𝑚𝑖1 , 𝑧𝑚𝑖2 }, 𝐠(𝐳𝐢) =

(𝑔1(𝐳1𝐢), … , 𝑔𝑞(𝐳𝑞𝐢))
⊤, and 𝐾𝑙 denotes the levels of cat-

egory of the 𝑙th categorical variable 𝑥𝑙𝑖 (1 ≤ 𝑙 ≤ 𝑝).
The FRM above is parameterized by a vector

𝜽 ∈ ℝ
1+

∑𝑝
𝑙=1

(𝐾𝑙+𝐶
𝐾𝑙
2 −1)+𝑞:

𝜷𝑙 =
(
𝛽𝑙12 … , 𝛽𝑙(𝐾𝑙−1)𝐾𝑙

, 𝛽𝑙𝐾𝑙𝐾𝑙

)⊤
, 𝜷 =

(
𝛽0, 𝜷

⊤
1 , … , 𝜷⊤

𝑝

)⊤
,

𝝃 =
(
𝜉1, … , 𝜉𝑞

)⊤
, 𝜽 =

(
𝜷⊤, 𝝃⊤

)⊤
. (11)
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Akin to (4), the parameters for the covariates possess
more complex interpretations. For a continuous covariate
𝐳𝑚𝐢, 𝜉𝑚 represents change in the mean of log{𝑓(𝐲𝐢)} per
unit change in 𝑔𝑚(𝐳𝑚𝐢). For a categorical one, say gen-
der, we now have male–male, female–female, or male–
female pairs. If we set male–male as the referent, coeffi-
cients for female–female and male–female pairs represent
differences in the log ofmean beta-diversity when compar-
ing the respective gender pair to the referent.
We illustrate this model with a relatively simple log-

linear form in (10), yet the applicability of FRM is far
beyond the assumed simple relationship. Like any regres-
sion model such as the GLM, more complex relation-
ships such as higher order terms and interactions can be
specified as deemed appropriate. The FRM in (10) looks
like a conventional (log-linear) regression model, except
that 𝐢 indexes pairs of, rather than, individual, subjects.
This critical difference precludes applications of standard
inference methods for regression models as we discuss
next.

3.2.3 Inference

As the response function 𝑓𝐢 = 𝑓(𝐲𝐢) of the FRM-based
regression for beta-diversity in (10 ) involves pairs of sub-
jects, inferences about 𝜽 must address the interlocking
dependence of𝑓𝐢’s. Since this type of dependence structure
is not addressed by standard methods such as the general-
ized estimating equations (GEEs), we develop inferences
using a class of U-statistics-based GEEs (UGEEs).

U-statistics-based generalized estimating equations
Let

𝑆𝐢 = 𝑓𝐢 − ℎ𝐢, 𝐃𝐢 =
𝜕

𝜕𝜽
ℎ𝐢, 𝑉𝐢 = 𝑉𝑎𝑟(𝑓𝐢 ∣ 𝐱𝐢, 𝐳𝐢),

𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛
2 , (12)

in practice, 𝑉𝐢 is generally unknown and substituted by a
working variance such as 𝑉𝐢(ℎ𝐢) = ℎ𝐢, as the form of FRM
is similar to log-linearmodels for within-subject attributes.
Thus, define the UGEE:

𝐔𝑛(𝜽) =
∑
𝐢∈𝐶𝑛

2

𝐔𝑛,𝐢 =
∑
𝐢∈𝐶𝑛

2

𝐃𝐢𝑉
−1
𝐢

𝑆𝐢 = 𝟎, (13)

where the estimates 𝜽 are obtained through the Newton–
Raphson method (see the Supporting Information for
details).
Although similar in appearance, the UGEE above is

not a sum of independent variables as in GEE (Tang
et al., 2012). Standard asymptotic methods such as

the central limit theorem cannot be applied directly,
but the theory of U-statistics is useful for addressing
such interlocking dependence. For ease of reference, we
summarize the asymptotic properties in the theorem
below and provide a sketch of proof in the Supporting
Information.

Theorem 1. Let

𝐯𝑖1 = 𝐸
(
𝐔𝑛,𝐢∣ 𝐲𝑖1

, 𝐱𝑖1 , 𝐳𝑖1

)
, 𝐁 = 𝐸

(
𝐃𝐢𝑉

−1
𝐢

𝐃⊤
𝐢

)
, (14)

𝚺𝑈 = 4𝑉𝑎𝑟
(
𝐯𝑖1

)
, 𝚺𝜽 = 𝐁−1𝚺𝑈𝐁

−1, 𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛
2 .

Then under mild regularity conditions,

(a) 𝜽 is consistent and asymptotically normal:

√
𝑛
(
𝜽 − 𝜽

)
→𝑑 𝑁(𝟎, 𝚺𝜽), (15)

where→𝑑 denotes convergence in distribution.
(b) A consistent estimate of 𝚺𝜽 is obtained by substituting

consistent estimates of 𝜽 and moments of the respective
quantities in 𝚺𝜽 .

Theorem 1 above is readily applied to test any linear
hypotheses concerning 𝜽, such as the linear contrasts in
(6). Under the null, the Wald statistic has an asymptotic
𝜒2 distribution:

𝑊𝑛 = 𝑛
(
𝐂𝜽

)⊤(
𝐂𝚺̂𝜽𝐂

⊤
)−1(

𝐂𝜽
)
→𝑑 𝜒2

𝑠 , (16)

where 𝑠 is the rank of𝐂 and𝜒2
𝑠 denotes a (central)𝜒2 distri-

bution with 𝑠 degrees of freedom. For example, in testing
the within-group difference 𝐻01 in (6), 𝑊𝑛 →𝑑 𝜒2

2 under
𝐻01.

The score test
As Wald-type tests are typically anticonservative, score
statistics may be used as an alternative to reduce such bias,
especially for small to moderate samples (Kennedy, 2008).
To develop a score statistic based on the UGEE in (13),
let 𝜽 = (𝜽⊤

(1)
, 𝜽⊤

(2)
)⊤, where 𝜽(2) is the parameter of interest,

𝜽(1) ∈ ℝ𝑝, 𝜽(2) ∈ ℝ𝑞. Consider testing the null 𝐻0 ∶ 𝜽(2) =

𝜽(20), with 𝜽(20) a vector of known constants. We have the
partition:

𝐃𝐢 =

(
𝜕ℎ(𝜽)

𝜕𝜽(1)
,
𝜕ℎ(𝜽)

𝜕𝜽(2)

)⊤

=
(
𝐃𝐢(1), 𝐃𝐢(2)

)⊤
,

𝐔𝑛(𝜽) =
(
𝐔𝑛(1)(𝜽),𝐔𝑛(2)(𝜽)

)⊤
, (17)
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let 𝜽(1) denote the estimate of 𝜽(1) from solving the follow-
ing reduced estimating equation given 𝜽(2) = 𝜽(20):

𝐔𝑛(1)

(
𝜽(1), 𝜽(20)

)
=
(𝑛
2

)−1 ∑
𝐢∈𝐶𝑛

2

𝐃𝐢(1)𝑉
−1
𝐢

𝑆𝐢 = 𝟎. (18)

To define the score statistic, let

𝜽 =
(
𝜽(1), 𝜽(20)

)⊤
, 𝐁 = 𝐸

(
𝐃𝐢𝑉

−1
𝐢

𝐃⊤
𝐢

)
=

(
𝐁11 𝐁12

𝐁⊤
12 𝐁22

)
,

𝐆 =
(
−𝐁21𝐁

−1
11 , 𝐈𝑞

)
, 𝚺(2) = 𝐆𝚺𝑈𝐆

⊤, (19)

where 𝐈𝑞 denotes the 𝑞 × 𝑞 identity matrix, 𝐁11 ∈ ℝ𝑝×𝑝,
𝐁12 ∈ ℝ𝑝×𝑞, and 𝐁22 ∈ ℝ𝑞×𝑞 denote the respective subma-
trices from partitioning the matrix 𝐁 ∈ ℝ(𝑝+𝑞)×(𝑝+𝑞), and
𝚺𝑈 is defined in (14). Let

𝐔̃𝑛(2) = 𝐔𝑛(2)

(
𝜽(1), 𝜽(20)

)
, 𝚺̃−1

(2)
= 𝚺−1

(2)

(
𝜽(1), 𝜽(20)

)
, (20)

that is, the quantities of 𝐔𝑛(2) and 𝚺(2) with 𝜽 substituted
by 𝜽. The theorem below summarizes the asymptotic prop-
erties of the score statistic.

Theorem 2. Under mild regularity conditions and 𝐻0 ∶

𝜽(2) = 𝜽(20), the score test statistic 𝑆𝑛(𝜽(1), 𝜽(20)) has an
asymptotic 𝜒2

𝑞 distribution with 𝑞 degrees of freedom, that
is,

𝑆𝑛
(
𝜽(1), 𝜽(20)

)
= 𝑛𝐔̃⊤

𝑛(2)
𝚺̃−1
(2)
𝐔̃𝑛(2) →𝑑 𝜒2

𝑞. (21)

A sketch of proof is provided in the Supporting
Information.

4 APPLICATIONS

We first investigated the performance of this FRM
approach and compared it with the PERMANOVA, then
applied it to a study on ALD. For Monte Carlo (MC) sim-
ulations, we set 𝑀 = 1000 for MC iterations, two-sided
type I error rate 𝛼 = .05, and sample size (per group) 𝑛𝑘 =

50, 100, 500 (𝑘 = 1, 2) for two groups. All analyses were
performed within the R software platform (Team, 2017),
with code optimized using Rcpp (Eddelbuettel et al., 2011)
for run-time improvement, which is available as Support-
ing Information.

4.1 Simulation study

Beta-diversity is a feature summarization for the high-
dimensional and zero-inflated counts of taxonomic units

extracted from sequence data. Hence, our approach is to
first generate those taxonomic abundances, and then com-
pute beta-diversity distances from the normalized taxo-
nomic abundances. Also, asmicrobial abundances for each
taxonomic unit are usually not independent, common
approaches to generate taxonomic abundances from para-
metric distributions fail to produce life-like microbiome
data (Zhang et al., 2017). We thus develop an approach to
generate data that resemble real taxonomic abundances
based on their empirical cumulative distribution function
(eCDF) and copula (see the Supporting Information for
details). As this procedure does not involve analytical dis-
tributional models, population-level characteristics such
as the mean are estimated by MC simulation with a large
MC size of 5000.

4.1.1 Simulation settings

We generated beta-diversity outcomes from eCDFs of OTU
counts in a study on ALD (Lang et al., 2020b). Chronic
alcohol consumption increases intestinal permeability and
changes the intestinalmicrobiota composition, which con-
tributes to the progression of alcohol-related liver disease
(ALD). In this study, 𝑛 = 85 subjects including 59 alcoholic
hepatitis (AH) patients, 15 alcohol user disorder (AUD)
patients, and 11 healthy controls (HC) were enrolled. Fun-
gal ITS sequencing and analysis were conducted using the
Illumina MiSeq V3 platform specific for the fungal inter-
nal transcribed spacers (ITS1) region, resulting in 𝑝 = 81

detected genera. Beta-diversity were computed from the
OTU-relative abundance vector 𝐘85×81 = [𝐲1, 𝐲2, … , 𝐲85]

⊤.
For space consideration, we reported results using the
Bray–Curtis distance.
Shown in the leftmost panel of Figure 1 are eCDFs of

beta-diversity in the three diagnostic groups. The eCDFs
are considerably different between the AH and HC as well
as AUD and HC group, but less so between the AUD and
AH. To illustrate, we combined the AH and AUD patients
and simulated OTUs from this combined disease (D) and
HC group. Shown in the center of Figure 1 are the eCDFs of
observed beta-diversity for the D and HC group, and in the
rightmost panel are those of the simulated beta-diversity
for a sample size of 𝑛𝑘 = 500, which are nearly identi-
cal to their original counterparts. Figure S1 of the Sup-
porting Information provides principal coordinates analy-
sis (PCoA) plot, a popular visualizing tool for beta-diversity
(Kruskal and Wish, 1978), which also reveals similar
patterns.
To assess whether the data-generating procedure retains

the important feature of zero-inflated OTUs, we evaluated
the average percentage of zero counts in real (93.93%)
and simulated OTUs, which are 93.34% (𝑠𝑑 = 0.004) for



LIU et al. 957

F IGURE 1 Empirical cumulative distribution functions (eCDFs) of OTU relative abundances for (1) real data of alcoholic hepatitis (AH)
patients, alcohol user disorder (AUD) patients, and nonalcoholic controls (HCs) (left) (2) real data of combined diseased (AH and AUD
patients) group and nonalcoholic controls (HC) (middle), and (3) simulated data of combined diseased (AH and AUD patients) group and
nonalcoholic controls (HC) (right)

𝑛𝑘 = 50; 93.55% (𝑠𝑑 = 0.003) for 𝑛𝑘 = 100; and 94.10%
(𝑠𝑑 = 0.001 ) for 𝑛𝑘 = 500, indicating that the simulated
OTUs do reflect the zero-inflated nature of the real
OTUs.

4.1.2 Group comparison

We first considered group comparisonswithout any covari-
ate, where the FRM parameterized with an intercept is
given by:

𝐸{𝑓(𝐲𝐢) ∣ 𝐱𝐢} = ℎ(𝐱𝐢, 𝜽)

= exp {𝛽0 + 𝛽22𝛿22(𝑥𝐢) + 𝛽12𝛿12(𝑥𝐢)}, (22)

𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛
2 , 𝜽 = (𝛽0, 𝛽22, 𝛽12)

⊤
,

where 𝑛 = 𝑛1 + 𝑛2 with 𝑛𝑘 denoting the sample size of
group 𝑘 and 𝑓(𝐲𝐢) = 𝑑𝑖1,𝑖2 denoting the beta-diversity out-
come for pair 𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛

2 . The three types of hypothe-
ses are:

Within-group ∶

𝐻01 ∶ 𝛽22 = 0, versus 𝐻𝑎1 ∶ 𝛽22 ≠ 0, (23)

Between-group ∶

𝐻02 ∶ 𝛽12 = 0, versus 𝐻𝑎2 ∶ 𝛽12 ≠ 0,

Within- versus between-group ∶

𝐻03 ∶ 𝛽22 = 𝛽12, versus 𝐻𝑎3 ∶ 𝛽22 ≠ 𝛽12.

To assess the performance of the proposed approach
for varying sample sizes, we simulated OTUs from a
single group based on the eCDF of group D using the

copula approach. In this case, all three null hypotheses in
(23) hold.
Let 𝜽(𝑚) denote the estimator of 𝜽 and 𝚺̂

(𝑚)
𝜽

the asymp-
totic variance from the 𝑚th MC iteration, 𝜽 and 𝚺̂

(𝑎𝑠𝑦𝑚𝑝)

𝜽

denote the sample mean of 𝜽(𝑚) and 𝚺̂
(𝑚)
𝜽

, respectively,
and let 𝚺̂

(𝑒𝑚𝑝)

𝜽
denote the sample variance of 𝜽(𝑚). Let

𝑊
(𝑚)
𝑛 denote the Wald statistic in (16) for testing a

hypothesis at the 𝑚th MC iteration. The type I error
rate based on the asymptotic variance is given by 𝛼̂𝑊 =

(1∕𝑀)
∑𝑀

𝑚=1 𝐼(𝑊
(𝑚)
𝑛 ≥ 𝑞𝑠,0.95), where 𝑞𝑠,0.95 denotes the

95th percentile of a central 𝜒2 distribution with 𝑠 degrees
of freedom. The score type I error rate 𝛼̂𝑠 was computed
similarly by replacing𝑊(𝑚)

𝑛 with the score statistic in (21)
at the𝑚th iteration.
We assess the asymptotic performance by comparing

asymptotic and empirical standard errors from 𝚺̂
(𝑎𝑠𝑦𝑚𝑝)

𝜽

and 𝚺̂
(𝑒𝑚𝑝)

𝜽
, and by comparing 𝛼̂𝑊 (𝛼̂𝑠) and 𝛼 = .05.

Shown in Table 1 are estimates (Est.) of 𝜽, asymptotic
and empirical standard errors. 𝛽22 and 𝛽12 were quite close
to 0 (true value). The true 𝛽0 = −.4595was obtained by the
sample mean of beta-diversity for a large MC sample size
of 5000. The estimated 𝛽0’s were close to the truth for all
three sample sizes. The asymptotic standard errors were
close to their empirical counterparts. As expected, discrep-
ancies became smaller as the sample size increased. But
estimates and asymptotic standard errors of 𝜽 were still
good for 𝑛𝑘 = 50.
Shown in Table 2 are type I errors of FRM for the three

nulls in (23) and PERMANOVA for the overall group dif-
ference. For the FRM, although exhibiting a small upward
bias for 𝑛𝑘 = 50, the Wald type I errors were close to
𝛼 = .05 in all three cases. The score tests worked well to
reduce bias for 𝑛𝑘 = 50 and 100 with nearly identical type
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TABLE 1 MC estimates and standard errors (asymptotic and
empirical) for FRM under the null hypotheses, averaged over MC
𝑀 = 1000 iterations

Under null hypotheses
Std. err

Parameter Est. Asymptotic Empirical
𝑛𝑘 = 50

𝛽0 −.438 .091 .093
𝛽22 .003 .128 .133
𝛽12 .004 .066 .068
𝑛𝑘 = 100

𝛽0 −.452 .066 .065
𝛽22 .0003 .093 .096
𝛽12 .002 .048 .049
𝑛𝑘 = 500

𝛽0 −.458 .030 .031
𝛽22 .0007 .043 .043
𝛽12 .0006 .021 .021

I errors as the Wald for large sample sizes. PERMANOVA
also performed well, albeit with a small downward bias for
𝑛𝑘 = 50 and 100, which often occurs for small sample sizes
(Hemerik et al., 2018).

4.1.3 Group comparison accounting for
covariates

We illustrate with one continuous and one binary covari-
ate, with the same two diagnostic groups as in (22), the
FRM becomes:

𝐸{𝑓(𝐲𝐢) ∣ 𝐱𝐢, 𝑧𝐢} = ℎ(𝐱𝐢, 𝑧𝐢; 𝜽) = exp
(
𝐮⊤
𝐢
𝜽
)
, (24)

𝐮⊤
𝐢
𝜽 = 𝛽0 + 𝛽𝑑

22𝛿
𝑑
22

(
𝑥𝑑
𝐢

)
+ 𝛽𝑑

12𝛿
𝑑
12

(
𝑥𝑑
𝐢

)
+ 𝛽

𝑔
22𝛿

𝑔
22

(
𝑥
𝑔
𝐢

)
+ 𝛽

𝑔
12𝛿

𝑔
12

(
𝑥
𝑔
𝐢

)
+ 𝜉𝑎𝑔𝑎

(
𝑧𝑎
𝐢

)
,

𝜽 =
(
𝛽0, 𝛽

𝑑
22, 𝛽

𝑑
12, 𝛽

𝑔
22, 𝛽

𝑔
12, 𝜉

𝑎
)⊤

,

𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛
2 ,

where 𝑥𝑑
𝐢
, 𝑥𝑔

𝐢
, and 𝑧𝑎

𝐢
denote the diagnostic group, binary,

and continuous covariates for each pair 𝐢 ∈ 𝐶𝑛
2 . In addition

to the three null hypotheses comparing diagnostic groups,
two new hypotheses can be tested with 𝐻04𝑎 ∶ 𝜉𝑎 = 0 for
the continuous and 𝐻04𝑏 ∶ 𝛽

𝑔
22 = 𝛽

𝑔
12 = 0 for the binary

covariate. Simulation details are provided in the Support-
ing Information.
Shown in Table 3 are estimates and results for testing

the nulls. Again, all estimates were close to their respective
true values, and asymptotic standard errors were close to

their empirical counterparts. Wald and score type I errors
were also close to the nominal value, albeit a bit inflated for
the Wald with 𝑛𝑘 = 50. The gaps between Wald and score
type I errors became negligible with large sample sizes.

4.1.4 Power comparison with the existing
approach

We then compared the power and computational time
of the proposed FRM with PERMANOVA to highlight
its advantages.
Specifically, we compared hypotheses (1) “Between-

group” difference with PERMANOVA and (2) “Within-
group” difference with “betadisper” function in “vegan”
(Oksanen et al., 2013) as a proxy, since PERMANOVA
does not directly test this hypothesis. Since it is not
straightforward for PERMANOVA to test (3) “Within- ver-
sus Between-group” difference, we did not include this
comparison. The simulation details are provided in the
Supporting Information. Both permutation-based PER-
MANOVA and “betadisper” were conducted with the
number of permutations set to 99, 299, 499, and 999,
respectively.
Shown in Table 4 are group size, effect size, power, and

elapsed time (of one iteration) for comparison. In detect-
ing between-group differences (i.e., location), FRM out-
performed PERMANOVA in both power and scalability.
Not only did FRM attain much higher power, but it also
required far less computing time. For within-group dif-
ferences (i.e., dispersion), FRM still surpassed “betadis-
per” in scalability and achieved slightly higher power. For
both PERMANOVA and “betadisper,” the computational
time increased dramatically with the increased number of
permutations.

4.2 Real data analyses

We also applied the proposed FRM to the ALD study (Lang
et al., 2020a) to compare beta-diversity among the original
three diagnostic groups. Our goal was to identify the asso-
ciation between the microbiome diversity and diagnostic
groups, controlling for demographics. The FRM for diag-
nostic groups and two covariates of gender and age is:

𝐸{𝑓(𝐲𝐢) ∣ 𝐱𝐢, 𝑧𝐢} = ℎ(𝐱𝐢, 𝑧𝐢; 𝛉) = exp
(
𝐮⊤
𝐢
𝜽
)
, (25)

𝐮𝐢 =
(
1, 𝛿𝑑22

(
𝑥𝑑
𝐢

)
, 𝛿𝑑33

(
𝑥𝑑
𝐢

)
, 𝛿𝑑12

(
𝑥𝑑
𝐢

)
, 𝛿𝑑13

(
𝑥𝑑
𝐢

)
, 𝛿𝑑23

(
𝑥𝑑
𝐢

)
,
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𝑔
22

(
𝑥
𝑔
𝐢

)
, 𝛿

𝑔
12

(
𝑥
𝑔
𝐢

)
, 𝑔𝑎

(
𝑧𝑎
𝐢

))⊤
,

𝐢 = (𝑖1, 𝑖2) ∈ 𝐶𝑛
2 ,

𝜽 =
(
𝛽0, 𝛽

𝑑
22, 𝛽

𝑑
33, 𝛽

𝑑
12, 𝛽

𝑑
13, 𝛽

𝑑
23, 𝛽

𝑔
22, 𝛽

𝑔
12, 𝜉

𝑎
)⊤

,
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TABLE 2 Comparison of type I error rates between FRM (based on Wald and score tests) and PERMANOVA (based on permutation)

FRM: Type of hypothesis
Sample
size Within-: Between-

Within- versus
Between- PERMANOVA

𝑛𝑘 𝐻01 ∶ 𝛽22 = 0 𝐻02 ∶ 𝛽12 = 0 𝐻03 ∶ 𝛽22 = 𝛽12

Type I error rates (Wald)
50 .045 .081 .087
100 .046 .063 .071
500 .047 .053 .057

Type I error rates (score) Type I error rates
50 .038 .048 .054 .043
100 .044 .047 .054 .048
500 .047 .051 .053 .051

TABLE 3 MC estimates, standard errors (asymptotic and empirical), and type I error rates (Wald and score) of FRM controlling for
covariates under the null hypotheses, averaged over MC𝑀 = 1000 iterations

Categorical covariate: Gender (𝜷𝒈), Continuous covariate: Age (𝝃 𝒂)

Std. err Type I error
parameter Est. Asymptotic Empirical Wald Score
𝑛𝑘 = 50

𝛽0 −.442 .127 .135 .087 .048
𝛽𝑑
22 .003 .130 .139 .059 .055

𝛽𝑑
12 .004 .068 .072 .074 .045

𝛽
𝑔
22 .497 .129 .133 .047 .039

𝛽
𝑔
12 .501 .066 .069 .084 .056

𝜉𝑎 .500 .098 .097 .050 .037
𝑛𝑘 = 100

𝛽0 −.456 .085 .083 .057 .046
𝛽𝑑
22 .0005 .094 .097 .060 .055

𝛽𝑑
12 .002 .048 .049 .076 .059

𝛽
𝑔
22 .502 .094 .094 .046 .044

𝛽
𝑔
12 .502 .048 .048 .064 .046

𝜉𝑎 .500 .056 .055 .048 .044
𝑛𝑘 = 500

𝛽0 −.456 .039 .041 .057 .056
𝛽𝑑
22 .0003 .043 .044 .050 .050

𝛽𝑑
12 .0004 .022 .022 .049 .046

𝛽
𝑔
22 .498 .043 .045 .055 .056

𝛽
𝑔
12 .499 .021 .022 .061 .057

𝜉𝑎 .500 .029 .029 .049 .050

where 𝛽0 represents the log of mean within-group beta-
diversity for the reference AH group, 𝛽𝑑

𝑘𝑘
represents the

log of mean within-group beta-diversity differences for
AUD (𝑘 = 2) and HC (𝑘 = 3) with the AH (𝑘 = 1), and
𝛽𝑑
𝑘𝑙
represents the log of mean differences of the respective

between-group beta-diversity of AH and AUD (𝛽𝑑
12), AH

and HC (𝛽𝑑
13), and AUD and HC (𝛽𝑑

23) compared with the

AH, 𝛽𝑔
22(𝛽

𝑔
12) represents the log of mean difference of beta-

diversity comparing female–female (male–female) and the
reference male–male pairs, and 𝜉𝑎 represents the change
in the log of mean beta-diversity per unit increase in age
difference (measured by Euclidean distance). Given the
relatively small sample sizes for AUD and HC, we report
both Wald and score results, as well as Bootstrap results
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TABLE 4 Comparisons of power and computational time between FRM and PERMANOVA as well as “betadisper,” with the number of
permutations set to 99, 299, 499, and 999 for both permutation-based approaches

“Between-group” difference (location): FRM versus PERMANOVA
Power Time for one iteration (s)

PERMANOVA (#) PERMANOVA (#)
𝒏𝒌 Effect size FRM 99 299 499 999 FRM 99 299 499 999
50 0.322 0.637 0.152 0.168 0.172 0.176 0.009 0.017 0.051 0.079 0.180
100 0.346 0.905 0.383 0.423 0.431 0.441 0.024 0.078 0.238 0.408 0.878
200 0.346 0.994 0.892 0.927 0.922 0.921 0.108 0.332 1.051 1.929 3.642
“Within-group” difference (dispersion): FRM versus ‘betadisper’

Power Time for one iteration (s)
Betadisper (#) Betadisper (#)

𝒏𝒌 Effect size FRM 99 299 499 999 FRM 99 299 499 999
50 0.352 0.698 0.662 0.698 0.697 0.691 0.009 0.015 0.040 0.062 0.121
100 0.366 0.956 0.914 0.922 0.928 0.925 0.024 0.015 0.041 0.064 0.126
200 0.362 1.000 0.996 1.000 0.999 0.998 0.108 0.020 0.049 0.075 0.153

TABLE 5 Estimates, asymptotic standard errors (A. SE), bootstrap standard errors (B. SE) based on 𝐵 = 5000 bootstrap samples, Wald
statistics, score statistics, Wald p-values (W. p), score p-values (S. p), bootstrap Wald p-values (B.W. p), and bootstrap score p-values (B.S. p) for
the real study data using FRM, including covariates

Categorical covariate: Gender (𝜷𝒈), Continuous covariate: Age (𝝃 𝒂)

Std. err Statistic p-value
Parameter Est. A. SE B. SE Wald Score W. p S. p B.W. p B.S. p
𝛽0 −1.042 .215 .226 23.485 13.630 < .0001 .0002 < .0001 < .0001
𝛽𝑑
22 .226 .302 .290 .560 .442 .454 .506 .419 .662

𝛽𝑑
33 .572 .186 .201 .416 2.294 .002 .130 .007 < .0001

𝛽𝑑
12 .114 .193 .174 .350 .331 .554 .565 .519 .674

𝛽𝑑
13 .634 .173 .183 13.409 7.456 < .0001 .006 .002 < .0001

𝛽𝑑
23 .672 .180 .190 14.002 5.408 < .0001 .020 .0004 < .0001

𝛽
𝑔
22 .125 .189 .175 .436 .399 .509 .528 .477 .613

𝛽
𝑔
12 .072 .121 .111 .357 .356 .550 .551 .511 .583

𝜉𝑎 .006 .005 .005 1.723 1.479 .189 .224 .184 .348
Statistic p-value

Hypothesis Wald Score W. p S. p B.W. p B.S. p
Within- 𝐻01 ∶ 𝛽𝑑

22 = 𝛽𝑑
33 = 0 9.865 5.295 .007 .071 .017 < .0001

Between- 𝐻02 ∶ 𝛽𝑑
12 = 𝛽𝑑

13 = 𝛽𝑑
23 19.009 28.477 < .0001 < .0001 .001 < .0001

Within- versus 𝐻
(1)
03 ∶ 𝛽𝑑

12 = 0 .350 .331 .554 .565 .519 .674
Between- 𝐻

(2)
03 ∶ 𝛽𝑑

13 = 0 13.409 7.456 < .0001 .006 .002 < .0001
𝐻

(3)
03 ∶ 𝛽𝑑

23 = 0 14.002 5.408 < .0001 .020 .0004 < .0001
𝐻04𝑎 ∶ 𝜉𝑎 = 0 1.723 1.479 .189 .224 .184 .613

Covariates 𝐻
(1)
04𝑏

∶ 𝛽
𝑔
22 = 0 .436 .399 .509 .528 .477 .583

𝐻
(2)
04𝑏

∶ 𝛽
𝑔
12 = 0 .357 .356 .550 .551 .511 .348

𝐻04𝑏 ∶ 𝛽
𝑔
22 = 𝛽

𝑔
12 = 0 .621 .241 .733 .886 .732 1.000

(based on 5000 Bootstrap samples) to assess the accuracy
of asymptotic results.
The top of Table 5 shows estimates, standard errors

(asymptotic under “A. SE” and Bootstrap under “B. SE”
), test statistics and p-values (Wald under “W. p,” score
under “S. p,” Bootstrap Wald under “B.W. p,” and Boot-
strap score under “B.S. p” ) for the nulls. All Bootstrap stan-

dard errorswere close to their asymptotic counterparts. For
each hypothesis, the test results were consistent, except for
a noticeable discrepancy of the score test for 𝛽𝑑

33 due to the
small sample size of HC group (𝑛3 = 11).
AUD had no significant within-group difference in

mean diversity compared with the AH (𝛽𝑑
22 = .226, p-

values range [.419, .662]), butHChad a significantly higher
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within-group diversity than the AH from Wald test (𝛽𝑑
33 =

.572, W. p= .002), which is consistent with Figure 1. While
the score test for 𝛽𝑑

33 revealed thatmore evidence needed to
be collected to reject the null (S. p= .130), this discrepancy
may be due to the small sample size of HC. However, after
Bootstrapping, both Wald and score were consistently sig-
nificant for𝛽𝑑

33 (B.W. p= .007, B.S. p< .0001). All the above
results reveal the scientific finding that ALD is associated
with reduced microbial diversity. For covariates, age had a
positive effect with 𝜉𝑎 = .006, both female–female (𝛽𝑔

22 =

.125) andmale–female (𝛽𝑔
12 = .072) pairs had higher mean

diversity than male–male pairs. None of the covariates
were significant.
The bottom of Table 5 includes statistics and p-values.

The null of no within-group difference (𝐻01 ∶ 𝛽𝑑
22 = 𝛽𝑑

33 =

0) was rejected consistently by Wald (W. p= .007) and two
bootstrap tests (B.W. p = .017, B.S. p < .0001), while the
score test was close to being significant with S. p = .071,
suggesting that a larger sample size may be needed to con-
firm significance. The null of no between-group differ-
ence (𝐻02 ∶ 𝛽𝑑

12 = 𝛽𝑑
13 = 𝛽𝑑

23) across the three groups was
rejected by all tests with the p-values ranging in (.0001,
.001].
The between- versus within-group differences were sig-

nificant for between-group variability of D-HC andwithin-
group variability of AH-AH pairs: with p-values ranging
in (.0001, .006] for 𝐻

(2)
03 ∶ 𝛽𝑑

13 = 0 (AH-HC vs. AH-AH)
and (.0001, .020] for𝐻(3)

03 ∶ 𝛽𝑑
23 = 0 (AUD-HC vs. AH-AH).

However, there was no evidence to reject 𝐻(1)
03 ∶ 𝛽𝑑

12 = 0

concerning the between-group variability of AUD-AH ver-
sus within-group variability of AH-AH pairs. There was no
significant difference across the three gender pair groups
(p-values range in [.732, 1]).
The results above were not corrected for multiple

comparisons. We also provide FDR-corrected results in
the Supporting Information by applying the Benjamini–
Hochberg procedure (Benjamini and Hochberg, 1995) to
control the familywise FDR at 5%, where major con-
clusions remained unchanged except for 𝐻

(3)
03 ∶ 𝛽𝑑

23 = 0

(AUD-HCvs. AH-AH), the score test p-value (S. p)was .020
before and .060 after correction.
In summary, both within- and between-group hypothe-

ses detected group differences, driven by the fact that
the HC group was rather distinct from the two disease
groups. While the within- versus between-group hypothe-
ses enabled a more comprehensive comparison, the
difference between AH-AH and AUD-AUD pairs was
not as pronounced, yet any pair involving one subject
from HC was significantly different from AH-AH pairs.
These specific conclusions underscore the advantages of
partitioning the sources of variation under the FRM.

5 DISCUSSION

We developed a new approach to model beta-diversity uti-
lizing the FRMs. Unlike conventional approaches such
as the PERMANOVA, the proposed FRM can disentan-
gle information carried by beta-diversity flexibly with the
unique interpretations of “mean within-group diversity”
for each group and the “mean between-group diversity”
between any two groups. This regression approach also
provides coefficient estimators for explanatory variables,
generating interpretable results on both the direction and
size of the effects and leading to more in-depth scien-
tific findings.
In addition, the proposed approach carries far fewer

overheads than PERMANOVA in terms of the compu-
tational burden. Also, the semiparametric nature of the
model enables valid inferences without any paramet-
ric assumption on the correlated and nonnegative beta-
diversity. Lastly, the approach to simulate life-like OTUs
and beta-diversity allows one to relate simulation study
results directly to the performance of the proposed and
other statistical models for such data in real studies.
Comparing with other methods for multivariate

responses to improve inference of the mean response
such as the covariance regression model (Hoff and Niu,
2012), the proposed approach aims to directly model the
relationships between beta-diversity, a complex yet bio-
logically meaningful between-subject attribute, and a set
of explanatory variables, which can be within-, between-
subject, or both, as deemed appropriate by content
experts. Also, FRM’s ability to control for between-subject
confounders, such as a dissimilarity measure comparing
subjects’ metabolites abundance profile, makes it par-
ticularly useful in certain circumstances involving such
confounders. Given some recent discussions (Morton et
al., 2019) regarding the confounding of sequencing depth,
one potential issue in most compositional data analysis is
the stochastic nature of sampling reads due to technical
variation, yielding a potential confounding effect. If this is
the case in some applications, we can alleviate it by mod-
eling beta-diversity from the absolute abundance (instead
of relative abundance) and including the sampling depth
as an offset term in the proposed model.
In practice, we suggest conducting both score and Wald

tests in applying the proposed model. If the sample size
for some groups is relatively small (for example, 𝑛𝑘 < 50),
an additional Bootstrap procedure is recommended. One
major limitation of the approach is that it only applies to
cross-sectional data. Currently, leveraging semiparametric
regression models for longitudinal data, we are working
on extending the approach to facilitate analyses of such
data.
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