
1.  Introduction
Geostationary/geosynchronous orbit (GEO) is highly populated with active satellites (http://www.unoosa.org/
oosa/osoindex/) that can experience damaging surface charging due to high energy electrons present in the radi-
ation belts (e.g., Choi et al., 2011; Koons et al., 2000; Lam et al., 2012; Loto'aniu et al., 2015; Matéo-Vélez 
et al., 2018). These and other studies suggest that surface charging is a function of factors in the space environment, 
including solar and geomagnetic activity, electron and ion flux magnitudes, and particle energy spectrum hard-
ness. Charging events may also be more likely when the satellite is in the Earth's shadow (eclipse). Surface charg-
ing events often occur when there are increased electron fluxes at 10–50 keV (kilo electronvolt), and <100 keV 
electrons may be more responsible for the most rapid surface charging events than electrons at higher energies 
(Matéo-Vélez et al., 2018; Thomsen et al., 2013). The abundance of these electrons fluctu ates on time scales of 
minutes and also shows high spatial variability over the magnetosphere. For this reason, daily/orbit averaging 
misses much of the behavior of these electrons. Moreover, even moderate storms are not necessary for electron 
enhancements in this energy range, with many surface charging events detected during low to moderate substorm 
activity and no direct dependence on substorm strength (Ganushkina et al., 2021; Matéo-Vélez et al., 2018).

Abstract  We investigate the drivers of 40–150 keV hourly electron flux at geostationary orbit (GOES 13) 
using autoregressive moving average transfer functions (ARMAX) multiple regression models which remove 
the confounding effect of diurnal cyclicity and allow assessment of each parameter independently. By taking 
logs of the variables, we create nonlinear models. While many factors show high correlation with flux in single 
variable analysis (substorms, ULF waves, solar wind velocity (V), pressure (P), number density (N) and electric 
field (Ey), IMF Bz, Kp, and SymH), ARMAX models show substorms are the dominant influence at 40–75 keV 
and over 20–12 MLT, with little difference seen between disturbed and quiet periods. The Ey influence is 
positive post-midnight, negative post-noon. Pressure shows a negative influence, strongest at 150 keV. ULF 
waves are a more modest influence than suggested by single variable correlation. Kp and SymH show little 
effect when other variables are included. Using path analysis, we calculate the summed direct and indirect 
influences through the driving of intermediate parameters. Pressure shows a summed direct and indirect 
influence nearly half that of the direct substorm effect. N, V, and Bz, as indirect drivers, are equally influential. 
While simple correlation or neural networks can be used for flux prediction, neither can effectively identify 
drivers. Instead, consideration of physical influences, removing cycles that artificially inflate correlations, and 
controlling the effects of other parameters gives a clearer picture of which are most influential in this system.

Plain Language Summary  Satellites may experience damaging surface charging due to high 
energy electrons present in the radiation belts. In this study, we explore the various factors that may influence 
these electron populations. We use an autoregressive moving average transfer function (ARMAX) statistical 
model that removes the confounding effect of diurnal cyclicity and allows assessment of each variable 
independently of others. Substorms, which inject electrons into the magnetosphere, are found to be the 
strongest influence, with most of their effect seen near local midnight. The electric field and pressure of the 
solar wind also show moderate effects. Not all variables that show high single variable correlations retain this 
influence in multivariate analyses. Kp and SymH, two indices of geomagnetic activity are highly correlated 
with electron levels in the magnetosphere, but show little influence in models controlling for the effects of solar 
wind parameters. Identifying direct, physical drivers, removing cycles that artificially inflate correlations, and 
controlling the effects of other parameters using multiple regression (specifically, ARMAX) gives a clearer 
picture of which parameters are most influential in this system.
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A better understanding of keV electron flux behavior is needed, including details of how fluxes are driven and 
by what parameters. While a prediction model may hint at the drivers and mechanisms, no matter how well it 
may forecast, it is not a valid tool for effectively testing hypotheses about physical drivers. Hypothesis testing is 
best done with statistical tools developed specifically for this. Regression is one such tool, with multiple regres-
sion being the more appropriate test when multiple drivers are being considered. (Confusingly, the least squares 
method used in regression can also be used to create prediction models, but this should not be confused with 
hypothesis testing). The autoregressive moving average transfer functions (ARMAX) method, which we discuss 
below, is a refinement of regression that allows the modeling of time series behavior before the testing of input 
parameters. This will reduce possible spurious correlations that can occur if both dependent and independent 
variable time series cycle or trend simultaneously.

MeV (mega electronvolt) electron fluxes at GEO have been more extensively studied and may show high over-
all correlations with solar wind parameters when daily averaged (e.g., Blake et al., 1997), although the hourly 
response may be much lower (Simms et al., 2022). Solar wind speed is often cited as the most important driver 
(Li et al., 2001; Paulikas & Blake, 1979), although the relationship is complex (Reeves et al., 2011) and, for 
example, Lyatsky and Khazanov (2008) and Balikhin et al.  (2011) have shown that the solar wind density is 
more associated with MeV electron variations. The solar wind electric field (Ey) also shows an association with 
MeV flux (Baker et al., 2019) (but see Pulkkinen et al. (2016) for a discussion of how well the solar Ey maps to 
the magnetospheric convective currents). However, the direct influence of many solar wind drivers on even MeV 
electron flux is still unclear, both because much of the solar wind influence may not be direct but instead medi-
ated by waves and electron injections following substorms (e.g., Simms, Engebretson, Clilverd, Rodger, Lessard, 
et al., 2018), and because simple correlations of solar wind parameters with electrons may be inflated by common 
cycles and trends if these commonalities are not removed via such methods as differencing transformation or 
ARMAX modeling (Simms et al., 2022). For keV electrons, there are even fewer simple answers as to which of 
the solar wind parameters drive their variations.

Fluxes of low energy electrons have been modeled with a first principle kinetic approach in several ring current 
simulations (e.g., Chen et  al.,  2015; Fok et  al.,  2014; Ganushkina et  al.,  2014; Harel et  al.,  1981; Jordanova 
et al., 2016). These models are driven by different sets of solar wind, Interplanetary Magnetic Field (IMF) param-
eters and geomagnetic indices but the drivers are predetermined. The first principle models cannot define the 
driving parameters themselves.

Empirical models can determine correlates of electron flux energies from eVs to several MeVs using a variety 
of fitting techniques. Among them, (a) one of the earliest models, the NASA (National Aeronautics and Space 
Administration) radiation belt models for electrons such as AE8 traditionally used to specify the average charged 
particle flux for space missions (Vette, 1991), (b) the improved AE9/SPM models (Ginet et al., 2013) derived 
from measurements made over an extended period of time by particle detectors and dosimeters on board many 
satellites in a variety of orbits (see table 3 in Ginet et al. (2013)), (c) a Particle ONERA (Office National d’Etudes 
et de Recherches Aérospatiales/French Aeronautics and Space Research Center)-LANL Electron (POLE) model 
(Boscher et al., 2003) of energetic electron flux developed using 25 years of LANL data with input as the year 
in the solar cycle, (d) the extended POLE model known as the new International Geostationary Electron model 
(IGE-2006) (Sicard-Piet et al., 2008) created by adding the data from the Japanese spacecraft Data Relay Test 
Satellite (DRTS), and (e) the electrons model (Roeder et al., 2005) based on Polar HYDRA (Hot Plasma Analyzer) 
data proving the average flux as a function of the position in the Earth's magnetosphere. The models above were 
not parameterized on geomagnetic conditions and did not capture the magnetic local time (MLT) dependence and 
variations on time scales of less than a day.

The Kp (Planetarische Kennziffer) index, a simple 0–9 index as compared to the more complex variations of solar 
wind and IMF parameters, has been used to organize keV electron fluxes (e.g., Korth et al., 1999). Using LANL 
satellites data in the range from 1 eV to 40 keV at GEO, Denton et al. (2015); Denton et al. (2016) developed a 
model which predicts electron flux values based on energy and local time for given values of the 3-hr Kp-index 
and -VSWBz (the electric field of the solar wind, where VSW is the solar wind speed, Bz is the z-component of the 
IMF), under the assumption that both Kp and the solar wind electric field are correlated with magnetosphere 
activity, for example, for Kp (Freeman, 1974; Thomsen, 2004); for -VSWBz (Akasofu, 1964; Burton et al., 1975). 
The Kp version of the model also provides flux values for given values of the daily F10.7 index (solar radio flux at 
10.7 cm). However, while the Kp index may correlate well with flux (at least in daily averaged data), it is neither 
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the best predictive parameter, nor what we would consider to be a physical driver of electron flux variations. 
Kp, as it Earth-based (measured at ground magnetometers), may not represent conditions in the magnetosphere 
well. It is most likely a proxy measure, representing a combination of both relevant and non-relevant correlated 
factors, which tells us little about which specific processes drive flux. While the ease of obtaining it might offset 
this drawback in prediction models, it may be nearly useless in models seeking instead to explain what drives 
electrons. Its 3 hr time cadence may also make it unsuitable even for prediction models, given that electron fluxes 
fluctuate much more rapidly. The -VSWBz measure could be an improvement over Kp as it can be obtained at 
hourly or faster cadence and each is a specific physical parameter rather than a possible conglomeration of gener-
alized response (as the Kp is). However, this measure, alone, only accounts for two possible driving parameters.

Several studies have examined the response of geosynchronous keV electron flux measured at LANL satellites 
to solar wind parameters. For example, Shi et al. (2009) found electron flux increases due to solar wind dynamic 
pressure enhancements and Li et al. (2005) and Kellerman and Shprits (2012) concluded that higher solar wind 
speed results in higher electron fluxes. Hartley et al.  (2014) have found an effect of solar wind speed on the 
30–600  keV electron density, temperature and energy density from the MAGED (MAGnetospheric Electron 
Detector) instrument onboard Geostationary Operational Environmental Satellites (GOES) 13–15.

Sillanpää et al. (2017), using 5 years of GOES 13 MAGED electron flux data, fit an empirical model using both 
solar wind and IMF Bz to predict electron fluxes at 40, 75 and 150 keV energies, after concluding that the other 
two IMF components and solar wind density, temperature, and pressure were of less importance. This is in line 
with earlier studies (e.g., Ganushkina et al., 2019; Kellerman & Shprits, 2012; Li et al., 2005). The effects of 
multiplicative combinations of parameters such as -VSWBz (Denton et al., 2016) were not studied and it is possible 
that not a single parameter but the combined effect of multiple driving parameters that result in the observed fast 
variations of the keV electrons.

Ganushkina et al. (2021) discovered that the AE/AL (Auroral Electrojet/Auroral Lower) indices, together with 
solar wind speed, provide a better model of the severe environments related to surface charging of satellites by 
keV electrons measured by LANL (1990–2005) than do IMFBz, Kp, and solar wind number density. Based on 
integral electron fluxes, among 400 events of worst-case severe environments (categorized based on four criteria 
(Matéo-Vélez et al., 2018) of the solar wind and IMF parameters and geomagnetic indices), 100 were in one 
criterion based on the measured spacecraft potential and 300 in the other 3 criteria based on these electron flux 
measurements.

In recent years, multivariate approaches have been explored to refine and complement physical and single vari-
able empirical models, and to determine the main driving parameters of keV electrons. Some techniques used 
for predictions of mainly MeV radiation belt electrons include linear prediction filters (e.g., Baker et al., 1990; 
Castillo Tibocha et al., 2021; Rigler et al., 2004), dynamic linear models (e.g., Osthus et al., 2014), conditional 
mutual information (Wing et al., 2022), multiple regression (e.g., Sakaguchi et al., 2013; Simms et al., 2014, 2
016, 2018a, 2018b; Stepanov et al., 2021), neural networks (e.g., Freeman et al., 1998; Koons & Gorney, 1991; 
Ling et al., 2010; Simms & Engebretson, 2020), and Nonlinear AutoRegressive Moving Average with eXogenous 
(NARMAX) inputs (e.g., Balikhin et al., 2011, 2016; Boynton et al., 2015; Boynton et al., 2016).

GOES 13–15 40 keV electron flux data were used by Boynton et al. (2019) to develop a model of time series 
of the electron flux for each of 24 MLTs employing NARMAX methodology. They found that the IMF factor, a 
combination of IMF By and Bz component (Balikhin et al., 2010; Boynton et al., 2011), Bf(t) = BT(t) sin 6(θ(t)/2), 

where 𝐴𝐴 𝐴𝐴𝑇𝑇 (𝑡𝑡) =

√

𝐵𝐵𝑦𝑦(𝑡𝑡)
2
+ 𝐵𝐵𝑧𝑧(𝑡𝑡)

2 and θ = tan −1(By(t)/Bz(t)), controls most of the output variance. Another impor-
tant variable was determined to be the solar wind velocity. The square root of the solar wind pressure and solar 
wind density were also chosen by the algorithm but their contributions are small. Boynton et al. (2019) stressed 
that the time resolution of the parameters used in the model development influences the importance of these 
parameters. For comparison, the earlier study by Boynton et al.  (2013), in which daily averaged 10–100 keV 
electron fluxes measured at LANL satellites were used, the role of southward IMF was found to be insignificant.

In the present study, we test the influence of several possible drivers of low energy electron flux (40–150 keV) 
observed by GOES 13 and GOES 16 satellites: solar wind velocity (V), number density (N), pressure (P), and 
the electric field (Ey), IMF Bz, and substorms (as measured by the AE index). We use ARMAX (autoregressive 
moving average transfer function) models both to measure the cumulative effects and to remove common cycles 
and trends that may inflate correlations between variables (Simms et al., 2022). These parameters may act in 
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combination, with influence accumulating over time. It is also possible that some variables may not influence 
electron flux directly but indirectly via other parameters. For the latter case, we develop subset models showing 
postulated direct and indirect effects.

Regression can be a powerful tool for testing which drivers could have a possible controlling influence on elec-
tron flux levels. However, regression on time series data, because it often violates the assumption of uncorrelated 
errors, can result in highly inflated hypothesis test statistics, giving the impression that certain factors may be 
strong drivers of flux when they are only cycling or trending in common (Simms et al., 2022). While this may not 
be a problem if we are using a regression model to forecast flux, it will invalidate the hypothesis tests that allow 
us to determine if solar wind, IMF, and substorm factors are meaningfully correlated with flux. We may also find 
that using more of the information present in the data (i.e., the time behavior) results in more accurate predictions.

There are several approaches to modeling the periodic behavior of a time series. We will do so with autoregres-
sive (AR) and moving average (MA) terms (Hyndman & Athanasopoulos, 2018; Pankratz, 1991). When chosen 
well, these reduce the autocorrelation in the errors of the model and fully describe the cycling behavior of the 
series. With this behavior effectively removed (by the introduction of these terms) the remaining variability in the 
data can be tested for its response to external factors (the independent variables). This last step results in a transfer 
function model (X), giving the acronym ARMAX. The ARMA terms therefore partition out the part of the vari-
ance due to common cycling. What we will be left with is the actual relationship between the predictor and flux.

Further assumptions of regression models, in general, are a linear relationship between response and predictor 
variables, homoscedasticity (equality of variances in the residual errors), and normally distributed errors. To 
achieve linearity, we take the logs of the variables (excepting those with both positive and negative values). This 
not only allows the use of the linear model technique (regression) to describe what may be a nonlinear process, 
it can also normalize the residuals and reduce the heteroscedasticity (non-equality of variances) of the residual 
error (Neter et al., 1990).

Other studies have used ARMAX modeling to predict higher energy electron fluxes in geostationary orbit, and 
these provide further information on this approach of describing the underlying cyclical behavior of flux with 
AR and MA terms (Balikhin et al., 2011, 2016; Simms & Engebretson, 2020; Simms et al., 2022). We note that 
nonlinearity was introduced into the models of Balikhin et al. (2011) with polynomial terms (square and cubic 
terms) instead of the logs we use here. Polynomial terms often result in a similar description of nonlinearity as 
merely taking logs of the variables. Additive polynomial terms may be a better choice if the slope of the relation-
ship cannot be made constant with the log transformation, but there are potential disadvantages. The exponent 
of a polynomial term is chosen by the researcher, while linearizing the relationship using a log transformation 
allows the model itself to choose the exponent of the power function. The polynomial approach may also not 
have the same ability to fix problems of heteroscedasticity and non-normality of the errors. However, although 
these appear to be significantly different approaches, most relationships in space weather data are such that either 
approach will give a similar description of the data.

We also note that ARMAX models may sometimes be called ARIMAX models, with the additional I conveying 
that the data is differenced at some time step n with a yt − yt−n transformation. However, as we did not find it 
necessary to difference the present data set for the full models, ARMAX without the additional I is the more 
descriptive acronym.

In this study, we extend this previous work by using the ARMAX technique to determine the most influential 
drivers of lower energy electron flux behavior. While previous studies (e.g., Balikhin et al., 2011) may choose an 
optimal, parsimonious set of predictors that describe the variance in the data set (e.g., through the Error Reduc-
tion Ratio technique), using least squares regression (as applied to an ARMA model) we are able to show the 
statistically significant, relative contributions of each parameter rather than reducing the model to only highlight 
the most essential variables. In other words, we are able to test for the inutility of certain parameters in describing 
flux, rather than just choosing those parameters that have the strongest correlation. This provides more informa-
tion on the additive influence of parameters, even if the influence of some is not as strong as others. This results 
in a deeper understanding of the ensemble effects. We also explore a reduced model consisting of just those 
parameters we hypothesize are the direct physical drivers of flux: AE (as a measure of electron injections from 
substorms), pressure, and the solar wind electric field (Ey, or − VBz).

The description of the data is given in Section 2. Section 3 presents the results for drivers for 40–150 keV. The 
findings are discussed and the conclusions are drawn in Section 4.
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2.  Data for Defining the keV Electron Drivers
For electron fluxes, we use hourly averaged data from the geostationary GOES-13 satellite. We analyze the meas-
urements from the MAGED instrument consisting of the nine collimated solid state telescopes (e.g., Rowland 
& Weigel, 2012), each with a 30° full-angle conical field of view. All nine telescopes measured the directional 
differential electron fluxes in units of cm −2 s −1 sr −1 keV −1. We use the fluxes in the first three energy chan-
nels where the fluxes are defined at the midpoints of the energy ranges, that is, at 40, 75, and 150 keV. We 
compute one omnidirectionally averaged flux (flight direction-integrated differential electron fluxes) for each of 
the energies using pitch angles calculated from the onboard magnetometer data following the method presented 
in Sillanpää et al. (2017) and Ganushkina et al. (2019). The GOES-13 MAGED data of electron fluxes and the 
data for the pitch angles of each telescope with 5-min averaging are available at https://www.ngdc.noaa.gov/stp/
satellite/goes/dataaccess.html.

The time interval of this study is 10 June 2013–6 August 2016. There were minimal data gaps of only several 
hours during these time periods. For the time-dependent analyses (ARMAX models) these gaps were filled with 
linear interpolation between the existing observations.

Solar wind parameters (solar wind velocity V, number density N, pressure P, IMF Bz and Bs (including only the 
southward component of Bz), and the electric field Ey) and magnetic indices (Kp, AE and SymH) were obtained 
from OMNIWeb (https://omniweb.gsfc.nasa.gov/ow.html) with 1 hr resolution with data time-shifted to the bow 
shock nose. We use an hourly ground ULF wave index (ULF) as a global ULF activity proxy reconstructed from 
1-min data from the world-wide array of magnetic stations in the Northern hemisphere (data available at: https://
doi.org/10.2205/ULF-index) (Kozyreva et al., 2007; Pilipenko et al., 2017).

Analyses based on the least squares regression methodology assume that the relationship between predictor 
and response variables be linear, with the residual errors (that variance i.e., unexplained by the model) being 
random, normally distributed, and with equal variance over the range of predicted values. This requirement 
applies even to such analyses as simple correlation. However, the relationship between flux and predictor param-
eters is often nonlinear and inspection of the residual errors of these analyses performed on non-transformed 
data shows this nonlinearity, as well as non-normality and an inequality of variances at different levels of the 
predictors. Fortu nately, these problems can usually be fixed by taking the log of at least electron flux, with further 
improvements obtained by taking the log of transformable predictor variables as well. We therefore take log10 of 
all variables ≥0. Variables containing zero values which cannot be logged without creating missing values (i.e., 
Kp) were transformed by adding 1 to all values before the log transformation. Bz and Ey, as they have both positive 
and negative values, were not logged. Examination of residual plots of the ARMAX models (not shown) showed 
that this transformation fixed all three problems.

Because the dependent variable (electron flux) is log-transformed, this results in nonlinear models between flux 
and all the variables, a power function relationship for those predictor variables that are also log-transformed, and 
an exponential function relationship for those predictor variables that are not logged.

Subsequent to the log transformation, all variables were standardized by subtracting that series mean and divid-
ing by its standard deviation. This creates unitless variables (Z-scores) for which regression coefficients (slopes) 
can be directly compared. Although it makes no difference to the outcome of the correlations, we also used 
the Z-scores for the correlation analysis for consistency. We note, however, that neither the log nor the Z-score 
transformation reduces either the serial autocorrelation or common cycles seen in these time series datasets. 
This autocorrelation inflates the simple correlations and must be further dealt with by describing/removing the 
autocorrelation and common trends and cycles via the introduction of AR and MA terms and/or differencing, as 
described below in Section 3.2 (Granger & Newbold, 1974; Simms et al., 2022).

ARMAX models were developed in IBM SPSS Statistics (formerly known as the Statistical Package for the 
Social Sciences), with additional statistical analysis in MATLAB.

3.  Drivers of 40–150 keV Electrons at Geostationary Orbit
3.1.  Cross Correlations of Electron Fluxes With Solar Wind and IMF Parameters and Geomagnetic 
Indices

Simple cross correlations of hourly measured parameters (Figure 1) show values near 0.5 for some parameters, 
most notably and in keeping with previous studies, V, ULF, and AE (e.g. (Hartley et al., 2014; Kellerman & 

https://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html
https://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html
https://omniweb.gsfc.nasa.gov/ow.html
https://doi.org/10.2205/ULF-index
https://doi.org/10.2205/ULF-index
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Shprits, 2012; Li et al., 2005; Simms et al., 2014),). Positive correlations are shown with solid lines, negative with 
dashed red lines. Correlations are performed between electron flux and individual parameters from each hour 
(0–48 hr) before the flux measurement. At higher electron energies, the AE and ULF correlations are lower, with 
peak correlations at earlier times. The correlation with V may be somewhat higher, but there is also a tendency 
for its peak correlation with electron flux to occur earlier at higher energies. The correlation of flux with N is less 
than that with V, although it does become more prominent at 150 keV, if negative.

Bz and Bs correlations with flux are similar to each other. There appears to be no particular advantage to using 
the Bs parameter over Bz. (Correlations of By with flux at all hours and energies were <0.05. This parameter 
was therefore not studied further). The negative correlations of Bz and SymH with flux are as expected, as each 
of  these parameters are measured on a negative scale indicating increasing strength at more negative values. 
While the Bz strength shows less association with flux, SymH and Kp show similar patterns of correlation to each 
other, likely because both are generalized measures of disturbance at ground magnetometers. These parameters 
also show an increased correlation at earlier time steps at higher flux energy.

P and Ey are somewhat different from the other variables in that they are mathematical combinations of other 
measured parameters (V 2 and N, and V and Bz in the cases of P and Ey, respectively), but, at the same time, they 
may have more physical interpretability. That the P-flux correlation is similar to that of the flux correlation with 
V or N can be seen where the P correlation drops off in a manner similar to the N correlation, albeit, with some 
tempering of this decrease as the V correlation rises at the same point in time. The Ey-flux correlation follows the 
pattern of the Bz-flux correlation nearly exactly.

3.2.  Interpretation Problems With Simple Correlations: Poorly Defined Variables, Autocorrelation, and 
Spurious Correlations

Most of the parameters of Figure 1 show more association with flux in the few hours just prior to a flux measure-
ment at the lower energies, but with maximum correlations at the higher energies occurring further back in time. 

Figure 1.  Cross correlations between Geostationary Operational Environmental Satellites electron flux and possible drivers 
(hourly averages) for (a) 40 keV, (b) 75 keV, (c) 150 keV. Solid lines are positive correlations; dashed lines are negative 
correlations. Note that most correlations are <0.5 in magnitude.
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However, it is difficult to interpret a single peak or even a rise in correlation 
at a given hour as a physical process that happens at that particular time, 
given that all these parameters are strongly auto correlated in time. A varia-
ble strongly correlated with itself in previous time steps will show a similar 
correlation with flux at every one of those time steps, making it impossible to 
determine the exact time of physical action from simple correlation analysis.

Another difficulty with simple correlation analysis is that correlations 
between predictor variables may distort the apparent association between 
a predictor and flux by confounding the true relationship. The well known 
correlation between V and N, for example, even if it is negative, will result 
in both predictors showing a correlation with flux, even if only one of them 
has an actual association. Besides this, any co-cycling variables will show 
a strong correlation even when there is no association other than a similar 
response to time. This is a particular difficulty in space weather data where 
both diurnal cycles and longer cycles are common.

Although we find reasonable correlations of SymH and Kp with flux, to 
justify including these in a model attempting to find the physical drivers 
of flux, there must be some basis for thinking there is a physical connec-
tion between these particular indices and electrons. While Kp, derived from 
midlatitude stations, may be sensitive to variations at the inner edge of the 
electron plasma sheet (Freeman, 1974; Thomsen, 2004), there is no guaran-
tee that this is all or even most of what Kp measures. As the measure itself is 
merely the maximum geomagnetic disturbance recorded in a 3 hr period, it 
may not be specific to that particular area of the magnetosphere, nor tempo-
rally fine tuned enough to be of much use. The discrete nature of the index 
values would also work to obscure much of the information it could carry. 
That there are high correlations between electron flux and Kp (see Figure 1) 
is not an argument in favor of its necessary inclusion in a meaningful physical 
model, but may more likely only indicate that Kp is a proxy that represents a 
large number of processes that we would, instead, prefer to know the effects 
of individually. In addition, as parameters that are averaged over longer peri-
ods of time tend to show higher statistical correlations without any mean-
ingful increase in association (Simms et al., 2022), this alone could explain 
the Kp, at a 3 hr cadence, having a higher correlation with flux than that of 
many other parameters. SymH may be an indirect measure of the free energy 
available for local wave acceleration of keV electrons up to MeV energies, 
but is perhaps more representative of inner magnetospheric plasma pressure, 
about 12% of which is keV electron pressure (Kumar et al., 2021). SymH may 
be worth testing as a representation of these processes, but the applicability 
to electron flux in the outer radiation belts appears weak. While the AE index 
can be interpreted as a measure of the substorm activity that may result in 

electron injections, we do not have the a similarly meaningful physical interpretation of Kp and SymH other than 
that they measure the overall level of disturbance in the magnetosphere. But if “disturbance” is a meaningful 
concept, it is more accurately measured by such parameters as V, Bz, etc., which also have a physical meaning 
in the system. In previous work it has also been found that indices from magnetometers tend to correlate highly 
with each other, meaning that it may only be useful, or possible, to include one index in a multivariate analysis 
without reaching problematic levels of multicollinearity that make it impossible to determine which variables are 
most associated with flux (Simms et al., 2016). Therefore, we need to use care in deciding which index to use and 
not include every one possible. Instead, we should settle on the one that best describes the physical processes we 
suspect are occurring.

However, these arguments are somewhat moot. If we do include all three indices (Kp, SymH, and AE in a full 
regression ARMAX model (see below; Table 1), Kp and SymH are not strong candidates, as their influence can 
be up to an order of magnitude below that of AE. Although Kp and SymH have high simple correlations with 

40 keV 75 keV 150 keV

Intercept −0.057 a −0.054 a −0.03 a

AR1 0.836* 0.845* 0.855*

MA1 0.204* 0.207* 0.069*

MA2 0.302* 0.217* 0.202*

DailyAR1 0.999* 1.000* 1.000*

DailyMA1 0.986* 0.993* 0.994*

V lag 1 hr 0.632n.s. 0.888* −0.196*

Decay 0.270 0.822 −0.147

N lag 1 hr 1.087* 1.358* −0.087*

Decay 0.126 0.811 0.854

Bz lag 1 hr 0.265* 0.386* 0.306*

Decay 0.283 0.429 0.673

Kp lag 1 hr 0.017 a 0.041* 0.023*

Decay −0.563 0.937 0.967

SymH lag 1 hr −0.028* −0.004* 0.056*

Decay 0.726 0.975 −0.447

AE lag 1 hr 0.170* 0.131* 0.019*

lag 2 hr – 0.050* 0.062*

Decay 0.379* −0.055 0.551

ULF lag 1 hr 0.021* 0.001 a 0.003 a

Decay 0.959 −0.988 0.984

P lag 1 hr −0.992* −1.274* 0.035 a

Decay 0.177 0.813 0.849

Ey lag 1 hr 0.257* 0.352* 0.263*

lag 2 hr −0.131 −0.040* –

Decay −0.046 0.414 0.731

R 2 67.4% 69.2% 78.1%

 aNot Statistically Significant p-value >0.10.
Note. *: Statistically Significant p-value <0.05. n.s.: not statistically 
significant, p-value > 0.10).

Table 1 
Autoregressive Moving Average Transfer Function Standardized Regression 
Coefficients of the Full Models (One for Each Electron Energy) Including 
All Variables Except Bs
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flux, and even if we were to believe they represented physical drivers, when variables are tested simultaneously, 
these two indices do not perform well. In the subset models, we therefore use the AE index both because it is 
representative of substorm activity and because it is a stronger correlate, at least at 40 keV. In future work, if we 
planned to create prediction models only, but not to identify physical drivers, this restriction would not apply 
and all three indices could be included (with the caveat that this did not result in overfitting and, therefore, poor 
predictive ability).

Although simple correlations can suggest possible drivers, further work must be done to elucidate these relation-
ships. Below, in our ARMAX models, we address these issues, performing multivariate analyses to account for 
spurious simple correlations due to the confounding of variables, adding autoregressive (AR) and moving average 
error (MA) terms to account for serial autocorrelation and co-cycling of variables, and choosing predictors that 
have a reasonable basis for some physical relationship with flux. In regards to this latter issue, we also choose 4 
variables (AE, ULF, P, and Ey) as possible direct physical drivers of flux (direct effects) and explore their rela-
tionship with the other solar wind and IMF parameters (indirect effects).

Additionally, below, we explore whether certain parameters are more correlated during geomagnetically disturbed 
periods and at different times of the day. For the former, we must use a differencing transformation (yt − yt−1) to 
reduce serial autocorrelation as, without a complete time series, we are unable to remove this with ARMA terms. 
To study varying influences by time of day, we add indicator variables to the ARMAX model to identify each 
hour (MLT: magnetic local time).

3.3.  ARMAX Models

As noted in the previous section, simple cross correlations of time series variables may be highly inflated by 
common cycles and trends often seen in time series data (Granger & Newbold, 1974). These correlations may, 
therefore, not say anything useful about the relationship between variables. In addition, analyzing the effect of 
each predictor individually gives us no information about the relative importance of each, or the effect of each 
when the others  are held constant. Multiple regression analysis would assess the strength of the relationship 
between each predictor with the effects of the other predictors eliminated. Additionally, as regression gives us 
the slope of the relationship between predictor and flux (the coefficients of the regression equation), there will 
be more information about the form of the relationship. We can further improve on a multiple regression model 
by introducing terms to specifically describe the cycling, trends, and autocorrelation that may be present in time 
series data. These terms may take the form of an autoregressive component (regressing on previous values of 
the dependent variable: an AR term), or a moving average component (regressing on the errors of the model at 
preceding time steps: an MA term). A difference term, which subtracts a previous value from each observation, 
may also be used to fit an overall trend, but we found this was not needed for this full set of hourly averaged flux 
data. For data that cycles “seasonally” (at a set time period) it may be helpful to also fit seasonal AR and MA 
terms (Hyndman & Athanasopoulos, 2018).

We fit ARMAX models, using AR and MA terms, along with “seasonal” (daily) AR and MA terms, to describe 
the cycling behavior of the dependent variable. We are then able to test input variables for their possible corre-
lation separate from these common cycles. The “seasonality” we incorporate is the daily variation in flux seen 
as the observing satellite passes between drift shells due to the asymmetric dipole of the Earth's magnetic field. 
Typically, higher energy (MeV) electron flux data collected at geosynchronous orbit shows higher levels on the 
dayside where the field is compressed and lower flux levels on the night side where the fields are stretched (e.g., 
Boynton et al., 2019; O’Brien & McPherron, 2003). For keV electrons, fluxes are highest in the morning hours 
and lowest in the evening hours due to their trajectories and losses (e.g., Korth et al., 1999; Sillanpää et al., 2017).

As all variables were standardized by subtracting that series mean and dividing by its standard deviation, we 
are able to compare these unitless regression coefficients between variables. Note that these are not correlation 
coefficients, but slopes. A 1 unit increase in a predictor variable is thus associated with a certain increase in the 
dependent variable. Taking log10 of those variables for which it made sense (i.e., not Bz, e.g., which has both 
positive and negative values) effectively creates a non-linear model, despite how we are using the linear model 
technique of ARMAX regression.

For each electron flux energy (40, 75, and 150 keV), we fit an AR1, MA1,2, seasonal AR1, seasonal MA1 model. 
More specifically, each regression contained two flux autoregressive terms (from 1 hr previous and 24 hr previ-
ous) and the moving average of the errors of the model from 1,2, to 24 hr previous as predictors, in addition to 
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the exogenous AE, Kp, SymH, ULF, and solar wind and IMF variables. The 24 hr AR and MA terms represent 
the “seasonality” terms that model the diurnal fluctuations in flux due to the movement of the satellite through 
field lines (in other words, the “seasons” are days (Table 1). This reduced all terms of the partial autocorrelation 
function (PACF) to non-statistically significant levels.

3.4.  Full ARMAX Model Including All Variables

V, N, IMF Bz, AE, ULF, P, Ey, Kp, and SymH were first entered as numerator (influence) terms at 1 and 2 hr 
delays, with a denominator (decay) term at 1 hr (Table 1). Influence terms with p-value >0.10 were dropped from 
the model. The p-value is the probability that the null hypothesis of no association is true. A p-value <0.05 is 
generally considered to be statistically significant, or, put another way, that the null hypothesis of no association 
has been rejected. (The calculation of the p-value is dependent on the presumed sampling distribution of the test 
statistic under the null hypothesis, which is itself dependent on the standard error of the estimate. Simply put, 
dividing the parameter (coefficient) by its standard error gives a t-statistic which can be compared to standard 
tables giving the probability of that value given the relevant sample sizes. While it can be calculated by hand, 
it is generally left to the statistical package to do the calculation and table look up (Neter et al., 1990). Due to 
this p-value restriction, not all influence and decay terms are retained, however, at least one influence and the 
decay term are retained for each predictor, even if statistical significance fell above a p-value >0.10, in order to 
describe the relative influence of each term. (The constant term is not significantly different from zero because 
all variables were standardized and therefore centered around zero. However, we retain it for the small amount of 
explanatory value it adds to the model). We report standardized regression coefficients which describe the slope 
of the relationship between predictor and response variables on a standard (unitless) scale. Due to this standardi-
zation we are able to directly compare the influences of each predictor with all the others. (These are slopes, not 
correlation coefficients, so are not constrained to lie between −1 and 1).

The R 2, or coefficient of determination, measures the percent of variation in the data that is explained by the 
model. (Note that the R 2 is mathematically equivalent to the prediction efficiency used by some other authors 
when applied to a training data set). In simple correlation, the R 2 is equivalent to the square of the correlation 
coefficient (r 2). The highest simple correlations (e.g., AE and V of Figure 1) around r = 0.5 would therefore have 
an R 2 of 25%, explaining 25% of the variation in the data. Thus, the multiple regression ARMAX models which 
use both ARMA terms and more than one predictor variable, explain more of the variation than any of the simple 
correlations. Much of the increase in R 2 is due to the introduction of the ARMA terms, but the ARMAX models 
do also tell us which independent variables are most important and how they compare in influence with each 
other. This addition of predictor variables would also allow the ARMAX model to be used for prediction. If there 
are no exogenous (independent) variables in the model, predictions would quickly revert to the mean value of 
zero, the constant of the ARMAX equation.

The predictor coefficients can be represented with an empirical prediction equation (Equation 1). For the 40 keV 
electrons:

� ���� = −0.057 + 0.632��−1

1 − 0.270��−2
+ 1.087��−1

1 − 0.126��−2

+ 0.265���−1
1 − 0.283���−2

+
0.0170���−1

1 − 0.563���−2

+
−0.028�����−1

1 − 0.726�����−2
+ 0.170���−1

1 − 0.379���−2

+ 0.021
���−1

1 − 0.959
���−2
+ −0.992��−1

1 − 0.177��−2

�

+
0.257𝐸𝐸𝐸𝐸𝑡𝑡−1 − 0.131𝐸𝐸𝐸𝐸𝑡𝑡−2

1 − 0.046𝐸𝐸𝐸𝐸𝑡𝑡−2

+0.836 × 𝑌𝑌𝑡𝑡−1 + 0.999 × 𝑌𝑌𝑡𝑡−24

+0.204 × 𝜀𝜀𝑡𝑡−1 + 0.302 × 𝜀𝜀𝑡𝑡−2 + 0.986 × 𝜀𝜀𝑡𝑡−24

� (1)

40 keV electron flux at time t is predicted by the other variables at previous times steps (t − 1, etc), the model 
predicted value of flux at t − 1 and t − 24 (“daily”), and the error between model and observation (ɛ) at t − 1, 
t − 2, and t − 24. Each influence term is represented in a numerator, with decay terms in the denominator. For 
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clarity, we do not label the variables that have been logged (flux, V, N, Kp, AE, ULF, and P) in the empirical 
prediction equation, however, due to this transformation, this is effectively a non linear model in the terms for 
which we have taken logs. For example, the partial influence coefficient for V of 0.632 would be interpreted as 
a 1% change in the Z score of V resulting in a 0.632% change in the Z score of electron flux. However, given 
the number of differences between our model and that of previous models (including more variables, using Z 
scores, including decay terms) a direct comparison of these coefficients to other studies using somewhat similar 
techniques is not particularly meaningful. Instead, it makes more sense to compare which predictor variables are 
most influential and not the details of exactly how much flux changes in response to a unit change in a predictor.

The influence (numerator) and decay (denominator) terms of Equation 1 give us the tools to calculate the cumu-
lative effects of each input variable. An influence that appears at t-1 dissipates at a rate given by the decay term. 
Thus, although there may only be 1 hr in which a variable input appears, the exponential decay over time means 
influence may spread from previous time periods. The influence at a given forward time step from some time step 
(t) in the past will be that influence × (1 − decayfactor) t. Graphically, this results in a time delay of influence that 
appears similar to a cross correlation, however, the transfer function gives regression coefficients (i.e., slopes), 
not correlations. While a correlation can be interpreted as the strength of a relationship between two variables, a 
regression coefficient can be interpreted as the magnitude of the impact of one variable on another. We use the 
predictor coefficients of Table 1 to create the cumulative influence bar charts of Figure 2. It should be remem-
bered that these regression coefficients represent the influence of each variable with the others held constant, 
unlike the simple correlations of Figure 1. Each panel of this figure shows the response of an electron energy 
(40, 75, and 150 keV) to the influence of each of the 9 exogenous variables when the other 8 predictor variables 
are held constant. The influence of each begins from the hour previous to the flux measurement. The decay term 
describes the fall off in influence over time.

These ARMAX models incorporating all nine possible predictors show little influence of Kp and SymH. AE has 
the highest influence of the geomagnetic indices, but it is weaker than the strong and lasting effects of V, N, and 
P, particularly at 75 keV. The V, N, and P influences are superficially similar to those seen in the simple cross 
correlations (Figure 1) but the sign of influence of N and P have switched. Bz and Ey also superficially show the 
same influence as in the cross correlations, but, again, the sign of influence of Bz is switched.

What are we to make of these losses of influence (particularly Kp and SymH) and the changes in sign? It is 
obvious that simple correlations are highly unreliable as each parameter is highly correlated with all the other 
parameters of interest, and because any one of them may show a spurious correlation with electron flux due to 
common cycling behavior.

Second, geomagnetic indices (particularly Kp and SymH) do not even appear to influence electron flux when 
other variables are present. In this full model, Kp and SymH have little influence. However, even if they were the 
most “influential” parameters in these models, for the reasons mentioned above would we be justified in calling 
them drivers? Or are they merely correlated proxies? Is SymH a predictor variable at all? Or just another measure 

Figure 2.  Cumulative effects of all possible drivers of electron flux. For each flux energy, variables are entered simultaneously 
into an autoregressive moving average transfer function regression model as a predictor at a delay of 1 and 2 hr. Only statistically 
significant time steps are retained, along with a decay factor. Standardized regression coefficients may be compared within each 
model (a). 40 keV, (b). 75 keV, (c). 150 keV to determine the relative influence of each variable on flux. Note that each row has the 
same scale, but scales vary between rows, in order to compare more effectively between the strongest associations (V, N, and P) and 
between the indices (AE, Kp, and SymH) and other variables with lower influence (ULF, Bz, and Ey).
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of our response variable, the electron flux? These questions can only be answered from a consideration of what 
information these indices actually contain. As we have discussed above, while Kp and SymH may roughly repre-
sent disturbance in the magnetosphere, we don't know exactly which processes and how much of each process 
they might represent. AE is a different case. First, AE does show more influence than the other two indices, and 
second, we know that this index measures substorm activity which can lead to electron injection. For this latter 
reason, we will retain AE in further models.

Both P and N act more as a pointed shock to the system with less long term influence, however, the opposite sign 
of these two predictors, at similar magnitudes, suggests that there is some degree of multicollinearity occurring 
between these two. This is not surprising, as P, partially calculated from N, is highly correlated with N and the 
amount of information about the influence of each on flux is almost wholly contained in the other. Unfortunately, 
this can result in a pattern of presumed “influence” (as seen here) that reflects a competition for explanatory 
power rather than actual opposing effects on flux, and the inclusion of both in the model is misleading. It is 
unclear why their influences appear larger at 75 keV than at 40 or 150 keV, but this could simply be the result 
of only a small difference in flux related to the N and P variables being amplified by the competition between 
the two. It is unlikely to represent anything tangible and only demonstrates that coefficients of highly correlated 
variables in the same model are not trustworthy.

Bz and Ey have more modest influences on flux. Despite the high ULF-flux correlation seen in the simple corre-
lations, the ULF influence on flux is very low. This is likely due to two factors. First, when other variables are 
included in the model any proxy correlation ULF may have represented is removed from the ULF influence. 
Second, the high simple correlation may be simply due to this ULF index and satellite-measured flux both 
showing a diurnal cycle. When this cycling is removed (via the AR and MA terms) the correlation between these 
variables disappears (Simms et al., 2022). (The occasional oscillating pattern of influence in several of the vari-
ables is the result of a negative decay term found by the regression. It is often unclear whether this has any real 
physical meaning).

As these are standardized regression coefficients, we can calculate the impact of a predictor on flux. For example, 
as we are using standardized coefficients, a 1 standard deviation increase in log10(AE) 1 hr previous would result 
in 0.17 standard deviation increase in log10(40keV flux), holding all the other predictors constant.

3.5.  Choice of Variables

Pressure (P) and number density (N) are difficult to incorporate into a model simultaneously. As pressure is 
the product of the V 2 and N, the strong correlation between pressure and N can lead to unexpected and puzzling 
behavior. In the models of Figure 2 and Table 1, there is a strong initial influence of P, and an opposing strong 
influence of N in the same time period. As we know that P and N are highly correlated with each other, it is 
difficult to interpret this as each having a strong, opposing, and, most importantly, independent influence. It is 
more likely that these opposing effects are merely the result of the two terms acting counter to each other in an 
effort to explain the same small bit of variation. The same is true of Ey with V and IMF Bz, as Ey is the product of 
V and Bz. In fact, it likely makes little sense to draw firm conclusions about the physical drivers based on this full 
model. A more plausible model could be achieved by dropping one of either P and N, and one of Ey and IMF Bz. 
For example, dropping the two derived parameters (Ey and P) would allow us to more accurately see the effects 
of V, N, and Bz.

However, we may be able to do better by separating out just those parameters we believe could be influencing flux 
directly. These direct parameters would be AE (as a measure of substorms which inject electrons), ULF (waves in 
this frequency are thought to drive electrons to higher energies), Ey (with the solar wind electric field plausibly 
having some influence on electron behavior), and pressure (which could influence flux levels through accelera-
tion, through magnetopause shadowing, and by compression of the magnetosphere at the altitude of the satellite, 
bringing the satellite into higher drift shells with lower electron density). We note that there is little theoretical 
work to suggest either N or V alone drive flux. Their physical action, instead,is thought to derive through pressure. 
We similarly assume that the physical action of Bz is likely through the electric field rather than simply the Bz 
itself. We fit a reduced ARMAX model using only these 4 parameters. The coefficients of this reduced model 
are presented in Table 2.

From the coefficients of this table, we once again calculate the cumulative effects of each variable on flux 
(Figure 3). At 40 keV (Figure 3a), this simpler model of the presumed direct effects alone shows a strong effect 
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of AE, peaking at 2 hr before the flux and with influence over many hours. 
Pressure, Ey, and ULF, while still statistically significant effects, are much 
lower in magnitude. The effect of pressure is negative, presumably as most of 
its effect is due to the compression of the magnetosphere which positions the 
satellite into a less populated drift shell and to magnetopause shadowing. The 
small Ey association cycles between positive and negative. A similar pattern 
is seen for the 75 keV electrons (Figure 3b), although the AE influence is 
slightly lower and the P and ULF effects somewhat stronger. The 150 keV 
electrons (Figure 3c) show a much lower response to AE, and, again, a some-
what stronger response to P and ULF.

But what of the strong influence of V we saw in the full model of Figure 2? 
Although our direct effects model (of Figure  3) may make more physical 
sense, we still would like to understand the correlation of V with flux. We 
can do this by using the other, indirect parameters to predict our set of more 
physically interpretable variables, decomposing each correlation into compo-
nents. In other words, we can use N, V, and IMF Bz to predict AE, ULF, P, and 
Ey, which we subsequently use to predict flux.

To accomplish this, we presume a causal model (Figure 4) and run a series of 
regressions to determine the coefficients of the paths. In this figure, we pres-
ent the standardized regression coefficients obtained by predicting 40 keV 
flux from AE, ULF, P, and Ey. We then predict both AE and ULF using P, Ey, 
N, V, and IMF Bz from 1 hr previous. (These models are not shown explicitly 
as the input parameter coefficients are all that we need here, but these are 
simply the exogenous coefficients from an ARMAX model also incorporat-
ing AR and MA terms. For this particular model, we use only a lag 1 hr influ-
ence term and no decay term to simplify the effects of each input variable). 
Similarly, we show the exogenous variable coefficients for predicting P from 
N and V, and Ey from V and Bz, using N, V, and Bz, but from the same hour 
as P and Ey. (There are no paths from V to either ULF or AE because it was 

Log 40 keV flux Log 75 keV flux Log 150 keV flux

Constant −0.090n.s. −0.093n.s. −0.056n.s.

AR1 0.825* 0.843* 0.86*

MA1 0.197* 0.195* 0.055*

MA2 0.293* 0.212* 0.201*

Daily AR1 0.998* 0.998* 0.999*

Daily MA1 0.981* 0.987* 0.993*

Log(AE) 1h lag 0.216* 0.130* 0.004n.s.

2h lag 0.154* 0.091*

Decay 1h 0.882 0.542 0.053

Decay 2 hr 0.349

Log(ULF) 1h lag 0.017* 0.021* 0.03*

Decay 1h 0.965 0.969 0.97

Log(P) 1h lag −0.025* −0.039* −0.055*

Decay 1h 0.717 0.728 0.801

Ey 1h lag −0.018* −0.014* −0.03*

2h lag — −0.022 —

Decay 1h −0.763 −0.381 0.412

R 2 67.10% 68.50% 76.90%

Note. *; statistically significant, p-value <0.05, n.s.; not statistically 
significant

Table 2 
Autoregressive Moving Average Transfer Function Standardized Regression 
Coefficients of the Three Reduced Models Using AE, ULF, P, and Ey as 
Predictors

Figure 3.  Cumulative effects of the possible direct drivers of electron flux. For each flux energy, AE, P, Ey, and ULF are 
simultaneously entered into an autoregressive moving average transfer function regression model as predictors at 1 and 
2 hr, but only significant time steps are retained, along with a decay factor. Standardized partial regression coefficients may 
be compared within each model to determine the relative influence of each variable on flux: (a). 40 keV, (b). 75 keV, (c). 
150 keV.
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not a statistically significant direct influence on either). In this figure, green 
arrows run to and from AE, gold arrows to and from ULF, and blue arrows 
to and from P and Ey.

These standardized regression coefficients from this series of regression 
models are known as path coefficients (Wright,  1934). The path coef-
ficients can be multiplied (through connecting arrows, or paths), then 
summed to show the full cumulative effect of each of the indirect drivers 
(V, N, and Bz) on the direct drivers (AE, ULF, P, and Ey) and, subsequently, 
on flux.

The maximum direct effect of each variable is shown by arrows leading 
directly to flux. Simple correlations between the exogenous, or indirect, 
variables (N, V, and Bz) are shown (in black curved arrows). This decompo-
sition allows the correlation between a pair of variables to be broken down 
into direct effects, indirect effects, and spurious correlation due to asso-
ciations between the exogenous variables. We are interested in the direct 
and indirect effects and will ignore spurious correlations due to the asso-
ciations between N, V and Bz. For example, the direct effect of pressure on 
flux is represented by the arrow from pressure to flux (−0.04 coefficient). 
This is rather low, but to this we can add the indirect effect of pressure: the 
path from P through AE to flux (coefficients 0.52 and 0.25). This indirect 
effect of P via its influence on AE (which subsequently influences flux) 
is the product of the steps in the path: 0.52 × 0.25 = 0.13. The contribu-
tion of several indirect paths can be calculated by summing these products 
(Table 3). In the first column of this table, we show the direct effect of AE, 
ULF, P, and Ey on flux (coefficients on the arrows leading directly to flux 
of Figure 4). In the second column we show the results of the calculations 
for the indirect effects of each variable through AE, in the third column, 
these indirect effects through ULF, in the fourth, indirect effects through 
P, and in the fifth column, these indirect effects through Ey. (Details of 
example calculations are given in the footnote). The last column is the sum 
of the first 5 columns, showing the total influence of each variable, both 
through its direct influence (if any) and its indirect influence via other 
parameters.

The result of these calculations are that we can now see a clearer picture of 
which variables are most influential on flux and through which processes that 
influence is mediated (given this particular, hypothesized, causal structure). 
Predictors not postulated to directly influence flux, such as V, still show an 
overall moderate degree of influence when paths connecting it indirectly to 
flux are considered (mainly, in this case, via P). However, N, which has a 
moderate (if negative) simple correlation with 40 keV flux, has less influence 
than V when all influences are added. N appears to drive several competing 
processes: reducing AE and ULF while simultaneously (through P) increas-
ing flux. Thus, the lower correlation of N with flux is not an indication that it 
does not influence flux, but that it does so through several opposing processes 
that cancel out each other's effects in an overall correlation.

Certain parameters, such as ULF, which show a strong simple correlation 
with flux (Figure 1), are not influential. So why does the simple correlation 
appear so high in comparison? This is due to several factors which we have 
now accounted for: inflated correlations due to common cycles and trends 
(accounted for by the AR and MA terms of the ARMAX regression), corre-
lations with confounding variables (now accounted for by the use of multi-
variate regression instead of single correlations), and the possibility that ULF 
over the short term (hourly, in this case) has little influence.

Figure 4.  Postulated direct drivers of 40 keV Geostationary Operational 
Environmental Satellites electron flux (green arrows to and from AE, gold 
arrows to and from ULF, blue arrows to and from P and Ey) may be influenced 
by solar wind and Interplanetary Magnetic Field parameters (V, N, and Bz). 
Standardized coefficients of the influence of AE, ULF, P, and Ey on flux (from 
an the autoregressive moving average transfer function [ARMAX] model with 
predictors measured 1 hr before flux) are given. ULF and AE are postulated 
to be driven by P, Ey, V, N, and Bz (coefficients from ARMAX models with 
predictors measured 1 hr before). P and Ey, being mathematically dependent 
on N, V, and Bz, are predicted from ARMAX models with all variables 
measured at the same hour. Influences of V, N, and Bz on P and Ey are from the 
same hour. These paths break down the overall correlations into components, 
attributable to the various associations between variables. Only statistically 
significant links between variables are retained. As a consequence, there is no 
direct link from V to either ULF or AE.

Direct Via AE Via ULF Via P Via Ey

Sum

Direct + Indirect 
Influence

AE 0.25 – – – – 0.25

ULF 0.02 – – – – 0.02

P −0.04 0.13 a 0.018 – – 0.11

Ey −0.01 −0.055 −0.005 – – −0.070

N – −0.12 −0.015 0.12 b – −0.014

V – 0 0 0.137 −0.0007 −0.024

Bz – −0.13 −0.0088 – 0.070 −0.071

 aAs an example, the indirect path of P influence through AE  =  (effect 
of P on AE)  ×  (effect of AE on flux)  =  0.52  ×  0.25  =  0.13, using 
coefficients from the paths in Figure  4.  bThe more complicated 
paths of N through P are summed: (N on P)  ×  (P on flux)  +  (N on 
P)  ×  (P on AE)  ×  (AE on flux)  +  (N on P)  ×  (P on ULF)  ×  (ULF on 
flux) = 1.1 × (−0.04) + 1.1 × 0.52 × 0.25 + 1.1 × 0.88 × 0.02 = 0.12.

Table 3 
Calculating the Sum of Direct and Indirect Influences on 40 keV Flux
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For parameters such as V and N, influence has been diminished by their relegation to indirect driver status in the 
path analysis. This is a choice made based on the hypothesis that neither is postulated to have the physical ability 
to directly drive electron flux. If there were reason to believe they did, these could be moved up the hierarchy in 
the path analysis, allowing them to have more influence in that correlational structure.

We can do these calculations for each of the electron energies, giving the summed influence of each parameter on 
flux (Table 4). AE appears only as a direct effect, and is thus comparable directly between electron energies, with 
the strongest effect at 40 keV (0.25) but a lower effect above this range (−0.001–0.15). The summed influence of 
P is generally larger and positive compared to its weak negative direct effect, particularly at 40 keV. The summed 
Ey effect is similar in magnitude to P. The summed effects of V, N, and Bz are all somewhat equal to each other, 
with somewhat more effect of V at 40 keV and a higher influence of N at 150 keV. For the most part, these three 
indirect drivers are negative in influence overall.

3.6.  MLT Dependence of 40–150 keV Electron Flux Response to AE, ULF, P, and Ey

Electrons at geostationary orbit show different flux levels at different magnetic local times (MLT) (Boynton 
et al., 2019). With geostationary satellites, which orbit synchronously with MLT, it is unclear whether these are 
spatial or temporal variations, however, electron injection has been observed in the hours around local midnight 
(Birn et al., 1997; Thomsen et al., 2001). Using ARMAX models, we investigate not only whether flux differs 
at varying MLT, but also whether the identified drivers show different influences (i.e., a different coefficient 
slope) at each MLT. We do not subset the data into MLT bins and analyze them separately, but identify each MLT 
in the data set and calculate a different slope coefficient for each. This is done by creating a set of 23 indicator 
variables spanning the MLT hours: each is set to 1 for a different, particular MLT and 0 at all other times. The 
interaction term between each of these indicator variables and each predictor variable (obtained by multiplying 

each indicator variable by each predictor) gives the slope of the relationship 
between flux and predictor at each MLT (Neter et al., 1990). By not splitting 
the data set by MLT (i.e., by identifying MLT by indicator variables instead), 
we are able to analyze the data set as a continual ARMA process. We report 
these slopes (standardized regression coefficients) for each MLT (Figure 5).

At 40 and 75 keV, AE is the most influential (positive) parameter, but it is 
most effective over 3–11 MLT (40 keV) and 6–17 MLT (75 keV). Not only 
is the flux higher at these times (Boynton et al., 2019), but the effect of the 
strongest driver (AE) is also at its highest level.

The other direct drivers (ULF, P, and Ey) are, as demonstrated above, less 
influential, but there are MLT differences in their effects. ULF has some-
what more positive effect at 19-0 MLT on the 40 keV electrons. P shows a 
stronger negative effect over 16-4 MLT, with the most effect being seen at 
150 keV. Ey, at 40 and 75 keV, shows a positive effect over 23–8 MLT, with 
a negative effect over 9–22 MLT. The Ey switch in influence from positive 
to negative likely accounts for its overall lack of effect in the analyses above 
that are not broken down by MLT. Although less dramatic, the switch in ULF 
from positive to slightly negative or near zero also results in an overall lack 

a. AE b. ULF c. P d. Ey e. N f. V g. Bz

40 keV 0.25 0.020 0.11 −0.070 −0.014 −0.024 −0.071

75 keV 0.15 0.005 0.021 −0.052 −0.051 −0.049 −0.029

150 keV −0.001 −0.008 −0.090 −0.023 −0.092 −0.065 0.027

Table 4 
Summed Direct and Indirect Influences on 40, 75, and 150 keV Flux

Figure 5.  Varying effects of AE, ULF, P, and Ey over magnetic local time. 
Each variable is entered into an autoregressive moving average transfer 
function regression model as a predictor at 1 hr (a). 40 keV, (b). 75 keV, (c). 
150 keV.
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of influence when MLT is not considered, even though ULF does show a 
modest positive influence at some times.

3.7.  Disturbed Versus Quiet Response

To produce an ARMAX model, a continuous time series is needed. This 
means that disturbed and quiet periods must be combined in the same anal-
ysis. However, it may be that the flux response to each predictor varies 
depending on conditions. A simpler multiple regression model could be used 
to explore the response between quiet and disturbed periods, however, this 
can result in spurious correlations if variables are cycling together (e.g., a 
diurnal cycle) or show a common trend (Simms et al., 2022). A regression 
model that accounts for these co-occurring cycles and trends can be produced 
by differencing the data: subtracting the previous value from each observa-
tion (yt − yt−1). This results in regression coefficients that describe the change 
in flux as predicted by the change in the independent variables, rather than 
in the original units, but tests of significant influence and comparisons of 
relative influence can still be made.

To pinpoint those periods when predictors may have differing influence 
on electron flux due to a change in geomagnetic conditions, we compare 
disturbed versus quiet conditions by assembling a subset of “disturbed” hours 
(a day before and a week following each Dst dip to −100 nT) and a “quiet” 
set (>2 weeks after a Dst dip below −30 nT). Within the generalized distur-
bance periods, we also create a subset (“recovery”) with the usually short 
period of the Dst drop, or storm main phase, removed. The period of time 
when the Dst is dropping is both short and of less interest to the question of 
what drives electron flux changes as most of the observable change in this 
period is due to the compression of the radiation belts below the altitude of 
the satellite. Following the storm main phase, Dst rises slowly to −30 nT 
and higher, the recovery and after recovery periods when electron fluxes 
increase. The rise in electron flux can take up to a week to occur follow-
ing the main phase, particularly after the strong storms we use in this data 
subset (Simms et al., 2014). We first perform a multiple regression on the 
differenced data with AE, ULF, P, and Ey as predictors in order to compare 
their relative effects via the standardized regression coefficients (Figure 6). 
We then compare this to the same analyses performed on undifferenced data 
to show the effect of removing spurious correlations that are the result of 
common cycles and trends.

With differenced data (Figure 6.1), the AE effect is consistent over these three 
periods (strongest effect on the 40 keV flux, least effect on 150 keV flux). 
No matter the geomagnetic conditions, substorms (as measured by AE) show 
a statistically significant positive influence on flux, with the most effect at 

the lower electron energies. P does not contribute significantly at most periods or energy levels (the exception 
being at 150 keV during disturbed periods). Ey shows a negative effect in the quiet periods but a positive effect in 
recovery. ULF has little or a negative influence, even when periods are selected that would be expected to show 
a strong effect such as recovery following storms.

We present an analysis of undifferenced data in Figure  6.2 to show the danger of correlating variables with 
common diurnal cycles. In the undifferenced data, we do find the “expected” strong ULF effect (Figure 6.2; note 
the larger scale compared to the differenced data), but this is only a demonstration of the spurious nature of this 
high correlation. High correlations between ULF wave activity and electron flux in hourly data are likely only 
describing a common diurnal cycle and say little about physical driving mechanisms (Simms et al., 2022). Note 
that it is not so much that the correlation is “wrong” but that the differencing or ARMA modeling removes the 
portion of the correlation that is irrelevant to the questions we are interested in. ULF waves may be a more long 

Figure 6.  Standardized regression coefficients (AE, ULF, P, and Ey) from 
multiple regression (not autoregressive moving average transfer function) 
models. 1. All data differenced by subtracting the previous hour's observation: 
during disturbed periods (a, d, and g), quiet periods (b, e, and h), and storm 
recovery periods (c, f, and i). 2. The same for undifferenced data. Note the 
difference in scale between 1. and 2. Significant effects (p-value < 0.05) are 
shown in blue.
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term driver of flux, with positive influences only appearing after 24 hr (Simms et al., 2021). The other predictors 
also show stronger effects when not differenced (Figure 6.2), likely also due to common diurnal cycles in the data.

4.  Discussion and Conclusions
A number of variables show high simple (single variable) correlations with keV electron flux, but by using an 
ARMAX analysis, which removes the confounding effect of diurnal cyclicity and allows assessment of each 
parameter independently, we show more definitively that substorms (measured by AE) are the most influential 
process at 40 and 75 keV. This accords with previous work that found substorms to be an important correlate 
with both keV (Ganushkina et al., 2021) and MeV electrons (Simms, Engebretson, Clilverd, Rodger, Lessard, 
et al., 2018).

There are major differences between the single variable correlations and the full (all variable) ARMAX results. 
Certain variables lose most of their apparent influence when all possible drivers are considered at once. Some 
parameters, for example, AE, Kp and SymH, may show a decrease in correlation because they all essentially 
describe the same geomagnetic perturbations. Although all three geomagnetic indices (Kp, SymH, and AE) show 
high simple (single variable) correlations with electron flux, the influences of Kp and SymH disappear in a full 
regression model where other variables are included. It is likely that these two indices mostly measure general-
ized disturbance in the magnetosphere which is better described using solar wind and IMF variables. However, 
the AE index, as it is better positioned to measure substorms and subsequent electron injections, is more repre-
sentative of the physical processes that drive flux.

Other variables may appear to lose influence because most of their correlation was due to sharing a common 
diurnal cycle with the satellite-observed electron flux data. If certain of these variables were measured by the 
same satellite, this would be an obvious source of error. However, even the ULF ground index that we use shows 
its own diurnal cycle and this will inflate the correlation with flux (Simms et al., 2022). Adding ARMA terms to 
partition out the variance due to common cycling leaves us with the portion of the variance that actually describes 
the relationship between predictor and flux.

Other variables are simply highly correlated with each other (e.g., N and V), while others are derived from these 
same variables (P and Ey). This means that single variable analyses, with no correction for cycles and trends, are 
highly unreliable for pinpointing the actual correlates of electron flux, and also that variable sets should be chosen 
to minimize these intercorrelations and to maximize the variables of possible direct influence.

In the overall ARMAX models, there is a somewhat lesser effect of Ey (calculated as -VSWBz) in contrast to 
previous single-variable studies (Denton et al., 2016) (but see below, as this may be due to varying influence of 
this factor over the 24 hr period: positive over 23-8 MLT, negative effect over 9–22 MLT). P is more influential 
at 150 keV, acting to decrease electron flux. The contrast to previous findings, where pressure showed a positive 
association with flux (Shi et al., 2009), is due to our present study incorporating more predictors at one time. 
ULF shows little influence on keV electrons in these hourly, full variable models, despite its influence on MeV 
electrons (Simms, Engebretson, Clilverd, Rodger & Reeves et al., 2018; Simms, Engebretson, Clilverd, Rodger, 
Lessard, et al., 2018; Simms et al., 2021) and its strong positive correlation when it is the only predictor and the 
confounding effects of the diurnal cycle are not removed (Figure 1). This is not to say that ULF waves have no 
influence, but rather that the single variable correlation mischaracterizes these wave effects as much more domi-
nant than they really are.

However, it should be noted that all correlational analysis of this system, whether single variable, multivariable, 
or correcting for cycles, is observational in nature, not experimental. As treatments cannot be randomly assigned 
(e.g., ULF waves cannot be increased or decreased to explore their effect), the correlations found can only be 
evidence of an association, not definitive proof of driving. However, despite this, we continue to do the best we 
can by correcting the issues that we are able to address.

As electron flux is log-transformed in our analyses, all the relationships we find here are nonlinear even though 
they are tested with the linear model method of ARMAX regression. As Bz and Ey are not log-transformed, 
they show an exponential relationship with electron flux. All other predictors, which are log-transformed, are 
described by a power function relationship. The use of transformations such as the log-transform or polynomial 
terms (Balikhin et al., 2011) are both able to create intrinsically linear regression models from many, but not all, 
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data distributions. However, while both serve to linearize the relationship, the log-transform is thought to also 
help the data to meet other conditions of the linear model framework such as equality and normality of the resid-
ual error (Neter et al., 1990).

While there are sizable simple correlations of some parameters with electron flux, single variable correlations 
can misrepresent the actual relationships. If neither common cycles and trends, nor confounding variables are 
accounted for, simple correlational analysis may show large associations between variables that have no physical 
relationship. This has been demonstrated before, where removal of common cycles results in either a complete 
elimination of a correlation between some space weather parameters (e.g., the commonly observed ULF wave 
correlation with solar wind velocity or with electron flux (Simms et  al., 2022)) or a reduction in correlation 
(Simms et al., 2021)). An ARMAX model, used in this study, can account for common cycles in time series data 
(and trends, if necessary) by the use of AR and MA terms (and differencing, if needed). Entering several predictor 
variables into the same analysis then allows each variable's influence to be calculated while the others are held 
constant.

4.1.  The Reduced Model: AE, P, Ey, and ULF as Predictors

However, adding all possible explanatory variables to a model may not correctly identify the most important 
physical parameters but only those that correlate best, for whatever reason. While a reasonable predictive model 
may be achieved by using all available variables in a regression or neural network, leaving an algorithm to choose 
the model with the highest validation correlation, this is unlikely to identify actual drivers in the system. This 
approach, instead, can lead to several problems: (a) “opposing” variables may appear extremely influential as 
they compete to explain the same small bit of variation, (b) theoretical considerations of physical influence tend 
to be ignored in favor of factors that happen to correlate well, (c) coefficient estimates may be biased if extrane-
ous variables are included or if important variables are excluded (Smith, 2018; Whittingham et al., 2006). In the 
worst case, a model may report that factors that cannot physically influence the dependent variable are the only 
factors that have any effect at all. For this reason, to determine whether a factor has an actual driving influence, 
care must be taken to choose only those for which a likely physical effect can be postulated and not just all that are 
available. This is why we have chosen to do further analyses on a set of presumed direct drivers (substorms, ULF 
waves, pressure, and electric field), as well as analyses that show the relative correlations of all possible variables.

Using the ARMAX method on such a reduced model, we find that the influence of substorms (AE) on hourly 
electron flux remains substantial over the 40–75 keV range at geostationary orbit (approximately L6) although 
of less importance at 150 keV. This influence is strongest after midnight into the mid-morning hours MLT, coin-
ciding with the post midnight to dawn injection of electrons from the magnetotail (Birn et al., 1997; Thomsen 
et al., 2001). The AE influence is slightly higher during storm recovery periods than during either disturbed or 
quiet periods. Substorms, therefore, are the dominant driver within our postulated “direct driver” set (substorms, 
ULF waves, solar wind pressure, and electric field) and presumably show the influx of electrons injected from 
the magnetotail.

The hourly Ey parameter (electric field of the solar wind) shows little influence when MLT is ignored. However, 
introducing MLT into the model results in a positive effect of Ey over 20-8 MLT, corresponding with the obser-
vation that IMFBs influence is strongest during this period as well (Dubyagin et al., 2016). There is, however, a 
mostly negative effect of Ey at other times of day. These opposing influences cancel each other out in a model 
that does not account for variations over MLT. The Ey influence also varies by geomagnetic conditions, with no 
influence during disturbed periods, a negative influence during quiet periods, and a positive influence during 
recovery after storms. This is likely a reflection of the magnetospheric electric convective field (which reflects 
the Ey) breaking up during disturbed periods and becoming enhanced during storm recovery.

Overall, P shows a moderately negative direct effect on flux. When the analysis accounts for MLT, this negative 
influence is strongest over 20-12 MLT.

ULF waves, thought to accelerate electrons to higher energies, show lower immediate (hourly) influence than 
the AE. A strong correlation of ULF waves with high energy electron flux (>1.5 MeV) found in previous studies 
may be a consequence of correlating two variables with a common diurnal cycle, or a reflection of only long term 
(at least day long) physical driving (with no short term influence), or both. We find here that the most significant 
short term driving of 40–75 keV electrons by ULF appears to be negative and only during quiet or recovery 
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periods, while there is little short term effect at 150 keV. The negative short term effect in quiet or recovery peri-
ods accords with previous work on higher energy electrons that shows a negative influence of the ULF index on 
the first day, with more positive influences on the next day (Simms et al., 2021), but is not characteristic of the 
analyses using all hours. While it is possible that the ULF index does not effectively capture the immediate, local-
ized, and frequency specific ULF wave power that would be most responsible for the resonant interaction driving 
electrons to these energies (e.g., Claudepierre et al. (2013)), leading to a lower apparent effect, we note that the 
ULF index influence is still statistically significant at all three energies in analyses using all hours (see Table 2). 
We have thus captured the importance of ULF waves as a driver, even if they appear to have less influence than 
AE once the diurnal cycle is removed.

While all four of these factors in the reduced model (AE, P, Ey and ULF) are statistically significant, the AE has up 
to 10 times greater influence on the 40–75 keV flux. This would seem to be the result of electron injection in the 
lower energy ranges being the major driving factor of increased electron flux. At 150 keV, P and ULF influences 
are somewhat stronger than at the lower energies, with their effects being similar to that of AE. Therefore, elec-
tron injection is no longer the most important factor at 150 keV. Flux, at the higher energy, is more dependent on 
acceleration due to ULF waves and losses due to magnetopause shadowing induced by pressure. As noted above, 
the Ey influence appears low because it switches in sign from a positive influence post-midnight to a negative 
influence post-noon.

The amount of variation explained by these reduced (4 factor) models (R 2 = 67%–76%) is high, but much of this 
is due to the AR and MA terms that describe the cycling behavior of flux. In other words, most of what is being 
explained is the background rise and fall of flux at the satellite as it orbits the Earth. The explanatory value due 
to AE and the other possible drivers pales in comparison, but this is not as discouraging as it may at first seem. 
Most of the hourly fluctuation in flux is the rather uninteresting observation that flux varies widely over MLT as 
the satellite passes through various field lines. We are more interested in the response of electron flux when this 
behavior is eliminated. Once this is removed, we have a clearer picture of which variables are most influential. 
The relevant comparison between correlations, then, is not to the single variable, uncorrected correlations of 
Figure 1 but between the coefficients of the tested possible drivers of Table 2, and as previously stated, all of these 
are statistically significant, although the AE is the strongest influence at 40–75 keV. (Note that the coefficients 
of the ARMAX models are not correlations. They cannot be compared directly to the single variable correlations 
of Figure 1).

The response of electron flux to our identified possible direct drivers (AE, ULF, P, and Ey) varies only somewhat 
between disturbed, quiet, and storm recovery periods. AE is a stronger influence during recovery, for example, 
than during quiet or disturbed periods.

At 150 keV, there is the least response of hourly averaged flux to the presumed physical drivers. This may repre-
sent the longer time frame of action required from these processes to bring electrons to higher energies. Even the 
cross correlations (Figure 1) show higher effects from 24 to 48 hr previous, with ULF and AE showing their least 
influence in the 12 hr preceding a flux measurement and the Ey influence peaking at 12 hr.

4.2.  Indirect Drivers (N, V, and Bz)

In addition to these variables that we label direct, physical drivers of flux, we consider several other parameters 
as possible indirect drivers (solar wind N and V and IMF Bz) which show fairly equivalent influences on flux via 
their effects on the direct drivers. This supports previous findings concerning these three solar wind and IMF 
influences (Ganushkina et al., 2019; Hartley et al., 2014; Kellerman & Shprits, 2012; Li et al., 2005; Sillanpää 
et  al., 2017). Stepanov et  al.  (2021) when controlling for other variables, also found solar wind velocity and 
a magnetospheric convection variable (the dayside merging electric field, similar to the Ey we use) to be the 
strongest correlates of keV flux near the plasmasheet midplane (A similar multiplicative variable, the IMF factor 
(Balikhin et al., 2010; Boynton et al., 2011), and solar wind velocity appear to control hourly averaged 40 keV 
electrons. However, these last studies did not include a test of AE influence for comparison).

We note again that we are not trying to predict flux. We are trying to understand what drives it. We do not test N, 
V, and Bz for their direct effect on flux in the reduced model for the simple reason that we have not hypothesized 
a direct physical connection between these variables and flux. There is little theory that would suggest this. There 
is theoretical work suggesting direct influences of pressure (the combination of N and V 2), AE (through substorm 
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injection of electrons), and ULF waves (either accelerating electrons to these energies or causing electron loss). 
Therefore, we test those particular hypotheses with an ARMAX regression model (the upper part of Figure 4 and 
the description in Section 4.1). Although V or N may show a strong single variable correlation with electron flux, 
this is either via their role in pressure, or via their influence on ULF waves. These second hypotheses about the 
indirect V or N influence on flux are tested in the lower part of Figure 4. By only including hypothesized direct 
drivers in the top part of Figure 4, we are better able to test these particular hypotheses. If we include N and V, as 
in the full regression model, then we are no longer testing hypotheses about direct drivers and, in fact, are making 
those particular hypothesis tests impossible because of the interference between these variables.

We are able to compare effects of the other correlates by summing their indirect influence through the presumed 
physical drivers. We are able to calculate that at 40 keV, P shows a summed influence (both direct and indirect) 
nearly half that of the most influential parameter, AE, with Ey having about a fourth the influence of AE. Of the 
postulated indirect drivers, N, Bz, and V show nearly equal effects. The N and V influences are negative, while the 
Bz influence switches sign above 75 keV.

4.3.  The Problem of Prediction Versus Driver Identification

If the purpose of a model is accurate prediction, then a simple validation correlation of observation with predic-
tion on a withheld test set is the statistic of interest. In that case, predictor variables can be chosen simply on the 
basis of availability and ability to correlate well with the response. Alternatively, the ARMAX-regression models 
we present here address the question of what parameters drive flux changes. We use hypothesis testing within the 
ARMAX-regression framework to determine whether certain parameters show an association with electron flux. 
As our questions concern the science of the system (i.e., which variables are drivers), we consider, first, which 
variables most justifiably have a physical association with flux and which are only highly correlated because they 
are proxies. Of particular concern is the removal of the diurnal cycle due to satellite orbit. This factor alone may 
increase apparent correlations tremendously without having any bearing on the physical driving relationships.

A model such as this, developed for determining the actual relationships, statistically tests the slope of association 
with flux for each identified variable, with less concern attached to either a validation correlation or the overall 
R 2 (proportion of variation explained). That these more focused hypothesis tests appear to explain less than the 
unspecific correlations only reflects the removal of spurious correlations that lead to an incorrect understanding 
of the system.

Data Availability Statement
The GOES-13 MAGED data and GOES Magnetometer 1 data used in the present study are available at https://
www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html. Solar wind parameters and magnetic indices were 
obtained from OMNIWeb (https://omniweb.gsfc.nasa.gov/ow.html). The ULF index is available at (https://doi.
org/10.2205/ULF-index)
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