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Abstract14

We investigate the drivers of 40-150 keV hourly electron flux at geostationary or-15

bit (GOES 13) using ARMAX (autoregressive moving average transfer function multi-16

ple regression) models which remove the confounding effect of diurnal cyclicity and al-17

low assessment of each parameter independently. By taking logs of the variables, we cre-18

ate nonlinear models. While many factors show high correlation with flux in single vari-19

able analysis (substorms, ULF waves, solar wind velocity (V ), pressure (P ), number den-20

sity (N) and electric field (Ey), IMF Bz, Kp, and SymH), ARMAX models show sub-21

storms are the dominant influence at 40-75 keV and over 20-12 MLT, with little differ-22

ence seen between disturbed and quiet periods. The Ey influence is positive post-midnight,23

negative post-noon. Pressure shows a negative influence, strongest at 150 keV. ULF waves24

are a more modest influence than suggested by single variable correlation. Kp and SymH25

show little effect when other variables are included. Using path analysis, we calculate26

the summed direct and indirect influences through the driving of intermediate param-27

eters. Pressure shows a summed direct and indirect influence nearly half that of the di-28

rect substorm effect. N , V , and Bz, as indirect drivers, are equally influential. While sim-29

ple correlation or neural networks can be used for flux prediction, neither can effectively30

identify drivers. Instead, consideration of physical influences, removing cycles that ar-31

tificially inflate correlations, and controlling the effects of other parameters gives a clearer32

picture of which are most influential in this system.33

Plain Language Summary34

Satellites may experience damaging surface charging due to high energy electrons35

present in the radiation belts. In this study, we explore the various factors that may in-36

fluence these electron populations. We use an ARMAX statistical model (autoregressive37

moving average transfer function) that removes the confounding effect of diurnal cyclic-38

ity and allows assessment of each variable independently of others. Substorms, which in-39

ject electrons into the magnetosphere, are found to be the strongest influence, with most40

of their effect seen near local midnight. The electric field and pressure of the solar wind41

also show moderate effects. Not all variables that show high single variable correlations42

retain this influence in multivariate analyses. Kp and SymH, two indices of geomagnetic43

activity are highly correlated with electron levels in the magnetosphere, but show little44

influence in models controlling for the effects of solar wind parameters. Identifying di-45

rect, physical drivers, removing cycles that artificially inflate correlations, and control-46

ling the effects of other parameters using multiple regression (specifically, ARMAX) gives47

a clearer picture of which parameters are most influential in this system.48

1 Introduction49

Geostationary/geosynchronous orbit (GEO) is highly populated with active satel-50

lites (http://www.unoosa.org/oosa/osoindex/) that can experience damaging surface charg-51

ing due to high energy electrons present in the radiation belts (e.g., Lam et al., 2012; Loto’aniu52

et al., 2015; Koons et al., 2000; Choi et al., 2011; Matéo-Vélez et al., 2018). These and53

other studies suggest that surface charging is a function of factors in the space environ-54

ment, including solar and geomagnetic activity, electron and ion flux magnitudes, and55

particle energy spectrum hardness. Charging events may also be more likely when the56

satellite is in the Earth’s shadow (eclipse). Surface charging events often occur when there57

are increased electron fluxes at 10 - 50 keV (kilo electronvolt), and < 100 keV electrons58

may be more responsible for the most rapid surface charging events than electrons at higher59

energies (Thomsen et al., 2013; Matéo-Vélez et al., 2018). The abundance of these elec-60

trons fluctuates on time scales of minutes and also shows high spatial variability over the61

magnetosphere. For this reason, daily/orbit averaging misses much of the behavior of62

these electrons. Moreover, even moderate storms are not necessary for electron enhance-63
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ments in this energy range, with many surface charging events detected during low to64

moderate substorm activity and no direct dependence on substorm strength (Matéo-Vélez65

et al., 2018; Ganushkina et al., 2021).66

A better understanding of keV electron flux behavior is needed, including details67

of how fluxes are driven and by what parameters. While a prediction model may hint68

at the drivers and mechanisms, no matter how well it may forecast, it is not a valid tool69

for effectively testing hypotheses about physical drivers. Hypothesis testing is best done70

with statistical tools developed specifically for this. Regression is one such tool, with mul-71

tiple regression being the more appropriate test when multiple drivers are being consid-72

ered. (Confusingly, the least squares method used in regression can also be used to cre-73

ate prediction models, but this should not be confused with hypothesis testing.) The AR-74

MAX method (autoregressive moving average transfer functions), which we discuss be-75

low, is a refinement of regression that allows the modelling of time series behavior be-76

fore the testing of input parameters. This will reduce possible spurious correlations that77

can occur if both dependent and independent variable time series cycle or trend simul-78

taneously.79

MeV (mega electronvolt) electron fluxes at GEO have been more extensively stud-80

ied and may show high overall correlations with solar wind parameters when daily av-81

eraged (e.g., Blake et al., 1997), although the hourly response may be much lower (Simms82

et al., 2022). Solar wind speed is often cited as the most important driver (Paulikas &83

Blake, 1979; Li et al., 2001), although the relationship is complex (Reeves et al., 2011)84

and, for example, Lyatsky and Khazanov (2008) and Balikhin et al. (2011) have shown85

that the solar wind density is more associated with MeV electron variations. The solar86

wind electric field (Ey) also shows an association with MeV flux (Baker et al., 2019) (but87

see Pulkkinen et al. (2016) for a discussion of how well the solar Ey maps to the mag-88

netospheric convective currents). However, the direct influence of many solar wind drivers89

on even MeV electron flux is still unclear, both because much of the solar wind influence90

may not be direct but instead mediated by waves and electron injections following sub-91

storms (e.g., Simms et al., 2018a), and because simple correlations of solar wind param-92

eters with electrons may be inflated by common cycles and trends if these commonal-93

ities are not removed via such methods as differencing transformation or ARMAX mod-94

elling (Simms et al., 2022). For keV electrons, there are even fewer simple answers as to95

which of the solar wind parameters drive their variations.96

Fluxes of low energy electrons have been modeled with a first principle kinetic ap-97

proach in several ring current simulations (e.g., Harel et al., 1981; Fok et al., 2014; Ganushk-98

ina et al., 2014; Chen et al., 2015; Jordanova et al., 2016). These models are driven by99

different sets of solar wind, IMF (Interplanetary Magnetic Field) parameters and geo-100

magnetic indices but the drivers are predetermined. The first principle models cannot101

define the driving parameters themselves.102

Empirical models can determine correlates of electron flux energies from eVs to sev-103

eral MeVs using a variety of fitting techniques. Among them, (i) one of the earliest mod-104

els, the NASA (National Aeronautics and Space Administration) radiation belt models105

for electrons such as AE8 traditionally used to specify the average charged particle flux106

for space missions (Vette, 1991), (ii) the improved AE9/SPM models (Ginet et al., 2013)107

derived from measurements made over an extended period of time by particle detectors108

and dosimeters on board many satellites in a variety of orbits (see Table 3 in Ginet et109

al. (2013)), (iii) a Particle ONERA (Office National d’Etudes et de Recherches Aérospatiales/110

French Aeronautics and Space Research Center)-LANL Electron (POLE) model (Boscher111

et al., 2003) of energetic electron flux developed using 25 years of LANL data with in-112

put as the year in the solar cycle, (iv) the extended POLE model known as the new In-113

ternational Geostationary Electron model (IGE-2006) (Sicard-Piet et al., 2008) created114

by adding the data from the Japanese spacecraft Data Relay Test Satellite (DRTS), and115

(v) the electrons model (Roeder et al., 2005) based on Polar HYDRA (Hot Plasma An-116
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alyzer) data proving the average flux as a function of the position in the Earth’s mag-117

netosphere. The models above were not parameterized on geomagnetic conditions and118

did not capture the magnetic local time (MLT) dependence and variations on time scales119

of less than a day.120

The Kp (Planetarische Kennziffer) index, a simple 0-9 index as compared to the121

more complex variations of solar wind and IMF parameters, has been used to organize122

keV electron fluxes (e.g., Korth et al., 1999). Using LANL satellites data in the range123

from 1 eV to 40 keV at GEO, Denton et al. (2015, 2016) developed a model which pre-124

dicts electron flux values based on energy and local time for given values of the 3-hour125

Kp-index and -VSWBz (the electric field of the solar wind, where VSW is the solar wind126

speed, Bz is the z-component of the IMF), under the assumption that both Kp and the127

solar wind electric field are correlated with magnetosphere activity, e.g., for Kp: (Freeman,128

1974; Thomsen, 2004); for -VSWBz: (Akasofu, 1964; Burton et al., 1975). The Kp ver-129

sion of the model also provides flux values for given values of the daily F10.7 index (so-130

lar radio flux at 10.7 cm). However, while the Kp index may correlate well with flux (at131

least in daily averaged data), it is neither the best predictive parameter, nor what we132

would consider to be a physical driver of electron flux variations. Kp, as it Earth-based133

(measured at ground magnetometers), may not represent conditions in the magnetosphere134

well. It is most likely a proxy measure, representing a combination of both relevant and135

non-relevant correlated factors, which tells us little about which specific processes drive136

flux. While the ease of obtaining it might offset this drawback in prediction models, it137

may be nearly useless in models seeking instead to explain what drives electrons. Its 3138

h time cadence may also make it unsuitable even for prediction models, given that elec-139

tron fluxes fluctuate much more rapidly. The -VSWBz measure could be an improvement140

over Kp as it can be obtained at hourly or faster cadence and each is a specific physi-141

cal parameter rather than a possible conglomeration of generalized response (as the Kp142

is). However, this measure, alone, only accounts for two possible driving parameters.143

Several studies have examined the response of geosynchronous keV electron flux144

measured at LANL satellites to solar wind parameters. For example, Shi et al. (2009)145

found electron flux increases due to solar wind dynamic pressure enhancements and Li146

et al. (2005) and Kellerman and Shprits (2012) concluded that higher solar wind speed147

results in higher electron fluxes. Hartley et al. (2014) have found an effect of solar wind148

speed on the 30-600 keV electron density, temperature and energy density from the MAGED149

(MAGnetospheric Electron Detector) instrument onboard GOES (Geostationary Oper-150

ational Environmental Satellites) 13-15.151

Sillanpää et al. (2017), using 5 years of GOES 13 MAGED electron flux data, fit152

an empirical model using both solar wind and IMF Bz to predict electron fluxes at 40,153

75 and 150 keV energies, after concluding that the other two IMF components and so-154

lar wind density, temperature, and pressure were of less importance. This is in line with155

earlier studies (e.g., Li et al., 2005; Kellerman & Shprits, 2012; Ganushkina et al., 2019).156

The effects of multiplicative combinations of parameters such as -VSWBz (Denton et al.,157

2016) were not studied and it is possible that not a single parameter but the combined158

effect of multiple driving parameters that result in the observed fast variations of the keV159

electrons.160

Ganushkina et al. (2021) discovered that the AE/AL (Auroral Electrojet/Auroral161

Lower) indices, together with solar wind speed, provide a better model of the severe en-162

vironments related to surface charging of satellites by keV electrons measured by LANL163

(1990-2005) than do IMFBz, Kp, and solar wind number density. Based on integral elec-164

tron fluxes, among 400 events of worst-case severe environments (categorized based on165

four criteria (Matéo-Vélez et al., 2018) of the solar wind and IMF parameters and ge-166

omagnetic indices), 100 were in one criterion based on the measured spacecraft poten-167

tial and 300 in the other 3 criteria based on these electron flux measurements.168
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In recent years, multivariate approaches have been explored to refine and comple-169

ment physical and single variable empirical models, and to determine the main driving170

parameters of keV electrons. Some techniques used for predictions of mainly MeV ra-171

diation belt electrons include linear prediction filters (e.g., Baker et al., 1990; Rigler et172

al., 2004; Castillo Tibocha et al., 2021), dynamic linear models (e.g., Osthus et al., 2014),173

conditional mutual information (Wing et al., 2022), multiple regression (e.g., Sakaguchi174

et al., 2013; Simms et al., 2014, 2016, 2018a, 2018b; Stepanov et al., 2021), neural net-175

works (e.g., Koons & Gorney, 1991; Freeman et al., 1998; Ling et al., 2010; Simms & En-176

gebretson, 2020), and Nonlinear AutoRegressive Moving Average with eXogenous (NAR-177

MAX) inputs (e.g., Balikhin et al., 2011; Boynton et al., 2015; Balikhin et al., 2016; Boyn-178

ton et al., 2016).179

GOES 13-15 40 keV electron flux data were used by Boynton et al. (2019) to de-180

velop a model of time series of the electron flux for each of 24 MLTs employing NAR-181

MAX methodology. They found that the IMF factor, a combination of IMF By and Bz182

component, (Balikhin et al., 2010; Boynton et al., 2011) Bf (t) = BT (t)sin6(θ(t)/2), where183

BT (t) =
√
By(t)2 +Bz(t)2 and θ = tan−1(By(t)/Bz(t)), controls most of the output184

variance. Another important variable was determined to be the solar wind velocity. The185

square root of the solar wind pressure and solar wind density were also chosen by the186

algorithm but their contributions are small. Boynton et al. (2019) stressed that the time187

resolution of the parameters used in the model development influences the importance188

of these parameters. For comparison, the earlier study by Boynton et al. (2013), in which189

daily averaged 10-100 keV electron fluxes measured at LANL satellites were used, the190

role of southward IMF was found to be insignificant.191

In the present study, we test the influence of several possible drivers of low energy192

electron flux (40-150 keV) observed by GOES 13 and GOES 16 satellites: solar wind ve-193

locity (V ), number density (N), pressure (P ), and the electric field (Ey), IMF Bz, and194

substorms (as measured by the AE index). We use ARMAX (autoregressive moving av-195

erage transfer function) models both to measure the cumulative effects and to remove196

common cycles and trends that may inflate correlations between variables (Simms et al.,197

2022). These parameters may act in combination, with influence accumulating over time.198

It is also possible that some variables may not influence electron flux directly but indi-199

rectly via other parameters. For the latter case, we develop subset models showing pos-200

tulated direct and indirect effects.201

Regression can be a powerful tool for testing which drivers could have a possible202

controlling influence on electron flux levels. However, regression on time series data, be-203

cause it often violates the assumption of uncorrelated errors, can result in highly inflated204

hypothesis test statistics, giving the impression that certain factors may be strong drivers205

of flux when they are only cycling or trending in common (Simms et al., 2022). While206

this may not be a problem if we are using a regression model to forecast flux, it will in-207

validate the hypothesis tests that allow us to determine if solar wind, IMF, and substorm208

factors are meaningfully correlated with flux. We may also find that using more of the209

information present in the data (i.e., the time behavior) results in more accurate pre-210

dictions.211

There are several approaches to modelling the periodic behavior of a time series.212

We will do so with autoregressive (AR) and moving average (MA) terms (Hyndman &213

Athanasopoulos, 2018; Pankratz, 1991). When chosen well, these reduce the autocor-214

relation in the errors of the model and fully describe the cycling behavior of the series.215

With this behavior effectively removed (by the introduction of these terms) the remain-216

ing variability in the data can be tested for its response to external factors (the indepen-217

dent variables). This last step results in a transfer function model (X), giving the acronym218

ARMAX. The ARMA terms therefore partition out the part of the variance due to com-219

mon cycling. What we will be left with is the actual relationship between the predictor220

and flux.221
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Further assumptions of regression models, in general, are a linear relationship be-222

tween response and predictor variables, homoscedasticity (equality of variances in the223

residual errors), and normally distributed errors. To achieve linearity, we take the logs224

of the variables (excepting those with both positive and negative values). This not only225

allows the use of the linear model technique (regression) to describe what may be a non-226

linear process, it can also normalize the residuals and reduce the heteroscedasticity (non-227

equality of variances) of the residual error (Neter et al., 1990).228

Other studies have used ARMAX modelling to predict higher energy electron fluxes229

in geostationary orbit, and these provide further information on this approach of describ-230

ing the underlying cyclical behavior of flux with AR and MA terms (Balikhin et al., 2011,231

2016; Boynton et al., 2015, 2016; Simms & Engebretson, 2020; Simms et al., 2022). We232

note that nonlinearity was introduced into the models of Balikhin et al. (2011) with poly-233

nomial terms (square and cubic terms) instead of the logs we use here. Polynomial terms234

often result in a similar description of nonlinearity as merely taking logs of the variables.235

Additive polynomial terms may be a better choice if the slope of the relationship can-236

not be made constant with the log transformation, but there are potential disadvantages.237

The exponent of a polynomial term is chosen by the researcher, while linearizing the re-238

lationship using a log transformation allows the model itself to choose the exponent of239

the power function. The polynomial approach may also not have the same ability to fix240

problems of heteroscedasticity and non-normality of the errors. However, although these241

appear to be significantly different approaches, most relationships in space weather data242

are such that either approach will give a similar description of the data.243

We also note that ARMAX models may sometimes be called ARIMAX models, with244

the additional I conveying that the data is differenced at some time step n with a yt−245

−yt−n transformation. However, as we did not find it necessary to difference the present246

dataset for the full models, ARMAX without the additional I is the more descriptive acronym.247

In this study, we extend this previous work by using the ARMAX technique to de-248

termine the most influential drivers of lower energy electron flux behavior. While pre-249

vious studies (e.g., Balikhin et al., 2011) may choose an optimal, parsimonious set of pre-250

dictors that describe the variance in the dataset (e.g., through the Error Reduction Ra-251

tio technique), using least squares regression (as applied to an ARMA model) we are able252

to show the statistically significant, relative contributions of each parameter rather than253

reducing the model to only highlight the most essential variables. In other words, we are254

able to test for the inutility of certain parameters in describing flux, rather than just choos-255

ing those parameters that have the strongest correlation. This provides more informa-256

tion on the additive influence of parameters, even if the influence of some is not as strong257

as others. This results in a deeper understanding of the ensemble effects. We also ex-258

plore a reduced model consisting of just those parameters we hypothesize are the direct259

physical drivers of flux: AE (as a measure of electron injections from substorms), pres-260

sure, and the solar wind electric field (Ey, or −V Bz).261

The description of the data is given in Section 2. Section 3 presents the results for262

drivers for 40-150 keV. The findings are discussed and the conclusions are drawn in Sec-263

tion 4.264

2 Data for Defining the keV Electron Drivers265

For electron fluxes, we use hourly averaged data from the geostationary GOES-13266

satellite. We analyze the measurements from the MAGED instrument consisting of the267

nine collimated solid state telescopes (e.g., Rowland & Weigel, 2012), each with a 30◦268

full-angle conical field of view. All nine telescopes measured the directional differential269

electron fluxes in units of cm−2 ·s−1 ·sr−1 ·keV −1. We use the fluxes in the first three270

energy channels where the fluxes are defined at the midpoints of the energy ranges, i.e.,271
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at 40, 75, and 150 keV. We compute one omnidirectionally averaged flux (flight direction-272

integrated differential electron fluxes) for each of the energies using pitch angles calcu-273

lated from the onboard magnetometer data following the method presented in Sillanpää274

et al. (2017) and Ganushkina et al. (2019). The GOES-13 MAGED data of electron fluxes275

and the data for the pitch angles of each telescope with 5-min averaging are available276

at https://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html.277

The time interval of this study is 10 June 2013 - 6 August 2016. There were min-278

imal data gaps of only several hours during these time periods. For the time-dependent279

analyses (ARMAX models) these gaps were filled with linear interpolation between the280

existing observations.281

Solar wind parameters (solar wind velocity V , number density N , pressure P , IMF282

Bz and Bs (including only the southward component of Bz), and the electric field Ey)283

and magnetic indices (Kp, AE and SymH) were obtained from OMNIWeb web (https://omniweb.gsfc219284

.nasa.gov/form/dx1.html) with 1 h resolution with data time-shifted to the bow shock285

nose. We use an hourly ground ULF wave index (ULF ) as a global ULF activity proxy286

reconstructed from 1-min data from the world-wide array of magnetic stations in the North-287

ern hemisphere (data available at: https://doi.org/10.2205/ULF-index) (Kozyreva et al.,288

2007; Pilipenko et al., 2017).289

Analyses based on the least squares regression methodology assume that the re-290

lationship between predictor and response variables be linear, with the residual errors291

(that variance that is unexplained by the model) being random, normally distributed,292

and with equal variance over the range of predicted values. This requirement applies even293

to such analyses as simple correlation. However, the relationship between flux and pre-294

dictor parameters is often nonlinear and inspection of the residual errors of these anal-295

yses performed on non-transformed data shows this nonlinearity, as well as non-normality296

and an inequality of variances at different levels of the predictors. Fortunately, these prob-297

lems can usually be fixed by taking the log of at least electron flux, with further improve-298

ments obtained by taking the log of transformable predictor variables as well. We there-299

fore take log10 of all variables ≥ 0. Variables containing zero values which cannot be300

logged without creating missing values (i.e., Kp) were transformed by adding 1 to all val-301

ues before the log transformation. Bz and Ey, as they have both positive and negative302

values, were not logged. Examination of residual plots of the ARMAX models (not shown)303

showed that this transformation fixed all three problems.304

Because the dependent variable (electron flux) is log-transformed, this results in305

nonlinear models between flux and all the variables, a power function relationship for306

those predictor variables that are also log-transformed, and an exponential function re-307

lationship for those predictor variables that are not logged.308

Subsequent to the log transformation, all variables were standardized by subtract-309

ing that series mean and dividing by its standard deviation. This creates unitless vari-310

ables (Z-scores) for which regression coefficients (slopes) can be directly compared. Al-311

though it makes no difference to the outcome of the correlations, we also used the Z-scores312

for the correlation analysis for consistency. We note, however, that neither the log nor313

the Z-score transformation reduces either the serial autocorrelation or common cycles314

seen in these time series datasets. This autocorrelation inflates the simple correlations315

and must be further dealt with by describing/removing the autocorrelation and common316

trends and cycles via the introduction of AR and MA terms and/or differencing, as de-317

scribed below in Section 3.2 (Granger & Newbold, 1974; Simms et al., 2022).318

ARMAX models were developed in IBM SPSS Statistics (formerly known as the319

Statistical Package for the Social Sciences), with additional statistical analysis in MAT-320

LAB.321
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3 Drivers of 40-150 keV Electrons at Geostationary Orbit322

3.1 Cross Correlations of Electron Fluxes with Solar Wind and IMF Pa-323

rameters and Geomagnetic indices324

Simple cross correlations of hourly measured parameters (Figure 1) show values325

near 0.5 for some parameters, most notably and in keeping with previous studies, V , ULF ,326

and AE (e.g., (Li et al., 2005; Kellerman & Shprits, 2012; Hartley et al., 2014; Simms327

et al., 2014)). Positive correlations are shown with solid lines, negative with dashed red328

lines. Correlations are performed between electron flux and individual parameters from329

each hour (0-48 h) before the flux measurement. At higher electron energies, the AE and330

ULF correlations are lower, with peak correlations at earlier times. The correlation with331

V may be somewhat higher, but there is also a tendency for its peak correlation with332

electron flux to occur earlier at higher energies. The correlation of flux with N is less333

than that with V , although it does become more prominent at 150 keV, if negative.334

Bz and Bs correlations with flux are similar to each other. There appears to be no335

particular advantage to using the Bs parameter over Bz. (Correlations of By with flux336

at all hours and energies were < 0.05. This parameter was therefore not studied further.)337

The negative correlations of Bz and SymH with flux are as expected, as each of these338

parameters are measured on a negative scale indicating increasing strength at more neg-339

ative values. While the Bz strength shows less association with flux, SymH and Kp show340

similar patterns of correlation to each other, likely because both are generalized mea-341

sures of disturbance at ground magnetometers. These parameters also show an increased342

correlation at earlier time steps at higher flux energy.343

P and Ey are somewhat different from the other variables in that they are math-344

ematical combinations of other measured parameters (V 2 and N , and V and Bz in the345

cases of P and Ey, respectively), but, at the same time, they may have more physical346

interpretability. That the P -flux correlation is similar to that of the flux correlation with347

V or N can be seen where the P correlation drops off in a manner similar to the N cor-348

relation, albeit, with some tempering of this decrease as the V correlation rises at the349

same point in time. The Ey-flux correlation follows the pattern of the Bz-flux correla-350

tion nearly exactly.351

3.2 Interpretation Problems with Simple Correlations: Poorly Defined352

Variables, Autocorrelation, and Spurious Correlations353

Most of the parameters of Figure 1 show more association with flux in the few hours354

just prior to a flux measurement at the lower energies, but with maximum correlations355

at the higher energies occurring further back in time. However, it is difficult to interpret356

a single peak or even a rise in correlation at a given hour as a physical process that hap-357

pens at that particular time, given that all these parameters are strongly autocorrelated358

in time. A variable strongly correlated with itself in previous time steps will show a sim-359

ilar correlation with flux at every one of those time steps, making it impossible to de-360

termine the exact time of physical action from simple correlation analysis.361

Another difficulty with simple correlation analysis is that correlations between pre-362

dictor variables may distort the apparent association between a predictor and flux by363

confounding the true relationship. The well known correlation between V and N , for ex-364

ample, even if it is negative, will result in both predictors showing a correlation with flux,365

even if only one of them has an actual association. Besides this, any co-cycling variables366

will show a strong correlation even when there is no association other than a similar re-367

sponse to time. This is a particular difficulty in space weather data where both diurnal368

cycles and longer cycles are common.369
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Figure 1. Cross correlations between GOES electron flux and possible drivers (hourly aver-

ages) for a. 40 keV, b. 75 keV, c. 150 keV. Solid lines are positive correlations; dashed lines are

negative correlations. Note that most correlations are < 0.5 in magnitude.
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Although we find reasonable correlations of SymH and Kp with flux, to justify in-370

cluding these in a model attempting to find the physical drivers of flux, there must be371

some basis for thinking there is a physical connection between these particular indices372

and electrons. While Kp, derived from midlatitude stations, may be sensitive to vari-373

ations at the inner edge of the electron plasma sheet (Thomsen, 2004; Freeman, 1974),374

there is no guarantee that this is all or even most of what Kp measures. As the mea-375

sure itself is merely the maximum geomagnetic disturbance recorded in a 3 h period, it376

may not be specific to that particular area of the magnetosphere, nor temporally fine tuned377

enough to be of much use. The discrete nature of the index values would also work to378

obscure much of the information it could carry. That there are high correlations between379

electron flux and Kp (see Figure 1) is not an argument in favor of its necessary inclu-380

sion in a meaningful physical model, but may more likely only indicate that Kp is a proxy381

that represents a large number of processes that we would, instead, prefer to know the382

effects of individually. In addition, as parameters that are averaged over longer periods383

of time tend to show higher statistical correlations without any meaningful increase in384

association (Simms et al., 2022), this alone could explain the Kp, at a 3 h cadence, hav-385

ing a higher correlation with flux than that of many other parameters. SymH may be386

an indirect measure of the free energy available for local wave acceleration of keV elec-387

trons up to MeV energies, but is perhaps more representative of inner magnetospheric388

plasma pressure, about 12% of which is keV electron pressure (Kumar et al., 2021). SymH389

may be worth testing as a representation of these processes, but the applicability to elec-390

tron flux in the outer radiation belts appears weak. While the AE index can be inter-391

preted as a measure of the substorm activity that may result in electron injections, we392

do not have the a similarly meaningful physical interpretation of Kp and SymH other393

than that they measure the overall level of disturbance in the magnetosphere. But if ”dis-394

turbance” is a meaningful concept, it is more accurately measured by such parameters395

as V , Bz, etc., which also have a physical meaning in the system. In previous work it396

has also been found that indices from magnetometers tend to correlate highly with each397

other, meaning that it may only be useful, or possible, to include one index in a mul-398

tivariate analysis without reaching problematic levels of multicollinearity that make it399

impossible to determine which variables are most associated with flux (Simms et al., 2016).400

Therefore, we need to use care in deciding which index to use and not include every one401

possible. Instead, we should settle on the one that best describes the physical processes402

we suspect are occurring.403

However, these arguments are somewhat moot. If we do include all 3 indices (Kp,404

SymH, and AE in a full regression ARMAX model (see below; Table 1), Kp and SymH405

are not strong candidates, as their influence can be up to an order of magnitude below406

that of AE. Although Kp and SymH have high simple correlations with flux, and even407

if we were to believe they represented physical drivers, when variables are tested simul-408

taneously, these two indices do not perform well. In the subset models, we therefore use409

the AE index both because it is representative of substorm activity and because it is a410

stronger correlate, at least at 40 keV. In future work, if we planned to create prediction411

models only, but not to identify physical drivers, this restriction would not apply and412

all three indices could be included (with the caveat that this did not result in overfit-413

ting and, therefore, poor predictive ability).414

Although simple correlations can suggest possible drivers, further work must be done415

to elucidate these relationships. Below, in our ARMAX models, we address these issues,416

performing multivariate analyses to account for spurious simple correlations due to the417

confounding of variables, adding autoregressive (AR) and moving average error (MA)418

terms to account for serial autocorrelation and co-cycling of variables, and choosing pre-419

dictors that have a reasonable basis for some physical relationship with flux. In regards420

to this latter issue, we also choose 4 variables (AE, ULF , P , and Ey) as possible direct421

physical drivers of flux (direct effects) and explore their relationship with the other so-422

lar wind and IMF parameters (indirect effects).423
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Addtionally, below, we explore whether certain parameters are more correlated dur-424

ing geomagnetically disturbed periods and at different times of the day. For the former,425

we must use a differencing transformation (yt − yt−1) to reduce serial autocorrelation426

as, without a complete time series, we are unable to remove this with ARMA terms. To427

study varying influences by time of day, we add indicator variables to the ARMAX model428

to identify each hour (MLT: magnetic local time).429

3.3 ARMAX models430

As noted in the previous section, simple cross correlations of time series variables431

may be highly inflated by common cycles and trends often seen in time series data (Granger432

& Newbold, 1974). These correlations may, therefore, not say anything useful about the433

relationship between variables. In addition, analyzing the effect of each predictor indi-434

vidually gives us no information about the relative importance of each, or the effect of435

each when the others are held constant. Multiple regression analysis would assess the436

strength of the relationship between each predictor with the effects of the other predic-437

tors eliminated. Additionally, as regression gives us the slope of the relationship between438

predictor and flux (the coefficients of the regression equation), there will be more infor-439

mation about the form of the relationship. We can further improve on a multiple regres-440

sion model by introducing terms to specifically describe the cycling, trends, and auto-441

correlation that may be present in time series data. These terms may take the form of442

an autoregressive component (regressing on previous values of the dependent variable:443

an AR term), or a moving average component (regressing on the errors of the model at444

preceding time steps: an MA term). A difference term, which subtracts a previous value445

from each observation, may also be used to fit an overall trend, but we found this was446

not needed for this full set of hourly averaged flux data. For data that cycles “season-447

ally” (at a set time period) it may be helpful to also fit seasonal AR and MA terms (Hyndman448

& Athanasopoulos, 2018).449

We fit ARMAX models, using AR and MA terms, along with “seasonal” (daily)450

AR and MA terms, to describe the cycling behavior of the dependent variable. We are451

then able to test input variables for their possible correlation separate from these com-452

mon cycles. The “seasonality” we incorporate is the daily variation in flux seen as the453

observing satellite passes between drift shells due to the asymmetric dipole of the Earth’s454

magnetic field. Typically, higher energy (MeV) electron flux data collected at geosyn-455

chronous orbit shows higher levels on the dayside where the field is compressed and lower456

flux levels on the night side where the fields are stretched (e.g., OBrien & McPherron,457

2003; Boynton et al., 2019). For keV electrons, fluxes are highest in the morning hours458

and lowest in the evening hours due to their trajectories and losses (e.g., Korth et al.,459

1999; Sillanpää et al., 2017).460

As all variables were standardized by subtracting that series mean and dividing by461

its standard deviation, we are able to compare these unitless regression coefficients be-462

tween variables. Note that these are not correlation coefficients, but slopes. A 1 unit in-463

crease in a predictor variable is thus associated with a certain increase in the dependent464

variable. Taking log10 of those variables for which it made sense (i.e., not Bz, for exam-465

ple, which has both positive and negative values) effectively creates a non-linear model,466

despite how we are using the linear model technique of ARMAX regression.467

For each electron flux energy (40, 75, and 150 keV), we fit an AR1, MA1,2, sea-468

sonal AR1, seasonal MA1 model. More specifically, each regression contained two flux469

autoregressive terms (from 1 h previous and 24 h previous) and the moving average of470

the errors of the model from 1,2, and 24 h previous as predictors, in addition to the ex-471

ogenous AE, Kp, SymH, ULF , and solar wind and IMF variables. The 24 h AR and472

MA terms represent the ”seasonality” terms that model the diurnal fluctuations in flux473

due to the movement of the satellite through field lines (in other words, the “seasons”474
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are days (Table 1). This reduced all terms of the partial autocorrelation function (PACF)475

to non-statistically significant levels.476

3.4 Full ARMAX Model Including All Variables477

V , N , IMF Bz, AE, ULF , P , Ey, Kp, and SymH were first entered as numera-478

tor (influence) terms at 1 and 2 hour delays, with a denominator (decay) term at 1 hour479

(Table 1). Influence terms with p-value > 0.10 were dropped from the model. The p-480

value is the probability that the null hypothesis of no association is true. A p-value <481

0.05 is generally considered to be statistically significant, or, put another way, that the482

null hypothesis of no association has been rejected. (The calculation of the p-value is de-483

pendent on the presumed sampling distribution of the test statistic under the null hy-484

pothesis, which is itself dependent on the standard error of the estimate. Simply put,485

dividing the parameter (coefficient) by its standard error gives a t-statistic which can486

be compared to standard tables giving the probability of that value given the relevant487

sample sizes. While it can be calculated by hand, it is generally left to the statistical pack-488

age to do the calculation and table look up (Neter et al., 1990).) Due to this p-value re-489

striction, not all influence and decay terms are retained, however, at least one influence490

and the decay term are retained for each predictor, even if statistical significance fell above491

a p-value > 0.10, in order to describe the relative influence of each term. (The constant492

term is not significantly different from zero because all variables were standardized and493

therefore centered around zero. However, we retain it for the small amount of explana-494

tory value it adds to the model.) We report standardized regression coefficients which495

describe the slope of the relationship between predictor and response variables on a stan-496

dard (unitless) scale. Due to this standardization we are able to directly compare the497

influences of each predictor with all the others. (These are slopes, not correlation coef-498

ficients, so are not constrained to lie between -1 and 1.)499

The R2, or coefficient of determination, measures the percent of variation in the500

data that is explained by the model. (Note that the R2 is mathematically equivalent to501

the prediction efficiency used by some other authors when applied to a training dataset.)502

In simple correlation, the R2 is equivalent to the square of the correlation coefficient (r2).503

The highest simple correlations (e.g. AE and V of Figure 1) around r = 0.5 would there-504

fore have an R2 of 25%, explaining 25% of the variation in the data. Thus, the multi-505

ple regression ARMAX models which use both ARMA terms and more than one pre-506

dictor variable, explain more of the variation than any of the simple correlations. Much507

of the increase in R2 is due to the introduction of the ARMA terms, but the ARMAX508

models do also tell us which independent variables are most important and how they com-509

pare in influence with each other. This addition of predictor variables would also allow510

the ARMAX model to be used for prediction. If there are no exogenous (independent)511

variables in the model, predictions would quickly revert to the mean value of zero, the512

constant of the ARMAX equation.513

The predictor coefficients can be represented with an empirical prediction equa-514

tion (Equation 1). For the 40 keV electrons:515

Fluxt = −0.057 +
0.632Vt−1

1− 0.270Vt−2
+

1.087Nt−1

1− 0.126Nt−2
516

+
0.265Bzt−1

1− 0.283Bzt−2
+

0.0170Kpt−1

1− 0.563Kpt−2
517

+
−0.028SymHt−1

1− 0.726SymHt−2
+

0.170AEt−1

1− 0.379AEt−2
518

+
0.021ULFt−1

1− 0.959ULFt−2
+
−0.992Pt−1

1− 0.177Pt−2
519
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Table 1. ARMAX standardized regression coefficients of the full models (one for each electron

energy) including all variables except Bs (*: statistically significant, p-value < 0.05; †: p-value <

0.10; n.s.: not statistically significant, p-value > 0.10)

40 keV 75 keV 150 keV

Intercept -0.057n.s -0.054n.s. -0.036n.s.

AR1 0.836* 0.845* 0.855*

MA1 0.204* 0.207* 0.069*

MA2 0.302* 0.217* 0.202*

DailyAR1 0.999* 1.000* 1.000*

DailyMA1 0.986* 0.993* 0.994*

V lag 1 h 0.632† 0.888* -0.196*

Decay 0.270 0.822 -0.147

N lag 1 h 1.087* 1.358* -0.087*

Decay 0.126 0.811 0.854

Bz lag 1 h 0.265* 0.386* 0.306*

Decay 0.283 0.429 0.673

Kp lag 1 h 0.017n.s. 0.041* 0.023*

Decay -0.563 0.937 0.967

SymH lag 1 h -0.028* -0.004* 0.056*

Decay 0.726 0.975 -0.447

AE lag 1 h 0.170* 0.131* 0.019*

lag 2 h – 0.050* 0.062*

Decay 0.379* -0.055 0.551

ULF lag 1 h 0.021* 0.001n.s. 0.003n.s.

Decay 0.959 -0.988 0.984

P lag 1 h -0.992* -1.274* 0.035n.s.

Decay 0.177 0.813 0.849

Ey lag 1 h 0.257* 0.352* 0.263*

lag 2 h -0.131 -0.040* –

Decay -0.046 0.414 0.731

R2 67.4% 69.2% 78.1%

–13–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Space Physics

+
0.257Eyt−1 − 0.131Eyt−2

1− 0.046Eyt−2
520

+0.836× Ŷt−1 + 0.999× Ŷt−24521

+0.204× εt−1 + 0.302× εt−2 + 0.986× εt−24 (1)522

40 keV electron flux at time t is predicted by the other variables at previous times523

steps (t− 1, etc), the model predicted value of flux at t− 1 and t− 24 (”daily”), and524

the error between model and observation (ε) at t−1, t−2, and t−24. Each influence525

term is represented in a numerator, with decay terms in the denominator. For clarity,526

we do not label the variables that have been logged (flux, V , N , Kp, AE, ULF , and P )527

in the empirical prediction equation, however, due to this transformation, this is effec-528

tively a non linear model in the terms for which we have taken logs. For example, the529

partial influence coefficient for V of 0.632 would be interpreted as a 1 percent change in530

the Z score of V resulting in a 0.632 percent change in the Z score of electron flux. How-531

ever, given the number of differences between our model and that of previous models (in-532

cluding more variables, using Z scores, including decay terms) a direct comparison of these533

coefficients to other studies using somewhat similar techniques is not particularly mean-534

ingful. Instead, it makes more sense to compare which predictor variables are most in-535

fluential and not the details of exactly how much flux changes in response to a unit change536

in a predictor.537

The influence (numerator) and decay (denominator) terms of Equation 1 give us538

the tools to calculate the cumulative effects of each input variable. An influence that ap-539

pears at t-1 dissipates at a rate given by the decay term. Thus, although there may only540

be one hour in which a variable input appears, the exponential decay over time means541

influence may spread from previous time periods. The influence at a given forward time542

step from some time step (t) in the past will be that influence ×(1−decayfactor)t. Graph-543

ically, this results in a time delay of influence that appears similar to a cross correlation,544

however, the transfer function gives regression coefficients (i.e., slopes), not correlations.545

While a correlation can be interpreted as the strength of a relationship between two vari-546

ables, a regression coefficient can be interpreted as the magnitude of the impact of one547

variable on another. We use the predictor coefficients of Table 1 to create the cumula-548

tive influence bar charts of Figure 2. It should be remembered that these regression co-549

efficients represent the influence of each variable with the others held constant, unlike550

the simple correlations of Figure 1. Each panel of this figure shows the response of an551

electron energy (40, 75, and 150 keV) to the influence of each of the 9 exogenous vari-552

ables when the other 8 predictor variables are held constant. The influence of each be-553

gins from the hour previous to the flux measurement. The decay term describes the fall554

off in influence over time.555

These ARMAX models incorporating all 9 possible predictors show little influence556

of Kp and SymH. AE has the highest influence of the geomagnetic indices, but it is weaker557

than the strong and lasting effects of V , N , and P , particularly at 75 keV. The V , N ,558

and P influences are superficially similar to those seen in the simple cross correlations559

(Figure 1) but the sign of influence of N and P have switched. Bz and Ey also super-560

ficially show the same influence as in the cross correlations, but, again, the sign of in-561

fluence of Bz is switched.562

What are we to make of these losses of influence (particularly Kp and SymH) and563

the changes in sign? It is obvious that simple correlations are highly unreliable as each564

parameter is highly correlated with all the other parameters of interest, and because any565

one of them may show a spurious correlation with electron flux due to common cycling566

behavior.567

Second, geomagnetic indices (particularly Kp and SymH) do not even appear to568

influence electron flux when other variables are present. In this full model, Kp and SymH569
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have little influence. However, even if they were the most ”influential” parameters in these570

models, for the reasons mentioned above would we be justified in calling them drivers?571

Or are they merely correlated proxies? Is SymH a predictor variable at all? Or just an-572

other measure of our response variable, the electron flux? These questions can only be573

answered from a consideration of what information these indices actually contain. As574

we have discussed above, while Kp and SymH may roughly represent disturbance in the575

magnetosphere, we don’t know exactly which processes and how much of each process576

they might represent. AE is a different case. First, AE does show more influence than577

the other two indices, and second, we know that this index measures substorm activity578

which can lead to electron injection. For this latter reason, we will retain AE in further579

models.580

Both P and N act more as a pointed shock to the system with less long term in-581

fluence, however, the opposite sign of these two predictors, at similar magnitudes, sug-582

gests that there is some degree of multicollinearity occurring between these two. This583

is not surprising, as P , partially calculated from N , is highly correlated with N and the584

amount of information about the influence of each on flux is almost wholly contained in585

the other. Unfortunately, this can result in a pattern of presumed ”influence” (as seen586

here) that reflects a competition for explanatory power rather than actual opposing ef-587

fects on flux, and the inclusion of both in the model is misleading. It is unclear why their588

influences appear larger at 75 keV than at 40 or 150 keV, but this could simply be the589

result of only a small difference in flux related to the N and P variables being amplified590

by the competition between the two. It is unlikely to represent anything tangible and591

only demonstrates that coefficients of highly correlated variables in the same model are592

not trustworthy.593

Bz and Ey have more modest influences on flux. Despite the high ULF -flux cor-594

relation seen in the simple correlations, the ULF influence on flux is very low. This is595

likely due to two factors. First, when other variables are included in the model any proxy596

correlation ULF may have represented is removed from the ULF influence. Second, the597

high simple correlation may be simply due to this ULF index and satellite-measured flux598

both showing a diurnal cycle. When this cycling is removed (via the AR and MA terms)599

the correlation between these variables disappears (Simms et al., 2022). (The occasional600

oscillating pattern of influence in several of the variables is the result of a negative de-601

cay term found by the regression. It is often unclear whether this has any real physical602

meaning.)603

As these are standardized regression coefficients, we can calculate the impact of a604

predictor on flux. For example, as we are using standardized coefficients, a 1 standard605

deviation increase in log10(AE) 1 h previous would result in 0.17 standard deviation in-606

crease in log10(40keV flux), holding all the other predictors constant.607

3.5 Choice of variables608

Pressure (P ) and number density (N) are difficult to incorporate into a model si-609

multaneously. As pressure is the product of the V 2 and N , the strong correlation be-610

tween pressure and N can lead to unexpected and puzzling behavior. In the models of611

Figure 2 and Table 1, there is a strong initial influence of P , and an opposing strong in-612

fluence of N in the same time period. As we know that P and N are highly correlated613

with each other, it is difficult to interpret this as each having a strong, opposing, and,614

most importantly, independent influence. It is more likely that these opposing effects are615

merely the result of the two terms acting counter to each other in an effort to explain616

the same small bit of variation. The same is true of Ey with V and IMF Bz, as Ey is the617

product of V and Bz. In fact, it likely makes little sense to draw firm conclusions about618

the physical drivers based on this full model. A more plausible model could be achieved619

by dropping one of either P and N , and one of Ey and IMF Bz. For example, dropping620
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Figure 2. Cumulative effects of all possible drivers of electron flux. For each flux energy, vari-

ables are entered simultaneously into an ARMAX regression model as a predictor at a delay of

1 and 2 hours. Only statistically significant time steps are retained, along with a decay factor.

Standardized regression coefficients may be compared within each model (a. 40 keV, b. 75 keV,

c. 150 keV) to determine the relative influence of each variable on flux. Note that each row has

the same scale, but scales vary between rows, in order to compare more effectively between the

strongest associations (V , N , and P ) and between the indices (AE, Kp, and SymH) and other

variables with lower influence (ULF , Bz, and Ey).

–16–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Space Physics

Table 2. ARMAX standardized regression coefficients of the three reduced models using AE,

ULF , P , and Ey as predictors (*: statistically significant, p-value < 0.05; n.s.: not statistically

significant)

Log 40 keV flux Log 75 keV flux Log 150 keV flux

Constant -0.090n.s. -0.093n.s. -0.056n.s.

AR1 0.825* 0.843* 0.86*

MA1 0.197* 0.195* 0.055*

MA2 0.293* 0.212* 0.201*

Daily AR1 0.998* 0.998* 0.999*

Daily MA1 0.981* 0.987* 0.993*

Log(AE) 1h lag 0.216* 0.130* 0.004n.s.

2h lag 0.154* 0.091*

Decay 1h 0.882 0.542 0.053

Decay 2 h 0.349

Log(ULF) 1h lag 0.017* 0.021* 0.03*

Decay 1h 0.965 0.969 0.97

Log(P) 1h lag -0.025* -0.039* -0.055*

Decay 1h 0.717 0.728 0.801

Ey 1h lag -0.018* -0.014* -0.03*

2h lag — -0.022 —

Decay 1h -0.763 -0.381 0.412

R2 67.10% 68.50% 76.90%

the two derived parameters (Ey and P ) would allow us to more accurately see the ef-621

fects of V , N , and Bz.622

However, we may be able to do better by separating out just those parameters we623

believe could be influencing flux directly. These direct parameters would be AE (as a624

measure of substorms which inject electrons), ULF (waves in this frequency are thought625

to drive electrons to higher energies), Ey (with the solar wind electric field plausibly hav-626

ing some influence on electron behavior), and pressure (which could influence flux lev-627

els through acceleration, through magnetopause shadowing, and by compression of the628

magnetosphere at the altitude of the satellite, bringing the satellite into higher drift shells629

with lower electron density). We note that there is little theoretical work to suggest ei-630

ther N or V alone drive flux. Their physical action, instead,is thought to derive through631

pressure. We similarly assume that the physical action of Bz is likely through the elec-632

tric field rather than simply the Bz itself. We fit a reduced ARMAX model using only633

these 4 parameters. The coefficients of this reduced model are presented in Table 2.634

From the coefficients of this table, we once again calculate the cumulative effects635

of each variable on flux (Figure 3). At 40 keV (3a), this simpler model of the presumed636
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Figure 3. Cumulative effects of the possible direct drivers of electron flux. For each flux

energy, AE, P , Ey, and ULF are simultaneously entered into an ARMAX regression model as

predictors at 1 and 2 hours, but only significant time steps are retained, along with a decay fac-

tor. Standardized partial regression coefficients may be compared within each model to determine

the relative influence of each variable on flux: a. 40 keV, b. 75 keV, c. 150 keV.

direct effects alone shows a strong effect of AE, peaking at 2 hours before the flux and637

with influence over many hours. Pressure, Ey, and ULF , while still statistically signif-638

icant effects, are much lower in magnitude. The effect of pressure is negative, presum-639

ably as most of its effect is due to the compression of the magnetosphere which positions640

the satellite into a less populated drift shell and to magnetopause shadowing. The small641

Ey association cycles between positive and negative. A similar pattern is seen for the 75642

keV electrons (3b), although the AE influence is slightly lower and the P and ULF ef-643

fects somewhat stronger. The 150 keV electrons (3c) show a much lower response to AE,644

and, again, a somewhat stronger response to P and ULF .645

But what of the strong influence of V we saw in the full model of Figure 2? Although646

our direct effects model (of Figure 3) may make more physical sense, we still would like647

to understand the correlation of V with flux. We can do this by using the other, indi-648

rect parameters to predict our set of more physically interpretable variables, decompos-649

ing each correlation into components. In other words, we can use N , V , and IMF Bz to650

predict AE, ULF , P , and Ey, which we subsequently use to predict flux.651

To accomplish this, we presume a causal model (Figure 4) and run a series of re-652

gressions to determine the coefficients of the paths. In this figure, we present the stan-653

dardized regression coefficients obtained by predicting 40 keV flux from AE, ULF , P ,654
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and Ey. We then predict both AE and ULF using P , Ey, N , V , and IMF Bz from one655

hour previous. (These models are not shown explicitly as the input parameter coefficients656

are all that we need here, but these are simply the exogenous coefficients from an AR-657

MAX model also incorporating AR and MA terms. For this particular model, we use only658

a lag 1 h influence term and no decay term to simplify the effects of each input variable.)659

Similarly, we show the exogenous variable coefficients for predicting P from N and V ,660

and Ey from V and Bz, using N , V , and Bz, but from the same hour as P and Ey. (There661

are no paths from V to either ULF or AE because it was not a statistically significant662

direct influence on either.) In this figure, green arrows run to and from AE, gold arrows663

to and from ULF , and blue arrows to and from P and Ey.664

These standardized regression coefficients from this series of regression models are665

known as path coefficients (Wright, 1934). The path coefficients can be multiplied (through666

connecting arrows, or paths), then summed to show the full cumulative effect of each of667

the indirect drivers (V , N , and Bz) on the direct drivers (AE, ULF , P , and Ey) and,668

subsequently, on flux.669

The maximum direct effect of each variable is shown by arrows leading directly to670

flux. Simple correlations between the exogenous, or indirect, variables (N , V , and Bz)671

are shown (in black curved arrows). This decomposition allows the correlation between672

a pair of variables to be broken down into direct effects, indirect effects, and spurious673

correlation due to associations between the exogenous variables. We are interested in the674

direct and indirect effects and will ignore spurious correlations due to the associations675

between N , V and Bz. For example, the direct effect of pressure on flux is represented676

by the arrow from pressure to flux (-0.04 coefficient). This is rather low, but to this we677

can add the indirect effect of pressure: the path from P through AE to flux (coefficients678

0.52 and 0.25). This indirect effect of P via its influence on AE (which subsequently in-679

fluences flux) is the product of the steps in the path: 0.52 × 0.25 = 0.13. The contri-680

bution of several indirect paths can be calculated by summing these products (Table 3).681

In the first column of this table, we show the direct effect of AE, ULF , P , and Ey on682

flux (coefficients on the arrows leading directly to flux of Figure 4). In the second col-683

umn we show the results of the calculations for the indirect effects of each variable through684

AE, in the third column, these indirect effects through ULF , in the fourth, indirect ef-685

fects through P , and in the fifth column, these indirect effects through Ey. (Details of686

example calculations are given in the footnote.) The last column is the sum of the first687

5 columns, showing the total influence of each variable, both through its direct influence688

(if any) and its indirect influence via other parameters.689

The result of these calculations are that we can now see a clearer picture of which690

variables are most influential on flux and through which processes that influence is me-691

diated (given this particular, hypothesized, causal structure). Predictors not postulated692

to directly influence flux, such as V , still show an overall moderate degree of influence693

when paths connecting it indirectly to flux are considered (mainly, in this case, via P ).694

However, N , which has a moderate (if negative) simple correlation with 40 keV flux, has695

less influence than V when all influences are added. N appears to drive several compet-696

ing processes: reducing AE and ULF while simultaneously (through P ) increasing flux.697

Thus, the lower correlation of N with flux is not an indication that it does not influence698

flux, but that it does so through several opposing processes that cancel out each other’s699

effects in an overall correlation.700

Certain parameters, such as ULF , which show a strong simple correlation with flux701

(Figure 1), are not influential. So why does the simple correlation appear so high in com-702

parison? This is due to several factors which we have now accounted for: inflated cor-703

relations due to common cycles and trends (accounted for by the AR and MA terms of704

the ARMAX regression), correlations with confounding variables (now accounted for by705

the use of multivariate regression instead of single correlations), and the possibility that706

ULF over the short term (hourly, in this case) has little influence.707
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40 keV Flux

AE

P Ey

VN Bz

.731.1

-1.0
.01

-.53
-.47

.52
-.22

.25 -.01-.04

-.38 .19

.23

ULF

.02

.88

-.73
-.25

-.44

Figure 4. Postulated direct drivers of 40 keV GOES electron flux (green arrows to and from

AE, gold arrows to and from ULF , blue arrows to and from P and Ey) may be influenced by

solar wind and IMF parameters (V , N , and Bz). Standardized coefficients of the influence of AE,

ULF , P , and Ey on flux (from an the ARMAX model with predictors measured 1 h before flux)

are given. ULF and AE are postulated to be driven by P , Ey, V , N , and Bz (coefficients from

ARMAX models with predictors measured 1 h before). P and Ey, being mathematically depen-

dent on N , V , and Bz, are predicted from ARMAX models with all variables measured at the

same hour. Influences of V , N , and Bz on P and Ey are from the same hour. These paths break

down the overall correlations into components, attributable to the various associations between

variables. Only statistically significant links between variables are retained. As a consequence,

there is no direct link from V to either ULF or AE.
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Table 3. Calculating the sum of direct and indirect influences on 40 keV flux.

Direct via AE via ULF Via P Via Ey Sum
Direct + Indirect Influence

AE 0.25 0.25
ULF 0.02 0.02
P -0.04 0.131 0.018 0.11
Ey -0.01 -0.055 -0.005 -0.070
N -0.12 -0.015 0.122 -0.014
V 0 0 0.137 -0.0007 -0.024
Bz -0.13 -0.0088 0.070 -0.071

1As an example, the indirect path of P influence through AE = (effect of P on AE) ×
(effect of AE on flux) = 0.52 × 0.25 = 0.13, using coefficients from the paths in Figure 4.
2The more complicated paths of N through P are summed: (N on P ) × (P on flux) +
(N on P ) × (P on AE) × (AE on flux) + (N on P ) × (P on ULF ) × (ULF on flux) =
1.1 × (-0.04) + 1.1 × 0.52 × 0.25 + 1.1 × 0.88 × 0.02 = 0.12.

Table 4. Summed direct and indirect influences on 40, 75, and 150 kev flux.

a. AE b. ULF c. P d. Ey e. N f. V g. Bz

40 keV 0.25 0.020 0.11 -0.070 -0.014 -0.024 -0.071
75 keV 0.15 0.005 0.021 -0.052 -0.051 -0.049 -0.029
150 keV -0.001 -0.008 -0.090 -0.023 -0.092 -0.065 0.027

For parameters such as V and N , influence has been diminished by their relega-708

tion to indirect driver status in the path analysis. This is a choice made based on the709

hypothesis that neither is postulated to have the physical ability to directly drive elec-710

tron flux. If there were reason to believe they did, these could be moved up the hierar-711

chy in the path analysis, allowing them to have more influence in that correlational struc-712

ture.713

We can do these calculations for each of the electron energies, giving the summed714

influence of each parameter on flux (Table 4). AE appears only as a direct effect, and715

is thus comparable directly between electron energies, with the strongest effect at 40 keV716

(0.25) but a lower effect above this range (-0.001 - 0.15). The summed influence of P is717

generally larger and positive compared to its weak negative direct effect, particularly at718

40 keV. The summed Ey effect is similar in magnitude to P . The summed effects of V ,719

N , and Bz are all somewhat equal to each other, with somewhat more effect of V at 40720

keV and a higher influence of N at 150 keV. For the most part, these three indirect drivers721

are negative in influence overall.722

3.6 MLT dependence of 40-150 keV electron flux response to AE, ULF ,723

P , and Ey724

Electrons at geostationary orbit show different flux levels at different magnetic lo-725

cal times (MLT) (Boynton et al., 2019). With geostationary satellites, which orbit syn-726

chronously with MLT, it is unclear whether these are spatial or temporal variations, how-727

ever, electron injection has been observed in the hours around local midnight (Thomsen728

et al., 2001; Birn et al., 1997). Using ARMAX models, we investigate not only whether729

flux differs at varying MLT, but also whether the identified drivers show different influ-730

ences (i.e., a different coefficient slope) at each MLT. We do not subset the data into MLT731

bins and analyze them separately, but identify each MLT in the dataset and calculate732
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a different slope coefficient for each. This is done by creating a set of 23 indicator vari-733

ables spanning the MLT hours: each is set to 1 for a different, particular MLT and 0 at734

all other times. The interaction term between each of these indicator variables and each735

predictor variable (obtained by multiplying each indicator variable by each predictor)736

gives the slope of the relationship between flux and predictor at each MLT (Neter et al.,737

1990). By not splitting the dataset by MLT (i.e., by identifying MLT by indicator vari-738

ables instead), we are able to analyse the dataset as a continual ARMA process. We re-739

port these slopes (standardized regression coefficients) for each MLT (Figure 5).740

At 40 and 75 keV, AE is the most influential (positive) parameter, but it is most741

effective over 3-11 MLT (40 keV) and 6-17 MLT (75 keV). Not only is the flux higher742

at these times (Boynton et al., 2019), but the effect of the strongest driver (AE) is also743

at its highest level.744

The other direct drivers (ULF , P , and Ey) are, as demonstrated above, less influ-745

ential, but there are MLT differences in their effects. ULF has somewhat more positive746

effect at 19-0 MLT on the 40 keV electrons. P shows a stronger negative effect over 16-747

4 MLT, with the most effect being seen at 150 keV. Ey, at 40 and 75 keV, shows a pos-748

itive effect over 23-8 MLT, with a negative effect over 9-22 MLT. The Ey switch in in-749

fluence from positive to negative likely accounts for its overall lack of effect in the anal-750

yses above that are not broken down by MLT. Although less dramatic, the switch in ULF751

from positive to slightly negative or near zero also results in an overall lack of influence752

when MLT is not considered, even though ULF does show a modest positive influence753

at some times.754

3.7 Disturbed vs. quiet response755

To produce an ARMAX model, a continuous time series is needed. This means that756

disturbed and quiet periods must be combined in the same analysis. However, it may757

be that the flux response to each predictor varies depending on conditions. A simpler758

multiple regression model could be used to explore the response between quiet and dis-759

turbed periods, however, this can result in spurious correlations if variables are cycling760

together (for example, a diurnal cycle) or show a common trend (Simms et al., 2022).761

A regression model that accounts for these co-occuring cycles and trends can be produced762

by differencing the data: subtracting the previous value from each observation (yt−yt−1).763

This results in regression coefficients that describe the change in flux as predicted by the764

change in the independent variables, rather than in the original units, but tests of sig-765

nificant influence and comparisons of relative influence can still be made.766

To pinpoint those periods when predictors may have differing influence on electron767

flux due to a change in geomagnetic conditions, we compare disturbed vs. quiet condi-768

tions by assembling a subset of ”disturbed” hours (a day before and a week following769

each Dst dip to -100 nT) and a ”quiet” set (> 2 weeks after a Dst dip below -30 nT).770

Within the generalized disturbance periods, we also create a subset (”recovery”) with771

the usually short period of the Dst drop, or storm main phase, removed. The period of772

time when the Dst is dropping is both short and of less interest to the question of what773

drives electron flux changes as most of the observable change in this period is due to the774

compression of the radiation belts below the altitude of the satellite. Following the storm775

main phase, Dst rises slowly to -30 nT and higher, the recovery and after recovery pe-776

riods when electron fluxes increase. The rise in electron flux can take up to a week to777

occur following the main phase, particularly after the strong storms we use in this data778

subset (Simms et al., 2014). We first perform a multiple regression on the differenced779

data with AE, ULF , P , and Ey as predictors in order to compare their relative effects780

via the standardized regression coefficients (Figure 6). We then compare this to the same781

analyses performed on undifferenced data to show the effect of removing spurious cor-782

relations that are the result of common cycles and trends.783
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Figure 5. Varying effects of AE, ULF , P , and Ey over magnetic local time. Each variable

is entered into an ARMAX regression model as a predictor at 1 h. a. 40 keV, b. 75 keV, c. 150

keV.
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With differenced data (Figure 6.1), the AE effect is consistent over these three pe-784

riods (strongest effect on the 40 keV flux, least effect on 150 keV flux). No matter the785

geomagnetic conditions, substorms (as measured by AE) show a statistically significant786

positive influence on flux, with the most effect at the lower electron energies. P does not787

contribute significantly at most periods or energy levels (the exception being at 150 keV788

during disturbed periods). Ey shows a negative effect in the quiet periods but a posi-789

tive effect in recovery. ULF has little or a negative influence, even when periods are se-790

lected that would be expected to show a strong effect such as recovery following storms.791

We present an analysis of undifferenced data in this figure (6.2) to show the dan-792

ger of correlating variables with common diurnal cycles. In the undifferenced data, we793

do find the ”expected” strong ULF effect (Figure 6.2; note the larger scale compared794

to the differenced data), but this is only a demonstration of the spurious nature of this795

high correlation. High correlations between ULF wave activity and electron flux in hourly796

data are likely only describing a common diurnal cycle and say little about physical driv-797

ing mechanisms (Simms et al., 2022). Note that it is not so much that the correlation798

is “wrong” but that the differencing or ARMA modelling removes the portion of the cor-799

relation that is irrelevant to the questions we are interested in. ULF waves may be a more800

long term driver of flux, with positive influences only appearing after 24 h (Simms et al.,801

2021). The other predictors also show stronger effects when not differenced (Figure 6.2),802

likely also due to common diurnal cycles in the data.803

4 Discussion and Conclusions804

A number of variables show high simple (single variable) correlations with keV elec-805

tron flux, but by using an ARMAX analysis, which removes the confounding effect of806

diurnal cyclicity and allows assessment of each parameter independently, we show more807

definitively that substorms (measured by AE) are the most influential process at 40 and808

75 keV. This accords with previous work that found substorms to be an important cor-809

relate with both keV (Ganushkina et al., 2021) and MeV electrons (Simms et al., 2018a).810

There are major differences between the single variable correlations and the full811

(all variable) ARMAX results. Certain variables lose most of their apparent influence812

when all possible drivers are considered at once. Some parameters, for example, AE, Kp813

and SymH, may show a decrease in correlation because they all essentially describe the814

same geomagnetic perturbations. Although all three geomagnetic indices (Kp, SymH,815

and AE) show high simple (single variable) correlations with electron flux, the influences816

of Kp and SymH disappear in a full regression model where other variables are included.817

It is likely that these two indices mostly measure generalized disturbance in the mag-818

netosphere which is better described using solar wind and IMF variables. However, the819

AE index, as it is better positioned to measure substorms and subsequent electron in-820

jections, is more representative of the physical processes that drive flux.821

Other variables may appear to lose influence because most of their correlation was822

due to sharing a common diurnal cycle with the satellite-observed electron flux data. If823

certain of these variables were measured by the same satellite, this would be an obvi-824

ous source of error. However, even the ULF ground index that we use shows its own di-825

urnal cycle and this will inflate the correlation with flux (Simms et al., 2022). Adding826

ARMA terms to partition out the variance due to common cycling leaves us with the827

portion of the variance that actually describes the relationship between predictor and828

flux.829

Other variables are simply highly correlated with each other (e.g., N and V ), while830

others are derived from these same variables (P and Ey). This means that single vari-831

able analyses, with no correction for cycles and trends, are highly unreliable for pinpoint-832

ing the actual correlates of electron flux, and also that variable sets should be chosen to833
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Figure 6. Standardized regression coefficients (AE, ULF , P , and Ey) from multiple regression

(not ARMAX) models. 1. All data differenced by subtracting the previous hour’s observation:

during disturbed periods (a,d,g), quiet periods (b,e,h), and storm recovery periods (c,f,i). 2. The

same for undifferenced data. Note the difference in scale between 1. and 2. Significant effects

(p-value < 0.05) are shown in blue.
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minimize these intercorrelations and to maximize the variables of possible direct influ-834

ence.835

In the overall ARMAX models, there is a somewhat lesser effect of Ey (calculated836

as -VSWBz) in contrast to previous single-variable studies (Denton et al., 2016) (but see837

below, as this may be due to varying influence of this factor over the 24 h period: pos-838

itive over 23-8 MLT, negative effect over 9-22 MLT). P is more influential at 150 keV,839

acting to decrease electron flux. The contrast to previous findings, where pressure showed840

a positive association with flux (Shi et al., 2009), is due to our present study incorpo-841

rating more predictors at one time. ULF shows little influence on keV electrons in these842

hourly, full variable models, despite its influence on MeV electrons (Simms et al., 2021,843

2018a, 2018b) and its strong positive correlation when it is the only predictor and the844

confounding effects of the diurnal cycle are not removed (Figure 1). This is not to say845

that ULF waves have no influence, but rather that the single variable correlation mis-846

characterizes these wave effects as much more dominant than they really are.847

However, it should be noted that all correlational analysis of this system, whether848

single variable, multivariable, or correcting for cycles, is observational in nature, not ex-849

perimental. As treatments cannot be randomly assigned (for example, ULF waves can-850

not be increased or decreased to explore their effect), the correlations found can only be851

evidence of an association, not definitive proof of driving. However, despite this, we con-852

tinue to do the best we can by correcting the issues that we are able to address.853

As electron flux is log-transformed in our analyses, all the relationships we find here854

are nonlinear even though they are tested with the linear model method of ARMAX re-855

gression. As Bz and Ey are not log-transformed, they show an exponential relationship856

with electron flux. All other predictors, which are log-transformed, are described by a857

power function relationship. The use of transformations such as the log-transform or poly-858

nomial terms (Balikhin et al., 2011) are both able to create intrinsically linear regres-859

sion models from many, but not all, data distributions. However, while both serve to lin-860

earize the relationship, the log-transform is thought to also help the data to meet other861

conditions of the linear model framework such as equality and normality of the resid-862

ual error (Neter et al., 1990).863

While there are sizable simple correlations of some parameters with electron flux,864

single variable correlations can misrepresent the actual relationships. If neither common865

cycles and trends, nor confounding variables are accounted for, simple correlational anal-866

ysis may show large associations between variables that have no physical relationship.867

This has been demonstrated before, where removal of common cycles results in either868

a complete elimination of a correlation between some space weather parameters (e.g.,869

the commonly observed ULF wave correlation with solar wind velocity or with electron870

flux (Simms et al., 2022)) or a reduction in correlation (Simms et al., 2021)). An AR-871

MAX model, used in this study, can account for common cycles in time series data (and872

trends, if necessary) by the use of AR and MA terms (and differencing, if needed). En-873

tering several predictor variables into the same analysis then allows each variable’s in-874

fluence to be calculated while the others are held constant.875

4.1 The Reduced Model: AE, P , Ey, and ULF as predictors876

However, adding all possible explanatory variables to a model may not correctly877

identify the most important physical parameters but only those that correlate best, for878

whatever reason. While a reasonable predictive model may be achieved by using all avail-879

able variables in a regression or neural network, leaving an algorithm to choose the model880

with the highest validation correlation, this is unlikely to identify actual drivers in the881

system. This approach, instead, can lead to several problems: 1. ”opposing” variables882

may appear extremely influential as they compete to explain the same small bit of vari-883

ation, 2. theoretical considerations of physical influence tend to be ignored in favor of884
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factors that happen to correlate well, 3. coefficient estimates may be biased if extrane-885

ous variables are included or if important variables are excluded (Smith, 2018; Whitting-886

ham et al., 2006). In the worst case, a model may report that factors that cannot phys-887

ically influence the dependent variable are the only factors that have any effect at all.888

For this reason, to determine whether a factor has an actual driving influence, care must889

be taken to choose only those for which a likely physical effect can be postulated and890

not just all that are available. This is why we have chosen to do further analyses on a891

set of presumed direct drivers (substorms, ULF waves, pressure, and electric field), as892

well as analyses that show the relative correlations of all possible variables.893

Using the ARMAX method on such a reduced model, we find that the influence894

of substorms (AE) on hourly electron flux remains substantial over the 40-75 keV range895

at geostationary orbit (approximately L6) although of less importance at 150 keV. This896

influence is strongest after midnight into the mid-morning hours MLT, coinciding with897

the post midnight to dawn injection of electrons from the magnetotail (Birn et al., 1997;898

Thomsen et al., 2001). The AE influence is slightly higher during storm recovery peri-899

ods than during either disturbed or quiet periods. Substorms, therefore, are the dom-900

inant driver within our postulated ”direct driver” set (substorms, ULF waves, solar wind901

pressure, and electric field) and presumably show the influx of electrons injected from902

the magnetotail.903

The hourly Ey parameter (electric field of the solar wind) shows little influence when904

MLT is ignored. However, introducing MLT into the model results in a positive effect905

of Ey over 20-8 MLT, corresponding with the observation that IMFBs influence is strongest906

during this period as well (Dubyagin et al., 2016). There is, however, a mostly negative907

effect of Ey at other times of day. These opposing influences cancel each other out in a908

model that does not account for variations over MLT. The Ey influence also varies by909

geomagnetic conditions, with no influence during disturbed periods, a negative influence910

during quiet periods, and a positive influence during recovery after storms. This is likely911

a reflection of the magnetospheric electric convective field (which reflects the Ey) break-912

ing up during disturbed periods and becoming enhanced during storm recovery.913

Overall, P shows a moderately negative direct effect on flux. When the analysis914

accounts for MLT, this negative influence is strongest over 20-12 MLT.915

ULF waves, thought to accelerate electrons to higher energies, show lower imme-916

diate (hourly) influence than the AE. A strong correlation of ULF waves with high en-917

ergy electron flux (> 1.5 MeV) found in previous studies may be a consequence of cor-918

relating two variables with a common diurnal cycle, or a reflection of only long term (at919

least day long) physical driving (with no short term influence), or both. We find here920

that the most significant short term driving of 40-75 keV electrons by ULF appears to921

be negative and only during quiet or recovery periods, while there is little short term ef-922

fect at 150 keV. The negative short term effect in quiet or recovery periods accords with923

previous work on higher energy electrons that shows a negative influence of the ULF in-924

dex on the first day, with more positive influences on the next day (Simms et al., 2021),925

but is not characteristic of the analyses using all hours. While it is possible that the ULF926

index does not effectively capture the immediate, localized, and frequency specific ULF927

wave power that would be most responsible for the resonant interaction driving electrons928

to these energies (e.g., Claudepierre et al. (2013)), leading to a lower apparent effect, we929

note that the ULF index influence is still statistically significant at all 3 energies in anal-930

yses using all hours (see Table 2). We have thus captured the importance of ULF waves931

as a driver, even if they appear to have less influence than AE once the diurnal cycle is932

removed.933

While all 4 of these factors in the reduced model (AE, P , Ey and ULF ) are sta-934

tistically significant, the AE has up to 10 times greater influence on the 40-75 keV flux.935

This would seem to be the result of electron injection in the lower energy ranges being936
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the major driving factor of increased electron flux. At 150 keV, P and ULF influences937

are somewhat stronger than at the lower energies, with their effects being similar to that938

of AE. Therefore, electron injection is no longer the most important factor at 150 keV.939

Flux, at the higher energy, is more dependent on acceleration due to ULF waves and losses940

due to magnetopause shadowing induced by pressure. As noted above, the Ey influence941

appears low because it switches in sign from a positive influence post-midnight to a neg-942

ative influence post-noon.943

The amount of variation explained by these reduced (4 factor) models (R2 = 67944

- 76 %) is high, but much of this is due to the AR and MA terms that describe the cy-945

cling behavior of flux. In other words, most of what is being explained is the background946

rise and fall of flux at the satellite as it orbits the Earth. The explanatory value due to947

AE and the other possible drivers pales in comparison, but this is not as discouraging948

as it may at first seem. Most of the hourly fluctuation in flux is the rather uninterest-949

ing observation that flux varies widely over MLT as the satellite passes through various950

field lines. We are more interested in the response of electron flux when this behavior951

is eliminated. Once this is removed, we have a clearer picture of which variables are most952

influential. The relevant comparison between correlations, then, is not to the single vari-953

able, uncorrected correlations of Figure 1 but between the coefficients of the tested pos-954

sible drivers of Table 2, and, as previously stated, all of these are statistically significant,955

although the AE is the strongest influence at 40-75 keV. (Note that the coefficients of956

the ARMAX models are not correlations. They cannot be compared directly to the sin-957

gle variable correlations of Figure 1.)958

The response of electron flux to our identified possible direct drivers (AE, ULF ,959

P , and Ey) varies only somewhat between disturbed, quiet, and storm recovery periods.960

AE is a stronger influence during recovery, for example, than during quiet or disturbed961

periods.962

At 150 keV, there is the least response of hourly averaged flux to the presumed phys-963

ical drivers. This may represent the longer time frame of action required from these pro-964

cesses to bring electrons to higher energies. Even the cross correlations (Figure 1) show965

higher effects from 24-48 hours previous, with ULF and AE showing their least influ-966

ence in the 12 h preceding a flux measurement and the Ey influence peaking at 12 h.967

4.2 Indirect Drivers (N , V , and Bz)968

In addition to these variables that we label direct, physical drivers of flux, we con-969

sider several other parameters as possible indirect drivers (solar wind N and V and IMF970

Bz) which show fairly equivalent influences on flux via their effects on the direct drivers.971

This supports previous findings concerning these three solar wind and IMF influences972

(Sillanpää et al., 2017; Li et al., 2005; Kellerman & Shprits, 2012; Ganushkina et al., 2019;973

Hartley et al., 2014). Stepanov et al. (2021) when controlling for other variables, also974

found solar wind velocity and a magnetospheric convection variable (the dayside merg-975

ing electric field, similar to the Ey we use) to be the strongest correlates of keV flux near976

the plasmasheet midplane. (A similar multiplicative variable, the IMF factor (Balikhin977

et al., 2010; Boynton et al., 2011), and solar wind velocity appear to control hourly av-978

eraged 40 keV electrons. However, these last studies did not include a test of AE influ-979

ence for comparison.)980

We note again that we are not trying to predict flux. We are trying to understand981

what drives it. We do not test N , V , and Bz for their direct effect on flux in the reduced982

model for the simple reason that we have not hypothesized a direct physical connection983

between these variables and flux. There is little theory that would suggest this. There984

is theoretical work suggesting direct influences of pressure (the combination of N and985

V 2), AE (through substorm injection of electrons), and ULF waves (either accelerating986

electrons to these energies or causing electron loss). Therefore, we test those particular987
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hypotheses with an ARMAX regression model (the upper part of Figure 4 and the de-988

scription in Section 4.1). Although V or N may show a strong single variable correla-989

tion with electron flux, this is either via their role in pressure, or via their influence on990

ULF waves. These second hypotheses about the indirect V or N influence on flux are991

tested in the lower part of Figure 4. By only including hypothesized direct drivers in the992

top part of Figure 4, we are better able to test these particular hypotheses. If we include993

N and V , as in the full regression model, then we are no longer testing hypotheses about994

direct drivers and, in fact, are making those particular hypothesis tests impossible be-995

cause of the interference between these variables.996

We are able to compare effects of the other correlates by summing their indirect997

influence through the presumed physical drivers. We are able to calculate that at 40 keV,998

P shows a summed influence (both direct and indirect) nearly half that of the most in-999

fluential parameter, AE, with Ey having about a fourth the influence of AE. Of the pos-1000

tulated indirect drivers, N , Bz, and V show nearly equal effects. The N and V influences1001

are negative, while the Bz influence switches sign above 75 keV.1002

4.3 The Problem of Prediction vs. Driver Identification1003

If the purpose of a model is accurate prediction, then a simple validation correla-1004

tion of observation with prediction on a withheld test set is the statistic of interest. In1005

that case, predictor variables can be chosen simply on the basis of availability and abil-1006

ity to correlate well with the response. Alternatively, the ARMAX-regression models we1007

present here address the question of what parameters drive flux changes. We use hypoth-1008

esis testing within the ARMAX-regression framework to determine whether certain pa-1009

rameters show an association with electron flux. As our questions concern the science1010

of the system (i.e., which variables are drivers), we consider, first, which variables most1011

justifiably have a physical association with flux and which are only highly correlated be-1012

cause they are proxies. Of particular concern is the removal of the diurnal cycle due to1013

satellite orbit. This factor alone may increase apparent correlations tremendously with-1014

out having any bearing on the physical driving relationships.1015

A model such as this, developed for determining the actual relationships, statis-1016

tically tests the slope of association with flux for each identified variable, with less con-1017

cern attached to either a validation correlation or the overall R2 (proportion of varia-1018

tion explained). That these more focused hypothesis tests appear to explain less than1019

the unspecific correlations only reflects the removal of spurious correlations that lead to1020

an incorrect understanding of the system.1021
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