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Abstract 

Periodontitis is a disease characterized by tooth-associated microbial biofilms that drive chronic 

inflammation and destruction of periodontal-supporting tissues. In some individuals, disease 

progression can lead to tooth loss. A similar condition can occur around dental implants in the 

form of peri-implantitis. The immune response to bacterial challenges is not only influenced by 

genetic factors but also by environmental factors. Epigenetics involves the study of gene 

function independent of changes to the DNA sequence and its associated proteins, and 

represents a critical link between genetic and environmental factors. Epigenetic modifications 

have been shown to contribute to the progression of several diseases, including chronic 

inflammatory diseases like periodontitis and peri-implantitis. This review aims to present the 

latest findings on epigenetic influences on periodontitis and to discuss potential mechanisms 

that may influence peri-implantitis, given the paucity of information currently available. 
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Introduction 

Periodontitis is a widespread disease recently shown to be the sixth-most prevalent condition 

worldwide; its severe forms affect about 10% of the adult population.1–3 The disease is 

characterized by chronic inflammation of the gingival tissues in response to bacterial 

colonization of the tooth surface. In susceptible individuals, this immune response results in 

tissue destruction and the loss of supporting bone.4 Similarly, chronic inflammation can affect 

dental implants in the form of peri-implantitis, i.e. inflammation in peri-implant tissues with 

loss of supporting bone, which can ultimately lead to implant loss.5,6 The prevalence of peri-

implantitis varies across studies but, according to a recent review, ranged from 13% to 47% 

among individuals with implants.6 As with periodontitis, peri-implantitis is considered to be 

induced by microbial biofilms at the implant surface.7 

 

Several factors — environmental, genetic, and epigenetic — contribute to an individua l’s 

susceptibility to periodontal disease.8 Epigenetics is a critical link between genetic and 

environmental factors. Epigenetic alterations may contribute to individual differences in tissue-

specific gene expression and induce or enhance inflammation and susceptibility to disease.9  

However, less is known about how these factors influence peri-implantitis. There is a clinica l 

need for methods to regenerate alveolar bone and suppress inflammation in order to improve 

the long-term prognosis of teeth and implants affected by periodontitis and peri-implantit is, 

respectively.10 The fact that epigenetic mechanisms are reversible makes them attractive targets 

for new treatment models within tissue regeneration and inflammatory disease. 

 

Inflammatory lesions of periodontitis and peri-implantitis 

Numerous studies have analyzed how the inflammatory lesion of peri-implantitis differs from 

that of periodontitis.6,11 Studies using both human biopsy material and experimental models 
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have concluded that the peri-implantitis lesion is larger than the periodontal lesion, and that 

their cellular and cytokine compositions differ in important ways (Figure 1). 

 

Although plasma cells and lymphocytes are the dominant cells in both lesions, neutrophils and 

macrophages occur in greater numbers in peri-implantitis than in periodontitis. Experimenta l 

studies have also shown a greater number of osteoclasts in the peri-implantitis lesion.12 In line 

with these data, a study using biopsies from 40 patients with periodontitis and 40 with peri-

implantitis showed that not only were the inflammatory lesions around implants twice as large 

as those in periodontitis, but the peri-implant lesion also had greater numbers of plasma cells, 

macrophages, and neutrophils.5 By contrast, the density of B cells and the density of vessels 

were greater in periodontitis. An experimental study in dogs from the same group reported a 

larger lesion in peri-implantitis.12 Moreover, the levels of myeloperoxidase (MPO), a marker 

for neutrophils, and tartrate-resistant acid phosphatase (TRAP), a marker for osteoclasts, were 

higher in peri-implantitis.12 Similarly, a rat lipopolysaccharide (LPS) experimental model 

indicated the presence of osteoclasts, bone resorption, and extensive inflammation in peri-

implantitis and suggested that the destruction of peri-implant tissue occurs faster than that of 

periodontitis tissue.13 Shedding light on these findings, a review of experimental ligature 

models in animals illustrated that the inflammatory infiltrate around teeth was separated from 

the alveolar bone by a connective tissue zone, whereas the inflammatory infiltrate around 

implants extended all the way to the alveolar crest.11 

 

The different pathologies of these lesions are reflected in their signaling: Gingival crevicula r 

fluid samples from healthy, periodontitis, or peri-implantitis sites each showed distinct cytokine 

profiles.14 In an experimental murine model with Porphyromonas gingivalis infection, implants 

experienced greater bone loss than teeth.15 Compared to implants without infection, FOXP3, a 
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negative regulator of the immune response, decreased in the setting of infection, while tumor 

necrosis factor alpha (TNFα), a cytokine for inflammation, increased. Meanwhile, teeth 

experienced no change in FOXP3 or TNFα in the setting of infection.15 Interestingly, the 

presence of an implant even without infection altered the expression of cytokines compared to 

healthy teeth; the implant increased the expression of interleukin (IL)-10 and FOXP3; increased 

the RANK/osteoprotegerin (OPG) ratio, an indicator of apoptosis; and decreased the expression 

of TNFα.15 

 

Despite similar bacterial etiologies, there are also histopathological differences between peri-

implantitis and periodontitis lesions. The spread of the lesion to the crestal bone in peri-

implantitis and the lack of an epithelial lining between the biofilm and the apical portion of the 

infiltrate can be explained by the absence of supra-crestal fibers and a periodontal ligament in 

peri-implant tissues. In addition, a recent review summarized the distinct microbiome 

compositions of the two diseases.7 It was shown that surface material, roughness, and energy 

can influence the colonization of bacteria. Since dental implants differ in those aspects from 

teeth, a specific microbiome may be associated with peri-implantitis.7,16 

 

Recently, two reviews reported on the differences between periodontitis and peri-implantit is 

with respect to epigenetic markers.17,18 We will explore them in subsequent sections. 

 

Epigenetics: General principles  

The DNA double helix is packaged in the cell nucleus in the form of chromatin. The build ing 

block of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around 

a histone protein complex (Figure 2). The structural arrangement of chromatin affects gene 

expression: chromatin can be loosely packed, allowing the transcriptional machinery to access 
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and express it, or densely packed, silencing it.19 The term epigenetics refers to chemica l 

alterations to gene expression independent of changes to the DNA sequence, that is, DNA 

methylation and histone modifications.20 

 

Histones can be acetylated or methylated at N-terminal tails that protrude from the nucleosome 

19. These functional groups obstruct the contact between the DNA and histones, loosening their 

packaging and activating transcription.19 Acetylation is regulated by histone acetyltransferases 

(HATs) that add acetyl groups and by histone deacetylases (HDACs) that remove them. The 

balance between histone acetylation and deacetylation at the promoter region of the chromatin 

is key to the regulation of gene expression and the maintenance of a transcriptionally competent 

chromatin state.21,22 The HATs are divided into five distinct families by their sequence 

divergence at the HAT domain (HAT1, Gcn5/PCAF, MYST, CBP/p300, and Rtt109). Among 

all HATs, p300 is an important histone acetyltransferase that mediates transcriptional activation 

by participating in the CREB-binding protein/p300 transcriptional co-activation complex.23 The 

p300-CBP coactivator family, in combination with other proteins, participates in proliferation, 

differentiation, apoptosis, and transcription through chromatin acetylation.24 Similar to HATS, 

HDACs are also divided into 4 classes and take part in multi-protein complexes that are 

expressed in many bodily tissues.25  

 

DNA itself can be modified by DNA methyltransferases (DNMTs), which add methyl groups 

to cytosine bases (5mC) at specific sites in the DNA sequence (i.e. CpG sites, or sites with 

adjacent cytosine and guanine bases).20,26 When these methyl groups reside at promoters, they 

can occlude the binding of transcriptional machinery and deactivate transcription. 5mC can be 

further oxidized into 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) 
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family of enzymes.27 This oxidation has been suggested as the mechanism for de-methylat ion 

of DNA so that the cell can re-activate genes (Figure 2).28  

 

Importantly, epigenetic mechanisms are reversible and change throughout our lifetimes in 

response to environmental factors, including the microbiota, smoking, and dietary compounds. 

It was recently found that biomaterials, material energy, and material topography also influence 

epigenetic patterns.9,29,30 Moreover, infection and the host’s immune response can induce 

changes in the epigenome that, in turn, enhance susceptibility to disease. These epigenet ic 

changes are cell- and tissue-specific, which is relevant for chronic inflammatory diseases like 

periodontitis and peri-implantitis. These diseases have target tissues in which the inflammatio n 

is persistent and tissue destruction occurs — not all teeth or implants are affected. As such, 

treatments can be targeted as well. 

 

Epigenetics and periodontitis 

Even though epigenetics is a new area of research in periodontology, several studies over the 

last decade have characterized changes in the epigenetic pattern for periodontal diseases.9,31–35 

 

Oral pathogens and bacterial products, such as LPS, have been shown to influence periodontit is 

by inducing epigenetic changes in gene expression in cells and tissue. For example, P. 

gingivalis and Fusobacterium nucleatum can induce acetylation of histone 3 while decreasing 

the expression of DNMT1.36 And bacterial activation of pathogen recognition receptors (PRRs) 

and TLRs, both typically activated in the immune response, can induce histone modifications 

in oral epithelial cells.36 These findings are in line with previous research showing that gingiva l 

epithelial cells cultured with P. gingivalis saw an increase in DNA methylation of the TLR2 

promoter.37 A study by Diomede and co-workers showed that, similar to reports by Martins et 
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al,36 P. gingivalis LPS reduced the expression of DNMT1 in human periodontal ligament (PDL) 

cells while upregulating histone acetyltransferase p300 and NF-κB, a complex typically 

activated in response to cellular stress and foreign antigens.23 

 

Dysregulation of TLR expression and consequent changes in the host response against 

periodontal pathogens can occur, increasing not only inflammation but also a patient’s 

susceptibility to periodontitis.38 The DNA methylation patterns of the TLR2 and TLR4 

promoters have previously been investigated in gingival biopsies, cells, and animal models.38–

41 The TLR4 promoter was reported to be unmethylated in healthy and periodontitis patients, 

while that of TLR2 included both methylated and unmethylated regions for both groups.40  

However, a higher degree of methylation of TLR2 was found in samples from patients with 

periodontitis relative to controls, as was a correlation between the level of TLR2 methylat io n 

and the number of inflammatory cells within the adjacent connective tissue.41 Using an in vitro 

periodontitis and oral gavage model in mice, the presence of P. gingivalis was shown to induce 

methylation of the TLR2 promoter in human gingival epithelial cells.38 The DNA methylat ion 

pattern of other genes in the TLR signaling pathway (FADD, MAP3K7, MYD88, IL6R, PPARA, 

IRAK, and RIPK2) also differed between patients with localized, aggressive periodontitis and 

healthy controls.42 The degree of methylation even varied by the severity of disease; patients 

with moderate disease showed hypermethylation of these genes relative to controls, while 

patients with severe disease displayed hypomethylation.42 

 

The oral pathogen Treponema denticola has also been shown to alter epigenetic patterns by 

inducing hypomethylation of the MMP2 promoter, causing chronic activation of pro-MMP2 

expression in PDL cells.43 Matrix metalloproteases (MMPs) are key factors in matrix 

degradation, bone resorption, wound healing, cell proliferation, inflammation, and 
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immunity.43,44 As a result, hypomethylation by T. denticola may influence the activation of 

MMPs and augment the destruction of supporting tissues that occurs in periodontitis. 

 

The epigenetic patterns of several inflammatory cytokines and markers have also been 

investigated in relation to periodontitis,9 with variations in DNA methylation between healthy 

and periodontitis patients being especially large for genes related to immune response.45 In one 

study, the methylation levels of CpG sites in 22 inflammatory genes were analyzed in gingiva l 

tissue samples from patients with aggressive periodontitis versus controls. A decrease in 

methylation was found in the promoter regions for interleukin-17C (IL-17C) and chemokine 

ligand-25 (CCL25) in periodontitis patients, resulting in increased expression.46 These 

cytokines play important roles in the immune response to bacteria. The different levels of DNA 

methylation reported by Schulz et al were similar to those by Barros and Offenbacher.31,46  

Given the suggested link between IL-17 expression and bone resorption, changes in the 

methylation pattern and expression of these genes might contribute to the inflammato ry 

response and the loss of attachment seen in periodontitis.46  

 

Meanwhile, with respect to the pro-inflammatory cytokine IL-6, no difference in methylat ion 

of its promoter was found between periodontitis patients and healthy controls.47 It had been 

previously reported that the IL-6 promoter was partially methylated in gingival tissue samples 

from both periodontitis and healthy individuals but that the expression of IL-6 was higher in 

periodontitis patients.48 Ishida and coworkers also reported an increase in IL-6 expression, yet 

this increase was associated with hypomethylation of only one CpG site in the IL-6 promoter.49  

Similarly, for the inflammatory cytokine TNFα, an analysis of 12 CpG sites in the promoter of 

TNFα in patients with chronic periodontitis and healthy controls revealed differences in DNA 
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methylation only at one CpG site,50 although a previous study reported two hypermethyla ted 

sites in the TNFα promoter in chronic periodontitis.51 

 

Comparison of the DNA methylation patterns of two inflammatory regulators, suppressor of 

cytokine signaling 1 (SOCS1) and the long interspersed element-1 (LINE-1), showed a higher 

degree of methylation in oral epithelial cells of patients with aggressive periodontitis, relative 

to healthy subjects.52 Intragenic CpG islands in Socs1 were hypermethylated in periodontal 

specimens compared to healthy tissue, yet there was no difference in gene expression.5 3  

Interestingly, the results by Planello et al suggested that the increase in DNA methylation of 

Socs1 in periodontitis was not due to the presence of inflammatory cells.53 Using tissue samples 

from healthy subjects and periodontitis patients that, at the time of the study, did not show signs 

of inflammation in the gingival tissue, the levels of methylation for Socs1, Socs3, and LINE-1 

were similar regardless of any previous periodontal inflammation.54 Similarly, a higher level of 

DNA methylation in the COX-2 promoter has been reported for diseased sites compared to 

healthy sites in patients with periodontitis.55 Interestingly, periodontal therapy restored the 

DNA methylation pattern of COX-2 to a level close to that of healthy patients. In contrast, no 

changes occurred in the DNA methylation level of TNFα, IFNγ, or LINE-1.55 These 

observations suggest that the treatment of periodontitis and resolution of inflammation may 

restore some but not all epigenetic modifications to the levels of healthy tissue. Finally, Cho 

and co-workers also reported on the methylation pattern of inflammatory genes in periodontit is 

and healthy patients, but the differences were not significant.56 

 

Despite many reports on the epigenetic alterations of genes associated with immune response 

and bone formation, few studies have focused on the expression of epigenetic markers, 

themselves, in periodontitis. Martins and coworkers reported a down-regulation of DNMT1 and 
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up-regulation of acetylated histone 3 in epithelial cells close to the inflammatory lesion in a 

periodontitis model in mice.36 In contrast, a significant up-regulation of DNMT1 and TET1 

mRNA was found in tissue samples from periodontitis patients compared to those from healthy 

controls.45 However, it is important to remember that results using tissues reflect the DNA 

methylation level of genes in several different cell types. The proportion of TET2-positive cells 

was even greater in periodontitis lesions than in gingivitis lesions.57 The increase in TET 

enzymes is of particular interest since they convert 5mC to 5hmC and promote demethylatio n, 

which, in turn, re-activates genes and increases expression.27,45 The fact that TET2 rises in 

periodontitis relative to gingivitis suggests an association between disease severity and the 

epigenetic regulation of inflammatory genes.57 Interestingly, not only did the methylat ion 

patterns differ between patients with chronic periodontitis and healthy controls, but this 

hypermethylation pattern also was found to be located in transcriptional enhancer regions 

preventing enhancer activity and gene expression.57 The DNA methylation pattern found in 

gingival tissue from periodontitis patients resembled that found in oral squamous cell 

carcinoma tissue, suggesting that chronically inflamed tissues have a pre-neoplastic epigenome 

that may play a role in tumor development.53 Recently, a role for TET enzymes in the regulat ion 

of macrophages in periodontal disease has also been suggested.58,59 

 

JMJD3 is a demethylase that binds genes and demethylates them at H3K27, thereby increasing 

their transcription. Stimulation of macrophages by LPS induces JMJD3, which then influences 

the polarization of macrophages into either M1 or M2. The polarization of macrophages plays 

an important role in determining the outcome of an inflammatory response.60,61 P. gingivalis 

LPS treatment caused a decrease in expression of JMJD3, DNMT1, and DNMT3b in 

keratinocytes but no difference in gingival fibroblasts.60 This difference may be due to the 

expression of TLRs on epithelial cells but not on keratinocytes. In the same study, P. gingivalis 
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LPS also triggered the TLR2 and 4 signaling pathways, inducing NFkB and downregulat ing 

JMJD3.60 An analysis of the gene expression of JMJD3, DNMT1, and DNMT3b in tissue 

samples showed no differences between periodontitis patients and healthy controls.60 In a 

periodontitis mouse model, adiponectin (APN), a factor secreted by adipose tissue, was found 

to influence the JMJD3-IRF4 signaling pathway, which is needed for the polarization of 

macrophages towards M2; the result was a modified inflammatory response, enhanced bone 

repair via JMJD3, and reduced periodontal bone loss.61 

 

A recent study showed that the immune response to bacteria may be influenced by stressful 

events in early life.62 As demonstrated in an experimental periodontitis LPS and ligature model 

in rats, such events increased the susceptibility to chronic inflammation later in life. Animals 

that had been separated daily from their mothers as pups eventually had greater alveolar bone 

loss and lower levels of TGF-β. These animals also had a higher expression of glucocortico id 

receptor (Gr), a marker for stress reactivity, in the hippocampus. In contrast, rats that had been 

handled daily or undisturbed as pups had a higher degree of DNA methylation at specific CpG 

sites in the Gr promoter, resulting in a lower level of Gr expression.62 These results may shed 

light on the socioeconomic disparities of periodontal disease, as minority and low-income 

individuals suffer greater social stressors and higher disease rates.2 

 

Taken together, most studies on the influence of epigenetics on periodontitis have compared 

diseased sites with healthy sites. Thus, it is not clear if the epigenetic changes are specific to 

periodontitis or if they are features of gingival inflammation more generally. Studies evaluat ing 

differences between periodontitis and longstanding gingivitis lesions are needed. 
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Epigenetics and peri-implantitis 

To the knowledge of the authors of this review, no characterization of the epigenetic pattern of 

the peri-implantitis lesion has yet been made. A recent review on epigenetics in implant therapy 

found only 8 articles on the role of miRNAs in implant dentistry and no reports on DNA 

methylation or histone modifications in response to implants.63 Interestingly, it was recently 

reported that the global DNA methylation level was higher in gingival tissues than in bone, 

regardless of whether the bone was from periodontally healthy patients or from around failed 

implants due to peri-implantitis.64 The authors suggested that these findings could reflect a 

different epigenetic response between various tissues in the same microenvironment. 

 

Epigenetics and titanium particles 

In contrast with epigenetic influences on peri-implantitis, there has been a great focus on 

titanium particles found in the tissue surrounding implants with peri-implantitis and their 

influence on the disease.65,66 In gingival tissue where P. gingivalis was present, titanium ions 

from implants were shown to increase the expression of CCL2, an inflammatory cytokine, and 

to elevate the ratio of RANKL to OPG.67 In addition, titanium ions elevated TLR4 expression, 

which may increase the host response to microorganisms. Titanium concentrations have also 

been associated with global methylation levels independent of peri-implantitis, suggesting that 

titanium particles may affect the level of DNA methylation.68 As such, the presence of titanium 

in tissue samples taken near titanium implants, as well as that of titanium ions that can form 

particles, can induce a pro-inflammatory response.69 

 

There are also several studies on the influence of titanium dioxide (TiO2) particles on epigenet ic 

mechanisms.30 The most prominent connection between titanium and epigenetic modificat ion 
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has been the DNA damage pathway. When the double-stranded helix breaks, histone H2A.X is 

phosphorylated (becoming γH2AX) and is recruited to the damaged site; as such, γH2AX is an 

early marker for DNA damage.70 The efficacy of γH2AX’s response to DNA damage is 

epigenetically controlled by the acetylation of histones other than itself: the acetylation of 

histone H3 at lysine 56 (H3K56ac) enhances the DNA damage response in stem cells.70 As a 

result, the γH2AX/H3K56ac interaction has been proposed as an important factor for the control 

of cells’ hypersensitivity to DNA damage repair.  

 

 

As it relates to peri-implantitis, exposure of cells to TiO2 particles may directly influence 

histone acetylation, inhibiting repair of double-stranded breaks. In vitro, a relatively low 

concentration of 10 μg/mL of TiO2 induced γH2AX in fibroblasts compared with other 

compounds, like terbium-doped-gadolinium oxide (Tb-Gd2O3), which required 1,000 μg/mL 

to induce γH2AX, or poly(lactic-co-glycolic acid) (PLGA) nanoparticles, which did not induce 

any DNA damage.71 Interestingly, nano-sized particles of TiO2 induced γH2AX in fibroblasts 

more efficiently than larger ones, and the induction of γH2AX occurred independently of 

reactive oxygen species (ROS) produced by inflammatory cells.72 Similar to fibroblasts, 

titanium particles isolated from commercially available dental implants have been shown to 

induce the activation of CHK2 and accumulation of BRCA1 in a culture of oral epithelia l 

cells.73 Following DNA damage, the recruitment of BRCA1 to the nuclear foci was mediated 

by the phosphorylation of γH2AX.74–76 In addition to being cytotoxic to fibroblast and oral 

epithelial cells, low doses of TiO2 particles induced expression of pro-inflammatory markers.77  

Also, stimulating these cells with LPS following TiO2 stimulation enhanced the expression of 

the inflammatory cytokine TNFα. In line with this focus, there are numerous studies on how 

surface topography, e.g. of implants, impacts the epigenetic pattern.30 In any case, a more 
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thorough characterization of the epigenetic pattern of the peri-implant lesion in response to 

titanium particles is necessary to make any clinical correlations valid. 

 

Clinical application of epigenetics in periodontitis and peri-implantitis 

Epi-drugs 

The fact that epigenetic mechanisms are reversible makes them attractive targets for new 

treatment models. Many epigenetic molecules, or “epi-drugs,” have already been approved by 

the U.S. Food and Drug Administration, like HDAC inhibitors (HDACi) for cancer treatment. 

HDACi are small compounds that inhibit the function of HDACs by blocking their binding to 

target sites, thereby increasing histone acetylation and enhancing gene transcription.7 8  

Trichostatin A (TSA), Entinostat (MS-275) sodium butyrate, suberoylanilide hydroxamine 

(SAHA, or Vorinostat), and valproic acid (VPA) are all HDACi that are currently in clinica l 

studies.24,79,80 

 

Reports on the use of epi-drugs for the treatment of inflammatory diseases have recently 

emerged. An inhibitory effect of HDACi on bone destruction and inflammation was reported 

for rheumatoid arthritis, suggesting a treatment option that simultaneously targets both 

pathways.81 In line with these findings, HDACi have been reported to decrease bone loss not 

only for rheumatoid arthritis but also for periodontitis.82,83 TSA, VPA, and MS-275 have been 

investigated for potential use in regulating bone formation and were suggested as suitable 

agents for both local and systemic treatment of bone loss.79 

 

In a recent study, periodontitis gingival tissue was shown to have increased mRNA expression 

of HDAC1, 5, 8 and 9; of these, the HDAC1 protein was found in significantly higher quantit ie s 
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in diseased tissue than in healthy tissue.84 HDAC1 was also found in inflammatory cells, 

suggesting a role in regulating inflammation.84 Treatment of human PDL cells with TSA 

decreased expression of HDAC3, increased acetylation of histone H3, and induced osteogenic 

differentiation.85 Treatment of PDL fibroblasts with sodium butyrate induced the expression of 

osteoblast-related proteins and inhibited the production of pro-inflammatory cytokines.80 

 

Other epi-drugs target the DNA methylation pathway. 5-aza-2’-deoxycytidine (5-aza) inhib its 

DNA methylation and was reported to increase the responsiveness of gingival fibroblasts to 

TGF-β1 and increase DNMTs.86 Gingival epithelial cells exposed to P. gingivalis and F. 

nucleatum showed decreased expression of DNMT and HDAC 37. When the cells were treated 

with 5-aza prior to exposure to F. nucleatum, their expression of human beta-defensin-2 (hBD-

2) and CCL20 was enhanced relative to no treatment; both genes are typically up-regulated in 

response to bacteria.37 Treatment with an HDAC inhibitor, however, increased the expression 

of both genes as well as histone acetylation in response to F. nucleatum and P. gingivalis. This 

effect could represent a new tool for improving wound healing and periodontal tissue 

regeneration. Similarly, treatment of human bone marrow stromal cells with either TSA or 5-

aza induced the cells to differentiate into osteogenic and chondrogenic populations, 

respectively.87 Treatment with 5-aza-dC of osteoblasts grown on titanium discs of two different 

surface characteristics decreased DNA methylation on both surfaces and induced gene 

expression of alkaline phosphatase (ALP).88 Decitabine (5-aza-2'-deoxycytidine) was found to 

reduce bone loss in a mouse periodontitis model by inhibiting osteoclastogenesis.89 

  

Another challenge in periodontal tissue regeneration is reducing inflammation. HDACi 1179.4b 

was able to suppress alveolar bone loss but not gingival inflammation.83 In contrast, the BET 

inhibitor JQ1 inhibited both the inflammatory response and alveolar bone loss.90 BET proteins 
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contain bromodomains that sense acetylated histones and can recruit epigenetic regulators of 

gene expression.90 A recent review reported that HDACi influence not only osteoclast 

differentiation but also maturation and activity.91 TGF-β1 is a key factor in regulating wound 

healing, an event important to tissue regeneration, e.g. after periodontitis surgery and implant 

placement. Treating oral fibroblasts with 5-aza demethylation agent prior to treatment with 

TGF-β1 increased DNMT1 and DNMT3b expression, increased the fibroblasts’ response to 

TGF-β1, and induced the expression of TGF-β1’s targets.86 

 

Epigenetics in bone regeneration 

An important aspect of treating periodontitis and peri-implant defects is the improvement of 

bone regeneration. A primary focus in this field, therefore, has been improving the osteogenic 

potential of scaffolds and bone grafting materials.78 Cell-based techniques using stem cells and 

induced pluripotent stem cells have become particularly popular in tissue regeneration.92 Stem 

cell differentiation was extremely sensitive to changes in epigenetic mechanisms.93 Dental pulp 

stem cells can differentiate into osteogenic cells, and the fact that they are easy to access has 

made them an alluring source for cell therapy. It was recently shown that treating dental pulp 

stem cells with HDACi enhanced matrix mineralization and the expression of osteogenic 

differentiation markers, such as osteopontin and bone sialoprotein, yet decreased expression of 

osteocalcin.94 In addition, HDAC1 and HDAC2 were identified as important regulators in 

osteoblast differentiation.94 Targeting epigenetic mechanisms may, therefore, present new 

models for improving bone and soft tissue regeneration. 

 

TET2 and the enzyme thymine-DNA glycosylase were able to induce changes in both the 5mC 

and 5hmC patterns in myeloid stem cells.95 In later stages of cell differentiation, TET2 and 
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thymine-DNA glycosylase further regulated histone modifications of genes and determined if 

the cells differentiated into macrophages or osteoclasts.95 Targeting this signaling pathway may 

present a mechanism for regulating bone resorption by influencing cell differentiation towards 

the macrophage lineage. TET1 and TET2 also regulated the differentiation of mesenchymal 

stem cells into osteoblast by demethylating and activating Sp7, which encodes an important 

transcription factor for bone formation and osteoblast differentiation.96 Furthermore, it was 

shown that this process also involved altering the histone methylation and acetylation patterns 

of the Sp7 promoter. These findings showed that although these different epigenet ic 

mechanisms by themselves can induce changes in gene expression, they also interact to regulate 

gene expression and, hence, cell differentiation and function. 

 

Cells derived from PDL also have the potential to differentiate into osteoblasts, and RUNX2 is 

a key factor in this process.97 HDAC1, 2, 3, 4, and 6 were all shown to be present in human 

PDL cells.85 HDACs 3, 6 and 7 were involved in regulating the expression of RUNX2, and 

HDACi induced acetylation of the RUNX2 gene, increased its expression, and, in turn, induced 

the expression of genes related to osteogenesis and bone formation.78 These inhibitors also 

enhanced mineralization, bone regeneration, and osteogenic differentiation of PDL cells and 

dental pulp stem cells.78 P. gingivalis LPS induced an increase of DNMT1 and down-regulat ion 

of RUNX2 expression in human PDL cells, suggesting that the inhibitory effect of LPS on 

osteoblastic differentiation may be a consequence of DNA hypomethylation of RUNX2.97 

Treatment of human gingival fibroblasts with a DNA methylation inhibitor induced 

hypomethylation of RUNX2 and ALP, and subsequent treatment of these cells with BMP-2 

induced the expression of RUNX2 and ALP as well as differentiation into osteoblasts.98 
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PDL stem cells extracted from periodontitis patients and healthy subjects were investiga ted 

with respect to the expression of histone acetyltransferase GCN5.99 Cells from periodontit is 

patients showed a down-regulation of GCN5 and a decrease in osteogenic differentiat ion 

potential compared to cells from controls. Knockdown of GCN5 decreased expression of 

RUNX2 and ALP, while overexpression restored the osteogenic potential of the cells.99  

Mechanistically, GCN5 induced acetylation of histone H3 at lysines 9 (H3K9) and 14 (H3K14) 

near the DKK1 gene, thereby increasing its expression. DKK1 is an inhibitor of the Wnt/β-

catenin signaling pathway, which is important in the regulation of osteogenic differentiation of 

PDL stem cells. Interestingly, treatment with aspirin inhibited both GCN5 expression and 

inflammation in LPS-induced periodontitis rats while up-regulating DKK1 and reducing bone 

loss.99 Inhibition of HDACs using TSA enhanced the osteogenic differentiation of human PDL 

cells. There was not only an up-regulation of osteoblast-related genes but also an increase in 

ALP activity, mineral formation, and RUNX2 production.78,85 Furthermore, when TSA-treated 

human PDL cells were implanted in a scaffold, bone formation was enhanced for up to 8 

weeks.78 TSA has also been shown to enhance osteogenic differentiation in mesenchymal stem 

cells and periodontal repair by interfering with the NFkB-pathway.100 

 

Smoking and diabetes also had epigenetic effects on osseointegration and bone regeneration by 

targeting DNA methylation in the former and histone acetylation in the latter.101,102 

 

Delivery models for epi-drugs and miRNA 

Identifying a method for local and sustainable delivery of epi-drugs to the site of periodontit is 

and peri-implantitis is crucial for new treatment models. Collagen sponges and macroporous 

biphasic calcium phosphate scaffolds mixed with HDACi were found to induce woven bone 

formation at the interface with the scaffold.103 Two studies on the use of microarc oxidation 
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(MAO) titanium implant surfaces as a delivery model for miRNAs have been published.104,105 

Wang and co-workers fabricated chitosan-hyaluronic acid nanoparticles to deliver miRNA-21 

into human bone marrow mesenchymal stem cells and, thereby, increased the expression of 

osteogenic genes.104 Wu and co-workers attached miRNA-29b and anti-miRNA-138 lipoplexes 

onto an MAO titanium implant and induced osteogenic differentiation in rat bone marrow 

mesenchymal stem cells.105 These studies suggest a novel tool for improving the 

osseointegration of implants and a method for delivering epi-drugs. 

 

Modifying surface structure to improve implant-bone interactions 

In implant therapy, promoting tissue integration, especially between bone and implant, is a 

primary goal. In this process, early attachment of epithelial cells and fibroblasts is important 

for making a seal around the implant to promote osseointegration and prevent bacteria from 

colonizing the implant surface.106,107 An important factor in the regulation of cell adhesion, 

migration, proliferation, and differentiation is the surface topography.108,109 Interestingly, cells 

grown on a stiff surface have transcriptionally active chromatin, while cells grown on a soft 

material have transcriptionally inactive chromatin (Figure 3).110  Using titanium discs with 

either smooth or rough surfaces, it was shown that surface characteristics influence not only 

DNA damage and the DNA repair pathway but also epigenetic factors.29 Total γH2AX-positive 

cells on rough titanium decreased in proportion over time, while such cells grown on smooth 

titanium did not. Rough titanium surfaces also induced more cytoplasmic staining of DNMT1 

and lower histone acetylation than smooth titanium.29 In addition, the methylation level of the 

ALP gene was lower in osteoblast cells grown on smooth titanium surfaces than in cells grown 

on modified titanium surfaces.88 Interestingly, surface decontamination using mechanica l 

methods was found to further influence epigenetic markers.111 
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In a recent study, pre-osteoblastic cells were grown on titanium discs with various surfaces: 

machined, dual acid-etched, and acid-etched nanohydroxyapatite-blasted.11 2  

Nanohydroxyapatite-blasted discs had greater cell adhesion, more cell spreading, and lower 

apoptosis, likely due to its better absorption of protein from serum, an important early factor 

for cell adaption and attachment to the titanium surface. Nanohydroxyapatite also promoted 

intracellular signaling networks, important for cell-surface interactions.112 Changing a titanium 

surface’s nanostructure promoted adipocytes towards osteogenic differentiation,106,113 and 

altering the surface and the construction of titanium tubes induced periodontal regeneration and 

enhanced periodontal ligament structure.114,115 Adding a coating of OPG also increased early 

osteoblast differentiation and mineralization.109 

 

Many studies have also reported a correlation between changes in gene expression and different 

implant surfaces.63 The recently developed Zirconia implant surface was shown to induce a 

different level of expression of 10 miRNAs that were involved in the regulation of osteogenic 

and bone remodeling genes, such as BMPs.116 

 

Even though research on how surface topography and material energy affect the epigenome is 

still in its infancy, the present literature suggests that materials and nanotechnology can promote 

tissue regeneration and cellular functions, like attachment and osseointegration, via epigenetic s. 

This role can be regulated by altering the titanium surface itself.  These findings illustrate the 

importance of understanding material “structures” as well as cellular functions in order to obtain 

the best outcome for periodontal regeneration.30 

 

Future concepts of epigenetics and inflammation 
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While epi-drugs may be potent against cancer, they have side effects. For peri-implantitis and 

bone regeneration, they may be avoided by instead using topography and material energy to 

induce changes in the epigenetic pattern of cells in contact with the implant or scaffold. 

 

Other methods may achieve the same goals. Recently, dietary substances as substitutes for epi-

drugs have received interest as potential treatment options. Nutritional components are known 

to induce changes in the epigenetic pattern, and the term “epigenetic diet,” or “epi-diet,” has 

been coined.117 So far, they have been studied mostly in relation to cancer,118 but the close 

association of inflammation, cancer, and epigenetics suggests the use for an epi-diet in the 

treatment of inflammatory diseases, too. The idea of diet as an epigenetic tool for the prevention 

of chronic diseases was discussed in a recent review.119 Since 2004, the term “immunonutrition” 

has described nutrients shown to influence the immune response toward an anti-inflammato ry 

reaction.120 Epigallocatechin-3-gallate in green tea, polyphenols, and omega-3-polyunsatura ted 

fatty acids in fatty fish were suggested to be anti-inflammatory as well as preventative of 

cancer.120 Interestingly, it has been suggested that the epigenetic pattern is more susceptible to 

changes in nutrition during times of inflammation and in ways that may be organ- or tissue-

specific.121 Recently, it was shown that TET enzymes and the 5hmC pathway were influenced 

by nutritional compounds such as vitamin C, and that microbiome-produced metabolites like 

folate also influenced enzymes regulating 5hmC.122 

 

Few studies on diet and inflammation are available, but there are studies on the effects of dietary 

compounds on the oral mucosa. Vegetarians and omnivores have different DNA methylat ion 

patterns in cells of the buccal mucosa.123 Curcumin is a compound with anti-inflammato ry, 

wound-healing, and anti-cancerous properties and has been linked to both DNA methylat ion 

and histone acetylation.124 Recently, the influence of modified curcumin CMC2.24 was 
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investigated for its effect on periodontitis. Administration of CMC2.24 decreased inflammato ry 

cytokines, MMPs, and alveolar bone loss in an experimental murine periodontitis model.125 It 

was suggested as an anti-inflammatory treatment model for periodontitis. 

 

Conclusions and future directions 

Evidence continues to emerge on the pathogenesis of periodontal and peri-implant diseases. 

While the host responses in both diseases share some similarities, their differences reflect the 

unique make-up of the tooth-periodontium and implant-alveolar bone biointerfaces. As such, 

we cannot translate all the protocols of one directly to the management of the other. More 

longitudinal clinical studies that monitor the progression of peri-implant diseases are necessary 

to better understand the triggers of the disease, its progression, and its epigenetic and other 

mechanisms. This information could allow us to stratify our patients by level of risk and manage 

them in a more personalized fashion based on their disease activity and lifestyles. 
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Figure legends. 

Figure 1. Comparison of the inflammatory lesions (ICT) of peri-implantitis and periodontit is, 

showing major histopathological features. 

 

Figure 2. The structure and modification of the nucleosome. The histone complex includes two 

copies each of histones H2A, H2B, H3, and H4, as well as a linker histone H1 that connects the 

nucleosomes. Along with DNA, these proteins form the primary chromatin structure. (A) 

Chromatin configuration and epigenetic regulation. (B) Crystal structure of Protein Data Bank 

ID 5B2I, showing the nucleasome, rendered in UCSF Chimera.126 (C) Transcriptionally active 

genes are associated with low levels of DNA methylation and high levels of histone acetylation. 

Figure adapted with permission from Larsson et al.9 

 

Figure 3. Surface characteristics and epigenetic patterns. (A) Cells grown on a soft material, or 

low-energy surface, have transcriptionally inactive chromatin, while (B) cells grown on a stiff, 

or high-energy, surface have transcriptionally active chromatin. (C) Contact with titanium 

activates the DNA damage pathway. Figure adapted with permission from Larsson et al.30  
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Abstract 

Periodontitis is a disease characterized by tooth-associated microbial biofilms that drive chronic 

inflammation and destruction of periodontal-supporting tissues. In some individuals, disease 

progression can lead to tooth loss. A similar condition can occur around dental implants in the 

form of peri-implantitis. The immune response to bacterial challenges is not only influenced by 

genetic factors but also by environmental factors. Epigenetics involves the study of gene 

function independent of changes to the DNA sequence and its associated proteins, and 

represents a critical link between genetic and environmental factors. Epigenetic modifications 

have been shown to contribute to the progression of several diseases, including chronic 

inflammatory diseases like periodontitis and peri-implantitis. This review aims to present the 

latest findings on epigenetic influences on periodontitis and to discuss potential mechanisms 

that may influence peri-implantitis, given the paucity of information currently available. 
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Introduction 

Periodontitis is a widespread disease recently shown to be the sixth-most prevalent condition 

worldwide; its severe forms affect about 10% of the adult population.1–3 The disease is 

characterized by chronic inflammation of the gingival tissues in response to bacterial 

colonization of the tooth surface. In susceptible individuals, this immune response results in 

tissue destruction and the loss of supporting bone.4 Similarly, chronic inflammation can affect 

dental implants in the form of peri-implantitis, i.e. inflammation in peri-implant tissues with 

loss of supporting bone, which can ultimately lead to implant loss.5,6 The prevalence of peri-

implantitis varies across studies but, according to a recent review, ranged from 13% to 47% 

among individuals with implants.6 As with periodontitis, peri-implantitis is considered to be 

induced by microbial biofilms at the implant surface.7 

 

Several factors — environmental, genetic, and epigenetic — contribute to an individual’s 

susceptibility to periodontal disease.8 Epigenetics is a critical link between genetic and 

environmental factors. Epigenetic alterations may contribute to individual differences in tissue-

specific gene expression and induce or enhance inflammation and susceptibility to disease.9 

However, less is known about how these factors influence peri-implantitis. There is a clinical 

need for methods to regenerate alveolar bone and suppress inflammation in order to improve 

the long-term prognosis of teeth and implants affected by periodontitis and peri-implantitis, 

respectively.10 The fact that epigenetic mechanisms are reversible makes them attractive targets 

for new treatment models within tissue regeneration and inflammatory disease. 

 

Inflammatory lesions of periodontitis and peri-implantitis 

Numerous studies have analyzed how the inflammatory lesion of peri-implantitis differs from 

that of periodontitis.6,11 Studies using both human biopsy material and experimental models 
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have concluded that the peri-implantitis lesion is larger than the periodontal lesion, and that 

their cellular and cytokine compositions differ in important ways (Figure 1). 

 

Although plasma cells and lymphocytes are the dominant cells in both lesions, neutrophils and 

macrophages occur in greater numbers in peri-implantitis than in periodontitis. Experimental 

studies have also shown a greater number of osteoclasts in the peri-implantitis lesion.12 In line 

with these data, a study using biopsies from 40 patients with periodontitis and 40 with peri-

implantitis showed that not only were the inflammatory lesions around implants twice as large 

as those in periodontitis, but the peri-implant lesion also had greater numbers of plasma cells, 

macrophages, and neutrophils.5 By contrast, the density of B cells and the density of vessels 

were greater in periodontitis. An experimental study in dogs from the same group reported a 

larger lesion in peri-implantitis.12 Moreover, the levels of myeloperoxidase (MPO), a marker 

for neutrophils, and tartrate-resistant acid phosphatase (TRAP), a marker for osteoclasts, were 

higher in peri-implantitis.12 Similarly, a rat lipopolysaccharide (LPS) experimental model 

indicated the presence of osteoclasts, bone resorption, and extensive inflammation in peri-

implantitis and suggested that the destruction of peri-implant tissue occurs faster than that of 

periodontitis tissue.13 Shedding light on these findings, a review of experimental ligature 

models in animals illustrated that the inflammatory infiltrate around teeth was separated from 

the alveolar bone by a connective tissue zone, whereas the inflammatory infiltrate around 

implants extended all the way to the alveolar crest.11 

 

The different pathologies of these lesions are reflected in their signaling: Gingival crevicular 

fluid samples from healthy, periodontitis, or peri-implantitis sites each showed distinct cytokine 

profiles.14 In an experimental murine model with Porphyromonas gingivalis infection, implants 

experienced greater bone loss than teeth.15 Compared to implants without infection, FOXP3, a 
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negative regulator of the immune response, decreased in the setting of infection, while tumor 

necrosis factor alpha (TNFα), a cytokine for inflammation, increased. Meanwhile, teeth 

experienced no change in FOXP3 or TNFα in the setting of infection.15 Interestingly, the 

presence of an implant even without infection altered the expression of cytokines compared to 

healthy teeth; the implant increased the expression of interleukin (IL)-10 and FOXP3; increased 

the RANK/osteoprotegerin (OPG) ratio, an indicator of apoptosis; and decreased the expression 

of TNFα.15 

 

Despite similar bacterial etiologies, there are also histopathological differences between peri-

implantitis and periodontitis lesions. The spread of the lesion to the crestal bone in peri-

implantitis and the lack of an epithelial lining between the biofilm and the apical portion of the 

infiltrate can be explained by the absence of supra-crestal fibers and a periodontal ligament in 

peri-implant tissues. In addition, a recent review summarized the distinct microbiome 

compositions of the two diseases.7 It was shown that surface material, roughness, and energy 

can influence the colonization of bacteria. Since dental implants differ in those aspects from 

teeth, a specific microbiome may be associated with peri-implantitis.7,16 

 

Recently, two reviews reported on the differences between periodontitis and peri-implantitis 

with respect to epigenetic markers.17,18 We will explore them in subsequent sections. 

 

Epigenetics: General principles  

The DNA double helix is packaged in the cell nucleus in the form of chromatin. The building 

block of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around 

a histone protein complex (Figure 2). The structural arrangement of chromatin affects gene 

expression: chromatin can be loosely packed, allowing the transcriptional machinery to access 
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and express it, or densely packed, silencing it.19 The term epigenetics refers to chemical 

alterations to gene expression independent of changes to the DNA sequence, that is, DNA 

methylation and histone modifications.20 

 

Histones can be acetylated or methylated at N-terminal tails that protrude from the nucleosome 

19. These functional groups obstruct the contact between the DNA and histones, loosening their 

packaging and activating transcription.19 Acetylation is regulated by histone acetyltransferases 

(HATs) that add acetyl groups and by histone deacetylases (HDACs) that remove them. The 

balance between histone acetylation and deacetylation at the promoter region of the chromatin 

is key to the regulation of gene expression and the maintenance of a transcriptionally competent 

chromatin state.21,22 The HATs are divided into five distinct families by their sequence 

divergence at the HAT domain (HAT1, Gcn5/PCAF, MYST, CBP/p300, and Rtt109). Among 

all HATs, p300 is an important histone acetyltransferase that mediates transcriptional activation 

by participating in the CREB-binding protein/p300 transcriptional co-activation complex.23 The 

p300-CBP coactivator family, in combination with other proteins, participates in proliferation, 

differentiation, apoptosis, and transcription through chromatin acetylation.24 Similar to HATS, 

HDACs are also divided into 4 classes and take part in multi-protein complexes that are 

expressed in many bodily tissues.25  

 

DNA itself can be modified by DNA methyltransferases (DNMTs), which add methyl groups 

to cytosine bases (5mC) at specific sites in the DNA sequence (i.e. CpG sites, or sites with 

adjacent cytosine and guanine bases).20,26 When these methyl groups reside at promoters, they 

can occlude the binding of transcriptional machinery and deactivate transcription. 5mC can be 

further oxidized into 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) 
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family of enzymes.27 This oxidation has been suggested as the mechanism for de-methylation 

of DNA so that the cell can re-activate genes (Figure 2).28  

 

Importantly, epigenetic mechanisms are reversible and change throughout our lifetimes in 

response to environmental factors, including the microbiota, smoking, and dietary compounds. 

It was recently found that biomaterials, material energy, and material topography also influence 

epigenetic patterns.9,29,30 Moreover, infection and the host’s immune response can induce 

changes in the epigenome that, in turn, enhance susceptibility to disease. These epigenetic 

changes are cell- and tissue-specific, which is relevant for chronic inflammatory diseases like 

periodontitis and peri-implantitis. These diseases have target tissues in which the inflammation 

is persistent and tissue destruction occurs — not all teeth or implants are affected. As such, 

treatments can be targeted as well. 

 

Epigenetics and periodontitis 

Even though epigenetics is a new area of research in periodontology, several studies over the 

last decade have characterized changes in the epigenetic pattern for periodontal diseases.9,31–35 

 

Oral pathogens and bacterial products, such as LPS, have been shown to influence periodontitis 

by inducing epigenetic changes in gene expression in cells and tissue. For example, P. 

gingivalis and Fusobacterium nucleatum can induce acetylation of histone 3 while decreasing 

the expression of DNMT1.36 And bacterial activation of pathogen recognition receptors (PRRs) 

and TLRs, both typically activated in the immune response, can induce histone modifications 

in oral epithelial cells.36 These findings are in line with previous research showing that gingival 

epithelial cells cultured with P. gingivalis saw an increase in DNA methylation of the TLR2 

promoter.37 A study by Diomede and co-workers showed that, similar to reports by Martins et 
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al,36 P. gingivalis LPS reduced the expression of DNMT1 in human periodontal ligament (PDL) 

cells while upregulating histone acetyltransferase p300 and NF-κB, a complex typically 

activated in response to cellular stress and foreign antigens.23 

 

Dysregulation of TLR expression and consequent changes in the host response against 

periodontal pathogens can occur, increasing not only inflammation but also a patient’s 

susceptibility to periodontitis.38 The DNA methylation patterns of the TLR2 and TLR4 

promoters have previously been investigated in gingival biopsies, cells, and animal models.38–

41 The TLR4 promoter was reported to be unmethylated in healthy and periodontitis patients, 

while that of TLR2 included both methylated and unmethylated regions for both groups.40 

However, a higher degree of methylation of TLR2 was found in samples from patients with 

periodontitis relative to controls, as was a correlation between the level of TLR2 methylation 

and the number of inflammatory cells within the adjacent connective tissue.41 Using an in vitro 

periodontitis and oral gavage model in mice, the presence of P. gingivalis was shown to induce 

methylation of the TLR2 promoter in human gingival epithelial cells.38 The DNA methylation 

pattern of other genes in the TLR signaling pathway (FADD, MAP3K7, MYD88, IL6R, PPARA, 

IRAK, and RIPK2) also differed between patients with localized, aggressive periodontitis and 

healthy controls.42 The degree of methylation even varied by the severity of disease; patients 

with moderate disease showed hypermethylation of these genes relative to controls, while 

patients with severe disease displayed hypomethylation.42 

 

The oral pathogen Treponema denticola has also been shown to alter epigenetic patterns by 

inducing hypomethylation of the MMP2 promoter, causing chronic activation of pro-MMP2 

expression in PDL cells.43 Matrix metalloproteases (MMPs) are key factors in matrix 

degradation, bone resorption, wound healing, cell proliferation, inflammation, and 
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immunity.43,44 As a result, hypomethylation by T. denticola may influence the activation of 

MMPs and augment the destruction of supporting tissues that occurs in periodontitis. 

 

The epigenetic patterns of several inflammatory cytokines and markers have also been 

investigated in relation to periodontitis,9 with variations in DNA methylation between healthy 

and periodontitis patients being especially large for genes related to immune response.45 In one 

study, the methylation levels of CpG sites in 22 inflammatory genes were analyzed in gingival 

tissue samples from patients with aggressive periodontitis versus controls. A decrease in 

methylation was found in the promoter regions for interleukin-17C (IL-17C) and chemokine 

ligand-25 (CCL25) in periodontitis patients, resulting in increased expression.46 These 

cytokines play important roles in the immune response to bacteria. The different levels of DNA 

methylation reported by Schulz et al were similar to those by Barros and Offenbacher.31,46 

Given the suggested link between IL-17 expression and bone resorption, changes in the 

methylation pattern and expression of these genes might contribute to the inflammatory 

response and the loss of attachment seen in periodontitis.46  

 

Meanwhile, with respect to the pro-inflammatory cytokine IL-6, no difference in methylation 

of its promoter was found between periodontitis patients and healthy controls.47 It had been 

previously reported that the IL-6 promoter was partially methylated in gingival tissue samples 

from both periodontitis and healthy individuals but that the expression of IL-6 was higher in 

periodontitis patients.48 Ishida and coworkers also reported an increase in IL-6 expression, yet 

this increase was associated with hypomethylation of only one CpG site in the IL-6 promoter.49 

Similarly, for the inflammatory cytokine TNFα, an analysis of 12 CpG sites in the promoter of 

TNFα in patients with chronic periodontitis and healthy controls revealed differences in DNA 
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methylation only at one CpG site,50 although a previous study reported two hypermethylated 

sites in the TNFα promoter in chronic periodontitis.51 

 

Comparison of the DNA methylation patterns of two inflammatory regulators, suppressor of 

cytokine signaling 1 (SOCS1) and the long interspersed element-1 (LINE-1), showed a higher 

degree of methylation in oral epithelial cells of patients with aggressive periodontitis, relative 

to healthy subjects.52 Intragenic CpG islands in Socs1 were hypermethylated in periodontal 

specimens compared to healthy tissue, yet there was no difference in gene expression.53 

Interestingly, the results by Planello et al suggested that the increase in DNA methylation of 

Socs1 in periodontitis was not due to the presence of inflammatory cells.53 Using tissue samples 

from healthy subjects and periodontitis patients that, at the time of the study, did not show signs 

of inflammation in the gingival tissue, the levels of methylation for Socs1, Socs3, and LINE-1 

were similar regardless of any previous periodontal inflammation.54 Similarly, a higher level of 

DNA methylation in the COX-2 promoter has been reported for diseased sites compared to 

healthy sites in patients with periodontitis.55 Interestingly, periodontal therapy restored the 

DNA methylation pattern of COX-2 to a level close to that of healthy patients. In contrast, no 

changes occurred in the DNA methylation level of TNFα, IFNγ, or LINE-1.55 These 

observations suggest that the treatment of periodontitis and resolution of inflammation may 

restore some but not all epigenetic modifications to the levels of healthy tissue. Finally, Cho 

and co-workers also reported on the methylation pattern of inflammatory genes in periodontitis 

and healthy patients, but the differences were not significant.56 

 

Despite many reports on the epigenetic alterations of genes associated with immune response 

and bone formation, few studies have focused on the expression of epigenetic markers, 

themselves, in periodontitis. Martins and coworkers reported a down-regulation of DNMT1 and 
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up-regulation of acetylated histone 3 in epithelial cells close to the inflammatory lesion in a 

periodontitis model in mice.36 In contrast, a significant up-regulation of DNMT1 and TET1 

mRNA was found in tissue samples from periodontitis patients compared to those from healthy 

controls.45 However, it is important to remember that results using tissues reflect the DNA 

methylation level of genes in several different cell types. The proportion of TET2-positive cells 

was even greater in periodontitis lesions than in gingivitis lesions.57 The increase in TET 

enzymes is of particular interest since they convert 5mC to 5hmC and promote demethylation, 

which, in turn, re-activates genes and increases expression.27,45 The fact that TET2 rises in 

periodontitis relative to gingivitis suggests an association between disease severity and the 

epigenetic regulation of inflammatory genes.57 Interestingly, not only did the methylation 

patterns differ between patients with chronic periodontitis and healthy controls, but this 

hypermethylation pattern also was found to be located in transcriptional enhancer regions 

preventing enhancer activity and gene expression.57 The DNA methylation pattern found in 

gingival tissue from periodontitis patients resembled that found in oral squamous cell 

carcinoma tissue, suggesting that chronically inflamed tissues have a pre-neoplastic epigenome 

that may play a role in tumor development.53 Recently, a role for TET enzymes in the regulation 

of macrophages in periodontal disease has also been suggested.58,59 

 

JMJD3 is a demethylase that binds genes and demethylates them at H3K27, thereby increasing 

their transcription. Stimulation of macrophages by LPS induces JMJD3, which then influences 

the polarization of macrophages into either M1 or M2. The polarization of macrophages plays 

an important role in determining the outcome of an inflammatory response.60,61 P. gingivalis 

LPS treatment caused a decrease in expression of JMJD3, DNMT1, and DNMT3b in 

keratinocytes but no difference in gingival fibroblasts.60 This difference may be due to the 

expression of TLRs on epithelial cells but not on keratinocytes. In the same study, P. gingivalis 
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LPS also triggered the TLR2 and 4 signaling pathways, inducing NFkB and downregulating 

JMJD3.60 An analysis of the gene expression of JMJD3, DNMT1, and DNMT3b in tissue 

samples showed no differences between periodontitis patients and healthy controls.60 In a 

periodontitis mouse model, adiponectin (APN), a factor secreted by adipose tissue, was found 

to influence the JMJD3-IRF4 signaling pathway, which is needed for the polarization of 

macrophages towards M2; the result was a modified inflammatory response, enhanced bone 

repair via JMJD3, and reduced periodontal bone loss.61 

 

A recent study showed that the immune response to bacteria may be influenced by stressful 

events in early life.62 As demonstrated in an experimental periodontitis LPS and ligature model 

in rats, such events increased the susceptibility to chronic inflammation later in life. Animals 

that had been separated daily from their mothers as pups eventually had greater alveolar bone 

loss and lower levels of TGF-β. These animals also had a higher expression of glucocorticoid 

receptor (Gr), a marker for stress reactivity, in the hippocampus. In contrast, rats that had been 

handled daily or undisturbed as pups had a higher degree of DNA methylation at specific CpG 

sites in the Gr promoter, resulting in a lower level of Gr expression.62 These results may shed 

light on the socioeconomic disparities of periodontal disease, as minority and low-income 

individuals suffer greater social stressors and higher disease rates.2 

 

Taken together, most studies on the influence of epigenetics on periodontitis have compared 

diseased sites with healthy sites. Thus, it is not clear if the epigenetic changes are specific to 

periodontitis or if they are features of gingival inflammation more generally. Studies evaluating 

differences between periodontitis and longstanding gingivitis lesions are needed. 
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Epigenetics and peri-implantitis 

To the knowledge of the authors of this review, no characterization of the epigenetic pattern of 

the peri-implantitis lesion has yet been made. A recent review on epigenetics in implant therapy 

found only 8 articles on the role of miRNAs in implant dentistry and no reports on DNA 

methylation or histone modifications in response to implants.63 Interestingly, it was recently 

reported that the global DNA methylation level was higher in gingival tissues than in bone, 

regardless of whether the bone was from periodontally healthy patients or from around failed 

implants due to peri-implantitis.64 The authors suggested that these findings could reflect a 

different epigenetic response between various tissues in the same microenvironment. 

 

Epigenetics and titanium particles 

In contrast with epigenetic influences on peri-implantitis, there has been a great focus on 

titanium particles found in the tissue surrounding implants with peri-implantitis and their 

influence on the disease.65,66 In gingival tissue where P. gingivalis was present, titanium ions 

from implants were shown to increase the expression of CCL2, an inflammatory cytokine, and 

to elevate the ratio of RANKL to OPG.67 In addition, titanium ions elevated TLR4 expression, 

which may increase the host response to microorganisms. Titanium concentrations have also 

been associated with global methylation levels independent of peri-implantitis, suggesting that 

titanium particles may affect the level of DNA methylation.68 As such, the presence of titanium 

in tissue samples taken near titanium implants, as well as that of titanium ions that can form 

particles, can induce a pro-inflammatory response.69 

 

There are also several studies on the influence of titanium dioxide (TiO2) particles on epigenetic 

mechanisms.30 The most prominent connection between titanium and epigenetic modification 
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has been the DNA damage pathway. When the double-stranded helix breaks, histone H2A.X is 

phosphorylated (becoming gH2AX) and is recruited to the damaged site; as such, gH2AX is an 

early marker for DNA damage.70 The efficacy of gH2AX’s response to DNA damage is 

epigenetically controlled by the acetylation of histones other than itself: the acetylation of 

histone H3 at lysine 56 (H3K56ac) enhances the DNA damage response in stem cells.70 As a 

result, the gH2AX/H3K56ac interaction has been proposed as an important factor for the control 

of cells’ hypersensitivity to DNA damage repair.  

 

 

As it relates to peri-implantitis, exposure of cells to TiO2 particles may directly influence 

histone acetylation, inhibiting repair of double-stranded breaks. In vitro, a relatively low 

concentration of 10 μg/mL of TiO2 induced gH2AX in fibroblasts compared with other 

compounds, like terbium-doped-gadolinium oxide (Tb-Gd2O3), which required 1,000 μg/mL 

to induce gH2AX, or poly(lactic-co-glycolic acid) (PLGA) nanoparticles, which did not induce 

any DNA damage.71 Interestingly, nano-sized particles of TiO2 induced gH2AX in fibroblasts 

more efficiently than larger ones, and the induction of gH2AX occurred independently of 

reactive oxygen species (ROS) produced by inflammatory cells.72 Similar to fibroblasts, 

titanium particles isolated from commercially available dental implants have been shown to 

induce the activation of CHK2 and accumulation of BRCA1 in a culture of oral epithelial 

cells.73 Following DNA damage, the recruitment of BRCA1 to the nuclear foci was mediated 

by the phosphorylation of gH2AX.74–76 In addition to being cytotoxic to fibroblast and oral 

epithelial cells, low doses of TiO2 particles induced expression of pro-inflammatory markers.77 

Also, stimulating these cells with LPS following TiO2 stimulation enhanced the expression of 

the inflammatory cytokine TNFα. In line with this focus, there are numerous studies on how 

surface topography, e.g. of implants, impacts the epigenetic pattern.30 In any case, a more 
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thorough characterization of the epigenetic pattern of the peri-implant lesion in response to 

titanium particles is necessary to make any clinical correlations valid. 

 

Clinical application of epigenetics in periodontitis and peri-implantitis 

Epi-drugs 

The fact that epigenetic mechanisms are reversible makes them attractive targets for new 

treatment models. Many epigenetic molecules, or “epi-drugs,” have already been approved by 

the U.S. Food and Drug Administration, like HDAC inhibitors (HDACi) for cancer treatment. 

HDACi are small compounds that inhibit the function of HDACs by blocking their binding to 

target sites, thereby increasing histone acetylation and enhancing gene transcription.78 

Trichostatin A (TSA), Entinostat (MS-275) sodium butyrate, suberoylanilide hydroxamine 

(SAHA, or Vorinostat), and valproic acid (VPA) are all HDACi that are currently in clinical 

studies.24,79,80 

 

Reports on the use of epi-drugs for the treatment of inflammatory diseases have recently 

emerged. An inhibitory effect of HDACi on bone destruction and inflammation was reported 

for rheumatoid arthritis, suggesting a treatment option that simultaneously targets both 

pathways.81 In line with these findings, HDACi have been reported to decrease bone loss not 

only for rheumatoid arthritis but also for periodontitis.82,83 TSA, VPA, and MS-275 have been 

investigated for potential use in regulating bone formation and were suggested as suitable 

agents for both local and systemic treatment of bone loss.79 

 

In a recent study, periodontitis gingival tissue was shown to have increased mRNA expression 

of HDAC1, 5, 8 and 9; of these, the HDAC1 protein was found in significantly higher quantities 
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in diseased tissue than in healthy tissue.84 HDAC1 was also found in inflammatory cells, 

suggesting a role in regulating inflammation.84 Treatment of human PDL cells with TSA 

decreased expression of HDAC3, increased acetylation of histone H3, and induced osteogenic 

differentiation.85 Treatment of PDL fibroblasts with sodium butyrate induced the expression of 

osteoblast-related proteins and inhibited the production of pro-inflammatory cytokines.80 

 

Other epi-drugs target the DNA methylation pathway. 5-aza-2’-deoxycytidine (5-aza) inhibits 

DNA methylation and was reported to increase the responsiveness of gingival fibroblasts to 

TGF-β1 and increase DNMTs.86 Gingival epithelial cells exposed to P. gingivalis and F. 

nucleatum showed decreased expression of DNMT and HDAC 37. When the cells were treated 

with 5-aza prior to exposure to F. nucleatum, their expression of human beta-defensin-2 (hBD-

2) and CCL20 was enhanced relative to no treatment; both genes are typically up-regulated in 

response to bacteria.37 Treatment with an HDAC inhibitor, however, increased the expression 

of both genes as well as histone acetylation in response to F. nucleatum and P. gingivalis. This 

effect could represent a new tool for improving wound healing and periodontal tissue 

regeneration. Similarly, treatment of human bone marrow stromal cells with either TSA or 5-

aza induced the cells to differentiate into osteogenic and chondrogenic populations, 

respectively.87 Treatment with 5-aza-dC of osteoblasts grown on titanium discs of two different 

surface characteristics decreased DNA methylation on both surfaces and induced gene 

expression of alkaline phosphatase (ALP).88 Decitabine (5-aza-2'-deoxycytidine) was found to 

reduce bone loss in a mouse periodontitis model by inhibiting osteoclastogenesis.89 

  

Another challenge in periodontal tissue regeneration is reducing inflammation. HDACi 1179.4b 

was able to suppress alveolar bone loss but not gingival inflammation.83 In contrast, the BET 

inhibitor JQ1 inhibited both the inflammatory response and alveolar bone loss.90 BET proteins 
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contain bromodomains that sense acetylated histones and can recruit epigenetic regulators of 

gene expression.90 A recent review reported that HDACi influence not only osteoclast 

differentiation but also maturation and activity.91 TGF-β1 is a key factor in regulating wound 

healing, an event important to tissue regeneration, e.g. after periodontitis surgery and implant 

placement. Treating oral fibroblasts with 5-aza demethylation agent prior to treatment with 

TGF-β1 increased DNMT1 and DNMT3b expression, increased the fibroblasts’ response to 

TGF-β1, and induced the expression of TGF-β1’s targets.86 

 

Epigenetics in bone regeneration 

An important aspect of treating periodontitis and peri-implant defects is the improvement of 

bone regeneration. A primary focus in this field, therefore, has been improving the osteogenic 

potential of scaffolds and bone grafting materials.78 Cell-based techniques using stem cells and 

induced pluripotent stem cells have become particularly popular in tissue regeneration.92 Stem 

cell differentiation was extremely sensitive to changes in epigenetic mechanisms.93 Dental pulp 

stem cells can differentiate into osteogenic cells, and the fact that they are easy to access has 

made them an alluring source for cell therapy. It was recently shown that treating dental pulp 

stem cells with HDACi enhanced matrix mineralization and the expression of osteogenic 

differentiation markers, such as osteopontin and bone sialoprotein, yet decreased expression of 

osteocalcin.94 In addition, HDAC1 and HDAC2 were identified as important regulators in 

osteoblast differentiation.94 Targeting epigenetic mechanisms may, therefore, present new 

models for improving bone and soft tissue regeneration. 

 

TET2 and the enzyme thymine-DNA glycosylase were able to induce changes in both the 5mC 

and 5hmC patterns in myeloid stem cells.95 In later stages of cell differentiation, TET2 and 
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thymine-DNA glycosylase further regulated histone modifications of genes and determined if 

the cells differentiated into macrophages or osteoclasts.95 Targeting this signaling pathway may 

present a mechanism for regulating bone resorption by influencing cell differentiation towards 

the macrophage lineage. TET1 and TET2 also regulated the differentiation of mesenchymal 

stem cells into osteoblast by demethylating and activating Sp7, which encodes an important 

transcription factor for bone formation and osteoblast differentiation.96 Furthermore, it was 

shown that this process also involved altering the histone methylation and acetylation patterns 

of the Sp7 promoter. These findings showed that although these different epigenetic 

mechanisms by themselves can induce changes in gene expression, they also interact to regulate 

gene expression and, hence, cell differentiation and function. 

 

Cells derived from PDL also have the potential to differentiate into osteoblasts, and RUNX2 is 

a key factor in this process.97 HDAC1, 2, 3, 4, and 6 were all shown to be present in human 

PDL cells.85 HDACs 3, 6 and 7 were involved in regulating the expression of RUNX2, and 

HDACi induced acetylation of the RUNX2 gene, increased its expression, and, in turn, induced 

the expression of genes related to osteogenesis and bone formation.78 These inhibitors also 

enhanced mineralization, bone regeneration, and osteogenic differentiation of PDL cells and 

dental pulp stem cells.78 P. gingivalis LPS induced an increase of DNMT1 and down-regulation 

of RUNX2 expression in human PDL cells, suggesting that the inhibitory effect of LPS on 

osteoblastic differentiation may be a consequence of DNA hypomethylation of RUNX2.97 

Treatment of human gingival fibroblasts with a DNA methylation inhibitor induced 

hypomethylation of RUNX2 and ALP, and subsequent treatment of these cells with BMP-2 

induced the expression of RUNX2 and ALP as well as differentiation into osteoblasts.98 
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PDL stem cells extracted from periodontitis patients and healthy subjects were investigated 

with respect to the expression of histone acetyltransferase GCN5.99 Cells from periodontitis 

patients showed a down-regulation of GCN5 and a decrease in osteogenic differentiation 

potential compared to cells from controls. Knockdown of GCN5 decreased expression of 

RUNX2 and ALP, while overexpression restored the osteogenic potential of the cells.99 

Mechanistically, GCN5 induced acetylation of histone H3 at lysines 9 (H3K9) and 14 (H3K14) 

near the DKK1 gene, thereby increasing its expression. DKK1 is an inhibitor of the Wnt/β-

catenin signaling pathway, which is important in the regulation of osteogenic differentiation of 

PDL stem cells. Interestingly, treatment with aspirin inhibited both GCN5 expression and 

inflammation in LPS-induced periodontitis rats while up-regulating DKK1 and reducing bone 

loss.99 Inhibition of HDACs using TSA enhanced the osteogenic differentiation of human PDL 

cells. There was not only an up-regulation of osteoblast-related genes but also an increase in 

ALP activity, mineral formation, and RUNX2 production.78,85 Furthermore, when TSA-treated 

human PDL cells were implanted in a scaffold, bone formation was enhanced for up to 8 

weeks.78 TSA has also been shown to enhance osteogenic differentiation in mesenchymal stem 

cells and periodontal repair by interfering with the NFkB-pathway.100 

 

Smoking and diabetes also had epigenetic effects on osseointegration and bone regeneration by 

targeting DNA methylation in the former and histone acetylation in the latter.101,102 

 

Delivery models for epi-drugs and miRNA 

Identifying a method for local and sustainable delivery of epi-drugs to the site of periodontitis 

and peri-implantitis is crucial for new treatment models. Collagen sponges and macroporous 

biphasic calcium phosphate scaffolds mixed with HDACi were found to induce woven bone 

formation at the interface with the scaffold.103 Two studies on the use of microarc oxidation 
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(MAO) titanium implant surfaces as a delivery model for miRNAs have been published.104,105 

Wang and co-workers fabricated chitosan-hyaluronic acid nanoparticles to deliver miRNA-21 

into human bone marrow mesenchymal stem cells and, thereby, increased the expression of 

osteogenic genes.104 Wu and co-workers attached miRNA-29b and anti-miRNA-138 lipoplexes 

onto an MAO titanium implant and induced osteogenic differentiation in rat bone marrow 

mesenchymal stem cells.105 These studies suggest a novel tool for improving the 

osseointegration of implants and a method for delivering epi-drugs. 

 

Modifying surface structure to improve implant-bone interactions 

In implant therapy, promoting tissue integration, especially between bone and implant, is a 

primary goal. In this process, early attachment of epithelial cells and fibroblasts is important 

for making a seal around the implant to promote osseointegration and prevent bacteria from 

colonizing the implant surface.106,107 An important factor in the regulation of cell adhesion, 

migration, proliferation, and differentiation is the surface topography.108,109 Interestingly, cells 

grown on a stiff surface have transcriptionally active chromatin, while cells grown on a soft 

material have transcriptionally inactive chromatin (Figure 3).110  Using titanium discs with 

either smooth or rough surfaces, it was shown that surface characteristics influence not only 

DNA damage and the DNA repair pathway but also epigenetic factors.29 Total γH2AX-positive 

cells on rough titanium decreased in proportion over time, while such cells grown on smooth 

titanium did not. Rough titanium surfaces also induced more cytoplasmic staining of DNMT1 

and lower histone acetylation than smooth titanium.29 In addition, the methylation level of the 

ALP gene was lower in osteoblast cells grown on smooth titanium surfaces than in cells grown 

on modified titanium surfaces.88 Interestingly, surface decontamination using mechanical 

methods was found to further influence epigenetic markers.111 
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In a recent study, pre-osteoblastic cells were grown on titanium discs with various surfaces: 

machined, dual acid-etched, and acid-etched nanohydroxyapatite-blasted.112 

Nanohydroxyapatite-blasted discs had greater cell adhesion, more cell spreading, and lower 

apoptosis, likely due to its better absorption of protein from serum, an important early factor 

for cell adaption and attachment to the titanium surface. Nanohydroxyapatite also promoted 

intracellular signaling networks, important for cell-surface interactions.112 Changing a titanium 

surface’s nanostructure promoted adipocytes towards osteogenic differentiation,106,113 and 

altering the surface and the construction of titanium tubes induced periodontal regeneration and 

enhanced periodontal ligament structure.114,115 Adding a coating of OPG also increased early 

osteoblast differentiation and mineralization.109 

 

Many studies have also reported a correlation between changes in gene expression and different 

implant surfaces.63 The recently developed Zirconia implant surface was shown to induce a 

different level of expression of 10 miRNAs that were involved in the regulation of osteogenic 

and bone remodeling genes, such as BMPs.116 

 

Even though research on how surface topography and material energy affect the epigenome is 

still in its infancy, the present literature suggests that materials and nanotechnology can promote 

tissue regeneration and cellular functions, like attachment and osseointegration, via epigenetics. 

This role can be regulated by altering the titanium surface itself.  These findings illustrate the 

importance of understanding material “structures” as well as cellular functions in order to obtain 

the best outcome for periodontal regeneration.30 

 

Future concepts of epigenetics and inflammation 
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While epi-drugs may be potent against cancer, they have side effects. For peri-implantitis and 

bone regeneration, they may be avoided by instead using topography and material energy to 

induce changes in the epigenetic pattern of cells in contact with the implant or scaffold. 

 

Other methods may achieve the same goals. Recently, dietary substances as substitutes for epi-

drugs have received interest as potential treatment options. Nutritional components are known 

to induce changes in the epigenetic pattern, and the term “epigenetic diet,” or “epi-diet,” has 

been coined.117 So far, they have been studied mostly in relation to cancer,118 but the close 

association of inflammation, cancer, and epigenetics suggests the use for an epi-diet in the 

treatment of inflammatory diseases, too. The idea of diet as an epigenetic tool for the prevention 

of chronic diseases was discussed in a recent review.119 Since 2004, the term “immunonutrition” 

has described nutrients shown to influence the immune response toward an anti-inflammatory 

reaction.120 Epigallocatechin-3-gallate in green tea, polyphenols, and omega-3-polyunsaturated 

fatty acids in fatty fish were suggested to be anti-inflammatory as well as preventative of 

cancer.120 Interestingly, it has been suggested that the epigenetic pattern is more susceptible to 

changes in nutrition during times of inflammation and in ways that may be organ- or tissue-

specific.121 Recently, it was shown that TET enzymes and the 5hmC pathway were influenced 

by nutritional compounds such as vitamin C, and that microbiome-produced metabolites like 

folate also influenced enzymes regulating 5hmC.122 

 

Few studies on diet and inflammation are available, but there are studies on the effects of dietary 

compounds on the oral mucosa. Vegetarians and omnivores have different DNA methylation 

patterns in cells of the buccal mucosa.123 Curcumin is a compound with anti-inflammatory, 

wound-healing, and anti-cancerous properties and has been linked to both DNA methylation 

and histone acetylation.124 Recently, the influence of modified curcumin CMC2.24 was 
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investigated for its effect on periodontitis. Administration of CMC2.24 decreased inflammatory 

cytokines, MMPs, and alveolar bone loss in an experimental murine periodontitis model.125 It 

was suggested as an anti-inflammatory treatment model for periodontitis. 

 

Conclusions and future directions 

Evidence continues to emerge on the pathogenesis of periodontal and peri-implant diseases. 

While the host responses in both diseases share some similarities, their differences reflect the 

unique make-up of the tooth-periodontium and implant-alveolar bone biointerfaces. As such, 

we cannot translate all the protocols of one directly to the management of the other. More 

longitudinal clinical studies that monitor the progression of peri-implant diseases are necessary 

to better understand the triggers of the disease, its progression, and its epigenetic and other 

mechanisms. This information could allow us to stratify our patients by level of risk and manage 

them in a more personalized fashion based on their disease activity and lifestyles. 
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Figure legends. 

Figure 1. Comparison of the inflammatory lesions (ICT) of peri-implantitis and periodontitis, 

showing major histopathological features. 

 

Figure 2. The structure and modification of the nucleosome. The histone complex includes two 

copies each of histones H2A, H2B, H3, and H4, as well as a linker histone H1 that connects the 

nucleosomes. Along with DNA, these proteins form the primary chromatin structure. (A) 

Chromatin configuration and epigenetic regulation. (B) Crystal structure of Protein Data Bank 

ID 5B2I, showing the nucleasome, rendered in UCSF Chimera.126 (C) Transcriptionally active 

genes are associated with low levels of DNA methylation and high levels of histone acetylation. 

Figure adapted with permission from Larsson et al.9 

 

Figure 3. Surface characteristics and epigenetic patterns. (A) Cells grown on a soft material, or 

low-energy surface, have transcriptionally inactive chromatin, while (B) cells grown on a stiff, 

or high-energy, surface have transcriptionally active chromatin. (C) Contact with titanium 

activates the DNA damage pathway. Figure adapted with permission from Larsson et al.30  
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