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Abstract
DNA is the hereditary material that contains our unique genetic code. Since the first
demonstration of two-dimensional (2D) nanopatterns by using designed DNA origami
∼10 years ago, DNA has evolved into a novel technique for 2D and 3D nanopatterning. It
is now being used as a template for the creation of sub-10 nm structures via either ‘top-
down’ or ‘bottom-up’ approaches for various applications spanning from nanoelectronics,
plasmonic sensing, and nanophotonics. This perspective starts with an histroric overview
and discusses the current state-of-the-art in DNA nanolithography. Emphasis is put on the
challenges and prospects of DNA nanolithography as the next generation
nanomanufacturing technique.
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1. Introduction

Nanolithography, a technique for fabricating structures with at least one dimension
smaller than 100 nm, plays a vital role in various technological sectors such as
those involving semiconductors, optics, medicine, and energy harvesting. Further
advancements in the area of nanotechnology related applications, such as scaled-
down transistors, nanopores for biomolecule sensing, and nanogaps with tunneling
current for sensing, demand an efficient method for sub-10 nm nanolithography. In
the last few decades, several nanolithography techniques have been invented, such
as electron-beam lithography (EBL) [1], nanoimprint lithography [2], scanning
probe nanolithography [3], nanosphere lithography (NSL) [4], and block copo-
lymer nanolithography [5], but all of them exhibit certain limitations. For example,
the 5 nm ‘gate-all-around’ transistors newly introduced by IBM demonstrate a
40% enhanced performance or up to 75% power savings compared with the
currently used 10 nm transistors. However, the manufacture of the 5 nm chip relies
on extreme ultraviolet lithography (EUV), which is a prohibitively expensive
nanolithography technique, requiring a vacuum environment, costly photomasks
(produced by EBL with limited throughput), and strenuous equipment main-
tenance. For example, each EUV system developed by ASML costs ∼100million
USD and very few companies can afford it. Therefore, a simple, low-cost, and
scalable sub-10 nm nanolithography technique is required to overcome these
challenges and fulfill industrial needs. DNA origami, introduced by Paul Rothe-
mund in 2006, is a technique that involves folding of DNA strands [6]. Hundreds
of short single-stranded DNA oligonuceotides (less than 100-mer) known as
‘staple’ strands are designed to hybridize with a long-single-stranded DNA scaf-
fold to form two-dimensional (2D) or three-dimensional (3D) nanostructures.
Since its inception, the last decade has seen extensive research activities based on
DNA origami in the fields of biosensing [7], drug delivery [8], molecular analysis
[9], and nanofabrication [10]. Owing to the small dimension of the DNA helical
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chains (width <3 nm), the sub-10 nm dimension can be easily achieved by
designing the DNA structure suitably. In this perspective, we provide a review of
the state of the art in sub-10 nm patterning using DNA origami and discuss the
challenges and future prospects of this technique.

2. Recent advances in DNA nanolithography

2.1. Why DNA?

Before the discussion on DNA nanolithography, it is important to answer why the
use of DNA in nanolithography is unique. First, DNA is capable of folding into
arbitrary shapes, depending on complementary sequence recognition. Rothemund
showed that, nanoscale shapes and patterns can be controllably achieved with
DNA folding by engineering the chemical specificity (figure 1) [6]. In a typical
experiment, 100-fold excess of 200 short oligonucleotide ‘staple’ strands were
mixed with a 7000-mer virus M13mp18 single-stranded DNA in solution followed
by annealing from 95 to 20 °C in less than 2 h. A wide range of basic shapes, such
as squares, rectangles, stars, disks with three holes, triangles with rectangular
domains, and sharp triangles with trapezoidal domains were synthesized using this
technique, with a spatial resolution of 6 nm. Compared with other ‘top-down’ sub-
10 nm nanolithography, techniques such as EBL or helium ion lithography [11],
DNA nanolithography delivers a similar resolution at a much lower cost, and
unlike other ‘bottom-up’ techniques such as NSL, it enables facile creation of
sophisticated hierarchical patterns. Thus, the emerging technique of DNA origami
has the potential to make a significant impact in nanotechnology by providing
high-throughput, low-cost, high-resolution, and high-complexity patterning
capabilities.

2.2. Top-down approaches

In the top-down approach, the DNA structure is used as etch masks to transfer
nanoscale features onto underlying substrates, such as silicon oxide and graphene.
Diagne et al deposited a DNA origami mask with a hole of dimensions
9×14 nm2 on a SiO2 substrate (figure 2(a)) [12]. Then, anhydrous hydrofluoric
acid vapor was used to etch SiO2 using the DNA origami mask. An etching rate of
0.2 nm s−1 was achieved without damaging the DNA origami mask or removing it
from the substrate. After etching for 600 s, 20 nanometers of SiO2 was removed.
These results show that DNA origami can work as a negative resist layer for the
patterning of inorganic materials at the sub-10 nm scale [13]. DNA origami can
also be used as a dry etching mask for the patterning of graphene nanomeshes. For
example, Kang et al patterned DNA nanowire arrays by flow-assisted self-
assembly (figure 2(b)) [14]. Twenty seconds of oxygen plasma etching was used
to etch graphene nanoribbons. The DNA mask was then easily stripped using
environment-friendly deionized water and isopropyl alcohol (IPA). Although
conventional negative photoresist materials such as hydrogen silsesquioxane can
be used as an etching mask to pattern graphene, it is difficult to remove them after
the graphene patterning and a sacrificial interlayer is often required [15]. DNA
origami is environmentally friendly as it can be easily removed with water and
IPA, whichsimplifies the fabrication process. In addition, the newly introduced
flow-assisted self-assembly technique using a DNA mask can be used for large-
area (millimeter scale) nanofabrication, making it a scalable process.

2.3. Bottom-up approaches

In the bottom-up approach, DNA origami is used as building blocks to assemble
into nanostructures. The 3D patterning capability of DNA origami can also be
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used to fabricate plasmonic nanostructures with a gap size of less than 10 nm [16].
Zhan et al constructed 3D reconfigurable gold nanorod plasmonic nanostructures
with DNA origami, in which the two parallel double helices controlled the angle
of the DNA arms and the distance between the gold nanorods (figure 2(c)) [17].
Although other nanolithography techniques can also be used to create plasmonic
‘hot spots’ with a gap size of less than 10 nm, their throughput, resolution, and 3D
patterning capability are often limited. On the other hand, DNA nanotechnology
can be used to efficiently overcome these challenges. The precise organization of
nanostructures with sub-10 nm resolution can be achieved with DNA origami-
driven lithography. Gállego et al utilized thiol-modified ‘staple’ strands to
immobilize DNA origami at programmed positions [18]. After a denaturation step
with sodium hydroxide, only the modified strands remained on the gold surface,
and the unbound strands were rinsed off the surface. The modified strands were
further used to assemble gold nanoparticles with a sub-10 nm size. These results
suggest that highly ordered and arbitrary nanostructures can be patterned on a flat
substrate by chemically programming the DNA strands. In addition, all the pro-
cesses were conducted in solution phase, making them simple and easy to
implement.

3. Challenges and outlook

Even though the current state-of-the-art in DNA nanolithography is very
impressive, several challenges need to be addressed in order to move from the
nanofabrication stage to the nanomanufacturing stage [19]. Unlike lab-scale
nanofabrication, industry-scale nanomanufacturing requires a balanced solution
that addresses all aspects of market competitiveness, including scalability (ability
to pattern large areas), precision, mechanical/chemical stability, processing con-
ditions, cost, and compatibility with future nanomanufacturing technologies [20].
A market-ready sub-10 nm nanomanufacturing technology needs to be reasonably
scalable, precise, and reliable. DNA has the potential to bocome an ideal sub-

Figure 1. Schematic (top row), diagrams of the bending of helices (second row), and AFM images
(bottom two rows) of the DNA origami nanostructures. (a) square; (b) rectangle; (c) star; (d) disk
with three holes; (e) triangle with rectangular domains; (f) sharp triangle with trapezoidal domains
and bridges between them. Reprinted by permission from Macmillan Publishers Ltd: [Nature] [6],
copyright (2006).
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10 nm nanomanufacturing technology, although still facing several challenges
listed below.

3.1. Scalability

The length of the scaffold DNA is typically constrained within 100 nm, thus
limiting the scalability of the DNA nanolithography technique. One possible way
to improve the scalability is to combine DNA nanolithography with other types of
nanolithography techniques, such as dip-pen lithography [21], EBL [22], and
stencil lithography [23]. The schematic of a possible fabrication process is shown
in figure 3(a). Nanostencil lithography with a feature size between 10- and 100 nm
can be used to cover a large surface area, followed by assembly of surface-
modified DNA masks (sub-10 nm dimension) into the nanofeatures. After pat-
terning by plasma etching or thin film deposition, the nanostencil and DNA mask
can be removed. There is no apparent reason why this process can not be extended
to improve the scalability of DNA nanolithography. DNA nanostructures have
also been used as master templates to create polymer stamps with dimensions of
several tens of nanometers [24]. This approach is very useful for scalable and
flexible nanomanufacturing applications.

Figure 2. Recent advances of sub-10 nm patterning with DNA origami. (a) Pattern transfer from
DNA origami into SiO2 with a feature size of 9 nm×14 nm. Reprinted with permission from [12].
Copyright (2016) American Chemical Society. (b) Fabrication of nanoribbon-based field-effect
transistors (GNR-FETs) based on highly aligned DNA nanowire array-enabled lithography.
Reprinted with permission from [14]. Copyright (2015) American Chemical Society. (c)
Reconfigurable DNA origami tripod with gold nanorods. Reprinted with permission from [17].
Copyright (2017) American Chemical Society. (d) Sub-10 nm stamping lithography with DNA ink.
[18] John Wiley & Sons. .
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3.2. Precise placement

Many micro- and nanodevices face the challenge of patterning sub-10 nm struc-
tures at precise locations by nanolithography [25]. The combination of DNA
nanolithography with other ‘top-down’ nanolithography techniques is a possible
solution [26]. Recently, Gopinath et al utilized a two-step EBL process to pre-
cisely pattern DNA origami nanostructures onto photonic crystal cavities (PCCs),
which controls nanocavity emission and enables cavity amplification (figure 3(b))
[27]. Using this method, over 60 000 independently programmed PCCs with DNA
origami were demonstrated on a single chip. Another solution is to use a thiolated
DNA mask that can be self-assembled onto micro-and nanodevices with a
nanoscale resolution. Szymonik et al showed that a DNA bridge can be patterned
onto a nanogap electrode device [28]. This process is solely controlled by the
underlying patterned structure and does not require fine alignment. Suspended
DNA origami can also be fabricated usingthis method [29]. Perhaps the most
exciting aspects are that this process is biologically compatible, does not require
any precise alignment, and is a scalable technique. The current placement tech-
nique enables successfully positioning of single DNA origami at 94% of binding
spots with a ∼20 nm precision [30]. Other top-down nanolithography techniques
are able to achieve higher placement resolution (sub-10 nm), but only after very
meticulous and time-consuming alignment [31]. For example, good alignment in
EBL requires carefully designing the markers at the nanoscale using primary
electron beams [32]. For bottom-up techniques, the precision and accuracy tend to
degrade rapidly with the increasing length scales, which is undesirable for
nanomanufacturing [33]. For example, the placement precision could drop from
10 nm to 100 nm on decreasing the length scale from 100 nm to 10 nm in bottom-
up approaches [19]. We believe that the positioning resolution for DNA origami
will improve to the sub-10 nm scale on further optimizing the surface modifica-
tion [34].

Figure 3. Perspective of the DNA nanolithography techniques. (a) Improving the scalability with a
possible model of stencil lithography assisted DNA nanolithography. (b) Precise placement of DNA
origami on micro-and nanodevices. Reprinted by permission from Macmillan Publishers Ltd:
[Nature] [27], copyright (2016). (c) Improving the chemical and mechanical stability of DNA
structures. Reprinted with permission from [38]. Copyright (2016) American Chemical Society. (d)
Room temperature and in vitro stitching of DNA double strands with staple proteins. From [42].
Reprinted with permission from AAAS.
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3.3. Mechanical and chemical stability

In order to increase the etching selectivity and spatial resolution, the chemical and
mechanical stabilities of DNA must be improved [35, 36]. As metal etching masks
have a higher etching selectivity than many inorganic materials, Jin et al
demonstrated metallized DNA lithography by treating DNA with glutaraldehyde
to enable seeding with silver and then coated it with gold [37]. This process
dramatically improved the stability of the DNA mask and largely preserved its
original shape. Similarly, Zhou et al showed that programmably shaped carbon
nanostructures can be fabricated using a shape-conserving carbonization process
involving DNA while preserving its nanoscale topography (figure 3(c)) [38].
Because carbon materials are more stable at high temperatures and harsh envir-
onments, we anticipate more studies on utilizing stable nanomasks originating
from DNA in inorganic etching applications in the future. For example, it will be
exciting to see deep etching of silicon with a sub-10 nm dimension using DNA
nanolithography [39].

3.4. Anealling conditions

DNA nanostructures can potentially be used to manipulate the spatial arrangement
of molecules in biological systems. However, the assembly of DNA origami often
requires a high annealing temperature, which is not suitable for most living sys-
tems. For example, hybridization of complementary DNA strands requires that the
reagents be heated to 95 °C and then cooled down to room temperature [40]. This
annealing temperature is significantly higher than the physiological temperature
(37 °C) [41], thus preventing in vivo production of DNA strands. Recently,
Praetorius and Dietz showed that DNA templates can be folded using protein
‘staples’ to achieve sub-10 nm features (figure 3(d)) [42]. Transcription activator-
like effector proteins were used to fold a double-stranded DNA template into a
‘loop’ shape. In addition, there is the possibility of integration of functional
proteins that already exist in a living cell into hybrid nanostructures, with the
spatial arrangement being accurately controlled at the sub-10 nm scale. This
technique will be exploited for next-generation biofabrication applications.

3.5. Cost issues

The prospects of industrial use of DNA nanolithography depend on the costs
involved. The synthesis of ‘staple’ strands at the scale of ∼10 nmol typically costs
hundreds of US dollars, and processes, such as purification of the DNA strands
further increase the costs. This challenge can be addressed by in vivo production of
DNA strands. Elbaz et al showed that single-stranded DNA can be formed via
in vivo assembly [43]. This provides a route for large-scale production of DNA
strands, which can ensure the sustainability of DNA nanotechnology [44]. It is
expected that all DNA nanomasks can be assembled in vivo at physiological
temperature for sub-10 nm patterning in the future, eliminating extra assembly
procedures [45]. This could significantly reduce the costs and establish a key
technology that could replace extremely expensive and complicated lithography
systems [46].

3.6. Additive nanomanufacturing with DNA

Additive manufacturing is a rapidly developing technique for the production of 3D
structures [47]. However, they exhibit limitations pertaining to low resolution and
biocompatibility [47, 48]. On the other hand, DNA origami is biocompatible and
can provide a range of spatially addressable 3D configurations [49]. Recently,
Hong et al reported a novel method to construct multilayered wireframe DNA
nanostructures with well-controlled geometries and angles [50]. With continuous
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cost reduction in DNA synthesis, we believe that such non-parallel alignment of
3D scaffolds can be further used for sub-10 nm additive manufacturing.

4. Conclusion remarks

The future of DNA nanolithography is definitely bright. After 10 years of con-
tinuous improvement, DNA nanolithography is poised to generate unique
approaches for the patterning of nanostructures with sub-10 nm dimensions via
either ‘top-down’ or ‘bottom-up’ routes. This is evidenced by the enormous
increase in the number of publications related to DNA nanolithography over the
past few years. However, DNA nanolithography still faces several challenges that
need to be mitigated. We firmly believe that DNA nanolithography will continue
to evolve in capability and cost. When the applicability-related issues are
addressed, the technique of DNA nanolithography, with its capability to create
sub-10 nm arbitrary structures on an industrial scale, will undoubtedly be
revolutionary.
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