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Studies on the health effects of environmental mixtures face the challenge
of limit of detection (LOD) in multiple correlated exposure measurements.
Conventional approaches to deal with covariates subject to LOD, including
complete-case analysis, substitution methods, and parametric modeling of
covariate distribution, are feasible but may result in efficiency loss or bias. With
a single covariate subject to LOD, a flexible semiparametric accelerated failure
time (AFT) model to accommodate censored measurements has been proposed.
We generalize this approach by considering a multivariate AFT model for the
multiple correlated covariates subject to LOD and a generalized linear model for
the outcome. A two-stage procedure based on semiparametric pseudo-likelihood
is proposed for estimating the effects of these covariates on health outcome.
Consistency and asymptotic normality of the estimators are derived for an arbi-
trary fixed dimension of covariates. Simulations studies demonstrate good large
sample performance of the proposed methods vs conventional methods in real-
istic scenarios. We illustrate the practical utility of the proposed method with
the LIFECODES birth cohort data, where we compare our approach to existing
approaches in an analysis of multiple urinary trace metals in association with
oxidative stress in pregnant women.
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1 INTRODUCTION

In environmental studies, it is important to understand the impact of environmental mixtures on human health, via
exposures to food, air, water, consumer products, and others. A key challenge in statistical analyses is that exposure con-
centrations below limit of detection (LOD) in biological samples are not detectable (ie, left-censored). Thus, recovering
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the true effects of environmental mixtures, where multiple correlated exposures are subject to LOD, is of interest. For
example, in the LIFECODES cohort of women in the Boston area who planned to deliver at the Brigham and Women’s
Hospital between 2006 and 2008,1-3 researchers are interested in the relationship between 17 urinary trace metals and
8-isoprostane, an important oxidative stress marker for preterm birth, where trace metals and 8-isoprostane were mea-
sured at women’s third trimester of pregnancy. However, only three metals were fully measured, while the remaining 14
metals had 0.4% to 90.2% values below LOD among women with full term birth (Supplementary Table S8).

In the presence of LOD in a single covariate, a complete-case analysis, which excludes subjects with covariate value
below LOD, provides an unbiased estimator when the underlying outcome model is correctly specified, but may result
in loss of efficiency.4-6 An alternative approach is to use a substitution method, which replaces the values below LOD
with an arbitrary value, such as LOD, LOD/2, or LOD/

√
2. Such an approach is commonly used due to its simplicity but

may result in large biases.5,7 Richardson and Ciampi8 recommended replacing the value below LOD with the conditional
expectation. This approach requires an assumption on the left tail of the covariate distribution, which is unverifiable from
the observed data. Maximum likelihood approaches have also been proposed, under parametric assumptions on the cen-
sored covariate, for different types of outcome models, such as generalized linear model, Cox regression model or frailty
model, and for AUC comparison.4,5,9-12 Of course, these estimates can yield large biases when the parametric assumption
is misspecified. Recently, there has been work on semiparametric approaches to relax the distributional assumption for
the censored covariate. For instance, Kong and Nan13 proposed a semiparametric accelerated failure time (AFT) model
for the censored covariate with a generalized linear outcome model. Atem et al14 proposed a semiparametric imputation
approach based on a Cox model to impute the censored covariate under a linear outcome model. They further extended
the method to accommodate survival outcomes.15 Ding et al 16 proposed a semiparametric two-step importance sam-
pling imputation for the censored covariate based on a semiparametric AFT model with a generalized linear outcome
model.

In practice, there may be multiple correlated covariates subject to LOD, as discussed before in the LIFECODES study,
which could benefit from careful accommodation of the correlation structure between exposures. Many studies use impu-
tation methods for each individual covariate, which ignore the dependency between covariates. Maximum likelihood
approaches have also been proposed, given a parametric form of the joint distribution for the multiple censored covari-
ates. For example, May et al17 used a Monte-Carlo EM algorithm to obtain the estimates with a generalized linear outcome
model. Wu et al18 and Chen et al19 considered a Bayesian approach for a generalized linear outcome model and a Cox
outcome model. In addition, multiple imputation based on a distributional assumption for the censored covariates has
been explored by various authors.9,20-22 However, these methods all require parametric assumptions for the joint distribu-
tion of the multiple censored covariates, which can be difficult to specify in practice. An extension of the semiparametric
approach to multiple censored covariates based on maximum likelihood is unclear.

In this work, we adapt the semiparametric pseudo-likelihood technique in Kong and Nan13 to an arbitrary number
of covariates subject to LOD with a generalized linear outcome model. A two-stage procedure is proposed to recover the
coefficients in the outcome model. In the first stage, we fit a semiparametric multivariate AFT model for the censored
covariates and estimate the joint distribution of the error terms nonparametrically. We estimate the parameters of interest
in the second stage with the nuisance parameters estimated from the first stage plugged into the likelihood. We describe
the model and methods in Section 2, and establish the asymptotic properties in Section 3. Extensive simulations are
presented in Section 4 to evaluate the finite-sample performance of the proposed methods. We use the LIFECODES birth
cohort data to illustrate our method in Section 5, and conclude with remarks in Section 6.

2 METHODS

2.1 Likelihood framework with covariates subject to LOD

Consider a single response variable Y , q fully observed covariates X = (1,X1, … ,Xq)T , and p covariates subject to LOD,
Z = (Z1, … ,Zp)T , with corresponding known LOD values (LOD1, … ,LODp)T . Here we assume all LODs are lower limits
of detection but our method can be extended to upper limits or both for a single component. If Zj < LODj, a left-censoring
of Zj is observed. By applying a monotone decreasing transformation h−1

j (⋅), we can rewrite the left-censored covariate Zj
as a right-censored covariate Tj, where Zj = hj(Tj), LODj = hj(Cj) and Cj is the corresponding censoring value of Tj. Thus,
we observe Vj = min(Tj,Cj) and Δj = I(Tj ≤ Cj), j = 1, … , p. We further denote T = (T1, … ,Tp)T , C = (C1, … ,Cp)T ,
V = (V1, … ,Vp)T , 𝚫 = (Δ1, … ,Δp)T , and Z = {h1(T1), … , hp(Tp)}T = h∗(T).
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Assume that Y comes from an exponential family with density

f
𝜔,𝜙
(Y ) = exp

{
Y𝜔 − b(𝜔)

a(𝜙)
+ c(Y , 𝜙)

}
, (1)

where 𝜔 is the natural parameter, 𝜙 is the dispersion parameter, and a(⋅) and b(⋅) satisfy E(Y ) = 𝜇 = 𝜕b(𝜔)∕𝜕𝜔 and
var(Y ) = a(𝜙)𝜕2b(𝜔)∕𝜕𝜔𝜕𝜔T . Under a generalized linear model with a canonical link g, where E(Y ) = 𝜇 = g−1(𝜃TD) and
D = (XT

,ZT)T = {XT
, h∗(T)T}T , one can define the density of Y given X and T as f

𝜃,𝜙
(Y |X,T), substituting 𝜔 = 𝜃TD into

Equation (1). Here 𝜃 = (𝛽T
, 𝛾

T)T is the regression parameter of interest, where 𝛽(q+1)×1 and 𝛾p×1, correspond to X and
h∗(T), respectively. In this work, we focus on the canonical link g but note that any link function satisfying the regularity
conditions in Section 3 can be accommodated by our method.

For the ith subject, we denote Ti as the vector of the transformed censored covariates, T−ji as the vector where the jth
element is removed from Ti, and T−(j,k)i as the vector where the jth and kth elements are removed from Ti, j < k, and so
on for higher dimensions. Thus, the likelihood for the observed data (Yi,Xi,Vi,𝚫i) can be written as

Li(𝜃, 𝜙;Yi,Xi,Vi,𝚫i) = f
𝜃,𝜙
(Yi,Xi,Vi,𝚫i) ∝ f (Yi|Vi,𝚫i,Xi)f (Vi,𝚫i|Xi)

= {f
𝜃,𝜙
(Yi|Ti,Xi)fT(Ti|Xi)}

∏p
j=1Δji

×
p∏

j=1

{

∫

∞

Cj

f
𝜃,𝜙
(Yi|tj,T−ji,Xi)fT(t|Xi, t−j = T−ji)dtj

}(1−Δji)
∏

l≠j
Δli

×
p∏

j=1

p∏

k>j

{

∫

∞

Cj
∫

∞

Ck

f
𝜃,𝜙
(Yi|tk, tj,T−(j,k)i,Xi)fT(t|Xi, t−(j,k) = T−(j,k)i)dtkdtj

}(1−Δji)(1−Δki)
∏

l∉{j,k}
Δli

× · · · ×

{

∫

∞

C1

· · ·
∫

∞

Cp

f
𝜃,𝜙
(Yi|t,Xi)fT(t|Xi)dt

}∏p
j=1(1−Δji)

, (2)

where fT(t|X) is an unknown conditional joint distribution of T given X. The likelihood in Equation (2) is a product over
2p possible realizations of 𝚫, which will quickly get very large as p increases, and involves parameters 𝜃, 𝜙, and fT in a
complicated nonlinear form, which creates computational challenges. We notice that the parameters of interest 𝜃 are only
involved in the first part of each term in the product f

𝜃,𝜙
. Since there is no data to inform about the tail of the distribution

fT(t|X), a flexible multivariate model for T with minimal assumptions on the tails is desirable.

2.2 Semiparametric AFT model

We further assume a multivariate semiparametric AFT model for T = (T1, … ,Tp)T ,

Tj = h−1
j (Zj) = 𝛼T

j Xj + 𝜉j, j = 1, … , p, (3)

where Xj is a subset of the fully observed covariates X, 𝛼j is the corresponding coefficient in the AFT model for Tj,
j = 1, … , p, and 𝜉 = (𝜉1, … , 𝜉p)T follows an unknown joint distribution 𝜂, which is independent of X. For simplicity, we
assume a prespecified monotone decreasing function hj, such as hj(u) = −u and hj(u) = exp(−u), so that the linear rela-
tionship between Tj and Xj is valid. For brevity of notation, we set Xj = X, j = 1, … , p and 𝜶 = [𝛼1, … , 𝛼p]. We chose to
use this model specification for a couple reasons. First AFT model is widely used for modeling censored variables, without
assumptions about proportional hazards and allows a direct linear relationship with other covariates. Existing semipara-
metric estimators of AFT model without assumptions about the error distribution also makes this model robust. Second,
we allow fully observed variables X to contribute to the modeling of T, which is desirable in practice. For example, in the
LIFECODES data, we expect some baseline characteristics, such as maternal age, race, and BMI, to be related to some
urinary metal concentrations. Third, this model allows us to introduce correlation between covariates in Z, by sharing
X and allowing correlation in the error distribution 𝜂. We believe through jointly estimating these AFT models, we use
information more efficiently especially when some of the covariates are highly correlated. In a scenario where one of the
covariates suffers from high proportions of values below LOD, this model allows better estimate when there is another
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covariate in either Z or X that is highly correlated with it, comparing to when modeled individually with conventional
approaches.

Under this model specification, the log-likelihood for (Yi,Xi,Vi,𝚫i) can be further expressed as

log Li(𝜃, 𝜙,𝜶, 𝜂) =
p∏

j=1
Δji{ci(𝜶, 𝜂) + log f

𝜃,𝜙
(Yi|Ti,Xi)} (4)

+
p∑

j=1
(1 − Δji)

(
∏

l≠j
Δli

)

log

{

∫

𝜏j

Cj−𝛼T
j Xi

f
𝜃,𝜙
(Yi|sj + 𝛼T

j Xi,T−ji,Xi)𝜂(dsj, dsl = Tli − 𝛼T
l Xi,∀l ≠ j)

}

+
p∑

j=1

p∑

k>j
(1 − Δji)(1 − Δki)

(
∏

l∉{j,k}
Δli

)

× log

{

∫

𝜏j

Cj−𝛼T
j Xi
∫

𝜏k

Ck−𝛼T
k Xi

f
𝜃,𝜙
(Yi|sj + 𝛼T

j Xi, sk + 𝛼T
k Xi,T−(j,k)i,X)𝜂(dsj, dsk, dsl = Tli − 𝛼T

l Xi,∀l ≠ {j, k}

}

+ · · ·

+

{ p∏

j=1
(1 − Δji)

}

log

{

∫

𝜏1

C1−𝛼T
1 Xi

· · ·
∫

𝜏p

Cp−𝛼T
p Xi

f
𝜃,𝜙
(Yi|s1 + 𝛼T

1 Xi, … , sp + 𝛼T
p Xi,Xi)𝜂(ds1, … , dsp)

}

,

where ci(𝜶, 𝜂) only involves (𝜶, 𝜂) and is constant in 𝜃, and 𝜏j is a truncation value for the jth residual as defined in
Condition C5 in Section 3, j = 1, … , p. In practice, all residuals are finite with bounded 𝛼T

j X. While in theory 𝜏j should
be deterministic, we find that taking 𝜏j to be an arbitrary value larger than the empirical residuals for each term performs
well in the simulations in Section 4 and the data analysis in Section 5.

2.3 Two-stage pseudo-likelihood estimation

The full log-likelihood in Equation (4) involves complicated integration over 2p possible realizations of 𝚫. We recall that
the parameter of interest 𝜃 is only involved in f

𝜃,𝜙
, the first terms of each summation in Equation (4). We can thus treat

(𝜙,𝜶, 𝜂) as nuisance parameters, and estimate 𝜃 and (𝜙,𝜶, 𝜂) separately. To reduce complexity, we propose a two-stage
procedure by first estimating the nuisance parameters (𝜙,𝜶, 𝜂), and then estimating 𝜃 from the pseudo-likelihood with
(𝜙,𝜶, 𝜂) replaced by their estimates from the previous stage. The details of the procedure are as follows.

In Stage 1, the nuisance parameters (𝜙,𝜶, 𝜂) are estimated, with various approaches possible. The dispersion parame-
ter 𝜙 in the generalized linear model may be estimated using the complete cases only with any valid method of estimation
( ̂𝜙). The regression parameter 𝜶 in the AFT models can be estimated individually either by rank-based methods23-25 or
by least-squares approaches,26,27 with R packages rankreg and aftgee, respectively (𝜶̂). The joint distribution of the AFT
model residuals, 𝜂, may be estimated by applying a nonparametric multivariate Kaplan-Meier (K-M) estimator to the
estimated residuals ̂𝜉 = T − 𝜶̂TX, as introduced in Prentice and Zhao28 (𝜂̂

𝜶̂
). This nonparametric estimate is based on

decomposing a higher dimensional joint survivor function into lower dimensional survivor functions and a cross ratio.
For example, when p = 2, the bivariate survivor function S(𝜉1, 𝜉2) can be expressed as

S(𝜉1, 𝜉2) = S(𝜉1, 0)S(0, 𝜉2)
𝜉1∏

0

𝜉2∏

0
S(s1, s2)S(s−1 , s

−
2 )∕{S(s−1 , s2)S(s1, s−2 )}.

We plug in K-M estimators for S(𝜉1, 0) and S(0, 𝜉2) and empirical estimates for the cross ratio, and calculate 𝜂̂(𝜉1, 𝜉2) =
1 − ̂S(𝜉1, 0) − ̂S(0, 𝜉2) + ̂S(𝜉1, 𝜉2). Note that this estimator simplifies to the K-M estimator with p = 1 and the Dabrowska
estimator with p = 2.29,30

In Stage 2, we estimate 𝜃 from the log-likelihood with ( ̂𝜙, 𝜶̂, 𝜂̂
𝜶̂
) plugged in. This gives the log-pseudo-likelihood of

the observed data {Yi,Xi,Vi,𝚫i}n
i=1, defined by

log PL(𝜃) =
n∑

i=1
log Li(𝜃, ̂𝜙, 𝜶̂, 𝜂̂𝜶̂), (5)
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where log Li(⋅) is defined in Equation (4). The maximum pseudo-likelihood estimator ̂
𝜃 is obtained by solving

𝜕 log PL(𝜃)∕𝜕𝜃 = 0 via the Newton-Raphson algorithm where we set the initial value of 𝜃 from the complete-case analysis.

2.4 Consideration with high-dimensional data

Theoretically, the proposed method works for an arbitrary p-dimensions of covariates subject to LOD. However, in prac-
tice, the computational burden may be prohibitive as p increases. Specifically, there are two major hurdles: the estimation
of the p-dimensional joint distribution of AFT model error terms (𝜂) and the optimization of log PL(𝜃) which contains
2p − 1 integrals. Computational time can be shown to be of order np. Below we suggest some approaches to simplify the
computation.

First, we carefully preselect the covariates to be included in Z to reduce p. In practice, there may be a large number
of covariates subject to LOD at different levels, as in the LIFECODES data. Although it is desirable to process all these
variables with our proposed algorithm, it is most important to include covariates with 5% to 70% measurements below
LOD in Z when computational power is limited. For covariates with less than 5% measurements below LOD, a substitution
method with an appropriate replacement value is likely to introduce limited bias. For covariates with more than 70%
measurements below LOD, we recommend modeling them as dichotomized variables. Although this will lead to changes
in the interpretation of regression parameters, it is more reasonable than assuming an overall linear relationship when
most of the values are unobserved.

In a lower dimensional setting, calculating the nonparametric multivariate K-M estimation of the joint distribution 𝜂
is fast but the computational time increases rapidly as p increases. To reduce computational burden, we propose a naive
estimator of 𝜂 by making an independence assumption where 𝜂̂(𝜉1, … , 𝜉p) =

∏p
j=1𝜂̂j(𝜉j), and 𝜂̂j(𝜉j) is an estimate of 𝜉j

distribution such as a K-M estimate. This marginal approximation approach may result in a biased estimate of 𝜂 but in
practice, with moderate correlation between 𝜉j’s, the computational time is much shorter while the bias is reasonably
small, as suggested by simulation studies in Section 4. To illustrate the gains in computing speed, we present an example
with p = 3 and show the computational time using different estimators of 𝜂 in Figure 1A. We highlight that calculating the
trivariate K-M estimator for 𝜂 takes 30 minutes with n = 400 while calculating the marginal approximation takes 1 minute.
The difference in computational time can be much more significant with larger p. Thus, the marginal approximation
approach may be preferred in situations where the multivariate K-M estimator is computationally infeasible.

F I G U R E 1 (A) Computational time for estimating 𝜂 using the trivariate K-M and the marginal approximation at various sample sizes
when p = 3. (B) Computational time for maximizing of log PL(𝜃) using the trivariate K-M and the marginal approximation at various sample
sizes when p = 3
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Another computational challenge is in maximizing log PL(𝜃) over 𝜃 because of the 2p − 1 multiple integrals in the
expression. Due to using nonparametric estimates of 𝜂, these integrals are calculated empirically rather than analytically,
at each iteration of the Newton-Raphson procedure to estimate 𝜃. We noticed that the computational time increase dra-
matically with sample size n. In the example above with p = 3, the required time to estimate 𝜃 is less than 1 minute with
n = 100 but increases to 30 minutes with n = 400, regardless of the estimator of 𝜂 (Figure 1B). The computing time may
be acceptable for obtaining point estimates of the coefficients but may be impractical for bootstrap variance estimation
based on a large number of resampled datasets from the original data. Thus, we suggest using a reduced sample size
when performing the bootstrap variance estimation as described in Section 3. The variance estimator can be adjusted by
the ratio of sample sizes in the original data and the bootstrap sample. Asymptotically, this approach yields an unbiased
variance estimator and achieves substantial reductions in computing time.

We further propose to reduce computational time via the Monte Carlo (MC) integration when evaluating the 2p − 1
multiple integrals. The MC integration is a numerical integration procedure that approximates a definite integral by eval-
uating the integrand at a set of points that are selected randomly. Since we are assuming that the components of 𝜂 are
independent, the MC integration may be performed by sampling uniformly over the possible values of 𝜂. For the simu-
lation examples presented here, we randomly selected 100 000 points in 𝜂 whenever there were over 1 000 000 possible
values of 𝜂 (the integrand was evaluating at all possible values of 𝜂 when there were less than 1 000 000 possible values).
In the previous example with p = 3 and n = 400, by applying the MC integration to the estimation, the computational
time to estimate 𝜃 reduces significantly from 30 minutes to 20 seconds. Note that the MC integration was a multi-threaded
process (2 cores were available). These simulations were performed using R 3.6.1 on a 2.9 GHz PC with 2 cores and 16 GB
of RAM. With our experience, computational time is reasonable when we apply the marginal approximation approach
with the MC integration for the estimation, and using small sample size for the bootstrap variance estimation.

3 ASYMPTOTIC PROPERTIES

In this section, we establish the consistency and asymptotic normality of the pseudo-likelihood estimator ̂𝜃 which is the
solution to 𝜕 log PL(𝜃)∕𝜕𝜃 = 0. The asymptotic properties for the univariate case were shown in Kong and Nan.13 In our
work, the extension to arbitrary p-dimensional censored covariates involves nontrivial modifications of earlier proofs.
This occurs, in part, because of the complicated nature of PL(𝜃) and in part, because of the nonparametric estimation
of the joint distribution of the errors in the AFT models. The derivatives of log PL(𝜃) cannot be written analytically with
respect to 𝜂 and care is needed to properly account for “noise” introduced by the estimation of 𝜂.

Let  and  be the sample spaces of the response variable Y and the covariate X, respectively. Denote (Θ, , ) as
the parameter spaces of (𝜃, 𝜶, 𝜂). We redefine the design matrix D = {X1, … ,Xq, h1(T1), … , hp(Tp) }T in the regression
model as D(X,T), and let ̇hj(tj) = dhj(tj)∕dt and ̈hj(tj) = d2hj(tj)∕dt2

j , j = 1, … , p. Denote the marginal distribution of 𝜉j for
the jth AFT model associated with 𝛼j0 as 𝜂j,𝛼j0(sj), and its first and second derivatives as 𝜂̇j(sj) = d𝜂j,𝛼j0(sj)∕dsj and 𝜂̈j(sj) =
d2
𝜂j,𝛼j0(sj)∕ds2

j , j = 1, … , p. Let the derivative of the log-likelihood with respect to 𝜃 of n observations {Yi,Xi,Vi,𝚫i}n
i=1 be

Ψn(𝜃, 𝜙,𝜶, 𝜂) =
1
n

n∑

i=1
𝜓(Yi,Xi,Vi,𝚫i; 𝜃, 𝜙,𝜶, 𝜂), (6)

where 𝜓(⋅) is a random map for a single observation and is the derivative of (4) with respect to 𝜃. Replacing (𝜙,𝜶, 𝜂)with
( ̂𝜙, 𝜶̂, 𝜂̂) in (6), we have the pseudo-likelihood estimating equation Ψn(𝜃, ̂𝜙, 𝜶̂, 𝜂̂) = 0 where the solution is our proposed
estimator ̂𝜃. Denote Ψ(𝜃, 𝜙,𝜶, 𝜂) as a deterministic function, defined as

Ψ(𝜃, 𝜙,𝜶, 𝜂) = E{𝜓(Y ,X,V,𝚫; 𝜃, 𝜙,𝜶, 𝜂)}.

In addition, for a function f of a random variable W which follows a distribution P, we define

Pf =
∫

f (w)dP(w), Pnf = n−1
n∑

i=1
f (Wi), Gnf = n−1∕2(Pn − P)f ,

and p∗ as an outer probability. The regularity conditions are listed below:
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C1. X and Z are uniformly bounded.
C2. Ψ(𝜃, 𝜙0,𝜶0, 𝜂0) has a unique solution in 𝜃, 𝜃0.
C3. For any constant U < ∞, suptj∈[Cj,U] |hj(tj)| ≤ c0 <∞, suptj∈[Cj,U] |

̇hj(tj)| ≤ c1 < ∞, and suptj∈[Cj,U] |
̈hj(tj)| ≤ c2 <∞,

where c0, c1 and c2 are constants, j = 1, … , p.
C4. (i) 𝜂̇j(sj) and 𝜂̈j(sj) are bounded, and ∫ (d log 𝜂̇j(sj)∕dsj)2𝜂̇j(sj)dsj < ∞, j = 1, … , p; (ii) 𝜂0,𝜶0 is continuously differen-

tiable with bounded partial derivatives up to pth order.
C5. If 𝜶̂ is a n1∕2-consistent estimator of 𝜶0, ||𝜂̂

𝛼̂

(s1, … , sp) − 𝜂0(s1, … , sp)||→ 0 in outer probability p∗ and

sup
sj∈[Cj−c3j,𝜏j],j=1,… ,p

|𝜂̂
𝛼̂

(s1, … , sp) − 𝜂0(s1, … , sp)| = Op∗ (n−1∕2),

where sup
𝜶∈,x∈ |𝛼T

j x| = c3j < ∞, j = 1, … , p, and there exists a function m1(𝛼0, 𝜂0,X,V,𝚫) such that
√

n(𝜂̂
𝜶̂
−

𝜂0) = Gnm1(𝛼0, 𝜂0,X,V,𝚫) + op(1).
C6. a(𝜙) is a monotone function with bounded derivatives ȧ(⋅) and ä(⋅), satisfying that |1∕a(𝜙)| ≤ c4 < ∞ for a

constant c4.
C7. ̇b(⋅) is a bounded monotone function and ̈b(⋅) is a bounded Lipschitz function.
C8. Let  = {y ∈  , 𝜃 ∈ Θ, |1∕a(𝜙)| < c4, x ∈  , tj ∈ [Cj,U], j = 1, … , p}. There exist constants kj <∞, j = 1, … , 5,

such that (i) sup

|f
𝜃,𝜙
(y|t, x)[y − ̇b{𝜃TD(x,t)}]| ≤ k1; (ii) sup


|𝜕f

𝜃,𝜙
(y|t, x)∕𝜕𝜙| ≤ k2; (iii) sup


|
{
𝜕f
𝜃,𝜙
(y|t, x)∕𝜕𝜙

}

[y − ̇b{𝜃TD(x,t)}]| ≤ k3; (iv) sup

| 𝜕

(
f
𝜃,𝜙
(y|t, x)[y − ̇b{𝜃TD(x,t)}]

)
∕𝜕t| ≤ k4; (v) sup


|𝜕
(

f
𝜃,𝜙
(y|t, x)[y − ̇b{𝜃TD(x,t)}]

)
∕

𝜕𝜃| ≤ k5.
C9. (i) There exists constant truncation values 𝜏j < ∞ such that P(Vj − 𝛼T

j X > 𝜏j, j = 1, … , p|X = x) ≥ c5 > 0 for
all x ∈  and 𝜶 = [𝛼1, … , 𝛼p] ∈ ; (ii) There exist constants aj > 0 (for j = 1, … , p), ajk > 0 (for j > k =
1, … , p), … , a1···p > 0 and c6 > 0 such that

∫

𝜏j

Cj−𝛼T
j X

f
𝜃,𝜙
(Y |sj + 𝛼T

j X,T−j,X)𝜂(dsj, dsl = Tl − 𝛼T
l X,∀l ≠ j) ≥ aj,

∫

𝜏j

Cj−𝛼T
j X∫

𝜏k

Ck−𝛼T
k X

f
𝜃,𝜙
(Y |sj + 𝛼T

j X, sk + 𝛼T
k X,T−(j,k),X)

× 𝜂(dsj, dsk, dsl = Tl − 𝛼T
l X,∀l ≠ {j, k}) ≥ ajk,

⋮

∫

𝜏1

C1−𝛼T
1 X
· · ·
∫

𝜏p

Cp−𝛼T
p X

f
𝜃,𝜙
(Y |sj + 𝛼T

j X, j = 1, … , p,X)𝜂(ds1, … , dsp) ≥ a1···p

with probability 1 for any 𝜃 ∈ Θ, and |𝜙 − 𝜙0| + |𝜶 − 𝜶0| + ||𝜂 − 𝜂0|| < c6.

Condition C1 asserts the boundedness of covariates, which is often met in practice. Condition C2 is an iden-
tifiability condition, which ensures the consistency of the proposed estimator ̂

𝜃. We show that ̇Ψ(𝜃0, 𝜙0,𝜶0, 𝜂0) =
𝜕Ψ(𝜃, 𝜙0,𝜶0, 𝜂0)∕𝜕𝜃|𝜃=𝜃0 is negative definite under Condition C5 in the proof of Theorem 1, which implies that
̇Ψ(𝜃, 𝜙0,𝜶0, 𝜂0) is a continuous matrix of 𝜃 and also negative definite in a neighborhood of 𝜃0. This guarantees that 𝜃0 is

the unique solution of Ψ(𝜃, 𝜙0,𝜶0, 𝜂0) = 0 in a neighborhood of 𝜃0. Since the initial value in the algorithm is obtained
from the complete-case analysis, which is known to be n1∕2-consistent, the solution from the two-stage method should
also be in the same neighborhood and consistent. Condition C3 holds for many commonly used transformation func-
tions. Condition C4 is the usual assumption for multivariate AFT models. Condition C5 asserts that the estimator 𝜂̂

𝜶̂

is n1∕2-consistent and has a limiting normal distribution. The proofs are tedious for arbitrary p > 1 with generic 𝜶̂ and
𝜂̂
𝜶̂

. We state high level conditions which can be checked on a case by case basis. We note that condition C6 has been
proved for p = 1 and should also hold for p > 1 with n1∕2-consistent estimators for 𝜶0 and 𝜂0. Conditions C6 to C8 assert
the boundedness of various functions in the outcome model, which automatically hold for commonly used generalized
linear models. Condition C9 is for technical convenience, which can be obtained by truncating the response variable Y
such that |Y | ≤ M < ∞ for a large constant M, and then truncating the residuals in the AFT models with some constants
𝜏

′
j < 𝜏j, j = 1, … , p. In the simulation section, satisfactory results are achieved without implementing such truncation

steps.
Under the above regularity conditions, we establish the following theorem.
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Theorem 1. Suppose models (1) and (3) hold. Under the regularity conditions, the two-stage pseudo-likelihood estimator
̂
𝜃, satisfying Ψ( ̂𝜃, ̂𝜙, 𝜶̂, 𝜂̂

𝜶̂
) = 0, converges in outer probability p∗ to the true value, 𝜃0, and

√
n( ̂𝜃 − 𝜃0) converges weakly to a

Gaussian distribution with mean zero and covariance matrix Ω, given in the supplementary material.
To prove Theorem 1, we use the well-established Z-estimation theory in Nan and Wellner31 and generalize the proof

from p = 113 to an arbitrary p, with details in the supplementary material. Under the regularity conditions, it can be shown
that Ψ(𝜃, ̂𝜙, 𝜶̂, 𝜂̂

𝜶̂
) converges uniformly to Ψ(𝜃, 𝜙0,𝜶0, 𝜂0), where (𝜙0,𝜶0, 𝜂0) are the true values of (𝜙,𝜶, 𝜂), as n → ∞.

Thus, if 𝜃0 is the unique solution to Ψn(𝜃, 𝜙0,𝜶0, 𝜂0) in Θ, then ̂
𝜃 is consistent for 𝜃0. Via Lemma 2 in the supplementary

material, we have the asymptotic linear representation for n1∕2( ̂𝜃 − 𝜃0) which provides the asymptotic normality. The
variance matrix Ω is extremely complicated and cannot be derived analytically. We employ bootstrapping for variance
estimation and related inferences, which performs well in Section 4.

4 SIMULATION STUDIES

Extensive simulation studies were conducted to evaluate the finite-sample performance of the proposed methods. We first
present simulations with p = 2 and 10, followed by a simulation study motivated by the LIFECODES study. We focus on
continuous outcomes with linear outcome models here due to the length limitation of this paper. Simulation results with
binary outcomes were similar and can be found in the supplementary material. For simplicity, we restricted to a uniform
monotone decreasing transformation function hj(⋅) = h(⋅) for j = 1, … , p.

We started with p = q = 2. The two fully observed covariates (X1,X2)T were generated from Ber(0.5) and N(1, 1),
respectively. The two covariates subject to LOD, Z = (Z1,Z2)T , were generated from Z1 = h(T1) and Z2 = h(T2), where

Tj = h−1(Zj) = 𝛼T
j X + 𝜉j, for j = 1, 2,

and 𝛼1 = (−0.25,−0.5,−0.25)T , 𝛼2 = (−0.25,−0.25,−0.5)T , and (𝜉1, 𝜉2)T followed a bivariate distribution 𝜂. The outcome Y
was generated by Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝛾1Z1 + 𝛾2Z2 + 𝜖, where 𝛽0 = 𝛽1 = 𝛽2 = 𝛾1 = 𝛾2 = 1 and 𝜖 ∼ N(0, 1). To evaluate
the proposed method under different scenarios, we considered two transformation functions h(⋅) and two joint distribu-
tions 𝜂: h(t) = −t (ie, Tj = −Zj) or h(t) = exp(−t) (ie, Tj = − log(Zj)), and 𝜂 = MVN{(0, 0)T ,Σ1} (multivariate normal) or
𝜂 = 0.5MVN{(0, 0)T ,Σ1} + 0.5MVN{(0, 0)T ,Σ2} (a mixture of multivariate normals), where

Σ1 = 1∕42

(
1 𝜌

𝜌 1

)

and Σ2 = 1∕82

(
1 𝜌

𝜌 1

)

and 𝜌 = 0.5. Furthermore, LODj was chosen to have 25% or 50% marginal censoring rate for j = 1, 2 with overall censoring
rate around 40% or 70%, respectively. We generated samples with size 200 or 400, and repeated 1000 times.

For each simulated dataset, we implemented eight methods: analysis using the full data, complete-case analysis, sub-
stitution methods with three replacement values (LOD, LOD/

√
2, LOD/2) and three versions of our proposed two-stage

approach. We used either rank-based method with Gehan weight24,25 or by least-squares approaches or least-square
method26 to fit the semiparametric AFT models, and then estimated 𝜂 with bivariate K-M estimator. We also employed
the two-stage approach with marginal approximation by naively estimating 𝜂 as a product of marginal distributions. The
estimates of 𝜶 using either rank-based or least square based methods were similar. Thus, we only presented the results
for the two-stage approach with marginal approximation using rank-based method for 𝜶 in this paper.

For each method, we computed the average bias, empirical standard error, mean of estimated standard deviations,
and coverage rate of 95% confidence intervals (CI) for the regression parameter of interest, 𝜃 = (𝛽T

, 𝛾

T)T . For the proposed
methods, we performed 200 bootstrap replicates with sample size equal to the original sample size to estimate the standard
deviation. For the full data analysis, the complete-case approach and three substitution methods, the estimated standard
deviations were obtained from the regression model. The simulation results for the scenario where Tj = − log(Zj) and
𝜂 = MVN{(0, 0)T ,Σ1} were given in Table 1. Results for the other scenarios are similar (Supplementary Tables S1-S3).

Substitution methods tended to yield biased estimates for regression parameters of both partially observed Z and
fully observed X, and biases increased as censoring rates increased. Complete-case analysis and two-stage approaches
with bivariate K-M estimator both gave small biases, while the two-stage approach with marginal approximation yielded
slightly larger biases as expected. In addition, the empirical standard errors with the proposed approaches were smaller
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than those for complete-case approach and only slightly larger than using the full dataset, which implied efficient use
of data. Mean estimated standard deviations were close to the empirical standard errors with all approaches. The cov-
erage rates could be very different from the nominal level with substitution methods, while at the nominal level for all
three versions of our proposed approach. We explored the proposed method for smaller sample sizes (n = 50 and 100)
and found similar patterns as with n = 200 and 400 when comparing across all the methods. All three versions of our
proposed method had some slightly larger biases with smaller sample size but biases decreased as sample size increased,
and coverage probabilities always remained close to 95% (Supplementary Table S4).

We further evaluated the influence of using the marginal approximation compared to using bivariate K-M estima-
tor for 𝜂 under different strengths of correlation. We fixed Tj = − log(Zj), 𝜂 = MVN{(0, 0)T ,Σ1}, marginal censoring rate
at 50%, sample size 400, while varying 𝜌 as 0.25, 0.5 or 0.75, where the corresponding correlation between Z1 and Z2
was 0.66, 0.73, or 0.80. The results were given in Table 2. The average bias using the two-stage marginal approach
tended to be larger when 𝜌 increased but still performed reasonably well even with 𝜌 = 0.75 and these biases were
much lower than using substitution methods. The coverage rates were close but slightly below the nominal level as
𝜌 increased. This implied that the independence assumption may affect the results when 𝜌 was large and the cen-
soring rates were high, but all three versions of our proposed approach still performed much better than substitution
methods.

When the dimension of Z is greater than 3, the computational burden becomes more severe. As discussed in
Section 2.4, we recommend using the two-stage approach with marginal approximation and MC integration, and a
smaller sample size in bootstrap variance estimation. Here, we presented a simulation with p = 10 to show the perfor-
mance. Considering two fully observed covariates X = (1,X1,X2)T where X1 ∼ Ber(0.5) and X2 ∼ N(1, 1), we generated
ten left-censored variables Z = (Z1, … ,Z10)T with Zj = h(Tj) = −Tj for j = 1, … , 10, by

T = 𝜶TX + 𝜉,

where T = (T1, … ,T10)T ,

𝜶 = [𝛼1, … , 𝛼10] =
⎡
⎢
⎢
⎢
⎣

−0.2 −0.35 −0.3 −0.25 −0.4 −0.25 −0.3 −0.25 −0.35 −0.25
−0.5 −0.25 −0.5 −0.25 −0.5 −0.25 −0.25 −0.25 −0.25 −0.25
−0.25 −0.5 −0.25 −0.25 −0.25 −0.5 −0.25 −0.5 −0.5 −0.25

⎤
⎥
⎥
⎥
⎦

,

and (𝜉1, … , 𝜉10)T ∼ 𝜂 = MVN{(0, … , 0)T ,Σ} with

Σ = 1∕22

⎛
⎜
⎜
⎜
⎝

R1 0 0
0 R2 0
0 0 R3

⎞
⎟
⎟
⎟
⎠

.

Here R1 and R3 were 3 × 3 correlation matrices with all off-diagonal entries as 0.25 and 0.75, respectively, and R2 was
a 4 × 4 correlation matrix with all off-diagonal entries as 0.5. This mimicked a practical situation that there was natural
grouping of exposures, where exposures were correlated within groups but independent between groups. We let Y =
𝛽

TX + 𝛾TZ + 𝜖, where all elements in 𝛽 and 𝛾 were set as 1 and 𝜖 ∼ N(0, 1). The marginal censoring rate was set as 20%
for all Zj with an overall censoring rate around 64%. We generated data with sample size 400 and repeated the simulation
1000 times.

For each simulated dataset, we implemented six methods: analysis with the full data, complete-case approach,
substitution methods with three replacement values (LOD, LOD/

√
2, LOD/2), and our proposed two-stage approach

with marginal approximation. For our proposed two-stage approach with marginal approximation, the MC integra-
tion was applied to the estimation, and the standard deviations were estimated using 200 bootstrap replicates each
with sample size 100, and then adjusted by a factor of 2. The results are shown in Table 3. Compared to substi-
tution approaches, the two-stage approach performed well across regression coefficients for each covariate but had
some remaining bias for the intercept, which was likely due to the independence assumption. Further increasing the
sample size helped to reduce this bias (results not shown here). The two-stage marginal method was also more effi-
cient than the complete-cases analysis with smaller standard errors. The adjusted bootstrap standard deviations were
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slightly larger than the empirical standard errors. One way to improve the estimate of standard deviation was to use
original sample size 400 in the bootstrapping. The computing time for each bootstrap replicate with sample size 100
and 400 were 15 and 90 seconds, respectively. Considering the massive reduction in computational time with sam-
ple size 100, the variance estimation results were acceptable, with reasonable coverage probabilities for 95% CI. We
also considered a scenario for Zj = h(Tj) = exp(−Tj), j = 1, … , 10 and found the results to be similar (Supplementary
Table S5).

Another solution we suggested for reducing the computational time under high dimensional covariates subject to
LOD is to carefully choose the covariates to be included in Z, while treating the other covariates subject to LOD either as
binary or using substitution values. We conducted a simulation based on the LIFECODES data to investigate the perfor-
mance of the proposed method with this preselection. In this simulation, we bootstrapped the fully observed demographic
variables: baseline maternal age, race, education, insurance, prepregnancy BMI, and gestational age and specific gravity
at the third trimester visit, with sample size n = 252, and generated the 17 metal values through AFT models within each
bootstrapped sample plus an error term from a multivariate normal distribution with variance range from 0.05 to 1.00),
and correlation range from −0.07 to 0.70, as estimated from the LIFECODES dataset. The outcome Y was simulated with
a linear regression on both the demographic variables and the metals. The regression coefficients for both the AFT mod-
els and the outcomes were from data analysis results in Section 5. As mentioned before, of the 17 metals, only 3 were fully
observed, and 3 had less than 5% of values below LOD, which were substituted by LOD/

√
2. Four other metals had more

than 70% of values below LOD, and they were dichotomized to indicator variables of whether above LOD or not (0: below
LOD; 1: above LOD). The LOD value for each metal was set to have the similar percentage of values below LOD for the
metal in the real data, by generating the corresponding metals with a massive sample size and calculating the percentiles.
We applied five methods, including complete-case approach, substitution methods with three replacement values (LOD,
LOD/

√
2, LOD/2), and our proposed two-stage approach with marginal approximation, to analyze 1000 simulated data

sets, and results were given in Supplementary Table S6. We noticed the results were consistent with the previous simula-
tions, under this more practical simulation setting. Our proposed method was subject to limited biases for all the metals,
no matter if they were included in Z or not, and the efficiency was improved as compared to the complete-case analysis.
In this setting, the substitution methods performed reasonable for most covariates, but the performance was less stable
than our proposed method, with some large biases and low coverage probabilities.

5 DATA ANALYSIS

We illustrate our proposed method with data from the LIFECODES birth cohort1,3,32 of women delivered at the Brigham
and Women’s Hospital in Boston, MA, during 2006 to 2008.We focus on a subset of 252 women who delivered full
term and had urinary trace metal measurements at their third trimester, to explore the linear relationship between
17 urinary trace metals (arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), copper (Cu), chromium (Cr), mer-
cury (Hg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), tin (Sn), thallium (Tl), uranium
(U), tungsten (W), and zinc (Zn)) and a urinary oxidative stress biomarker, 8-isoprostane. Among these metals, only
3 (As, Mo, Zn) were detected in all samples, 3 (Se, Ba, Mn) had less than 5% measurements below LOD, 7 (Sn,
Hg, Cu, Ni, Tl, Pb, Cd) had 5% to 70% values below LOD, and 4 (W, Cr, U, Be) had more than 70% values below
LOD (Supplementary Table S8). For the four metals with heavy censoring, we dichotomized them into binary vari-
ables: 1 if observed; 0 otherwise. Thus, the overall censoring rate of all metals was 65.3%. We further log transformed
the concentration of the 13 continuous metals and 8-isoprostane for normality. Pairwise correlations between the
13 log-transformed continuous metal concentrations were between −0.13 and 0.79 based on complete data (Supple-
mentary Figure S1), and correlation between the four binary-type metals were between 0.10 and 0.41. In a previous
analysis, Kim et al32 found five metals (Se, Mn, Cu, Tl, Be) to be associated with 8-isoprostane while adjusting for
demographic covariates and replacing values below LOD with LOD/

√
2 in the 13 continuous metals concentrations

and 8-isoprostane, with a nested case-control cohort of 92 women who delivered preterm and 269 women who deliv-
ered full term. Here, we present a reanalysis of this dataset but restricting to women delivered full term with detected
value in 8-isoprostane and fully observed demographics variables, while accounting for the LOD issue in the metal
measurements.

Here we considered the 7 metals with 5-70% values below LOD as Z (p = 7). We further replaced the values below LOD
in Se, Ba, and Mn by their corresponding LOD/

√
2 and included them as fully observed variables X, together with the 3
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fully observed metals, 4 binary metals, and baseline demographic variables. Specifically, demographic variables included:
baseline maternal age, race, education, insurance, prepregnancy BMI, and gestational age and specific gravity at the third
trimester visit (Supplementary Table S9).

Results with complete-case analysis, substitution method with LOD/
√

2 for all continuous metals, and our pro-
posed two-stage approach with marginal approximation, are summarized in Table 4. We observe that 8-isoprostane
increases as Mn and Cu increase, and as Tl decreases with the substitution method ( ̂𝜃: 0.121, 0.536, −0.180, respec-
tively) and our proposed two-stage approach performed similarly while Tl is marginally significant ( ̂𝜃: 0.116, 0.579,
−0.110, respectively). This generally agrees with Kim et al.32 Pairwise correlations between the residual terms in the
7 AFT models were between −0.045 and 0.372 (Supplementary Figure S2) suggesting the two-stage marginal approx-
imation approach is reasonable. Instead, the complete case analysis identified Zn, Ba, Cu, and Tl to be significantly
associated with 8-isoprostane. Although complete-case analysis is unbiased in theory, the results could be unreliable in
practice due to small sample size (n = 83 in this analysis). The estimated standard deviations from the two-stage marginal
approximation approach are much smaller than those from the complete-case analysis which suggests efficiency gain.
In this analysis, point estimates for metals with our proposed method are relatively similar to those from the substitu-
tion method, which suggests the choice of LOD/

√
2 is not bad. However, in other applications, it may not be the case

and could be challenging to decide “the most appropriate” for the replacement value due to lack of observations below
LOD.

We did another analysis by further including Se, Ba, and Mn in Z (p = 10), to understand if we gain additional
information. Results are similar to those in the previous analysis (Table 4): Mn, Cu, Tl are significantly associated with
8-isoprostane ( ̂𝜃: 0.118, 0.628, −0.144, respectively). This comparison shows that the substitution of the three metals (Se,
Ba, Mn) has a minimal impact on the results since only 10 women were affected.

T A B L E 4 Results of the estimated coefficients and 95% confidence intervals for the 17 metals in 8-isoprostane analysis

Estimate (95% confidence interval)

Metal <LOD% Complete cases (n = 92) LOD/
√

2 2-Stage (marg)-p7 2-Stage (marg)-p10

As 0 −0.081 (−0.228, 0.067) −0.039 (−0.123, 0.045) −0.003 (−0.109, 0.103) 0.002 (−0.101, 0.106)

Mo 0 −0.110 (−0.406, 0.185) 0.046 (−0.108, 0.199) 0.058 (−0.126, 0.242) 0.043 (−0.117, 0.203)

Zn 0 −0.296 (−0.576, −0.015)* −0.052 (−0.193, 0.088) 0.005 (−0.154, 0.164) 0.033 (−0.110, 0.177)

Se 0.4 0.266 (−0.226, 0.757) 0.113 (−0.169, 0.396) 0.305 (−0.026, 0.635) 0.173 (−0.087, 0.434)

Ba 1.6 −0.291 (−0.521, −0.061)* −0.017 (−0.122, 0.089) 0.039 (−0.066, 0.143) 0.035 (−0.129, 0.199)

Mn 2.0 0.036 (−0.124, 0.196) 0.121 (0.021, 0.221)* 0.116 (0.003, 0.229)* 0.118 (0.006, 0.231)*

Sn 5.6 0.074 (−0.074, 0.222) 0.050 (−0.030, 0.130) 0.004 (−0.090, 0.098) 0.007 (−0.084, 0.099)

Cu 6.7 0.544 (0.038, 1.049)* 0.536 (0.279, 0.794)* 0.579 (0.337, 0.821)* 0.628 (0.314, 0.941)*

Hg 8.3 −0.125 (−0.306, 0.057) 0.073 (−0.015, 0.160) 0.076 (−0.046, 0.198) 0.106 (−0.021, 0.234)

Ni 13.9 0.364 (−0.030, 0.759) −0.041 (−0.197, 0.116) 0.026 (−0.162, 0.214) 0.056 (−0.153, 0.266)

Tl 15.5 −0.250 (−0.541, 0.040) −0.180 (−0.273, −0.088)* −0.110 (−0.230, 0.011) −0.144 (−0.275, −0.012*)

Pb 25.8 0.274 (0.011, 0.537) 0.028 (−0.081, 0.138) 0.052 (−0.087, 0.191) 0.040 (−0.087, 0.166)

Cd 58.3 0.131 (−0.081, 0.343) 0.014 (−0.110, 0.137) −0.029 (−0.160, 0.101) −0.034 (−0.160, 0.092)

W 79.4 −0.032 (−0.347, 0.282) −0.104 (−0.310, 0.102) −0.108 (−0.376, 0.160) −0.088 (−0.356, 0.179)

Cr 88.1 −0.201 (−0.534, 0.132) −0.135 (−0.397, 0.127) −0.041 (−0.339, 0.257) −0.140 (−0.434, 0.154)

U 89.3 0.143 (−0.276, 0.562) 0.171 (−0.138, 0.480) 0.128 (−0.207, 0.463) 0.153 (−0.228, 0.535)

Be 90.1 0.066 (−0.359, 0.490) −0.207 (−0.510, 0.096) −0.198 (−0.579, 0.183) −0.214 (−0.540, 0.112)

Note: Implemented methods including complete-case approach, substitution method with LOD/
√

2 as the replacement value and two-stage approach with
marginal approximation for p = 7 or 10 (2-stage (marg)-p7, 2-stage (marg)-p10). Estimated standard deviations were from bootstrap for the proposed method
and from regression for complete-case approach and substitution method.
*Result for this metal is significant.
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6 DISCUSSION

We proposed a two-stage semiparametric approach to carefully address the issue of multiple covariates subject to LOD in
a generalized linear outcome model. Substitution method, although convenient to use in practice, could result in large
biases if the value is not a good representation of the left-tail of the distribution. Our proposed method, instead, provides
unbiased results by estimating the joint distribution of the censored covariates semiparametrically. While our proposed
approach is computationally challenging when the number of covariates subject to LOD is large, we suggested several
solutions which ease the computational burden for practical usage. In addition, we recommended using our proposed
method to the covariates with censoring rates between 5% and 70%, while applying the substitution method to the covari-
ates with very low censoring rates and dichotomize covariates with heavy censoring rates. Although the magnitude and
interpretation for the corresponding coefficients may be biased, the directions of their effects keep the same. Our simu-
lation studies with large p suggested reasonable computational time and appropriate performance when applying these
solutions.

Consistent estimation of the coefficients in the semiparametric AFT model can be obtained using either a rank-based
or least-square approach. The least-squares approach requires longer computing time. For example, when p = 5, q = 2,
and n = 400, the rank-based method requires 3 seconds in the estimation of AFT parameters but the least square
approach needs 1 minute (Supplementary Table S10). Thus, we recommend conducting the rank-based method if p
is considerably large and the AFT model involves many fully observed covariates. Furthermore, for the estimation of
the joint distribution of residuals in the AFT models, the marginal approach which assumes independence is conve-
nient to compute for high dimensional p but may provide biased results in the intercept term when strong correlations
between covariates exist. A possible way to improve the marginal approach is to consider the pairwise correlation in
the joint distribution which allows some dependence and use the composite pairwise likelihood approach for the joint
distribution.

A number of methodologic extensions are of interest. Our approach is readily applicable when there are higher orders
of covariates in the outcome model given the AFT models hold. Such approach can also be applied to explore the interac-
tion between these covariates. In addition, variable selection for high-dimensional covariates subject to LOD is important
in model building and is under investigation. The use of non-generalized linear models, such as survival regression and
quantile regression, would be practically useful. Adaptation of the proposed two-stage methods to such settings is a topic
of future research. Furthermore, the proposed methods are not directly applicable to case-control and case-cohort designs,
where covariates are sampled conditionally on outcome status. Such designs are commonly employed when covariates
are expensive to measure, which is important for further exploration. Finally, the topic of appropriately handling LOD is
of particular interest in environmental mixture analysis, due to the potentially high correlation between components in
the mixture. Our approach makes full use of the dependency between these environmental exposures to improve accuracy
and efficiency, while do not make strict assumptions about their joint distribution. Although motivated by environmen-
tal mixture analysis, the proposed methods are generally applicable to any biomarker studies that may have multiple
correlated biomarkers subject to LOD.
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