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Abstract

Background: Personal characteristics (e.g., race/ethnicity, gender, and precollege

experiences) are known to shape students' pathways to engineering, as well as

persistence decisions in college. However, the role of psychological cost in post-

graduation intentions has received less scholarly attention.

Purpose: The purpose of this study is to examine sociocognitive factors that

shape students' postgraduation intentions in the early college years. Guided by

Social Cognitive Career Theory and the concept of psychological cost, we

examine the role of self-efficacy beliefs, outcome expectations, and psycholog-

ical cost, as well as key background characteristics, in students' postgraduation

intentions.

Method: We analyzed survey responses from four cohorts of undergraduate

engineering students at a large public university. Participants responded to

items measuring self-efficacy beliefs, outcome expectations, and psychological

cost after their first and second years of college. We used structural equation

modeling to examine the relationships between the sociocognitive variables

and students' graduate school and career intentions.

Results: The sociocognitive variables predicting postgraduation intentions

after Year 1 differed from those predicting intentions after Year 2. After Year

1, we found no statistically significant sociocognitive variables predicting

graduate school intentions or engineering career plans. After Year 2, both self-

efficacy and outcome expectations were significant predictors of postgraduation

intentions. The psychological cost was significantly related to both self-efficacy

and outcome expectations. Finally, we found significant differences in racial/

ethnic identity, sex, and first-generation status.

Conclusion: Examining psychological cost provides additional insights into

the factors informing students' postgraduation intentions over the course of

their collegiate careers and suggests new directions for research on students'

thinking about engineering careers.
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1 | INTRODUCTION

As policymakers remain concerned about the difficulty of recruiting students into science and engineering fields and
educators continue to search for effective strategies for recruiting and retaining women and students of color,
researchers seek to understand the antecedents of students' decision-making regarding careers in the science, tech-
nology, engineering, and math (STEM) fields. In engineering, the search for effective levers intensified as several
national reports (e.g., National Academy of Sciences, National Academy of Engineering, & Institute of Medicine, 2007;
President's Council of Advisors on Science and Technology, 2012) sounded alarms about the threat of unmet workforce
needs and the prospect of diminished US competitiveness in global markets. More recently, rising concerns about edu-
cational inequities have fueled studies to identify—and potentially ameliorate—cultural and climate-related barriers to
engagement in engineering experienced by minoritized students. We use the term minoritized rather than “minority” to
refer to social groups that are devalued and receive less access to resources. Whereas the term minority has traditionally
been used to reference structural diversity—the number of people of a given group represented in a particular setting or
context—the term minoritized acknowledges “the active dynamics that create the lower status in society, and also to
signal that a group's status is not necessarily related to how many or few of them are in the population at large”
(Sensoy & DiAngelo, 2012, p. 32).

To understand how students decide to pursue STEM careers and majors, many scholars have used achievement
motivation frameworks (e.g., Jones et al., 2014; Perez et al., 2019; K. N. Smith & Gayles, 2017) or Social Cognitive
Career Theory (SCCT) (Lent & Brown, 2019) to examine sociocognitive factors that influence engineering students'
career plans (e.g., Byars-Winston et al., 2010; Lent et al., 2008). These studies have paid particular attention to the influ-
ence of positive motivational factors such as individual interests to explain students' decisions to pursue a particular
career; however, this perspective can lead scholars to overlook the negative reasons why students might decide against
pursuing a given major or career. In fact, there is empirical evidence to suggest that perceived costs of career choice are
related to students' motivational beliefs and persistence in engineering (e.g., Robinson et al., 2019). Yet, as Perez et al.
(2014) have indicated, scholars have paid much less attention to perceived costs in studies of STEM interest. Under-
standing the role of negative drivers of decision-making is perhaps more important in a field often characterized as
competitive and challenging (Hurtado et al., 2010; Perez et al., 2014), as well as unwelcoming to minoritized students
(Cheryan et al., 2017).

Published research (e.g., Lichtenstein et al., 2009; Ro, 2011) as well as our research team's qualitative analyses of
interviews with STEM undergraduates (Mosyjowski et al., 2019), further suggest that career thinking is not a decision
that occurs at a singular moment in time, but rather an evolving process influenced by a number of factors during the
undergraduate years, such as curricular, cocurricular, and nonacademic experiences. Relatedly studies of career inten-
tions have shown that a sizeable percentage of undergraduate students are unsure about pursuing engineering careers
or have definitely ruled them out (Lichtenstein et al., 2009; Margolis & Kotys-Schwartz, 2009). Further research is,
therefore, necessary to understand what factors influence students' career thinking at different points during their
undergraduate years.

Taken collectively, study findings in engineering and STEM indicate that fostering interest and self-efficacy in engi-
neering might not be sufficient to ensure students pursue engineering careers after graduation. Moreover, given find-
ings that suggest the tenuous and potentially fluid nature of undergraduate engineers' plans to pursue careers in
engineering, we sought to understand why, as Lichtenstein et al. (2009) noted, “an engineering degree does not (neces-
sarily) an engineer make” (p. 227). Thus, in this study, we examine self-efficacy, outcome expectations, and psycholog-
ical cost in Years 1 and 2 of college as they relate to students' career intentions. Recognizing that the pursuit of
graduate education in engineering may also be a precursor to an engineering career, we also consider whether these
same potential antecedents affect graduate study plans in engineering. Our goal is to identify not only the positive influ-
ences on career and graduate study intentions, but also the possible role that negative motivators, specifically perceived
psychological costs, play in those intentions in the first 2 years of college.
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We focus our attention on Years 1 and 2 of the undergraduate engineering experience since existing research sug-
gests the sources of attrition in Years 1 and 2 might differ markedly from the sources of attrition during Years 3 and
4. Initially, first-year and second-year attritions appear to be a high point of attrition in engineering (Chen, 2013;
Concannon & Barrow, 2009), where coursework may be perceived to be gatekeeper courses for engineering students
(Chen, 2013). Moreover, Atman et al. (2008) argued that students leave engineering because they have “little vision into
engineering in the first two years when they are taking math and science courses outside of engineering departments”
(p. 3). A focus on these first 2 years may reveal how sociocognitive factors might shape students' long-term decision-
making during the early stages of college. Our research is guided by the following questions:

1. Which sociocognitive factors (i.e., self-efficacy, outcome expectations, psychological cost) are related to engineering
students' career plans at the end of Year 1 and 2 of college?

2. How do sociocognitive factors that inform students' career plans differ for students in Year 1 and Year 2 of college?
3. Do sociocognitive factors (i.e., self-efficacy, outcome expectations, psychological cost) differ by personal inputs

(e.g., race, sex)?

2 | LITERATURE REVIEW

Many studies suggest that students who feel competent in a STEM discipline and view the STEM discipline as inter-
esting, important, or useful are more likely to pursue a major or career in a STEM discipline. Such studies frequently
use achievement motivation frameworks, such as Eccles' expectancy-value theory (1983, 2011) or the eMpowerment,
Usefulness, Success, Interest, and Caring (MUSIC) framework (Jones, 2009) to demonstrate these relationships in high
school settings (e.g., Watt et al., 2012), among college students (e.g., Chow et al., 2012; Perez et al., 2014, 2019; Robinson
et al., 2019), and for engineering undergraduates specifically (e.g., Jones et al., 2010, 2014, 2016). Other studies utilize
SCCT, which similarly focuses on the role of individual interests as motivating influences, but which specifically seeks
to explain an individual's career choice (e.g., K. N. Smith & Gayles, 2017). As early as the 1990s, however, studies identi-
fied students' negative perceptions of STEM majors as causes of attrition from the field. Strenta et al. (1994) and Sey-
mour and Hewitt (1997) identified the deleterious effects of influences such as perceptions of STEM courses as
competitive or as characterized by demanding but unmotivating instruction. Eccles' expectancy-value framework (EVT)
theoretically incorporates the role of such negative motivational factors, conceptualizing them as perceived costs. In
EVT, these perceived or relative costs include anxiety or fear of failure resulting from engaging in an activity (such as
majoring in engineering), the social cost of success in a given task, and the loss of time or energy that could be devoted
to other activities (Eccles, 2011).

Yet, as Perez et al. (2014) noted, there has been relatively little empirical attention to perceived cost factors in EVT
or other studies of STEM interest at different levels of schooling. In their study of students in college chemistry courses,
Perez et al. (2014) found that students' perceptions of costs (i.e., the effort required, lost opportunities, stress, and anx-
iety) affected students' intentions to leave the sciences. In a study of engineering students in the first 2 years of college,
Robinson et al. (2019) found that students' positive expectations for success in engineering declined over time while
their negative motivational beliefs, specifically, the perceived costs of lost opportunities, effort, and psychological costs,
increased over time. To date, the study by Robinson and colleagues is the only study focused specifically on engineering
students that has examined the relationship of costs to other motivational beliefs such as expectancies and valuing in
an engineering context and the relationship of these variables to students' persistence in the field.

Although these studies of perceived costs provide needed information about persistence in the field and academic
performance (in the form of grades), engineering educators and researchers are also interested in understanding how
students' intentions regarding engineering careers may evolve over time. Attention to career intentions is particularly
important in engineering because several studies suggest that many students who remain in engineering majors
through college graduation are either unsure of whether they will pursue careers in engineering or report certainty that
they will not enter the engineering workforce after earning their bachelor's degree. Margolis and Kotys-Schwartz (2009)
found that 9% of the students in their sample of 169 students had no intentions of pursuing engineering careers, while
34% had reservations about their career choice and planned to leave engineering after graduation. Similarly, Lichten-
stein et al. (2009) found that between 14% and 36% of undergraduate participants at the two institutions they studied
were definitely not or probably not going to pursue careers in engineering after graduation. Ro's (2011) study of more
than 5000 undergraduate engineers in a 30-institution sample of US institutions similarly concluded that engineering
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students' postgraduation plans were complex and tentative, with senior engineering majors considering different career
options inside and outside the field of engineering.

Qualitative findings from Lichtenstein et al.'s (2009) study, Ro's (2011) survey findings, and our team's analysis of
interview data from STEM undergraduates (Mosyjowski et al., 2019) suggest that career thinking is an evolving process
shaped by a variety of undergraduate experiences, including curricular, cocurricular, and nonacademic experiences
during their undergraduate years. The identification of many different factors empirically linked to students' reports of
their intentions regarding further study in engineering or the pursuit of engineering careers after graduation under-
scores the need to examine whether and why engineers' career intentions and related graduate study plans may be ten-
tative and fluid during the college years. This may be particularly true in engineering and other STEM fields that are
perceived to be academically challenging and competitive (e.g., Hurtado et al., 2010; Perez et al., 2014), and in which
minoritized students such as women, students of color, and first-generation students encounter unwelcoming program
cultures and classroom climates (e.g., Cheryan et al., 2017), experience lack of recognition and/or microaggressions by
faculty and peers (e.g., Godwin et al., 2016; Tonso, 2006), and/or do not always see a strong alignment between the
values of the field and their own values and career goals (e.g., Seron et al., 2016; J. L. Smith et al., 2014; Thoman
et al., 2015).

Models of vocational choice such as Holland's (1997) theory of vocations and SCCT (Lent et al., 1994) frame stu-
dents' career thinking as a complex combination of individual interests and experiences that result in sociocognitive dis-
positions related to career choice. A National Academy of Engineering (2018) report drew on SCCT to explain that
students make the choice to major in engineering by weighing barriers and supports that shape self-efficacy, which, in
turn, influences goals, interests, and ultimately persistence toward earning an engineering major. Indeed, a large body
of research guided by SCCT (Lent & Brown, 2019) points to sociocognitive factors, such as students' self-efficacy beliefs
and outcome expectations, as important predictors of students' engineering career plans. For example, Borrego et al.
(2018) found that out of several sociocognitive factors, including outcome expectations, self-efficacy, barriers, and
choice of actions, self-efficacy was the strongest factor influencing students' graduate school intentions. Yet as the
National Academy of Engineering report reminds scholars, barriers and supports are “distinct constructs (not opposite
ends of a continuum)” (p. 92). As such, the presence of weak supports does not imply the presence of strong barriers,
just as the presence of strong barriers does not imply the presence of weak supports. Therefore, it is important for
researchers to attend not just to support but also to examine the presence of barriers. This is especially true given the
ways that studies have favored supports, which were similar to the body of studies using achievement motivation
frameworks discussed above; Lent and Brown (2019) also noted the limited number of studies utilizing SCCT to
examine the role of psychological and structural barriers in shaping students' career intentions.

Collectively, extant research in STEM broadly and engineering specifically suggest that students' self-efficacy and
interest in engineering do not in themselves ensure major completion or pursuit of a career in engineering. Addition-
ally, the fluid nature of undergraduate engineers' career plans makes understanding the career decision-making process
that much more complex. Our study seeks to build on this current body of work by further investigating the ways that
perceived barriers, such as psychological cost, influence students' career decision-making and how the factors affecting
career thinking may differ at various time points in students' undergraduate careers.

3 | CONCEPTUAL FRAMEWORK

For this study, we use SCCT as the basic structure of our conceptual framework, and we include measures of psycholog-
ical costs to examine engineering undergraduates' career thinking. Lent (2012) explains that SCCT emphasizes the char-
acteristics of people and their environments within specific domains relevant to career choice. Characteristics of people
include factors such as their behaviors, expectations, and their views of themselves, while characteristics of environ-
ments may include social or financial elements that hinder or support the individual. SCCT considers these elements
dynamic, particularly over one's lifetime, as well as mutually influential, where people shape their environments and
vice versa. Research indicates, however, that perceived cost (Eccles, 2011) also plays an important role in career and
educational decisions (Abele & Spurk, 2011), so we include perceived cost in our conceptual framework. In this section,
we specify and define constructs we utilize from SCCT and explain how the inclusion of perceived cost in our concep-
tual framework strengthens the analysis. A graphical representation of the conceptual framework is depicted in
Figure 1.
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3.1 | Personal inputs

Lent (2012) explains that SCCT views personal inputs—for example, gender, race/ethnicity, disability status—as impor-
tant not due to their biological or physical elements but rather to the ways that other individuals in the sociocultural
environment respond to these characteristics in ways that influence access and exposure to opportunity structures
(e.g., performance expectations, career-relevant models). Access and exposure to opportunity structures include access
to career opportunities, perceived consequences of behavior, and beliefs about one's ability to succeed at a given task in
a given context. Lent (2012) explains:

To a large extent, then, variables like gender and ethnicity may affect interest development and other
career outcomes through socially constructed processes that may appear to operate in the background but
that nevertheless can powerfully influence the differential learning experiences that give rise to self-efficacy
and outcome expectations—leading, at times, to skewed conclusions about what interests or career options
are “right” for certain types of persons. (p. 123)

These social influences begin at a young age such that members of a child's social environment may grant greater
access to experiences that develop encouraging self-efficacy and outcome expectations in science activities for boys and
in helping activities for girls. In fact, women's experiences with gender harassment and discrimination in STEM are
well documented in the empirical literature (Alexander & Hermann, 2016). Relatedly, researchers have documented
the experiences of marginalization, discrimination, isolation, and hostile climates students of color face in STEM envi-
ronments (Alexander & Hermann, 2016; McGee, 2013, 2016), contending that these experiences influence both social
and academic behaviors (McGee, 2013, 2016). In these ways, personal inputs are important factors in understanding
the development of individuals' career plans.

3.2 | Self-efficacy expectations

The SCCT conceptualization of self-efficacy originates from Bandura's (1986) theory of self-efficacy, where self-efficacy
involves “people's judgments of their capabilities to organize and execute courses of action required to attain designated
types of performances” (Bandura, 1986, p. 391). That is, self-efficacy expectations are individuals' beliefs about their
abilities to successfully perform actions needed to achieve a particular goal. Self-efficacy expectations in SCCT are one
of many personal characteristics that can shape career plans, such that positive self-efficacy beliefs regarding a partic-
ular career option can encourage an individual to pursue that career option (Lent, 2012). Conversely, negative self-effi-
cacy beliefs can dissuade an individual from pursuing a particular career path. Importantly, self-efficacy expectations

FIGURE 1 Conceptual model
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are considered both dynamic and domain specific, just as they are in Bandura's theory, such that they should always be
understood as changeable and relative to a particular objective. Therefore, just as career plans change over time in
response to personal and environmental conditions, so do the self-efficacy expectations that shape them (Lent, 2012).

3.3 | Outcome expectations

Like self-efficacy expectations, Lent et al. (1994) derive outcome expectations from Bandura's (1986) theory of self-efficacy,
such that outcome expectations concern one's beliefs about the consequences of potential career choices. The authors explain
the difference between these types of expectations, stating, “whereas self-efficacy beliefs are concerned with one's capabilities
(e.g., ‘can I do this?’), outcome expectations involve one's beliefs about the consequences of particular courses of action
(e.g., ‘if I do this, what will happen?’)” (p. 118), such as social, self-evaluative, and physical outcomes. Although they are
distinct concepts, self-efficacy is directly related to outcome expectations, such that self-efficacy beliefs shape outcome expec-
tations; that is, whether individuals' beliefs about their capability to successfully complete a task directly influences their
expectations of what will happen if they attempt the task.

Positive outcome expectations about a given career path, like positive self-efficacy expectations, encourage individ-
uals to select such career paths, whereas negative expectations discourage such choices. Importantly, one's self-efficacy
expectations and outcome expectations may differ regarding the same career choice. For example, students may have
positive outcome expectations regarding a particular engineering career (e.g., “Being a civil engineer would allow me to
earn a good living to provide for my family and serve the public in positive ways …”) that may encourage them to
pursue the career, but have negative self-efficacy expectations (e.g., “… but I'm not currently so confident in my engi-
neering skills.”), which may dissuade them from pursuing such a career.

Importantly, Lent (2012) contends that “self-efficacy and outcome expectations do not arise in a social vacuum, nor
do they operate alone in shaping interests or other vocational outcomes. Rather they are forged and function in the con-
text of other aspects of persons and their environments” (p. 122). As explained above, personal inputs, including race
and gender, may inform self-efficacy and outcome expectations by influencing the contexts in which they develop. Such
personal characteristics may disproportionately open opportunities for experiences that lead to increased self-efficacy
for some individuals while they obstruct these opportunities for others. For example, in a society where engineering
roles are viewed as more appropriate career choices for boys than for girls, boys may receive greater access to experi-
ences where they can explore engineering career possibilities, and in college, gain entry-level experience through
internships that, in turn, offer more opportunities to build both self-efficacy and positive outcome expectations. In this
way, a combination of sociocultural forces in the environment and personal characteristics can influence the develop-
ment of both self-efficacy and outcome expectations in ways that affect future career choices, which the authors explain
“help to perpetuate well-entrenched patterns of gender segregation in certain fields” (Lent, 2012, p. 123). Therefore,
although personal inputs do not in themselves destine individuals who hold certain gender identities into specific
careers, their influences on self-efficacy, outcome expectations, and career choices are important to consider.

3.4 | Cost

SCCT posits that self-efficacy expectations and outcome expectations influence individuals' interests, which, in turn,
influence their goals and actions toward career choices (Lent et al., 2016). Thus, interest is an important factor in under-
standing career choice; however, the strength of the relationship between career interests and career choices theoreti-
cally depends on the contextual factors of environmental supports and barriers. Examples of support include financial
support, emotional support, and the availability of jobs in one's desired field. Barriers may include financial impedi-
ments or socio-structural barriers, such as discrimination. According to SCCT, interests more frequently become goals
that more frequently become actualized into one's preferred career path in the presence of strong support and weak bar-
riers. Conversely, environmental conditions of strong barriers and weak supports hinder one's ability to convert inter-
ests into goals and goals into career actions. In their examination of the empirical research employing SCCT, Lent and
Brown (2019) note that one of the few studies to test the relationship between interests and choice in the presence of
barriers confirmed the theory; findings indicated that the relationship between interests and choice was stronger in
low-barrier conditions relative to high-barrier conditions.

HENDERSON ET AL. 775



Although we do not deny the importance of student interest in career decision-making, given the fact that interests
vary in the degree to which they influence career decisions, we suggest it may not be sufficient as a singular measure of
one's incentive to pursue a given career path; that is, interest alone may not capture the complexity of one's inner drive
toward or away from a particular career choice based on appeal only. In addition, our participants' commitment to
pursue an engineering degree at the university level is already an indicator of interest, as it would be somewhat irra-
tional for a student to pursue an engineering major if they were not at all interested in the topic. For these reasons, we
turn instead to the construct of cost from the Eccles Expectancy Value Model of Achievement-Related Task Choices
(Eccles, 2011), which models key constructs in individuals' educational and occupational choices.

Eccles (2011) defines relative cost as the cost an individual believes they incur by pursuing a specific educational or
occupational path. Cost comprises a range of factors, including fear of failure, anticipated anxiety, loss of energy and
time that could have been applied to other activities, and fear of the social consequences associated with success. Cost
is one of four components of the subjective task value or relative value of pursuing a career action. A low cost leads to a
higher task value, and individuals are more likely to pursue educational or occupational actions with a high task value.
For example, a person who attributes a low cost and high task value to pursuing an engineering career is more likely to
choose an engineering career. Therefore, cost is a potentially important factor in determining students' career plans.

Recent scholarship on the role of cost in EVT has further developed the conceptualization of the construct and
emphasized its importance in influencing motivated behavior (Flake et al., 2015; Barron & Hulleman, 2015; Rosenzweig
et al., 2020). Barron and Hulleman (2015) position cost as an essential component of EVT that is distinct from, and
equally as important as, expectancies and values. The authors argue that asking students if they can do a task
(i.e., expectancy) and if they want to do the task (i.e., value) without asking if they have barriers that prevent them
from engaging in the task (i.e., cost) provides an incomplete picture of their motivation toward engaging in the task.

Another reason cost is an appropriate measure for this study is because, as Eccles (2011) explains, cost and the
other constructs in the model that influence subjective task value shift according to situation and change over time.
One aim of our study is to determine what differences in students' career plans, if any, manifest across different time
points in their academic careers. Therefore, including a construct that is sensitive to both context and time may aid in
identifying differences in our data at different time points as students move through their academic programs.

4 | POSITIONALITY

Our interest in this topic stems from a commitment to strengths-based approaches to improving engineering education.
The tie that binds our respective research agendas is a belief that structural factors at institutions, rather than students'
individual shortcomings or deficiencies, are key factors underlying students' success in higher education and engi-
neering education. Accordingly, we interpret data and findings with an eye toward understanding the conditions that
shape students' educational experiences and the form and function of engineering education (e.g., curriculum, peda-
gogy) that challenge deficit-based evaluations of engineering students.

The research team that collected data for the multimethod study from which this analysis derives brought a range
of experiences to the project. It included two faculty members and seven doctoral students at different points in time,
including four Black women, one Black man, one Latina, and three White women who all brought significant educa-
tional, professional, and/or research engagement in engineering contexts and who worked collaboratively on data col-
lection and data analysis. This particular study represents the collective thinking and efforts of one Black man and two
White women who each focus on academic and other cultures—in engineering and beyond—as central elements in
their research. Our focus supports the identification of structural explanations of student outcomes in engineering but
may also underemphasize the role of individual-level explanations of study findings.

5 | METHOD

5.1 | Research setting and sample

Data for this study comes from a larger research project assessing the efficacy of a college-level STEM support program
at a large, highly selective, research-intensive university. The College of Engineering at the university reports a 3.9
median high school grade point average for admitted undergraduate engineering students, indicating admitted students
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are high-achieving students prior to their undergraduate careers at the university. The program is intended to support
STEM students as they transition into their undergraduate careers in STEM disciplines. The program also provides
ongoing academic, social, and professional support and programming to students over the course of their undergrad-
uate careers.

While the program serves students across the STEM disciplines, one branch of the program serves engineering students
exclusively. The sample in this study consisted of both program participants and a comparison group of engineering students
who met the program's eligibility criteria and who were invited to participate in the program. The program enrolls approxi-
mately 60 participants per year. The comparison group students were either not selected by the program leadership to partic-
ipate in the year they were invited or who chose not to participate in the program after invitation. Our sample consists of
four cohorts of students who began their undergraduate studies at the university between 2013 and 2016. While data collec-
tion for the larger study followed a longitudinal design, this study utilized a cross-sectional analysis of first- and second-year
survey responses. Finally, since the 2016 first-year cohort did not submit survey data at the end of their second year due to
the conclusion of the study, the sample size in Year 2 declined.

5.2 | Measures

Annual surveys to assess the program included measures of a variety of sociocognitive factors that might contribute to
persistence, degree attainment, and postgraduation intentions. The survey instrument also included demographic
(i.e., race/ethnicity, sex, indicators of socioeconomic status) questions, measures of students' precollege academic expe-
riences (e.g., high school course taking, precollege STEM experiences), college experiences, and postgraduation inten-
tions. Consistent with the study's conceptual framework, we include data on students' postgraduation intentions,
engineering self-efficacy, outcome expectations, and psychological cost in our analyses.

5.2.1 | Postgraduate intentions

The outcomes of interest in this research were two postgraduation measures—graduate school and careers in engi-
neering. We measured the outcomes of interest using a set of survey items related to students' plans after graduation.
To measure the first outcome, graduate school intentions, we asked students whether they “planned to attend graduate
or professional school” as well as the academic field in which they planned to study in graduate or professional school.
We coded graduate school intentions dichotomously to indicate students who intended to pursue graduate school
(i.e., coded 1) and those who did not (i.e., coded 0). Including both graduate and professional school in a single survey
question did not allow respondents' options to indicate both intentions and is thus a limitation of the data.

Since existing research indicates that the intention to complete a degree in engineering is not necessarily an indica-
tion that students intend to pursue careers in the engineering industry, we also asked students to report their career
plans after graduation. This question was asked of both students who intended to pursue graduate school and those
who did not intend to attend graduate school. Students selected the career they planned to pursue from a list of career
choices, including engineering (any field), physician, attorney/lawyer, statistician, research scientist, business manager,
professor, and entrepreneur, to name a few. Like graduate school intentions, career intention was coded dichotomously
to indicate students' intentions to pursue careers in engineering (i.e., coded 1) and those who intended to pursue careers
outside of engineering (i.e., coded 0).

Descriptive statistics for the outcomes of interest are presented in Table 1. Following their first year in undergrad-
uate engineering, approximately 35% of respondents reported that they planned to pursue graduate school in engi-
neering after earning their degrees, while approximately 27% of respondents reported that they planned to pursue
graduate school in engineering after Year 2. Approximately 73% of respondents reported that they planned to pursue
careers in engineering after earning their degrees after Year 1 and after Year 2.

5.2.2 | Background characteristics and experiences

Explanatory variables in this study were selected to reflect key demographic characteristics (e.g., sex, race/ethnicity), as
well as relevant academic background experiences theorized to be associated with students' academic and
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postgraduation intentions. For example, Lent and Brown (2019) acknowledged that the “roles of barriers and supports
are heightened in contexts where people are most likely to encounter social or financial challenges to their persistence
(e.g., first-generation college students, underrepresented racial minorities in STEM fields)” (p. 11). Moreover, extant
research indicates that race/ethnicity and sex differences in sociocognitive factors such as engineering self-efficacy and
outcome expectations (e.g., Concannon & Barrow, 2009; Sax et al., 2015) are key demographic characteristics since
social pressures in the discipline might inform how students respond to various sociocognitive factors. Because of the
analysis procedure we describe in the next sections, we coded race/ethnicity dichotomously to indicate minoritized stu-
dents in engineering, which included Black, Latino(a), and Native American/Native Alaskan students. We did not label
the category of Asian and Pacific Islander students “minoritized” due to the limitations of our sample. We recognize
that this decision blurs the line between “minoritized” and “underrepresented” we previously established and risks
essentializing a diverse group of students with diverse experiences in engineering. Finally, we coded parental education
dichotomously as a measure of first-generation status, where students were considered first-generation students if the
highest level of parental/guardian educational attainment was less than a bachelor's degree.

Table 2 presents descriptive statistics for measures related to background characteristics. We also included related
statistics for engineering students nationally. As the program is designed to support minoritized students, Black and
Latino(a) students, as well as women, are noticeably overrepresented in the sample of the present study. Moreover,
given that the university is a highly selective research (R1) institution, where students' median household income
exceeds $100,000, it is possible that some precollege experiences, such as participating in STEM enrichment programs
and advanced course taking, are overrepresented in the study.

Table 2 compares the study sample (i.e., as measured by students' survey responses) to institutional demographics
(i.e., as reported in annual reports) and national statistics. However, we note two details that should inform interpreta-
tions of such a comparison. First, our survey included an “Other” category and additional text entry for students to
report racial/ethnic information. We used the text entries to further categorize students into the minoritized or

TABLE 1 Descriptive statistics for postgraduation intentions

Year 1 Year 2

n (%) n (%)

Graduate school intentions

Yes 121 35.1 75 27.0

No 224 64.9 203 73.0

Engineering career intentions

Yes 248 72.5 167 72.9

No 94 27.5 62 27.1

TABLE 2 Descriptive statistics for demographic characteristics

Year 1 study sample n (%) Year 2 study sample n (%) University statistics n (%)

Sex

Female 164 (47.13) 124 (53.68) 1937 (28.31)

Male 184 (52.87) 107 (46.32) 4904 (71.69)

Race/ethnicity

Minoritized student 155 (44.54) 77 (33.33) 856 (12.51)

Nonminoritized student 193 (55.46) 154 (66.67) 5985 (87.49)

First-generation status

First-generation student 118 (33.91) 68 (29.44) –

Non-first-generation students 230 (66.09) 163 (70.56) –

Note: Minoritized students in the survey include students who responded Black, Latino(a), or Native American/Native Alaskan students in the sample, or those
who indicated multiple racial categories, including one or more of the aforementioned groups. Minoritized students in the university statistics include Black,
Latino(a), Native American/Native Alaskan, and “two or more races—underrepresented minority” students.
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nonminoritized category that was included in the analysis. Second, the “Other” category differs across these sources.
While the “Other” category in our survey was self-selected by respondents, the “Other” category in the institutional
report was a sum of those reported as “Two or More,” “Two or More Underrepresented Minority (URM),” “Unknown,”
and “Nonresident.”

Since we were also interested in the role of precollege educational experiences that might inform students' interests,
engineering self-efficacy, and outcome expectations, particularly at the end of Year 1, we examined a set of precollege
experiences related to participation in STEM enrichment programs and high school engineering preparation. We asked
students whether they participated in STEM enrichment programs during their high school experiences, which we
coded dichotomously (i.e., yes = 1 or no = 0). We also asked students the degree to which they believed their high
school experiences adequately prepared them for college-level mathematics, physics, and engineering courses (which
are cornerstones of the first-year engineering experience). We coded each preparation measure (i.e., mathematics,
physics, and engineering) dichotomously, where the first category indicated that students either reported that they dis-
agreed or strongly disagreed that their high school coursework had adequately prepared them, or they reported that
they did not take relevant coursework in high school.

Finally, we considered a proximal influence during the collegiate experience—participation in the program. Partici-
pation was coded dichotomously (i.e., participant = 1, nonparticipant = 0). However, we wish to note that this partici-
pation variable did not capture the degree to which students were engaged in the program, nor did it capture whether
students found any or all components of the program beneficial in their first- or second-year experiences. Descriptive
statistics for precollege preparation and college program participation variables can be found in Table 3.

Finally, we selected explanatory variables to operationalize constructs consistent with SCCT (Lent, 2012; Lent
et al., 1994). In particular, we examined self-efficacy expectations, outcome expectations, and psychological cost. We do
not operationalize the construct of interest because we consider it to be an underlying assumption of the study sample;
that is, each of the students included in the sample were present only because they expressed initial interest in pursuing
engineering degrees during their undergraduate career.

5.2.3 | Self-efficacy expectations

Several instruments measuring engineering students' self-efficacy exist in the scholarly literature. We used Concannon
and Barrow's (2009) adaptation of the Longitudinal Assessment of Engineering Self-Efficacy (LAESE) scales developed

TABLE 3 Descriptive statistics for precollege preparation and college program participation

Year 1 Year 2

n (%) n (%)

STEM enrichment participation

Yes 116 33.33 – –

No 232 66.67 – –

High school prepared for math

Yes 277 79.60 – –

No 71 20.40 – –

High school prepared for physics

Yes 197 56.61 – –

No 151 43.39 – –

High school prepared for engineering

Yes 150 43.10 – –

No 198 56.90 – –

Program participation

Yes 173 49.71 101 43.72

No 175 50.29 130 56.28
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by Marra and Bogue (2006). Unlike Concannon and Barrow (2009), who used a seven-point Likert scale to measure
engineering self-efficacy, we measured self-efficacy using a five-point Likert scale (i.e., 1= strongly disagree, 5= strongly
agree). Moreover, while Concannon and Barrow measured engineering self-efficacy across two subscales
(i.e., engineering self-efficacy I and engineering self-efficacy II), our analysis of data in this study, which consisted of
exploratory and confirmatory factor analyses for scale validation, indicated a single factor structure consisting of seven
items. The retained items can be found in Table 3. In our sample, Cronbach's alpha for the self-efficacy expectations
subscale was .90, indicating excellent internal consistency.

5.2.4 | Outcome expectations

We adapted the engineering career outcomes expectations subscale of the LAESE to measure outcome expectations.
Our measure differs from the factor as described by Concannon and Barrow by a single item. The item “I expect to feel
‘part of the group’ on my job if I enter engineering” was removed as a result of a low factor loading in our analysis,
indicating a relatively weak relationship with the outcome expectations constructs. Cronbach's alpha for the outcome
expectations subscale was .90, indicating excellent internal consistency.

5.2.5 | Psychological cost

Finally, we utilized an adaptation of the Value of Education (VOE) scale described by Battle and Wigfield (2003). The
VOE is a 51-item scale designed to measure various aspects related to the value students place on pursuing graduate
education. Since we were primarily interested in psychological cost as it relates to students' long-term, postgraduate
careers and educational pursuits, we drew on the cost subscale, defined as the personal sacrifice students associated
with the pursuit of an engineering degree (Battle & Wigfield, 2003, p. 61). See Table 3 for survey items. Cronbach's
alpha for the utility value subscale was .82, indicating good internal consistency. Descriptive statistics for the items uti-
lized in this study for Year 1 are presented in Table 4.

We established construct validity by examining factor loadings for each construct (i.e., self-efficacy, outcome expec-
tations, and psychological cost). Since variables measuring self-efficacy, outcome expectations, and psychological cost
were continuous, we used the maximum likelihood with robust standard error (MLR) estimator to fit the initial mea-
surement model. The test statistics provided evidence for good model fit. For example, absolute fit indices, which mea-
sure how well an a priori model fits the data, indicated good model fit (Kline, 2016). Specifically, the root-mean-
squared error of approximation (RMSEA) was 0.057, with the lower bound of the 90% confidence interval at 0.044 and
the upper bound at 0.071, indicating a good model fit. Moreover, the standardized room-mean-squared residual
(SRMR) was 0.040, indicating a good model fit (Hu & Bentler, 1999). Additionally, incremental fit indices, which mea-
sure the relative improvement in the fit of the model over a baseline (i.e., null) model, indicated a good model fit. The
Comparative Fit Index (CFI; 0.961) and the Tucker–Lewis Index (TLI; 0.951) indicated that the model was a good fit for
the data (Hu & Bentler, 1999).

Since we were also interested in the ways that students' responses might evolve over the course of their first 2 years
in college, we also examined the loadings of observed variables onto their specified latent constructs (i.e., self-efficacy,
outcome expectations, and psychological cost) at Year 2. Initially, results indicated room for improvement in model fit
(RMSEA = 0.065, SRMR = 0.058, CFI = 0.925, TLI = 0.911). After examining the factor loadings on each latent con-
struct, we modified the factor structure to mirror the Year 1 model. This resulted in an improvement in both absolute
and incremental fit indices (RMSEA = 0.061, SRMR = 0.059, CFI = 0.942, TLI = 0.925). Table 5 presents the factor
loadings for the Year 1 and Year 2 models.

5.3 | Analytical procedure

The analytical procedure in this study proceeded in two stages. First, we estimated a set of multiple indicators and mul-
tiple causes (MIMIC) models to examine the relationships between precollege background characteristics
(e.g., demographic characteristics, high school educational experiences) and the three sociocognitive constructs exam-
ined in the measurement model. Demographic characteristics (i.e., race/ethnicity, sex, first-generation status) were
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regressed on self-efficacy, outcome expectations, and psychological cost at both Years 1 and 2. However, since self-efficacy is
thought to be malleable in relation to its sources (Bong & Skaalvik, 2003), the variables related to high school preparation
for engineering and participation in summer STEM enrichment programs were regressed only on self-efficacy, outcome
expectations, and psychological cost at Year 1.

Finally, since the two outcomes of interest (i.e., graduate school and career intentions in engineering) were dichoto-
mous (e.g., coded 0 for those who did not intend to go to graduate school/pursue engineering careers and 1 for students
who intended to pursue graduate school/pursue engineering careers), we estimated a set of logit models in order to
understand the relationships between latent constructs (i.e., self-efficacy, outcome expectations, and psychological cost)
and postgraduation intentions (i.e., graduate school and career intentions) in structural regression models. Logistic
regression results are presented in terms of odds ratios, where odds ratios less than 1 indicate a decrease in the odds
that one will report an intention to pursue graduate school or careers in engineering, and odds ratios greater than 1 indi-
cate an increase in the likelihood one will report intentions to pursue graduate school or careers in engineering
(Rodriguez et al., 2018).

All models were estimated in Mplus Version 8.4, which uses full information maximum likelihood (FIML) estima-
tion by default. While the demographic characteristics presented in Tables 2 and 3 represent the full sample of 348 and
231 respondents for Years 1 and 2, respectively, the number of cases per variable varied from 344 to 348 (Year 1) and
230 to 231 (Year 2).

6 | RESULTS

6.1 | MIMIC models

First, we examined differences in mean self-efficacy, outcome expectations, and psychological cost by regressing dichot-
omized exogenous covariates representing background characteristics and experiences (e.g., race/ethnicity, sex, STEM
enrichment participation) on each latent construct in MIMIC models at both Years 1 and 2. In Year 1, we included
both demographic characteristics, as well as proximal high school experience (i.e., STEM enrichment program

TABLE 4 Descriptive statistics for survey item responses (Year 1)

Mean
Standard
deviation

Engineering self-efficacy Cronbach0sα¼ :90ð Þ
I can succeed in an engineering major 4.22 0.74

I can complete the math requirements for most engineering majors 4.26 0.71

I can excel in an engineering major during the current academic year 3.93 0.84

I can succeed (earn either an A or B) in an advanced physics course 3.52 1.06

I can succeed (earn either an A or B) in an advanced math course 3.84 0.89

I can complete the physics requirements for most engineering majors 4.14 0.70

I can succeed (earn either an A or B) in an advanced engineering course 4.01 0.78

Outcome expectations Cronbach0sα¼ :90ð Þ
A degree in engineering will give me the kind of lifestyle I want 4.16 0.81

A degree in engineering will allow me to obtain a job that I like 4.23 0.76

A degree in engineering will allow me to get a job where I can use my talents and creativity 4.21 0.72

Psychological cost Cronbach0sα¼ :82ð Þ
When I think about the hard work needed to get through a science or engineering major, I am not sure
that getting a science or engineering degree is going to be worth it in the end

2.19 1.14

Considering what I want to do with my life, having a science or engineering major is just not worth the
effort

1.88 0.89

I think getting a science or engineering degree requires more effort than I'm willing to put into it 1.93 0.93
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participation; engineering, mathematics, and physics preparation variables). We also included a dichotomous variable
representing program participation. However, in Year 2, only demographic characteristics and the program participa-
tion variable were included.

Model fit indices for the MIMIC models in both Years 1 and 2 are presented in Table 6. We examined modification
indices to determine if measured variables in the measurement model were significantly predicted by precollege prepa-
ration variables, an indication of differential item functioning (Kline, 2016). Modification indices indicated that no mea-
sured variables were significantly predicted by participation variables in the model at Year 1.

Results from the MIMIC model, which are presented in terms of standardized coefficients (β), indicated that sex
(male = 1, female = 0) was a statistically significant predictor of engineering self-efficacy beliefs following Year 1
(β¼ :16,p¼ :004), suggesting male students end their first year of undergraduate engineering studies more confident in
their ability to earn high grades in the advanced engineering curriculum, as well as to eventually earn their degrees.
Additionally, high school preparation was a statistically significant predictor of self-efficacy beliefs following Year

TABLE 5 Measurement model for sociocognitive variables at Year 1 and Year 2

Year 1 Year 2

Standardized
estimate

Standard
error

Standardized
estimate

Standard
error

Engineering self-efficacy Cronbach0sα¼ :90ð Þ
I can succeed in an engineering major 0.82 0.03 0.79 0.04

I can complete the math requirements for most engineering majors 0.77 0.04 0.68 0.05

I can excel in an engineering major during the current academic year 0.79 0.03 0.79 0.03

I can succeed (earn either an A or B) in an advanced physics course 0.68 0.03 0.65 0.06

I can succeed (earn either an A or B) in an advanced math course 0.68 0.04 0.68 0.04

I can complete the physics requirements for most engineering majors 0.81 0.03 0.72 0.04

I can succeed (earn either an A or B) in an advanced engineering
course

0.80 0.03 0.75 0.04

Outcome expectations Cronbach0sα¼ :90ð Þ
A degree in engineering will give me the kind of lifestyle I want 0.81 0.05 0.77 0.04

A degree in engineering will allow me to obtain a job that I like 0.92 0.03 0.91 0.04

A degree in engineering will allow me to get a job where I can use
my talents and creativity

0.88 0.04 0.85 0.04

Psychological cost Cronbach0sα¼ :82ð Þ
When I think about the hard work needed to get through a science or
engineering major, I am not sure that getting a science or
engineering degree is going to be worth it in the end

0.61 0.03 0.71 0.05

Considering what I want to do with my life, having a science or
engineering major is just not worth the effort

0.89 0.02 0.91 0.04

I think getting a science or engineering degree requires more effort
than I'm willing to put into it

0.84 0.02 0.88 0.03

TABLE 6 Model fit indices for multiple indicators and multiple causes (MIMIC) models

Year 1 Year 2

RMSEA 0.052 0.056

SRMR 0.042 0.051

Tucker–Lewis Index 0.927 0.927

Comparative Fit Index 0.943 0.943

Abbreviations: RMSEA, root-mean-squared error of approximation; SRMR, standardized root-mean-squared residual.
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1. Students' perceptions of their engineering preparation (β¼ :12,p¼ :016) and physics preparation (β¼ :19,p¼ :001)
were significant predictors of self-efficacy at the end of Year 1. Finally, program participation was a statistically signifi-
cant predictor of self-efficacy beliefs at the end of Year 1 (β¼ :12,p¼ :028). Finally, students' perceptions of their engi-
neering preparation were also a positive predictor of outcome expectations (β¼ :12,p¼ :036).

After Year 2, with precollege high school preparation variables removed, sex differences in self-efficacy beliefs
(β¼ :051,p¼ :483) were no longer statistically significant. However, program participation was a statistically significant
predictor of psychological cost (β¼�:141,p¼ :029) and outcome expectancy (β¼ :178,p¼ :019). Our results indicated
that students who participated in the program viewed the psychological cost of degree attainment more favorably than
nonparticipants. Moreover, students who participated in the program had higher mean expectations that an engi-
neering degree would be worth the work required to attain the degree than nonparticipants.

6.2 | Logistic regression models

The next step in the analysis process was to examine the relationships between demographic and background charac-
teristics, as well as sociocognitive variables consistent with our theoretical framework (i.e., self-efficacy beliefs, out-
comes expectations, psychological cost), and our outcomes of interest—post-graduation graduate school and career
intentions. Since the outcomes of interest were dichotomous, we estimated a set of logistic regression models predicting
students' intentions to pursue graduate school or careers in engineering after Years 1 and 2. Results of the logistics
regression models are presented in terms of odds ratios in Table 7.

At the end of Year 1 (Figure 2), there were no statistically significant sociocognitive variables in the model. We also
examined the relationships between the sociocognitive variables by regressing outcome expectations on engineering
self-efficacy, as well as psychological cost on self-efficacy and outcome expectations, to be consistent with the concep-
tual model presented in Figure 1. Our results offered support for the conceptual model. After Year 1, we found signifi-
cant relationships between outcome expectations and self-efficacy (β¼ :74,p< :001), outcome expectations and
psychological cost (β¼�:35,p¼ :001), and self-efficacy and psychological cost (β¼�:22,p¼ :039).

At the end of Year 2 (Figure 3), results indicated that self-efficacy beliefs were a significant predictor of both career
plans (odds ratio¼ 0:59,p¼ :038Þ and graduate school intentions (odds ratio¼ 3:15,p¼ :034Þ, indicating that as stu-
dents' self-efficacy beliefs increased, they became less likely to report intentions to pursue careers in engineering and
more likely to indicate plans to attend graduate school. Additionally, outcome expectations were a statistically signifi-
cant predictor of graduate school intentions (odds ratio¼ 0:70,p¼ :038Þ, indicated that as students' outcome expecta-
tions increased, they became less likely to report intentions to pursue graduate school.

Several demographic characteristics were significant predictors of post-graduation intentions following Year 2. For
example, minoritized student status was also a statistically significant predictor of career plans
(odds ratio¼ 0:40,p< :001). This indicated that engineering students from minoritized student populations were less
likely than others to report plans to pursue careers in engineering following their second year in the discipline. More-
over, first-generation status was a negative predictor of graduate school intentions (odds ratio¼ 0:51,p¼ :006Þ: Finally,
program participation was a negative predictor of graduate school intentions (odds ratio¼ 0:57,p¼ :024Þ: We noted that
programming emphasized pathways into careers, which might explain students' responses about both career plans and
graduate school.

We found three significant predictors of graduate school intentions after Year 2 (see Figure 3). Initially, first-genera-
tion status (odds ratio¼ 0:51,p¼ :013) was a statistically significant predictor of graduate school intentions, with first-
generation students less likely than others to report intentions to pursue graduate school. Significant sociocognitive pre-
dictors of graduate school intentions after Year 2 included self-efficacy beliefs and outcome expectations. As self-efficacy
beliefs increased, so too did the likelihood that students would report graduate school plans (odds ratio¼ 3:15,p¼ :034).
Additionally, outcome expectation was a significant predictor of graduate school intentions (odds ratio¼ 0:70,p¼ :038Þ.

As in the Year 1 model, we also examined the relationships between the sociocognitive variables by regressing out-
come expectations on engineering self-efficacy, as well as psychological cost on self-efficacy and outcome expectations.
Our results offered additional support for the conceptual model (see Figure 2), which was consistent with the first-year
model. After Year 2, we found significant relationships between outcome expectations and self-efficacy
(β¼ :67,p< :001), outcome expectations and psychological cost (β¼�:35,p< :001), and self-efficacy and psychological
cost (β¼�:27,p¼ :039).
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7 | DISCUSSION

The purpose of this study was to examine the role of three sociocognitive variables—self-efficacy, outcome expectations,
and psychological cost—on students' engineering careers and graduate school intentions and how these influences
might differ between the first and second year of students' undergraduate engineering careers. We also examined the
role of precollege inputs, such as precollege course taking and engineering-related experiences, as well as demographic
predictors such as race/ethnicity, sex, and first-generation status. This effort was designed to understand the relative
importance of the concept of psychological cost in modeling engineering students' post-graduation intentions.

7.1 | Self-efficacy

Our results suggest the factors that inform students' career thinking after Year 1 differ from those that inform students'
career thinking after Year 2. Specifically, whereas self-efficacy was not a factor informing students' post-graduation
intentions to pursue graduate school after Year 1, self-efficacy was a statistically significant predictor of graduate school
intentions after Year 2. This may reflect our sample; whereas the Year 1 sample includes all students with undergrad-
uate engineering interests, the Year 2 sample might have been affected by attrition. Still, the finding that self-efficacy is
positively related to graduate school intentions after Year 2 might suggest that confidence-building experiences over the
undergraduate engineering years might be a pathway forward for improving students' graduate school intentions.

TABLE 7 Logistic regression results predicting graduate school and career intentions

Year 1 odds ratio Year 2 odds ratio

Graduate school plans

Male 0.79 1.07

Minoritized student 1.02 1.71

First-generation 0.73 0.51**

Engineering preparation 1.25 –

Physics preparation 1.05 –

Math preparation 0.63 –

Precollege STEM enrichment 1.04 –

University program participation 1.33 0.57*

Engineering self-efficacy 1.31 3.15*

Outcome expectations 1.05 1.42

Cost of degree attainment 0.92 0.70*

Engineering career plans

Male 1.87 0.82

Minoritized student 1.35 0.40***

First-generation 1.26 1.43

Engineering preparation 0.98 –

Physics preparation 0.75 –

Math preparation 1.51 –

Precollege STEM enrichment 2.22 –

University program participation 0.78 1.27

Engineering self-efficacy 1.11 0.59*

Outcome expectations 0.78 0.77

Cost of degree attainment 1.29 1.59

Abbreviation: STEM, science, technology, engineering, and math.
***p< .001; **p< .01; *p< .05.
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Eagan et al. (2013), for example, found undergraduate research experiences increased students' intentions to enroll in
graduate school.

Other sociocognitive factors studied in this research offered insight into the state of the literature on students' self-
beliefs in engineering. For example, the literature on sex differences in self-efficacy beliefs has been fairly inconsistent.
Concannon and Barrow (2009) found no sex differences in engineering students' self-efficacy beliefs. However, they did
not study their participants over time, choosing instead to compare students' self-efficacy beliefs across years
(i.e., comparing Year 4 students' beliefs to those of Year 5 students). This is important since our study suggests sex

FIGURE 2 Structural model after Year 1. Arrows on sociocognitive variables are standardized coefficients. Only statistically significant

covariates are shown in the model. Odds ratios for the relationships between sociocognitive variables and career plans, and graduate school

intentions can be found in Table 6. ***p< .001; **p< .01; *p<0.05

FIGURE 3 Structural model after Year 2. Arrows on sociocognitive variables are standardized coefficients. Only statistically significant

covariates are shown in the model. Odds ratios for the relationships between sociocognitive variables and career plans, and graduate school

intentions can be found in Table 7. ***p< .001; **p< .01; *p< .01
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differences in engineering self-efficacy in Year 1 may narrow after Year 2. This supports the idea that the factors info-
rming students' post-graduation intentions evolve over the course of their undergraduate career. In contrast, however,
Schar et al. (2017) found significant differences in engineering task self-efficacy and innovation self-efficacy by sex
among third-, fourth-, and fifth-year students. Although the direction of these differences differs between these studies,
the overall findings may suggest that sex differences in self-efficacy beliefs might not only persist but vary in response
to the kinds of experiences that students have during their undergraduate engineering programs.

7.2 | Outcomes expectations

In both Years 1 and 2, self-efficacy is a significant predictor of outcomes expectations, specifically, of students' expecta-
tions that an engineering degree will lead to a desirable job and lifestyle. However, outcome expectations were not sig-
nificantly related to engineering career intentions and were negatively related to graduate school intentions (i.e., the
odds ratio less than one)—findings, which appear counterintuitive in light of the theoretical framework guiding this
study (i.e., SCCT) and previous meta-analyses that link outcomes expectations to dependent variables measuring career
choice (see Lent & Brown, 2019). In this study, we found that the inclusion of psychological cost resulted in similar
counterintuitive relationships between outcome expectations and our dependent variables of an engineering career and
graduate school intentions arose.

The negative relationship between outcome expectations, which we measured using items related to expectations
about using skills for engineering jobs, and graduate school intentions might suggest that as students' beliefs that their
engineering degree will lead to a desirable job and lifestyle increase, their desire to enter careers, rather than continue
in school, increases. This might also explain the small positive, although not statistically significant, relationship
between outcome expectations and career intentions. Future research might examine the changing relationship
between students' expectations of the outcomes associated with degree attainment and their career and graduate school
intentions, particularly considering the cost students appear to associate with earning a degree in engineering.

This finding, however, may provide greater insight into post-graduate choices in engineering, suggesting that stu-
dents' career calculus changes in light of the costs they associate with pursuing and attaining their undergraduate
degrees in engineering; that is, whereas positive outcome expectations are thought to foster students' intentions to
pursue careers or graduate school in engineering, our findings suggest that, by holding psychological cost constant, self-
efficacy and outcome expectations continue to shape students' career and graduate school intentions. Psychological
cost's role as a mediator in students' career intentions is thus an area for future research.

7.3 | Psychological cost

Our findings regarding the role of psychological cost in shaping students' career decisions over time are a key contribu-
tion to our study. While limited, existing research indicates psychological cost is a significant factor in STEM and engi-
neering students' persistence. In the single study conducted with engineering students, Robinson et al. (2019) found
that perceptions of cost in engineering increased over time, but those students whose perceptions of cost increased
more slowly were more likely to persist in engineering majors. While not a significant predictor of the outcomes of
interest, our findings suggest psychological cost is significantly related to other important sociocognitive variables, such
as self-efficacy beliefs and outcome expectations, which are, in turn, predictors of career and graduate school intentions.
These findings suggest that promoting interest and retention in engineering majors alone may be insufficient for
ensuring students will continue in engineering after deciding to pursue and graduate with degrees in engineering.

Unsurprisingly, the psychological cost was negatively related to the other sociocognitive variables in the models
(i.e., engineering self-efficacy and outcome expectations) in both Year 1 and Year 2. These findings indicate that as stu-
dents' confidence in their ability to succeed in undergraduate engineering increased, their beliefs that the effort
required to attain an engineering degree would not be worth it in the end decreased. Similarly, as students' perceptions
of the cost of pursuing an engineering degree increased, their beliefs that engineering careers would provide positive
post-graduation benefits (e.g., a job or lifestyle they liked) decreased. It follows that cost was negatively related to grad-
uate school intentions—as students believed the cost of degree attainment increased, their intentions to pursue further
engineering education decreased. However, while cost was positively related to career intentions after Years 1 and
2, the relationship was not statistically significant.
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Our study findings, while framed as a collection of individual values, beliefs, and dispositions, must be understood
as the result of individual experiences in a particular social, cultural, and historical context. For example, rather than
judging students who agreed with statements in the psychological cost scale that the effort needed to complete an engi-
neering degree might not be worth it, educators should ask how and why self-efficacy beliefs and outcome expectations
appear to be significantly related to psychological cost in this sample of high-achieving students in a highly selective
university. Rather than focusing on the student as the cause, educators and researchers must continue to examine the
educational conditions that make such findings possible.

For example, while Godfrey (2014) noted that some engineering students find a sense of pride and achievement
resulting from their ability to persist through challenging coursework in engineering, Chen (2013) noted that introduc-
tory “gatekeeper” courses might be barriers to student persistence; that is, while some students value the challenge of
demanding engineering courses, others consider leaving the discipline precisely because the coursework is perceived to
be unnecessarily onerous (see also Seymour & Hewitt, 1997; Strenta et al., 1994). In this study, students who expressed
enough interest in engineering to pursue the degree perceived the effort cost of degree attainment after their first years
in college to be high and were less likely to report intentions of pursuing engineering careers. Our findings suggest that
perceived cost is related to students' self-efficacy beliefs and outcome expectations, as well as their post-graduation
intentions.

We also note that the challenging nature of early engineering work alone may not fully explain the role that cost
appears to play in students' self-efficacy and outcome expectations. Considerable research points to practices that
appear to support students' post-graduation plans. For example, Ro et al. (2017) point to undergraduate research experi-
ences and engineering clubs as significant predictors of graduate school attendance both inside and outside of engi-
neering. Yet research also suggests that inequitable access to, and participation in, such practices might shape the
degree to which they affect positive academic outcomes for students in higher education (Greenman et al., 2022;
Stewart & Nicolazzo, 2018) and in engineering fields (e.g., Simmons et al., 2018). Here, again, we suggest engineering
educators turn their attention to institutional practices rather than individual student outcomes to understand the role
of the structure and delivery of engineering education in students' outcomes.

In this study, we examined only one type of psychological cost related to the effort required to attain a degree in
engineering and its relation to long-term, post-graduation outcomes. Prior research (e.g., Robinson et al., 2019; Perez
et al., 2014) has examined additional forms of cost in retention in engineering and STEM. Our measure is most similar
to the measures of effort cost that Robinson et al. (2019) and Perez et al. (2014) found to be most strongly related to
major persistence. To extend this body of research, studies of career decision-making should explore the role of effort
and other kinds of psychological costs in shaping students' decisions to pursue graduate study and/or careers in
engineering.

A particularly concerning result of our study is the finding that minoritized and first-generation students were less
likely to see the graduate school and careers in their futures, even after Year 2, when students have persisted past the
challenges of first-year courses they might perceive as gatekeeper courses. Lent et al. (2018) pointed to the role of con-
textual supports and barriers, such as family support and economic need, as potential factors moderating the role of
sociocognitive variables (e.g., outcome expectations and self-efficacy) in students' goals and outcomes. However, unlike
Lent et al. (2018), in this study, we conceptualize psychological cost as a potential barrier and find that cost is a signifi-
cant predictor of students' intentions after earning their degrees. If, as Lent and Brown (2019) suggest, some barriers
weigh differently on particular groups (men vs. women, minoritized students vs. racial/ethnic majority students, first-
generation vs. continuing generation students), future research should specifically examine how the role of cost might
vary for minoritized and first-generation students in their academic and career decision-making.

Perez et al. (2019) observe that minoritized students are more likely to encounter challenges in STEM fields due to
structural inequalities, such as less robust STEM preparation programs at the secondary level, as well as implicit or
explicit racism or sexism (see, e.g., McGee & Bentley, 2017), which can diminish students' motivation to pursue STEM.

Similarly, our findings found significant differences in sociocognitive variables by minoritized student status, as well
as significant differences in students' perceptions of their high school preparation for engineering and physics after
Year 1. Future research should examine the interaction between minoritized student status and sociocognitive variables
in engineering—particularly psychological cost. These findings, in conjunction with extant literature that indicates
changes in perceived cost over the course of the undergraduate engineering experience that shape retention intentions,
suggest the need for future research to examine how racialized experiences may shape the role of psychological cost in
students' decisions. While existing literature has examined students' experiences with racialized and gendered hostility
in STEM broadly and engineering more specifically (e.g., Byars-Winston & Rogers, 2019; Dewsbury et al., 2019; Lent
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et al., 2016; Tonso, 2006), there is less research examining how racialized experiences might contribute to differences in
the evolution of expectancies, values, and costs across racial/ethnic groups, or comparing first-generation college stu-
dents to their continuing generation college students.

Additionally, our sample included students who persisted past the challenges of first-year engineering to their
second year but still reported a lower likelihood that they would actually pursue careers in engineering after earning
their degrees. These findings suggest interest, effort, and commitment are not necessarily the leading reasons students
leave engineering following their first year. Instead, other factors, such as their views about the cost of the effort needed
to earn the degree, separate those students who decide to stay from those who eventually leave. For researchers and
educators aiming to promote retention in college and beyond, these findings suggest it is important that understanding
students' values and perceived costs guide intervention efforts.

We do not argue that engineering educators must or should pursue retaining those students who have decided to
leave. Instead, educators and student affairs practitioners should offer resources that help students effectively transition
from engineering into post-graduation academic and professional opportunities consistent with their goals. That
minoritized students and first-generation students are less likely to see graduate school and careers in their futures
means that efforts to support students' post-graduation transitions out of engineering are consistent with diversity,
equity, and inclusion initiatives designed to support minoritized students in college.

8 | CONCLUSIONS

In this work, we drew upon both personal and environmental elements from two models of SCCT to examine the
sociocognitive factors that shape students' career thinking after Years 1 and 2 in undergraduate engineering. Our find-
ings suggest the factors shaping students' decisions after Year 1 differs from those that shape students' thinking after
Year 2. For example, while we found no relationship between sociocognitive variables and post-graduation plans after
Year 1, both self-efficacy and outcome expectations were significant predictors of career plans and graduate school
intentions after Year 2. This suggests a need for future research to examine the various factors that students draw on at
various times to make their career decisions, rather than study career decisions at a single point in student's undergrad-
uate career.

Importantly, this work expanded on SCCT by including a measure of psychological cost in models predicting stu-
dents' post-graduate intentions in engineering. We found that psychological cost was significantly related to both self-
efficacy and outcome expectations during both Year 1 and Year 2 in undergraduate engineering, which themselves
appeared to shape students' post-graduation plans during the early years of undergraduate engineering. Still, our work
suggests that co-curricular programs, such as the program examined in this study, might play a pivotal role in shaping
students' post-graduation intentions. However, how these programs shape students' intentions and whether these bene-
fits are shared among participants from diverse backgrounds are areas for future research.

This is particularly important given our findings that minoritized students and first-generation students are less
likely to plan for graduate school or careers are consistent with the idea that different students experience the academic
challenges of the discipline differently. Future work might examine ways to support students so that the academic chal-
lenges of engineering are viewed not as gatekeepers meant to “weed students out,” but as academically useful experi-
ences, supplemented by timely and useful support, meant to prepare students for post-graduation work in engineering.
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