
1. Introduction
Tides are an integral and dynamic component of the Earth system. According to the IPCC Special Report for 
Oceans and Cryosphere in a Changing Climate, “it is very likely that the majority of coastal regions will experi-
ence statistically significant changes in tidal amplitudes over the course of the 21st century” (Bindoff et al., 2019). 
Additionally, the report concluded with “high confidence” that tides are one of several local processes essential 
to predicting future extreme sea level events (Oppenheimer et  al., 2019). Coastal tide gauge records point to 
changes in tidal amplitudes by as much as 1%–2% per decade (Flick et al., 2003; Müller et al., 2011; Ray, 2006). 
In some locations, the secular changes in tidal amplitudes are of comparable magnitude to changes in mean sea 
level (Jay, 2009). There are a number of processes that affect observed tides in a particular region, from long-term 
Earth system processes (such as tectonic motion) to shorter-term processes which could have impacts over the 

Abstract We examine ocean tides in the barotropic version of the Model for Prediction Across Scales 
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for energy lost by breaking internal tides that are produced by barotropic tidal flow over topographic features. 
We compare a series of successively finer quasi-uniform resolution meshes (62.9, 31.5, 15.7, and 7.87 km) 
to a variable resolution (45 to 5 km) configuration. We ran MPAS-Ocean in a single-layer barotropic mode 
forced by five tidal constituents. The 45 to 5 km variable resolution mesh obtained the best total root-mean-
square error (5.4 cm) for the deep ocean (𝐴𝐴 𝐴 1,000 m) 𝐴𝐴 M2 tide compared to TPXO8 and ran twice as fast as 
the quasi-uniform 8 km mesh, which had an error of 5.8 cm. This error is comparable to those found in other 
forward (non-assimilative) ocean tide models. In future work, we plan to use MPAS-Ocean to study tidal 
interactions with other Earth system components, and the tidal response to climate change.

Plain Language Summary Over the next century, climate change impacts on coastal regions will 
include floods, droughts, erosion, and severe weather events. The Department of Energy (DoE) is funding the 
Integrated Coastal Modeling Project to understand these potential risks better. In this paper, we implement 
tides in the DoE ocean model. Tides themselves respond to climate change, altering coastal flooding risk 
assessments. We explore the sensitivity of tides to model resolution (the spacing of model gridpoints), 
ocean-floor topography, and the so-called “self-attraction and loading” (SAL) effect. Self-attraction and loading 
occurs as the mass of water in a location fluctuates, causing a deformation of the Earth's crust and changes in 
the gravitational potential, which must be accounted for when modeling tides. We present a computationally 
efficient method of calculating the SAL effects and show that it is more accurate than other commonly used 
approximations. In future work we will examine interactions of tides with other components of the climate 
system, including sea ice, floating ice shelves, rivers, and current systems.
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next century (Haigh et al., 2020). For example, mean sea-level rise, shoreline position, or the depth of estuaries 
can influence the geometry of the local region such that tidal resonance is altered and amphidromic points shift 
spatially. Meanwhile, seabed roughness, river flow, sea ice coverage, or ocean stratification, can lead to changes 
in the frictional dissipation and energy exchange of the tides (Haigh et al., 2020). These non-astronomical effects 
are the reason for efforts now to include changes in tides as a factor in assessing flood risks in a changing climate 
(Haigh et  al.,  2020; Jay,  2009). In order to model and predict tidal changes and their impacts in a changing 
climate, it is desirable to simulate tides within an Earth system model.

Historically, tide modeling and climate modeling have been performed separately. In relatively recent efforts, the 
two types of modeling have been performed concurrently (Arbic et al., 2018). Tide gauges have been used for 
centuries to determine tidal amplitudes and phases at specific locations, but as computational methods became 
more feasible, work began on developing tide models that would allow tidal amplitude and phases to be esti-
mated at any point in the ocean (Pekeris & Accad, 1969). The resolution and accuracy of these early barotropic 
tide models increased throughout the late twentieth century with the help of increased computational power and 
assimilation from satellite altimeter data (Dushaw et al., 1997; Hendershott, 1972; Le Provost et al., 1994; Parke 
& Hendershott, 1980; Ray, 1993; Schwiderski, 1979; Shum et al., 1997). Conversely, baroclinic climate models 
have historically excluded explicit tide calculations due to computational constraints and the use of large time 
steps for long-term simulations. Early 3-D ocean models used a “rigid-lid” assumption to remove barotropic 
gravity waves, thus not permitting tides at all (Bryan, 1969; Griffies et al., 2000). The first studies to include tides 
in a baroclinic model were performed at regional scales (Cummins & Oey, 1997; Kang et al., 2000; Merrifield 
et al., 2001). The first global simulations of baroclinic tides (Arbic et al., 2004; Simmons et al., 2004) included 
only tidal forcing. Over the past decade, several ocean general circulation models have begun incorporating tides 
(Arbic et al., 2010, 2018; Müller et al., 2012; Rocha et al., 2016; Waterhouse et al., 2014), allowing for investiga-
tions into interactions of barotropic and internal tides with mesoscale eddies and other components of the Earth 
system.

Several factors must be examined and accounted for in global tide models, including self-attraction and load-
ing (SAL), model resolution, the underlying bathymetric data set, and parameterized topographic wave drag. 
SAL accounts for a combination of effects: the deformation of the Earth's crust due to mass loading and the 
self-gravitation of the load-deformed Earth as well as of the ocean tide itself (Hendershott, 1972). Self-attraction 
and loading can change tidal amplitudes to first-order, up to 20% in some regions, and also significantly impacts 
tidal phases and amphidromic points (Gordeev et al., 1977). Full calculation of SAL calls for convolution of 
tidal elevation with a proper Green's function or a multiplication with load Love numbers in the spectral—i.e., 
spherical harmonic—domain (Ray, 1998). Early attempts to calculate SAL using spherical harmonics proved 
expensive (Stepanov & Hughes, 2004), so ocean tide models have often employed cheaper methods, such as 
a scalar approximation (in which the SAL is approximated locally by a constant factor multiplied by the tidal 
elevation), an iterative method, or the use of SAL fields drawn from other sources. The scalar approximation fails 
to preserve the scale-dependent, spatially smoothing behavior of the SAL and can be particularly unreliable in 
shelf areas where tidal length scales are much smaller than in the open ocean (Ray, 1998). The iterative method 
is tedious to employ and relies on intermediate harmonic analysis, meaning that non-periodic self-attraction and 
loading effects, such as those associated with storm surges, cannot be easily accounted for. Reading in a data set 
for SAL can improve the accuracy of modeled tides in the present-day, but is not appropriate for the prediction 
of tides in a future world where tides and other climate system components will be different. Motivated by these 
points and by recent works incorporating SAL in various hydrodynamic frameworks (Schindelegger et al., 2018; 
Shihora et al., 2022; Vinogradova et al., 2015), we choose to implement a full inline calculation of SAL for tides. 
The model we use is the oceanic component of the Department of Energy (DOE) Energy Exascale Earth System 
Model (E3SM)—namely, the ocean Model for Prediction Across Scales (MPAS-Ocean).

This paper represents a first step toward embedding tides within MPAS-Ocean. We evaluate MPAS-Ocean as 
a barotropic tide model in preparation for including tides in full baroclinic simulations. We demonstrate the 
feasibility of implementing a full inline calculation of SAL using the barotropic configuration. Furthermore, we 
compare tidal sensitivity to different bathymetric products, different resolutions, and parameterized topographic 
wave drag. Sensitivity to bathymetry in tidal simulations has been demonstrated previously and can be improved 
with high-quality regional patching (Blakely et al., 2022; Lyard et al., 2021). Convergence of tidal errors with 
increasing model grid resolution has been explored in, for example, Egbert et al. (2004), Arbic et al. (2008), and 
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Pringle et al.  (2021). A parameterized topographic wave drag accounts for the energy dissipation that occurs 
when internal tides are generated from the tidal flow over rough topography in the presence of stratification. 
The importance of including this term in barotropic tidal simulations has been discussed in many papers (Arbic 
et al., 2004, 2008; Blakely et al., 2022; Egbert et al., 2004; Jayne & St. Laurent, 2001). Finally, we expect the 
inclusion of a full SAL calculation to increase the computational time of the simulations, as has been shown in 
previous implementations (Schindelegger et al., 2018; Shihora et al., 2022). We end with an examination of the 
computational cost incurred by our SAL calculation and compare performance on the various resolution meshes 
used in the study.

2. Methods and Implementation
2.1. Model Description

The Model for Prediction Across Scales, or MPAS, integrates a variety of geophysical fluid dynamics models 
on unstructured meshes (Golaz et al., 2019; Petersen et al., 2019; Ringler et al., 2013). MPAS contains various 
dynamical cores, each of which contains a specific implementation of a physical system (e.g., atmosphere, sea 
ice, etc.). We implement tides in the ocean core, MPAS-Ocean. The model is based on unstructured, Voronoi-type 
tessellations supporting variable resolution, allowing for a range of spatial length scales to be captured in a single 
simulation. A variable resolution unstructured mesh allows for a detailed representation of some regions (e.g., 
coastlines) while reducing overall computational cost through the use of lower resolutions in regions with larger 
length scales.

For the purpose of evaluating tides in MPAS-Ocean, we have modified the model to run in a two-dimensional 
(2-D) barotropic mode. The governing equations include a momentum equation in a vector-invariant form and a 
layer thickness equation.

𝜕𝜕𝐮𝐮

𝜕𝜕𝜕𝜕
+ (∇ × 𝐮𝐮 + 𝑓𝑓𝐤𝐤) × 𝐮𝐮 = −∇𝐾𝐾 − 𝑔𝑔∇ (𝜂𝜂 − 𝜂𝜂𝐸𝐸𝐸𝐸 − 𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆) − 𝜒𝜒

𝐮𝐮

𝐻𝐻
−

𝐷𝐷|𝐮𝐮|𝐮𝐮

𝐻𝐻
, (1)

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝜕𝐮𝐮) = 0, (2)

where 𝐴𝐴 𝐮𝐮 represents the depth-averaged horizontal velocity, 𝐴𝐴 𝐴𝐴 is the time coordinate, 𝐴𝐴 𝐴𝐴 is the Coriolis parameter, 
𝐴𝐴 𝐤𝐤 is the vertical unit vector, 𝐴𝐴 𝐴𝐴 = |𝐮𝐮|2∕2 is the kinetic energy, 𝐴𝐴 𝐴𝐴 is the gravitational acceleration constant, 𝐴𝐴 𝐴𝐴 is 

the sea-surface height relative to the moving bed, henceforth called SSH, 𝐴𝐴 𝐴𝐴𝐸𝐸𝐸𝐸 is the equilibrium tide, 𝐴𝐴 𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 is the 
perturbation of tidal elevations due to SAL, 𝐴𝐴 𝐴𝐴 is a tunable scalar dimensionless wave drag coefficient, 𝐴𝐴



ℎ
 is a  topo-

graphic wave drag time scale, 𝐴𝐴 𝐴𝐴 is the resting depth of the ocean, and 𝐴𝐴 𝐴 is the total ocean thickness such that 
𝐴𝐴 𝐴𝐴 + 𝜂𝜂 = ℎ . The full form of the drag terms in Equation 1 would use the total thickness 𝐴𝐴 𝐴 , but our implementation 

uses the linearized version with the resting depth 𝐴𝐴 𝐴𝐴 . In addition, 𝐴𝐴
𝐻𝐻


 is read in from the variable rinv from the 

HyCOM file jsl_lim24_inv_hrs.nc, where the original calculation is described in Buijsman et al. (2016). 
𝐴𝐴 𝐷𝐷 is a log-law based drag model, evaluated according to Equation 3 where 𝐴𝐴 𝐴𝐴 = 0.4 is the von Karman constant 

(Von Kármán, 1931), 𝐴𝐴 𝐴𝐴0 = 0.001 is the roughness parameter and 𝐴𝐴 𝐴𝐴 is the ocean resting thickness. The minimum 
and maximum functions constrain 𝐴𝐴 𝐴𝐴𝐷𝐷 to the range 𝐴𝐴 [0.0025, 0.1] .

𝐶𝐶𝐷𝐷 = max

⎡
⎢
⎢
⎢
⎣

0.0025,min

⎡
⎢
⎢
⎢
⎣

0.1,

⎛
⎜
⎜
⎜
⎝

𝜅𝜅

ln

(
𝐻𝐻

2𝑧𝑧0

)

⎞
⎟
⎟
⎟
⎠

2

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦

 (3)

MPAS-Ocean retains the capability to be run with multiple layers with tides and SAL for future investigations, 
but only the single-layer barotropic model is used in this study. The multi-layer baroclinic model would addi-
tionally include three-dimensional tracer equations for temperature and salinity, vertical advection and diffusion 
terms on all equations, and the computation of density from the equation of state for seawater and pressure at each 
layer from the hydrostatic equation.

Tidal forcing is implemented by adding a SSH perturbation, 𝐴𝐴 𝐴𝐴𝐸𝐸𝐸𝐸 , into the pressure gradient operator.
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�����,� = ����(���� )� cos2(�) cos
[

��(� − ���� ) + ��(���� ) + ��(���� ) + 2�
]

 (4)

����,� = ����(���� )� sin(2�) cos
[

��(� − ���� ) + ��(���� ) + ��(���� ) + �
]

 (5)

These terms are valid for semidiurnal 𝐴𝐴 (𝑠𝑠𝑠𝑠) and diurnal 𝐴𝐴 (𝑑𝑑) tidal constituents (Arbic et al., 2018). The total forcing 
comes from summing over each of the constituents, 𝐴𝐴 𝐴𝐴 . Here 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are the forcing amplitude and frequency, 
respectively, dependent on the tidal constituent, 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 is a specified reference time, 𝐴𝐴 𝐴𝐴 is time, 𝐴𝐴 𝐴𝐴 is latitude, 𝐴𝐴 𝐴𝐴 is longi-
tude, �(���� ) is an astronomical argument accounting for the constituent's phase due to astronomical positions of 
the Moon and/or Sun, and �(���� ) and �(���� ) are amplitude and phase nodal factors accounting for small known 
astronomical modulations in the tidal forcing. 𝐴𝐴 𝐴𝐴 = 1 + 𝑘𝑘2 − ℎ2 is a combination of body tide Love numbers that 
account for changes in the gravitational potential 𝐴𝐴 (𝑘𝑘2) due to deformation of the Earth's crust and mantle from 
tidal forcing 𝐴𝐴 (ℎ2) .

2.2. Self-Attraction and Loading

SAL is implemented as additional body force via the SSH gradient term in Equation 1. We express the inline SAL 
for tides in terms of the spherical harmonic decomposition of the SSH (Hendershott, 1972),

𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆 =
∑

𝑛𝑛

3𝜌𝜌0

𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(2𝑛𝑛 + 1)

(
1 + 𝑘𝑘

′
𝑛𝑛 − 𝑒

′
𝑛𝑛

)
𝜂𝜂𝑛𝑛, (6)

where each spherical harmonic SSH term 𝐴𝐴 𝐴𝐴𝑛𝑛 is multiplied by a scalar coefficient. Here 𝐴𝐴 𝐴𝐴0 = 1035
𝑘𝑘𝑘𝑘

𝑚𝑚3
 is the aver-

age density of seawater, 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 5517
𝑘𝑘𝑘𝑘

𝑚𝑚3
 is the average density of the solid Earth, and the multiplicative term 

𝐴𝐴 (1 + 𝑘𝑘
′
𝑛𝑛 − ℎ

′
𝑛𝑛) represents load Love numbers (obtained from Wang et al. (2012)) corresponding to physical effects 

of SAL. The “1”, 𝐴𝐴 𝐴𝐴
′
𝑛𝑛 , and 𝐴𝐴 𝐴

′
𝑛𝑛 terms account for gravitational self-attraction of the ocean, gravitational self-attraction 

of the deformed solid Earth, and deformation due to loading of the solid Earth respectively. However, the usage  of 
SSH for calculating SAL is only appropriate for tides and wind-driven barotropic motions. For other motions one 
must use bottom pressure anomalies.

Before this work, SAL was implemented in MPAS-Ocean via the scalar approximation (Accad & Pekeris, 1978; 
Ray, 1998),

𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛽𝛽𝜂𝜂𝛽 (7)

where 𝐴𝐴 𝐴𝐴 is the SSH prior to alterations, and 𝐴𝐴 𝐴𝐴 = 0.09 is a scalar parameter used to approximate the influence of 
SAL. This approximation is a computationally inexpensive method that is sufficiently accurate for many cases. 
However, it does not capture the spatial dependence and large-scale smoothing of the full calculation (Figure 1).

We evaluate Equation 6 using the fast spherical harmonics transform package, SHTns (Schaeffer, 2013). This 
package can only be run on a single node with shared memory, not across nodes with a message passing interface 
(MPI). In contrast, MPAS-Ocean typically runs on hundreds of nodes using MPI. Further, the input data must be 
arranged on a Gaussian grid, because SHTns takes advantage of the geometry of this grid (i.e., the latitudes are 
arranged at zeros of Legendre polynomials) to perform faster transforms. To use SHTns within MPAS-Ocean, 
we  first gather the distributed SSH field to a single head node before remapping the data onto the Gaussian grid. 
The remapped data can then be transformed into spherical harmonics, where 𝐴𝐴 𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 is easily calculated by multi-
plying the harmonic coefficients by the known load Love numbers. Finally, the process is performed in reverse as 

𝐴𝐴 𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 is transformed into a spatial field on the Gaussian grid, remapped onto the MPAS mesh, and sent back out 
to the nodes (Figure 2). For each of the quasi-uniform meshes, the Gaussian grid resolution was chosen to match 
the mesh resolution at the equator. For the variable resolution mesh, the Gaussian grid resolution is equal to the 
minimum resolution of the mesh, or 5 km. The spherical harmonic order cutoff is determined by the number of 
latitudes in the Gaussian grid according to Equation 8, where 𝐴𝐴 𝐴𝐴max is the maximum degree, 𝐴𝐴 𝐴𝐴max is the maximum 
order, and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the number of latitudes in the Gaussian grid.

𝑙𝑙max = integer

(
𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛

2

)

− 1

𝑚𝑚max = 𝑙𝑙max

 (8)
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Prior to our global tidal simulations, we validated the above approach by initializing the SSH to a single spheri-
cal harmonic function on the MPAS mesh, allowing us to easily confirm that the results matched the theoretical 
expectation.

2.3. Meshes

Several studies have demonstrated the effect of resolution on the accuracy of tidal models (Arbic et al., 2008; 
Egbert et al., 2004; Pringle et al., 2021). Here, we compare two types of meshes: icosahedral and variable resolu-
tion. Icosahedral meshes are spatially quasi-uniform, and have the smallest variations of cell area, vertex angles, 

Figure 1. Example of spatially-smoothed output (right) of the self-attraction and loading (SAL) operator (Equation 6) applied to an input field (left). The SAL output 
has amplitude roughly 1/10 that of the original. For the barotropic runs used in this model, we evaluate SAL using the sea-surface height (SSH) signal, shown here. 
However, for a full baroclinic model it is necessary to use the bottom pressure as input.

Figure 2. Overview of the procedure used to calculate self-attraction and loading (SAL). The sea-surface height (SSH) field is sent to process 0, remapped onto a 
Gaussian grid, then decomposed into spherical harmonics. The perturbation in SSH due to SAL is calculated and then transformed into spatial data, remapped onto the 
MPAS-Ocean mesh, and sent back to the nodes.
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and edge lengths across the sphere among any global meshes, so are the 
perfect choice for comparisons between resolutions. Table 1 shows the reso-
lutions of the icosahedral meshes used in our simulations. The numbers 7–10 
refer to the number of refinement iterations in the mesh generation process, 
where each iteration divides every triangle on the primal (triangular) mesh 
into four triangles, so that the mesh at step 𝐴𝐴 𝐴𝐴 contains 𝐴𝐴 2 + 10 ⋅ 4

𝑛𝑛 cells on the 
dual mesh (12 pentagons and the rest hexagons).

The variable resolution 45 to 5 km mesh (Figures 3 and 4) is an ADCIRC 
(Advanced CIRCulation)-style mesh (Pringle et al., 2021). Tides are particu-
larly sensitive to shallow coastal areas and steep topographic gradients, 
where significant tidal energy dissipation takes place. In fact, about 2/3 of 
tidal dissipation occurs in coastal regions (Egbert & Ray, 2000, 2003). In our 
variable-resolution configuration, we adapt the length scale of the mesh in 
critical areas to better capture dynamics in shallow tidal flats and in regions 
of sharp bathymetric variation; employing the following mesh spacing 
heuristics to design a global mesh that captures local tidal processes:

 (9)

 (10)

 (11)

 (12)

Here, 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤(𝐱𝐱) and 𝐴𝐴 𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠(𝐱𝐱) are barotropic tidal length-scale heuristics, with 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤 
increasing mesh resolution in shallow regions to resolve the wavelength of 
shallow-water dynamics, and 𝐴𝐴 𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠 increasing mesh resolution in areas of large 
relative bathymetric gradients to capture topographically-induced flow. 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤 
and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 are tunable “‘resolution-selection” parameters, set to 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤 =

1

80
 and 

𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 =
1

4
 in this study. To produce smooth distributions suitable for mesh 

generation, 𝐴𝐴 �̃�𝐻 and 𝐴𝐴 ̃∇𝐻𝐻 represent Gaussian-filtered 𝐴𝐴

(

𝜎𝜎 =
1

2

)

 depths and 
gradients obtained from the raw GEBCO2021 bathymetry. 𝐴𝐴 𝐴𝐴

∗(𝐱𝐱) is an initial 
combined estimate of mesh spacing throughout the domain, taking limit-
ing values of 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤 , 𝐴𝐴 𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠 at each spatial point and clipping to 𝐴𝐴 𝐴𝐴min = 5𝑘𝑘𝑘𝑘 and 

𝐴𝐴 𝐴𝐴max = 45𝑘𝑘𝑘𝑘 . To control the gradation of the mesh overall, this initial esti-
mate is “gradient-limited” to ensure the relative increase in mesh spacing is 
bounded below a user-defined threshold, here set to 𝐴𝐴 𝐴𝐴 =

1

8
 . See Figure 3 for a 

detailed view of the resulting mesh spacing pattern 𝐴𝐴 𝐴𝐴(𝐱𝐱) in the North Atlantic 
region. Meshes in this study are generated using the JIGSAW unstructured 
meshing library (Engwirda, 2017), with pre-processing completed using the 
scikit-image package (Van der Walt et al., 2014).

2.4. Topographic Wave Drag

Tidal dissipation occurs as a stratified fluid flows over rough topography, 
causing energy to transfer from barotropic to baroclinic tides (Munk, 1966; 
Munk & Wunsch,  1998). Including this topographic wave drag has been 
shown to decrease the tidal elevation errors in tidal models (Arbic et al., 2004; 
Egbert et al., 2004; Green & Nycander, 2013; Lyard et al., 2006). Different 
parameterization methods exist, and several studies include comparisons 
of various methods (Buijsman et  al.,  2015; Egbert et  al.,  2004; Green & 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤(𝐱𝐱) = 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑇𝑇𝑀𝑀2

√

𝑔𝑔�̃�𝐻𝐻

𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠(𝐱𝐱) = 𝛽𝛽𝑠𝑠𝑙𝑙𝑠𝑠
2𝜋𝜋�̃�𝐻

̃∇𝐻𝐻
,

𝑙𝑙
∗(𝐱𝐱) = max (min (𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤(𝐱𝐱), 𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠(𝐱𝐱), 𝑙𝑙max) , 𝑙𝑙min) ,

𝑙𝑙
∗
→ |∇𝑙𝑙| ≤ 𝛾𝛾𝛾

Mesh type Avg. cell width
Wave drag 

coeff.
Number of 

cells
Time 

step (s)

Icosahedron 7 62.9 km 1.80 163,842 60

Icosahedron 8 31.5 km 1.08 655,362 60

Icosahedron 9 15.7 km 0.72 2,621,442 30

Icosahedron 10 7.87 km 0.36 10,485,762 15

VR 45 to 5 45 to 5 km 0.72 2,359,578 20

Note. Cell width of a polygon is computed as the diameter of a circle with 
the same area.

Table 1 
Details for Each Mesh Used in the Simulations

Figure 3. Comparison of the Icosahedron 10 mesh (top) and the variable 
resolution mesh (bottom) in the North Atlantic near Delaware Bay. The 
Icosahedron 10 mesh is a quasi-uniform 8-km mesh while the variable 
resolution mesh ranges from 45 to 5 km.
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Nycander, 2013). Here, we have implemented the scheme proposed by Jayne and St. Laurent (2001) which uses 
a simple tunable scalar,

 =
𝜋𝜋

𝐿𝐿
�̂�𝐻

2
𝑁𝑁𝑏𝑏. (13)

Here 𝐴𝐴  is the same as that in Equation 1, 𝐴𝐴 �̂�𝐻 represents the bottom roughness and 𝐴𝐴 𝐴𝐴𝑏𝑏 is the buoyancy frequency at the 
bottom. 𝐴𝐴 𝐴𝐴 is a wave length representing the topography, which we set to 10 km, as in Jayne and St. Laurent (2001) 
and Buijsman et al. (2015). MPAS-Ocean reads in the Hycom variable rinv, which is 𝐴𝐴 𝐴𝐴∕ . The value of the 
parameter 𝐴𝐴 𝐴𝐴 depends on the resolution (Arbic et al., 2008; Buijsman et al., 2020), and required a tuning of the 
wave drag for each mesh in this study (Figure 5).

2.5. Bathymetry

The quality of bathymetric data sets can impact the errors found in tidal 
models. In particular, it has been found that Hudson Bay and other areas 
can significantly change tides in regions around the globe (Arbic et al., 2009; 
Pringle et al., 2018). It was demonstrated by Arbic et al. (2009) and Arbic and 
Garrett (2010) that regions of large resonant coastal tides, such as Hudson 
Bay, have a substantial “back effect” on the global ocean tidal system. Blakely 
et al. (2022) showed that tidal errors can be improved by combining GEBCO 
bathymetry with various high-quality regional bathymetric data sets. Moti-
vated by this, we include a comparison of two different global bathymetric 
data sets: GEBCO2021 (GEBCO Compilation Group, 2021) and SRTM15+ 
(Tozer et al., 2019), each with regional patching around Canada (Canadian 
Hydrographic Service,  2018), northern Australia (Beaman,  2016) and the 
great barrier reef (Beaman, 2020).

Figure 4. View of the variable resolution mesh around the Atlantic Ocean. The colors indicate the size of each cell in the 
mesh, with blue indicating smaller cell size and red indicating larger cell size. There is more refinement around (1) shallow 
depths, and (2) regions of steep topographic gradients.

Figure 5. Wave drag 𝐴𝐴 (𝜒𝜒) tuning for each mesh. These were evaluated with full 
inline self-attraction and loading (SAL). The optimal wave drag coefficient for 
each mesh was used to perform all other simulations using that mesh.
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3. Simulation Details
3.1. Tidal Evaluation

It is common to evaluate tidal models by comparing the root-mean squared 
complex error (RMSE) versus a benchmark, such as TPXO8 (Egbert & 
Erofeeva, 2002). Here, as in Arbic et al. (2004), we separate the errors into 
three regions: deep (depths 𝐴𝐴 𝐴 1,000 m and between 66𝐴𝐴

◦ N and 66𝐴𝐴
◦ S), shallow 

(𝐴𝐴 𝐴 1,000 m) and global (no restriction). The pointwise RMSE for the tidal 
constituent, which we also denote by 𝐴𝐴 𝐴𝐴 (for discrepancy) can be computed as:

           (14)

������������ℎ��� =

√

∬ �2��
∬ ��

. (15)

In Equation  15, 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝐴𝐴𝑀𝑀 are the 𝐴𝐴 M2 amplitudes and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 
𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝐴𝐴𝑀𝑀 are the phases of TPXO and MPAS-Ocean, respectively. The quantity 
𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is weighted by the area 𝐴𝐴 𝐴𝐴𝐴𝐴 of each cell.

We also evaluate the model against tide gauge observations as:

𝐷𝐷
2 =

1

2

(
𝐴𝐴

2
𝑡𝑡𝑡𝑡
+ 𝐴𝐴

2

𝑀𝑀𝑀𝑀𝐴𝐴𝑀𝑀

)
− 𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝑀𝑀𝑀𝑀𝐴𝐴𝑀𝑀 cos (𝜙𝜙𝑡𝑡𝑡𝑡 − 𝜙𝜙𝑀𝑀𝑀𝑀𝐴𝐴𝑀𝑀 ) , (16)

������ =

√

∑ �2

���
, (17)

where 𝐴𝐴 𝐴𝐴𝐴𝐴 denotes tide gauge data and 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡 is the number of tide gauge stations. For these comparisons we divide 
the errors into a different set of categories than we use for the TPXO comparison. These are: deep (depths 

𝐴𝐴 𝐴 1,000 m), shallow (depths between 100 and 1,000 m), and coastal (depths 𝐴𝐴 𝐴 100 m). Note that for the tide gauge 
comparisons, we do not restrict latitude as we do for the TPXO comparisons.

The complete list of simulations is given in Table 2. We compare results from different Icosahedral meshes (7, 
8, 9, and 10) to results from a variable resolution mesh. We also compare the results of simulations with inline 
SAL versus scalar SAL for the highest resolutions: Icosahedral 10 and the variable resolution. Furthermore, we 
tested two different bathymetric data sets: GEBCO 2021 and SRTM15+, each with and without refinement in 
critical areas. We ran all simulations for 120 days using a fourth-order Runge-Kutta time-stepping method. The 
tidal phases and amplitudes are calculated from harmonic analysis of the final 90 days of the simulation, allowing 
for a 30-day spin-up.

3.2. Tuning

Two parameters required tuning in order to perform these tests: a wave drag parameter and the interval at which 
SAL is updated.

3.2.1. Topographic Wave Drag

The MPAS-Ocean model follows the Jayne and St. Laurent drag scheme in that it has a single tunable wave drag 
parameter, 𝐴𝐴 𝐴𝐴 , as seen in Equation 1. It is necessary to tune the wave drag parameter for each resolution to ensure 
optimally modeled tides and tidal energy dissipation. Table 1 shows the values chosen for each resolution with 
the sampled wave drag parameters for each resolution shown in Figure 5. We can also see in this figure that as 

𝐴𝐴 𝐴𝐴 approaches 0 (at which point wave drag would be turned off), the errors begin to increase by up to several 
centimeters.

𝐷𝐷
2 =

1

2

(
𝐴𝐴

2

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
+ 𝐴𝐴

2

𝑀𝑀𝑇𝑇𝐴𝐴𝑀𝑀

)
− 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑀𝑀𝑇𝑇𝐴𝐴𝑀𝑀 cos (𝜙𝜙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜙𝜙𝑀𝑀𝑇𝑇𝐴𝐴𝑀𝑀 ) ,

Mesh Bathymetry SAL type Global Deep Shallow

Icosahedron 7 GEBCO2021 Inline 14.1 12.0 30.0

Scalar 14.8 12.9 28.8

Icosahedron 8 GEBCO2021 Inline 10.7 8.8 22.5

Scalar 12.9 11.3 22.7

Icosahedron 9 GEBCO2021 Inline 8.0 6.4 16.3

Scalar 12.2 10.5 20.5

Icosahedron 10 GEBCO2021 Inline 7.4 5.8 14.0

Scalar 14.3 12.2 23.8

VR 45 to 5 km GEBCO2021 Inline 6.8 5.4 13.3

Scalar 10.4 8.9 17.2

SRTM15+ Inline 7.0 5.7 12.6

Table 2 
Complex 𝐴𝐴 M2 Error (cm) for All Simulations, Where Columns Show Error 
Calculations for Global (All Cells), Deep, and Shallow Water
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3.2.2. SAL Calculation Interval

The full inline SAL calculation can be costly, particularly at high resolution. 
To help reduce this computational burden, we experimented with updating 
the value of the SSH perturbation due to SAL at various intervals of 1, 10, 
and 30 min. We continue to apply SAL at every time step between the update 
intervals. Table 3 shows the resulting 𝐴𝐴 M2 errors on the Icosahedral 8 and 9 
meshes for each of these cases. Decreasing the intervals of calculation does 
not necessarily lead to decreased tidal errors, likely due to other sources of 
error dominating. Ultimately, we decided that the 30-min intervals best opti-

mized the benefits of the inline calculation relative to the computational cost. We include further results of the 
computational cost in Section 4.3.

4. Results
4.1. TPXO8 Comparison

The RMSE for the 𝐴𝐴 M2 tidal constituent as compared to TPXO8 are shown in Table 2. Figures 6 and 7 show the 
distribution of the 𝐴𝐴 M2 RMS error 𝐴𝐴 𝐴𝐴 in the solution as compared to TPXO8. The decreasing error at finer resolu-
tions demonstrates approximate numerical convergence. The largest errors, particularly in the variable resolution 
mesh, lie in the region around Antarctica. The E3SM water cycle configurations do not include ice shelf cavities. 
As such, we are planing a follow-up study focused on the accuracy of tides under those circumstances. For now, 
the simulations in this paper do not include an explicit representation of ice shelf cavities, which have been shown 
to impact tidal accuracy, particularly in this region (Blakely et al., 2022; Stammer et al., 2014).

Comparing the results for inline SAL and the scalar approximation (Figure 8), we can see that at every resolution, 
the deep (𝐴𝐴 𝐴 1,000 m) RMS error improves with the inline SAL. Finer resolution meshes see a larger benefit from 
inclusion of inline SAL than the coarser resolutions. As the quasi-uniform meshes increase resolution, inline SAL 
reduces the error by as much as 50%. For the scalar SAL case, the Icosohedron 10 mesh has unusually larger 
errors. This could be due to keeping the 𝐴𝐴 𝐴𝐴 constant for all cases, rather than tuning it for specific resolutions. 
Additionally, the wave drag parameter 𝐴𝐴 𝐴𝐴 was tuned for the inline SAL cases, so further turning may lead to more 
typical results for the scalar case on the Icosohedron 10 mesh. For the variable resolution mesh, the improve-
ment is not as large but inline SAL still reduces the error by 39% as compared to the scalar SAL. The lowest 
error achieved is on the 45 to 5 km variable resolutions mesh, with a deep 𝐴𝐴 M2 RMS error of 5.4 cm. As a point 
of comparison, Schindelegger et al. (2018) and Shihora et al. (2022) both included full inline SAL calculations 
into a barotropic tide model and found deep ocean 𝐴𝐴 M2 RMS errors of 4.4 and 3.4 cm, respectively. Both studies 
used global 𝐴𝐴 1∕12◦ resolution regular latitude-longitude grids with ice shelf cavities included. The Schindelegger 
et al. (2018) model domain ranged from 𝐴𝐴 86

◦ to 𝐴𝐴 84
◦ N. 𝐴𝐴 M2 RMS errors with ADCIRC were found to be 2.9 cm by 

Pringle et al. (2021) and were further lowered to 1.9 cm by Blakely et al. (2022). All of the previous studies used 
more sophisticated wave drag schemes, such as a full tensor calculation or optimization of spatially-dependent 
coefficients, and evaluated RMSE at depths 𝐴𝐴 𝐴 1,000 m and latitudes ≤ |±66◦| . The two ADCIRC studies imple-
mented SAL by reading in values from a data-assimilated model and featured a global 2 to 25-km variable reso-
lution mesh. Stammer et al. (2014) includes a comparison of errors for various purely hydrodynamical, non-data 
assimilative models ranging from 5.3 to 7.8 cm. While the tidal errors in MPAS-Ocean are not as competitive as 
some state-of-the art models that focus exclusively on tidal modeling, they are low enough to represent tides in an 
Earth system model, thus paving the way for studies of tidal interactions with storm surges, rivers, or components 
of the cryosphere in the future (see Section 5). In at least one other run using settings not directly tested here, we 
have achieved an even lower RMS error of 5.1 cm, indicating there is still room for improvement.

Aside from inclusion of explicit ice-shelf cavities, the errors in our model could be improved by using a more 
sophisticated wave-drag scheme or a better-optimized variable resolution mesh. Optimization for improved tidal 
errors on the VR mesh include adjusting the maximum and minimum cell size as well as the limiting gradient that 
determines the relative increase in cell size. As discussed in the tuning section, the wave drag coefficient is highly 
dependent on the resolution of the mesh. For the variable resolution mesh, the “best” wave-drag coefficient may 
be different depending on the resolution of a particular region of cells. Furthermore, we may find that the scalar 
parameterization of wave drag is not as accurate as a full implementation. The generation of the variable mesh 

Calculation interval 30 min 10 min 1 min

Icosahedron 8 RMSE (cm) 8.8 8.4 8.4

Icosahedron 9 RMSE (cm) 6.4 6.4 6.5

VR 45 to 5 km RMSE (cm) 6.1 6.1 6.4

Table 3 
RMSE Error for 𝐴𝐴 M2 Constituent at Different SAL Update Intervals
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Figure 6. Pointwise complex RMS differences 𝐴𝐴 (𝐷𝐷) between Model for Prediction Across Scales (MPAS) and TPXO8, showing simulated 𝐴𝐴 M2 tidal amplitudes (colors) 
and phases (lines) from MPAS-O at various resolutions (left); 𝐴𝐴 M2 RMS errors calculated with respect to TPXO8 data (right). These represent the errors on each mesh 
obtained from using inline self-attraction and loading (SAL) and GEBCO2021 bathymetry.
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Figure 7. RMS error (m) of the variable-resolution simulation versus TPXO8 in the Arctic Ocean (left) and Southern Ocean 
(right).

Figure 8. 𝐴𝐴 M2 RMS errors relative to TPXO8 for different simulations. The plots show (a) deep regions, (b) shallow regions, and (c) global errors (see Section 3.1). 
Errors reduce with higher resolution, and inline self-attraction and loading (SAL) is better than scalar SAL.
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itself also requires decisions about minimum/maximum cell width, and the gradient of cell width (i.e., how 
rapidly the cell sizes change throughout the mesh). Refining these parameters could lead to further improvement 
in the results found on the VR mesh.

4.2. Tide Gauge Comparison

We compare the results of MPAS-Ocean to tide gauge data sets including the “ground truth” stations (pelagic, 
shallow, and coastal) from Stammer et al. (2014), as well as stations from NOAA, KHOA, JMA, and GESLA. 
These stations were consolidated by Pringle (2019), including directly provided tidal harmonics or using UTIDE 
(Codiga,  2011) on time level histories. Figure  9, shows the model versus tide gauge amplitudes and phases. 
The tide gauge data sets have been filtered to exclude gauges generally outside of the domain of the simulation. 
For the phase data, we shifted the values so that the phase differences were all within 180°. The RMS error 
when comparing against the 151 pelagic stations is 5.8 cm for the variable resolution mesh and 5.9 cm for the 
8 km quasi-uniform mesh (Table 4), which is consistent with the results seen from the TPXO8 comparison of 
5.4 and 5.8 cm, respectively, for the deep ocean. For reference, in the previous studies about full inline SAL, 
Schindelegger et al. (2018) had an RMS error of 5.9 cm and Shihora et al. (2022) had an error of 4.8 cm when 
comparing to the pelagic stations.

A large majority of the tide gauges sampled are near the coasts, and we can see from the figures that MPAS-O 
has more accurate tides near the deep-ocean gauges (Figure 9). The 𝐴𝐴 R

2 value for 𝐴𝐴 M2 amplitudes increases for 
increasing depths. In the zoomed-in plot showing only tidal amplitudes between 0 and 1 m, we can see that most 
of the spread is due to errors in the shallower locations (mainly regions less than 100 m deep). Comparing the 
two different meshes, we can see that while they both give similar results, the variable resolution mesh does 
outperform the quasi-uniform mesh slightly in the shallower regions. For depths less than 100m, the variable 
resolution mesh amplitude has a value of 𝐴𝐴 𝐴𝐴

2
= 0.950 compared to the quasi-uniform mesh value of 𝐴𝐴 𝐴𝐴

2
= 0.933 . 

Similarly, for depths between 100 and 1,000 m, they have values of 𝐴𝐴 𝐴𝐴
2
= 0.974 and 𝐴𝐴 𝐴𝐴

2
= 0.950 respectively. For 

depths greater than 1,000 m, we can see a slight advantage in the quasi-uniform mesh, with a value of 𝐴𝐴 𝐴𝐴
2
= 0.986 

compared to the variable resolution mesh value of 𝐴𝐴 𝐴𝐴
2
= 0.983 . The quasi-uniform mesh has an 8 km resolution 

over the entire ocean, while the variable resolution mesh has cells as large as 45 km in this region. Despite the 
slight advantage this gives the quasi-uniform mesh for amplitudes, the variable resolution mesh also has similar 
or better phase results, leading to reduced RMSE (Figure 4) for this mesh. When comparing the scalar results to 
the inline SAL, we can see that the inline calculation performs better overall for the Icosahedron 10 mesh, but 
the variable resolution mesh sees most benefit in the phase errors. Even though the RMSE is higher for both 
meshes, the amplitude 𝐴𝐴 𝐴𝐴

2 values are actually higher for the scalar while the phase values are lower. We can also 
consider the physical spread of errors by separating the tide gauges based on whether their errors are larger or 
smaller  than  the RMS error (Figure 10). MPAS-O tidal errors are generally greater than the total RMS error 
in regions near coastlines, whereas tidal errors in the deep-ocean are generally less than the RMS error. While 
we expect the shorelines to have larger overall tides and therefore larger errors in the model, the figure also 
demonstrates that many shallow regions also have lower errors. We expect that once further improvements to the 
variable resolution mesh allow us to resolve the coastline in better detail, these errors might reduce even further. 
Additionally, allowing for different wave drag coefficients for different regions may help optimize drag specifi-
cally along shelves and coastlines (e.g., Blakely et al., 2022).

4.3. Computational Scaling

We show differences between performance for the inline SAL updated at various intervals and performance 
on the variable resolution mesh compared to the Icosahedron mesh. All runs were performed on NERSC Cori 
compute nodes with 2.3 GHz Haswell processors (Intel Xeon Processor E5-2698 v3). For the mesh comparisons, 
the variable resolution performance is better than the Icosahedron 10 mesh (Figure 11), with comparable RMS 
errors (Figure 2). Table 1 shows the number of cells and the time step needed to run the model on each mesh. The 
variable resolution mesh allows for significantly fewer cells, leading to improved computational performance. 
For all meshes, the explicit time step is restricted by the advective CFL condition, defined as the ratio of the cell 
width to the wave propagation speed,
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𝑑𝑑𝑑𝑑 𝑑
cell width

wave speed
, wave speed =

√
𝑔𝑔𝑔, (18)

where 𝐴𝐴 𝐴𝐴𝐴𝐴 is the time step, 𝐴𝐴 𝐴 is the water depth, and 𝐴𝐴 𝐴𝐴 is the gravitational constant. In ocean flows, the surface 
gravity wave speed produces the fastest velocities. For the variable resolution mesh, this condition means that the 

Figure 9. 𝐴𝐴 M2 tidal results from inline self-attraction and loading (SAL) Icosahedron 10 run compared to tide gauge data for the deep, shallow, and coastal tide gauges 
(see Section 3.1). The 𝐴𝐴 R

2 values are given in the legend.
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SAL type

RMSE

Deep

𝐴𝐴 𝐴𝐴
2 

Mesh (pelagic) Shallow Coastal

Icosahedron 10 Inline 5.9 Amplitude 0.986 0.950 0.933

Scalar 13.1 0.982 0.952 0.928

VR 45 to 5 km Inline 5.8 0.983 0.974 0.950

Scalar 9.3 0.986 0.982 0.959

Icosahedron 10 Inline Phase 0.993 0.975 0.974

Scalar 0.991 0.933 0.965

VR 45 to 5 km Inline 0.994 0.969 0.985

Scalar 0.993 0.930 0.979

Note. The complex RMS error (cm) for the 151 “Ground Truth” pelagic stations is also included.

Table 4 
𝐴𝐴 𝐴𝐴

2 Values for the 𝐴𝐴 M2 Tide Gauge Amplitude (Top) and Phase (Bottom) Comparisons in Deep (𝐴𝐴 𝐴 1,000 m), Shallow 
(Between 1,000 and 100 m, and Coastal (𝐴𝐴 𝐴 100 m) Regions

Figure 10. Global distribution of tide gauges, colored by model error from the variable resolution mesh simulation. The top 
plot shows locations with errors greater than the RMS value of all stations, and the bottom plot shows gauges with errors less 
than the RMS value. The majority of points have a small error, while the small number of stations with large error are near 
coastlines. This analysis is restricted to gauges at depths 𝐴𝐴 ≥ 100 m.
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time step is not necessarily limited by the minimum cell size alone, but by the relationship between cell sizes and 
wave speeds throughout the domain. Noting that our variable resolution heuristics (see Section 2.3) place fine 
resolution in shallower, and hence lower wave-speed regions, the overall CFL restriction is found to be signif-
icantly less onerous than quasi-uniform configurations that employ higher resolution in the deep ocean. In our 
simulations, not only does the 45 to 5 km mesh have fewer cells than the 8 km mesh and higher resolution around 
the coasts, it also runs with a larger time step as can be seen in Table 1.

While the inline SAL calculations do increase the computational cost, Table 3 shows that there is only a small 
difference in the RMS error when updating the SAL term at larger intervals than the model time step. In fact, 
at higher resolutions we see that the more frequent updates may lead to higher errors. Figure 11, which plots 
simulation run time performance, demonstrates that updating the SAL perturbation every 30 min can improve the 
computational performance as compared to evaluation at more frequent time steps. When using a 30 min interval, 
the computational performance of the full SAL calculation is only marginally larger than the scalar implementa-
tion. Based on the scaling and the RMS errors, either 30 min or 10 min may actually be the ideal update interval 
for the SAL, providing computational benefit over the 1 min or more frequent intervals with little decrease in 
tidal accuracy.

Figure 11. Performance comparisons of Model for Prediction Across Scales (MPAS-Ocean) including: scalar versus inline on Icosahedron 10; self-attraction and 
loading (SAL) update intervals at 1, 10, and 30 min; and performance with inline SAL on all of the meshes used in this study. The computational throughput is 
measured in units of simulated days per day (SDPD).
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5. Conclusions
In this paper, we demonstrated the feasibility of calculating tides within the MPAS-Ocean model employing 
a full inline SAL calculation in high-resolution barotropic simulations. We also examined sensitivities of the 
modeled tide to the SAL calculation method, careful selection of bathymetric data sets, model resolution, and a 
tuned wave drag coefficient. The full SAL calculations showed decreases in tidal RMS elevation errors of several 
centimeters across all meshes tested, relative to results computed using the scalar approximation for SAL. The 
variable resolution mesh had tidal errors similar to that of the Icosahedron 10 mesh, but with better computational 
performance, lying closer to results computed on the Icosahedron 9 mesh. Comparison of simulations using the 
different bathymetric data sets show that GEBCO2021 slightly outperforms SRTM15+ on the variable resolution 
mesh. The computational performance of the full SAL can incur large costs when evaluated at every time step. It 
appears that this cost can be mitigated by updating SAL at 10 or 30 min intervals, rather than at every time step, 
with little effect on tidal errors. Another avenue for increasing the computational efficiency is evaluation of the 
spherical harmonics in parallel, rather than the serial routines implemented by the SHTns package used in this 
study. This can be done by evaluating the integrals directly on the MPAS mesh so that the interpolation step is not 
needed, as pursued in a related study by our group. Comparison to tide gauge data shows that this first attempt at 
including tides results in slightly larger errors than tides in some other models (e.g., Blakely et al., 2022; Pringle 
et al., 2021; Schindelegger et al., 2018; Stammer et al., 2014). However, we expect that the RMS errors for the 

𝐴𝐴 M2 tide could be improved with (a) variable resolution meshes with smaller minimum cell size, (b) optimization 
of parameters in the variable resolution mesh generation, (c) the addition of a spatially-dependent wave drag 
coefficient or a more sophisticated wave drag scheme (e.g., Green & Nycander, 2013), and (d) the inclusion of 
ice-shelf cavities.

It is becoming clear that inclusion of tides is important for predictions of future climate and extreme sea level 
events (Bindoff et al., 2019; Oppenheimer et al., 2019). Our results show that MPAS-Ocean has relatively low 
tidal errors that are small enough to merit inclusion within a full climate system model. An important difference 
between the setup described for the barotropic case in this paper, and the setup needed for use in a full baroclinic 
framework, is the variable which is used in the SAL calculations. As mentioned in the discussion on SAL, tidal 
elevations can be used for spherical harmonic decomposition in the barotropic case because it is a direct meas-
ure of the mass of the water column. By contrast, baroclinic simulations require bottom pressure anomalies for 
this purpose. Furthermore, implementation of tides in a baroclinic model calls for some modifications to the 
topographic wave drag, such as by applying wave drag to the flow averaged over the bottom 500 m (e.g., Arbic 
et al., 2018) or using different parameter optimizations. The addition of tides in an Earth system model will allow 
us to examine a number of advanced aspects in the physical Earth system. For example, there is a need for inclu-
sion of tides when considering the Arctic ocean and sea ice (Holloway & Proshutinsky, 2007) as tides can have a 
substantial effect on sea ice volume and salinity (Luneva et al., 2015). A review of tidal influences on ice sheets 
by Padman et al. (2018) suggests that feedback between ice shelf geometry and tidal currents could imply a need 
for explicit tides in Earth system models; see also Williams et al. (1985), Dinniman et al. (2016). Tides also have 
important effects on estuaries. Ruault et al. (2020) found that baroclinic tides can influence the Amazon plume, 
which itself can impact the Atlantic climate (Jahfer et al., 2017). High-frequency interactions of tides with storm 
surges and fluvial processes in estuaries (Orton et al., 2012; Spicer et al., 2019) are important for predicting 
coastal flooding during extreme weather events. In future studies, we plan to use MPAS-Ocean to explore these 
interactions between tides and other components of the Earth system (e.g., ice shelves and basal melt rates, sea 
ice, estuaries) and their potential impacts on future climate.

Data Availability Statement
Software for this research is available at Barton et al. (2022b) (https://doi.org/10.5281/zenodo.7025138). The 
initial files needed to run the model with the same configuration are available from Barton et al. (2022a) (https://
doi.org/10.5281/zenodo.7019897). Model output data sets, analysis scripts, and instructions needed to reproduce 
the figures and tables in this paper may be found at Barton et al. (2022c) (https://doi.org/10.5281/zenodo.7019903).
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