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Abstract

Objectives: Bone is a dynamic organ under continual turnover influenced by

life history stage, energy dynamics, diet, climate, and disease. Bone turnover

data have enormous potential in biological anthropology for testing evolutionary

and biocultural hypotheses, yet few studies have integrated these biomarkers. In

the present article we systematically review the current availability, future viabil-

ity, and applicability of measuring bone turnover markers (BTMs) in dried blood

spot (DBS) samples obtained from finger prick whole blood.

Methods: Our review considers clinical and public health relevance, biomarker

stability in DBS, assay availability, and cost. We consider biomarkers of bone

formation such as osteocalcin (bone matrix protein), PINP (N-terminal propep-

tide of type I collagen), and alkaline phosphatase (osteoblast enzyme), as well as

biomarkers of bone resorption such as CTX (marker of collagen breakdown)

and TRACP5b (tartrate-resistant acid phosphatase 5b; osteoclast enzyme).

Results: Two BTMs have been validated for DBS: osteocalcin (formation) and

TRACP5b (resorption). Prime candidates for future development are CTX and

PINP, the formation and resorption markers used for clinical monitoring of

response to osteoporosis treatment.

Conclusion: BTMs are a field-friendly technique for longitudinal monitoring

of skeletal biology during growth, reproduction and aging, combining mini-

mized risk to study participants with maximized ease of sample storage and

transport. This combination allows new insights into the effects of energy

availability, disease, and physical activity level on bone, and questions about

bone gain and loss across life history and in response to environmental factors;

these issues are important in human biology, paleoanthropology, bioarchaeol-

ogy, and forensic anthropology.

1 | INTRODUCTION

Skeletal biology is a central element in many longstand-
ing issues in biological anthropology, from reconstructing

the locomotion and life history of hominin species, to
understanding ecogeographic variation in body shape
and limb proportions in human populations, to consider-
ing how demographic shifts in reproduction affect
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skeletal health and risk for osteoporosis (Barak
et al., 2013; Lockwood et al., 2007; Macintosh et al., 2016,
2017; Madimenos et al., 2012; Madimenos et al., 2015;
Pearson, 2000; Raichlen et al., 2015; Ruff, 1994, 2005;
Shaw & Stock, 2013). Bone is a phenotypically plastic
organ that models and remodels throughout life in
response to mechanical loading, nutrition, disease, and
reproduction (Allen & Burr, 2019; Pearson &
Lieberman, 2004; Siddiqui & Partridge, 2016). As such,
bone morphology preserves information about an individ-
ual's growth patterns, health, nutrition, and physical activ-
ity level. These data are essential for testing hypotheses
about how environmental factors and physiological pro-
cesses influence skeletal phenotype, as well as for recon-
structing behavior and life history in past populations of
humans and our fossil relatives. Furthermore, evolution-
ary and biocultural approaches to skeletal biology have
increasing clinical relevance for the study of osteoporosis,
a condition that is increasingly prevalent in societies
around the world (Sambrook & Cooper, 2006), but under-
studied in traditionally living groups despite evidence of
fracture (Madimenos, 2015; Stieglitz et al., 2015).

Hypothesis testing in human skeletal biology is chal-
lenging due to the constraints on measuring bone's
response to stimuli in living individuals. Measuring bone
phenotype from skeletal material is straightforward, but
behavior, diet, and other external factors must be inferred
or known through records. In living individuals, external
stimuli are easier to quantify (though this can still be
complicated) but obtaining data on bone size and shape
is more challenging, requiring imaging. Furthermore,
longitudinal tracking of bone formation and resorption is
ideal for many research questions in skeletal biology, yet
such studies are methodologically challenging because
the gold standard modalities for measuring skeletal
change over time, such as computed tomography
(CT) scans or dual X-ray absorptiometry (DXA), involve
repeated radiation exposure and/or are challenging to
perform in remote locations (Choksi et al., 2018). These
data collection challenges may be one reason why skele-
tal phenotyping in human biology is often limited to stat-
ure and limb proportions, which can easily be measured
with standard anthropometry but are less informative
about dynamic changes in bone mass or morphology.
These methodological limitations have prevented integra-
tive studies that combine skeletal data with rich data on
biology, behavior, sociodemographics, and environment.

In the present article, we review a new approach for
tracking bone gain and loss using bone turnover markers
(BTMs) measured in dried blood spots (DBS), which over-
comes several of the constraints on quantifying bone gain
and loss in living individuals. BTMs are byproducts of
bone formation and resorption that are produced in

proportion to the actions of osteoblasts and osteoclasts.
Serum BTMs have been used clinically to monitor bone
turnover for decades (Delmas, Eastell, Garnero, Seibel,
Stepan, et al., 2000), but there is a dearth of data from
population-based research, especially in low- and middle-
income countries. After briefly reviewing the basics of
bone biology and methods used to quantify bone strength,
we discuss key biomarkers of bone formation and resorp-
tion used in human clinical studies and in animal models.
We then describe recent progress in measurement of
BTMs in DBS, before turning our attention to questions in
biological anthropology that could be addressed using
these data, particularly when combined with field-friendly
bone imaging techniques such as ultrasonography. The
integration of BTMs, measures of bone strength, and
behavioral and environmental variables has significant
explanatory power both for testing hypotheses and for
clinical and public health initiatives to improve bone
health and decrease the risk of osteoporosis.

2 | BONE BIOLOGY REVIEW

Bone strength—the ability to resist deformation and
fracture—depends on bone properties at multiple levels
of organization (Bouxsein & Seeman, 2009). The mass of
the skeleton consists of about 80% cortical (compact)
bone, for example, in long bone diaphyses, and about
20% trabecular (cancellous or spongy) bone found near
joints and in the axial skeleton (Clarke, 2008). In long
bones, resistance to compressive loading depends on the
amount of bone present, such as the cross-sectional area
of cortical bone or the volume of trabecular bone, while
resistance to deformation from bending and twisting
depends on the cross-sectional geometry, or shape of the
bone, with wider bones generally having greater strength
than narrower bones (Burr, 2019). At the tissue level,
bone mineral density (BMD; the amount of bone mineral
per area or volume of tissue) contributes to bone stiffness,
and material properties at the microscopic level, such as
collagen cross-links, contribute to bone toughness and
ability to resist propagation of microcracks, which can
lead to fracture (van der Meulen et al., 2001).

Bone is a dynamic tissue that is constantly being
formed and resorbed throughout life (Burr, 2019;
Currey, 2002). Bone turnover refers to the coordinated
processes of bone formation and resorption that,
together, may lead to a net increase, stasis, or decrease in
bone mass, depending on the relative rates of gain and
loss (Allen & Burr, 2019; Zhou et al., 2010). Some of this
turnover occurs within existing bone tissue to repair
microdamage, through the actions of the basic multicel-
lular unit (BMU), in which bone resorption by osteoclasts
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and formation by osteoblasts are mechanistically coupled
to maintain bone mass (Frost et al., 1969; Rauch
et al., 2007). Bone mass and bone turnover also change in
response to physiology, nutrition, physical activity level,
reproduction, and aging (Cooper et al., 2007; Weaver &
Peacock, 2019; Zebaze et al., 2010). For example, in grow-
ing children, bone resorption along the diaphysis (shaft)
and deposition at the metaphyses (ends) maintains the
shape of bones as they elongate (Allen & Burr, 2019).
During pregnancy and lactation, resorption allows libera-
tion of calcium from bone tissue, which is typically
replaced by deposition after weaning (Weaver &
Peacock, 2019). Changes in bone shape, such as those
that occur in response to exercise-induced mechanical
loading, also require bone turnover through periosteal
deposition and endosteal resorption (Pearson &
Lieberman, 2004; Robling et al., 2019). Bone resorption
occurs with decreased mechanical loading, as in bedrest,
microgravity, or significant weight loss (Konda
et al., 2019; Krez & Stein, 2020; Schafer, 2016). Thus, the
ability to track patterns of bone gain and loss over the life
course is crucial for testing hypotheses about how health
and disease, activity, nutrition, reproduction, and aging
affect the skeleton. Furthermore, such research is essen-
tial for improving the accuracy of form-function infer-
ences in paleontology, bioarchaeology, and forensics,
such as more precisely reconstructing biological profiles
and lifeways using data from the skeleton. When behav-
iors cannot be observed directly, controlled studies are
essential in order to reliably link bone morphology to
habitual activities, occupational stressors, and environ-
mental influences.

3 | MEASURES OF BONE
STRENGTH

As noted above, bone strength is the product of multiple
properties (e.g., mass, shape, and density) at multiple
organizational levels from macroscopic to microscopic.
Given the interactions among these properties, it would
be ideal to measure all of them. However, imaging of cor-
tical bone cross-sectional area or trabecular bone micro-
architecture requires computed tomography (CT) or
peripheral quantitative computed tomography (pQCT),
which are expensive and require radiation exposure,
which may be a concern for vulnerable populations in
research (Choksi et al., 2018). Many studies of bone
strength use dual energy x-ray absorptiometry (DXA) to
measure BMD as a proxy for bone strength, since in
wealthy nations this technology is more commonly avail-
able in clinical settings and requires a much smaller

radiation dose. However, to date, dynamic changes in
bone mass have been difficult to measure; bone grows
slowly, so changes in bone mass or shape following a
given stimulus may not be detectable via imaging for
months (Clarke, 2008; Greenblatt et al., 2017). When
in vivo measurements of bone mass, size, and shape
are available, they tend to be single rather than serial,
often focus on a limited number of skeletal sites, and
are oftenbiased toward populations in high-income
nations—the so-called WEIRD populations (Gurven &
Lieberman, 2020; Henrich et al., 2010). Some recent stud-
ies have started to address these challenges by using
portable calcaneal ultrasonometry to measure bone min-
eral density (BMD), for example in the Shuar and Colono
in Ecuador (Madimenos et al., 2011; Madimenos
et al., 2015) and Tsimane of Bolivia (Stieglitz et al., 2015;
Stieglitz et al., 2016). Because these studies couple skele-
tal data with high-resolution data on sociodemographic,
lifestyle, dietary, and environmental variables, they allow
the investigation of questions such as how reproductive
factors (e.g., age at menarche, age at first parturition, and
number of pregnancies) affect skeletal health. The
research among the Shuar is particularly useful for
understanding the effects of reproduction on skeletal
homeostasis in a natural fertility population (Madimenos
et al., 2012). Nevertheless, a limitation of all imaging
methods is that they are static measurements and do not
provide data on the underlying rates of bone gain
and loss.

A complement to imaging-based methods is to track
bone formation and resorption using BTMs in blood or
urine; these BTMs are byproducts generated by bone for-
mation by osteoblasts or bone resorption by osteoclasts.
From a biological perspective, the main advantage of
using these markers is that they provide whole-body
data on bone turnover at the cellular level, rather than
being limited to the specific skeletal locations being
imaged. BTMs can detect changes in osteoblast and oste-
oclast activity more quickly than could be detected by
imaging (Greenblatt et al., 2017). The main disadvantage
is the lack of data about changes in bone size, shape,
and BMD. For example, elevated BTMs might reflect
high levels of localized bone turnover such as fracture
healing or orthodontics (e.g., Tang et al., 2013), so recent
skeletal and dental history should be included on partici-
pant questionnaires. However, combining traditional
BMD measures with BTMs would be a particularly pow-
erful approach because it would provide information
about bone mass as well as the current rate of bone turn-
over and balance between bone formation and resorp-
tion, connecting current skeletal phenotype to skeletal
health trajectories and the mechanisms of skeletal
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growth, maintenance, or degeneration over the life
course.

From a practical perspective, a major strength is that
BTMs can be measured in longitudinal studies and in
field settings at minimal risk to participants, making it
possible to ask research questions that would be difficult
to investigate using only imaging methods. However,
BTMs have not been widely used in biological anthropol-
ogy due to uncertainty about how to link these bone
turnover markers to bone mass and to practical issues
such as preserving and transporting frozen serum or
urine from field locations. A solution to the first problem
is to combine BTMs with BMD measurements by heel
ultrasonometry, as both are field-friendly techniques. A
solution to the second problem is to measure BTMs from
DBS samples. This method is minimally invasive, requir-
ing only a simple finger prick, with capillary whole blood
collected onto standardized filter paper that does not
require post-collection treatment and can often be stored
at room temperature for days or weeks (McDade
et al., 2007). However, a non-trivial challenge with cur-
rent immunoassays designed to measure BTMs in whole
blood is that they sometimes lack the sensitivity needed
to measure BTM levels in DBS, which are effectively
blood microsamples. In developing or modifying new
assays for BTMs in DBS, validation studies should focus
on assays with extremely high sensitivity. In the future,
other technology platforms could be explored to create
validated assays for BTMs that are able to detect in DBS
markers that circulate in low concentrations. Following
such validation, the promise of this method lies in its
potential to reveal how social and environmental factors
not only “get under the skin” but also “into the bone,”
offering new opportunities to test hypotheses about the
influence of chronic psychosocial stress, exercise, nutri-
tion, temperature, disease burden, and more on the
skeleton.

4 | BONE TURNOVER MARKERS

4.1 | Bone formation

At the cellular level, bone formation by osteoblasts begins
with deposition of unmineralized osteoid, which consists
of 90% type I collagen fibers and 10% extracellular matrix
(also known as ground substance); mineralization follows
several weeks later, as osteoblasts deposit hydroxyapatite
onto the collagen fibers (Salhotra et al., 2020). Each of
these steps generates byproducts that can be used as a
proxy for bone formation rate.

4.1.1 | Biomarkers of bone formation from
blood and urine samples

Commonly measured bone formation markers include N-
terminal propeptide of type I collagen (PINP), bone-
specific alkaline phosphatase (BSAP), and osteocalcin
(OC) (Table 1) (Szulc, 2018).

PINP is a peptide that is cleaved from type I procolla-
gen during osteoid deposition by osteoblasts (Gillett
et al., 2021). PINP has several benefits as a BTM: its levels
are directly proportional to type I collagen production
and thus bone formation; it has good stability in blood at
room temperature for up to 5 days (Garnero et al., 2008);
and it is relatively unaffected by time of day or food
intake (Gillett et al., 2021). Clinically, PINP is most often
used to track the response to anabolic (bone-forming) or
antiresorptive (resorption-suppressing) therapies for oste-
oporosis. For example, in postmenopausal women, teri-
paratide (synthetic parathyroid hormone) treatment was
associated with both increased BMD at the lumbar spine
and higher PINP levels (Chen et al., 2005).

Bone-specific alkaline phosphatase (BSAP) is an
important regulator of mineralization, and thus its levels

TABLE 1 Key bone turnover markers

Bone formation Type DBS available? References

Osteocalcin Bone matrix protein Yes Hauschka et al. (1989) and Lee et al.
(2000)

PINP (N-terminal propeptide of type I
collagen)

Collagen deposition
marker

No Garnero et al. (2008) and Gillett et al.
(2021)

Bone-specific alkaline phosphatase Osteoblast enzyme No Singer et al. (2014)

Bone formation Type References

TRACP5b (tartrate-resistant acid phosphatase 5b) Osteoclast enzyme Yes Halleen and Ranta (2001), Halleen et al.
(2002), and Hannon et al. (2004)

CTX (C-terminal telopeptide of type I Collagen) and NTX
(N-terminal telopeptide of type I Collagen)

Collagen breakdown
markers

No Greenblatt et al. (2017)

Pyridinoline (PYD) and Deoxypyridinoline (DPD) Collagen crosslinks No Ross and Knowlton (1998)
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reflect the extent of bone mineral deposition as well as
osteoblast number. However, alkaline phosphatase is also
produced by the liver, so the measurement assay used
must be specific to bone. BSAP levels are elevated in dis-
eases of high bone turnover such as Paget's disease of
bone (Singer et al., 2014). It is sometimes used clinically
to monitor response to therapy for metabolic bone dis-
ease, but assay cross-reactivity with liver-derived alkaline
phosphatase limits its utility (Greenblatt et al., 2017).

4.1.2 | Bone formation biomarkers from DBS

We recently developed and validated a DBS assay for
osteocalcin by comparing OC values from matched
plasma, venous DBS, and fingerstick DBS samples from
158 adults, and found linear relationships between
plasma and DBS OC, with sample stability at room tem-
perature or colder (Eick et al., 2020). Osteocalcin, which
is synthesized by osteoblasts, is the major non-
collagenous protein found in the bone matrix, and circu-
lating osteocalcin levels reflect the rate of bone formation
(Lee et al., 2000; Manolagas, 2000). High osteocalcin
levels are a marker of either rapid bone formation, as
seen in adolescence, or increased bone turnover (resorp-
tion followed by formation), as seen in osteoporosis,
while low osteocalcin levels are associated with decreased
bone turnover (Brown et al., 1984; Szulc et al., 2000).
Clinically, osteocalcin levels are used to monitor bone
turnover in metabolic diseases such as osteoporosis and
growth hormone deficiency (Brown et al., 2009; Delmas,
Eastell, Garnero, Seibel, & Stepan, 2000; Lee et al., 1990;
Wuster, 1993). In particular, the carboxylated form of
osteocalcin (Gla-OCN or cOC) is a marker of bone forma-
tion that reflects the key role it plays in binding hydroxy-
apatite (bone mineral) and contributing to bone
formation (Hauschka et al., 1989).

Osteocalcin levels are used to identify individuals
(usually women) at risk of osteoporosis and to monitor
bone turnover in metabolic diseases such as thyroid dis-
orders and growth hormone deficiency. In industrialized
populations, subadult osteocalcin levels rise and then fall
in parallel with rapid bone formation during the adoles-
cent growth spurt, before stabilizing in adulthood
(Paldanius et al., 2021). In adults, despite population vari-
ability, there is some evidence osteocalcin is higher in
young adults, decreases at midlife, and then increases
with age, particularly in postmenopausal women, making
it a sensitive marker of osteoporosis risk (Diemar
et al., 2020; Gundberg et al., 2002; Hannemann
et al., 2013; Smith et al., 2020). Since osteocalcin provides
information about bone formation, it should be paired
with a marker of bone resorption to distinguish between
high net bone formation (in which formation outpaces

resorption) and high bone turnover (in which resorption
may outpace formation, leading to net bone loss). In
addition to cOC, up to 20%–30% of circulating osteocalcin
in adults is in an undercarboxylated form (Glu-OCN or
ucOC), which is not involved in bone mineralization.
Intriguingly, ucOC is produced by insulin binding to
osteoblast insulin receptors and improves glucose metab-
olism (reviewed in Riddle & Clemens, 2017). However,
there are complex differences in ucOC function between
humans and mouse models, and more work is needed to
delineate the roles of the skeleton and ucOC in whole-
body metabolism and energy allocation (Motyl
et al., 2017; Riddle & Clemens, 2017).

Circulating osteocalcin is lowest midday and peaks at
night (Nielsen et al., 1990), and has a short half-life
(Farrugia & Melick, 1986), with the N-terminal fragment
showing greater stability than the C-terminal fragment
(Lee et al., 2000). For this reason, commercial assays
usually target either the N-terminal fragment or the
intact protein (Garnero et al., 1994). There is conflicting
information about the effect of feeding on OC levels,
with one study in women showing a �4% decrease in
OC in the fed vs. fasted state (Clowes et al., 2002), but
another study in men showing no effect of feeding on
OC levels (Scott et al., 2012). OC also increases following
exercise (Mohammad Rahimi et al., 2021), although the
majority of studies do not report whether ucOC, cOC, or
total OC was measured, and short-term changes
(e.g., pre- vs. post-exercise) likely reflect primarily ucOC.
At room temperature, OC in plasma or serum degrades
within 24 h (Christensen et al., 2019), but our validation
study showed that in DBS, osteocalcin was reasonably
stable at room temperature for up to 28 days (Eick
et al., 2020).

Looking ahead, the best target for future DBS valida-
tion as a bone formation marker is PINP, which
(as noted above) is stable both before and after measure-
ment. PINP measurement is readily available in clinical
laboratories, and as an ELISA assay for research pur-
poses, at a cost comparable to other standard ELISAs.
This marker has been endorsed by the International
Osteoporosis Foundation and International Federation of
Clinical Chemistry and Laboratory Medicine for monitor-
ing bone formation (Vasikaran et al., 2011), and the
National Bone Health Alliance has issued recommenda-
tions for its use (Szulc et al., 2017).

4.2 | Bone resorption

At the cellular level, bone resorption occurs when osteo-
clasts seal themselves to the bone surface and secrete
acids and proteinases that dissolve the mineralized tissue
and collagen, respectively (Salhotra et al., 2020). This
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process releases mineral (primarily calcium) and the
byproducts of collagen degradation into the circulation.

4.2.1 | Biomarkers of bone resorption from
blood and urine samples

Commonly measured bone resorption markers include
C-terminal telopeptide of type I collagen (CTX) and N-
terminal telopeptide of type I collagen (NTX), as well as
tartrate-resistant acid phosphatase 5b (TRACP5b, see
below) (Table 1) (Szulc, 2018). CTX and NTX are parts of
the type I collagen molecule that are cleaved by osteo-
clasts during bone resorption, such that the levels of
these telopeptides are proportional to osteoclast activity,
and can be measured in blood or urine as a proxy of col-
lagen breakdown and thus of bone loss (Greenblatt
et al., 2017). Two less frequently used markers, pyridino-
line (PYD) and deoxypyridinoline (DPD), are collagen
crosslinks that stabilize bone matrix; in one study,
declines in PYD and DPD of 1 standard deviation were
associated with a 1.8-2-fold increase in the probability of
rapid bone loss (Ross & Knowlton, 1998).

4.2.2 | Bone resorption biomarkers
from DBS

We recently validated a DBS assay for TRACP5b by com-
paring values from matched plasma, venous DBS, and fin-
gerstick DBS samples from 189 adults, and found linear
relationships between plasma and DBS TRACP5b, with
sample stability for up to 1 month at room temperature,
and long term when frozen (Eick et al., 2019). TRACP5b is
an enzyme secreted in proportion to osteoclast number
(Halleen et al., 2002; Halleen & Ranta, 2001; Hannon
et al., 2004). Two forms of TRACP circulate in human
blood: TRACP5a and TRACP5b, the former closely associ-
ated with macrophages and the latter with osteoclasts.
Blood levels of TRACP5b are correlated with the extent of
active bone remodeling. For example, in postmenopausal
women, the decrease in TRACP5b had greater sensitivity
than decreases in CTX or PINP for tracking improvements
in BMD in response to antiresorptive therapy for osteopo-
rosis (Nenonen et al., 2005). TRACP5b is stable in serum
for 2 days at room temperature, 3 days at 4�C, and months
to years when frozen; it has low diurnal variability and is
not influenced by feeding (Cavalier et al., 2013; Halleen
et al., 2000; Hannon et al., 2004).

In future research, the best candidate for DBS validation
as a bone resorption marker is CTX, which has been
endorsed by the International Osteoporosis Foundation
and International Federation of Clinical Chemistry and

Laboratory Medicine for tracking bone resorption
(Vasikaran et al., 2011). CTX measurement is readily
available in clinical laboratories, and as an ELISA assay
for research purposes, at a cost comparable to other stan-
dard ELISAs. As noted above for PINP, the National
Bone Health Alliance has issued recommendations for its
use (Szulc et al., 2017).

5 | CHALLENGES AND
OPPORTUNITIES

Incorporating BTMs into biological anthropology research
introduces several challenges. Despite the high potential of
BTMs as a data source, their promise has not been fully
realized clinically at the individual level for several rea-
sons, including a lack of established reference ranges, lim-
ited availability of standardized assays, and high intra- and
inter-individual variability of these markers (e.g., by age
and sex) (Vasikaran et al., 2021). As a result, although
human studies at the cohort level are informative, BTMs
alone are rarely used for clinical decision-making.

For BTMs to become more informative at the individ-
ual level, whether for clinical or anthropological pur-
poses, expected ranges must be established for each
marker by age, sex, and population, as well as patterns of
diurnal and seasonal fluctuation. For example, CTX
levels are influenced by food intake and time of day, but
PINP levels are not (Vasikaran et al., 2021); PYD and
DPD are higher in winter, when Vitamin D levels are
lowest, than in summer, (Hill et al., 2007). More impor-
tantly, it is highly likely that the “normal” ranges of
BTMs will vary across populations, as is seen for BMD,
sex steroids, and other biological variables (Wiley, 2021).
Expanding the biological toolkit to more fully incorporate
BTMs, BMD, and other skeletal data will first require
addressing the current data bias toward individuals from
wealthy nations (Gurven & Lieberman, 2020).

The good news is that the availability of DBS makes
collecting the necessary data to develop such reference
ranges much more feasible. The standard DBS card has
five 0.500 (12.7 mm) circles, and the average sample consists
of 40–60 μl of blood. In our validation studies, TRACP5b
required two 6-mm diameter punches from a DBS, and
OC required one 3-mm diameter punch (Eick et al., 2019;
Eick et al., 2020). Thus, study design requires considering
the required sample size of the markers to be measured in
advance, and having participants fill the DBS circles as
fully as possible. Another consideration is which marker to
choose. If the goal is simply to measure the extent of bone
formation and/or resorption, then it is reasonable to
choose a marker based on factors such as cost and sample
size. Specific markers allow hypothesis testing about
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particular aspects of bone formation or resorption. For
example, if the hypothesis is that a given stimulus will
increase or decrease mineral deposition, then OC (which
reflects mineralization) would be more informative than
BSAP (osteoblast activity) or PINP (collagen deposition).
In general, given the complexity of bone physiology and
the diversity of environmental factors that influence it,
measuring several markers when possible will likely help
us understand how particular environmental factors influ-
ence specific aspects of bone density and morphology.

Along with these challenges, BTMs offer new oppor-
tunities to expand research in biological anthropology as
well as in public health. Two key areas are the global bur-
dens of osteoporosis and osteoarthritis. Osteoporosis is
exacerbated by the reduction in estrogen at menopause,
which leads to increased osteoclast activity and rapid, sig-
nificant bone loss. In industrialized societies, bone loss
begins in perimenopause (�1.5%–2% per year after age
40) and increases to 3% per year after menopause
(Crandall et al., 2013). In men, bone mass declines more
slowly, paralleling the gradual age-related decrease in tes-
tosterone levels seen in some populations (Alswat, 2017).
The consequences of bone loss are significant: in industri-
alized populations, the lifetime risk of osteoporotic frac-
ture is about 50% for women and 20% for men (Kanis
et al., 2000). Hip fractures cause substantial morbidity,
and the mortality rate is 20%–25% in the first year and
remains elevated for up to 5 years (Leibson et al., 2002).
Osteoporosis is on the rise not only in wealthy nations,
but also in traditional populations transitioning to mar-
ket economies, and the burden will only increase with
the growing worldwide population of aging adults. As
noted above, the vast majority of current data comes from
wealthy nations, so population differences in the relation-
ships among BMD, fracture, and physical activity level,
risk factors and disease progression, and genetic predis-
position are largely unknown (Madimenos, 2015).

Osteoarthritis is also common and increasing in
humans, affecting an estimated 14% of US adults
(Cisternas et al., 2016). The hallmark of this disease is
progressive degeneration of articular cartilage, leading to
painful bone-bone contact between adjoining joint sur-
faces (Chen et al., 2017), particularly in the hip, knee,
and hands (Lawrence et al., 2008). Osteoarthritis is com-
monly attributed to age-related wear and tear and inju-
ries (Berenbaum et al., 2013), but more recent studies
have hypothesized that inactivity, obesity, and inflamma-
tion are more salient risk factors in industrialized popula-
tions (Berenbaum et al., 2018; Wallace et al., 2017;
Wallace et al., 2019). As the incidence of metabolic dis-
eases increases in transitioning economies, more work is
needed to understand the prevalence, risk factors, rate of
progression, and genetic predisposition to osteoarthritis
outside of wealthy nations.

6 | CONNECTING BONE
TURNOVER TO BIOLOGICAL
MECHANISMS

Perhaps the most exciting aspect of incorporating bone
turnover markers into anthropological research is the
potential for more precise time resolution. Osteoblasts
and osteoclasts respond to stimuli in hours to days, but
the resulting skeletal changes are not immediately detect-
able by imaging. Serial BTM measurements using DBS
have the potential to allow more precise tracking of bone
formation and resorption in response to changes in
energy availability, physical activity level, and disease,
and across key life history events such as the adolescent
growth spurt, pregnancy and lactation, and the meno-
pausal transition. Evidence from clinical studies in
humans and from experimental studies in animal models
supports the use of BTMs to monitor changes in skeletal
activity.

7 | SUBADULT BONE GROWTH

The most critical period for skeletal acquisition is the sec-
ond decade of life, by the end of which the skeleton has
acquired 60%–80% of adult bone mineral content; the
peripubertal interval is particularly essential, with 25%–
30% of adult BMC acquired in these 2–3 years alone
(Bailey, 1997). Maximizing peak skeletal acquisition in
adolescence is critical for reducing future osteoporosis
risk, as by one estimate, increasing peak bone mass in
young adulthood by 10% would reduce the risk of osteo-
porotic fracture during skeletal aging by 50% (Bonjour
et al., 2007). Understanding the factors underlying ado-
lescent skeletal acquisition is particularly important
given the secular trends in growth and in reproductive
maturation. Over recent decades, humans worldwide
have become taller while also reaching reproductive
maturity earlier. Since longitudinal growth ends shortly
after puberty, these trends may have consequences for
peak bone mass acquisition.

Many of the key questions during this life history
stage relate to energy allocation between the skeleton
and other tissues. For example, on an evolutionary time-
scale, natural selection may shape growth patterns to
allow tradeoffs of energy allocation between the brain
and the skeleton (Kuzawa et al., 2014), and between
somatic growth and reproductive maturation; a longitudi-
nal study of childhood bone acquisition using BTMs
could help to delineate these patterns. Within an individ-
ual's lifetime, there is evidence of energetic tradeoffs
between immune function and subadult growth, and this
relationship is moderated by higher body fat (Garcia
et al., 2020; Urlacher et al., 2018). BTMs would provide a

DEVLIN ET AL. 7 of 16



way to monitor the effects of such external factors on
bone health.

8 | METABOLIC DISEASE

BTMs could also be used to investigate how obesity and
metabolic dysfunction affect subadult skeletal acquisi-
tion. Both the metabolic syndrome and type 2 diabetes
mellitus are increasingly common in subadults in parallel
with increases in childhood obesity (Lascar et al., 2018;
Weihe & Weihrauch-Bluher, 2019), posing a substantial
and growing public health burden (Viner et al., 2017).
From a skeletal perspective, both type 1 and type 2 diabe-
tes are associated with increased fracture risk in adults
(Shanbhogue et al., 2016; Starup-Linde et al., 2019).
There is also evidence for impaired BMD acquisition in
subadults with prediabetes (Pollock et al., 2010; Pollock
et al., 2011), although the mechanisms are incompletely
understood.

In terms of BTMs, in prepubertal children with meta-
bolic syndrome, CTX levels were significantly higher in
girls and trended higher in boys, but PINP levels were
unchanged compared to controls, suggesting metabolic
dysfunction was associated with lower net bone forma-
tion (Bilinski et al., 2022). In a recent meta-analysis of
BTMs in patients with type 1 or type 2 diabetes, there
was evidence for higher BSAP levels and lower OC and
CTX levels, suggesting lower overall bone turnover in this
population (Starup-Linde & Vestergaard, 2016). In con-
trast, in a mouse model of early onset type 2 diabetes,
PINP levels were lower compared to controls but CTX
did not differ (Devlin et al., 2014). Thus one important
contribution of BTMs is their ability to distinguish
between decreased bone formation and increased bone
resorption, both of which might lead to similarly low
bone mass. In the above example, although the skeletal
effects of diabetes appear similar in humans and in mice,
BTMs showed that the underlying biology differs
(decreased turnover vs. decreased osteoblast activity),
such that mice may not be a good model for humans in
this case.

9 | MECHANICAL LOADING AND
UNLOADING

In addition to genetically mediated bone growth,
mechanotransduction above a bone's strain threshold can
lead to higher bone mass (Pearson & Lieberman, 2004;
Robling et al., 2019). Potential skeletal responses to
mechanical loading include increasing external bone size
(periosteal modeling), changing the bone's shape (cross-
sectional geometry), increasing bone mineral density,

and/or repairing damage without changing size or shape
(Haversian remodeling) (Robling et al., 2019). Such
responses vary by skeletal location and are not always
clearly aligned with the locations of bone strain
(Lieberman et al., 2003; Wallace et al., 2014). Even more
importantly, osteogenic responses to exercise-induced
mechanical loading vary across ontogeny, and are greater
around puberty than at any other part of life (Elhakeem
et al., 2020; Jones et al., 1977). For example, studies of
young women playing racquet sports have shown that
gains in bone mineral content are higher in girls who
start before or around menarche vs. girls who start later
(Kannus et al., 1995). High impact and/or atypical
mechanical loads tend to be more osteogenic in humans
(Kistler-Fischbacher et al., 2021a, 2021b; Nikander,
Kannus, et al., 2010) and in animal models (Mustafy
et al., 2019; Wallace et al., 2013), particularly if broken
into multiple bouts of fewer cycles rather than one
extended bout (Robling et al., 2002). However, it is diffi-
cult to precisely delineate the timecourse and magnitude
of osteogenic responses in order to determine which
types of mechanical loading are most beneficial.

In older adults, osteogenic responses to mechanical
loading are limited, but exercise can maintain or mod-
estly increase bone mass (Nikander, Sievanen,
et al., 2010). Given that exercise-induced changes in bone
size and shape in older adults are subtle at best, BTMs
can more precisely track osteogenic responses to exercise.
In a recent meta-analysis, Smith et al. (2021) analyzed
studies that measured BTM response to various exercise
interventions in middle-aged and older adults. The com-
plex results showed that changes in BTMs depended not
only on exercise intensity and modality (aerobic or resis-
tance), but also on the sex and age of the subjects. Impor-
tantly, because the effects of exercise on bone size and
shape in adults are subtle, BTMs picked up osteogenic
responses at the cellular level that might not have been
easily detected via bone imaging.

10 | REPRODUCTION AND
ENERGETICS

In pregnancy and lactation, DBS could be used to track
the effects of parity, interbirth interval, and lactation on
bone density and to relate these dynamics to maternal
nutrition and activity level. Clinical and epidemiological
studies have demonstrated a role for reproductive factors
such as parity and lactation in shaping BMD in women
(Bjornerem et al., 2017; Kovacs, 2016). However, findings
among industrialized and subsistence populations have
often been contradictory, and it is unclear the extent to
which the unique reproductive ecology characteristics of
wealthy nations (i.e., low fertility, limited breastfeeding,
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etc.) contribute to these inconsistent findings
(Madimenos et al., 2012; Stieglitz et al., 2015). To resolve
this issue, comprehensive studies of natural fertility, sub-
sistence populations that include measurement of BMD,
markers of bone turnover, and high resolution environ-
mental/lifestyle data are needed. In addition, although it
is well known that new fathers experience a decrease in
testosterone (Gettler et al., 2011), it is unknown whether
there is an associated decrease in BMD, as seen in aging
and hypogonadism (Rochira, 2020).

Another exciting potential application of DBS
methods is developing a more detailed understanding of
how changes in energy availability affect bone turnover.
High pathogen load is correlated with lower childhood
growth in the Shuar (Urlacher et al., 2018) and lower
adult calcaneal BMD in the Tsimane (Stieglitz
et al., 2016). However, most existing work in osteoimmu-
nology is from clinical studies in high-income countries,
and methodological limitations have led to a paucity of
human biology studies on bone-immune interactions or
the effects of environmental factors and life history trade-
offs on this complex system. BTMs in DBS can be inte-
grated into studies of pathogen load, which would help
add the skeleton to discussions of ecoimmunology and
provide a more holistic perspective on biological nor-
malcy (Wiley, 2021).

Similar analyses could investigate the effects of wean-
ling diarrhea, marasmus, and kwashiorkor on childhood
skeletal acquisition. Energy availability is also affected by
thermoregulation. Specifically, there is evidence of higher
energy expenditure in cold-dwelling humans (Leonard
et al., 2014; Levy et al., 2022; Ocobock et al., 2022;
Snodgrass et al., 2006) as well as an increase in individ-
uals with lower BMD (Harper et al., 1984; Lazenby, 1997;
Mazess & Mather, 1974; Mazess & Mather, 1975; Thomp-
son & Gunness-Hey, 1981). DBS could be used to study
the dynamics of cold exposure, temperature homeostasis,
and skeletal dynamics.

11 | POSTMENOPAUSAL
BONE LOSS

Incorporating BTMs into studies of skeletal aging could
improve our understanding of the etiology of osteoporo-
sis, which is increasingly prevalent in wealthy nations
(Sambrook & Cooper, 2006). A retrospective analysis of
postmenopausal women found that fracture risk was
approximately doubled for participants in the highest
quartile of bone resorption markers (e.g. CTX) compared
to participants in the remaining three quartiles, particu-
larly when combined with low estradiol levels (Garnero
et al., 2000). However, osteoporotic fractures are rarely
seen in subsistence economies, despite these populations

exhibiting similar age-related decreases in BMD
(Madimenos et al., 2015; but see Stieglitz et al., 2015);
longitudinal measurement of BTMs could help resolve
this discrepancy.

Muscle loss is increasingly being recognized as a risk
factor for impaired balance and falls, which contribute to
osteoporotic fracture (Hirschfeld et al., 2017; Yeung
et al., 2019). One possibility is that higher physical activ-
ity levels in non-industrialized societies help maintain
both bone and muscle mass and balance, but there could
also be important differences in patterns of bone loss
across societies that contribute to this phenomenon. Col-
lection of DBS, particularly combined with calcaneal
ultrasound, could be used to increase the amount of data
available for non-industrialized populations at low/no
risk for osteoporosis, potentially providing important
insights into the etiology of osteoporosis in industrialized
populations. Furthermore, BTMs could be used to investi-
gate the skeletal effects of changing lifestyles as currently
non-industrialized populations become increasingly mar-
ket integrated.

12 | EVOLUTIONARY TRENDS

Skeletal robusticity has declined steadily from Homo erec-
tus to Homo sapiens, and has continued to decline within
modern humans (Ruff et al., 1993; Ruff et al., 2015). The
decline in cortical bone area leads to lower compressive
strength, while the decline in J (the polar moment of
inertia) leads to lower strength in bending and torsion
(Robling et al., 2019). Trabecular bone volume fraction
has also decreased in recent modern humans compared
to earlier modern humans, particularly in agriculturalists
compared to foragers (Chirchir et al., 2015; Ryan &
Shaw, 2015). These trends are often attributed to
decreased mechanical loading (Macintosh et al., 2015;
Ruff et al., 2015; Shaw & Stock, 2013). However, no
population-based studies to date have prospectively
tracked bone turnover in response to exercise, particu-
larly in subadults when osteogenic responses to mechani-
cal loading are greatest. Using a combination of
accelerometer data to track mechanical loading and DBS
to measure bone formation and resorption, it would be
possible to measure skeletal responses to exercise over
short time intervals, and to see how such responses
change depending on factors such as diet, age, hormone
levels, and energy availability. Such studies would also
provide insights into how the body's energetic constraints
shape energy allocation to the skeleton versus other tis-
sues, even in contemporary food environments in
wealthy nations in which calorie availability is typically
not a limiting factor (Pontzer, 2018; Pontzer et al., 2016).
This approach would help to clarify the factors
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underlying gracilization and allow more accurate hypoth-
esis testing about evolutionary trends in bone strength.

13 | CONCLUSION

The skeleton is a critical data source for testing hypothe-
ses in human biology, but incorporating bone imaging
into studies of living humans is challenging due to cost
and radiation exposure. Bone turnover markers obtained
from validated assays conducted on DBS samples are a
practical alternative, offering a minimally invasive, field-
friendly technique to obtain quantitative measurements
of bone formation and resorption at the cellular level.
Integrating bone turnover markers with field-friendly
measures of bone strength such as calcaneal ultrasonog-
raphy will allow more robust studies of bone gain and
loss in response to energy availability, exercise, disease
burden, reproductive status, and aging. Further, it is our
hope that this review will prompt researchers to apply
available BTMs to research in biological anthropology
and also to validate new DBS BTMs for use in future
studies. These insights will not only address key ques-
tions in human biology but also provide valuable data for
clinical and public health initiatives to maintain lifelong
skeletal strength.
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