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Summary

We describe models and likelihood-based estimation of the finite population mean for a survey
subject to unit non-response, when post-stratification information is available from external
sources. A feature of the models is that they do not require the assumption that the data are missing
at random (MAR). As a result, the proposed models provide estimates under weaker assumptions
than those required in the absence of post-stratification information, thus allowing more robust in-
ferences. In particular, we describe models for estimation of the finite population mean of a survey
outcome with categorical covariates and externally observed categorical post-stratifiers. We com-
pare inferences from the proposed method with existing design-based estimators via simulations.
We apply our methods to school-level data from California Department of Education to estimate
the mean academic performance index (API) score in years 1999 and 2000. We end with a
discussion.

Key words: maximum likelihood; missing not at random; non-ignorable models; post-stratification;
raking; unit non-response.

1 Introduction

It is truly an honour to contribute an article to this special issue celebrating Nan Laird’s award
of the 2021 International Prize in Statistics. We start by connecting the topic of our article with
some aspects of Nan’s methodological work. A useful feature of likelihood-based methods of
statistical inference—in particular, Bayesian inference or asymptotic inference based on maxi-
mum likelihood (ML)—is that the methods can be applied to non-rectangular datasets, such as
arise when there are missing data. Two of Nan Laird’s most cited papers, on ML estimation
using the Expectation Maximisation (EM) algorithm (Dempster et al., 1977) and ML estimation
of mixed models for unbalanced longitudinal data (Laird & Ware, 1982), exploit this property.
Standard ML software for missing data is based on the assumption that the missingness

mechanism is ignorable, which means that inference can be based on the likelihood derived
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from the complete-data model for the study variables, without modelling the missingness mech-
anism. A key sufficient condition for ignoring the missingness mechanism is that the data are
missing at random (MAR), as discussed in Rubin’s famous (1976) paper (Rubin, 1976). An in-
teresting feature of our paper is that it includes an simple practical example where missingness
is missing not at random (MNAR) but the mechanism is nevertheless ignorable, thus showing
that the MAR condition is a sufficient but not always a necessary condition for ignorability.

Our paper concerns the analysis of non-response in survey sample data when there is
post-stratified data, specifically marginal distributions of survey variables available for the pop-
ulation or a random sample of the population from sources external to the survey. Such data are
increasingly important in survey sampling settings, with the rising levels of survey
non-response and increased reliance on data that are not randomly sampled. As we show, the
presence of post-stratified data allows the MAR assumption to be relaxed, and certain MNAR
models to be fitted.

In finite population survey sampling, likelihoods can be defined by so-called
‘superpopulation’ modelling, where the finite population is assumed to be sampled from an
infinite-sized ‘superpopulation’, and inference is based on a statistical models for the survey
variables in this superpopuation (Valliant et al., 2000; Chambers et al., 2012). This approach
leads to likelihood functions for model parameters, and inferences about finite population pa-
rameters based (in effect) on prediction of the values of survey variables for non-respondents
and non-sampled units. However, concerns over model misspecification lead many statisticians
trained in probability sampling to prefer the so-called design-based or randomisation approach
to statistical inference. In this approach, which is predominant in classic survey sampling texts
(e.g. Kish, 1965, Cochran, 2007), the survey variables are treated as fixed quantities and not
assigned a distribution; rather inference is based on the probability distribution that underlying

FIGURE 1. Missing data pattern with post-sratifying information
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probabilistic selection of the sample. This approach is not strictly applicable when there is sur-
vey non-response, but the ‘quasi-randomisation’ approach, which acts as if we have a probabil-
ity sample after conditioning on auxiliary data available for respondents and non-respondents,
can be thought of as extending the randomisation approach to handle non-response. In this ar-
ticle, we adopt a superpopulation modelling perspective to surveys, but our simulations include
some comparisons with common design-based approaches.
We describe likelihood-based estimation of the finite population mean of a survey variable Y,

when (a) Y and a set of post-stratifiers Z are observed for r respondents but missing for n � r
non-respondents in the sample, (b) a set of covariates X is observed for all n units in the survey,
and (c) the marginal distribution of each Zk ; k ¼ 1; …; K is also observed for the same target
population, from a larger survey or a census. A Zk could represent a set of variables, provided
their joint distribution is available from auxiliary data. For ease of presentation, we consider
univariate auxiliary Zk margins throughout this paper. The structure of the data is depicted in
Figure 1. For unit i ¼ 1; …; n in the survey, let di ¼ ðxi; yi; ziÞ denote the values of
ðX ; Y ; ZÞ, andRi denote the value of the response indicatorR, whereRi ¼ 1 if ðyi; ziÞ is observed
and Ri ¼ 0 if ðyi; ziÞ is missing. We denote by D the full data matrix for the survey, D ¼
ðd1; …; dnÞT , di ¼ ðxi; yi; ziÞ, Dobs the observed survey data, namely fdi; i ¼ 1; …; rg and
fxi; i ¼ r þ 1; …; ng and Zaux the auxiliary data consisting of the marginal distributions of
Zk , k ¼ 1; …; K . Note that the units in the auxiliary data Zaux are not linked with the units
in the survey. This scenario occurs frequently in settings where post-stratification is used for
non-response adjustment.
We assume throughout the paper the probability that ðzi; yiÞ is observed may depend on xi and

zi but does not depend on yi, given xi and zi, that is:

ℙðRi ¼ 1jxi; zi; yi; ψÞ ¼ ℙðRi ¼ 1jxi; zi; ψÞ: (1)

where ψ represents unknown model parameters for the conditional response propensity model.
The resulting mechanism is missing not at random (MNAR) (Rubin, 1976; Little &
Rubin, 2019), if missingness depends on zi, because zi is not observed for survey units i that
are missing. We describe circumstances where the auxiliary margins Zaux provide us with the
information needed to estimate the parameters governing the joint distribution of X and Z ,
allowing ML or Bayesian inference. We focus here on models for the important case where
X and Z consist of categorical variables, although our general approach can also be applied
to problems where some or all of X or Z are continuous.
Standard design-based approaches to this data structure include post-stratification (Holt &

Smith, 1979) and extensions such as raking, where respondents are weighted to match the dis-
tribution of the discrete post-stratifiers in the population. Calibration methods, extend
post-stratification to encompass known population totals of continuous auxiliary variables
(Deville & Sarndal, 1992; Deville et al., 1993; Särndal et al., 2003; Lumley, 2010; Kott &
Chang, 2010; Kott & Liao, 2017, 2018): These methods minimise the distance between the
original sampling weights and new calibration weights subject to known sums of auxiliary var-
iables (Deville & Sarndal, 1992). Kalton & Flores-Cervantes (2003) describe estimators ob-
tained from alternative choices of distance functions. One advantage of our likelihood-based ap-
proach is that it does not require the choice of a distance function, which appears to us to be
somewhat arbitrary.
Model-based inference, on the other hand, treats the survey outcomes as well as the inclusion

and response indicators as random variables in a statistical model: The model is used to (i) infer
the population parameters of interest or (ii) predict the unobserved values of Y . Two main var-
iants of model-based inference are frequentist superpopulation modelling, where inferences are
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based on repeated samples from the sample and the superpopulation, and Bayesian inference,
where a prior distribution is chosen for the parameters, and inferences are based on the posterior
distribution of the finite population quantities of interest given the observed data (Little, 2004).
Little (1993) justifies post-stratified and raking estimates for categorical post-strata as ML esti-
mates for particular models. Gelman & Little (1997) propose multilevel regression and post-
stratification, a Bayesian multilevel modelling approach to post-stratified survey data. This ap-
proach was further developed by Si et al. (2017) and Si & Zhou (2019). None of these articles
consider MNAR models for missing data, which is the focus of this paper.

Section 2 outlines likelihood-based inference for surveys with the data pattern of Figure 1.
Section 3 compares and contrasts repeated sampling properties of the proposed model-based es-
timators to commonly used design-based estimators for a variety of assumed missing data
mechanisms using simulated categorical data. Section 4 applies the proposed methods to real
data with continuous outcomes from the California Department of Education. Section 5 ends
with a discussion and directions for future research.

2 Models for Unit Non-Response with Auxiliary Information

2.1 Overview

Denoting density functions by f ð:Þ, we consider models that are i.i.d. over the units i, where
the joint distribution of X , Z, Y and R is factored as

f X ; Z; Y ; Rðxi; zi; yi; rijθ; ϕÞ ¼ f Y jX ; Z; Rðyijxi; zi; θ; Ri ¼ riÞf X ; Z; Rðxi; zi; rijϕÞ

¼ f Y jX ; Z; Rðyijxi; zi; θÞf X ; Z; Rðxi; zi; rijϕÞ;
(2)

and θ andϕ are distinct parameters (Little & Rubin, 2019). Note that the distribution of Y given
ðX ; Z; RÞ in the second line of Equation (2) does not depend on R. This is justified because the
assumption in Equation (1) about the missingness mechanism implies thatR is independent ofY
givenX and Z. This means that the parameters θ of this conditional distribution can be estimated
from the component of the likelihood based on the survey respondents. The remaining param-
etersϕ are then estimated by assuming a model for the joint distribution of X , Z andR for which
these parameters are identified from the survey and auxiliary data. We consider here cases
where X and Z are categorical, in which case the available data lead to incomplete contingency
tables with supplemental margins. We can thus apply methods for this data structure discussed
in Little & Rubin (2019).

Our inferences are based on the likelihood shown below in Equation (3),

Lðθ; ϕjDobs; Z
auxÞ ¼ ∏

r

i¼1
f Y jX ; Zðyijxi; zi; θÞϕr

0ð1 � ϕr
0Þðn � rÞ �∏

r

i¼1
f X ; Zðxi; zijri ¼ 1; ϕð1ÞÞ

� ∏
n

i¼r þ 1
f X ðxijri ¼ 0; ϕÞ � ∏

K

k¼1
∏
N

j¼1
f Zk

ðz∗jk jϕÞ;

(3)

where the first r sample units are respondents, ϕ0 is the marginal probability of response to the
survey, ðDobs; ZauxÞ represents the observed data, and the last component of the likelihood
comes from the auxiliary data. We use ϕðriÞ to distinguish between the parameters in the ob-
served (ri ¼ 1) and missing (ri ¼ 0) units respectively. According to Equation (2), the parameter
θ, describing the conditional distribution of Y given X and Z, is the same for the observed and
missing data, but the parameter ϕ can differ between the observed and missing data. A slight
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simplification in Equation (3) is that the data from each of the auxiliary margins is assumed in-
dependent of the information from the survey data. This is not quite true if the auxiliary margins
and survey have units in common: However, we believe that this information is negligible, and it
is not easily recoverable given that the auxiliary and survey units are not linked. ML estimation
of the population mean ofY is achieved by first predicting the values ofZ for non-respondents in
the sample given X and the ML estimate of ϕ , and then predicting the values of Y for
non-respondents from the distribution ofY given ðX ; ZÞ and the ML estimate of θ. The Bayesian
approach replaces ML estimates of the parameters with draws from their posterior distribution.
We now consider some special cases of ML inference based on Equation (3).

2.2 Single Post-Stratifier

We first consider the simple case of a single post-stratifier Z and no covariates X . The
missingness assumption in Equation (1) then reduces to

ℙðRi ¼ 1jZi; Y i; ψÞ ¼ ℙðRi ¼ 1jZi; ψÞ: (4)

The likelihood in Equation (3) reduces to

Lðθ; ϕjDobs; Z
auxÞ ¼ AðθÞ � BðϕÞ � CðϕÞwhere

AðθÞ ¼ ∏
r

i¼1
f Y jZðyijzi; θÞ;

BðϕÞ ¼ ∏
N

j¼1
f Zðz∗j jϕÞ; and

CðϕÞ ¼ ϕr
0ð1 � ϕr

0Þðn � rÞ∏
r

i¼1
f Zðzijri ¼ 1; ϕð1ÞÞ

(5)

The parameters θ of the conditional distribution of Y given Z can be estimated from AðθÞ, and
the parameters of the marginal distribution of Z across respondents and non-respondents can be
estimated from the auxiliary data BðϕÞ.
For univariate categorical Z with J categories, a natural model is to assume that Z is multi-

nomial with

ℙðzi ¼ jÞ ¼ ϕj; j ¼ 1; …; J ;
XJ
j¼1

ϕj ¼ 1: (6)

The ML estimate of ϕj, is simply the proportion of the auxiliary data in post-stratum j. The
resulting direct estimate of the population mean of Y is

Ymod ¼
XJ
j¼1

ϕ̂ jymodj ; (7)

where Y modj is the average of observed and predicted values of Y in post-stratum j, based on the

assumed model for Y given Z and ϕ̂ j ¼ Nj=N . For example, if the model assumed that Y was

normal with mean μj and variance σ
2
j , then Y mod ¼ Y PS ¼

X
J
j¼1ϕ̂ jyjR; where yjR is the respon-

dent sample mean in post-stratum j. This estimator is the well-known post-stratified mean, and
weights respondents by the inverse of the response rate in post-stratum j.
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Alternatively, we can use the models in (3) and (6) to predict or impute the unobserved values
of Z for individual non-respondents, and use them as predictors in a model for Y. The resulting
predictive estimator of the population mean of Y is

Y pred ¼ 1

n

Xr
i¼1

yi þ
Xn

i¼r þ 1

ŷi

 !
; (8)

where ŷi is the predicted value of yi given the predicted value of ẑi for non-respondent i ¼
r þ 1; …; n. The parameters θ for the regression of Y on Z , and ϕð0Þ, for the distribution of

Z among non-respondents are both estimated by ML. The ML estimate of ϕð0Þ
j , the estimated

proportion of non-respondents in category j is

ϕ̂ ð0Þ
j ¼ nϕ̂ j � rϕ̂ ð1Þ

j

n � r

where ϕ̂ ð1Þ
j is the observed proportion of respondents in category j, which can be estimated from

CðϕÞ.
Estimators based on Equations (7) and (8) require at least one respondent in each post-

stratum, and may be unstable if the respondent sample sizes in any post-strata is small. This
is particularly likely if Z is a vector of two or more variables, with their joint distribution avail-
able from auxiliary data. Instability can be addressed by assuming an unsaturated model for Y.
For example, if Z is bivariate, say Z ¼ ðZ1; Z2Þ, then we can assume an additive model for Y
given ðZ1; Z2Þ, or a mixed model with fixed main effects of Z1andZ2 and random interactions.
This modelling approach to stabilising Y PS and Y pred differs from the typical design-based ap-
proach, which is to modify the non-response weight. This example is also discussed in Little
et al. (2017), who point out that the post-stratified mean is actually ML for a MNAR model.

2.3 Two or More Post-Stratifiers

Suppose now we have two categorical post-stratifiers Z1 and Z2, with respectively J 1 and J 2
levels, and we have auxiliary data on the marginal distributions of Z1 and Z2 but not their joint
distribution. The model (2) becomes

f Z; Y ; Rðzi1; zi2; yi; rijθ; ϕÞ ¼ f Y jZðyijzi1; zi2; θÞ � f Z; Rðzi1; zi2; rijϕÞ:
Denoting the marginal probability of response by ϕ0, the likelihood (3) becomes

Lðθ; ϕjDobs; Z
auxÞ ¼ AðθÞ � BðϕÞ; where

AðθÞ ¼ ∏
r

i¼1
f ðY jZ1; Z2Þðyijzi1; zi2; θÞ and

BðϕÞ ¼ ϕr
0ð1 � ϕr

0Þðn � rÞ∏
r

i¼1
f ðZ1; Z2Þðzi1; zi2jri ¼ 1; ϕð1ÞÞ

�∏
N

j¼1
f Z1

ðz∗j1jϕÞ �∏
N

j¼1
f Z2

ðz∗j2jϕÞ:

(9)

The ML estimates of θ are estimated from AðθÞ, and ML estimates of ϕ are estimated from
BðϕÞ. We focus on the latter here.
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An unconstrained (or saturated) multinomial joint distribution for ðZ1; Z2; RÞ has 2J 1J 2 � 1
distinct probabilities. The data described in Figure 1 yields estimates of J 1J 2 þ J 1 þ J 2 � 2
probabilities, namely the joint distribution of ðZ1; Z2Þ for respondents (J 1J 2 � 1 probabilities)
and the marginal distributions of Z1 (J 1 � 1 probabilities), Z2 (J 2 � 1 probabilities) and R (1
probability). This implies that there are

2J 1J 2 � 1 � ðJ 1J 2 � J 1 � J 2 � 2Þ ¼ ðJ 1 � 1ÞðJ 2 � 1Þ
more parameters that are not estimable. That is, the saturated MNAR model is under-identified.
We consider the constrained MNAR ‘RAKE’ model that assumes the marginal distributions

of Z1 and Z2 are different for respondents and non-respondents, but the ðJ 1 � 1ÞðJ 2 � 1Þ odds
ratios ofZ1 andZ2 are the same for respondents and non-respondents. This yields the same num-
ber of constraints as there are under-identified parameters, that is, a just-identified model. Little
& Wu (1991) showed that raking the J 1 � J 2 table of respondent counts (say frj1j2g) to the aux-

iliary margins of Z1 and Z2 gives ML estimates ϕ̂ of ϕ under this RAKE model.
The post-stratified estimator (7) extends to

Y rake ¼
XJ 1
j1¼1

XJ 2
j2¼1

ϕ̂ j1j2
ymodj1 j2

where ϕ̂ j1j2
is the estimated proportion of the population with Z1 ¼ j1; Z2 ¼ j2 from raking, and

ymodj1 j2
is the average of observed and predicted values of Y given Z1 ¼ j1; Z2 ¼ j2, based on

the model for Y given Z1; Z2 with θ estimated by ML. The predictive estimator (8) uses pre-

dicted values of Z1 and Z2 for non-respondents, where ϕ̂ ð0Þ
j1j2

is the estimated proportion of
non-respondents with Z1 ¼ j1; Z2 ¼ j2 from raking.
With K > 2 auxiliary margins, raking yields ML estimates of ϕ for the model that assumes

the marginal distributions of Z1; …; ZK differ for respondents and non-respondents, but the
j-way associations between Z1; …; ZK are the same for respondents and non-respondents, for
j ¼ 2; …; K . A more parsimonious unsaturated log-linear model for Z1; …; ZK that sets
higher-order associations to zero may be needed here if the number of respondents in the cells
formed by Z1; …; ZK is small. For discussion of unsaturated models for Z1; …; ZK and R, (see
Little & Rubin, 2019, Chapter 13 and Section 15.4.2).

2.4 One Post-Stratifier and One Covariate

With one covariate X observed for all units in the sample, and one post-stratifier Z observed
for survey respondents, the model in Equation (2) yields the likelihood

Lðθ; ϕj Dobs; ZauxÞ ¼ AðθÞ � BðϕÞ; where

AðθÞ ¼ ∏
r

i¼1
f Y jX ; Zðyijxi; zi; θÞ and

BðϕÞ ¼ ϕr
0ð1 � ϕ0Þðn � rÞ∏

r

i¼1
f X ðxijri ¼ 1; ϕð1ÞÞ ∏

n

i¼r þ 1
f X ðxijri ¼ 0; ϕð0ÞÞ �∏

N

j¼1
f Zðz∗j jϕÞ;

(10)

where ϕ0 is the marginal probability of response. This structure is similar to the case of two
post-stratifiers, with X playing the role of one of the post-stratifiers. Here, we have data on
the distributions of X for respondents and non-respondents from the sample, whereas for a
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post-stratifier, we have data on the marginal distribution from auxiliary data and the distribution
for respondents from the sample. In particular, for categorical X and Z, we can apply the RAKE
model of Section 2.3 with X playing the role of Z2. For that model, raking the joint distribution
of X and Z for respondents to the auxiliary margin of Z and the margin of X from the sample
yields ML estimates of ϕ and ϕð0Þ.

3 Simulation Study

3.1 Simulation Design and Methods Compared

The goal of this simulation study is to explore repeated sampling properties of the proposed
estimators for different missingness mechanisms and different outcome regression models. To
focus on the missingness mechanisms for unit non-response, we consider simple random sam-
ples from a finite population. To avoid distributional assumptions, we consider here the situa-
tion where all variables of interest are univariate and binary.

Let Y be a binary survey variable of interest and Z a binary post-stratifier, observed only for
sample respondents. Let X denote a binary covariate, observed for all units in the sample and R
the binary response indicator which is observed for all units in the sample. The marginal distri-
bution of Z in the population is also available from an external source.

We generate data for ðX ; Y ; Z; RÞ using a selection model factorisation (Little &
Rubin, 2019):

f X ; Z; Y ; Rðxi; zi; yi; rijθ; ϕÞ ¼ f Y jX ; Zðyijxi; zi; θÞf X ; Zðxi; zijϕÞf RjX ; Z; Y ðrijxi; zi; yi; ψÞ; (11)

where

1. ðX ; ZÞ are multinomial withℙðX ¼ Z ¼ 0Þ ¼ :2,ℙðZ ¼ 0; X ¼ 1Þ ¼ :35,ℙðX ¼ 0; Z ¼ 1Þ ¼ :3
and ℙðX ¼ Z ¼ 1Þ ¼ :15

2. Y given ðZ; X Þ is Bernoulli with
logit ℙðY ¼ 1jX ; ZÞ ¼ θ0 þ θX ðX � X ÞþθZðZ � ZÞþθXZðX � X ÞðZ � ZÞ

for θ0 ¼ 0:5 and six choices of ðθX ; θZ ; θXZÞ shown in Table 1.

Table 1. Parameters for the outcome regression model: distribution of Y given X and Z.

θX θZ θXZ

2 2 2
2 2 0
2 0 0
0 2 0
0 0 0

Table 2. Parameters for the response propensity model: distribution of R given X ; Z and Y in the Simulation Study.

MD Scenario ψX ψZ ψXZ ψY

Scenario 1 2 2 2 2
Scenario 2 2 2 2 0
Scenario 3 2 2 0 2
Scenario 4 2 2 0 0
Scenario 5 2 0 0 0
Scenario 6 0 2 0 0
Scenario 7 0 0 0 0
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3. R given ðZ; X ; Y Þ is Bernoulli with
logit ℙðri ¼ 1jzi; xi; yi; ψÞ

¼ ψ0 þ ψX ðX � X ÞþψZðZ � ZÞþψXZðX � X ÞðZ � ZÞþψY ðY � Y Þ
for seven choices of ψ ¼ ðψX ; ψZ ; ψXZ ; ψY Þ shown in Table 2, chosen to reflect different rela-
tionships betweenR andY,X andZ. The coefficients are chosen to give an approximate response
rate of 70% for all simulated datasets.
A total of 5� 7 ¼ 35 combinations of population structures and non-response mechanisms

are considered in our simulation study. All populations are generated such to avoid the presence
of structural zeros. At each iteration, we generate a population of size N ¼ 100,000 and draw a
simple random sample with fixed sample size of n ¼ 1000. We use the six estimators described
below to estimate the finite population mean Y .
The following methods for estimating the population mean of Y are compared in the simula-

tion study:

1. The respondent mean, ignoring the supplemental information about X and Z. This method is
labelled CC, for complete-case analysis.

2. The respondent weighted mean, with weights the inverse of the response rate within catego-
ries of X , ignoring the information about Z . We label this method NR, for non-response
weighted analysis.

3. The post-stratified weighted mean, with weights obtained by matching to the Z auxiliary
margin, ignoring the information about X : We label this method PSZ, for
post-stratification based on Z.

4. NRPS: the weighted mean, with weights from one iteration of raking to theX sample margin
and then the Z auxiliary margin. This is a standard design-based approach.

5. RAKEXZ: Similar to NRPS, but iteratively raking on theX andZmargins until convergence.
This yields ML estimates of the joint distribution of X and Z under the RAKE model of
Section 2.3 and takes the form of the estimator in Equation (7) based on a logistic regression
with X and Z interactions for Y.

6. PRED1: Predictive model-based estimator in the form of (8), where X and Z are jointly im-
puted for the non-respondents using the RAKE model of Section 2.3, assuming the odds ra-
tios of X and Z are the same for respondents and non-respondents. Non-respondent values of
Y are imputed assuming a saturated logistic model for Y given X and Z.

7. PRED2: Same as PRED1, except the interactions of X and Z are not included in the logistic
model for Y given X and Z.

Inferences for CC, NR, PSZ, RAKEXZ and NRPS are performed using the survey package
in R (Lumley, 2009). We use the R package nlme (Bates, 2005) to fit the regression models in
the two predictive estimators PRED1 and PRED2, and use bootstrap replicates for standard
errors.

3.2 Simulation Results

Tables 3 and 4 compare the absolute root mean square error and the absolute empirical bias
of the six different estimators described in Section 3.1 in repeated random samples. Tables 5
and 6 compare the non-coverage and the average relative width of 95% confidence intervals
from the six different estimators in repeated random samples. When the response depends on
the outcome Y (MD Scenarios 1 and 3), none of the methods perform well, with high relative
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bias and relative RMSE, and confidence coverage far below the nominal 95% level. On the
other hand, when the data is MCAR (MD Scenario 7), all methods perform well.

Figures 2–4 display the intermediate missing data mechanism in MD scenarios 2, 4, 5 and
6. In these scenarios, the three model-based estimators give more efficient point estimates as
indicated by lower root mean square errors (Figure 2), mainly due to the reduced bias (Fig-
ure 3). These estimators also yield tighter confidence intervals (Figure 4) while achieving
nominal coverage (Figure 5). These estimators adapt to the optimal design-based estimators
which give point estimates with low RMSE and empirical bias with good inferences when
the weights appropriately adjust for missingness: In missing data scenarios 2 and 4, where
missingness depends on X and Z, the NRPS and RAKEXZ estimators achieve this. In miss-
ing data scenario 5, missingness depends on X, and weighting methods that adjust for X give
efficient results while in missing data scenario 6 where missingness depends on Z, weighting
methods that adjust for X give efficient results. In summary, as long as the response mech-
anism does not depend on the X and Z interaction, the model-based estimators remove much
of the bias.

Table 3. Comparison of 10,000 � relative RMSE of estimators in simulations (n ¼ 10,000).

ðψX ; ψZ ; ψXZ ; ψY Þ ðβX ; βZ ; βXZÞ CC NR PS.Z NRPS RAKEXZ PRED1 PRED2

(2,2,2,2) (2,2,2) 26 42 47 75 87 83 84
(2,2,2,0) (2,2,2) 64 87 96 131 145 144 145
(2,2,0,2) (2,2,2) 82 73 58 51 79 79 79
(2,2,0,0) (2,2,2) 56 32 39 42 42 42 42
(2,0,0,0) (2,2,2) 174 183 185 195 199 198 200
(0,2,0,0) (2,2,2) 97 48 33 5 1 2 2
(0,0,0,0) (2,2,2) 35 15 13 1 1 1 1
(2,2,2,2) (2,2,0) 21 1 34 3 1 1 1
(2,2,2,0) (2,2,0) 50 74 0 1 1 1 1
(2,2,0,2) (2,2,0) 1 1 1 1 1 1 1
(2,2,0,0) (2,2,0) 22 41 41 76 96 89 91
(2,0,0,0) (2,2,0) 41 64 65 103 123 123 123
(0,2,0,0) (2,2,0) 58 67 29 36 74 74 74
(0,0,0,0) (2,2,0) 44 15 35 38 38 38 38
(2,2,2,2) (2,0,0) 158 166 166 177 184 184 183
(2,2,2,0) (2,0,0) 85 38 30 3 2 1 1
(2,2,0,2) (2,0,0) 47 22 23 4 1 1 1
(2,2,0,0) (2,0,0) 29 1 52 7 1 1 1
(2,0,0,0) (2,0,0) 51 92 0 0 0 0 0
(0,2,0,0) (2,0,0) 1 1 1 1 1 1 1
(0,0,0,0) (2,0,0) 41 1 83 1 1 1 1
(2,2,2,2) (0,2,0) 26 1 42 1 1 1 1
(2,2,2,0) (0,2,0) 129 1 108 1 1 1 1
(2,2,0,2) (0,2,0) 20 1 0 0 0 0 0
(2,2,0,0) (0,2,0) 1 1 1 1 1 1 1
(2,0,0,0) (0,2,0) 70 116 1 9 1 1 1
(0,2,0,0) (0,2,0) 28 46 1 5 1 1 1
(0,0,0,0) (0,2,0) 15 1 1 11 1 1 1
(2,2,2,2) (0,0,0) 257 213 0 0 0 0 0
(2,2,2,0) (0,0,0) 1 1 1 1 1 1 1
(2,2,0,2) (0,0,0) 1 1 1 1 1 1 1
(2,2,0,0) (0,0,0) 1 1 1 1 1 1 1
(2,0,0,0) (0,0,0) 1 1 1 1 1 1 1
(0,2,0,0) (0,0,0) 1 1 0 0 0 0 0
(0,0,0,0) (0,0,0) 1 1 1 1 1 1 1
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4 Application

We apply the six estimators in Section 3.1 to data from the Academic Performance Index
(API), a standardised test of students which sought to measure academic performance and prog-
ress of public schools in the state of California (Kim & Sunderman, 2005). The API was admin-
istered by California Department of Education and used to guide statewide policy through 2017,
when it was replaced by a new accountability system. The apipop dataset in the R package
survey contains information on 37 variables for all 6194 schools with at least 100 students.
We consider two numeric outcomes, the mean api scores in year 1999 and 2000 which we

denote by Y 1 and Y 2 respectively. It is plausible to assume that missingness of school-level data
would depend on whether or not a school had all its pupils tested. However, this variable will be
measured once the survey is taken, and not necessarily available through official statistics or
past surveys—we thus consider as our covariate X , the binary variable which is equal to one
if 100% of students in a school are tested and zero otherwise. Missingness of information on
a school can also depend on the school’s overall performance. One such measure is whether a
school is eligible for awards. The proportion of schools eligible for awards can be assumed to
be obtainable from official statistics, and we thus consider awards as our binary

Table 4. Comparison of 100 � relative absolute empirical bias of estimators in simulations (n ¼ 10,000).

ðψX ; ψZ ; ψXZ ; ψY Þ ðβX ; βZ ; βXZÞ CC NR PS.Z NRPS RAKEXZ PRED1 PRED2

(2,2,2,2) (2,2,2) 814 1043 1109 1399 1506 1477 1483
(2,2,2,0) (2,2,2) 1061 1243 1309 1529 1605 1603 1605
(2,2,0,2) (2,2,2) 1194 1124 1002 935 1169 1168 1169
(2,2,0,0) (2,2,2) 1055 799 884 914 915 914 915
(2,0,0,0) (2,2,2) 1669 1707 1720 1765 1783 1777 1789
(0,2,0,0) (2,2,2) 1592 1112 916 333 104 183 134
(0,0,0,0) (2,2,2) 784 510 468 117 22 38 39
(2,2,2,2) (2,2,0) 590 6 767 214 7 6 6
(2,2,2,0) (2,2,0) 994 1216 6 5 5 4 4
(2,2,0,2) (2,2,0) 1 1 1 2 2 2 2
(2,2,0,0) (2,2,0) 743 1026 1030 1414 1583 1528 1541
(2,0,0,0) (2,2,0) 844 1060 1068 1350 1478 1477 1477
(0,2,0,0) (2,2,0) 996 1080 705 782 1132 1132 1131
(0,0,0,0) (2,2,0) 939 532 836 871 874 874 874
(2,2,2,2) (2,0,0) 1587 1627 1628 1682 1712 1713 1710
(2,2,2,0) (2,0,0) 1489 985 869 203 145 12 87
(2,2,0,2) (2,0,0) 906 623 631 243 30 5 5
(2,2,0,0) (2,0,0) 706 7 950 331 6 6 5
(2,0,0,0) (2,0,0) 1006 1362 0 1 2 2 1
(0,2,0,0) (2,0,0) 3 4 4 6 7 8 7
(0,0,0,0) (2,0,0) 1031 16 1473 10 7 3 9
(2,2,2,2) (0,2,0) 667 1 861 4 6 6 6
(2,2,2,0) (0,2,0) 1498 0 1368 0 0 1 1
(2,2,0,2) (0,2,0) 627 8 1 0 0 1 1
(2,2,0,0) (0,2,0) 8 10 9 10 10 9 9
(2,0,0,0) (0,2,0) 1350 1742 4 449 5 9 4
(0,2,0,0) (0,2,0) 700 904 1 276 1 0 0
(0,0,0,0) (0,2,0) 491 10 14 425 12 12 12
(2,2,2,2) (0,0,0) 2278 2072 9 10 8 6 7
(2,2,2,0) (0,0,0) 3 3 2 2 2 3 2
(2,2,0,2) (0,0,0) 13 12 10 9 8 18 7
(2,2,0,0) (0,0,0) 13 10 12 9 8 9 9
(2,0,0,0) (0,0,0) 10 7 9 6 7 6 7
(0,2,0,0) (0,0,0) 4 3 6 6 6 4 4
(0,0,0,0) (0,0,0) 3 3 3 3 3 3 3
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post-stratifier Z. We use R1 and R2 to denote the binary response indicator variables for Y 1 and
Y 2; respectively. We consider the following models for the missing data mechanisms:

logit½ℙðR1 ¼ 1jX ¼ x; Z ¼ zÞ� ¼ 1þ ψxðx � pxÞþψzðz � pzÞþψxzðx � pxÞðz � pzÞ
and

logit½ℙðR2 ¼ 1jX ¼ x; Z ¼ zÞ� ¼ 1þ ψxðx � pxÞþψzðz � pzÞþψxzðx � pxÞðz � pzÞ
using the same values of ψx, ψz and ψxz shown in Table 7. Here, we only consider the scenarios
where missingness depends on X and Z . Similar to our simulation study, the coefficients in
Table 7 are also chosen to give a response rate of approximately 70%. The five different
missingness mechanisms are similar to those considered in Section 3, reflecting different depen-
dency structures of R. We draw repeated samples from the apipop dataset and apply the pro-
posed estimators to each observed dataset.

We use the same six estimators considered in Section 3. After verifying normality assump-
tions of Y 1 and Y 2 for respondents, we use linear regression with binary predictors to model
the distribution of the two different outcomes given X and Z . We use 50 bootstrap samples
for the RAKE model at the first step, and 50 predictive draws using the residual standard errors

Table 5. Comparison of non-coverage of 95% interval estimates in simulations (n ¼ 10,000).

ðψX ; ψZ ; ψXZ ; ψY Þ ðβX ; βZ ; βXZÞ CC NR PS.Z NRPS RAKEXZ PRED1 PRED2

(2,2,2,2) (2,2,2) 100 100 100 100 100 100 100
(2,2,2,0) (2,2,2) 100 100 100 100 100 100 100
(2,2,0,2) (2,2,2) 100 100 100 100 100 100 100
(2,2,0,0) (2,2,2) 100 100 100 100 100 100 100
(2,0,0,0) (2,2,2) 100 100 100 100 100 100 100
(0,2,0,0) (2,2,2) 100 100 100 64 14 30 23
(0,0,0,0) (2,2,2) 100 100 98 20 7 10 12
(2,2,2,2) (2,2,0) 100 6 100 62 14 14 16
(2,2,2,0) (2,2,0) 100 100 9 8 10 4 4
(2,2,0,2) (2,2,0) 8 8 9 10 9 13 14
(2,2,0,0) (2,2,0) 100 100 100 100 100 100 100
(2,0,0,0) (2,2,0) 100 100 100 100 100 100 100
(0,2,0,0) (2,2,0) 100 100 100 100 100 100 100
(0,0,0,0) (2,2,0) 100 99 100 100 100 100 100
(2,2,2,2) (2,0,0) 100 100 100 100 100 100 100
(2,2,2,0) (2,0,0) 100 100 100 34 21 13 17
(2,2,0,2) (2,0,0) 100 100 100 62 10 12 13
(2,2,0,0) (2,0,0) 100 4 100 94 8 9 9
(2,0,0,0) (2,0,0) 100 100 6 4 6 1 2
(0,2,0,0) (2,0,0) 6 6 6 7 7 13 18
(0,0,0,0) (2,0,0) 100 4 100 4 7 7 7
(2,2,2,2) (0,2,0) 100 4 100 7 8 10 10
(2,2,2,0) (0,2,0) 100 8 100 14 16 16 18
(2,2,0,2) (0,2,0) 100 6 5 5 6 1 1
(2,2,0,0) (0,2,0) 6 6 6 6 6 10 14
(2,0,0,0) (0,2,0) 100 100 6 88 6 6 7
(0,2,0,0) (0,2,0) 100 100 5 72 6 5 6
(0,0,0,0) (0,2,0) 99 6 7 98 13 18 18
(2,2,2,2) (0,0,0) 100 100 4 4 4 1 1
(2,2,2,0) (0,0,0) 5 6 6 8 6 10 12
(2,2,0,2) (0,0,0) 8 6 8 11 12 10 11
(2,2,0,0) (0,0,0) 4 4 4 6 6 9 9
(2,0,0,0) (0,0,0) 8 4 6 12 16 20 20
(0,2,0,0) (0,0,0) 7 7 5 5 5 1 1
(0,0,0,0) (0,0,0) 8 8 7 7 7 19 20
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of the linear regression of Y on X and Z. The design-based methods were all derived using the
survey package in R, and residual standard errors of the linear model were extracted using the
R software package arm (Gelman et al., 2018).
Figures 6 compares the point estimates for the mean API score in the years 1999, and Figure 7

compares its interval estimates. Similar qualitative results were observed for the mean API score
in the years 2000 (see Figures S1 and S2). The qualitative patterns are in general similar for both
survey outcomes. Our results suggest that all methods perform well when the data is MCAR.
The three model-based estimators, namely RAKEXZ, PRED1 and PRED2 all perform well
and show robustness to the missing data mechanisms, as evident by the relatively flat RMSEs
and EBs for all other missing data mechanisms. In these simulations, we also see that the
methods involving PS, namely PS and NRPS perform relatively well. However, we see methods
CC and NR give very high RMSEs, especially forY 2 and empirical bias for the first two missing
data mechanisms, and CC and NR still performing poorly for the fourth missing data
mechanism.
In terms of the interval estimates displayed in Figure 6, the three model-based methods per-

form well in the sense of yielding tight confidence intervals that achieve nominal coverage when

Table 6. Comparison of 100 � relative average width of 95% interval estimates in simulations (n ¼ 10,000).

(ψX , ψZ , ψXZ , ψY ) (βX , βZ , βXZ) CC NR PS.Z NRPS RAKEXZ PRED1 PRED2

(2,2,2,2) (2,2,2) 227 225 204 180 181 182 172
(2,2,2,0) (2,2,2) 258 259 246 225 224 214 210
(2,2,0,2) (2,2,2) 260 260 263 202 201 198 191
(2,2,0,0) (2,2,2) 249 254 157 165 159 230 227
(2,0,0,0) (2,2,2) 266 269 269 271 273 249 236
(0,2,0,0) (2,2,2) 250 249 228 205 208 224 196
(0,0,0,0) (2,2,2) 247 251 243 228 227 214 208
(2,2,2,2) (2,2,0) 246 254 243 201 203 198 192
(2,2,2,0) (2,2,0) 251 252 170 178 172 235 230
(2,2,0,2) (2,2,0) 244 246 246 248 249 209 199
(2,2,0,0) (2,2,0) 225 222 206 184 184 176 165
(2,0,0,0) (2,2,0) 253 254 245 226 224 209 205
(0,2,0,0) (2,2,0) 255 255 254 198 196 193 187
(0,0,0,0) (2,2,0) 245 251 155 167 157 229 226
(2,2,2,2) (2,0,0) 261 264 263 266 269 243 228
(2,2,2,0) (2,0,0) 245 244 226 208 210 198 185
(2,2,0,2) (2,0,0) 241 246 239 229 227 211 204
(2,2,0,0) (2,0,0) 240 250 233 197 201 198 190
(2,0,0,0) (2,0,0) 246 246 167 179 170 235 231
(0,2,0,0) (2,0,0) 239 242 242 243 246 207 195
(0,0,0,0) (2,0,0) 240 241 222 210 209 225 203
(2,2,2,2) (0,2,0) 239 254 229 227 226 215 210
(2,2,2,0) (0,2,0) 231 258 230 205 205 203 197
(2,2,0,2) (0,2,0) 243 254 160 175 166 230 226
(2,2,0,0) (0,2,0) 236 246 237 246 246 205 195
(2,0,0,0) (0,2,0) 248 251 232 214 215 235 214
(0,2,0,0) (0,2,0) 246 244 254 239 234 229 223
(0,0,0,0) (0,2,0) 250 247 253 201 201 195 188
(2,2,2,2) (0,0,0) 245 248 179 187 179 244 240
(2,2,2,0) (0,0,0) 243 244 254 255 254 222 212
(2,2,0,2) (0,0,0) 233 233 218 199 196 267 189
(2,2,0,0) (0,0,0) 239 239 230 215 213 188 185
(2,0,0,0) (0,0,0) 238 238 234 187 187 168 165
(0,2,0,0) (0,0,0) 241 241 159 167 159 220 218
(0,0,0,0) (0,0,0) 233 233 233 233 233 173 168

S29Post-Stratification for Non-Ignorable Non-Response

International Statistical Review (2022), 90, S1, S17–S36
© 2022 International Statistical Institute.



F
IG

U
R
E
2.

R
el
at
iv
e
ro
ot

m
ea
n
sq
ua
re

er
ro
r
of

th
e
si
x
di
ffe
re
nt

es
ti
m
at
or
s
fo
r
Y

di
sp
la
ye
d
as

a
pe
rc
en
ta
ge

of
th
e
tr
ue

va
lu
e
of

Y

S30 ZANGENEH AND LITTLE

International Statistical Review (2022), 90, S1, S17–S36
© 2022 International Statistical Institute.



F
IG

U
R
E
3.

R
el
at
iv
e
ab
so
lu
te
em

pi
ri
ca
l
bi
as

of
th
e
si
x
di
ffe
re
nt

es
ti
m
at
or
s
fo
r
Y

di
sp
la
ye
d
as

a
pe
rc
en
ta
ge

of
th
e
tr
ue

va
lu
e
of

Y

S31Post-Stratification for Non-Ignorable Non-Response

International Statistical Review (2022), 90, S1, S17–S36
© 2022 International Statistical Institute.



F
IG

U
R
E
4.

R
el
at
iv
e
av
er
ag
e
w
id
th

of
th
e
95
%

co
nfi
de
nc
e
in
te
rv
al
s
fo
r
th
e
si
x
di
ffe
re
nt

es
ti
m
at
or
s
of

Y
di
sp
la
ye
d
as

a
pe
rc
en
ta
ge

of
th
e
tr
ue

va
lu
e
of

Y

S32 ZANGENEH AND LITTLE

International Statistical Review (2022), 90, S1, S17–S36
© 2022 International Statistical Institute.



F
IG

U
R
E
5.

N
on
-c
ov
er
ag
e
of

th
e
95
%

co
nfi
de
nc
e
in
te
rv
al
s
si
x
di
ffe
re
nt

es
ti
m
at
or
s
fo
r
Y
.
T
he

re
d
ho
ri
zo
nt
al

da
sh
ed

li
ne

re
pr
es
en
ts
th
e
no
m
in
al

no
n-
co
ve
ra
ge

of
5%

S33Post-Stratification for Non-Ignorable Non-Response

International Statistical Review (2022), 90, S1, S17–S36
© 2022 International Statistical Institute.



Table 7. Models for R given X and Z in the API data example.

MD scenario ψX ψZ ψXZ

Scenario 1 2 2 2
Scenario 2 2 2 0
Scenario 3 2 0 0
Scenario 4 0 2 0
Scenario 5 0 0 0

FIGURE 6. Comparison of point estimates of six different estimators for the population mean API score in 1999 (Y1)

FIGURE 7. Non-coverage versus relative average width of resulting 95% CI of the population mean API score in 1999 (Y1)
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the missing data structure conforms with the method of choice. While these findings agree in
general, with our simulation results based on a binary outcome, they are more pronounced here.
The two model-based methods give conservative intervals and achieve nominal coverage
throughout. However, this comes at the cost of wide confidence intervals. We observe similar
qualitative patterns for both outcomes.
The qualitative patterns are in general similar for both survey outcomes. Our results suggest

that that all methods perform well when the data is MCAR. The three model-based estimators
all perform well and show robustness to the missing data mechanisms, as evident by the rela-
tively flat RMSEs and EBs for all other missing data mechanisms. In these simulations, we also
see that the methods involving PS, namely PS and NRPS perform relatively well. However, we
see methods CC and NR give very high RMSEs, especially forY 2 and empirical bias for the first
two missing data mechanisms, and CC and NR still performing poorly for the fourth missing
data mechanism.

5 Discussion

We describe likelihood-based inference for survey non-response when post-stratification
variables are observed for survey non-respondents but not non-respondents, and marginal
distributions of these variables are available from auxiliary data. Models assume that
missingness does not depend on the survey variable subject to non-response, but are MNAR
when missingness depends on the post-stratification variables. By formally modelling the
joint distribution of X and Z, the auxiliary information provides us with the data to identify
MNAR models, weakening assumptions about the mechanism. A novel feature of the paper
is to describe how post-stratification information from external sources can be formally in-
corporated into the likelihood function. Thus, we are not aware of the basic missingness as-
sumption of Equation (2) and the likelihood function of Equation (3) having been described
in previous literature. The model-based estimates considered here are maximum
likelihood, with standard errors estimated using bootstrap replicates. For small samples
where the asymptotic properties of ML do not apply, an attractive alternative approach is
to add prior distributions for the parameters and base inferences on Bayesian posterior
distributions.
Advantages of this modelling approach are that (a) the model assumptions clarify conditions

under which particular estimates are asymptotically optimal; (b) unsaturated models allow for
situations where the data do not support saturated models for the joint distribution of (Z , X
and R) or Y given Z and X ; and (c) the approach avoids arbitrary choices of distance functions
required for methods that modify the survey weights. There has been recent interest in
likelihood-based with auxiliary information. Chatterjee et al. (2016) and Chen et al. (2015) de-
veloped methodology for regression models. Chatterjee et al. (2016) also relaxed the simple
random sampling assumption by considering more general sampling designs such as
two-phase sampling. These and other work discussed in the introduction do not consider
non-ignorable non-response models.
We focused here on simple random sampling designs and categorical covariates and post-

stratifiers. Stratified random sampling can be accommodated by including stratum indicators
as X variables in the model, and cluster and multistage sampling by hierarchical models that in-
clude random effects to model clustering. These extensions, and models that include continuous
variables within X and Z, are topics for future research.
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