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Abstract 

While most deep learning approaches are developed for single images, in real world 
applications, images are often obtained as a series to inform decision making. Due to 
hardware (memory) and software (algorithm) limitations, few methods have been developed 
to integrate multiple images so far. In this study, we present an approach that seamlessly 
integrates deep learning and traditional machine learning models, to study multiple images 
and score joint damages in rheumatoid arthritis. This method allows the quantification of 
joining space narrowing to approach the clinical upper limit. Beyond predictive performance, 
we integrate the multilevel interconnections across joints and damage types into the 
machine learning model and reveal the cross-regulation map of joint damages in 
rheumatoid arthritis. 
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Fig. 1  

Schematic representation of Mandora prediction of joint damages. a, The objective of this 
study is to automatically detect joint space narrowing and bone erosion damages based on 
radiographic images in rheumatoid arthritis. The ground truth is the SvH scores manually 
labeled by human scorers. Our machine learning approach, Mandora, locates joint positions 
and quantifies joint-specific damage levels with segmentations of joint space regions. b, We 
use neural network and tree-based regression models to learn contextual information of 
images as well as the symmetrical interconnections among joints in rheumatoid arthritis. 

Introduction 

Deep learning algorithms have been widely used to address biological and biomedical 
imaging problems in recent years [1–4]. Common image-related tasks include detection of 
cell nuclei [5–7], semantic segmentation of tumors [8–11], and diagnosis of diseases [12–17]. In 
general, standard computer vision tasks are straightforward, such as object detection, 
segmentation, or classification. A unique challenge posed by medical images is that there 
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are often multiple related images in a series, which requires clinicians to analyze and 
diagnose diseases through different angles across images [18–20]. For example, 
mammograms are often performed from both the cranial caudal view and the mediolateral 
oblique view [21,22]. How to integrate information from multi-view images and multiple regions 
is currently an active research topic in the field [23–26]. 

Here we focus on images of rheumatoid arthritis (RA), which is a chronic autoimmune 
disease that affects many regions of the body [27]. About 0.5 percent of adults are affected 
by RA worldwide with a higher prevalence in women than men [28]. RA primarily targets and 
damages joints, including pain and swelling around the joint regions. Without timely 
diagnosis and appropriate treatment, RA can lead to severe and irreparable joint damages 
and disability [27].  

Many modern imaging techniques have been developed for the visualization and detection 
of joint damages in RA. The current standard quantification of RA damage is the Sharp/van 
der Heijde (SvH) scoring system with radiographic imaging [29], including joint space 
narrowing and bone erosion. However, manually inspecting radiographic images and 
evaluating SvH scores is time-consuming and effort-intensive. The fast advancement of 
machine learning and artificial intelligence (AI) has opened a new avenue for automatic 
diagnosis of RA using computers [30]. Deep learning methods have been developed to 
address the image-based RA scoring problems [31–34]. Yet independent and comprehensive 
benchmarking are needed to evaluate the predictive performance of AI methods, especially 
on stringently held-out testing data. Moreover, beyond high predictive performance, a key 
question is to gain a deeper understanding of AI methods in RA. A typical presentation of 
RA is symmetrical symptoms in multiple large and small joints [35,36]. Unfortunately, how to 
leverage the multiple images and reveal the working mechanism underlying a computational 
method is largely unexplored. 

Here we present Mandora (MAchine learNing Detection of jOint damages in Rheumatoid 
Arthritis), a machine learning approach for quantification of joint damages in RA based on 
radiographic images. Benefiting from cutting-edge deep learning techniques as well as 
conventional machine learning methods to exploit different types of information, this method 
automatically quantifies the degree of joint damage with high accuracy. It ranked first in 
scoring joint space narrowing in the recent DREAM Rheumatoid Arthritis Challenge, where 
state-of-the-art methods were systematically compared and benchmarked on independent 
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testing data. Additionally, this method segments and highlights the joint space regions to 
assist further disease diagnosis in clinical practice. Most importantly, we leverage the multi-
level symmetrical patterns in RA patients and integrate information across multiple images 
to improve performance and reveal the predictive relationships across joints, damage types, 
and left-right sides [37,38]. 

Experimental Section/Methods 

Data collection 

In this study, we used radiographic images from two clinical studies, the Consortium for the 
Longitudinal Evaluation of African-Americans with Rheumatoid Arthritis (CLEAR) [39] and the 
Treatment Efficacy and Toxicity in Rheumatoid Arthritis Database and Repository 
(TETRAD) [40]. A total of 1472 radiographic images from 368 sets were used to develop 
models. Each set consisted of two images of hands and two images of feet from the same 
individual. Two types of joint damages were investigated: joint space narrowing and bone 
erosion. The ground truth label is the Sharp/van der Heijde (SvH) score generated by human 
experts through manual inspection of images [41]. Typically targeted joints by RA were 
examined by the SvH scoring system, including multiple joints in wrists, proximal 
interphalangeal (PIP), and metacarpal phalangeal (MCP) of the fingers, PIP and metatarsal 
phalangeal (MTP) of the toes. For joint space narrowing, 15 joints from each hand and 6 
joints from each foot were assessed, with the score ranging from 0 to 5. A higher score 
represents a higher degree of damage, where 0 is normal, 1 is focal narrowing, 2 is the 
reduction of less than 50% of the original joint space, 3 is the reduction of more than 50% 
of the original joint space, and 4 is complete dislocation. For bone erosion, 16 joints from 
each hand and 6 joints from each foot were assessed, with the score ranging from 0 to 5. 
Similarly, the score of 0 represents no damage, 1 is discrete erosion, 2-3 are large erosions 
that involve the bone surface, 4 is erosion that extends over the middle of the bone, and 5 
is a complete collapse. To estimate the clinical upper limit of the damage scoring problems, 
each joint damage was scored independently by two trained professionals. Pearson's 
correlation and root mean square error (RMSE) between two scorers were calculated as the 
clinical upper limit. 

Location of joints and segmentation of joint space regions 
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For each joint of interest, we first manually labeled the coordinate of the center. Then based 
on the center coordinate, we generated a 30-by-30 pixelwise square mask as the ground 
truth. These location masks were used to build models to locate a joint. In addition, we also 
manually labeled the joint space regions using polygons. These polygons served as the 
segmentation masks of joint space regions, which were used to build models that accepted 
image patches as input. 

Evaluation and experimental design 

Two evaluation metrics were considered to assess the performance of predicting joint 
damages. The first metric is Pearson’s correlation coefficient (r) defined as follows: 

𝑟 =
1

𝑛 − 1
∑

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) 

𝑆𝑥𝑆𝑦

𝑛

𝑖=1

 

where n is the number of joint damages to be scored, xi is the prediction, yi is the ground 
truth label created by the human scorer, 𝑥 and 𝑦 are the averages, Sx and Sy are the 

standard deviations. The secondary metric is RMSE defined as follows: 

𝑅𝑀𝑆𝐸 = ∑(𝑥𝑖 − 𝑦𝑖)
2/𝑛

𝑛

𝑖=1

 

where n is the number of joint damages to be scored, xi is the prediction, and yi is the ground 
truth label. To evaluate the performance of a model, we performed 10-fold cross-validation 
experiments, where 90 percent of the data were used to build models and 10 percent of the 
data were held out for testing.  

In addition to predicting joint damage, we also evaluated the accuracy of locating a joint. 
Since image sizes varied across individuals, we normalized the distance measurement 
during evaluation. Specifically, the coordinate of a point was first scaled to a continuous 
value between 0 and 1 by being divided by the height and width of an image. Then we 
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calculated the distance between predictions and ground truth labels. Using this normalized 
distance instead of pixel values, images with different sizes were comparable. 

Deep learning prediction of joint locations based on full images 

We designed a deep convolutional neural network for predicting joint locations. This neural 
network contains an encoder and a decoder with multiple convolutional layers, max-pooling 
layers, up-convolutional layers, and concatenation layers. The kernel sizes of convolutional 
layers, max-pooling layers, and up-convolutional layers are 7×7, 2×2, 2×2, respectively. The 
encoder has 8 convolutional layers as well as 4 max-pooling layers. The decoder has 8 
convolutional layers and 4 up-convolutional layers. Meanwhile, the encoder and the decoder 
are connected through concatenation layers. Each convolutional layer is followed by a non-
linear “ReLU” activation, except for the last convolutional layer that is activated by a 
“sigmoid” function. The batch normalization layer is applied before each convolutional layer 
to accelerate the training process. The cross-entropy loss was used together with the Adam 
optimizer. The neural network was first trained 50 epochs with the learning rate of 0.001, 
then trained 50 epochs with a smaller learning rate of 0.0001. The neural network was 
implemented using “Keras” (2.2.4) with the “Tensorflow” (1.14.0) backend in Python. 

Deep learning prediction of joint damages based on image patches 

We designed a special deep convolutional neural network for predicting joint damages 
based on image patches. Specifically, this neural network has a encoder-decoder-regressor 
architecture with two outputs: (1) segmentation of the joint space region, and (2) joint 
damage score. The encoder has 8 convolutional layers and 4 max-pooling layers. The 
decoder has 8 convolutional layers and 4 up-convolutional layers. The regressor has 8 
convolutional layers and 4 max-pooling layers. Meanwhile, concatenation layers were used 
to link (1) the encoder and the decoder, and (2) the decoder and the regressor. The decoder 
outputs the joint space segmentation that is used as the input for the regressor as well. The 
regressor outputs the joint damage score. The kernel sizes of convolutional layers, up-
convolutional layers, and max-pooling layers are 7×7, 2×2, 2×2, respectively. Each 
convolutional layer is followed by a non-linear “ReLU” activation. The batch normalization 
layer is applied before each convolutional layer to accelerate the training process. The last 
layer is a “Dense” layer that is activated by a “sigmoid” function. The cross-entropy loss was 
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used together with the Adam optimizer. The neural network was first trained 10 epochs with 
the learning rate of 0.001, then trained 40 epochs with a smaller learning rate of 0.0001. The 
neural network was implemented using “Keras” (2.2.4) with the “Tensorflow” (1.14.0) 
backend in Python. 

Tree-based learning of symmetrical patterns 

To learn the symmetrical patterns among joints and damage types, we further build a tree-
based machine learning model. Specifically, for each joint damage to be predicted, the 
image patch-based predictions of all joint damages from the neural network model are used 
as the input. The tree-based model automatically learns the non-linear relationships among 
all joints from hands and feet, and two types of joint damages. A total of 500 trees are used 
in the ensemble predictions with a maximum depth of 4. The tree-based model was 
implemented using the “etr” function of “scikit-learn” (0.21.2) in Python. 

SHAP analysis 

To investigate the interconnections among joints and damage types in our method, we 
performed the SHAP analysis of the tree-based model. For each joint damage of interest, 
the absolute SHAP values of all joint damages are calculated, representing the strength of 
contribution to determining the degree of damage. The joint-wise absolute SHAP values are 
shown as two heatmaps: (1) the contributions of joints from the same side, and (2) the 
contributions from the other side. The SHAP analysis was performed using “shap” (0.31.0) 
in Python. 

Statistical analysis 

To test whether two results are significantly different in cross-validation experiments, we 
performed the one-sided paired Wilcoxon signed-rank test using R (3.6.1). 
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Ethical approval was done through Sage Bionetworks who distributed the data through the 
cloud environment. 

Data availability 

The radiographic images used in this study were downloaded from the challenge website: 

https://www.synapse.org/#!Synapse:syn20545111/wiki/597243 

The segmentation masks of the joint space regions are available on our website: 

https://guanfiles.dcmb.med.umich.edu/Mandora/segmentation_joint_space 

Code availability 

The code of Mandora is available in the GitHub repository: 

https://github.com/GuanLab/Mandora 

Author contributions 

HL and YG conceived and designed this project and wrote the paper. HL implemented the 
method, performed the experiments 
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Overview of experimental design 

Scoring joint damages in RA is a complex task with two subtasks: (1) object detection - we 
need to detect and locate multiple joints within an image, and (2) disease recognition - we 
need to predict the degree of damage through regression analysis. To solve this unique 
problem, we developed a multi-step pipeline (Fig. 1). We first built a deep convolutional 
neural network model to identify the location of each joint. Once we obtained the location, 
an image was cut into small patches that were centered around joints. Then the image 
patches were used as the input for a specially designed neural network to perform 
regression analysis of joint damage scores, as well as semantic segmentation of joint space 
regions. Notably, segmentation was not required, yet it significantly improved predictive 
performance. Finally, patients with RA are likely to develop symmetrical symptoms in both 
sides of hands and feet, and joint space narrowing and bone erosion often go hand in hand. 
We therefore developed a tree-based conventional machine learning model to integrate all 
available information from both sides and two types of damages. The step not only further 
improved the performance but also revealed cross-joint prediction relationships that are the 
nature of RA. 

Convolutional neural network locates joint positions with high accuracy 
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Fig. 2 

Architecture of the deep convolutional neural network in localizing joint positions. This neural 
network contains an encoder to extract information at multiple scales and a decoder to 
decode the abstracted information from feature maps. Multiple convolution, max-pooling and 
up-convolution layers are used. The encoder and the decoder are connected through 
concatenation layers. 

We first built a 2D convolutional neural network model to detect the location of a joint (Fig. 
2). Specifically, for each joint to be located, we used a 30-by-30 pixel-wise square mask as 
the ground truth label to present the location and the entire image as the input. This 
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convolutional neural network has an encoder that extracts feature maps at multiple 
resolutions and scales through convolutional layers, as well as a decoder that decrypts the 
abstract information within feature maps through up-convolutional layers. Meanwhile, 
concatenation layers are used to link the encoder and decoder to prevent information decay. 

Fig. 3 

Mandora localizes joint positions with high accuracy. a-b, We develop a deep convolutional 
neural network model for detecting locations of multiple joints from finger, wrist, and toe. 
Instead of using the pixel as the unit, we measure the difference between prediction and 
ground truth using a normalized distance so that images with different sizes are comparable. 
c-e, The predictive performances of locating joints from the finger, wrist, and toe are shown 
as box plots. The horizontal dashed red line represents the cutoff, a normalized distance of 
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0.02. The numbers represent the percentage of samples with a smaller distance than the 
cutoff. f-g, Two examples are shown with normalized distances of 0.01 and 0.02, 
respectively. 

To evaluate the predictive performance of joint location, we performed 10-fold cross-
validation experiments for each joint in the finger, wrist (Fig. 3a), and toe (Fig. 3b). Since the 
sizes vary across images, we used a normalized distance to measure the difference 
between predictions and ground truth labels (see details in Methods). Briefly, the 
coordinates of each point within an image are rescaled from pixel values to a continuous 
value between 0 and 1 by dividing the height or width of an image, so that the results are 
uniform and comparable across images with different sizes. The distributions of normalized 
distances are shown as boxplots in Fig. 3c-e. We selected a normalized distance of 0.02 as 
the cutoff (horizontal red dashed lines) to measure the predictive accuracy. Examples of 
normalized distances of 0.01 and 0.02 are shown in Fig. 3f-g. In general, joints from fingers 
are easier to locate and more than 98.0% of testing joints are within the 0.02 normalized 
distance (Fig. 3c). In contrast, joints from wrists are harder to distinguish, owing to their 
proximity (Fig. 3d). The accuracy of locating joints from toes is similar to that from fingers 
(Fig. 3e). Overall, the convolutional neural network model locates joints with high accuracy. 

Segmentation of joint space regions significantly improves joint damage prediction 
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Fig. 4 

Architecture of the deep neural network for segmenting joint space regions and predicting 
damage scores. This neural network contains an encoder to extract information at multiple 
scales, a decoder to decode the abstracted information from feature maps, and a regressor 
to quantify the damage score of a joint. Multiple convolution, max-pooling, up-convolution 
layers and one dense layer are used. The decoder generates the segmentation mask, which 
is further used as input for the regressor. The encoder, the decoder and the regressor are 
connected through concatenation layers. 

Based on the joint location obtained from the previous step, we cut full images into image 
patches that were centered around joints to be scored. Then the patches were treated as 
the input for a deep learning model to predict the damage score of each joint. We design a 
novel neural network architecture for the patch-based damage prediction that 
simultaneously outputs the damage score as well as the segmentation of the joint space 
region (Fig. 4). Specifically, the architecture contains two parts. The first part includes an 
encoder and a decoder so that it extracts features from multiple scales and resolutions. The 
output of the first part is the segmentation mask that is further used as the input for the 
second part of the neural network. The rationale is that with the guidance of the 
segmentation mask, the neural network will easily learn where to “look at” and focus 
primarily on the regions of interest to determine the damage level. The second part contains 
a regressor that generates one output value representing the damage score.  
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Fig. 5 

Improving the predictive performance with semantic segmentation of joint space regions. 
We compared two types of neural network models with or without the semantic 
segmentation of joint space regions. We benchmarked their performance in predicting joint 
space narrowing using a, Pearson’s correlation and b, root mean square error. We also 
benchmarked their performance in bone erosion prediction using c, Pearson’s correlation 
and d, root mean square error. In each comparison, we performed 10-fold cross-validation 
experiments. The one-sided paired Wilcoxon signed-rank tests were used to determine the 
statistical significance. 

To comprehensively evaluate the predictive performance and investigate the effect of the 
special neural network architecture, we performed 10-fold cross-validation experiments on 
hands and feet individually. The primal evaluation metric is Pearson's correlation between 
predictions and ground truth labels created by human professionals. We also considered a 
secondary metric, the root mean square error (RMSE) between prediction and ground truth. 
We benchmarked the neural network models with or without the segmentation of the joint 
space region. In both hands and feet, the neural network with segmentation achieved 
significantly higher correlations than the network without segmentation, as well as lower 
RMSEs (Fig. 5a-b). 
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Since joint space narrowing and erosion often occur simultaneously, a joint with narrowing 
damage is likely to have bone erosion. We therefore hypothesize that the neural network 
architecture with segmentation will also improve the prediction accuracy of erosion 
damages. Similar to joint space narrowing, this model significantly increased the correlations 
and decreased RMSEs for erosion prediction in both hands and feet (Fig. 5c-d).  

Fig. 6 

Benchmarking predictive performance of neural network models with or without 
segmentations of bone erosion. We compared two types of neural network models with or 
without the semantic segmentation of joint space regions. We benchmarked their 
performance in predicting joint space narrowing using a, Pearson’s correlation and b, root 
mean square error. We also benchmarked their performance in bone erosion prediction 
using c, Pearson’s correlation and d, root mean square error. In each comparison, we 
performed 10-fold cross-validation experiments. The paired Wilcoxon signed-rank tests 
were used to determine the statistical significance. 

Intuitively, integrating segmentation of bone erosion regions should also improve 
performance similar to including segmentation of joint space regions. Unfortunately, the 
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segmentation of erosion did not improve the performance (Fig. 6). The main reason is that 
the segmentation of erosion is much harder than narrowing and the quality of segmentation 
is relatively low. We anticipate that this neural network will further improve with high-quality 
erosion masks in future studies. 

Mandora reveals joint-wise symmetrical contributions to damage prediction 

The observed correlations of damage types and joint locations across individuals. 

Fig. 7 

Correlation analysis of joint damages in rheumatoid arthritis. For each joint damage, we 
calculated the pairwise Pearson’s correlation from all other joint damages. Joints from finger, 
wrist, toe are shown in blue, orange, and green, respectively. The double lines represent 
joint space narrowing and the single line represents bone erosion. a, The correlation 
heatmap represents the correlations from the same side. b, The correlation heatmap 
represents the correlations from the other side. 

Patients with RA often develop multi-level symmetrical and correlated joint damages in both 
hands and feet. In fact, through analyzing total joint damage scores at the image level, we 
observed medium to high Pearson’s correlations at three aspects: (1) between joint space 
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narrowing and bone erosion, (2) between the left side and right side, and (3) between hands 
and feet (Table 1). We also calculated the cross-patient pairwise correlations among all 
joints and found ubiquitous correlations shown as heatmaps in Fig. 7.  

Fig. 8 

Improving the predictive performance with symmetrical information. We compared machine 
learning approaches with or without integrating the symmetrical information. We 
benchmarked their performance in predicting joint space narrowing using a, Pearson’s 
correlation and b, root mean square error. We also benchmarked their performance in bone 
erosion prediction using c, Pearson’s correlation and d, root mean square error. In each 
comparison, we performed 10-fold cross-validation experiments. The one-sided paired 
Wilcoxon signed-rank tests were used to determine the statistical significance. 

To leverage this unique characteristic feature and consider the multi-level associations in 
RA, we developed a conventional tree-based machine learning model. Specifically, for each 
joint, the image patch-based predictions of all joint damages from the previous step are 
treated as input features in the tree-based model. The associations and dependent 
relationships among joints are learned automatically in this machine learning model. It 
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further significantly improved the predictive performance of joint space narrowing and bone 
erosion in both hand and foot, except for the Pearson’s correlation of erosion in the foot (Fig. 
8). This model indeed improved the correlation from 0.693 to 0.711, yet the difference is not 
statistically different based on the one-sided paired Wilcoxon signed-rank test (p-value = 
0.041). 

 

Fig. 9 

SHAP analysis reveals the interconnection heatmaps among joint damages in Mandora. We 
performed SHAP analysis of the tree-based models in Mandora. For each joint damage, we 
calculated the absolute SHAP values from all joints. Joints from the finger, wrist, and toe are 
shown in blue, orange, and green, respectively. The double lines represent joint space 
narrowing and the single line represents bone erosion. The joints along the row are the 
target being predicted, whereas joints along the column serve as features to predict. a, The 
SHAP heatmap represents the contributions from the same side. b, The SHAP heatmap 
represents the contributions from the other side. 

Beyond high performance, an essential topic of machine learning studies is to dissect the 
“black box” method and understand how it works. To reveal the regulatory relationships 
among joints in our model, we further performed SHAP analysis and presented the results 
as a heatmap of the average absolute SHAP values (Fig. 9a and Table 2). In this heat map, 
the joints in the column serve as features to predict other joints, whereas the joints in the 
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row are the targets being predicted. The color bars represent their locations in the finger, 
wrist, or toe. Double lines represent joint space narrowing and a single line represents bone 
erosion. Higher SHAP values demonstrate more important contributions in predicting the 
damage scores. As expected, the strongest predictor is generally the joint itself, which is 
shown as the red diagonal trace in Fig. 9a. Joints from the wrist are often predictable by 
each other due to their proximity, shown as clustered redness in two submatrices (narrowing 
and erosion) with orange borders. Intriguingly, we also observed off-diagonal red traces 
highlighted in four dashed rectangles. For example, the very top dashed rectangle displays 
the contribution of bone erosion to predict joint narrowing in hand - if a joint has erosion, it 
is more likely to have narrowing. Altogether, these four rectangles manifest the 
interconnections between narrowing and erosion in both hands and feet. In addition to the 
regulation among joints from the same side, we also investigated the contributions of joints 
from the other side. Again, we observed a stronger diagonal trace, indicating the special and 
important role of the counterpart joint from the other side in predicting joint damage (Fig. 9b 
and Table 3). In summary, the SHAP analysis reveals the working mechanisms underlying 
our machine learning model, especially the multidimensional associations across joint 
damage types and locations. Consistent with correlation analysis (Fig. 7) and the distinct 
pattern of joint damage distribution in RA, our method grasps useful information and 
empowers predictions of joint damage. 

Fig. 10 
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Mandora predictions approach the clinical upper limit estimated by human scorers. The joint 
damages were scored independently by two human scorers. The correlation and RMSE 
between them were calculated to estimate the clinical upper limit. We benchmarked 
Mandora’s predictions in predicting joint space narrowing using a, Pearson’s correlation and 
b, root mean square error. We also benchmarked the performance in bone erosion 
prediction using c, Pearson’s correlation and d, root mean square error. In each comparison, 
we performed 10-fold cross-validation experiments. The paired Wilcoxon signed-rank tests 
were used to determine the statistical significance. 

Another crucial question in machine learning study is how close the performance difference 
is between a machine learning model and a human. In practice, human scorers are not 
perfect, especially for the tedious and time-consuming SvH scoring. The clinical upper limit 
of this RA scoring problem can be estimated by calculating the difference between two 
human scorers. We therefore calculated Pearson’s correlation between scores from two 
trained human professionals. The performance of our method is compared with this clinical 
upper limit (Fig. 10). For joint space narrowing, our method achieved comparable 
performance with human scorers. For joint erosion, there is still space to improve machine 
learning methods. Overall, these results indicate that our method is closing the gap between 
computers and humans for the joint damage scoring problem, especially for joint space 
narrowing.   

Discussion 

In this study, we develop a novel machine learning approach for integrating multiple images 
and automatically quantifying joint space narrowing and bone erosion in rheumatoid arthritis. 
We designed a special neural network architecture that simultaneously scores joint damage 
levels and segments the joint space regions. This design not only significantly improves the 
prediction accuracy but also highlights the regions of interest to assist further analysis in 
clinical settings. The idea of introducing segmentation into an image-based regression deep 
learning model should not be limited to the joint damage scoring in RA. In fact, many 
biomedical imaging problems have a similar situation - the quantification or diagnosis closely 
depends on parts of an image. The segmentation of the disease-related regions of interest 
will be crucial to guide a neural network to focus on those regions, improve the performance, 
and facilitate subsequent error analysis or clinical diagnosis. This is especially true when 
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the sample size is relatively small and the segmentation will serve as a “teacher” that helps 
the model training well with a limited number of samples. 

Inspired by the widely observed symmetrical symptoms in patients with RA, the method we 
developed learns multilevel symmetry and dependence across images. This approach is 
novel in that it seamlessly integrates multiple layers of information from different images to 
guide prediction, which can be extended to other medical image fields. Additionally, we 
investigated the relationships among joints and damage types in our machine learning 
model and revealed the disease-specific map; this data-driven RA-specific map is instructive 
to clinical decisions. This study design can be applied to many biomedical imaging problems 
and biological studies, with or without symmetrical patterns. Through analyzing the 
contributions of different, multiple images used in a machine learning model, the hidden 
relationships between different disease manifestations will be revealed from a new 
computational perspective, complementing direct experimental observations and current 
knowledge. 

Although many deep learning models have been developed for image-based joint damage 
detection, there is still room for improvement. Top-performing methods in the DREAM 
Rheumatoid Arthritis Challenge, including ours, consist of multiple steps [41]. Multi-step 
methods require more human designing of multiple modules, whereas end-to-end methods 
have more simplified workflows and are easier to deploy without external priors and 
constraints in clinical settings [42]. Ideally, end-to-end deep learning algorithms should be 
designed to simultaneously output damages scores of joint space narrowing as well as bone 
erosion. Yet the performance of end-to-end approaches without hand-engineered 
components will be largely limited by the much smaller size of images, compared to millions 
of images in ImageNet [43]. Moreover, unlike simple objective detection tasks in computer 
vision, the nature of detecting multiple joints and two types of damages within an image 
largely complicates the problem. In practice, a fully automatic deep learning system for 
biomedical image analysis can significantly benefit many clinical disciplines in terms of 
efficiency and cost-effectiveness [44]. However, complete automation remains a translational 
gap, where human-in-the-loop computing can be beneficial for many biomedical image 
problems [45].  
 
In terms of detecting bone erosion in RA, we observe a gap between our method and the 
clinical upper limit. The major limitation is the relatively low quality of erosion scores. In fact, 
Pearson's correlation between erosion damage scores (~0.78) by two trained human 
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professionals is significantly lower than that of joint narrowing scores (~0.88). This indicates 
that scoring bone erosion damage is in nature more difficult. Therefore, more inconsistency 
is observed between human experts. In our computational pipeline, a key component to 
improve performance is the segmentation of damaged joint regions. In contrast to the 
straightforward segmentation of joint space regions, the determination of bone erosion 
regions may vary between humans. If high-quality segmentation of bone erosion as well as 
more consistent erosion scores are available in future studies, the prediction performance 
will further improve to close the gap between artificial intelligence methods and the clinical 
upper limit. 

Conclusion 

We develop an AI approach for automatic scoring joint space narrowing and bone erosion. 
Through semantic segmentation of the joint space region as well as integration of multilevel 
interconnection across joints and damage types, our method achieved high prediction 
accuracy in quantifying joint space narrowing, approaching the clinical upper limit of this 
problem. 
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