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A B S T R A C T

Self attraction and earth-loading effects are important for accurately modeling global tides. A common
approach of handling this forcing is to expand mass anomalies into spherical harmonics, which are scaled
by load Love numbers to account for elastic earth deformation. We investigate two different approaches
to perform these calculations for ocean models that employ unstructured meshes and distributed memory
parallelization. The first approach leverages a highly efficient spherical harmonics library, but requires all-to-
one and one-to-all communications and interpolation operations between the unstructured and a structured
mesh. This approach is compared to a parallel algorithm that computes the spherical harmonic transformations
directly on the unstructured mesh with an all-reduce communication. Our results show that although the
unstructured mesh calculations are more expensive, the scalability of the unstructured mesh approach allows
for more efficient spherical harmonics transforms for high-resolution meshes and large processor counts. This
methodology enables the efficient inclusion of tidal dynamics large-scale Earth system model simulations.
. Introduction

Movement and exchanges of mass across Earth’s geophysical fluids
ave both short-term and long-term effects on sea levels (Stammer
t al., 2013). Ocean tides and other long period waves, such as storm
urges and tsunamis, represent variations in mass distribution in the
cean on the scale of hours to days. The dynamically relevant effects
f these mass redistributions are typically collected in a term known as
he self attraction and loading (SAL) term (Hendershott, 1972). The SAL
erms account for the Earth’s elastic deformation in response to oceanic
otion (e.g., seafloor depression under a high tide) and the change in

ravitational potential due to the self-gravity of the so-deformed Earth
s well as of the tidal mass field itself. Sea levels also respond to changes
n land-based water storage (Tamisiea et al., 2010) and glacial isostatic
djustment (GIA) (Farrell and Clark, 1976) on seasonal and centurial-
imescales, respectively. At global scales, inclusion of SAL forcing is
ecessary for accurate tidal model results and can change tidal am-
litudes by up to 20% (Gordeev et al., 1977). Ocean bottom pressure

∗ Corresponding author.
E-mail address: sbrus@anl.gov (S.R. Brus).

variations in response to broadband atmospheric forcing also cause
changes in SAL (Vinogradova et al., 2015). One method of calculating
the SAL terms involves scaling the spherical harmonic decomposition
of the mass anomaly, i.e., the surface elevation in the case of barotropic
tides, by load Love numbers (Ray, 1998).

Spherical harmonic transforms (SHTs) are often used as a global
basis for solving partial differential equations. Due to their global
nature, they are most often computed on regular meshes, which are
designed to optimize their calculation via fast transformation meth-
ods (Driscoll and Healy, 1994; Mohlenkamp, 1999; Suda and Takami,
2001; Healy et al., 2003). Therefore, the consideration of SAL effects
in unstructured parallel ocean models presents a unique use-case that
has not been addressed in the literature. Typically, SAL has been
incorporated in tidal models by either a scalar approximation (Stepanov
and Hughes, 2004) or by taking pertinent expansions at individual
spectral lines from other highly-accurate tidal models (Pringle et al.,
2021). The former approach is an approximation that is much less
accurate than more formal ‘‘in-line’’ treatments of SAL (Barton et al.,
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2022; Shihora et al., 2022), while the latter approach neglects the effect
of non-periodic processes. The formal ‘‘in-line’’ treatment of SAL effects
requires computationally expensive spherical harmonic calculations.
Currently, there are no existing packages that use distributed memory
parallelism to perform these calculations efficiently on unstructured
meshes.

Unstructured ocean models such as the Model for Prediction Across
Scales-Ocean (MPAS-Ocean) (Ringler et al., 2013; Petersen et al., 2015)
have been developed to take advantage of localized mesh resolu-
tion (Hoch et al., 2020). The flexibility of variable resolution meshes
is particularly advantageous for tidal modeling because they can selec-
tively resolve coastal tidal dynamics and relevant bathymetric gradients
without requiring global high-resolution (Pringle et al., 2021). For
example, mesh resolution can be specified via an a priori estimate of
the tidal wavelength (Conroy et al., 2012; Roberts et al., 2019):

ℎ = 𝑇
𝑁𝑊𝐿

√

𝑔𝑏, (1)

here 𝑇 = 12.5 h is the period of the M2 tide, 𝑁𝑊𝐿 is the number
f grid cells per wavelength, 𝑏 is the bathymetric depth, and 𝑔 is

the acceleration due to gravity. This means that the mesh resolution
can be made to vary with the relevant tidal wavelength scales. In
shallow coastal regions, tidal wave speeds become slower, leading to
a shortening of the wavelength. In general, higher mesh resolution is
employed in coastal areas to resolve these smaller scales, while coarser
resolution can be used in the deep ocean where wavelengths are larger.

Many packages are available to compute spherical harmonics on
structured (Gaussian) meshes. One example is the SHTns library used
n this work (Schaeffer, 2013). The library can be readily adopted
or ocean models that are based on structured meshes (Schindeleg-
er et al., 2018). However, in order for global unstructured ocean
odels to use these packages, interpolations to and from a Gaus-

ian mesh are required. This step introduces interpolation errors, thus
egrading the accuracy of the SHT calculations and requiring higher-
rder transformations to achieve a given level of accuracy. A possible
emedy is employing algorithms for spherical harmonic estimation
sing non-uniform data, one of which (Kunis and Potts, 2003) has
een implemented in the NFFT3 library (Keiner et al., 2009). While
his has proved useful for analysis of climate data from unstructured
eshes (Cavanaugh et al., 2017), it has not been used in computing

AL for tides. In addition, many spherical harmonics packages (includ-
ng SHTns and NFFT3) lack distributed parallelism, which is widely
mployed in both structured and unstructured ocean models.

This paper demonstrates that for unstructured global ocean models,
alculating SAL directly on the unstructured mesh has advantages in
erms of both accuracy and performance. In particular, computing
he SHT directly on the unstructured mesh avoids mesh interpolation
rrors and improves convergence rates. In addition, direct unstructured
esh SHT computations can make use of the domain decompositions

nd distributed memory parallelism already employed in solving the
cean model governing equations. This capability provides improved
erformance and scalability at large processor counts. The efficiency
f the SAL calculation is an important consideration for the inclusion
f tides in coupled Earth system models (ESMs), such as the Energy
xascale Earth System Model (E3SM) (Golaz et al., 2019). In these
odels, the scalability of the ocean model relative to other component
odels impacts the overall throughput of climate simulations.

The remainder of the paper is organized as follows. First, we give
n overview of SHTs and the scaling factors involved in the SAL
alculation, followed by a description of the serial and parallel versions
e use to compute the SAL term for an unstructured ocean model. Next,
e test the two algorithms on two different idealized cases: one with a
niform mesh and another with a variable resolution mesh. We then
ssess the accuracy and performance improvements for the parallel
pproach. Afterwards, we show validation and performance results
or tidal simulations using a series of uniform resolution (icosahedral)
eshes and a variable resolution mesh. Finally, we provide a discussion
f the results and offer conclusions.

2

2. Methods

In this section we outline the calculation of the SAL term, 𝜁𝑆𝐴𝐿. For
ides, the calculation involves a forward SHT of the sea surface height,
. The resulting spherical harmonic coefficients are then scaled by load
ove numbers and an inverse SHT is performed to get the 𝜁𝑆𝐴𝐿 field.
he SAL term appears in the pressure gradient term of the momentum
alance in the shallow water equations:
𝜕𝜁
𝜕𝑡

+ ∇ ⋅ (𝐻𝐮) = 0, (2)
𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮 + 𝑓𝐤 × 𝐮 = −𝑔∇(𝜁 − 𝜁𝐸𝑄 − 𝜁𝑆𝐴𝐿) + 𝐹 , (3)

where 𝐮 is the depth-averaged velocity vector, 𝐻 is the total water
column height, 𝑓 is the Coriolis parameter, 𝑔 is the gravitational
acceleration, 𝜁 is the sea surface height, 𝜁𝐸𝑄 is the equilibrium tidal
forcing term, and 𝐹 are additional stress terms.

In unstructured ocean models that use distributed memory par-
allelization (i.e. MPI), the global mesh is decomposed into ‘‘subdo-
mains’’ (Karypis and Kumar, 1998). Each subdomain contains a par-
tition of mesh cells that is assigned to a given computational core
and is computed in parallel alongside the other subdomains from the
global mesh. Typically, only point-to-point communication between
cores is necessary to update cells along subdomain interfaces in order
to compute local gradients, for example, in Eq. (3). However, the
global nature of computing SHTs requires a collective communication
among all processors. The following subsections describe how the 𝜁𝑆𝐴𝐿
term can be computed under this parallelization paradigm using two
different strategies. The first, referred to throughout as the ‘‘serial’’
algorithm, uses a fast SHT library but requires interpolations between
the unstructured mesh and a Gaussian mesh. Since the fast SHT library
does not use distributed memory parallelism, global information must
be gathered to and scattered from a single core for the SHT calculation
to take place. The second approach we describe is the ‘‘parallel’’ algo-
rithm, which computes the SHT directly on unstructured meshes using
a collective all-to-all communication.

2.1. Spherical harmonics

In a barotropic model, the mass anomaly due to tidal motion can be
assessed through the sea surface height variable. The sea surface height
can be written as a spherical harmonic expansion:

𝜁 (𝜃, 𝜙) ≈
𝑁
∑

𝑛=0

𝑛
∑

𝑚=−𝑛
𝜁 (𝑛,𝑚)𝑌 (𝑛,𝑚)(𝜃, 𝜙). (4)

Here, 𝜃 is the co-latitude, 𝜙 is the longitude, 𝜁 (𝑛,𝑚) are the expansion
coefficients and 𝑌 (𝑛,𝑚) are the spherical harmonic functions of degree 𝑛
and order 𝑚 defined as

𝑌 (𝑛,𝑚)(𝜃, 𝜙) = 𝑃 (𝑛,𝑚)(cos(𝜃))𝑒𝑖𝑚𝜙. (5)

The 𝑃 (𝑛,𝑚) functions are the associated Legendre polynomials and can
be computed with the recursion relationship:

𝑃 (𝑚,𝑚)(cos(𝜃)) = 𝑎(𝑚,𝑚) sin𝑚(𝜃), (6)

𝑃 (𝑚+1,𝑚)(cos(𝜃)) = 𝑎(𝑚+1,𝑚) cos(𝜃)𝑃 (𝑚,𝑚)(cos(𝜃)), (7)

𝑃 (𝑛,𝑚)(cos(𝜃)) = 𝑎(𝑛,𝑚) cos(𝜃)𝑃 (𝑛−1,𝑚)(cos(𝜃)) + 𝑏(𝑛,𝑚)𝑃 (𝑛−2,𝑚)(cos(𝜃)). (8)

The coefficients in the recursion relationship are defined as

𝑎(𝑚,𝑚) =

√

√

√

√

1
4𝜋

𝑚
∏

𝑘=1

2𝑘 + 1
2𝑘

, (9)

𝑎(𝑛,𝑚) =

√

(2𝑛 − 1)(2𝑛 + 1)
(𝑛 − 𝑚)(𝑛 + 𝑚)

, (10)

𝑏(𝑛,𝑚) =

√

(2𝑛 + 1)(𝑛 + 𝑚 − 1)(𝑛 − 𝑚 − 1)
(𝑛 − 𝑚)(𝑛 + 𝑚)(2𝑛 − 3)

. (11)
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Special treatment to prevent overflow issues near the poles is required
when computing the associated Legendre polynomials for high orders
(𝑁 > 2000) (Holmes and Featherstone, 2002). However, for the pur-
poses of computing SAL, we are only concerned with much lower orders
𝑁 = 𝑂(100). In Section 3.3, we show that the accuracy of our tidal
simulations does not increase for SHT orders beyond 𝑁 = 100.

2.2. Forward transformation

The spherical harmonic coefficients can be computed via the for-
ward transformation

𝜁 (𝑛,𝑚) = ∫

2𝜋

0 ∫

𝜋

0
𝜁 (𝜃, 𝜙)𝑌 (𝑛,𝑚)(𝜃, 𝜙) sin(𝜃)𝑑𝜃𝑑𝜙. (12)

For real-valued functions (such as 𝜁) the property, 𝜁 (𝑛,−𝑚) = 𝜁 (𝑛,𝑚), can
reduce the number of spherical harmonic coefficients that need to be
calculated. On a structured, Gaussian mesh, this is typically computed
as a Fourier transform for the 𝜙 integral

𝜁 (𝑚)(𝜃) = ∫

2𝜋

0
𝜁 (𝜃, 𝜙)𝑒𝑖𝑚𝜙𝑑𝜙, (13)

and a Legendre transform in the 𝜃 direction

𝜁 (𝑛,𝑚) = ∫

𝜋

0
𝜁 (𝑚)(𝜃)𝑃 (𝑛,𝑚)(cos(𝜃)) sin(𝜃)𝑑𝜃. (14)

This approach has several advantages in that a fast Fourier transform
algorithm can be used to compute Eq. (13). The latitude points are
also positioned at Gauss–Legendre nodes to facilitate the computation
of Eq. (14). In addition, due to the symmetric nature of spherical
harmonics about 𝜙 = 𝜋∕2, the operation count in computing (14)
can be halved. However, in the context of unstructured meshes these
simplifications are no longer explicitly possible and a different strategy
for computing Eq. (12) must be used.

2.3. SAL scaling

Once the spherical harmonic coefficients, 𝜁 (𝑛,𝑚), are calculated, they
are multiplied with a scaling factor composed of the load Love num-
bers (Munk and MacDonald, 1960), 𝑘′𝑛 and ℎ′𝑛:

𝜁 (𝑛,𝑚)𝑆𝐴𝐿 =
3𝜌𝑤(1 + 𝑘′𝑛 − ℎ′𝑛)

𝜌𝑒(2𝑛 + 1)
𝜁 (𝑛,𝑚). (15)

n this expression 𝜌𝑤 is the average density of seawater and 𝜌𝑒 is the
average density of Earth. The factor (1+𝑘′𝑛−ℎ′𝑛) combines the three SAL
processes: the self-gravitational attraction of the water mass toward the
load (1), the solid Earth deformation under tidal loading (ℎ′𝑛), and the
change in potential due to the load deformation (𝑘′𝑛).

2.4. Inverse transformation

The final SAL field is computed from the scaled 𝜁 (𝑛,𝑚)𝑆𝐴𝐿 coefficients by
the inverse spherical harmonic transformation:

𝜁𝑆𝐴𝐿(𝜃, 𝜙) =
𝑁
∑

𝑛=0

𝑛
∑

𝑚=−𝑛
𝜁 (𝑛,𝑚)𝑆𝐴𝐿𝑌

(𝑛,𝑚)(𝜃, 𝜙), (16)

=
𝑁
∑

𝑛=0

𝑛
∑

𝑚=1

(

𝜁 (𝑛,𝑚)𝑆𝐴𝐿𝑌
(𝑛,𝑚)(𝜃, 𝜙) + 𝜁 (𝑛,𝑚)𝑆𝐴𝐿𝑌

(𝑛,𝑚)(𝜃, 𝜙)
)

+
𝑁
∑

𝑛=0
𝜁 (𝑛,0)𝑆𝐴𝐿𝑌

(𝑛,0)(𝜃, 𝜙), (17)

=
𝑁
∑

𝑛=0

𝑛
∑

𝑚=0
𝜇
(

ℜ
(

𝜁 (𝑛,𝑚)𝑆𝐴𝐿

)

ℜ
(

𝑌 (𝑛,𝑚)(𝜃, 𝜙)
)

−ℑ
(

𝜁 (𝑛,𝑚)𝑆𝐴𝐿

)

ℑ
(

𝑌 (𝑛,𝑚)(𝜃, 𝜙)
)

)

, (18)

=
𝑁
∑

𝑛
∑

𝜇
(

ℜ
(

𝜁 (𝑛,𝑚)𝑆𝐴𝐿

)

cos(𝑚𝜙)

𝑛=0 𝑚=0

𝑃

3

−ℑ
(

𝜁 (𝑛,𝑚)𝑆𝐴𝐿

)

sin(𝑚𝜙)
)

𝑃 (𝑛,𝑚)(cos(𝜃)), (19)

where 𝜇 = 2 if 𝑚 > 0, 𝜇 = 1 if 𝑚 = 0.

2.5. Serial unstructured mesh calculations

One option for performing spherical harmonic calculations on un-
structured meshes is to perform an interpolation of the 𝜁 field onto
a Gaussian mesh, perform the SHT and SAL scaling on the Gaus-
sian mesh, and then interpolate the 𝜁𝑆𝐴𝐿 field back to the unstruc-
tured mesh. This allows for the use of highly optimized SHT libraries
which employ fast Fourier transforms on the Gaussian mesh. However,
many of these libraries do not support the distributed parallelism
commonly used in ocean models. For this study, we have implemented
the interpolation-based SHT using the following sequence:

1. The 𝜁 values from each subdomain are gathered onto a single
core

2. The 𝜁 field is interpolated from the unstructured mesh onto a
Gaussian mesh

3. The forward SHT is performed with a library call to SHTns
4. The SAL scaling is performed
5. An inverse SHT is done with a library call to SHTns
6. The resulting 𝜁𝑆𝐴𝐿 field is interpolated from the Gaussian mesh

back to the unstructured mesh
7. The 𝜁𝑆𝐴𝐿 values are scattered back to the subdomains

The computations in steps 2–6 are done on a single processor. The
bi-linear interpolation weights between the unstructured and Gaussian
meshes are pre-computed using the Spherical Coordinate Remapping
and Interpolation Package (SCRIP) (Jones, 1999). As will be shown
in the results section, this approach is efficient for low core counts,
but does not scale at the high processor counts needed for high-fidelity
simulations.

2.6. Parallel unstructured mesh calculations

To perform the SHT calculations directly on an unstructured mesh,
optimizations that rely on separating integrals in the 𝜃 and 𝜙 di-

ensions, equatorial symmetry, and grid nodes that correspond with
uadrature points are not applicable. Therefore, the full integration
rom Eq. (12) is required over the domain. We approximate the forward
ransformation integrals by taking the values of 𝜁 and 𝑌 to be constant
ver each mesh cell and summing together the integrals over each cell
s follows:

(𝑛,𝑚) =
𝐾
∑

𝑘=1
∫𝛺𝑘

𝜁𝑘𝑌
(𝑛,𝑚)
𝑘 𝑑𝛺𝑘, (20)

=
𝐾
∑

𝑘=1
𝜁𝑘𝑌

(𝑛,𝑚)
𝑘 𝐴𝑘. (21)

Here, 𝐾 is the total number of mesh cells and 𝛺𝑘 and 𝐴𝑘 represent
he domain and area of cell 𝑘, respectively. Since each computational
ore is assigned a subdomain of mesh cells, the integration can be
eparated into a local sum of integrals over the subdomain cells and
global sum of the subdomain integral contributions:

(𝑛,𝑚) =
𝐷
∑

𝑑=1

(𝐾𝑑
∑

𝑘=1
𝜁𝑘𝑌

(𝑛,𝑚)
𝑘 𝐴𝑘

)

. (22)

The term in parentheses represents the local sum over the 𝐾𝑑
ells in subdomain 𝑑 and the outer sum represents the global sum
f the 𝐷 subdomain contributions. This global sum is implemented
s a MPI_AllReduce operation. Following the MPI_AllReduce, all cores
ave the resulting global sum values for the 𝜁 (𝑛,𝑚) coefficients. Each
ore can then compute the SAL scaling in Eq. (15) and perform the
nverse transformation in Eq. (17). Following Schaeffer (2013), the
(𝑛,𝑚)
 function values are not pre-computed and stored to prevent
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memory bandwidth performance issues. Instead, they are computed
on-the-fly using the recurrence relationship in Eqs. (6)–(8), taking
advantage of the vectorization capabilities of modern CPUs. We also
employ cache blocking among the forward and inverse computations
in order to maintain good temporal cache locality.

2.7. Error assessment

There are four different types of error involved in the SHT calcula-
tions:

1. Truncation error
2. Integration error
3. Aliasing error
4. Interpolation error

For the parallel algorithm, only the truncation, integration, and
aliasing errors are relevant, since no interpolation is necessary. Trun-
cation error refers to the error in approximating

𝜁 (𝜃, 𝜙) =
∞
∑

𝑛=0

𝑛
∑

𝑚=−𝑛
𝜁 (𝑛,𝑚)𝑌 (𝑛,𝑚)(𝜃, 𝜙), (23)

≈
𝑁
∑

𝑛=0

𝑛
∑

𝑚=−𝑛
𝜁 (𝑛,𝑚)𝑌 (𝑛,𝑚)(𝜃, 𝜙). (24)

This expansion is known to have spectral convergence 𝑂(𝑁−2𝑞) for
functions in 𝐿2(𝐻𝑞(S2)), where 𝑞 is a non-negative integer and 𝐻𝑞(S2))
is the Sobolev space on the sphere (Frank et al., 2016). Integration
error is introduced in calculating the 𝜁 (𝑛,𝑚) coefficients by the piece-
wise constant assumption used in Eq. (21). Because the integration is
approximated by a mid-point rule, for a grid spacing of ℎ, the error is of
𝑂(ℎ2). For low orders of 𝑁 , while the truncation error dominates the
integration error, spectral convergence is achieved. Beyond a certain
𝑁 order, the integration error will dominate and the convergence
will be reduced to 𝑂(ℎ2). Finally, as the 𝑁 order increases beyond a
certain point for a given grid resolution, aliasing errors occur as higher-
frequency spherical harmonic modes are no longer well-resolved at a
given grid resolution. This causes the approximation to diverge at high
𝑁 .

For the serial algorithm, an 𝑂(ℎ2) error is introduced due to the
(bi)linear interpolation between the unstructured and Gaussian grids
prior to the SHT. Therefore, these errors will dominate the truncation
error and spectral convergence will not be achieved. In the case of the
serial algorithm, the 𝑁 order is set based on the resolution of the Gaus-
sian grid, meaning that aliasing errors do not cause the approximation
to diverge.

3. Results

In this section, the performance of the serial and parallel STH
algorithms are compared using analytical functions on uniform and
variable resolution meshes. In Sections 3.1 and 3.2, 𝜁 is specified by an
analytical function and errors are computed with respect to a truncated
spherical harmonic series approximation to 𝜁 . The error measure used
is the root mean squared (RMS) error defined as:

𝐸𝑅𝑀𝑆 =

√

√

√

√

∫𝛺(
∑𝑁

𝑛=0
∑𝑛

𝑚=−𝑛 𝜁 (𝑛,𝑚)𝑌 (𝑛,𝑚) − 𝜁 )2𝑑𝛺
∫ 𝑑𝛺

. (25)

erformance results are also shown for a global tidal simulation in
ection 3.3. Following Pringle et al. (2021), the area-weighted RMS
rror for a tidal constituent, RMSE𝑡, is computed using the TPXO9-
tlas v5 database (Egbert and Erofeeva, 2002) as the ‘‘ground-truth’’
olution:

𝐷2 = 1
2
(𝐴2

𝑇𝑃𝑋𝑂 − 𝐴2
𝑀𝑃𝐴𝑆 ) − 𝐴𝑇𝑃𝑋𝑂𝐴𝑀𝑃𝐴𝑆 cos(𝜑𝑇𝑃𝑋𝑂 − 𝜑𝑀𝑃𝐴𝑆 ),
(26) r

4

Table 1
Uniform mesh size comparison.
Mesh Number of cells

QU60 165,093
QU30 658,642
QU15 2,629,794

RMSE𝑡 =

√

∫𝛺 𝐷2𝑑𝛺

∫𝛺 𝑑𝛺
. (27)

Here, 𝐴 is the amplitude and 𝜑 is the Greenwich phase lag for a given
tidal constituent.

All simulations were performed on a 460 node machine hosted at
Pacific Northwest National Laboratory. Each node contains dual 20 core
Intel Xeon Gold 6148 (Skylake) CPUs with 192 GB DRAM. The nodes
are connected with the Intel OmniPath interconnect. The code was
complied to use the AVX-512 instruction set. Wall clock times for all
analytical function cases use the average of 100 forward/inverse trans-
formations and are taken as the minimum of three separate runs. For
the serial algorithm, the number of latitude nodes in the Gaussian mesh
is related to the SH order by 𝑁 = 𝑁𝜃∕2 − 1 to avoid computing higher
order spherical harmonics, which would be aliased at the Gaussian grid
resolution. All meshes used in this study are produced with the JIGSAW
mesh generation package (Engwirda, 2017).

3.1. Uniform resolution test case

The parallel and serial SHT implementations are compared by com-
puting the errors between an order 𝑁 SHT approximation and the
analytical function

𝜁 (𝜃, 𝜙) = 𝑒−
1
2

(

𝑑(𝜃,𝜙)
𝜎

)2

. (28)

In this equation, 𝜎 = 800 km and 𝑑 is the minimum Haversine distance
o the curve

𝑠(𝑡) = 𝑅𝐸 cos(𝑡) cos(𝑐), (29)

𝑦𝑠(𝑡) = 𝑅𝐸 sin(𝑡) cos(𝑐), (30)

𝑧𝑠(𝑡) = −𝑅𝐸 sin(𝑐), (31)

ith 𝑐 = tan−1(𝑎𝑡), where 𝑎 = 0.15 and −𝐿 ≥ 𝑡 ≥ 𝐿 with 𝐿 = 5𝜋. The
arth’s radius, 𝑅𝐸 = 6371.22 km. The distance, 𝑑, is given by

(𝜃, 𝜙) = min
∀𝑡∈[−𝐿,𝐿]

2𝑅𝐸 sin−1

×
⎛

⎜

⎜

⎝

√

sin2
(

𝜃 − 𝜃𝑠(𝑡)
2

)

+ cos(𝜃) cos
(

𝜃𝑠(𝑡)
)

sin2
(

𝜙 − 𝜙𝑠(𝑡)
2

)

⎞

⎟

⎟

⎠

, (32)

where

𝜃𝑠(𝑡) = sin−1
(

𝑧𝑠(𝑡)
√

𝑥𝑠(𝑡)2 + 𝑦𝑠(𝑡)2 + 𝑧𝑠(𝑡)

)

, (33)

𝑠(𝑡) = tan−1
(

𝑦𝑠(𝑡)
𝑥𝑠(𝑡)

)

. (34)

his fuction is shown in Fig. 1. Three different quasi-uniform mesh
esolutions are used: 60 km, 30 km, and 15 km. These are referred to
s QU60, QU30, and QU15, respectively. The number of cells in each
esh is shown in Table 1.

The error convergence for the two algorithms is depicted in Fig. 2.
hese results show that for the parallel algorithm, the convergence
urve experiences a region of spectral convergence up to ∼ 𝑁 = 40. In
his region, the truncation error of the SHT dominates the integration
rror. For 𝑁 > 40, the 𝑂(ℎ2) integration error dominates the SHT
runcation error and the convergence curve becomes second order. As
he SHT order increases, aliasing errors begin to limit the convergence
f the SHT. These aliasing errors occur at higher 𝑁 as the mesh
esolution increases, as expected.
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Fig. 1. Test function for uniform resolution case.

For the serial algorithm, the 𝑂(ℎ2) error due to the interpolation
from the unstructured to the Gaussian grid prevents the SHT error from
achieving a region of spectral convergence. The convergence curves
for all three mesh resolutions remain second order, resulting in a
discrepancy between the 𝑁 order required to achieve a given 𝐸𝑅𝑀𝑆
level. This discrepancy widens as 𝐸𝑅𝑀𝑆 decreases. The errors for the
serial algorithm achieve the same error level as the parallel case at a
higher 𝑁 order due to the error introduced by interpolation onto the
structured mesh. Since 𝑁 is related to the structured grid resolution by
𝑁 = 𝑁𝜃∕2 − 1, the interpolation error decreases at a second-order rate
as 𝑁 increases. Although the serial errors do not diverge rapidly, as
in the parallel case, they asymptotically approach a similar minimum
error level for a given mesh resolution.

The effect of cache blocking in the parallel algorithm is shown
in Fig. 3. As the calculation of the forward and inverse SHTs are
done for smaller blocks of cells, greater temporal locality of memory
access is achieved. This is particularly important for large meshes
with low processor counts, since optimal cache blocking can lead to
a 4× performance increase on the Skylake architecture. Cache blocking
becomes less important when high core counts are used, since this
naturally translates into smaller subdomains. However, it is critical for
the block size to be under 2000 cells. A block size of 300–600 cells per
block was found to achieve the best results.

The parallel performance for the QU60, QU30, and QU15 meshes is
shown in Figs. 4, 5, and 6, respectively. These plots compare the par-
allel scalability and speedup for both the serial and parallel algorithms
at several RMS error levels. These error levels are: 5 × 10−1, 1 × 10−2,
5 × 10−2, 1 × 10−3, 1 × 10−4, and 2.5 × 10−5 for the QU15 mesh. These
rror levels are indicated by the dotted horizontal lines in plot (a) of
igs. 4–6 and each is represented by a different marker shape across
lots (a)–(c). The coarser QU60 and QU30 meshes are compared at
hese same levels, up to the lowest error achieved at that resolution.
s discussed above, the spherical harmonic order required to achieve a
iven error level is lower for the parallel algorithm than for the serial
lgorithm due to improved convergence. The scaling for the parallel
lgorithm is near ideal except for the coarsest mesh (QU60) beyond

160 cores. This corresponds to around 80 cells per core, when the

5

Table 2
Uniform mesh maximum speedup.
Error level QU60 QU30 QU15

5 × 10−2 10.49 26.10 62.83
1 × 10−2 6.03 11.16 33.18
5 × 10−3 5.02 8.60 28.11
1 × 10−3 6.96 12.62 33.29
1 × 10−4 – 23.57 21.97
2.5 × 10−5 – – 25.59

communication overhead begins to dominate the SHT computations.
As expected, the serial algorithm does not scale with increasing core
count. The gather and scatter communication overhead increases very
little as the core count increases.

The speedup ratio between the parallel algorithm and serial algo-
rithm is shown in Table 2. In general, the speedup decreases as the error
level decreases. Since the expense of the gather/scatter operations for
the serial algorithm is constant with regard to error level, at higher er-
ror levels the communication overhead takes a larger proportion of the
overall compute time. As the error level decreases, the gather/scatter
communication becomes increasingly negligible. This means that the
parallel algorithm has an extra advantage for higher error levels, which
translates to the largest speedups at the highest 5 × 10−1 error level for
each mesh. The speedups tend to decrease for the next two error levels
and then begin to increase again at the lowest errors, as the discrepancy
between the 𝑁 orders becomes larger. Speedups also generally increase
as the mesh resolution increases for a given error level. For the QU60
mesh, the speedups range between 5 to 10.5 and increase to between
11 to 26 for QU30 and 22 to 63 for QU15. The break-even points for
a speedup of 1 are usually around 200 cores across all the QU meshes
used. Typically, realistic ocean simulations would be run with 𝑂(1000)
cores.

3.2. Variable resolution test case

We now evaluate the two methods on variable resolution meshes,
using an oscillatory function with a period that varies with the mesh
resolution. The mesh resolution varies with latitude and is refined in
a band around the equatorial region with low resolution covering the
rest of the sphere. The function used for the for this test case is

𝜁 (𝜃, 𝜙) = 𝜔2
(

𝜔2(𝛩𝐸𝑄 +𝛷𝐸𝑄) + 𝜔1(𝛩𝐿𝑅 +𝛷𝐿𝑅)
)

+ 𝜔1𝛩𝐿𝑅, (35)

here

𝛩𝐸𝑄 = sin
(

2𝜋𝑅𝐸𝑁𝑊𝐿
ℎ𝐸𝑄

𝜃
)

, (36)

𝛩𝐿𝑅 = sin
(

2𝜋𝑅𝐸𝑁𝑊𝐿
ℎ𝐿𝑅

𝜃
)

, (37)

𝐸𝑄 = sin
(

2𝜋𝑅𝐸𝑁𝑊𝐿
ℎ𝐸𝑄

𝜙
)

, (38)

𝛷𝐿𝑅 = sin
(

2𝜋𝑅𝐸𝑁𝑊𝐿
ℎ𝐿𝑅

𝜙
)

. (39)

The value of 𝑁𝑊𝐿 controls the approximate number of grid cells per
period. For this test case 𝑁𝑊𝐿 was taken to be 30. The weight functions,
which blend the high and low resolution regions, are

𝜔1 =
1
2

⎛

⎜

⎜

⎝

tanh
⎛

⎜

⎜

⎝

|𝜃| − 𝑡𝑠 −
1
2 𝑡𝑤

1
5 𝑡𝑤

⎞

⎟

⎟

⎠

+ 1
⎞

⎟

⎟

⎠

, (40)

𝜔2 = 1 − 𝜔1. (41)

The transition start, 𝑡𝑠 = 𝜋∕180, and the transition width, 𝑡𝑤 = 𝜋∕9. The
mesh resolution is specified as

ℎ(𝜃) = ℎ𝐸𝑄𝜔2 + ℎ𝐿𝑅𝜔1. (42)

The mesh spacing in the low resolution region is ℎ𝐿𝑅 =120 km. Three

different values are used for the high resolution equatorial region,
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ℎ

Fig. 2. Convergence for serial and parallel SHT algorithms on quasi-uniform resolution mesh.
Fig. 3. Effect of cache blocking for parallel SHT algorithm.

𝐸𝑄 = 60, 30, 15 km. The high resolution region corresponds to ∼ 20%
of the globe, which roughly corresponds to the area of the ocean with
depths less than 2.5 km. This would represent the approximate area of
a tide mesh that would be refined to resolve tides on the continental
shelves. The number of cells in each of these meshes is shown in
Table 3. The function and mesh resoluiton for the ER120-15 mesh are
shown in Fig. 7.

The convergence for the serial and parallel algorithms across a range
of truncation orders for the three meshes is shown in Fig. 8. The parallel
algorithm experiences very steep convergence as it begins to resolve
the fine scale features in the high resolution region. As the resolution
of the refined region increases, the slope of the convergence curve
steepens. The convergence of the serial algorithm is much slower due
to the interpolation to the Gaussian mesh. The steep convergence of the
parallel algorithm translates into large efficiency gains for higher levels
of accuracy. Due to the structured nature of the Gaussian mesh, the
mesh resolution required to resolve the high frequency wavelengths in
the equatorial region must be used globally. This leads to a much larger
mesh, which increases the number of calculations required to compute
the SHTs compared to the variable resolution mesh.

The scalability and speedup of the parallel algorithm are shown in
Figs. 9–11 for the ER120-60, ER120-30, and ER120-15 meshes. The
serial and parallel algorithms are compared for four different levels of
6

Table 3
Variable resolution mesh size comparison on
ER120-15 mesh.
Mesh Number of cells

ER120–60 60,755
ER120–30 117,935
ER120–15 286,193

Table 4
Variable resolution mesh maximum speedup.
Error level ER120–60 ER120–30 ER120-15

1 × 10−1 2.94 1.73 1.13
5 × 10−2 2.57 1.79 1.10
1 × 10−2 2.04 2.31 5.56
5 × 10−3 3.94 9.21 29.24

accuracy: 1 × 10−1, 5 × 10−2, 1 × 10−2, and 5 × 10−3. As in the previous
section, these error levels are denoted by the dotted lines in the (a)
panel of Figs. 9–11 and each is represented by a different marker shape
across plots (a)–(c). Due to the smaller overall size of these meshes,
the parallel algorithm does not scale as well for the ER120-60 and
ER120-30 meshes as it does for the larger QU30 and QU15 meshes. The
scalability limits for these meshes are consistent with the approximate
80 cells per core limit found for the QU60 meshes.

The speedup ratios for the parallel algorithm for each error level
are listed in Table 4. Compared to the QU meshes, the parallel speedup
increases more drastically as the error tolerance decreases because of
the steeper convergence rates experienced for the ER meshes. As for
the QU meshes, the maximum speedups increase as the overall size
for the mesh increases. The speedups for the ER120-60 meshes range
between 2–4 and between 1.7 and 9 for the ER120-30. The ER120-
15 mesh experiences speedups between 1.1 and 29. These maximum
speedups are comparable with those of the QU meshes, despite the ER
meshes having far fewer cells. For the 5×10−3 and 1×10−3 error levels,
the break-even points for the speedup ratio are around 200 cores, as
for the QU meshes.

3.3. Ocean tides

These approaches for computing SHTs have also been assessed
in realistic simulations of tidal dynamics, where they are used for
the calculation of SAL. Four different meshes have been used: three
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Fig. 4. Performance comparison between parallel and serial algorithms for QU60 mesh. The colored markers indicate the level of accuracy, while the black and grey solid lines
represent the parallel and serial algorithms, respectively. (a) Error convergence for the 𝑁 orders used to assess performance. Orders for the parallel and serial cases are taken at
a consistent error level (represented by the dotted lines). (b) Strong scaling results for each error level. Ideal scaling is indicated by the dash–dot line. (c) Speedup ratio of wall
clock times

(

serial
parallel

)

for each error level. A speedup of one is indicated by the dashed line.

Fig. 5. Same as Fig. 4 for the QU30 mesh.

Fig. 6. Same as Fig. 4 for the QU15 mesh.

7
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Fig. 7. Test function for the ER120-15 variable resolution case. Note that this function is symmetric about the equator.
Fig. 8. Convergence for serial and parallel SHT algorithms on variable resolution mesh.
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ifferent refinements of icosahedral meshes and a variable resolution
esh, which provides increased resolution in shallow coastal regions

nd over steep bathymetric gradients. A comparison of these meshes
an be found in Table 5.

Each simulation lasted 125 days with the first 15 days used as
spinup period for the tidal forcing. Equilibrium tidal forcing was

pecified for the 5 major constituents: M2, S2, N2, K1, and O1. Harmonic
nalysis was performed for these 5 constituents over a 90 day period
eginning 30 days after the start of the simulation, resulting in modeled
mplitudes, 𝐴, and phase lags, 𝜑, for each constituent. The model
onfigurations, including topographic wave drag and bottom friction
chemes, are the same as those used in Barton et al. (2022).

In order to compare the accuracy of the parallel and serial SAL
chemes at each mesh resolution, several different SHT orders for the
arallel (𝑁 = 20, 40, 80, 100) and serial (𝑁 = 19, 39, 79, 159, 319) SHT
lgorithms were used. The SAL terms were also calculated at different
ntervals, i.e. every 30, 10, and 1 min, with the resulting SAL field held
ixed for timesteps between the SAL interval. These tests demonstrate
ow the frequency of computing the SAL terms affects the accuracy of
8

he tidal simulation. Statistics for all tidal simulations are summarized
n Table 6. This table shows the deep water area-weighted RMSE𝑡
rom Eq. (27) for the M2 constituent calculated between latitudes of
6◦N and 66◦S and for waters deeper than 1000 m (Arbic et al., 2004).
he spherical harmonic orders, which resulted in an equivalent M2
MSE𝑡 value, are placed on the same row of Table 6 for comparison.

All cases using serial and parallel SAL resulted in smaller errors than
he scalar approximation. In general, the simulated M2 error decreases
ith increasing spherical harmonic order. As shown in Table 6, ac-

uracy does saturate at moderate values for these quantities even as
esh resolution increases. This is the result of the (2𝑛 + 1)−1 factor on

he SH coefficients, which means that any high-frequency variability
esolved on finer meshes contributes less to the overall SAL effect.
cross all meshes, 𝑁 = 79 (160 Gaussian mesh latitudes) for serial SAL
nd 𝑁 = 40 for parallel SAL performed equivalently and, in the worst
ase, resulted in errors within 0.1 cm of what was achieved at higher
umbers of latitudes and spherical harmonic orders.

Increasing the frequency interval of the SAL calculation also mod-
stly improves accuracy with 10 min being a reasonable choice, in
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Fig. 9. Same as Fig. 4 for the ER120-60 mesh.

Fig. 10. Same as Fig. 4 for the ER120-30 mesh.

Fig. 11. Same as Fig. 4 for the ER120-15 mesh.

9
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Table 5
Meshes used in tidal simulations.
Mesh Resolution (km) Number of cells Timestep (s)

icos7 60 115,484 60
icos8 30 462,914 60
icos9 15 1,852,158 30
vr45to5 45 (open ocean) to 5 (coastal) 2,359,578 10
Table 6
𝑀2 constituent accuracy: Deep water M2 RMSE𝑡 (cm).
Mesh Order Serial SAL Order Parallel SAL Scalar SAL

30 min 10 min 1 min 30 min 10 min 1 min

icos7

– – – – – – – – 13.0
19 12.3 11.9 11.8 – – – –
39 12.1 11.7 11.6 – – – –
79 12.0 11.6 11.5 20 12.1 11.6 11.5
159 12.0 11.6 11.5 40 11.9 11.5 11.3
319 12.0 11.6 11.4 80 11.9 11.4 11.3

icos8

– – – – – – – – 11.3
19 9.4 9.1 9.1 – – – –
39 9.0 8.7 8.7 20 9.0 8.6 8.6
79 8.9 8.5 8.5 40 8.8 8.4 8.4
159 8.8 8.5 8.4 80 8.8 8.4 8.3
319 8.8 8.5 8.4 – – – –

icos9

– – – – – – – – 10.5
19 7.1 7.0 7.3 – – – –
39 6.7 6.6 6.8 20 6.7 6.6 6.8
79 6.5 6.4 6.6 40 6.5 6.3 6.5
159 6.5 6.4 6.6 80 6.4 6.3 6.5
319 6.5 6.4 6.6 100 6.4 6.3 6.5

vr45to5

– – – – – – – – 8.9
19 6.7 6.8 7.1 – – – –
39 6.2 6.3 6.6 20 6.4 6.4 6.7
79 6.2 6.2 6.5 40 6.2 6.2 6.5
159 6.1 6.2 6.5 80 6.1 6.1 6.5
319 6.1 6.2 6.5 – – – –
general. For the icos9 mesh, decreasing the SAL interval to 1 min
resulted in a slight increase in error. This was also true for the vr45to5
mesh as the errors increased for the 10 min and 1 min intervals over
the 30 min interval.

Fig. 12 shows the scaling of the tidal simulations with serial, par-
allel, and scalar SAL. In all cases, the serial SAL was computed using
a Gaussian grid with 160 latitudes (𝑁 = 79) and the parallel SAL used
𝑁 = 40, since these result in equivalent M2 RMSE𝑡 in Table 6. SAL
calculation intervals of 10 min and 1 min were used for the parallel and
serial SAL simulations to demonstrate the performance implications of
computing SAL more frequently. The scalar SAL approach is used as the
performance baseline, since it does not require the SHT calculations.
The parallel SAL performance at 10 min is very close to that of using
serial SAL. It outperforms and scales better than the serial approach,
especially as the SAL interval is decreased to 1 min.

The slowdown incurred by calculating SAL via the serial and parallel
methods vs. scalar SAL is shown in Fig. 13. This demonstrates that
both the 10 min serial and parallel SAL computations add very little
extra expense over the baseline scalar SAL run. However, the scalability
of the parallel SAL allows it to maintain this very slight slowdown
at higher processor counts. At the 1 min SAL interval, the parallel
SAL becomes much more efficient than the serial SAL. The slowdown
factor of the parallel approach reduces as the mesh size increases.
Note that the serial slowdown factor for the vr45to5 mesh with a
1 min SAL interval is less than for the icos9 mesh. This difference
is because computing SAL at a 1 min interval for the vr45to5 mesh
adds less overhead due to the smaller timestep for that mesh, i.e., SAL
is computed every 6 timesteps for vr45to5 as opposed to every other
timestep for icos9. Overall, the serial SAL is between 2.25 and 4 times
slower than the scalar SAL at high processor counts.
10
4. Discussion

A more accurate integration technique could be employed for the
parallel algorithm, as opposed to the mid-point rule used in (21). For
example, the integrals could be computed using a linear approxima-
tion over the triangular region defined by connecting the cell centers
across each polygon edge (i.e. the dual mesh). This would decrease
the integration error at the expense of memory locality and efficient
vectorization.

There is a limit to how much finer the high resolution regions
can be in idealized settings. As higher spherical harmonic orders are
required to resolve smaller wavelengths in the high resolution regions,
these spherical harmonic functions will incur aliasing errors in coarse
regions of the mesh. It is likely that a specialized, mesh resolution-
dependent set of basis functions would be required to address this
shortcoming. However, for the purpose of SAL calculations, the high-
frequency modes are less important because of the (2𝑛 + 1)−1 scaling
factor for the spherical harmonic coefficients. Hence, in practice, as
long as the most relevant low-frequency SH functions are resolved in
both high and low resolution regions, aliasing errors due to differences
in local mesh resolution should not effect the resulting SAL field. The
wavelength of a SH mode of order 𝑛, 𝜆(𝑛), is given by the Jeans relation:

𝜆(𝑛) =
2𝜋𝑅𝐸

√

𝑛(𝑛 + 1)
. (43)

Our results show that for the parallel SAL, SH orders of 𝑁 =
40 give good results for realistic tidal applications and that accuracy
improvements beyond 𝑁 = 80 are negligible. This corresponds to
minimum SH wavelengths of 990 km for 𝑁 = 40 and 488 km for
𝑁 = 80. Both these wavelengths would be well-resolved globally at
mesh resolutions required for accurate tides.
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Fig. 12. Scaling curves for tidal simulations.

Fig. 13. Slowdown factor over scalar SAL for tidal simulations (lower is better).

11



S.R. Brus, K.N. Barton, N. Pal et al. Ocean Modelling 182 (2023) 102160

o
c
s
c
h
p
(
p
w
b
l
f

w
m
o
b
l
t
f
o
c
t
g
t

d
i
a
t
d
B
B
p
s

-
o
b
t
a
w
m
p
b
p

5

b
o
o
i
o
s
s
c
u
a
p
b
o
o
c
S
s
(

v
C
v
A
P
o
M
&
W

Currently the MPAS-Ocean tidal errors are dominated by processes
ther than SAL, as evidenced by the leveling off of errors with in-
reasing SAL order and frequency in Table 6. However, as these other
ources of error decrease due to model improvements, the ability to
ompute SAL more accurately, both in terms of increasing spherical
armonic order and SAL computation interval, may become more im-
ortant. For other more accurate models that use unstructured meshes
e.g. ADCIRC Pringle et al., 2021), the parallel approach developed here
rovides an economical way to compute self-consistent SAL forcing,
ithout relying on SAL data from other models. This is advantageous
ecause it allows for non-periodic effects from atmospheric pressure
oading and storm surge processes to be accounted for in the SAL
orcing.

The SHTns library used in the serial approach could be replaced
ith a fast Gaussian grid SHT implementation that uses distributed
emory parallelization (e.g. Foster and Worley, 1997). However, use

f this approach would require a non-trivial communication mapping
etween the unstructured mesh and the Gaussian mesh. Better paral-
elization of the Gaussian grid SHT computations would still come with
he interpolation errors that are incurred by the transfer of information
rom the unstructured mesh to the Gaussian grid. This would limit the
pportunities for fast spectral convergence observed in the benchmark
ases presented here. It would also require additional communication
o perform the interpolation in parallel. As a result, a parallel Gaussian
rid SHT may not entirely close the performance gap between these
wo approaches.

In many Earth system modeling contexts, bit-for-bit (BFB) repro-
ucibility is an important consideration. For the parallel algorithm
mplemented in this paper, machine precision roundoff errors occur
t different processor counts. This is due to the local computation of
he forward transformation integrals paired with the use of a stan-
ard MPI-AllReduce implementation. This strategy does not guarantee
FB reproducible results when using different numbers of MPI ranks.
FB reproducible summations can be implemented by using quadruple
recision (He and Ding, 2001), however, the additional overhead is
ignificant in our experience.

Although this paper has considered only barotropic tides, the method
logy presented here is also applicable to calculating SAL effects for
aroclinic models under a variety of forcings. In a baroclinic setting,
he mass loading which causes SAL is due to the bottom pressure
nomaly, which may contain contributions from density variations,
ind stress forcing, atmospheric pressure loading, as well as tidal
otion (Vinogradova et al., 2015; Shihora et al., 2022). Thus, the
arallel algorithm can be used to calculate SAL in a baroclinic model
y performing the SHT and load Love numbers scaling on the bottom
ressure field.

. Conclusion

This paper has demonstrated an approach to computing SAL forcing
ased on SH transforms that is suitable for use in parallel unstructured
cean models. It avoids the interpolation error and communication cost
f using fast SHT algorithms for Gaussian grids at the expense of an
ncrease in operation count. However, this increase in operations can be
vercome by the improved truncation error convergence properties and
calability of the new algorithm. For both idealized and realistic tidal
imulations, these advantages make it many times faster than using fast
omputations on Gaussian grids. This paper has demonstrated speedups
p to 30–60× over the serial Gaussian grid approach for idealized cases
nd up to 4× for tidal simulations at core counts typically used for
arallel ocean simulation. Therefore, this parallel SHT algorithm can
e used to improve the accuracy of computing in-line SAL forcing with
nly moderate performance sacrifice. The performance improvements
f the parallel scheme are critical for the efficient inclusion of tidal pro-
esses within large-scale climate simulations. In addition, this parallel
TH algorithm can be utilized in other ESM applications, which require
calable SHT computations, such as the glacial isostatic adjustment
GIA) process that is caused by ice sheet evolution.
12
CRediT authorship contribution statement

Steven R. Brus: Conceptualization, Methodology, Software, In-
estigation, Validation, Writing – original draft. Kristin N. Barton:
onceptualization, Methodology, Software, Validation, Writing – re-
iew & editing. Nairita Pal: Validation, Writing – review & editing.
ndrew F. Roberts: Conceptualization, Writing – review & editing,
roject administration. Darren Engwirda: Conceptualization, Method-
logy, Validation, Writing – review & editing, Project administration.
ark R. Petersen: Conceptualization, Methodology, Writing – review
editing. Brian K. Arbic: Writing – review & editing. Damrongsak
irasaet: Methodology, Writing – review & editing. Joannes J. Wes-

terink: Writing – review & editing. Michael Schindelegger: Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the Earth System Model Development
program area of the U.S. Department of Energy, Office of Science,
Office of Biological and Environmental Research as part of the multi-
program, collaborative Integrated Coastal Modeling (ICoM) project.
Kristin N. Barton and Brian K. Arbic acknowledge support from PNNL
contract DE-AC05-76RL01830. Joannes J. Westerink and Damrongsak
Wirasaet received support from the Joseph and Nona Ahearn endow-
ment at the University of Notre Dame and by the Department of
Energy Grant DOE DE-SC0021105. Michael Schindelegger is grateful
for funds provided by the DFG (German Research Foundation, project
no. 451039647). This research was performed using BER Earth System
Modeling program’s Compy computing cluster located at Pacific North-
west National Laboratory. PNNL is operated by Battelle for the U.S.
Department of Energy under Contract DE-AC05-76RL01830.

References

Arbic, B.K., Garner, S.T., Hallberg, R.W., Simmons, H.L., 2004. The accuracy of surface
elevations in forward global barotropic and baroclinic tide models. Deep Sea Res.
II: Top. Stud. Oceanogr. 51 (25–26), 3069–3101. http://dx.doi.org/10.1016/j.dsr2.
2004.09.014.

Barton, K.N., Pal, N., Brus, S.R., Petersen, M.R., Arbic, B.K., Engwirda, D., Roberts, A.F.,
Westerink, J.J., Wirasaet, D., Schindelegger, M., 2022. Global barotropic tide
modeling using inline self-attraction and loading in MPAS-ocean. J. Adv. Modelling
Earth Syst. http://dx.doi.org/10.1029/2022ms003207.

Cavanaugh, N.R., O’Brien, T.A., Collins, W.D., Skamarock, W.C., 2017. Spherical
harmonic spectral estimation on arbitrary grids. Mon. Weather Rev. 145 (8),
3355–3363. http://dx.doi.org/10.1175/MWR-D-16-0259.1.

Conroy, C.J., Kubatko, E.J., West, D.W., 2012. ADMESH: an advanced, automatic
unstructured mesh generator for shallow water models. Ocean Dyn. 62 (10–12),
1503–1517. http://dx.doi.org/10.1007/s10236-012-0574-0.

Driscoll, J., Healy, D., 1994. Computing Fourier transforms and convolutions on the
2-sphere. Adv. Appl. Math. 15 (2), 202–250. http://dx.doi.org/10.1006/aama.1994.
1008.

Egbert, G.D., Erofeeva, S.Y., 2002. Efficient inverse modeling of barotropic ocean
tides. J. Atmos. Ocean. Technol. 19 (2), 183–204. http://dx.doi.org/10.1175/1520-
0426(2002)019<0183:eimobo>2.0.co;2.

Engwirda, D., 2017. JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid
generation for general circulation modelling on the sphere. Geosci. Model Dev. 10
(6), 2117–2140. http://dx.doi.org/10.5194/gmd-10-2117-2017.

Farrell, W., Clark, J.A., 1976. On postglacial sea level. Geophys. J. Int. 46 (3), 647–667.
http://dx.doi.org/10.1111/j.1365-246X.1976.tb01252.x.

Foster, I.T., Worley, P.H., 1997. Parallel algorithms for the spectral transform
method. SIAM J. Sci. Comput. 18 (3), 806–837. http://dx.doi.org/10.1137/
s1064827594266891.

http://dx.doi.org/10.1016/j.dsr2.2004.09.014
http://dx.doi.org/10.1016/j.dsr2.2004.09.014
http://dx.doi.org/10.1016/j.dsr2.2004.09.014
http://dx.doi.org/10.1029/2022ms003207
http://dx.doi.org/10.1175/MWR-D-16-0259.1
http://dx.doi.org/10.1007/s10236-012-0574-0
http://dx.doi.org/10.1006/aama.1994.1008
http://dx.doi.org/10.1006/aama.1994.1008
http://dx.doi.org/10.1006/aama.1994.1008
http://dx.doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
http://dx.doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
http://dx.doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
http://dx.doi.org/10.5194/gmd-10-2117-2017
http://dx.doi.org/10.1111/j.1365-246X.1976.tb01252.x
http://dx.doi.org/10.1137/s1064827594266891
http://dx.doi.org/10.1137/s1064827594266891
http://dx.doi.org/10.1137/s1064827594266891


S.R. Brus, K.N. Barton, N. Pal et al. Ocean Modelling 182 (2023) 102160
Frank, M., Hauck, C., Kuepper, K., 2016. Convergence of filtered spherical harmonic
equations for radiation transport. Commun. Math. Sci. 14 (5), 1443–1465. http:
//dx.doi.org/10.4310/CMS.2016.v14.n5.a10.

Golaz, J.-C., Caldwell, P.M., Roekel, L.P.V., Petersen, M.R., Tang, Q., Wolfe, J.D.,
Abeshu, G., Anantharaj, V., Asay-Davis, X.S., Bader, D.C., Baldwin, S.A., Bisht, G.,
Bogenschutz, P.A., Branstetter, M., Brunke, M.A., Brus, S.R., Burrows, S.M.,
Cameron-Smith, P.J., Donahue, A.S., Deakin, M., Easter, R.C., Evans, K.J., Feng, Y.,
Flanner, M., Foucar, J.G., Fyke, J.G., Griffin, B.M., Hannay, C., Harrop, B.E.,
Hoffman, M.J., Hunke, E.C., Jacob, R.L., Jacobsen, D.W., Jeffery, N., Jones, P.W.,
Keen, N.D., Klein, S.A., Larson, V.E., Leung, L.R., Li, H.-Y., Lin, W., Lipscomb, W.H.,
Ma, P.-L., Mahajan, S., Maltrud, M.E., Mametjanov, A., McClean, J.L., Mc-
Coy, R.B., Neale, R.B., Price, S.F., Qian, Y., Rasch, P.J., Eyre, J.E.J.R., Riley, W.J.,
Ringler, T.D., Roberts, A.F., Roesler, E.L., Salinger, A.G., Shaheen, Z., Shi, X.,
Singh, B., Tang, J., Taylor, M.A., Thornton, P.E., Turner, A.K., Veneziani, M.,
Wan, H., Wang, H., Wang, S., Williams, D.N., Wolfram, P.J., Worley, P.H., Xie, S.,
Yang, Y., Yoon, J.-H., Zelinka, M.D., Zender, C.S., Zeng, X., Zhang, C., Zhang, K.,
Zhang, Y., Zheng, X., Zhou, T., Zhu, Q., 2019. The DOE E3SM coupled model
version 1: Overview and evaluation at standard resolution. J. Adv. Modelling Earth
Syst. 11 (7), 2089–2129. http://dx.doi.org/10.1029/2018ms001603.

Gordeev, R.G., Kagan, B.A., Polyakov, E.V., 1977. The effects of loading and self-
attraction on global ocean tides: The model and the results of a numerical
experiment. J. Phys. Oceanogr. 7 (2), 161–170. http://dx.doi.org/10.1175/1520-
0485(1977)007<0161:teolas>2.0.co;2.

He, Y., Ding, C.H.Q., 2001. Using accurate arithmetics to improve numerical repro-
ducibility and stability in parallel applications. J. Supercomput. 18 (3), 259–277.
http://dx.doi.org/10.1023/a:1008153532043.

Healy, D., Rockmore, D., Kostelec, P., Moore, S., 2003. FFTs for the 2-sphere-
improvements and variations. J. Fourier Anal. Appl. 9 (4), 341–385. http://dx.
doi.org/10.1007/s00041-003-0018-9.

Hendershott, M.C., 1972. The effects of solid earth deformation on global ocean tides.
Geophys. J. Int. 29 (4), 389–402. http://dx.doi.org/10.1111/j.1365-246x.1972.
tb06167.x.

Hoch, K.E., Petersen, M.R., Brus, S.R., Engwirda, D., Roberts, A.F., Rosa, K.L.,
Wolfram, P.J., 2020. MPAS-Ocean simulation quality for variable-resolution North
American coastal meshes. J. Adv. Modelling Earth Syst. 12 (3), e2019MS001848.
http://dx.doi.org/10.1029/2019MS001848.

Holmes, S.A., Featherstone, W.E., 2002. A unified approach to the clenshaw summation
and the recursive computation of very high degree and order normalised associated
Legendre functions. J. Geod. 76 (5), 279–299. http://dx.doi.org/10.1007/s00190-
002-0216-2.

Jones, P.W., 1999. First-and second-order conservative remapping schemes for grids in
spherical coordinates. Mon. Weather Rev. 127 (9), 2204–2210. http://dx.doi.org/
10.1175/1520-0493(1999)127%3C2204:FASOCR%3E2.0.CO;2.

Karypis, G., Kumar, V., 1998. Multilevelk-way partitioning scheme for irregular graphs.
J. Parallel Distrib. Comput. 48 (1), 96–129. http://dx.doi.org/10.1006/jpdc.1997.
1404.

Keiner, J., Kunis, S., Potts, D., 2009. Using NFFT 3—A software library for various
nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36 (4), 1–30.
http://dx.doi.org/10.1145/1555386.1555388.
13
Kunis, S., Potts, D., 2003. Fast spherical Fourier algorithms. J. Comput. Appl. Math.
161 (1), 75–98. http://dx.doi.org/10.1016/s0377-0427(03)00546-6.

Mohlenkamp, M.J., 1999. A fast transform for spherical harmonics. J. Fourier Anal.
Appl. 5 (2–3), 159–184. http://dx.doi.org/10.1007/bf01261607.

Munk, W.H., MacDonald, G.J., 1960. The Rotation of the Earth; A Geophysical
Discussion. Cambridge [Eng.] University Press, http://dx.doi.org/10.1119/1.10629.

Petersen, M.R., Jacobsen, D.W., Ringler, T.D., Hecht, M.W., Maltrud, M.E., 2015.
Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in
the MPAS-Ocean model. Ocean Model. 86, 93–113. http://dx.doi.org/10.1016/j.
ocemod.2014.12.004.

Pringle, W.J., Wirasaet, D., Roberts, K.J., Westerink, J.J., 2021. Global storm tide
modeling with ADCIRC v55: unstructured mesh design and performance. Geosci.
Model Dev. 14 (2), 1125–1145. http://dx.doi.org/10.5194/gmd-14-1125-2021.

Ray, R., 1998. Ocean self-attraction and loading in numerical tidal models. Mar. Geod.
21 (3), 181–192. http://dx.doi.org/10.1080/01490419809388134.

Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W., Maltrud, M., 2013.
A multi-resolution approach to global ocean modeling. Ocean Model. 69, 211–232.
http://dx.doi.org/10.1016/j.ocemod.2013.04.010.

Roberts, K.J., Pringle, W.J., Westerink, J.J., 2019. OceanMesh2D 1.0: MATLAB-based
software for two-dimensional unstructured mesh generation in coastal ocean
modeling. Geosci. Model Dev. 12 (5), 1847–1868. http://dx.doi.org/10.5194/gmd-
12-1847-2019.

Schaeffer, N., 2013. Efficient spherical harmonic transforms aimed at pseudospectral
numerical simulations. Geochem. Geophys. Geosyst. 14 (3), 751–758. http://dx.
doi.org/10.1002/ggge.20071.

Schindelegger, M., Green, J., Wilmes, S.-B., Haigh, I.D., 2018. Can we model the effect
of observed sea level rise on tides? J. Geophys. Res.: Oceans 123 (7), 4593–4609.
http://dx.doi.org/10.1029/2018JC013959.

Shihora, L., Sulzbach, R., Dobslaw, H., Thomas, M., 2022. Self-attraction and loading
feedback on ocean dynamics in both shallow water equations and primitive
equations. Ocean Model. 169, 101914. http://dx.doi.org/10.1016/j.ocemod.2021.
101914.

Stammer, D., Cazenave, A., Ponte, R.M., Tamisiea, M.E., 2013. Causes for contemporary
regional sea level changes. Annu. Rev. Mar. Sci. 5 (1), 21–46. http://dx.doi.org/
10.1146/annurev-marine-121211-172406.

Stepanov, V.N., Hughes, C.W., 2004. Parameterization of ocean self-attraction and
loading in numerical models of the ocean circulation. J. Geophys. Res.: Oceans
109 (C3), http://dx.doi.org/10.1029/2003jc002034.

Suda, R., Takami, M., 2001. A fast spherical harmonics transform algorithm. Math.
Comp. 71 (238), 703–716. http://dx.doi.org/10.1090/s0025-5718-01-01386-2.

Tamisiea, M.E., Hill, E.M., Ponte, R.M., Davis, J.L., Velicogna, I., Vinogradova, N.T.,
2010. Impact of self-attraction and loading on the annual cycle in sea level. J.
Geophys. Res. 115 (C7), http://dx.doi.org/10.1029/2009jc005687.

Vinogradova, N.T., Ponte, R.M., Quinn, K.J., Tamisiea, M.E., Campin, J.-M., Davis, J.L.,
2015. Dynamic adjustment of the ocean circulation to self-attraction and loading
effects. J. Phys. Oceanogr. 45 (3), 678–689. http://dx.doi.org/10.1175/jpo-d-14-
0150.1.

http://dx.doi.org/10.4310/CMS.2016.v14.n5.a10
http://dx.doi.org/10.4310/CMS.2016.v14.n5.a10
http://dx.doi.org/10.4310/CMS.2016.v14.n5.a10
http://dx.doi.org/10.1029/2018ms001603
http://dx.doi.org/10.1175/1520-0485(1977)007<0161:teolas>2.0.co;2
http://dx.doi.org/10.1175/1520-0485(1977)007<0161:teolas>2.0.co;2
http://dx.doi.org/10.1175/1520-0485(1977)007<0161:teolas>2.0.co;2
http://dx.doi.org/10.1023/a:1008153532043
http://dx.doi.org/10.1007/s00041-003-0018-9
http://dx.doi.org/10.1007/s00041-003-0018-9
http://dx.doi.org/10.1007/s00041-003-0018-9
http://dx.doi.org/10.1111/j.1365-246x.1972.tb06167.x
http://dx.doi.org/10.1111/j.1365-246x.1972.tb06167.x
http://dx.doi.org/10.1111/j.1365-246x.1972.tb06167.x
http://dx.doi.org/10.1029/2019MS001848
http://dx.doi.org/10.1007/s00190-002-0216-2
http://dx.doi.org/10.1007/s00190-002-0216-2
http://dx.doi.org/10.1007/s00190-002-0216-2
http://dx.doi.org/10.1175/1520-0493(1999)127%3C2204:FASOCR%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127%3C2204:FASOCR%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127%3C2204:FASOCR%3E2.0.CO;2
http://dx.doi.org/10.1006/jpdc.1997.1404
http://dx.doi.org/10.1006/jpdc.1997.1404
http://dx.doi.org/10.1006/jpdc.1997.1404
http://dx.doi.org/10.1145/1555386.1555388
http://dx.doi.org/10.1016/s0377-0427(03)00546-6
http://dx.doi.org/10.1007/bf01261607
http://dx.doi.org/10.1119/1.10629
http://dx.doi.org/10.1016/j.ocemod.2014.12.004
http://dx.doi.org/10.1016/j.ocemod.2014.12.004
http://dx.doi.org/10.1016/j.ocemod.2014.12.004
http://dx.doi.org/10.5194/gmd-14-1125-2021
http://dx.doi.org/10.1080/01490419809388134
http://dx.doi.org/10.1016/j.ocemod.2013.04.010
http://dx.doi.org/10.5194/gmd-12-1847-2019
http://dx.doi.org/10.5194/gmd-12-1847-2019
http://dx.doi.org/10.5194/gmd-12-1847-2019
http://dx.doi.org/10.1002/ggge.20071
http://dx.doi.org/10.1002/ggge.20071
http://dx.doi.org/10.1002/ggge.20071
http://dx.doi.org/10.1029/2018JC013959
http://dx.doi.org/10.1016/j.ocemod.2021.101914
http://dx.doi.org/10.1016/j.ocemod.2021.101914
http://dx.doi.org/10.1016/j.ocemod.2021.101914
http://dx.doi.org/10.1146/annurev-marine-121211-172406
http://dx.doi.org/10.1146/annurev-marine-121211-172406
http://dx.doi.org/10.1146/annurev-marine-121211-172406
http://dx.doi.org/10.1029/2003jc002034
http://dx.doi.org/10.1090/s0025-5718-01-01386-2
http://dx.doi.org/10.1029/2009jc005687
http://dx.doi.org/10.1175/jpo-d-14-0150.1
http://dx.doi.org/10.1175/jpo-d-14-0150.1
http://dx.doi.org/10.1175/jpo-d-14-0150.1

	Scalable self attraction and loading calculations for unstructured ocean tide models
	Introduction
	Methods
	Spherical Harmonics
	Forward Transformation
	SAL Scaling
	Inverse Transformation
	Serial Unstructured Mesh Calculations
	Parallel Unstructured Mesh Calculations
	Error Assessment

	Results
	Uniform Resolution Test Case
	Variable Resolution Test Case
	Ocean Tides

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


