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Abstract 
The silicon-based light-emitting devices are the bottleneck of fully integrated silicon photonics. Doping silicon with 
erbium (often along with oxygen) is an attractive approach to turn silicon into a luminescent material, which has 
been explored for decades. One of the main challenges is the strong thermal quenching effect that results in weak 
photoluminescence efficiency. Here we show that the co-doping of fluorine with erbium ions can significantly 
suppress the thermal quenching effect and Auger recombination, resulting in a 3-order-of-magnitude increase in 
photoluminescence compared to Er/O doped crystalline silicon. As a result, relatively strong photoluminescence is 
observed from fluorine-doped silicon at room temperature.   
 
Introduction 
Silicon photonics will speed up the computing and data transmission of the current communication network by 
integrating optical and electronic devices on the same silicon substrate.[1-4] This technology requires efficient 
silicon-based light sources and optical amplifiers at communication wavelengths.[4-6] However, silicon is an indirect 
band gap semiconductor, which cannot efficiently emit light at communication wavelengths. In the past several 
decades, significant efforts have been devoted to developing efficient silicon-based light-emitting materials, 
including III-V quantum dots and strained Ge, epitaxially grown on silicon.[7-12] Doping silicon with erbium ions is 
the earliest effort to create luminescent silicon, which is also one of the most attractive approaches[13-14] as it is 
compatible with complementary metal-oxide-semiconductor (CMOS) processes. However, it suffers from strong 
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thermal quenching in photoluminescence (PL), resulting in an extremely low efficiency at room temperature 
(RT).[14-18] Interestingly, our group[19] recently found that the thermal quenching effect can be suppressed by 
employing a deep cooling process to treat the Er/O co-doped crystalline silicon, as a result of which the PL efficiency 
at RT is improved by two orders of magnitude. The improvement is due to the fact that the deep cooling process 
can mitigate the precipitation of erbium ions into Er-O-Si nanocrystals that often occurs in the slow cooling process 
of standard rapid thermal annealing (RTA). Without the Er/O precipitation into large nanocrystals, the non-radiative 
emission paths through the interface states between nanocrystalline precipitates and silicon crystal are thus 
eliminated, resulting in a weak thermal quenching effect in PL. In this work, we surprisingly found that the thermal 
quenching effect can also be suppressed by co-doping fluorine (F) ions with erbium ions, although Er/F ions have 
precipitated into large nanocrystals with the standard RTA treatment. It is likely because F ions can passivate the 
interface states between erbium nanocrystals and Si lattice.  
 
Results and discussion 

  
Figure 1. Temperature-dependent steady and transient analysis for Er/F-doped Si and Er/O-doped Si 
samples. (a) PL spectra of Er/F-Si and Er/O-Si at different temperatures. (b)  Steady-state PL intensity. (c) Fast and 
slow lifetimes of carriers for Er-doped Si with F (red) and O (black), respectively. The excitation laser was at 405 
nm with a power of 200 mW. (d) PL intensity of the fast and slow component for the Er/O: Si and Er/F: Si samples.  

 
The intrinsic <100> single crystalline silicon (FZ) wafer was first cleaned with acetone and deionized water, 

piranha solution (sulfuric acid: 30% hydrogen peroxide=3:1) followed for 20 mins at 100 ℃, and rinsed in deionized 
water. O and F ions were implanted separately into different samples with a dose of 1×1016 cm-2 at 30 keV to create 
Er/O and Er/F samples for comparison. Erbium ions were implanted with a dose of 4×1015 cm-2 at 200 keV. After 
the implantation, the samples were cut into small pieces and went through the cleaning procedure again. RTA 
process (900 ℃ for 5 mins) was applied to activate the implanted atoms and repair the lattice damage caused by ion 
implantation.  
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PL spectra and decay curves of the Er/F: Si sample excited by a blue laser with a diameter of 1.5 mm (λ=405 
nm) were recorded at different temperatures to investigate the thermal quenching effect and the back-transfer 
dynamics. For comparison, the Er/O: Si sample was also measured since the Er/O: Si samples are the most widely 
studied. As shown in Figure 1a, no PL is observed in the Er/O: Si samples at RT. For the Er/F: Si sample, the PL 
spectrum peaked at 1532 nm with a full width half maximum (FWHM) of 40 nm is acquired at RT, as shown in 
Figure 1a. The PL peak of the Er/F samples is blue-shifted and broadened, likely because the local environment of 
Er ions is changed by binding with F instead of O. As known, for the Er-doped silicon, strong thermal quenching is 
one of the main factors that result in the low RT luminescence efficiency. As shown previously, Er-O-Si composites 
will precipitate as nanocrystals in the crystalline silicon. The lattice mismatch between the nanocrystals and 
crystalline Si will create a high concentration of interface defects, resulting in strong nonradiative recombination, 
which can be suppressed at low temperatures[13]. For this reason, it is not surprising that the PL intensity of Er/O 
doped Si is quenched by more than 3 orders of magnitude as the temperature increases from 77 K to 300 K (Figure 
1b), which is widely observed in literatures.[17-18, 20] Surprisingly, the Er/F: Si sample treated by the same RTA 
process exhibits strong PL emission which is nearly independent of temperature, shown as the red squares in Figure 
1b (only quenched by 3 times from 77 K to 300 K). In addition, the Er/F: Si sample exhibits a stronger low 
temperature PL intensity by one order of magnitude than the Er/O: Si sample. It is likely because the Er/F: Si sample 
has a higher Er optical activation rate. Clearly, F dopants play an important role that is completely different from O 
dopants.  

To better understand the role of F ions, transient PL decay curves at the peak wavelength were recorded at a 
pump power of 200 mW as the temperature was lowered from RT to 77 K (s S1, Supporting Information). The PL 
decay traces for both Er/F and Er/O samples can be well described with a double exponential function as below 
(eq.1), 

𝐼(𝑡) = 𝐼𝑓𝑎𝑠𝑡𝑒
−

𝑡

𝜏𝑓𝑎𝑠𝑡 + 𝐼𝑠𝑙𝑜𝑤𝑒
−

𝑡

𝜏𝑠𝑙𝑜𝑤                                            (1) 

where 𝜏𝑓𝑎𝑠𝑡  and 𝜏𝑠𝑙𝑜𝑤  are decay times for the fast and slow components, respectively. 𝐼𝑓𝑎𝑠𝑡  and 𝐼𝑠𝑙𝑜𝑤  are the 
corresponding fractional contribution. The non-exponential decay behavior suggests at least two 
relax/recombination channels related to Er states. The extracted lifetimes and PL intensities were shown in Figures 
1c and 1d, respectively. For the Er/O: Si sample, 𝜏𝑓𝑎𝑠𝑡 is quite short (~1 μs), two orders of magnitude fast than the 
general lifetime of Er ion luminescence, which could be related to the non-recombination process, e.g., the fast 
relaxation or back-transfer to the lower or higher energy levels, or even the Auger recombination. However, 𝜏𝑠𝑙𝑜𝑤, 
which is highly dependent on temperature and decreases from 690 to 155 μs when the temperature goes up from 77 
K to 140 K, could be related to the lifetime of carriers related to the Er ion luminescence. In contrast, the lifetimes 
of the Er/F: Si are much larger and nearly independent of temperature. The slow and fast time constant is ~1 ms and 
30 ~ 100 μs, respectively.  

The radiative recombination lifetimes for Er/O: Si and Er/F: Si samples are the same, since the electronic 
transition occurs in the inner orbitals of Er ions which are less affected by environment. The PL intensity is 
proportional to the excited Er concentration. The weak RT PL for the Er/O doped silicon is attributed to a number 
of factors, including the low concentration of optical active Er, high concentration of non-radiative recombination 
centers and strong temperature quenching for carrier lifetime.[13, 21-24] In contrast, Er/F doped samples have a much 
stronger PL which comes along with longer lifetimes and weaker dependence on temperature. In addition, both fast 
and slow carrier lifetimes exhibit an anomalous temperature dependence. As the temperature goes up, the lifetime 
of the slow decay component increases, reaching the maximum value of ~1 ms at 175 K. Similar behaviors have 
been reported and ascribed to the carriers delocalizing from trap states or defect states to excited states and Auger 
effect is weak.[25-26] It only decays by 3 times with temperature increasing from 77 K to 300 K. The incorporation 
of F ions increases the intensity of fast and slow components by at least one order of magnitude (Figure 1d). Thermal 
quenching can be effectively reduced, which means the probability of back transfer is decreased. 
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Figure 2. Power-dependent transient analysis for the Er/F: Si sample at 300K. (a) Excitation-dependent fast 
and slow decay times. (b) Excitation-dependent PL intensity of fast and slow components, respectively. 
 

Another factor that limits the PL intensity is the Auger effect and non-radiative recombination via defects. 
Electrical measurements show that Er/O: Si samples have much lower sheet resistances than the Er/F: Si ones, 
indicating a high concentration of free electrons in the former. Therefore, Er/O: Si samples will have stronger Auger 
recombination at high injection. Indeed, for the Er/F: Si sample, Auger effect is negligible, because the lifetimes for 
the Er/F: Si sample are almost independent of the excitation power as shown in Figure 2a. As a result, the PL 
intensity of these two components is almost linearly with the pumping power changing within about two orders of 
magnitude (Figure 2b). It is not difficult to conclude that the incorporation with F, in comparison with co-doped 
with O, can efficiently suppress the Auger effect and non-radiative recombination via defects. 

  

Figure 3. Er/F: Si LED device. (a) 3D structure of the device. (b) Schematic of the device. (c) I-V curve. Inset: 
logarithm current vs bias. (d) RT EL spectrum. 
 

The Er/F: Si sample was further fabricated into a light-emitting diode (LED). The sheet resistance of Er/F: Si is 
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7.3 kΩ/sq. Thus, boron (blue region) and phosphorus (purple region) were implanted to form the p-type and n-type 
region with a dosage of 1 × 1015 cm-2 at 20 keV and 1×1014 cm-2 at 60 keV, respectively (Figure 3a). The RTA 
process was employed to activate the dopants at the same time. A pair of co-axial metal electrode patterns were 
defined, followed by thermal evaporation of 5 nm Cr and 70 nm Au (Optical microscopic image of the device is 
shown in Figure 3b). The I-V curve exhibits a rectifying behavior of a typical PN junction diode with an on/off ratio 
of ~ 3 orders of magnitude (Figure 3c). The ideal factor can be calculated as ~2, indicating that a high-quality PN 
junction diode is made and that electrons from the n+ region and holes from the p+ region dominantly recombine 
within the depletion region. The EL spectrum was measured by a cooled Ge detector with a peak of 1534 nm under 
the pulse operation condition, as shown in Figure 3d.  

 
 
 

 
 

 
Figure 4. APT characteristic. (a) The spatial distribution of Er and O atoms in the Er/O: Si sample treated by RTA. 
(b) The spatial distribution of Er and F atoms in the Er/F: Si sample treated by RTA. (c) Three-dimensional 
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reconstruction volume with aggregations in the Er/F: Si sample. (SiF)+ refers to SiF and SiF2. (ErF)+ refers to ErF 
and ErF2. (d) SIMS characterization of the RAT treated Er/F: Si sample. Ion distribution profiles of experimental 
results (solid line) and comparing them to simulation results (dashed lines).  
 

 
To better understand the luminescence mechanism, APT was used to map the spatial distribution of elements 

for both Er/O: Si and Er/F: Si samples. For the Er/O: Si sample, Er ions are clearly aggregated into “stripes” while 
O atoms are more uniformly distributed (Figure 4a). In contrast, both Er and F ions in the Er/F sample precipitate 
into clusters (Figure 4b). Three-dimensional reconstruction volume of Er and F atoms in Er/F: Si sample is shown 
in Figure S2 (SI). A closer look at one of the clusters (Figure 4c) indicates that F atoms form larger clusters, wrapping 
around Er precipitates in the form of Er-F composites. This picture is largely consistent with the fact that F ions 
likely play a passivation role which leads to a weak thermal quenching effect and a low dark current of the fabricated 
PN junction.[27-28] 

The Er and F atom distribution profiles of the Er/F: Si sample treated by RTA acquired by secondary ion mass 
spectroscopy (SIMS) are shown in Figure 4d. Compared with the calculated results, the peak positions of Er and F 
both shift towards the surface of Si, consistent with the fact that Er-F complexes are formed after annealing.[29-30] 
This observation is in line with previous reports[31-32] that F atoms migrate toward the surface at a temperature 
beyond 550℃. 
    
Conclusion  
We have demonstrated that F has a passivation effect and can enhance the PL of Er-doped Si. In comparison with 
O dopants, F ions are more mobile and tend to aggregate with Er, potentially passivating defects on the surface of 
Er precipitates. As a result, the non-radiative recombinations including phonon-assisted relaxation and the Auger 
effect are suppressed. Unfortunately, the quantum efficiency of the Er/F: Si device is still relatively low due to the 
low activation rate of Er ions which we plan to improve in the future by exploring novel methods. 
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