PUBLIC HEALTH PODIUM PRESENTATION

Whole genome sequence association analysis of Brain MRI measures

Lincoln MP Shade ¹ Claudia L Satizabal ^{2,3,4} David C Glahn ⁵ Thomas H Mosley ⁶
Susan R. Heckbert ⁷ Lenore J. Launer ⁸ Lisa R Yanek ⁹ Joshua C Bis ⁷
Jennifer A Smith ¹⁰ Charles S. DeCarli ¹¹ Donna K Arnett ¹ Bruce M. Psaty ⁷
Paul A Nyquist ¹² Rasika A Mathias ⁹ Jerome I Rotter ¹³ Stephen S Rich ¹⁴
John Blangero ¹⁵ Anita L. DeStefano ^{2,4,16} David W. Fardo ¹ Myriam Fornage ¹⁷
Sudha Seshadri ^{2,4,18} Chloé Sarnowski¹⁹ on behalf of the TOPMed Neurocognitive
working group

¹College of Public Health, University of Kentucky, Lexington, KY, USA

²Boston University School of Medicine, Boston, MA, USA

³University of Texas Health Sciences Center, San Antonio, TX, USA

⁴Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA

⁵Harvard Medical School, Boston, MA, USA

⁶MIND Center, University of Mississippi Medical Center, Jackson, MS, USA

⁷Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA

⁸Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA

⁹GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore, MD, USA

¹⁰University of Michigan School of Public Health, Ann Arbor, MI, USA

¹¹Center for Neuroscience, University of California at Davis, Sacramento, CA, USA

¹² Johns Hopkins School of Medicine, Baltimore, MD, USA

¹³The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA

Abstract

Background: Genome-wide association studies (GWAS) of brain volumes have identified common genetic variants with modest effect sizes that lie mainly in non-coding regions. We sought to identify low frequency and rare variants influencing brain volumes by performing association analyses using whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) Program.

Method: We analyzed up to 7,607 participants (57% women; 62% European ancestry, 21% African-Americans, 15% Hispanic/Latino, 2% Chinese-American), mean age of 60.5 (16.2), from eight TOPMed population- or family-based studies (FHS, GENESTAR, CHS, GENOA, ARIC, CARDIA, MESA, and SAFS). We excluded participants with dementia, stroke, presence of large brain infarcts, tumor or low-quality scans. We tested the association of hippocampal (HV), total brain (TBV), lateral ventricular (LVV) and intracranial (ICV) volumes to individual genetic variants with minor allele counts \geq 15 using mixed-effect linear regression models adjusted for age, age², sex, study and the first 10 principal components. Models for HV, TBV and log(LVV) were adjusted for ICV. We accounted for relatedness using an empirical kinship matrix and trait variance variability by using a random effect for study.

Result: We detected one novel region with low frequency variants associated with HV (13q14, P = 5.8×10^{-9}). The top 13q14 variant for HV (rs115674829) minor allele frequency (MAF) was 2% in our pooled sample but was more common in the pan-African 1000 Genomes population (MAF = 14%). This variant lies in *LINC00598* at 237kb from *FOXO1*, a member of the forkhead family of transcription factors that has been linked to

2 of 3 | Alzheimer's & Dementia

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

¹⁴Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA

¹⁵Center for Public Health Genomics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA

¹⁶Boston University School of Public Health, Boston, MA, USA

¹⁷University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA

¹⁸Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA

¹⁹University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA

Correspondence

Chloé Sarnowski, University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA. Email: Chloe.Sarnowski@uth.tmc.edu Alzheimer's Disease. Additionally, we detected new suggestive associations ($P \le 10^{-7}$) for TBV (16p11) and LVV (1q25, 2q22, 3q13, 5q14, and 10q23), including common variants. Finally, we confirmed the association of common variants in GWAS loci for all traits.

Conclusion: Our whole genome sequence analyses revealed intriguing new loci of lowfrequency and common variants, and replicated loci previously associated with brain volumes. Future work will include ancestry-specific and conditional analyses, as well as gene-based and scan tests.

Supported by: AG058589, AG052409, AG054076, NO1-HC-25195, HHSN2682015000011 and 75N92019D00031, R01HL131136, P30 AG066546, and K99AG066849.

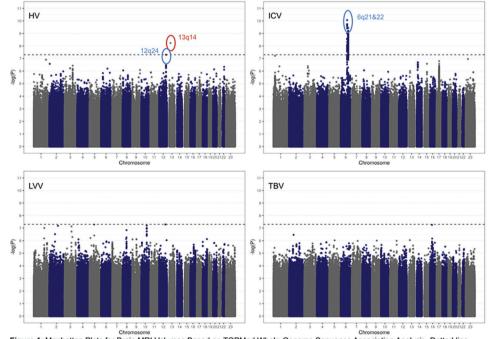


Figure 1: Manhattan Plots for Brain MRI Volumes Based on TOPMed Whole-Genome Sequence Association Analysis. Dotted line demarkates genome-wide significance ($P \le 5x10^{8}$). RED annotations indicate novel significant loci, while BLUE annotations indicate replicated significant loci. HV = hippocampal volume; ICV = intracranial volume; LVV = log lateral ventricular volume; TBV = total brain volume.

Table 1: Novel Brain MRI Volumes Association Results Based on TOPMed Whole-Genome Sequence Association Analysis

Location	EAF	EA/NEA	Effect	P-value	rsID	Trait
1q25	0.2684	T/C	-0.039	9.7e-08	rs3795503	LVV
2q22	0.0011	C/G	0.564	6.5e-08	rs187704649	LVV
3q13	0.0011	G/A	0.527	7.3e-08	rs565601707	LVV
5q14	0.2730	T/C	0.039	5.2e-08	rs78861128	LVV
10q23	0.4254	A/G	-0.036	6.4e-08	rs2068888	LVV
13q14	0.0217	A/G	-0.264	5.8e-09	rs115674829	HV
16p11	0.0011	G/A	49.811	5.5e-08	rs971709419	TBV

EAF = Effect allele frequency; EA = effect allele; NEA = non-effect allele; LVV = log lateral ventricular volume; HV = hippocampal volume; TBV = total brain volume.

· · · · · · · · · · · · · · · · · · ·									
Location	EAF	EA/NEA	Effect	P-value	rsID	Trait			
3q28	0.347	A/G	-0.033	2.2e-06	rs34113929	LVV			
10p12	0.244	A/T	-0.019	0.015	rs35587371	LVV			
11q23	0.316	G/A	-0.024	0.00044	rs7936534	LVV			
12q23	0.067	С/Т	0.071	5.1e-08	rs12146713	LVV			
16q24	0.533	A/G	0.028	3.2e-05	rs9937293	LVV			
22q13	0.553	A/C	-0.018	0.0079	rs4820299	LVV			
5q12	0.345	T/G	-0.034	0.0051	rs2289881	HV			
9q33	0.370	C/G	0.037	0.0027	rs7020341	HV			
12q14	0.118	G/T	-0.059	0.0011	rs61921502	HV			
12q24	0.082	T/C	0.11	5.0e-08	rs146607495	HV			
2q32	0.098	A/G	-2.11	0.024	rs288326	TBV			
6q21	0.559	T/C	1.34	0.027	rs2764264	TBV			
17q21	0.166	G/A	-2.34	0.0016	rs62057149	TBV			
3q28	0.049	C/G	10.8	0.0052	rs9811910	ICV			
6q21	0.470	-/C	-12	8.6e-11	rs35947181	ICV			
6q22	0.49	T/C	11	3.6e-10	rs1490384	ICV			
10q24	0.275	T/G	3.3	0.085	rs11191683	ICV			
12q14	0.571	T/A	-6.1	0.00042	rs138074335	ICV			
12q23	0.185	C/G	-6.6	0.0024	rs2195243	ICV			
17q21	0.156	G/T	-10.6	6.4e-06	rs199525	ICV			

Table 2: Confirmation of Brain MRI Volumes GWAS Loci Based on TOPMed Whole-Genome Sequence Association Analysis