
Abstract This work documents version two of the Department of Energy's Energy Exascale Earth System 
Model (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1, resulting in a model that is 
nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical 
climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km 
land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the 
mid-latitudes and 30 km at the equator and poles. The model performance is evaluated with Coupled Model 
Intercomparison Project Phase 6 Diagnosis, Evaluation, and Characterization of Klima simulations augmented 
with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated 
climate has many realistic features of the climate system, with notable improvements in clouds and precipitation 
compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 
5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World 
Climate Research Program assessment. However, a number of important biases remain including a weak 
Atlantic Meridional Overturning Circulation, deficiencies in the characteristics and spectral distribution of 
tropical atmospheric variability, and a significant underestimation of the observed warming in the second 
half of the historical period. An analysis of single-forcing simulations indicates that correcting the historical 
temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.

Plain Language Summary The U.S. Department of Energy recently released version two of 
its Energy Exascale Earth System Model (E3SM). E3SMv2 experienced a significant evolution in many 
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Key Points:
•  E3SMv2 is nearly twice as fast as 

E3SMv1 with a simulated climate that 
is improved in many metrics (e.g., 
precipitation and clouds)

•  Climate sensitivity is substantially 
lower with a more plausible 
equilibrium climate sensitivity of 
4.0 K (compared to an unlikely value 
of 5.3 K in E3SMv1)

•  E3SMv2 underestimates the warming 
in the late historical period due to 
excessive aerosol-related forcing
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1. Introduction
The U.S. Department of Energy (DOE) Energy Exascale Earth System Model (E3SM) project (https://e3sm.org) 
was conceived from the confluence of energy mission needs and disruptive changes in scientific computing tech-
nology. E3SM aims to optimize the use of DOE resources to meet the science needs of DOE. Efficient utilization 
of emerging computational architectures requires a significant evolution in present programming models in Earth 
System Models (ESMs), leading DOE to develop a new ESM, initially branching from CESM1 (Community 
Earth System Model; Hurrell et al., 2013, http://www.cesm.ucar.edu/models/cesm1.0). The long-term goal of the 
E3SM project is to produce robust actionable predictions of Earth system variability and change, with an empha-
sis on the most critical scientific questions facing the nation and DOE (Leung et al., 2020).

Version one of E3SM (E3SMv1) was first released in 2018 as a physical climate model with a lower horizontal 
resolution configuration (110 km atmosphere, 60–30 km ocean; Golaz et al., 2019) followed by a higher reso-
lution configuration (25 km atmosphere, 18–6 km ocean; Caldwell et al., 2019). The lower resolution configu-
ration served as the starting point for a biogeochemistry configuration (E3SMv1.1; Burrows et al., 2020) and a 
cryosphere configuration (E3SMv1.2; Comeau et al., 2022).

Although E3SM was originally branched from CESM1, the river routing, ocean, and sea ice components as well 
as the atmosphere dynamical core and stratospheric chemistry are completely new or significantly different. 
The atmosphere physics, the land model, and the coupler retain similarities to current CESM2 (Danabasoglu 
et al., 2020). E3SMv2 is the second release of a CMIP6-class (Coupled Model Intercomparison Project Phase 
6) model for E3SM. E3SMv2 also serves as a foundation for additional upcoming configurations targeting DOE 
applications: (a) a regionally refined model (RRM) configuration with a high-resolution region (25 km atmos-
phere, 14 km ocean) centered over North America, (b) a biogeochemistry configuration with interactive carbon, 
nitrogen, and phosphorous cycles, and (c) a cryosphere configuration with RRM over the Southern Ocean and 
ice-shelf cavities.

Version two of E3SM is a significant evolution from version one. Herein we describe the changes made in 
E3SM version 2 (E3SMv2) in each model component and the supporting infrastructure. We further diagnose its 
performance relative to E3SMv1. E3SMv2 development focused on improving the performance on existing and 
emerging architectures and improving the physical climate in key metrics. Thus, E3SMv2 includes significant 
improvements to component model structure and physical parameterizations. The result of v2 development is a 
model that is nearly twice as fast as version one with a simulated climate that is improved in many metrics. Also 
new to E3SMv2 is the introduction of fully coupled RRM configurations, a critical capability to creating action-
able projections of interest to the nation and DOE. Although simulations with the RRM will be the subject of 
forthcoming manuscripts, the validation herein will provide a benchmark for RRM configurations.

As with E3SMv1, we focus on the physical climate model at lower resolution with a 110 km atmosphere, 165 km 
land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60  km in the 
mid-latitudes and 30 km at the equator and poles. The vertical grids remain the same as in E3SMv1 with 72 layers 
and a top at approximately 60 km in the atmosphere and 60 layers (10 m near-surface resolution) in the ocean. We 
focus our analysis on the CMIP6 Diagnosis, Evaluation, and Characterization of Klima (DECK) and historical 
simulations (Eyring et al., 2016). E3SMv2 DECK simulations reveal a number of improvements in the simulated 
mean climate and variability: equilibrium climate sensitivity (ECS), precipitation, shortwave cloud radiative 

of its model components (most notably the atmosphere and sea ice models), and its supporting software 
infrastructure. In this work, we document the computational performance of E3SMv2 and analyze its ability 
to reproduce the observed climate. To accomplish this, we utilize the standard Diagnosis and Evaluation and 
Characterization of Klima experiments augmented with historical simulations for the period 1850–2015. We 
find that E3SMv2 is nearly twice as fast as its predecessor and more accurately reproduces the observed climate 
in a number of metrics, most notably clouds and precipitation. We also find that the model's simulated response 
to increasing carbon dioxide (the equilibrium climate sensitivity) is much more realistic. Unfortunately, 
E3SMv2 underestimates the global mean surface temperature compared to observations during the second 
half of historical period. Using sensitivity experiments, where forcing agents (carbon dioxide, aerosols) are 
selectively disabled in the model, we determine that correcting this problem would require a strong reduction in 
the impact of aerosols.

https://e3sm.org
http://www.cesm.ucar.edu/models/cesm1.0
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effects (SWCREs), ozone hole, aerosol absorption, and sea ice. Yet despite numerous improvements, a number of 
important biases remain including a weak Atlantic Meridional Overturning Circulation and an inability to appro-
priately simulate the historical temperature record. Mitigating these biases will be central to E3SMv3 develop-
ment. To diagnose the latter bias we conduct an ensemble of simulations following the Detection and Attribution 
Model Intercomparison Project (DAMIP) protocol (Gillett et al., 2016). Using a decomposition analysis, we find 
that an overly strong aerosol effect is responsible for this bias and further that if this effect can be reduced, other 
reductions in regional radiation, temperature, and other biases can be expected.

We begin in Section 2 with a description of the changes in E3SMv2 for each model component. We also describe 
important improvements to energy conservation in the coupled system as well as our coupled tuning strategy. 
Section 3 details computational performance and factors leading to the nearly doubling of throughput. Section 4 
details the simulation campaign and analysis of the simulated climate in each portion of the campaign. Section 5 
presents an examination of the historical temperature record bias and the potential impact of altering the contribu-
tion of aerosols and greenhouse gases on the simulated climate. We end with summary and conclusions in Section 6.

2. Model Description
2.1. Atmosphere

2.1.1. Dynamical Core

The dynamical core in the E3SM Atmosphere Model (EAM) v2 solves the equations of motion in a rotating 
reference frame with the hydrostatic and shallow atmosphere approximations and a hyperviscosity based turbu-
lence closure. It is implemented in the High Order Method Modeling Environment (Dennis et al., 2011, 2005; 
Evans et  al.,  2013), which provides meshing infrastructure and discretization operators for spectral elements 
in spherical geometry. The equations are formulated following Taylor et  al.  (2020) using a terrain following 
mass based vertical coordinate (Kasahara,  1974; Laprise,  1992). In EAMv2, the nonhydrostatic formulation 
given in Taylor et al. (2020) is modified to be hydrostatic. This modification is straightforward due to the use 
of the Laprise (1992) mass coordinate. The prognostic equations consist of the time-reversible adiabatic terms, 
a ∇ 4 hyperviscosity (Dennis et al., 2011; Guba et al., 2014), and a sponge layer at the model top (described 
below). The discretization of the adiabatic terms is structure preserving, meaning that the discrete equations are in 
quasi-Hamiltonian form, leading to energetic consistency in the sense of Gassmann and Herzog (2008). Energetic 
consistency is obtained via a term-by-term balance in the discrete kinetic, internal, and potential energy budgets, 
ensuring an energy conserving discretization with no spurious energy sources or sinks.

The horizontal discretization uses the collocated mimetic spectral finite element method from Taylor and 
Fournier  (2010). Within each element the prognostic variables are represented by degree p polynomials with 
p = 3 and order of accuracy np = 4. The vertical discretization uses the Lorenz staggered mimetic centered differ-
ence from Simmons and Burridge (1981). The vertical grid remains the same as in EAMv1 with 72 layers and 
a top at approximately 60 km. For the vertical transport terms, we use a vertically Lagrangian approach adapted 
from Lin (2004). The time-stepping algorithm, unchanged from EAMv1, is the high-CFL, 5-stage, third-order-ac-
curate Runge-Kutta method from Guerra and Ullrich (2016).

There are several sources of dissipation in the dynamical core. The ∇ 4 hyperviscosity is the largest. It is applied to 
all prognostic variables and on every model layer. For the model-top sponge layer, we apply a ∇ 2 Laplacian opera-
tor in the top six model layers to all prognostic variables. The strength is proportional to the model layer reference 
pressure, following Lauritzen et al. (2011). In addition, vertical dissipation is introduced by the monotone vertical 
remap operator. A smaller amount of dissipation is also generated by the Runge-Kutta time-stepping. In EAMv1, 
we used additional divergence damping in order to control noise when running with realistic topography. This 
was implemented by separating the hyperviscosity into compressible and rotational components and using a larger 
hyperviscosity coefficient for the compressible component. EAMv2 has a more accurate pressure gradient formu-
lation which improves the treatment of topography and no longer needs nor uses additional divergence damping.

The dynamical core's passive tracer transport method is a new interpolation semi-Lagrangian (ISL) scheme called 
Islet (Bradley et al., 2021). A high-order ISL method using the natural Gauss-Lobatto-Legendre element-local 
interpolant is unstable; thus, Islet provides modified element-local interpolation basis functions that obey 
a necessary condition for stability. EAMv2 uses the lowest-order Islet basis set, the one for np = 4. Because 
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the model code was frozen before the Islet bases were finalized, the formulation of the np  =  4 stable basis 
set is slightly different than reported in Bradley et al. (2021), but this difference has essentially no impact. To 
achieve global mass conservation, shape preservation, and mass-tracer consistency, Islet uses element-local and 
global versions of the communication-efficient density reconstructor (CEDR) described in Algorithm 3.1 of 
Bradley et al. (2019). The global version is sometimes called a “mass fixer,” but note that, in combination with 
the element-local version, it also enforces grid-point-local, time-dependent lower and upper bounds on tracer 
mixing ratios to enforce shape preservation and mass-tracer consistency. Generally, even a mass-conserving 
semi-Lagrangian method that can take time steps longer than the advective CFL number requires a method like a 
CEDR to achieve shape preservation and mass-tracer consistency when coupled to a dynamical core that uses a 
different discretization for the dynamical equations. The ISL scheme's time step can be, and in EAMv2 is, longer 
than the vertical remap time step of the dynamics. In integrating from time t1 to time t2, Lagrangian levels at 
time t2 are reconstructed from data on the reference grid at times t1 and t2. Then horizontal velocity at time t2 is 
remapped to the Lagrangian levels. Finally, departure points within each Lagrangian level are computed at time 
t1. Then 2D advection within each level can proceed as usual. In this time step configuration, the CEDR must 
be applied to the 3D data rather than separately to each level because the reconstructed levels do not conserve 
mass within each level; thus, corrections must be applied among levels as well as within each level. In EAMv2's 
lower resolution configuration, the vertical remap time step is two times larger than the dynamics time step, and 
the passive tracer transport time step is six times larger. Like the rest of the dynamical core, Islet works without 
modification in RRM configurations.

2.1.2. Separate Dynamics and Column Parameterizations Grids

New in version 2, EAMv2 uses separate grids for dynamics and column parameterizations. The dynamics grid, 
described in Section 2.1.1, is the same as used in EAMv1. For brevity, it is referred to as the “np4 grid”, follow-
ing the dynamical core's grid naming convention, because each element has a 4 × 4 subgrid of grid points. The 
column parameterizations grid shares the element grid with the dynamics but has a 2 × 2 subgrid of quadrilater-
als for a total of four columns per element. This grid is referred to as the “pg2 grid”, where “pg” refers to what 
is usually called the “physics grid” but, more generally, could be called the “parameterizations grid”, and “2” 
refers to the 2 × 2 subgrid. Thus, the total number of physics columns in a simulation is 4/9 the number used 
in EAMv1 for a given element grid, where nine rather than 16 results from sharing of element edge grid points 
among adjacent elements. The dynamics grid has an average grid spacing of 110 km, while the parameterizations 
grid and, as a result, the land grid have an average grid spacing of 165 km. Hannah et al. (2021) describe the 
remap algorithms to transfer data between the grids and the new topography file format to support these grids. 
The grids are the same as introduced in Herrington et al. (2019), but in EAMv2, the high-order remap method 
is local to each element except for some halo data for extremal mixing ratio values. Thus, EAMv2's grid remap 
algorithms work without modification in RRM configurations. The motivation for the separate grids is to speed 
up the physics parameterization computations by up to nearly 2.25 times with little change to the climatology 
(Hannah et al., 2021). Hannah et al. (2021) discuss the effective resolution differences between simulations using 
just the np4 grid and those using separate np4 and pg2 grids, where effective resolution is inferred from power 
spectra. Briefly, first, the dynamical core's effective resolution is nearly identical; second, the parameterizations' 
effective resolution is, as expected, lower when using the pg2 grid. Given the first point, the result is a more 
efficient simulation.

2.1.3. Updated Atmosphere Physics

As in EAMv1 (Rasch et al., 2019; Xie et al., 2018), EAMv2 represents subgrid turbulent transport and cloud 
macrophysics by use of the Cloud Layers Unified by Binormals (CLUBB) parameterization (Golaz et al., 2002; 
V. E. Larson, 2017). In EAMv2, CLUBB represents all stratiform and shallow cumulus clouds, but not deep 
convective clouds. CLUBB prognoses various subgrid moments of turbulence, heat content, and moisture, and 
the moments are used to estimate a multivariate subgrid probability density function (PDF). The PDF is then used 
to diagnose liquid cloud fraction and cloud liquid water via a saturation adjustment. CLUBB is called immedi-
ately before the microphysics.

The main update of CLUBB for EAMv2 is that CLUBB's internal call order has been changed so that CLUBB's 
subgrid moments are prognosed first, and the PDF is estimated immediately afterward. This leaves a state for the 
microphysics that is adjusted with respect to liquid saturation. This call order eliminates the unrealistic pockets 
of supersaturation that were left for the microphysics to handle in EAMv1. Another update of CLUBB is that its 
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code has been refactored in order to improve computational performance. For instance, arrays were restructured 
to permit contiguous memory access. Loops were rearranged in order to allow calculations with no data depend-
encies to be done in parallel. Asymptotic values of functions were approximated analytically in order to avoid the 
unnecessary calculation of expensive special functions.

The deep convection scheme (G. J. Zhang & McFarlane, 1995, ZM hereafter) in EAMv2 is the same as that in 
EAMv1, except that ZM adopts two updates described in Xie et al. (2019) to improve its simulated precipita-
tion, in particular the diurnal cycle. The new ZM feature combines the dynamic Convective Available Potential 
Energy (dCAPE) trigger proposed in Xie and Zhang (2000) with an unrestricted air parcel launch level (ULL) 
approach used in Y.-C. Wang et al. (2015) (hereafter the dCAPE-ULL trigger). The dCAPE trigger provides a 
dynamic constraint for preconditioning of convection-favoring environments and prevents CAPE from being 
released spontaneously. The ULL trigger removes the constraint that convection is always rooted within the 
boundary layer, as is often assumed in deep convection schemes. Thus, it captures mid-level convection by detect-
ing atmospheric instability above the boundary layer. As shown in Xie et al. (2019), the use of the dCAPE-ULL 
trigger helps address the “too frequent, too weak” precipitation issue—a long-standing climate model bias—as 
well as capture the nocturnal elevated convection systems which are often seen downstream of major mountains 
associated with the propagation of Mesoscale Convective Systems but missed in most climate models including 
E3SM. It also significantly improves the phase of the diurnal cycle of precipitation over both land and ocean.

After releasing EAMv1, Ma et  al.  (2022) proposed a set of recalibrated atmospheric parameters in the deep 
convection scheme, the microphysics scheme, and the CLUBB turbulence and macrophysics scheme (hereafter 
EAMv1p). Many of these parameter changes have been carried over to EAMv2. A new feature in EAMv1p is the 
inclusion of surface wind speed enhancements from the gustiness associated with turbulence, shallow and deep 
convection in the surface flux calculations over land and ocean (Harrop et al., 2018; Ma et al., 2022; Redelsperger 
et al., 2000).

In the deep convection scheme, the parcel buoyancy considers the subgrid temperature perturbation from the 
CLUBB scheme in addition to a constant value of 0.8 K used in EAMv1. A new tunable parameter with a default 
value of 2.0, zmconv_tp_fac (see Table A1), is introduced to scale the square root of the CLUBB subgrid temper-
ature variance to be the subgrid temperature perturbation. Additionally, the parameters related to the autoconver-
sion rate, detrained ice cloud effective radius, and cloud fraction in deep convective clouds are reduced, while 
the parameters related to the downdraft mass flux fraction and the impact of the surface temperature change are 
enhanced compared to EAMv1.

A number of tunable parameters in the CLUBB scheme have been updated in EAMv1p to improve both stra-
tocumulus and shallow cumulus clouds. Briefly, EAMv1p separated the setting of several coefficients at low 
skewness (X, with X = clubb_{c1, c6, c11, gamma_coef}) and high skewness (Xb), recalibrated transition factors 
between the two regimes (Xc), and adjusted parameters controlling the low cloudiness (e.g., mu, c8, c1, c_k10) to 
increase stratocumulus clouds and reduce shallow cumulus clouds. To better represent clouds and precipitation 
in subtropical low cloud regimes, the liquid cloud accretion enhancement factor and the exponent coefficient for 
liquid cloud autoconversion rate in the microphysics scheme have been updated as well. For ice and mixed-phase 
clouds, the overly suppressed scaling factor (0.1) for the Wegener-Bergeron-Findeisen (WBF) process in EAMv1 
has been updated to be 0.7. The Aitken mode sulfate aerosol size threshold for homogeneous ice nucleation is 
increased. The minimum subgrid vertical velocity for liquid droplet nucleation is reduced from 0.2 to 0.1 m/s in 
EAMv2.

Based on atmosphere-only and coupled simulations performed during the tuning process, EAMv2 keeps tunable 
parameters related to liquid droplet sedimentation, ice particle fall speed, and the lateral entrainment of deep 
convection the same as EAMv1 instead of EAMv1p (see Table A1 for details).

The effective aerosol radiative forcing (ERFaer) estimated in E3SMv1 is about −1.6 W m −2 (Golaz et al., 2019), 
which is relatively large compared to other CMIP6 models (Smith et al., 2020). After applying the EAMv1p 
parameter tuning proposed by Ma et  al.  (2022), the simulated magnitude of ERFaer shortwave and longwave 
components is reduced significantly, but the change in net ERFaer is small due to the compensation between 
longwave and shortwave. Clouds are more susceptible to aerosol perturbations under relatively clean conditions. 
Based on analysis of developmental configurations (to be documented in a separate work), unrealistically small 
cloud droplet number concentrations (e.g., <10 cm −3) frequently appeared, especially in mid- and high-latitude 
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regions. As a temporary remedy, a lower bound (10 cm −3) is applied to the simulated cloud droplet number 
concentration in EAMv2. Results show that it reduces the net ERFaer magnitude by 0.3–0.4 W m −2, which agrees 
with findings from previous studies (e.g., Hoose et al., 2009). The lower bound value is also consistent with other 
CMIP6 models (e.g., Mignot et al., 2021). We note however that this is not a cure for the problem. Additional 
efforts are planned to improve the simulated aerosol and cloud properties in pristine regions and reduce ERFaer in 
a more physical manner for future versions of E3SM.

EAMv2 employs the same orographic and non-orographic gravity wave (GW) parameterization as EAMv1, 
following Richter et al. (2010), which includes separate representation of orographic GWs (McFarlane, 1987), 
convective GWs (Beres et al., 2004), and GWs generated by frontal systems (Charron & Manzini, 2002). Tunable 
parameters in the orographic and frontal GW parameterizations remain the same as in EAMv1. In EAMv1, the 
period of the quasi-biennial oscillation (QBO) in the tropical stratospheric zonal mean wind was only 18 months 
as compared to 28 months in observations (Richter et al., 2019). In order to arrive at a more realistic representa-
tion of the QBO in EAMv2, several combinations of tunable parameters in the (Beres et al., 2004) parameteri-
zation were explored, focusing on the convective fraction (CF) and efficiency with which convection generates 
GWs, effgw_beres, starting with the setting that improved the QBO in EAMv1 described in Richter et al. (2019) 
(effgw_beres = 0.35 from 0.4, CF = 8% from 5%). Based on sensitivity simulations performed in parallel with 
the pre-industrial spin-up simulation, CF was changed from 8% to 10% (gw_convect_hcf = 1/CF = 10), and 
effgw_beres remained 0.35 (Table A1), resulting in a QBO period of ∼21 months in the pre-industrial control. 
Due to changes in tropical variability (Kelvin and mixed-Rossby GWs) related to the convective parameterization 
changes described above, the amplitude of the QBO in E3SMv2 is weaker than in observations.

2.1.4. Atmospheric Chemistry

The atmospheric chemistry in EAMv1 was the O3v1 model with prognostic stratospheric ozone by the linearized 
chemistry (Linoz v2; Hsu & Prather, 2009) and the prescribed tropospheric ozone with the v1.0 input4MIPS 
ozone data set (Hegglin et al., 2016). The prescribed tropospheric ozone data only contained decadal monthly 
zonal climatology of latitude-pressure values. Due to the sharp cross-tropopause ozone gradient, unphysical 
ozone distributions were simulated in the vicinity of the tropopause when the modeled tropopause was higher 
than that of the prescribed data, assigning stratospheric ozone abundances to the tropospheric model grid boxes. 
Since ozone interacts with the radiation transfer code in E3SM, such ozone deficiencies impacted the solar heat-
ing and radiative forcing.

In EAMv2, we implemented the O3v2 model (Tang et al., 2021) to overcome the limitations in the O3v1 model 
by replacing the prescribed ozone data with a passive ozone tracer in the troposphere. Ozone is transported from 
the stratosphere into the troposphere and decays within the lowest four model layers (below 1 km) with a 48 hr 
e-folding to 30 ppb (parts per billion by mole fraction). The choice of 30 ppb is based on observations (Ziemke 
et al., 2019) and gives a tropospheric ozone mass similar to full chemistry models. O3v2 is capable of interacting 
with the tropopause changes and hence captures the naturally sharp ozone cross-tropopause gradient. Moreover, 
the ozone sink at the lower boundary in O3v2 allows us to diagnose the stratosphere-troposphere exchange flux 
of ozone, an important tropospheric ozone budget term, which was not possible with O3v1. The ozone hole is 
simulated following Cariolle et al. (1990) to represent the rapid chlorine-induced ozone depletion at cold temper-
atures, but the polar stratospheric cloud (PSC) temperature threshold is increased to 197.5 K in EAMv2 from 
193 K in EAMv1 due to a warmer Antarctic winter pole. More details about O3v2 in E3SM are documented by 
Tang et al. (2021).

2.1.5. Aerosol

The aerosol model in EAMv2 is based on EAMv1 (H. Wang et al., 2020) which itself evolved from the four-mode 
version of Modal Aerosol Module (MAM4) in the Community Atmosphere Model version 5.3 (CAM5.3; X. Liu 
et al., 2016) that represents the major aerosol species within four internally mixed size modes, and incorporated 
the new treatments of aerosol processes related to new particle formation, secondary organic aerosol (SOA) 
formation, aerosol convective transport and wet removal, resuspension, and deposition and mixing with snow 
grain. These new treatments in EAMv1 led to significant improvements in characterizing global distributions of 
aerosols and interactions with clouds and radiation. The development and evaluation of aerosol representation in 
the E3SMv1 coupled model simulations with both standard resolution (Golaz et al., 2019) and high-resolution 
(Caldwell et al., 2019) configurations have mainly focused on the global budgets and annual mean constraints of 
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aerosol optical depth (AOD) with observational estimates in the present-day conditions. While the total/speci-
ated AOD and direct radiative effects are constrained to a large extent, further analysis of E3SMv1 simulations 
suggested that the shortwave absorption of aerosols is too strong in the model compared with observations espe-
cially over the dusty regions (Feng et al., 2022). The heating effect in the atmosphere due to the overestimated 
dust absorption could lead to changes of the lower tropospheric stability and affect the model-simulated clouds 
and precipitation.

In E3SMv2, we updated dust refractive indices in the shortwave bands with the observationally derived values 
from the AERONET measurements (Dubovik et al., 2000), which replace the strongly absorbing dust properties 
used in E3SMv1 (Hess et  al.,  1998). Additionally, we implemented a different dust particle size distribution 
(Kok, 2011) in E3SMv2 for calculating fractional dust emission fluxes into the accumulation and coarse modes. 
Kok et al. (2017) suggest that dust size distributions at emission in current global climate models under-represent 
the coarse-mode (>1 μm) dust particles in the atmosphere. For the same dust optical depth, coarse-mode dust 
particles would result in larger longwave warming and less shortwave cooling than the fine particles, resulting in a 
less cooling net effect of dust aerosols. Compared to E3SMv1, the new size distribution implemented to E3SMv2 
(Kok, 2011) predicts more particles in larger dust sizes: about 1.1% in the accumulation mode and 98.9% in the 
coarse mode, which is consistent with the recent measurements (Kok et al., 2017) but can substantially change 
the dust transport to remote regions (Wu et al., 2020). With these updates in E3SMv2, dust emissions are re-tuned 
for the globally constrained dust optical depth of 0.03 ± 0.005 (Ridley et al., 2016).

2.2. Ocean

Due to development priorities, the ocean component (the Model for Prediction Across Scales-Ocean: 
MPAS-Ocean) in E3SMv2 is mostly unchanged from E3SMv1 (Petersen et  al.,  2019, 2018). The underlying 
spatial discretization (Thuburn et al., 2009) is applied to the primitive equations with a free surface (Ringler 
et al., 2013), with 60 layers using a z-star vertical coordinate (Petersen et al., 2015; Reckinger et al., 2015). The 
parameterizations of unresolved physics, such as the Gent and Mcwilliams (1990) parameterization for mesoscale 
eddy transport, and K-Profile Parameterization (KPP, Large et al., 1994; Van Roekel et al., 2018) for vertical 
mixing, remain largely the same with minor updates.

In E3SMv2, Redi isopycnal mixing is introduced following the triad formulation from Griffies et al. (1998). The 
Gent-McWilliams mesoscale eddy mixing parameterization continues to utilize a globally constant value for the 
bolus coefficient. However, in development of E3SMv2, a series of sensitivity simulations were conducted to 
find a more optimal value of the Gent-McWilliams bolus kappa parameter. Based on these simulations, a value 
of 900 m 2 s −1 was chosen. This value is half of that used in E3SMv1. The reduction improved the surface salinity 
bias and increased Antarctic Circumpolar Circulation (ACC) transport (not shown). A smaller globally constant 
value (400 m 2 s −1) is utilized for Redi isopycnal mixing. In the Redi parameterization, slope tapering is a slightly 
modified version of Danabasoglu and Williams (1995) with a critical slope parameter of 0.01. We also imple-
mented the stratification-based tapering from Danabasoglu and Marshall (2007).

In addition to the improvements in model physics, a sign error in the high-order reconstruction of tracer values 
on cell edges was discovered in the flux corrected tracer transport advection scheme. A set of simulations was 
conducted to determine the impact of this bug. The percentage change in ocean heat content (OHC) due to the bug 
fix at various levels is shown in Figure S1 in Supporting Information S1. In a broad sense the effect of the bug fix 
was to increase OHC, although there are broad swaths of decrease in OHC in the North Pacific and ACC in the 
upper ocean (Figures S1a–S1c in Supporting Information S1). In the deep ocean, the bug fix resulted in weaker 
OHC anomalies (Figure S1d in Supporting Information S1).

2.3. Sea Ice

Improvements have been made to the column physics, coupling, and analysis of E3SM's sea ice component 
(MPAS-Seaice) since the E3SMv1 configuration described by Turner et al.  (2021). Here we expand on inno-
vations new to E3SMv2. The core Delta-Eddington radiative transfer of Briegleb and Light  (2007) has been 
updated to the Dang et al. (2019) SNICAR-AD model, ensuring radiative consistency across all snow surfaces, 
including on land, ice sheets and sea ice. The SNICAR-AD radiative transfer code includes five-band snow 
single-scattering properties, two-stream Delta-Eddington approximation with the adding-doubling technique, and 
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parameterization for correcting the near-infrared (NIR) snow albedo biases when solar zenith angle exceeds 75° 
(Dang et al., 2019). However, radiative coupling with the atmosphere still integrates across just two bands (visible 
and NIR) separated at 700 nm, which does not fully exploit the five-band capability; an expansion of the coupling 
bands is planned for E3SMv3.

A new snow-on-sea ice-morphology has been added to E3SMv2 that includes the effects of wind redistribution: 
losses to leads and meltponds, and the piling of snow against ridges. Snow grain radius, now a prognosed tracer 
field on sea ice, evolves according to temperature gradient and wet snow metamorphisms and feeds back to the 
SNICAR-AD radiative model up to a dry maximum of 2,800 μm. Fresh snow falls at a grain radius of 54.5 μm, 
and five vertical snow layers replace the previous single snow layer atop each of the five sea ice thickness cate-
gories retained from E3SMv1. The combined default configurations of the new radiative and snow schemes 
were found to minimally impact the climatic state of sea ice reported in this manuscript, but greater parametric 
sensitivities are explored in a sister paper in preparation.

The most significant improvement to the sea ice climate since E3SMv1 was achieved with coupling changes 
associated with mushy-layer thermodynamics. Whereas the basal temperature of the ice was held fixed at −1.8°C 
in E3SMv1, the new version of the model assumes the mushy liquidus basal temperature from the sea ice as 
described by Turner and Hunke (2015). Conversion of frazil ice from MPAS-Ocean with a fixed reference salinity 
of 4 PSU to the mushy layer now conserves to computational accuracy over a 500 yr control integration. This was 
achieved by exchanging additional mass between the upper ocean and sea ice model to accommodate an assumed 
25% mushy liquid content assumed from heat and mass transferred adiabatically from the MPAS-Ocean frazil 
scheme active from a depth of 100 m. In addition to achieving perfect heat and mass conservation between sea 
ice and ocean models, this improvement greatly reduces a negative sea ice thickness bias in the summer Arctic 
reported by Golaz et al. (2019) for E3SMv1; it only minimally impacts Southern Ocean sea ice mass that was 
better simulated as compared to Northern Hemisphere sea ice in E3SMv1. Note that E3SM does not use virtual 
ice-ocean fluxes, but instead full volume and heat flux exchange consistent with a Boussinesq ocean model as 
described by Campin et al. (2008).

In addition to these core physics improvements, E3SMv2 includes a number of structural additions to the sea 
ice model. E3SMv2 has significantly increased output to better diagnose behavior and compare against seasonal 
extremes and data. For example, daily Ice Numerals for Arctic shipping (Aksenov et al., 2017) are easily derived 
from this output, commensurate with the new E3SMv2 marine mesh that resolves major Arctic shipping channels 
(Section 2.4).

E3SMv2 now also includes a prescribed-extent ice mode for MPAS-Seaice based on that found in the Commu-
nity Ice CodE (CICE) in E3SMv1 and CESM (Bailey et al., 2011). This mode is needed for AMIP (Atmospheric 
Model Intercomparison Project) style simulations where a full prognostic sea ice model is not desired but sea ice 
surface fluxes, albedos, snow depth, and surface temperature are needed by the atmosphere model and are calcu-
lated by the vertical thermodynamics module of the sea ice component. The mode is intended for atmosphere 
sensitivity experiments and does not conserve energy or mass. In this mode, sea ice thermodynamics is active but 
sea ice dynamics is disabled and at each time step ice area and thickness are reset to specified values. Ice area is 
interpolated in time and space from an input data set, while ice thickness in grid cells containing sea ice is set to 
2 m in the Northern Hemisphere and 1 m in the Southern Hemisphere. During each adjustment snow volume is 
adjusted to preserve the snow thickness prognosed in the previous time step. Snow temperatures are reset to the 
surface temperature, as prognosed in the previous time step, while ice temperatures are set so that the ice temper-
ature gradient is linear, with the ice temperature at the top equal to the prognosed surface temperature, and equal 
to the sea freezing temperature at the base of the ice. The vertical ice salinity profile is reset to the profile from 
Bitz and Lipscomb (1999).

2.4. Unstructured Marine Mesh Generation

Generation of the unstructured Centroidal Voronoi-type meshes (e.g., Ringler et al., 2008) used in the ocean and 
sea ice components of E3SMv2 is handled using the JIGSAW library (Engwirda, 2017), enabling the creation of 
complex, variable-resolution meshes to resolve regional ocean (Hoch et al., 2020), sea ice (Turner et al., 2021), 
and land-ice (Hoffman et  al.,  2018) dynamics. Compared to E3SMv1, improvements to the robustness, effi-
ciency, and flexibility of our meshing workflows have been targeted—employing a multi-paradigm mesh gener-
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ation strategy that combines “off-center” Delaunay-refinement and “hill-climbing” optimization approaches 
(Engwirda, 2018; Engwirda & Ivers, 2016) to build the Spherical Centroidal Voronoi Tessellations used in the 
MPAS-Ocean and MPAS-Seaice dynamical cores. Key to improved robustness in E3SMv2 is the elimination 
of invalid grid configurations centered around obtuse triangles, in which a lack of geometrical consistency 
between adjacent computational cells would lead to breakdowns in the numerical discretization used by the 
ocean dynamical core. Difficulties associated with the generation of valid meshes limited the application of 
variable mesh resolution in E3SMv1, restricting model configurations to quasi-uniform resolution cases. These 
effects are remedied in E3SMv2, with our enhanced optimization strategies leading to the generation of valid, 
well-conditioned meshes in complex, regionally refined configurations. Equally important are improvements 
to E3SM's COMPASS (Configuration Of MPAS Setups) package—a Python-based scripting environment that 
allows modelers to readily customize mesh and model configurations based on proximity to geographic features, 
climatological states, and user-defined inputs, with geometric tuning parameters that are easy to adjust on the fly. 
COMPASS tracks mesh provenance data associated with the creation of each new E3SM configuration to support 
model regression testing and ensure long-term reproducibility. Overall, improvements to the unstructured mesh-
ing workflows in E3SMv2 have led to significantly improved turnaround in the mesh design, simulation, and 
analysis process, reducing the time required to complete various MPAS mesh-related tasks from days-to-weeks 
in E3SMv1 to minutes-to-hours in E3SMv2. As a consequence of these improvements, the E3SMv2 coastline is 
more realistic across the globe. As one example, E3SMv2 includes key shipping routes in the Canadian Archipel-
ago that were missing from E3SMv1 (Figure 1), eliciting improved archipelagic through-flow.

2.5. Land and River

The physics configuration of E3SM Land Model version 2 (ELMv2) used in E3SMv2 is similar to E3SMv1 
(Golaz et al., 2019). ELMv2 simulates hydrologic and thermal processes in vegetation, snow, and soil for differ-
ent land cover types, which include bare soils, vegetated surfaces, lakes, glaciers, and urban areas. Present-day 
leaf area index is prescribed using satellite data and photosynthesis and is not limited by leaf nutrients. The 
prescribed vegetation distribution has been updated for E3SMv2 to resolve inconsistencies across computing 
platforms in translating land use to changes in plant functional types. ELMv2 includes the new shortwave radia-
tion model SNICAR-AD for snow which is also used for sea ice as described in Section 2.3.

The river routing component in E3SMv2 (Model for Scale Adaptive River Transport, MOSARTv2) takes the 
runoff produced by ELM and routes it to the river mouth as freshwater input to the ocean component. The physics 
scheme and configuration are the same as used in E3SMv1 standard resolution (Golaz et al., 2019). Specifically, 

Figure 1. Comparison of the (a) old and (b) new standard resolution Energy’s Energy Exascale Earth System Model (E3SM) 
unstructured marine mesh, highlighting improved geographic acuity in E3SMv2 including Arctic coastal shipping channels 
fitting standard routes published by the Arctic Council (2009) (red).
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MOSARTv2 uses the kinematic wave approach to route streamflow across hillslopes, tributaries, and main river 
stems on an eight-direction-based river network (Li et al., 2013) at 0.5° latitude-longitude spatial resolution.

2.6. Coupled System

As in E3SMv1, the coupler/driver for E3SMv2 is cpl7 (Craig et  al.,  2012). The driver of cpl7 performs the 
integration of the coupled model and provides the “main” for the single executable. cpl7 relies on the Model 
Coupling Toolkit (MCT; J. Larson et al., 2005) for inter-component communication and remapping operations.

2.6.1. Mapping Weights

The remapping operations are performed using mapping weights precomputed by external tools for each grid pair 
using two different algorithms. Nearly all maps in both directions use the TempestRemap conservative, mono-
tone map (Ullrich et al., 2016; Ullrich & Taylor, 2015). In the case of the atmosphere's pg2 grid and the ocean's 
Voronoi grid, TempestRemap implements an L 2 projection between the finite-volume grids. The requirement of 
monotonicity implies the projection must use the constant-function basis rather than a high-order reconstruction. 
This map type is used for all fluxes and most states in the coupled model. The second map type is bilinear inter-
polation from ESMF (Hill et al., 2004). This map type is used to transfer state from the atmosphere to the ocean 
and sea ice.

2.6.2. Energy Conservation

With respect to energy conservation, EAM closely follows the design of CAM (Neale et al., 2012). The formula-
tion of total energy is given in Lauritzen and Williamson (2019), Equation 8. Each parameterization is expected to 
conserve energy and mass; therefore, there are no energy fixers (column fixers) for parameterizations at the inter-
face level in EAM. Two known components of EAM that require energy fixers are the pressure adjustment and 
the dynamical core. Parameterizations operate under the constant moist pressure assumption, which requires the 
moist pressure adjustment described in Lauritzen and Williamson (2019) and Neale et al. (2012). In the dynami-
cal core, there are several sources of energy dissipation, as described in Section 2.1.1. Therefore, a global energy 
fixer in the form of a uniform increment to the temperature field is applied to compensate for these processes as 
well as pressure adjustment. The fixer's typical average value is −0.07 W m −2.

The change of energy in the atmosphere should be equal to the difference in net fluxes at the top of the model 
and the surface. A long-term average of the energy change should be close to zero if the model conserves energy, 
since storage in the atmosphere is minimal. EAMv1 contained a few energy leaks. For example, one source of 
leaks is the presence of a limiter for water forms (K. Zhang et al., 2018), but this source is small. In EAMv1, 
we recognized the gravity wave drag (GWD) parameterization as the source of the largest energy leak. In the 
orographic GW parameterization, the change in kinetic energy was not properly accounted for. After a fix, the 
energy imbalance in the atmosphere is reduced from 0.07 W m −2 to 0.01 W m −2. Figure S2 in Supporting Infor-
mation S1 depicts the energy imbalances for atmosphere simulations with and without the GWD energy fix.

MPAS-Ocean utilizes a fixed two band exponential formulation for penetrating shortwave radiation. For grid 
cells with shallow bottom depths, a portion of the penetrating shortwave radiation reaches the bottom of the 
ocean. In E3SMv1, this portion of the shortwave radiation was not accounted for, resulting in a globally averaged 
energy leak of approximately 0.25 W m −2. In E3SMv2, the shortwave radiation that reaches the bottom of the 
ocean is added to the bottom layer. In the development of E3SMv2, we found that this change had minimal impact 
on the large-scale ocean climate.

After these energy conservation errors in the atmosphere and the ocean were addressed, we realized that the 
coupled system was no longer in energy balance compared to E3SMv1. Further investigation led to the energy 
correction term incorporated in E3SMv1 to account for the inconsistent definition of energy in the ocean and 
atmosphere (see Golaz et al., 2019; Appendix A). While conceptually correct, the computation of that correction 
term was based on all the precipitation, when instead it should have included only precipitation over ocean and 
ocean runoff. Precipitation over land should not have been included because the land model ELM does not take 
into account heat carried by precipitation. The energy imbalance was corrected by calculating the needed energy 
to bring fluxes of water to a common temperature with the ocean, and then pass the globally averaged value as a 
correction term to be applied in the atmosphere every coupling time step.
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2.6.3. Coupled Tuning

The coupled tuning objectives for the pre-industrial control simulation were similar to Golaz et al. (2019):

1.  Near-zero long-term average net top-of-atmosphere (TOA) energy flux and total OHC in equilibrium.
2.  Minimum long-term drift in global mean surface air temperature.
3.  Reasonable absolute global mean surface air temperature.

Furthermore, spatial root mean square errors (RMSEs) against observations for key climate variables (e.g., annual 
mean sea surface temperature (SST), annual and seasonal precipitation, TOA radiation, cloud radiative effect, 
sea surface wind stress, etc.) from the E3SM Diagnostic package (C. Zhang et al., 2022) are also considered. 
Tuning was performed iteratively through trial and error at component levels and with the coupled system under 
perpetual pre-industrial (1,850) forcings.

In the atmosphere, we first conducted short atmosphere sensitivity tests with repeating SST and sea ice annual cycle 
(“F2010”) to estimate the impact of individual parameters on the modeled precipitation, cloud radiative forcing, 
and other climate state variables. Based on the short sensitivity tests, we designed several groups of parameters 
and conducted F2010 simulations in a parallel manner. Then, we evaluated these tuning combinations based on the 
aforementioned key climate variables from the E3SM Diagnostics package. Promising atmospheric configurations 
were then evaluated with longer AMIP simulations (prescribed SST for the years 1980–2015) before being tested in 
pre-industrial coupled mode. Results from the coupled simulation then fed back into another round of atmospheric 
tuning. Periodically, we also performed atmospheric simulations to evaluate cloud feedback and aerosol ERF to 
inform the atmospheric tuning. Specifically, we estimated the cloud feedback using Cess-like simulations (Cess 
et al., 1989) by comparing the differences between an 11 yr AMIP standard simulation (years 1980–1990) and the 
same simulation except with globally + 4K SST (Ringer et al., 2014). The aerosol ERF was estimated with time slice 
simulations (e.g., Hansen, 2005) consisting of a 9 yr 2010 simulation vs. a 2010 simulation except with 1850 aerosol 
emissions. To estimate the aerosol ERF more efficiently, we also used short (1 yr after 3-month spin-up) nudged 
simulations with 2010 and 1850 aerosol emissions (all other external forcings kept as year 2010 conditions), where 
the horizontal winds were nudged toward model output from a baseline simulation. Nudging was used mainly to 
constrain the large-scale circulation, so that the noises caused by the atmospheric internal variability are reduced and 
short simulations can be used to estimate the aerosol ERF (Kooperman et al., 2012; K. Zhang et al., 2014). Previous 
studies (K. Zhang et al., 2022; S. Zhang et al., 2022) showed good agreement in the global and regional annual mean 
aerosol ERF estimates between the free-running and nudged simulations in E3SMv1.

Component-level development and tuning for the ocean also relied on simulations forced with atmospheric 
reanalyses (Tsujino et al., 2018) to guide the tuning of the Gent-McWilliams bolus kappa parameter and the 
newly implemented Redi isopycnal mixing scheme.

As in E3SMv1, the last step was a final tuning of the CLUBB parameter clubb_c14 in the coupled system to 
minimize long-term drift by adjusting SWCREs in the low-cloud regimes.

Pre-industrial simulations were the only coupled simulations performed before the model was frozen. In particu-
lar, no idealized CO2 or test historical simulations were performed before finalizing E3SMv2.

3. Computational Performance
3.1. Performance Comparison of v1 and v2 Simulations

This section examines computational performance using a set of atmosphere-only and fully coupled simulations. 
Relative to EAMv1, EAMv2 is approximately twice as efficient for primarily two reasons: faster passive tracer 
transport and fewer physics columns. E3SMv2 is also approximately twice as efficient because the ocean dynam-
ics time step is three times larger than in E3SMv1. The sea ice component is slower in v2 than in v1 because of 
additional snow layers.

Performance benchmark simulations were performed on the ANL Chrysalis cluster. Chrysalis has 512 compute 
nodes. Each node of the cluster has two AMD Epyc 7532 “Rome” 2.4 GHz processors, and each processor has 32 
cores, for a total of 64 cores per node. Each node has 256 GB 16 channel DDR4 3200 MHz memory. The inter-
connect hardware is Mellanox HDR200 InfiniBand and uses the fat tree topology. The model code was compiled 
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with Intel release 20200925 with GCC version 8.3.1 compatibility and run with OpenMPI 4.1.1 provided in the 
Mellanox HPC-X Software Toolkit.

All throughput values reported in this section are derived using the maximum time (minimum throughput) over all 
MPI processes. Only the total throughput value is fully accurate, as it is computed using the top-level wall clock 
time of the simulation, excluding initialization; component and subcomponent throughput values are approxima-
tions because these lower-level timers are not associated with global synchronization points. The simulations are 
run with one MPI process per core and no OpenMP threading. A throughput data point corresponds to one simu-
lation run for 3 months with the default input/output (I/O) configuration and one restart file at the simulation end. 
For these tests, both v1 and v2 simulations use the new SCORPIO (Software for Caching Output and Reads for 
Parallel I/O) I/O library; thus, performance differences in these simulations are due to components' computational 
and I/O volume differences rather than I/O library differences. Performance improvements from SCORPIO are 
documented separately in Section 3.2.

Figure 2 summarizes the performance of E3SMv2 relative to E3SMv1 on the lower resolution E3SMv1 and 
E3SMv2 pre-industrial control simulations. Figure 2a plots total throughput versus the number of computer 
nodes. The models provide a small number of optimized layouts, available using the names XS (v2 only), 
S, M, L. In addition, the figure shows small-node-count simulations using a simple stacked layout (“st”) in 
which each component runs serially with respect to the others, and all components share the same processors. 
Each simulation's data point is annotated with its throughput in simulated years per day (SYPD) and layout. 
Comparing S, M, and L layouts between models, v2 is at least 1.97 times more efficient than E3SMv1. 
Figure  2b illustrates this efficiency difference by plotting the wall-clock-time-resource product for each 
component as a rectangle for the L layouts. The atmosphere (ATM), sea ice (ICE), coupler (CPL), land (LND), 
and river runoff (ROF; LND and ROF are too small to label) components run on one set of nodes, while the 
ocean (OCN) component runs on another set. An unfilled rectangle having “v1” or “v2” at the top-right corner 
shows the total product; because the time value of each component is approximate, the filled rectangles do not 
sum to the total time value.

Figure 3 focuses on just the atmosphere component using prescribed SST and sea ice simulations. In E3SMv2, by 
default MPAS-Seaice now replaces CICE in such configurations (see Section 2.3). However, we use CICE for this 
study for three reasons. First, MPAS-Seaice requires a partition file for each process decomposition, and one goal 
of this study is to run simulations with a large number of decompositions. With CICE, we do not need to generate 
a decomposition file for each one. Second, MPAS-Seaice is slower than CICE, and it must run on an MPAS grid; 
the combined slowdown from each of these would reduce the precision of our analysis of just the atmosphere 

Figure 2. Performance of the lower resolution E3SMv1 and E3SMv2 pre-industrial control simulations. (a) Throughput vs. number of nodes. PE layouts XS, S, M, 
L are provided as part of the models. Points annotated with “st” use a simple stacked layout in which each component runs serially with respect to the others, and 
all components share the same processors. (b) Time-resource product plots. Each component has one rectangle. A rectangle has the area given by the product of 
normalized time and number of cores. In v2, the atmosphere and ocean components have substantially smaller time-resource products.
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component's performance in this study. Finally, v1 must use CICE, so a comparison of just the changes to the 
atmosphere component is best done by using CICE in the v2 simulations as well.

Figure 3a shows total throughput of the simulation and approximate throughputs of the dynamical core (“dycore”) 
and passive tracer transport. A subset of data points are annotated with throughput values. Passive tracer trans-
port is at least six to at least eight times faster in v2 than in v1. Two details are apparent in this plot. First, the 
dynamical core is sensitive to the element decomposition, while the rest of the model is sensitive to the finer 
physics column decomposition. Thus, between 43 and 68 nodes, performance of the dynamical core subcom-
ponents plateaus or slightly degrades, since in this range an increase in node count provides no improvement to 
the most-burdened MPI processes. Nonetheless, total throughput is roughly monotonically increasing even in 
this node count range. Second, representative node counts are chosen to favor, generally separately, v1 and v2 in 
roughly equal numbers. Thus, there are closely spaced pairs of points in this same range to show the best available 
throughputs of both model versions.

Figure  3b decomposes performance of the 85-node simulations into the same subcomponents. Only each 
full-height bar is fully accurate; subcomponent proportions are approximate. Again, tracer transport in v2 is 
over six times faster than in v1, speeding up the dynamical core by over three times in this case. The total model 
speedup is a little over two times in this case, with the speedup outside of the dynamical core coming from the 
reduction in number of physics columns.

3.2. File Input/Output

The EAM and E3SM simulations discussed above used the SCORPIO library for reading input data and writ-
ing simulation output to the file system. To improve the I/O write performance, the library caches and rear-
ranges output data among MPI processes before using low-level I/O libraries, such as NetCDF, Parallel NetCDF 
(PnetCDF), and the Adaptable IO System (ADIOS), to write the data to the file system. In all the simulation 
campaigns we used PnetCDF as the low-level I/O library in SCORPIO, and I/O accounted for less than 4% of the 
total runtime of the simulation.

To measure the I/O improvements in the model, we compared the old version of the I/O library, SCORPIO 
CLASSIC (based on PIO, Dennis et al., 2012), used by E3SMv1, with the new version of the library, SCORPIO, 
used by E3SMv2, by running E3SMv1 benchmark simulations on Chrysalis with the S, M, and L configurations. 
The simulation was run for 90 simulated days and generated ∼30 GB of history and restart model output for each 
configuration. We found that SCORPIO provides a higher write and read performance than SCORPIO CLAS-

Figure 3. Performance of the lower resolution EAMv1 and EAMv2 atmosphere simulations. (a) Throughput vs. number of nodes. PE layouts are simple stacked 
layouts. (b) Proportion of time spent in each subcomponent, with the total time for v1 normalized to 1.



Journal of Advances in Modeling Earth Systems

GOLAZ ET AL.

10.1029/2022MS003156

14 of 51

SIC for all the model configurations. SCORPIO provides a consistent write throughput of 3–3.5 GB/s for all the 
configurations while the write throughput of SCORPIO CLASSIC drops from 1.9 GB/s for the S configuration to 
356 MB/s for the L configuration. The time to read the model input data stays relatively constant for SCORPIO 
with the different model configurations while it increases exponentially with the number of MPI processes for 
SCORPIO CLASSIC. The time to read the model input data is ∼40% higher for SCORPIO CLASSIC compared 
to SCORPIO for the S and M model configurations, and for the L model configuration, the time to read data with 
SCORPIO CLASSIC is 3.3 times the time taken with SCORPIO. The total time, including reads and writes, spent 
in I/O by both the libraries was less than 8% of the total runtime for all the model configurations except the L 
configuration with the SCORPIO CLASSIC library, where I/O accounted for 25% of the total runtime.

4. Simulation Campaign
Table 1 summarizes the E3SMv2 simulation campaign. All simulations were configured to adhere to the CMIP6 
specifications as closely as possible and rely on the same boundary files as E3SMv1 (Golaz et al., 2019). The CMIP6 
DECK plus historical simulations (Eyring et al., 2016) include the pre-industrial control (piControl) spanning a total 
of 500 years, idealized CO2 simulations (1pctCO2, abrupt-4xCO2; 150 years each), and a five-member ensemble 
of historical simulations (historical_N; 1850–2014). These simulations were initialized from piControl on Jan 1 of 
various years as indicated in Table 1. AMIP simulations (prescribed SST and sea ice extent) were also performed to 
cover the entire period for which CMIP6 provides surface boundary conditions (1870–2014). Atmosphere, land, and 
river initial conditions for amip_N were taken from year 1870 of the corresponding historical_N coupled simulations.

To understand the relative importance of different forcing agents, a set of DAMIP (Gillett et al., 2016) historical 
simulations was performed. They consist of five-member ensembles with well-mixed greenhouse-gas-only (hist-
GHG) and anthropogenic-aerosol-related (hist-aer) forcing agents. Instead of natural-only historical simulations 
as in Gillett et al. (2016), we opted for a third set with all agents active except well-mixed GHG and aerosols 
(hist-all-xGHG-xaer). This non-standard choice was motivated by a desire to include all forcing agents in our 
decomposition (including land-use and ozone).

Finally, we performed a set of simulations following RFMIP (Radiative Forcing Model Intercomparison Project; 
Pincus et al., 2016) with slight updates to the protocol (https://rfmip.leeds.ac.uk/rfmip-erf). These simulations are 
designed to estimate time-varying total and aerosol-related ERF. Three sets of prescribed SST and sea ice simula-

Label Description Period Ens. Initialization

Fully coupled (atmosphere, ocean, sea ice, land, and river)

 piControl Pre-industrial control 500 yr - Pre-industrial spin-up

 1pctCO2_N Prescribed 1% yr −1 CO2 increase 150 yr 1 piControl (101)

 abrupt-4xCO2_N Abrupt CO2 quadrupling 150 yr 2 piControl (101, 301)

 historical_N Historical 1850–2014 5 piControl (101, 151, 201, 
251, 301)

 hist-GHG_N DAMIP well-mixed greenhouse-gas-only historical 1850–2014 5 piControl (101, 151, 201, 
251, 301)

 hist-aer_N DAMIP anthropogenic-aerosol-related historical 1850–2014 5 piControl (101, 151, 201, 
251, 301)

 hist-all-xGHG-xaer_N Other forcing historical (all forcings except GHG and aer) 1850–2014 5 piControl (101, 151, 201, 
251, 301)

Prescribed SST and sea ice extent (atmosphere, thermodynamic sea ice, land and river)

 amip_N Atmosphere with prescribed SSTs and sea ice concentration 1870–2014 3 historical_N (1870)

 piClim-control RFMIP baseline control 50 yr - Pre-industrial spin-up

 piClim-histall_N RFMIP time-varying ERF all agents 1850–2014 3 piClim-Control (21, 31, 41)

 piClim-histaer_N RFMIP time-varying ERF aerosols 1850–2014 3 piClim-Control (21, 31, 41)

Table 1 
Summary of E3SMv2 Simulations

https://rfmip.leeds.ac.uk/rfmip-erf
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tions are performed with SST and sea ice derived from a 500 yr average of piControl. piClim-control is the control 
simulation with all forcing agents held at their 1850 values. piClim-histall activates all time varying forcing agents, 
whereas piClim-histaer only activates time varying agents related to anthropogenic aerosols and their precursors.

The entire simulation campaign was performed on the DOE-E3SM Chrysalis cluster located at Argonne National 
Laboratory. E3SMv2 experienced only a single model crash during the nearly 3,000 simulated years. The fail-
ure occurred during year 121 of abrupt-4xCO2 ensemble member 301. The failure was overcome by rerunning 
and toggling a flag in the coupler (“BFBFLAG”) that changes order of arithmetic operations. This introduces a 
“butterfly effect” sufficient to alter the weather and avoid the original failure point.

4.1. Pre-Industrial Control

The pre-industrial control simulation (piControl) was initialized after a 1,000 yr long spin-up simulation, itself 
initialized from ocean and sea ice states derived from a 1 yr forced ocean-sea ice simulation. During the spin-up, 
the model configuration was final, except for a small retuning of the GWD parameterization that was introduced 
at year 800 to improve the period of the QBO as described in Section 2.1.3.

The climate simulated by E3SMv2 is very stable throughout the 500 yr piControl as demonstrated in Figure 4. 
The net TOA radiation (Figure  4a) averages to −0.05  W  m −2 with no trend. This value is sufficiently close 
(compared to anthropogenic forcing) to the ideal value of 0 W m −2 for a fully equilibrated and perfectly energy 
conserving model.

The global mean surface temperature averages to 13.70°C with a very small downward trend (dashed line in 
Figure 4b). The average temperature is very similar to E3SMv1 and consistent with observational estimates (e.g., 
global temperature of 14.0°C ± 0.5°C for the period 1961–1990 minus estimated warming; Jones et al., 1999). 
Along with the global mean temperature, maximum and minimum seasonal sea ice areas for the Arctic and 
Antarctic are stable as well (Figure 4c).

Finally, the maximum AMOC in E3SMv2 is quite weak, similar to that in E3SMv1. The AMOC in Figure 4d 
is weaker than the value in Golaz et al. (2019) ( ∼11 Sv). However, during the E3SMv2 development, it was 
discovered that the published AMOC did not include the contribution of the parameterized mesoscale eddies. In 
the North Atlantic, the influence of the Gent-McWilliams parameterization opposes the resolved AMOC. When 
the eddy bolus velocity is included in the v1 calculation, the AMOC is very similar (∼9.5 Sv) to that in E3SMv2.

4.2. Climate Sensitivity and Effective Radiative Forcing

Included in the DECK simulations are two idealized CO2 simulations designed to estimate the model response 
(sensitivity) to CO2-forcing at different time horizons. The ECS is defined as the equilibrium surface temperature 
change resulting from a doubling in CO2 concentrations. Because it is not practical to run a model to equilibrium, 
ECS is approximated by linear regression of TOA radiation vs. surface temperature in a 150 yr “abrupt-4xCO2” 
simulation (Gregory et al., 2004), often referred to as “effective climate sensitivity”. Response on shorter time 
scales is measured by the transient climate response (TCR). TCR is defined as the change in surface temperature 
averaged for a 20 yr period around the time of CO2 doubling from a 1pctCO2 simulation. TCR depends on both 
climate sensitivity and ocean heat uptake rate.

Figure 5 illustrates the time evolution of annual-average surface air temperature from the E3SMv1 and E3SMv2 
idealized CO2 simulations, as well as their linear regressions. ECS is reduced from 5.3 K in E3SMv1 to 4.0 K in 
E3SMv2, a substantial reduction (25%). TCR is reduced as well, but by a smaller fraction from 2.93 to 2.41 K 
(18%). The effective CO2 radiative forcing is also reduced by 11% (3.34–2.98 W m −2). To explore the impact of 
the nonlinearity, we also calculate separate regressions for the first 20 and last 130 yr as proposed by Andrews 
et al. (2015). Doing so leads to only slightly larger estimates of the forcing (3.36 vs. 2.98 W m −2) and ECS (4.25 
vs. 4.0 K) for E3SMv2, and similarly for E3SMv1. The impact on ECS is small compared to some other models 
(Andrews et al., 2015, their Figure 2).

For comparison, Meehl et al. (2020) evaluated ECS and TCR for 37 CMIP6 models. ECS ranged between 1.8 
and 5.6 K, with 6 models above 5 K including E3SMv1. The multimodel mean ECS was 3.7 K with a standard 
deviation of 1.1 K. TCR ranged from 1.3 to 3.0 K, with E3SMv1 having the largest value. The multimodel mean 
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TCR was 2.0 K with a standard deviation of 0.4 K. E3SMv2 is now within one standard deviation of multimodel 
mean for both ECS and TCR, but still on the high side.

World Climate Research Program (WCRP) researchers conducted a recent assessment of the ECS following 
multiple lines of evidence (Sherwood et al., 2020). They arrived at a 66% confidence range of 2.6–3.9 K for their 

Figure 4. Time evolution of annual (a) global mean net top-of-atmosphere (TOA) radiation (positive down), (b) global mean 
surface air temperature, (c) maximum and minimum of total sea ice area for the Arctic and Antarctic, and (d) maximum 
Atlantic Meridional Overturning Circulation (AMOC) at 26.5°N below 500 m depth in the piControl simulation. Dashed 
lines in (a, b, and d) represent linear trends. The solid straight line in (a) is the mean TOA energy imbalance of −0.05 W m −2, 
while the solid straight line in (d) is the mean annual maximum AMOC of 9.84 Sv.
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baseline calculation and 2.3–4.5 K under their robustness tests. The broader 5%–95% confidence ranges were 
2.3–4.7 K, respectively 2.0–5.7 K. E3SMv1 with an ECS of 5.3 K is rather unrealistic as it lies outside of most of 
those ranges. On the other hand, E3SMv2 has a high, but plausible ECS of 4.0 K.

Although a part of the reduction in ECS stems from the reduced effective radiative forcing in E3SMv2 (from 
3.34 to 2.98 W m −2), it is mainly due to the reduced total climate feedback. Applying the radiative kernel 
method (Soden et al., 2008) implemented in the E3SM cloud feedback diagnostic package (Qin, 2022) to 
decompose the climate feedback into different components, we find the reduced cloud feedback (E3SMv1: 
0.93 W m −2K −1; E3SMv2: 0.72 W m −2K −1), especially over the marine low cloud regions, contributes the 
most to the reduction in total climate feedback, whereas the changes in other non-cloud feedbacks are negli-
gible. Sensitivity tests on model changes in E3SMv2 atmosphere physics indicate that the dCAPE-ULL 
convective trigger in the ZM scheme and the updated CLUBB tuning parameters play leading roles in reduc-
ing the marine low cloud feedbacks in E3SMv2. The new trigger function in ZM deep convection tends to be 
activated more frequently under warming, leading to more cloud water detrainment to sustain the low clouds. 
The net impact of CLUBB changes on marine low cloud feedback is partly related to the reduced decoupling 
between boundary layer and free troposphere in mean climate. More details will be reported in an upcoming 
paper.

We also evaluate the evolution of ERF from pre-industrial to present-day conditions using RFMIP simula-
tions (Table 1). ERFtotal is the difference in net TOA radiation between piClim-histall and piClim-control 
and ERFaer the difference between piClim-histaer and piClim-control. Their time evolutions are shown in 

Figure 5. (a–b) Time evolution of annual global mean surface air temperature anomalies for the idealized CO2 forcing simulations abrupt-4xCO2 (red), 1pctCO2 
(blue), and the control simulation (piControl; green) for E3SMv1 and E3SMv2. The transient climate response (TCR) is computed as a 20 yr average around time of 
CO2 doubling (year 70). (c–d) Gregory regression to estimate effective climate sensitivity (ECS) and effective 2xCO2 radiative forcing (F) using the full 150 yr as well 
as the first 20 yr for the forcing (F1−20) and the last 130 yr for the effective climate sensitivity (ECS21−150).
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Figure 6 along with their counterparts from E3SMv1 (computed with a comparable but slightly different 
methodology, see Golaz et al., 2019). The time evolutions of ERFtotal and ERFaer are nearly identical between 
E3SMv2 and E3SMv1. ERFtotal remains close to zero until the late 1900's, except for dips during explosive 
volcanic eruptions. Averaging over the last 20 yr reveals small differences between the two models. The 
aerosol forcing is slightly reduced in magnitude (−1.52 vs. −1.65 W m −2), but the total forcing does not 
increase as a result. In fact, it is reduced (+1.00 vs. + 1.10 W m −2), likely as a consequence of the smaller 
CO2 ERF (Figure 5).

Another assessment was conducted under the auspices of the WCRP with the goal of bounding the aerosol radi-
ative forcing (Bellouin et al., 2020). Following multiple lines of evidence, the assessment arrived at a 68% confi-
dence interval for the total aerosol effective radiative forcing of −1.6 to −0.6 W m −2, or −2.0 to −0.4 W m −2 with 
a 90% likelihood. With a forcing of −1.52 W m −2, E3SMv2 is close to the lower bound but within the narrower 
confidence interval.

4.3. Historical Ensemble

To facilitate comparisons between model and observations, the bulk of the analysis focuses on the historical 
simulations.

Figure 7 provides a broad overview of the model performance. Spatial RMSEs against observations or reanal-
ysis products are computed for annual and seasonal averages with the E3SM Diagnostics package (C. Zhang 
et al., 2022). The first historical ensemble members of E3SM are depicted with triangles, blue for E3SMv1 
and red for E3SMv2. They are compared against 52 CMIP6 models shown with box-and-whisker plots (mini-
mum, 25th, 75th percentile, maximum). Underlying E3SM Diagnostics comparison figures are available 
online (https://portal.nersc.gov/project/e3sm/CMIP6_E3SMv2_Golaz_et_al_2022). For most fields, E3SMv2 
outperforms E3SMv1. Notable improvements include precipitation and sea-level pressure. The simulated 
precipitation in E3SMv2 is now competitive with the upper quartile of the CMIP6 ensemble. While sea-level 
pressure is also much improved, it is still only about average compared to CMIP6. Consistent with sea-level 
pressure, zonal wind at 850 hPa also improves. E3SMv2, similarly to E3SMv1, has a good representation of 
TOA radiation fields, moderately improving upon v1 for most fields and seasons. Unfortunately, two fields 
suffer from a degradation in E3SMv2 as compared to E3SMv1. For the zonal wind at 200 hPa, the degra-
dation is partly  associated with the change in stratospheric ozone chemistry (i.e., O3v2; Tang et al., 2021, 
their Figure 10), but the differences between E3SMv2 and E3SMv1 in Figure 7 are larger than those between 
E3SMv1 + O3v2 and E3SMv1, suggesting that other factors contribute as well. The degradation in surface 

Figure 6. Time evolution of annual global mean total ERF (brown) and aerosol-related ERF (blue) for E3SMv1 and 
E3SMv2. Horizontal lines and adjacent values denote averages from 1995 to 2014.

https://portal.nersc.gov/project/e3sm/CMIP6_E3SMv2_Golaz_et_al_2022
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air temperature over land is largely attributable to poor simulation of the historical temperature record (see 
Sections 4.3.6 and 5 below).

Selected fields from Figure 7 are discussed in more detail in the subsections below. Comparison figures between 
observations, E3SMv1, and E3SMv2 for the remaining ones are available in the Supporting Information (Figures 
S3–S9 in Supporting Information S1).

4.3.1. Radiation and Clouds

Annual net TOA radiative flux (2001–2014) in E3SMv1 and v2 is depicted in Figure  8 in comparison with 
observations from CERES-EBAF Ed4.1 (Loeb et al., 2018). The simulated global mean value is nearly identical 
between the two versions at +0.5 W m −2, lower than the observational estimate (but consistent with the smaller 

Figure 7. Comparison of RMSEs (1985–2014) of an ensemble of 52 CMIP6 models (first historical members r1i1p1f1) with the first historical members of E3SMv1 
(blue triangles) and E3SMv2 (red triangles). Box and whiskers show 25th, median, 75th percentile, minimum, and maximum RMSE for the CMIP6 ensemble. Spatial 
RMSE against observations are computed for annual and seasonal averages with the E3SM Diagnostics package (C. Zhang et al., 2022). Fields shown include TOA net 
radiation (a), TOA SW and LW cloud radiative effects (b, c), precipitation (d), surface air temperature over land (e), sea-level pressure (f), 200 and 850 hPa zonal wind 
(g, h), and 500 hPa geopotential height (i). TOA, top-of-atmosphere; SW, shortwave; CRE, cloud radiative effects; LW, longwave; DJF, December–February; MAM, 
March–April; JJA, June–August; SON, September–November; RMSE, root-mean-square error. The mean climatology of the reference observational and reanalysis 
data sets are derived from: CERES-EBAF Ed4.1 (Loeb et al., 2018; 2001–2014) for (a–c), GPCP2.3 (Adler et al., 2018; 1985–2014) for (d) and ERA5 (Hersbach 
et al., 2020; 1985–2014) for (e–h). Due to data availability, not all models are included for every variable. Complete data is available in Table S1.
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Figure 8. Annual net top-of-atmosphere (TOA) radiative flux (W m −2): (a) CERES-EBAF Ed4.1 observational estimate (2001–2014), (b) model bias from the 
5-member ensemble of E3SMv2 historical coupled simulations (2001–2014), and (c) model bias from the 5-member ensemble of E3SMv1 historical coupled 
simulations (2001–2014). RMSE, root-mean-square error; CORR, linear correlation coefficient between observation and model.
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warming; Figure 6 and Section 4.3.6). Many regional biases are reduced in E3SMv2, including positive biases 
over stratocumulus regions, as well as negative biases over tropical and subtropical Pacific, Indian, and Atlantic 
oceans, resulting in an overall smaller RMSE (8.6 vs. 9.3 W m −2).

Figures 9a and 9c demonstrate that the TOA SWCRE effect is improved in the E3SMv2 historical ensemble 
compared with E3SMv1 in terms of RMSE and the pattern correlation. Overall, the global mean SWCRE in 
E3SMv2 is weaker and closer to observations by ∼1.5 W m −2. The positive TOA SWCRE bias associated with 
the stratocumulus decks over eastern ocean basins, especially right off the coasts of California, Peru and Chile, 

and the southern West Africa, is clearly reduced, while the negative SWCRE 
bias associated with the cumulus regimes over central/western tropical 
oceans is slightly reduced as well. The improvement in the marine boundary 
layer cloud regimes is mainly from the updated CLUBB tuning parameters 
(Ma et  al.,  2022). The global mean TOA longwave cloud radiative effect 
(LWCRE) bias is weaker by ∼0.6  W  m −2, slightly degraded compared to 
E3SMv1 while RMSE remains comparable (Figures 9b and 9d). Regional 
biases over the equatorial Pacific and the intertropical convergence zone 
are reduced associated with the improved precipitation over these areas 
(described in Section 4.3.2 below). The positive TOA LWCRE bias is also 
slightly reduced over the Southern Ocean.

The enhanced WBF efficiency and the update to the ZM scheme significantly 
increase ice water in mixed-phase clouds, which also weakens SWCRE in 
the Southern Hemisphere (e.g., ∼30°S in Figure 9). The liquid condensate 
fraction (LCF) as a function of temperature at all latitudes between 30°S and 
80°S (Figure 10) from both E3SMv1 and E3SMv2 historical coupled simu-
lations demonstrate that the updated atmosphere features and tuning parame-
ters in E3SMv2 significantly increase ice cloud mass fraction in the tempera-
ture range between −50°C and −10°C, which is closer to the general pattern 
of the observational estimate (Y. Zhang et  al.,  2019). Note that the LCFs 
from the E3SMv1 historical coupled simulation and the E3SMv2 historical 
coupled simulation are both calculated throughout the whole cloud layer with 

Figure 9. Annual top-of-atmosphere shortwave and longwave cloud radiative effect model biases (historical ensemble, 2001–2014) compared to CERES-EBAF Ed4.1 
observational estimate (2001–2014) (W m −2): (a) SWCRE E3SMv1, (b) LWCRE E3SMv1, (c) SWCRE E3SMv2, (d) LWCRE E3SMv2. RMSE, root-mean-square 
error. CORR, linear correlation coefficient between observation and model.

Figure 10. Diagnosed liquid cloud fraction (LCF) based on the monthly 
model output in the 30°–80°S latitude band from (blue line) the E3SMv2 
historical coupled simulation (1985–2014), (olive line) the E3SMv1 historical 
coupled simulations (1985–2014), and (black line) observations from Y. Hu 
et al. (2010).
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the monthly model output at 1° resolution, while the observation from Y. Hu et al. (2010) is based on cloud top 
estimates at 5 km resolution. Given the mismatch between the model diagnostics and observational estimates and 
the broad range of observed cloud phase partition from previous observational estimates (McCoy et al., 2016), it 
is more reasonable to compare the v2 LCF with the v1 LCF.

We further quantify the improvements in the subtropical stratocumulus decks compared to E3SMv1 following 
Brunke et al. (2019). We define the decks as the areas within 30° latitude by 35° longitude boxes in the North-
east Pacific (NEP; 10°–40°N, 110°–145°W), Northeast Atlantic (NEA; 0°–30°N, 15°–50°W), Southeast Pacific 
(SEP; 5°–35°S, 70°–105°W), Southeast Atlantic (SEA; 5°–35°S, 20°W–15°E), and the Southern Indian Ocean 
(SIO; 10°–40°S, 80°–115°E) where low cloud cover >45%, the LCC45+ decks, over both the land and ocean 
portions of the boxes. E3SMv2 LCC from the Cloud Feedback Model Intercomparison Project Observation 
Simulator Package (COSP) Cloud-Aerosol Lidar and Infrared Pathfinder (CALIPSO) satellite simulator is gener-
ally improved, falling more within the observational spread represented by three satellite and in-situ based clima-
tologies (the CALIPSO satellite GCM-Oriented CALIPSO Cloud Product [GOCCP], the International Satellite 
Cloud Climatology Project [ISCCP] D2 product, and the Extended Edited Cloud Reports Archive [EECRA]; 
Figure 11).

The cloud changes that lead to the SWCRE improvements can be explained by the spatial errors in the simulated 
LCC45+ cloud decks with respect to GOCCP which are defined as in Brunke et al. (2019). An example of these for 
the seasons of maximum LCC for each region in Figure 11 is given in Figure 12. For “apples-to-apples” compar-
isons, the model output from the COSP CALIPSO satellite simulator is used. Centroid distances (Figure 12a) 
measure the distance between the centroid of the seasonal mean cloud deck in GOCCP and the model. Smaller 
centroid distances are better than large ones. Area ratios (Figure 12b) are the ratio of the area of the model's deck 
to that of the satellite to measure cloud deck size errors. Finally, overlap ratios (Figure 12c) are the fraction of the 

Figure 11. The mean low cloud cover (LCC) for each of the LCC45+ cloud decks (see text for definitions) for the 30° latitude by 35° longitude boxes over the 
Northeast Pacific (NEP), Northeast Atlantic (NEA), Southeast Pacific (SEP), Southeast Atlantic (SEA), and the Southern Indian Ocean (SIO).

Figure 12. Centroid distances, area ratios, and overlap ratios of the LCC45+ decks in June–August (JJA) for the two 
Northern Hemisphere regions and in September–November (SON) for the Southern Hemisphere regions.
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union of the model and satellite cloud decks in which there is overlap. This synthesizes the effects of location, 
size, and shape errors in the simulated cloud decks. Both of these ratios should be close to 1 for minimal errors.

Figure 12 shows that E3SMv2 improves most the representation of the widely studied subtropical stratocumulus 
cloud decks in the NEP, NEA, and SEP. In these regions, centroid distances are decreased and overlap ratios are 
similar to or increased to values closer to 1. Area ratios are improved in all regions with values closer to 1 except 
NEA. Similar results are found in all other seasons.

4.3.2. Precipitation

The model bias in annual precipitation from E3SMv2 shows notable improvement compared with that in E3SMv1 
(Figure 13). The biases are clearly reduced in the Tropical Pacific Ocean, Maritime continent, Central America, 
and the Amazon. The updated ZM tuning parameters, the dCAPE-ULL convective trigger, and the inclusion of 
the gustiness effects and the subgrid temperature variance are found to reduce the regional biases of annual mean 
precipitation (Ma et al., 2022; Xie et al., 2019).

As described in Section 2.1.3, the dCAPE-ULL convective trigger is expected to broadly improve the simu-
lation of diurnal precipitation. This can be clearly seen in Figure 14, which shows the comparison of the time 
phase (color) and amplitude (color density) of diurnal precipitation between TRMM, and E3SMv2 and E3SMv1 
historical simulations over the tropics. Note that the precipitation from the models are the sum of convective and 
large-scale precipitation. The diurnal characteristics are dictated by the convective precipitation and the dCAPE-
ULL trigger has little impact on the diurnal cycle of large-scale precipitation. The improvements from E3SMv1 
to E3SMv2 are most evident in the diurnal peak phase. Over the oceans, E3SMv2 captures the observed wide-
spread morning peaks, particularly along the primary precipitation bands, where the peak precipitation occurs 
several hours too early (closer to midnight) in E3SMv1. Over the Maritime continent region, E3SMv2 closely 
reproduces the observed early evening peaks over land and the transition to morning peaks toward the coasts and 
open oceans, while E3SMv1 has too-early diurnal precipitation peaks from noon to early afternoon over land 
and similarly much earlier peaks around midnight in the coastal regions. Over the tropical continents, includ-
ing Africa, South America, and South Asia, the observed diurnal peaks occur from late evening to midnight. 
While the diurnal precipitation peaks in E3SMv1 are nearly phase-locked to maximum insolation over these land 
masses, the phase-locking behaviors are avoided in E3SMv2, which sees the peak phases near midnight or shortly 
after. However, the improvement in simulating diurnal timing phases does not translate to diurnal amplitude. 
This is presumably due to lack of skill in simulating meso-scale convective systems in coarse-resolution models. 
Furthermore, while the diurnal amplitudes are weaker in both models compared to observations, they are some-
what degraded from E3SMv1 to E3SMv2 particularly over weakly precipitating subtropical oceans.

The improvements in summertime diurnal precipitation peak phase in E3SMv2 over mid-latitude landmass such 
as the continental United States (Figure 15) is largely consistent with what were shown in Xie et al. (2019) where 
the dCAPE-ULL trigger was first implemented in E3SMv1. Notably with the new trigger, E3SMv2 is able to 
produce the successive delay of precipitation peak phases from the high mountains to the plains across the central 
U.S. In particular, over the U.S. Great Plains, the new trigger successfully captures the nocturnal precipitation 
peak, which has been missed by most climate models. However, the observed late afternoon peak over the Eastern 
and Southeastern U.S. is missed in E3SMv2. Instead, it produces a late evening peak over the regions. This is in 
contrast with the well simulated late afternoon peak over the regions as shown in Xie et al. (2019). Sensitivity 
experiments indicate this degradation is primarily caused by the re-tuning of a parameter that effectively changes 
the air parcel launch level from 2 levels above the bottom model level to just one level above (E3SMv1p; Ma 
et al., 2022). The issue is being further investigated and addressed by the E3SM development team. An initial test 
with further enhancements to the ZM scheme has indicated that a much-improved diurnal cycle of precipitation 
could be achieved in the next version of E3SM.

After the model was finalized, it was observed that the dCAPE trigger, independent of the ULL trigger and other 
model settings, including the new physics pg2 grid, induces a checkerboard grid-level noise pattern in a number 
of output fields, including total grid-box cloud water liquid and ice paths, when these fields are temporally 
instantaneous or averaged over not more than several days (Hannah et al., 2022). Figure S10 in Supporting Infor-
mation S1 illustrates this issue by comparing a daily average output of the total grid-box cloud liquid water path 
in four lower resolution atmosphere simulations over two binary experimental settings: with the dCAPE trigger 
on and off, on the new pg2 physics grid and on the original np4 physics grid. These checkerboard noises occur 
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Figure 13. Annual precipitation rate (mm/day): (a) Global Precipitation Climatology Project v2.3 observational estimate (1985–2014), (b) model bias from the 
5-member ensemble of E3SMv2 historical coupled simulations (1985–2014), and (c) model bias from the 5-member ensemble of E3SMv1 historical coupled 
simulations (1985–2014). RMSE, root-mean-square error. CORR, linear correlation coefficient between observation and model.
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mostly in the sub-tropics where convection is naturally weak and sparse. As indicated in many earlier studies, 
the ZM scheme with its default CAPE trigger frequently produces spurious weak precipitation in the subtrop-
ical region. Such spurious precipitation is mostly suppressed with the use of the dCAPE trigger, which adds a 
dynamical constraint to suppress convection when the large-scale environment is not favorable. As a result, the 
weak convection that is still triggered when using dCAPE becomes more isolated, leading to the apparent check-
erboard noise when visualized spatially. Although this is largely an indication that the dCAPE trigger is working 
as intended, we are testing a few approaches to reduce the checkerboard problem, including setting a threshold for 
dCAPE (currently zero) and considering the impact of the large-scale dynamic forcing on cloud base mass fluxes. 
We will attempt to address this problem in our next release of the model.

4.3.3. Tropical Variability

As in Golaz et al. (2019), we examine the E3SMv2 variability of the El Niño Southern Oscillation (ENSO) via 
wavelet analysis (Torrence & Compo, 1998) of the Niño 3.4 SST for the piControl and historical simulations in 
Figure 16. In this figure, the piControl has again been divided into five 100 yr intervals. The 90% confidence 
interval is shown as the dashed black line. ENSO variability in E3SMv2 shows a number of similarities to 
E3SMv1 (compare to Golaz et al., 2019, their Figure 20). Again E3SMv2 shows a very robust peak of variability 
at short periods (∼2.5 yr), which is similar to E3SMv1 and shorter than ERSSTv4 (thick black line). While a 
longer period (6–9 yr) remains in the piControl, the mean for the five 100 yr intervals has reduced relative to 
E3SMv1. This longer term variability is weaker than simulated in other CMIP5 and CMIP6 models (see Orbe 
et al., 2020, their Figure 10a) and observations (black line in Figure 16). The intermediate periods (3–6 yr) seen 

Figure 14. Annual mean time phase (color) and amplitude (color density) of the first diurnal harmonic of 3-hourly total precipitation (mm/day) from (a) TRMM 
(1998–2013), and historical simulations (1985–2014) of (b) E3SMv2 and (c) E3SMv1. Note that the diurnal properties are computed at 0.25° resolution for TRMM and 
1° resolution for the models. Remapping the TRMM data to 1° resolution does not lead to noticeable changes in the diurnal phases, though the amplitudes would be 
reduced somewhat due to spatial averaging (maximum amplitude over the tropics reduced to 18.9 mm/day from 25.8 mm/day). To ease comparison, the same amplitude 
upper bound is used for the plots, though the maximum amplitudes, as printed above each panel, are different. Amplitudes exceeding the upper bound are shown in the 
highest color density. Areas with diurnal amplitude less than 0.2 mm/day are left blank.
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in ERSSTv4 are not well captured in E3SMv2. The spatial SST response to ENSO is shown in Figure S11 in 
Supporting Information S1. The magnitude of the SST response (approximately 2.5°C) in the piControl and 
historical ensemble mean (panels b and c) is consistent with E3SMv1, other CMIP models, and observations 

Figure 15. Same as Figure 14 except for the contiguous United States in June–July–August season.
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(Brown et al., 2020; Golaz et al., 2019). However, the center of the response 
is shifted too far westward, which is consistent with other models.

The Madden-Julian oscillation (MJO; Madden & Julian,  1971), the domi-
nant mode of tropical variability on subseasonal (10–100 days) scales, is a 
key contributor to ENSO events (C. Zhang & Gottschalck, 2002), monsoon 
activity (Wheeler & McBride,  2012), extratropical atmospheric blocking 
episodes (Henderson et al., 2016), tropical cyclone formation (Maloney & 
Hartmann,  2000), and weather extremes (Higgins et  al.,  2000; Matsueda 
& Takaya,  2015; Mundhenk et  al.,  2016). Its accurate representation in 
numerical models is essential for weather and climate prediction (Vitart & 
Robertson, 2018), yet a satisfactory depiction of the MJO remains elusive 
(Ahn et  al.,  2020; Jiang et  al.,  2015). Figure  17 shows the distribution of 
tropical precipitation spectral power, normalized by a smoothed background 
spectrum, in zonal wavenumber-frequency space (Wheeler & Kiladis, 1999). 
Model-observation comparisons span 2001–2010 within the TRMM satel-
lite era (Huffman et al., 2001), but comparisons between E3SM versions use 
the extended period 1985–2015; our conclusions do not change whether the 
shorter or longer time window is used. Results from an E3SMv2 historical 
simulation (Figure 17b) indicate slightly lower power values for equatorial 
Rossby waves and the MJO and an MJO peak that is at a higher frequency 
compared to observations (Figure  17a). Relative to an E3SMv1 historical 
simulation (see Golaz et al., 2019 and Orbe et al., 2020 for details), precip-
itation normalized power in the broad MJO spectral region has increased 
and shifted to higher frequencies (Figure 17c). Both E3SMv2 and E3SMv1 
dramatically underestimate precipitation variability associated with atmos-
pheric Kelvin waves and other synoptic-scale disturbances. In AMIP simula-
tions, MJO spectral power is again larger in E3SMv2 compared to E3SMv1 

(Figure 17e) yet, unlike the historical runs, it is not shifted to higher frequencies and thus it is more realistic; for 
other wave types, intraseasonal variability biases in E3SM AMIP and historical simulations are generally similar.

Lag correlations of equatorial precipitation and 850 hPa zonal wind with Indian Ocean precipitation (Figure 18) 
suggest some improvement in MJO propagation across the Maritime Continent in E3SMv2 compared to E3SMv1, 
as evidenced by more consistent red shading eastward to 125°E. MJO eastward propagation in AMIP simulations 
(Figures 18d and 18e), particularly across the Indian Ocean and Maritime Continent between 50° and 120°E, is 
much improved in E3SMv2. In both E3SMv2 and E3SMv1, the quadrature phasing of precipitation and zonal 
wind resembles that in observations, but the MJO phase speed begins to exceed the observed 5.5 m s −1 reference 
value (dashed green line) east of 120°E and especially in E3SMv2. E3SMv2 historical simulation results are simi-
lar to those for CESM2 reported in Danabasoglu et al. (2020). A more detailed evaluation of tropical subseasonal 
variability in E3SMv2 will be presented in a forthcoming manuscript.

4.3.4. Ozone

The stratospheric column ozone (SCO) of the historical ensemble mean of E3SMv2 is compared with the satel-
lite observations from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) at 
60°S–60°N, where the satellite observations have good quality all year round. Figure 19 shows the climatology of 
SCO zonal mean annual cycle from years 2005–2014 of E3SMv2 historical simulations and years 2005–2014 of 
the OMI + MLS observations. The E3SMv2 historical simulations match the observed SCO seasonal phase and 
pattern, but generally overestimate the SCO magnitude except at 40°N–60°N in all months and near 30°S from 
March to September. Comparing to the E3SMv1 SCO in Figure 1d of Tang et al. (2021), the E3SMv2 SCO better 
matches observations in the SH mid-latitudes, but is worse in the NH mid-latitudes. This E3SMv1-E3SMv2 
difference in the SCO is likely associated with the QBO and GW retuning for the E3SMv2.

The evolution of the Antarctic ozone hole during the historical time period reflects the combined effect of dynam-
ics, physics, and chemistry. The NASA Ozone Watch website (https://ozonewatch.gsfc.nasa.gov, last access: 11 
October 2021) archives the daily records of the Antarctic ozone hole area (where the total column ozone (TCO) 
is less than 220 DU) and minimum TCO in the SH based on daily TCO observational data. Figures 20a and 20b 

Figure 16. El Niño–Southern Oscillation (ENSO; Nino3.4) variability of 
the pre-industrial (PI) control simulation and historical ensemble. The Morlet 
wavelet of degree 6 is used (e.g., Torrence & Compo, 1998). The PI control 
(green lines) has been divided into five 100 yr sections; each Historical 
ensemble member is shown as an orange line. ERSSTv4 data (W. Liu 
et al., 2015) is shown as the thick black line. The 90% confidence interval is 
shown as the dashed black line.

https://ozonewatch.gsfc.nasa.gov
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compare the yearly E3SMv2 historical ensemble mean time series with the yearly Ozone Watch observations for 
the SH minimum TCO and the ozone hole area, respectively. Both the yearly model and observational results are 
based on the daily data from 1 July to 31 December of each year.

The Antarctic ozone hole emerges about 1980 after the buildup of anthropogenic chlorofluorocarbon (CFCs) 
reach a threshold that initiates rapid, catalytic destruction of ozone within the Antarctic stratospheric polar vortex 
(Farman et al., 1985; Molina & Rowland, 1974). The ozone hole simulation in E3SMv2 is weaker than observed 
in terms of minimum TCO (Figures 20a and 20c) and areal extent of the ozone hole (Figures 20b and 20d). Given 
the 50 DU high bias for ozone-hole minimum TCO (Figure 20c), the temporal history of the ozone hole, from 
onset to partial recovery, is well matched in E3SMv2 (Figure 20a). In terms of seasonality, the E3SMv2 ozone 
hole begins almost a month later and recovers almost a month earlier. The cause of this is not the ozone chemical 
model, as it works well in other atmospheric models, but is likely related to the formation and persistence of the 
wintertime vortex. The ozone hole is created chemically, but its size and duration depend on the vortex remaining 
isolated from the mid-latitude stratosphere throughout most of the lower stratosphere. The E3SMv2 ozone hole 
interannual variability (IAV, shaded areas in Figures 20c and 20d), scaled to the size of the ozone hole, matches 
the observations, indicating that the vortex IAV is similar to observations. It is possible that the weaker ozone 
hole in E3SMv2 could be improved with a colder stratosphere, or parametrically, by increasing the PSC temper-
ature threshold.

4.3.5. Aerosols

The global distribution of annual mean AOD at 550  nm from E3SMv2 and E3SMv1 historical simulations 
(2000–2014) is compared with observational composite (Kinne et  al.,  2013) in Figure  21. Model results are 
not included in this comparison over regions where the observations are not available, for example, in the high 

Figure 17. Tropical zonal wavenumber-frequency power spectra of the component of precipitation that is symmetric about the Equator for the period 2001–2010 
for (a) observations (Tropical Rainfall Measuring Mission product 3B42v7) from 2001 to 2010 and (b) an E3SMv2 historical simulation, and (d) an E3SMv2 AMIP 
simulation. Plotted values represent the summed power from 15°S to 15°N divided by the smoothed background power (the “normalized” power). Solid black lines 
indicate shallow water dispersion curves for equivalent depths of 12, 25, and 50 m. Prominent wave types are labeled: westward inertia-gravity (n = 1 WIG), Kelvin, 
equatorial Rossby (n = 1 ER), and the Madden-Julian oscillation (MJO). (c, e) The change, expressed as a percent difference, in the normalized spectral power between 
E3SMv2 and E3SMv1 (c) historical simulations and (e) AMIP simulations for the extended period 1985–2014.
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latitudes. E3SMv1 and v2 realistically capture the broad regional distribution in AOD, but E3SMv2 has a stronger 
positive bias than E3SMv1 in the global mean (0.034 vs. 0.013) compared to the observational composite, 
although the low bias over mid-latitude source regions is improved in E3SMv2. Larger positive biases in E3SMv2 
than E3SMv1 are found over tropical and subtropical oceans. Decomposition of the total AOD into major aerosol 
species is provided in Table 2. The positive biases are mostly due to an increase in anthropogenic aerosol species, 
particularly sulfate and SOA. The global annual mean burdens of sulfate and SOA have an increase of 1.03 and 
0.95 Tg, respectively, in the E3SMv2 historical simulations (2000–2014) compared to E3SMv1 (Figure S12 in 
Supporting Information S1). The global annual mean burdens of other anthropogenic aerosol species are also 
larger in E3SMv2 than those in E3SMv1, although both model simulations use the same set of CMIP6 emis-
sions, indicating that the aerosol removal in E3SMv2 is weaker than in E3SMv1. This might be an unintended 
consequence of intensive cloud and precipitation parameter tuning for EAMv2. Salzmann et al. (2022) recently 
reported on the impact of moist convection parameter settings on wet deposition and as a result on AOD.

Natural aerosols (e.g., dust and sea salt) are also affected, as shown in Figure S12 in Supporting Information S1, 
although their global burdens have small changes, contributing less than the anthropogenic aerosols to the posi-
tive bias in global mean AOD in E3SMv2 (Table 2). This is because the emissions of dust and sea salt are scaled 
to match the same global constraints of their optical depth in both E3SMv1 and E3SMv2. On the regional scales, 
sea salt burden increases in E3SMv2 over some portions of tropical and subtropical oceans, for example, Indian 
Ocean, which may contribute to the higher AOD in those regions. Similar to sulfate and SOA, the increase in 
sea salt is related to the changes in aerosol wet deposition, as those regions with increased burdens are associ-
ated mostly with tropical convection and precipitation. With the global constraint, the positive changes in sea 
salt are offset by the negative changes between E3SMv2 and E3SMv1 such as over the marine stratus or stra-
tocumulus regions in the mid-latitude and sub-tropical oceans. Regional changes are also found in dust aerosol 

Figure 18. Latitudinally averaged (10°S–10°N) precipitation (colors) and 850 hPa zonal wind (lines) anomalies lag correlated with precipitation in the Indian Ocean 
region (60°–90°E, 10°S–10°N) for (a) observations from 2001 to 2010 (Tropical Rainfall Measuring Mission [TRMM] precipitation and Modern-Era Retrospective 
Analysis for Research and Applications [MERRA] wind), and the 1985–2014 period for (b) E3SMv1 historical, (c) E3SMv2 historical, (d) E3SMv1 AMIP, and (e) 
E3SMv2 AMIP simulations. The dashed green line in (a) represents the observed Madden-Julian oscillation phase speed (5.5 m s −1) in precipitation and is copied to 
panels (b–e) for reference. The line contour interval is 0.1, solid lines indicate positive correlations, dashed lines indicate negative correlations, and the zero correlation 
line is omitted. Anomalies, defined as departures from the smoothed seasonal cycle, are bandpass filtered to retain 20–100 days signals prior to correlation.

a) Observations (2001-2010) b) E3SMv1 historical (1985-2014) c) E3SMv2 historical (1985-2014)

d) E3SMv1 AMIP (1985-2014) e) E3SMv2 AMIP (1985-2014)
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burden. Different from the anthropogenic aerosols, since the emissions of sea 
salt and dust depend strongly on the simulated surface winds, the regional 
changes in their burdens (and AOD) may also be related to the changes in the 
simulated meteorology between E3SMv2 and E3SMv1. On the global mean 
basis, however, higher AOD in E3SMv2 may still be largely attributable to 
the anthropogenic aerosols, especially sulfate and SOA.

In addition to AOD, aerosol absorption of sunlight is also an impor-
tant parameter in determining the aerosol radiative impacts. As discussed 
in Section  2.1.5, dust refractive indices in the shortwave were updated in 
E3SMv2. This leads to better agreement in the simulated aerosol absorption 
optical depth (AAOD) at 550  nm, as shown in Figure  22, compared with 
the 10 yr AAOD climatology derived from the ground-based AERONET 
measurements (Holben et al., 1998) between 2006 and 2015. This 10 yr time 
period is selected as it overlaps with most of the model-simulated 15 yr repre-
sentative of a present-day climatology, but also during this time there are 
continuous observations over a large number of sites globally. The compiled 
AERONET data for AAOD are available at a total of 139 stations mostly over 
land, and 19 of them with aerosol Ångström exponent <0.8 are denoted as the 
dusty sites, which are located near the major dust source regions. Compared 
to E3SMv1, E3SMv2 simulates smaller AAODs over all the dusty sites, 
and the calculated multi-site mean is 0.024, reducing the overestimation of 
E3SMv1 (0.044) by nearly a factor of two against the observations (0.017). 
Over the other AERONET sites, AAODs in E3SMv2 are generally larger 
than those in E3SMv1 mainly due to the increased BC. Overall, E3SMv2 
improves from E3SMv1 (0.017) by predicting a smaller mean AAOD (0.014) 
averaged over all the AERONET sites, similar to the observed mean (0.012) 
and with a smaller RMSE. The spatial correlation between the modeled and 
observed AAOD is noticeably improved in E3SMv2, for a larger correla-
tion coefficient (0.83) with AERONET than that of E3SMv1 (0.72). Stronger 
correlation and smaller RMSE with the AERONET observations are also 
found in AOD (Figure S13 in Supporting Information S1), implying a better 
representation of AOD and AAOD in E3SMv2 than E3SMv1 over the land 
area near those AERONET sites.

The AAOD improvement in E3SMv2 compared with the AERONET data 
implies less aerosol heating in the atmosphere over the dust-influenced 
regions as a result of the decreased AAOD (Figure S14 in Supporting Infor-
mation S1) mainly due to the less absorbing dust optical properties. Addition-
ally, we also updated the representation of dust size distribution in emission 
by accounting for more coarse particles in E3SMv2, which would decrease 
the net cooling effect of dust, but the impact is less than the enhanced cooling 
due to the lowered dust absorption (Feng et al., 2022). Over the other regions, 
E3SMv2 generally predicts higher AAOD than E3SMv1 resulting from the 
increased AOD (Figure S14 in Supporting Information S1) especially due to 

BC, which would cause more atmospheric heating by aerosols regionally. Despite a higher global mean AOD, the 
global mean AAOD in E3SMv2 (0.0084) is slightly lower than in E3SMv1 (0.0089), suggesting a possibly more 
negative direct radiative effect by aerosols.

4.3.6. Historical Temperature Record

We now compare the time evolution of the global mean blended surface temperature (defined as SST over ice-free 
ocean and 2 m surface air temperature over land and sea ice) in E3SM with the observed historical record. We 
select the HadCRUT5-Analysis product (Morice et al., 2021); other products are available but the differences 
are minor compared to the differences with E3SM. Figure 23 shows the temperature anomalies normalized with 
respect to 1850–1899. As discussed previously (Golaz et al., 2019), E3SMv1 failed to accurately simulate the 

Figure 19. Climatology of zonal mean annual cycle of stratospheric 
column ozone (SCO, in Dobson units (DU)). The panels show data of years 
2005–2014 from (a) E3SMv2 ensemble mean of historical simulations, 
(b) OMI + MLS observations, and (c) the differences of E3SMv2 minus 
OMI + MLS.
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record by underestimating the warming starting around 1930 but eventually caught up to the observed record 
near 2010 because it overestimated the pace of warming from 1990 onward. This was attributed to excessively 
strong aerosol-related forcing and high climate sensitivity. While both have improved in E3SMv2–slightly for 
the aerosol-related forcing and significantly for the sensitivity–E3SMv2 further underestimates the global mean 
surface temperature during the second half of the record. E3SMv2 diverges from E3SMv1 around 1930 and 
remains colder for the remainder of the record. A more in-depth analysis of this shortcoming is provided in 
Section 5.

The temporal evolution of the magnitude of radiative feedbacks, and hence effective climate sensitivity, is known 
to be influenced by the spatial patterns of the change in SSTs, particularly tropical Pacific SSTs, in climate simu-
lations (e.g., Andrews et al., 2015; Dong et al., 2019, 2020; Gregory & Andrews, 2016; Stevens et al., 2016). This 
is due to the impact of the east-west SST gradients in the tropical Pacific on convection, low clouds, humidity, and 
lapse rates affecting the different radiative feedback mechanisms over the region (e.g., Dong et al., 2020; Gregory 
& Andrews, 2016). Figure 24 shows the difference in SSTs between the 1980–2014 and the 1870–1904 period 
with respect to the tropical (25°N–25°S) mean SST change between the two periods for HadISST data, histori-
cal simulation, historical with GHG-only forcing (hist-GHG), and historical with aerosol-only forcing (hist-aer) 
simulation ensembles. The historical simulation shows a weak La Niña-like spatial pattern over the tropical 
Pacific with a weaker westward extension of cold anomalies as compared to HadCRUT5-analysis and HadISST 
data set. The stronger than observed relative warming over the central Pacific region suggests stronger positive 
cloud radiative feedbacks over the region (e.g., Andrews et al., 2015) in E3SMv2, which also may be contributing 
to the strong climate sensitivity in E3SMv2 over the historical period. The spatial pattern of the SST change in the 
hist-GHG and hist-aer simulation ensembles generally oppose each other, with the hist-GHG (hist-aer) exhibiting 
an El Niño (La Niña)-like pattern.

Figure 20. Ozone hole results as shown in the historical time series (top) and daily mean climatology and variance (bottom) of the SH minimum total column ozone 
(left, unit: DU) and the SH maximum ozone hole area (right, area with total ozone <220 DU, unit: million km 2) based on the daily data from 1 July to 31 December. In 
the bottom panels, the lines indicate the multiyear (1990–2014) average (observations in black and models in blue), and shading covers ±1 standard deviation.
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The E3SMv2 simulated OHC is shown in Figure 25 relative to the OHC derived from the 2009 World Ocean 
Atlas (Levitus et al., 2012). The near-surface (0–700 m) OHC does increase in E3SMv2 (solid blue line) but 
is much delayed relative to observations. This is consistent with the late warming in the E3SMv2 temperature 
anomalies (Figure 23). The mid-depth (700–2,000 m) OHC is very stable through the period analyzed, whereas 
the observations show an increase in the late 20th century. The lack of increasing OHC at that depth in E3SMv2 
is likely attributable to the weak simulated AMOC (Figure 4b), which impacts transport of heat anomalies to 
depth (e.g., A. Hu et al., 2020).

Figure 21. Spatial distributions of global annual mean (a) aerosol optical depth (AOD) from observational composite (Kinne 
et al., 2013) and the AOD difference between (b) E3SMv2 and (c) E3SMv1, respectively, from the historical simulations 
(2000–2014) and the observational composite. Areas with gray shading in polar regions indicate missing value. The number 
at the top-right of each panel represents the global mean.

AOD (2000–2014) Total Dust Sea salt Sulfate POM a BC a SOA a

E3SMv1 (historical) 0.146 0.032 0.049 0.024 0.007 0.0049 0.029

E3SMv2 (historical) 0.166 0.028 0.049 0.033 0.009 0.0063 0.040

 aPOM (particulate organic matter), BC (black carbon), and SOA (secondary organic aerosol).

Table 2 
Global and Annual Mean Aerosol Optical Depth (AOD) at 550 nm for Total Aerosol and Major Aerosol Types
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As mentioned above, no historical test simulations were performed prior to finalizing E3SMv2. Instead, we made 
a decision to rely on atmosphere-only simulations to estimate effective radiative forcing and feedback during the 
development. Once the model development was concluded and the first historical simulation complete, the E3SM 
project made a pragmatic decision to be transparent and release the model version and accompanying simula-
tions, rather than delay in an attempt to correct the problem with the simulation of the global mean temperature 
in the historical record. However, future versions of E3SM will include test historical simulations as part of their 
development cycle to avoid a repeat of this problem.

4.4. Impacts on Polar Climate

In the historical ensemble (Figure 26), Northern Hemisphere sea ice extent and volume both increase over the 
time period 1850–1978, and decrease after the mid-1980s, as observed. This behavior is consistent with changes 

Figure 22. (a) Annual mean aerosol absorption optical depth (AAOD) at 550 nm in E3SMv2 for the time period 2000–2014. The gray dots overlaid on top denote the 
locations of 139 AERONET stations, of which those circled in red denote the 19 dusty sites. (b) Comparison of the E3SMv2 AAOD with the observations derived from 
AERONET between 2006 and 2015 (Holben et al., 1998). r is the calculated correlation coefficient, and RMSE is the root-mean-square error.

Figure 23. Time evolution of annual global mean surface temperature anomalies (with respect to 1850–1899). Comparison 
between observations from HadCRUT5-Analysis (gray), E3SMv1 ensemble mean (red) and range (orange) and E3SMv2 
ensemble mean (dark blue) and range (light blue). Also shown (gold) is a best fit estimate obtained by scaling E3SMv2 GHG 
and aerosol as discussed in Section 5.
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in the OHC (Figure 26e) and surface air temperature anomalies for the historical simulations (Figure 23 and 
Figure B2b in Appendix B).

The maximum ice extent in the Arctic is larger in v2 than in v1, while it is smaller in the Southern Hemisphere. 
The minimum ice extent is similar for v1 and v2 in both hemispheres. E3SMv1's large, cold SST bias in the North 

Figure 24. Difference in SST between 1980–2014 and 1870–1904 relative to the tropical mean change between the two periods for (a) HadCRUT5 data, (b) HadISST 
data, (c) E3SMv2 historical ensemble, (d) E3SMv2 hist-GHG ensemble, and (e) hist-aer ensemble. Hatched areas indicate regions where the difference is statistically 
significant at the 95% confidence level based on a two-tailed Student's t test.
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Atlantic and associated anomalous sea ice in the Labrador Sea remain in v2. 
Unlike v1, which featured both warm and cold SST biases in the Northern 
Hemisphere, the Northern Hemisphere in v2 is too cold over its entirety, and 
so greater sea ice extent in v2 is not surprising. The Southern Hemisphere is 
still biased warm, but not as badly as in v1, and sea ice in the Southern Ocean 
is not extensive enough compared with the climate data record, year-round, 
in v2.

Trends during the satellite era (Figure  26, right panels) indicate that the 
model extent is decreasing faster than observed in the Arctic, consistent with 
the faster increase in surface air temperatures than observed (Figure  B2b 
in Appendix B). The ice extent trend has the opposite sign compared with 
observations in the Antarctic, as in many other models, and the change in 
volume extremes (Δ) between 1850 and 2015 is decreasing.

A counter-intuitive result is that extremes in the ice extent and volume in the 
historical simulations (left column of Figure 26) are generally larger than in 
the pre-industrial control, with a greater range of variability. However, this 
behavior is consistent with the aerosol forcing biases discussed in Section 5.

Figure 25. Ocean heat content (OHC) from the E3SMv2 historical ensemble. 
Blue shows the 0–700 m integrated OHC, and black shows the 700–2,000 m 
heat content. The solid lines are the ensemble average and shading shows the 
ensemble spread. The dashed lines are pentad-averaged OHC derived from the 
World Ocean Atlas 2009 (Levitus et al., 2012).

Figure 26. Daily sea ice extent (a, b) and volume (c, d) evolution across five ensemble members for the Northern and Southern Hemispheres, respectively, divided 
at the beginning of the core passive-microwave observation period in 1979 and compared to the change in 12-month filtered total ocean heat content from the start of 
the historical period in (e). Box plots in the left column compare annual extremes from daily values of the 500 yr pre-industrial control (blue) with the industrial-era 
5-member ensemble (purple). Trace colors for the year of the control simulation from which the ensemble members were spawned are indicated in ((c); 101, 151, 201, 
251, 300). Linear decadal trend in annual maximum and minimum daily extent is indicated in the right column for the ensemble mean of each ensemble trend line from 
1979 to 2015, as compared to the Meier et al. (2017) NOAA Climate Data Record for (a and b). The right column in (c–e) indicates the change (Δ) in the ensemble 
mean of volume extremes and non-filtered ocean heat content between 1850 and 2015.
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The net effect of improvements to the radiative and snow schemes in v2 only minimally impacts the climatic state 
of sea ice, and thus does not ameliorate biases in prior v1 simulations. Lack of conservation in the ice-ocean mass 
coupling scheme played a much more important role; the correction of mass exchanges between the upper ocean 
and sea ice models to account for brine content in the sea ice thickens the Arctic ice pack in summer, reducing a 
bias from v1 (Figure 26c, left column), while minimally impacting ice in the Southern Ocean (Figure 26d). With 
this mass-conserving scheme, the maximum and minimum sea ice areas are now stable in both hemispheres for 
the 500 yr pre-industrial simulations, as shown in Figure 4c.

5. Historical Record: Role of GHG Vs. Aerosols
To understand why E3SMv2 fails to accurately simulate the second half of the historical temperature record, we 
analyze an ensemble of coupled simulations spanning 1850–2014, but selectively activating only certain time 
varying forcing agents:

•  well-mixed greenhouse gases only (“GHG”),
•  aerosol and aerosol precursors only, including interactions with clouds (“aer”),
•  everything-else, all forcing agents except well-mixed GHG and aerosol (“other”).

This decomposition is similar to the DAMIP protocol (Gillett et al., 2016), except for the everything-else config-
uration, which is similar to natural forcing but includes additional forcing terms (in particular land-use and 
ozone). We chose this particular decomposition so that all the forcing agents are accounted for within the set. 
Five ensemble members were run for each decomposition, initialized identically to the five-member ensemble of 
historical simulations.

The time evolution of annual global mean blended surface temperature is depicted in Figure 27. As expected, 
the dominant forcings are GHG (red) and aerosol-related (turquoise). The remaining forcings (green) show 
inter-annual variations (mostly from volcanic eruptions and the solar cycle) with little long-term trend. A summa-
tion over the decomposition (thin blue) recovers the original historical ensemble (thick blue) very well, indi-
cating that the decomposition is linear. The GHG and aerosol contributions almost perfectly mirror each other 
until approximately 1960, thus explaining the lack of net warming until then (Figure 23). It is only after the 

Figure 27. Global annual surface air temperature anomalies for model and observations (gray). For E3SMv2, the 
decomposition includes contributions from only GHG (red), only aerosol (turquoise), and other (green). The E3SMv2 
historical is in blue, with the sum of individual terms in thin blue. Also shown is E3SMv1 with GHG only forcing (dark red). 
Horizontal lines indicate averages between 1995 and 2014. Observations from HadCRUT5-Analysis are normalized with 
respect to 1850–1899. Model results are normalized with respect to the 500 yr piControl simulation.
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aerosol-related forcing stabilizes around 1990 due to pollution control in North America and Europe that the 
GHG starts to dominate and E3SMv2 warms as a whole. As discussed previously, E3SMv2 has a lower TCR 
and ECS compared to E3SMv1. As a result, the warming from GHG alone is weaker than in v1 (dark red; Zheng 
et al., 2021). The two models diverge mostly after 1960 which helps explain why E3SMv2 remains colder longer. 
It is also informative to compare E3SMv2 with an ensemble of CMIP6 models (Tokarska et al., 2020, their Figure 
1a). E3SMv2-GHG warms a little faster than the CMIP6 ensemble (reaching ∼1.7°C compared to ∼1.5°C), but 
the largest difference is observed for E3SMv2-aer, which has an average cooling of 1.25°C over the last 20 yr, 
twice as large as the CMIP6 ensemble.

Equipped with this decomposition, we can investigate hypothetical configurations with different relative strengths 
of GHG and aerosol. We can write any variable ψ as:

𝜓𝜓all = 𝜓𝜓piControl + 𝛼𝛼GHG

(

𝜓𝜓GHG − 𝜓𝜓piControl

)

+ 𝛼𝛼aer

(

𝜓𝜓aer − 𝜓𝜓piControl

)

+

(

𝜓𝜓other − 𝜓𝜓piControl

)

 (1)

This reconstruction is conceptually similar to Neelin et al. (2010), but applied to different forcing terms rather 
than physics parameter perturbations. Gillett et al. (2012) and Winton et al. (2020) also used a similar decomposi-
tion to reconstruct the global mean surface temperature anomalies. Equation 1 is applicable to any variable. Vary-
ing αGHG modulates the model response to GHG (akin to modulating the TCR), while αaer modulates the model 
response to aerosols. Setting αGHG = αaer = 1 (“composite base”) recovers the all-forcing configuration as long 
as the decomposition is linear. Linearity is a very good approximation for annual global averages (Figure 27). 
Furthermore, it holds well for two-dimensional and three-dimensional climatological fields as demonstrated in 
Figure S15 in Supporting Information S1: RMSEs for the composite base configuration (red stars) and E3SMv2 
(red triangles) are very similar for most fields and seasons.

Optimal scaling factors αGHG and αaer are derived in Appendix B by minimizing the difference between simulated 
and observed surface temperature, leading to αGHG = 0.75 and αaer = 0.17 with a probable co-linear range from 
(0.60, 0.04) to (0.81, 0.23). This hypothetical configuration (“composite best”) matches the historical temperature 
record much better than E3SMv2 (Figure 23; gold).

The E3SMv2 scaling factors are comparable to previously reported values. Gillett et al. (2012) derived factors 
of 0.65 for GHG and 0.3 for aerosols for CanESM2 (TCR  =  2.3  K; ERFaer  =  −0.8  W  m −2), while Winton 
et al. (2020) derived factors of 0.78 and 0.34 for GFDL-CM4 (TCR = 2.05 K; ERFaer = −0.73 W m −2 from Smith 
et al., 2020). The GHG scaling factors are consistent for all three models given their similar TCR. The E3SMv2 
aerosol scaling factor is smaller, likely due to its stronger ERFaer = −1.52 W m −2.

Based on Rotstayn et al. (2015) and Shindell (2014), the temperature change over the historical record can be 
approximated as:

Δ𝑇𝑇 =
TCR

𝐹𝐹2𝑥𝑥

(𝐹𝐹GHG + 𝐹𝐹other + 𝐸𝐸aer𝐹𝐹aer) (2)

where F denotes effective radiative forcings and Eaer is an enhancement factor to account for the fact that the 
aerosol forcing has a different impact on global mean surface temperature than GHG. It is the same as the concept 
of efficacy first introduced by Hansen (2005).

Based in Equation 2, αGHG = 0.75 implies a reduction in E3SMv2 TCR from 2.4 to 1.8 K (assuming no change 
in F2x and FGHG), close to the CMIP6 observationally constrained TCR of 1.6 K from Tokarska et al. (2020). 
αaer = 0.17 implies a scaling of factor of 0.17/0.75 = 0.23 for EaerFaer, which could come from either a reduction in 
the aerosol enhancement factor or effective forcing, or a combination of both. The E3SMv2 aerosol enhancement 
factor can be estimated as (e.g., Winton et al., 2020):

𝐸𝐸aer =
Δ𝑇𝑇aer

𝐹𝐹aer

𝐹𝐹2𝑥𝑥

TCR
=

−1.25

−1.52
×
2.98

2.41
= 1.01 (3)

It is smaller than the value of 1.4 for an ensemble of CMIP5 models (Rotstayn et al., 2015). If we use their 2xCO2 
radiative forcing of 3.70 W m −2, the enhancement factor increases to 1.26, still lower than 1.4. We, therefore, 
postulate that the 0.23 reduction in EaerFaer is more likely to come from a reduction in the aerosol effective 
forcing than a reduction in the enhancement factor. If that is the case, the resulting ERFaer could be as small as 
−0.35 W m −2. This would be much smaller than any other CMIP6 model analyzed by Smith et al. (2020, their 
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Table 2). Stevens (2015) argued for a weaker aerosol forcing between −0.3 and −1.0 W m −2, although its meth-
odology based on a box model has been criticized as overly simplified (Kretzschmar et al., 2017).

Finally, we also reconstruct climatological fields using Equation 1. Figure 28 shows the TOA SW net radiation 
(2001–2014). Remarkably, the NH negative bias in E3SMv2 (blue shading in Figure 28a) is greatly reduced in 
composite best (Figure 28c) which becomes much closer to observations regionally, especially over the N Atlan-
tic and N Pacific oceans. Global metrics also improve with a reduced mean bias and RMSE. A similar picture 
emerges for the sea-surface temperature (1985–2014; Figure 29) with substantial reductions in regional cold 
biases in the NH. SH SST biases are essentially unchanged, pointing to a different cause.

Figure 28. Net TOA SW radiation: observations (CERES-EBAF 4.1; b), model error for E3SMv2 (a), composite best configuration from Figure B1 in Appendix B (c), 
and difference between E3SMv2 and composite best configuration (d). Model and observations averaged over 2001–2014.

Figure 29. Same as Figure 28 but for SST. Sea ice covered regions are excluded from the averaging. Model and observations averaged over 1985–2014.
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Taken together, our results indicate that a substantial reduction in the aerosol forcing would not only improve 
the match with the historical temperature record, but also improve aspects of the present-day climatology. Other 
fields, for example, precipitation, exhibit much smaller impact as seen in Figure S15 in Supporting Informa-
tion S1 by comparing the gold (composite best) and red stars (composite base). This is reassuring in the sense that 
E3SMv2, despite its shortcomings, can still serve as a useful model for many studies.

It is important to note that many CMIP6 models can simulate the historical temperature record with stronger 
aerosol forcing than suggested by our present analysis, for example, CNRM-CM6-1 (Voldoire et  al.,  2019, 
their Figure 23) with a forcing of −1.15 W m −2 (Smith et al., 2020). CESM2 (Danabasoglu et al., 2020, their 
Figure 7), from which E3SM inherited most of its atmospheric physics parameterizations, also simulates the 
temperature record more realistically than E3SMv2 and this with an aerosol forcing of −1.37 W m −2 (Smith 
et al., 2020). CESM2 does however overestimate the rate of warming over the last three decades due its high 
sensitivity (TCR  =  2.0  K, ECS  =  5.3  K). Tokarska et  al.  (2020, their Figure 2a) identified a dozen CMIP6 
models that satisfy their TCR constraints and have a realistic 1981–2014 temperature trend. A subset of five 
(CNRM-ESM2-1 [Séférian et  al.,  2019]; GFDL-ESM4 [Dunne et  al.,  2020]; MIROC6 [Tatebe et  al.,  2019]; 
MRI-ESM2-0 [Yukimoto et al., 2019]; NorESM2-LM [Seland et al., 2020]) had their aerosol forcing assessed 
in Smith et al.  (2020). Their aerosol forcings range from −0.7 to −1.21 W m −2. Therefore, it is possible that 
our results may not be generalizable beyond E3SMv2. Other factors not encapsulated in the simple framework 
represented by Equations 1 and 2 may play a role in a successful simulation of the historical temperature record.

6. Summary and Conclusion
By design, E3SMv2 represents an evolution from E3SMv1 and as such resembles E3SMv1 in many aspects. 
There are nevertheless notable differences that justified a new model release and associated simulation campaign.

•  E3SMv2 is approximately twice as fast (or efficient if measured in terms of power) compared to v1 (Figure 2). 
The efficiency gains are achieved in the atmosphere and ocean components. In the atmosphere, they arise 
from a new semi-Lagrangian tracer transport method and a new grid for physics calculations (Figure 3). The 
gain in the ocean is due to a longer timestep.

•  The atmospheric physics, while based on the same basic set of parameterizations as v1, underwent significant 
retuning in v2. Many improvements from the intermediate EAMv1p configuration (Ma et al., 2022) are incor-
porated with additional changes to further improve clouds and precipitation (e.g., Figures 9–13).

•  A new convective trigger function for the deep convection (Xie et al., 2019) significantly improves the phase 
of the diurnal cycle of precipitation, but the amplitude remains weaker than observed (Figures 14 and 15).

•  E3SMv2 captures important modes of variability such as ENSO (Figure 16) and MJO (Figure 18). However, 
the ENSO spectrum has excessive energy at short periods (∼2.5 yr) and is too weak for longer periods (6–9 yr). 
MJO phase speed is realistic west of 125°E, but then exceeds observations east of it. Tropical variability is 
significantly too weak (Figure 17).

•  A more realistic treatment of ozone is implemented (Tang et al., 2021). It captures the seasonal cycle of SCO 
(Figure 19) and the ozone hole in the historical period, although the size is underestimated (Figure 20).

•  Dust aerosol optical properties and particle size distributions are revised, resulting in a better prediction of 
mean AAOD over dusty AERONET sites (Figure 22). Burdens of sulfate and SOA aerosols increase likely as 
an unintended consequence of cloud tuning efforts, giving rise to a slightly overestimated global mean AOD 
despite regional improvements (Figure 21). Increases of sea salt aerosol burden related to the changes in wet 
deposition also contribute to the higher AOD over some portions of tropical and subtropical oceans, but the 
global burden of sea salt (and dust) has small changes.

•  E3SMv2 is less sensitive to GHG forcing (Figure 5). ECS is reduced significantly compared to v1 (4.0 vs. 
5.3 K) which is mostly attributable to a smaller cloud feedback. The ECS value of 4.0 K is more plausible as 
assessed by WCRP (Sherwood et al., 2020). This is a substantial achievement compared to the unrealistically 
high sensitivity of E3SMv1. On shorter time scales, TCR is also reduced to 2.4 from 2.9 K.

•  The effective aerosol forcing (ERFaer = −1.5 W m −2) remains essentially unchanged in E3SMv2 (Figure 6). 
This value is within the likely range assessed by WCRP (Bellouin et al., 2020). Some changes, mainly the 
introduction of the minimum cloud droplet number concentration, were made in v2 that reduced the magni-
tude of ERFaer, but their impact was likely negated by changes elsewhere in the cloud physics (convection).
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•  E3SMv2 significantly underestimates the global mean temperature in the second half of the historical temper-
ature record (Figure  23). An analysis of single-forcing simulations indicates that correcting the historical 
record in E3SMv2 would require a substantial reduction in the magnitude of ERFaer (∼75%), and a moderate 
reduction in the TCR (∼25%). Reducing ERFaer would furthermore improve regional biases in TOA radiative 
fluxes and SST (Figures 28 and 29). Other fields are less impacted (e.g., precipitation; Figure S15 in Support-
ing Information S1), indicating that E3SMv2 can still serve as a useful tool despite its shortcomings.

•  Proper conservation of mass in ocean/sea-ice exchanges increases Arctic sea ice volume, improving a 
low-thickness bias from v1, while impacting the Southern Ocean ice pack very little. Changes to the radiation 
and snow physics parameterizations have little net effect, highlighting the importance of coupled interactions 
over internal sea ice processes in the climate system (Hunke, 2010). The sea ice simulations shown here are 
largely consistent with the overall climatic environment, including excessively cool surface air and ocean 
temperatures.

This release of E3SMv2 serves as a starting point for additional configurations. They include regionally refined 
configurations with higher resolution over North America and, separately, the Southern Ocean. A configuration 
with interactive biogeochemistry is also under development. While E3SMv2 improves upon its predecessor in 
many aspects, significant work remains. The highest priorities for future releases of E3SM are addressing the 
weak AMOC, the biases in interannual and intraseasonal atmospheric tropical variability, and the poor historical 
temperature record.

Appendix A: Atmosphere Configuration
In the configuration of the E3SM atmosphere, several parameters from different parameterization schemes were 
updated compared to E3SMv1. Table A1 provides the key information and values for these parameters across 
different EAM configurations. Note that some of these parameters were hard coded in EAMv1 and revised to be 
adjustable parameters in EAMv2 namelist.

Scheme Parameter v2 v1 v1p Short description

CLUBB clubb_c14 2.5 1.06 2.0 Dissipation of �′2 and �′2

clubb_c1 2.4 1.335 2.4 Low-skewness value of 
dissipation of �′2

clubb_c1b 2.8 1.335 2.8 High-Skw value of 
dissipation of �′2

clubb_c1c 0.75 1.0 0.75 Smoothness of transition 
between high-Skw 

and low-Skw for the 
dissipation of �′2

clubb_c6rtb 7.5 6.0 7.5 High-Skw value of pressure 
damping of water flux

clubb_c6rtc 0.5 1.0 0.5 Smoothness of transition 
between high-Skw and 

low-Skw for the pressure 
damping of water flux

clubb_c6thlb 7.5 6.0 7.5 High-Skw value of pressure 
damping of heat flux

clubb_c6thlc 0.5 1.0 0.5 Smoothness of transition 
between high-Skw and 

low-Skw for the pressure 
damping of heat flux

clubb_c8 5.2 4.3 5.2 Pressure damping of �′3

Table A1 
List of the Atmospheric Tuning Parameters
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Table A1 
Continued

Scheme Parameter v2 v1 v1p Short description

clubb_c11 0.7 0.8 0.7 Buoyancy damping of �′3 
at low Skw

clubb_c11b 0.2 0.35 0.2 Buoyancy damping of �′3 
at high Skw

clubb_c11c 0.85 0.5 0.85 Smoothness of transition 
between high Skw 

and low Skw for the 
buoyancy damping of 

�′3

clubb_c_k10 0.35 0.3 0.35 Coefficient of momentum 
diffusivity, Kh_zm

clubb_c_k10 h 0.35 0.3 0.35 Coefficient of 
thermodynamic 

diffusivity, Kmh_zm

clubb_gamma_coef 0.12 0.32 0.12 Constant of the width of 
PDF in w-coordinate

clubb_gamma_coefb 0.28 0.32 0.28 High-skw value of gamma 
coefficient

clubb_gamma_coefc 1.2 5.0 1.2 Smoothness of transition 
between values of 
gamma coefficient

clubb_mu 5e −4 1e −3 5e −4 Fractional parcel 
entrainment rate per unit 

height [1/m]

clubb_wpxp_l_thresh 100.0 60 100 Threshold in length scale 
below which extra 

damping is applied to 
C6 and C7 functions [m]

clubb_ice_deep 14e −6 16e −6 14e −6 Radius of ice particles 
detrained from deep 

convection [m]

cldfrc_dp1 0.018 0.045 0.018 parameter for deep 
convective cloud 

fraction

clubb_use_sgv True False True Enables subgrid features 
gustiness, tpert, and 

thv fix

clubb_ipdf_call_
placement

1 2 1 Select the placement of the 
call to CLUBB's PDF: 
1 - before advancing 
CLUBB's predictive 

fields, 2 - after, 3 - both 
before and after

ZM zmconv_alfa 0.14 0.1 0.14 Maximum downdraft mass 
flux fraction

zmconv_c0_lnd 0.002 0.007 0.002 Autoconversion coefficient 
over land for deep 

convection

zmconv_c0_ocn 0.002 0.007 0.002 Autoconversion coefficient 
over ocean for deep 

convection
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Appendix B: Composite Configurations
In order to estimate the role of GHG and aerosols in the mismatch of the historical temperature record, we 
construct hypothetical composite configurations by varying αGHG and αaer scaling factors in Equation 1 (with ψ 
set to surface temperature). αGHG modulates the model response to GHG (akin to modulating TCR), while αaer 

Table A1 
Continued

Scheme Parameter v2 v1 v1p Short description

zmconv_dmpdz −0.7e −3 −0.7e −3 −1.2e −3 Parcel fractional mass 
entrainment rate

zmconv_mx_bot_lyr_adj 1 2 1 Bottom layer adjustment for 
setting “launching” level 
of maximum moist static 

energy

zmconv_tp_fac 2 0 2 Tpert scale factor in ZM 
deep convection scheme

MG2 cld_sed 1.0 1.0 1.8 Scale factor for cloud 
droplet sedimentation

ice_sed_ai 500 500 1,200 Cloud ice fall speed 
parameter

micro_mg_berg_eff_
factor

0.7 0.1 0.7 Efficiency factor for WBF 
processes

micro_mg_accre_enhan_
fac

1.75 1.5 1.75 Accretion enhancement 
factor

prc_exp1 −1.4 −1.2 −1.4 Tunable exponent 
coefficient for 
autoconversion

micro_mincdnc 10.D6 0.0 0.0 Minimum cloud droplet 
number concentration 
imposed when micro_

mincdnc > 0 [m −3]

Nucleate so4_sz_thresh_icenuc 0.08e −6 0.05e −6 0.08e −6 Aitken mode SO2 size 
threshold for ice 

nucleation

Microp aero microp_aero_wsubmin 0.1 0.2 0.1 see note in caption Minimum subgrid vertical 
velocity

Aerosol seasalt_emis_scale 0.6 0.85 0.6 Tuning factor for sea salt 
aerosol emission

Dust dus_emis_fact 1.5 2.05 2.8 Tuning parameter for dust 
emissions

Linoz linoz_psc_t 197.5 193.0 193.0 Tunable Linoz PSC ozone 
loss temperature 

threshold (K)

Gravity wave drag gw_convect_hcf 10.0 20.0 20.0 Heating rate conversion 
factor associated with 

convective gravity waves

effgw_beres 0.35 0.40 0.40 Efficiency associated with 
convective gravity waves 
from the Beres scheme

effgw_oro 0.375 0.25 0.25 Efficiency associated with 
orographic gravity 

waves

Notes. The value of microp_aero_wsubmin was set to 0.001 for v1p and v2 based on Ma et al. (2021). However, an additional 
lower bound is present in the code that effectively resets it to 0.1 consistent with Ma et al. (2022).
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modulates the model response to aerosols (akin to modulating the magnitude of the aerosol-related forcing and 
feedback).

We construct a loss function that quantifies the mismatch between modeled and observed surface air temperature:

𝐹𝐹 =

∑

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(

2014
∑

𝑦𝑦𝑦𝑦=1950

(

�̄�𝑇model − �̄�𝑇obs

)2

)1∕2

 (B1)

We opt to separately account for SH and NH due to the strong asymmetry in aerosol forcing. We also select the 
latter part of the historical record (1950–2014) when observational uncertainties are smaller and the impact of 
GHG and aerosols are larger. We first optimize by using five-member ensemble means for each term in Equa-
tion 1. This reconstruction is not expected to realistically capture natural multidecadal variability which plays an 
important role (e.g., Zeng & Geil, 2016).

The loss function F is shown in Figure B1 as a function of scaling parameters αGHG and αaer. The surface depicts 
a broad valley oriented diagonally. This shape can be more easily interpreted by imagining 45° rotated axes. 
The direction perpendicular to the valley floor (x′ ∝ αGHG − αaer) measures the scaling of the total warming 
(since aerosol is always negative) and the direction parallel (y′ ∝ αGHG + αaer) the hemispheric distribution of the 
warming.

The global minimum (best) is situated at αGHG = 0.75 and αaer = 0.17, indicating that improving the historical 
temperature record simulated by E3SMv2 would require a moderate reduction in impact from GHG (TCR), but a 
very substantial one from the aerosols. Also shown in Figure B1 are two local minima: one holding GHG scaling 
(fixed GHG; αGHG = 1 and αaer = 0.39) and one holding aerosol scaling (fixed aerosol; αGHG = 1.60 and αaer = 1). 
Both of these local minima reside on the valley floor (thus matching the total warming), but the first one is much 
closer to the global minimum compared to the second one, confirming that aerosols are the dominant source of 
the mismatch.

The shape of the loss function also helps explain why the simulated historical record became worse in E3SMv2 
than E3SMv1. Aerosol forcing is almost unchanged between the two, so both models would lie on a horizontal 
line. But TCR is larger in E3SMv1 and thus closer to the valley floor. In other words, E3SMv2 moved uphill 
compared to E3SMv1 due to the lack of colinear change between GHG and aerosol impacts.

Figure B1. Loss function from Equation B1. Star represents E3SMv2, circle global minimum, and triangles local minima by 
minimizing along a single dimension.
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This can be further illustrated by constructing global and hemispheric temperature time series corresponding to 
these composite configurations (Figure B2). The composite best solution (gold) corresponding to the global mini-
mum improves considerably upon E3SMv2 and matches the historical record best for each region (global, NH, 
SH). Composite fixed-GHG (purple) also does an adequate job, but with some indication of excessive warming in 
the 2000s due to its higher response to GHG. Composite fixed-aerosol (orange), which increases the response of 
GHG to balance the strong aerosol cooling, fails to match the historical record well. This confirms the argument 
that higher sensitivity cannot adequately compensate for excessive aerosol forcing owing to the presence of a 
plateau in the aerosol forcing and hemispheric asymmetry (e.g., Albright et al., 2021; Zhao et al., 2018).

To estimate the impact of multidecadal variability, we repeat the minimization in Equation B1 including individ-
ual ensemble members. This gives a total of 216 individual realizations (five ensemble member plus ensemble 

Figure B2. Surface temperature anomalies (with respect to 1850–1899) for (a) global, (b) Northern Hemisphere, and (c) 
Southern Hemisphere. Lines shown include observations (HadCRUT5-Analysis, gray), E3SMv2 (blue), and composite 
configurations from Figure B1 (red, purple, red, gold).
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mean for each of GHG, aer, and other in Equation 1). While this is not expected to realistically reproduce natural 
variability, it does provide a useful range. Optimal solutions are shown in Figure B3. Individual loss functions 
(not shown) have similar shape as Figure B1, but with slight variations in the placement of the valley. We estimate 
a probable range for (αGHG, αaer) from (0.60, 0.04) to (0.81, 0.23) by retaining the best 66% solutions. There is a 
high degree of co-linearity between variations in αGHG and αaer that originates from the elongated valley present 
in the loss functions.

Additionally, we also investigated the impact of changing assumptions in the loss function by using a global 
average instead of separate hemispheric averages and including the entire record since 1850 instead of starting in 
1950. While the optimal solutions change a little as a result, the probable ranges are broadly consistent. We also 
attempted to construct a loss function based on the gridded 5° × 5° HadCRUT5-Analysis product. However, this 
led to considerably poorer fits when reconstructing the global mean time series. We speculate that this is caused 
by the loss function becoming too sensitive to regional model biases not related to GHG or aerosols.

Data Availability Statement
All model codes may be accessed on the GitHub repository at https://github.com/E3SM-Project/E3SM. A main-
tenance branch (maint-2.0; https://github.com/E3SM-Project/E3SM/tree/maint-2.0) has been specifically created 
to reproduce these simulations. Bit-for-bit results with the original simulations on identical machines will be 
maintained on that branch for as long as the computing environment supports it. Complete native model output 
is accessible directly on NERSC at https://portal.nersc.gov/archive/home/projects/e3sm/www/WaterCycle/
E3SMv2/LR with accompanying documentation at https://e3sm-project.github.io/e3sm_data_docs. A subset of 
the native output is also available through the DOE Earth System Grid Federation (ESGF) at https://esgf-node.
llnl.gov/search/e3sm/?model_version=2_0. Data reformatted following CMIP conventions will also be availa-
ble through ESGF at https://esgf-node.llnl.gov/projects/e3sm. Performance data and scripts for Figures 2 and 3 
are available at https://github.com/E3SM-Project/perf-data/tree/main/v2-overview/chrysalis-perf-study; see the 
readme.txt file there for further details.

Figure B3. Scatter and distributions of optimal solutions αGHG and αaer for the loss function in Equation B1 using all 216 
combinations of individual ensemble members or ensemble mean. Dark blue dots represent the best 66% solutions. Red star is 
the solution with ensemble mean for every term.

https://github.com/E3SM-Project/E3SM
https://github.com/E3SM-Project/E3SM/tree/maint-2.0
https://portal.nersc.gov/archive/home/projects/e3sm/www/WaterCycle/E3SMv2/LR
https://portal.nersc.gov/archive/home/projects/e3sm/www/WaterCycle/E3SMv2/LR
https://e3sm-project.github.io/e3sm_data_docs
https://esgf-node.llnl.gov/search/e3sm/?model_version=2_0
https://esgf-node.llnl.gov/search/e3sm/?model_version=2_0
https://esgf-node.llnl.gov/projects/e3sm
https://github.com/E3SM-Project/perf-data/tree/main/v2-overview/chrysalis-perf-study
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