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Key Points:41

• E3SMv2 is nearly twice as fast as E3SMv1 with a simulated climate that is im-42

proved in many metrics (e.g. precipitation and clouds).43

• Climate sensitivity is substantially lower with a more plausible ECS of 4.0 K (com-44

pared to an unlikely value of 5.3 K in E3SMv1).45

• E3SMv2 underestimates the warming in the late historical period due to exces-46

sive aerosol-related forcing.47
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Abstract48

This work documents version two of the Department of Energy’s Energy Exascale49

Earth System Model (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1,50

resulting in a model that is nearly twice as fast and with a simulated climate that is im-51

proved in many metrics. We describe the physical climate model in its lower horizon-52

tal resolution configuration consisting of 110-km atmosphere, 165-km land, 0.5◦ river rout-53

ing model, and an ocean and sea ice with mesh spacing varying between 60-km in the54

mid-latitudes and 30-km at the equator and poles. The model performance is evaluated55

with Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation,56

and Characterization of Klima (DECK) simulations augmented with historical simula-57

tions as well as simulations to evaluate impacts of different forcing agents.58

The simulated climate has many realistic features of the climate system, with no-59

table improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered60

from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS61

is reduced to 4.0 K which is now within the plausible range based on a recent World Cli-62

mate Research Programme (WCRP) assessment. However, a number of important bi-63

ases remain including a weak Atlantic Meridional Overturning Circulation, deficiencies64

in the characteristics and spectral distribution of tropical atmospheric variability, and65

a significant underestimation of the observed warming in the second half of the histor-66

ical period. An analysis of single-forcing simulations indicates that correcting the his-67

torical temperature bias would require a substantial reduction in the magnitude of the68

aerosol-related forcing.69

Plain Language Summary70

The U.S. Department of Energy recently released version two of its Energy Exas-71

cale Earth System Model (E3SM). E3SMv2 experienced a significant evolution in many72

of its model components (most notably the atmosphere and sea ice models), and its sup-73

porting software infrastructure. In this work, we document the computational perfor-74

mance of E3SMv2 and analyze its ability to reproduce the observed climate. To accom-75

plish this, we utilize the standard Diagnosis and Evaluation and Characterization of Klima76

(DECK) experiments augmented with historical simulations for the period 1850-2015.77

We find that E3SMv2 is nearly twice as fast as its predecessor and more accurately re-78

produces the observed climate in a number of metrics, most notably clouds and precip-79

itation. We also find that the model’s simulated response to increasing carbon dioxide80

(the Equilibrium Climate Sensitivity) is much more realistic. Unfortunately, E3SMv281

underestimates the global mean surface temperature compared to observations during82

the second half of historical period. Using sensitivity experiments, where forcing agents83

(carbon dioxide, aerosols) are selectively disabled in the model, we determine that cor-84

recting this problem would require a strong reduction in the impact of aerosols.85

1 Introduction86

The U.S. Department of Energy (DOE) Energy Exascale Earth System Model (E3SM)87

project (https://e3sm.org) was conceived from the confluence of energy mission needs88

and disruptive changes in scientific computing technology. E3SM aims to optimize the89

use of DOE resources to meet the science needs of DOE. Efficient utilization of emerg-90

ing computational architectures requires a significant evolution in present programming91

models in Earth System Models (ESMs), leading DOE to develop a new ESM, initially92

branching from CESM1 (Community Earth System Model; Hurrell et al., 2013, http://93

www.cesm.ucar.edu/models/cesm1.0). The long-term goal of the E3SM project is to94

produce robust actionable predictions of Earth system variability and change, with an95
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emphasis on the most critical scientific questions facing the nation and DOE (Leung et96

al., 2020).97

Version one of E3SM (E3SMv1) was first released in 2018 as a physical climate model98

with a lower horizontal resolution configuration (110-km atmosphere, 60-to-30 km ocean;99

Golaz et al., 2019) followed by a higher resolution configuration (25-km atmosphere, 18-100

to-6 km ocean; Caldwell et al., 2019). The lower resolution configuration served as the101

starting point for a biogeochemistry configuration (E3SMv1.1; Burrows et al., 2020) and102

a cryosphere configuration (E3SMv1.2; Comeau et al., 2022).103

Although E3SM was originally branched from CESM1, the river routing, ocean,104

and sea ice components as well as the atmosphere dynamical core and stratospheric chem-105

istry are completely new or significantly different. The atmosphere physics, the land model,106

and the coupler retain similarities to current CESM2 (Danabasoglu et al., 2020). E3SMv2107

is the second release of a CMIP6-class (Coupled Model Intercomparison Project Phase108

6) model for E3SM. E3SMv2 also serves as a foundation for additional upcoming con-109

figurations targeting DOE applications: (i) a regionally refined mesh (RRM) configura-110

tion with a high resolution region (25-km atmosphere, 14-km ocean) centered over North111

America, (ii) a biogeochemistry configuration with interactive carbon, nitrogen and phos-112

phorous cycles, and (iii) a cryosphere configuration with RRM over the Southern Ocean113

and ice-shelf cavities.114

Version two of E3SM is a significant evolution from version one. Herein we describe115

the changes made in E3SM version 2 (E3SMv2) in each model component and the sup-116

porting infrastructure. We further diagnose its performance relative to E3SMv1. E3SMv2117

development focused on improving the performance on existing and emerging architec-118

tures and improving the physical climate in key metrics. Thus, E3SMv2 includes signif-119

icant improvements to component model structure and physical parameterizations. The120

result of v2 development is a model that is nearly twice as fast as version one with a sim-121

ulated climate that is improved in many metrics. Also new to E3SMv2 is the introduc-122

tion of fully coupled RRM configurations, a critical capability to creating actionable pro-123

jections of interest to the nation and DOE. Although simulations with the RRM will be124

the subject of forthcoming manuscripts, the validation herein will provide a benchmark125

for RRM configurations.126

As with E3SMv1, we focus on the physical climate model at lower resolution with127

a 110 km atmosphere, 165 km land, 0.5◦ river routing model, and an ocean and sea ice128

with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equa-129

tor and poles. The vertical grids remain the same as in E3SMv1 with 72 layers and a130

top at approximately 60 km in the atmosphere and 60 layers (10 m near-surface reso-131

lution) in the ocean. We focus our analysis on the CMIP6 Diagnosis, Evaluation, and132

Characterization of Klima (DECK) and historical simulations (Eyring et al., 2016). E3SMv2133

DECK simulations reveal a number of improvements in the simulated mean climate and134

variability: equilibrium climate sensitivity, precipitation, shortwave cloud radiative ef-135

fects, ozone hole, aerosol absorption, and sea ice. Yet despite numerous improvements,136

a number of important biases remain including a weak Atlantic Meridional Overturn-137

ing Circulation and an inability to appropriately simulate the historical temperature record.138

Mitigating these biases will be central to E3SMv3 development. To diagnose the latter139

bias we conduct an ensemble of simulations following the Detection and Attribution Model140

Intercomparison Project (DAMIP) protocol (Gillett et al., 2016). Using a decomposi-141

tion analysis, we find that an overly strong aerosol effect is responsible for this bias and142

further that if this effect can be reduced, other reductions in regional radiation, temper-143

ature, and other biases can be expected.144

We begin in Section 2 with a description of the changes in E3SMv2 for each model145

component. We also describe important improvements to energy conservation in the cou-146

pled system as well as our coupled tuning strategy. Section 3 details computational per-147
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formance and factors leading to the nearly doubling of throughput. Section 4 details the148

simulation campaign and analysis of the simulated climate in each portion of the cam-149

paign. Section 5 presents an examination of the historical temperature record bias and150

the potential impact of altering the contribution of aerosols and greenhouse gases on the151

simulated climate. We end with summary and conclusions in Section 6.152

2 Model description153

2.1 Atmosphere154

2.1.1 Dynamical core155

The dynamical core in the E3SM Atmosphere Model (EAM) v2 solves the equa-156

tions of motion in a rotating reference frame with the hydrostatic and shallow atmosphere157

approximations and a hyperviscosity based turbulence closure. It is implemented in the158

High Order Method Modeling Environment (HOMME) (Dennis et al., 2005, 2011; Evans159

et al., 2013), which provides meshing infrastructure and discretization operators for spec-160

tral elements in spherical geometry. The equations are formulated following Taylor et161

al. (2020) using a terrain following mass based vertical coordinate (Kasahara, 1974; Laprise,162

1992). In EAMv2, the nonhydrostatic formulation given in Taylor et al. (2020) is mod-163

ified to be hydrostatic. This modification is straightforward due to the use of the (Laprise,164

1992) mass coordinate. The prognostic equations consist of the time-reversible adiabatic165

terms, a ∇4 hyperviscosity (Dennis et al., 2011; Guba et al., 2014), and a sponge layer166

at the model top (described below). The discretization of the adiabatic terms is struc-167

ture preserving, meaning that the discrete equations are in quasi-Hamiltonian form, lead-168

ing to energetic consistency in the sense of (Gassmann & Herzog, 2008). Energetic con-169

sistency is obtained via a term-by-term balance in the discrete kinetic, internal, and po-170

tential energy budgets, ensuring an energy conserving discretization with no spurious en-171

ergy sources or sinks.172

The horizontal discretization uses the collocated mimetic spectral finite element173

method from Taylor and Fournier (2010). Within each element the prognostic variables174

are represented by degree p polynomials with p = 3 and order of accuracy np = 4. The175

vertical discretization uses the Lorenz staggered mimetic centered difference from Simmons176

and Burridge (1981). The vertical grid remains the same as in EAMv1 with 72 layers177

and a top at approximately 60 km. For the vertical transport terms, we use a vertically178

Lagrangian approach adapted from Lin (2004). The timestepping algorithm, unchanged179

from EAMv1, is the high-CFL, 5-stage, third-order-accurate Runge-Kutta method from180

(Guerra & Ullrich, 2016).181

There are several sources of dissipation in the dynamical core. The ∇4 hypervis-182

cosity is the largest. It is applied to all prognostic variables and on every model layer.183

For the model-top sponge layer, we apply a ∇2 Laplacian operator in the top 6 model184

layers to all prognostic variables. The strength is proportional to the model layer ref-185

erence pressure, following Lauritzen et al. (2011). In addition, vertical dissipation is in-186

troduced by the monotone vertical remap operator. A smaller amount of dissipation is187

also generated by the Runge-Kutta timestepping. In EAMv1, we used additional diver-188

gence damping in order to control noise when running with realistic topography. This189

was implemented by separating the hyperviscosity into compressible and rotational com-190

ponents and using a larger hyperviscosity coefficient for the compressible component. EAMv2191

has a more accurate pressure gradient formulation which improves the treatment of to-192

pography and no longer needs nor uses additional divergence damping.193

The dynamical core’s passive tracer transport method is a new interpolation semi-194

Lagrangian (ISL) scheme called Islet (Bradley et al., 2021). A high-order ISL method195

using the natural Gauss-Lobatto-Legendre (GLL) element-local interpolant is unstable;196

thus, Islet provides modified element-local interpolation basis functions that obey a nec-197

–4–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

essary condition for stability. EAMv2 uses the lowest-order Islet basis set, the one for198

np = 4. Because the model code was frozen before the Islet bases were finalized, the199

formulation of the np = 4 stable basis set is slightly different than reported in Bradley200

et al. (2021), but this difference has essentially no impact. To achieve global mass con-201

servation, shape preservation, and mass-tracer consistency, Islet uses element-local and202

global versions of the communication-efficient density reconstructor (CEDR) described203

in Algorithm 3.1 of Bradley et al. (2019). The global version is sometimes called a “mass204

fixer,” but note that, in combination with the element-local version, it also enforces grid-205

point-local, time-dependent lower and upper bounds on tracer mixing ratios to enforce206

shape preservation and mass-tracer consistency. Generally, even a mass-conserving semi-207

Lagrangian method that can take time steps longer than the advective CFL number re-208

quires a method like a CEDR to achieve shape preservation and mass-tracer consistency209

when coupled to a dynamical core that uses a different discretization for the dynamical210

equations. The ISL scheme’s time step can be, and in EAMv2 is, longer than the ver-211

tical remap time step of the dynamics. In integrating from time t1 to time t2, Lagrangian212

levels at time t2 are reconstructed from data on the reference grid at times t1 and t2. Then213

horizontal velocity at time t2 is remapped to the Lagrangian levels. Finally, departure214

points within each Lagrangian level are computed at time t1. Then 2D advection within215

each level can proceed as usual. In this time step configuration, the CEDR must be ap-216

plied to the 3D data rather than separately to each level because the reconstructed lev-217

els do not conserve mass within each level; thus, corrections must be applied among lev-218

els as well as within each level. In EAMv2’s lower resolution configuration, the vertical219

remap time step is two times larger than the dynamics time step, and the passive tracer220

transport time step is six times larger. Like the rest of the dynamical core, Islet works221

without modification in RRM configurations.222

2.1.2 Separate dynamics and column parameterizations grids223

New in version 2, EAMv2 uses separate grids for dynamics and column parame-224

terizations. The dynamics grid, described in Section 2.1.1, is the same as used in EAMv1.225

For brevity, it is referred to as the “np4 grid”, following the dynamical core’s grid nam-226

ing convention, because each element has a 4×4 subgrid of grid points. The column pa-227

rameterizations grid shares the element grid with the dynamics but has a 2×2 subgrid228

of quadrilaterals for a total of four columns per element. This grid is referred to as the229

“pg2 grid”, where “pg” refers to what is usually called the “physics grid” but, more gen-230

erally, could be called the “parameterizations grid”, and“2” refers to the 2×2 subgrid.231

Thus, the total number of physics columns in a simulation is 4/9 the number used in EAMv1232

for a given element grid, where 9 rather than 16 results from sharing of element edge grid233

points among adjacent elements. The dynamics grid has an average grid spacing of 110234

km, while the parameterizations grid and, as a result, the land grid have an average grid235

spacing of 165 km. Hannah et al. (2021) describe the remap algorithms to transfer data236

between the grids and the new topography file format to support these grids. The grids237

are the same as introduced in (Herrington et al., 2019), but in EAMv2, the high-order238

remap method is local to each element except for some halo data for extremal mixing239

ratio values. Thus, EAMv2’s grid remap algorithms work without modification in RRM240

configurations. The motivation for the separate grids is to speed up the physics param-241

eterization computations by up to nearly 2.25 times with little change to the climatol-242

ogy (Hannah et al., 2021). Hannah et al. (2021) discuss the effective resolution differ-243

ences between simulations using just the np4 grid and those using separate np4 and pg2244

grids, where effective resolution is inferred from power spectra. Briefly, first, the dynam-245

ical core’s effective resolution is nearly identical; second, the parameterizations’ effective246

resolution is, as expected, lower when using the pg2 grid. Given the first point, the re-247

sult is a more efficient simulation.248
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2.1.3 Updated atmosphere physics249

As in EAMv1 (Rasch et al., 2019; Xie et al., 2018), EAMv2 represents subgrid tur-250

bulent transport and cloud macrophysics by use of the Cloud Layers Unified By Binor-251

mals (CLUBB) parameterization (Golaz et al., 2002; V. E. Larson, 2017). In EAMv2,252

CLUBB represents all stratiform and shallow cumulus clouds, but not deep convective253

clouds. CLUBB prognoses various subgrid moments of turbulence, heat content, and mois-254

ture, and the moments are used to estimate a multivariate subgrid probability density255

function (PDF). The PDF is then used to diagnose liquid cloud fraction and cloud liq-256

uid water via a saturation adjustment. CLUBB is called immediately before the micro-257

physics.258

The main update of CLUBB for EAMv2 is that CLUBB’s internal call order has259

been changed so that CLUBB’s subgrid moments are prognosed first, and the PDF is260

estimated immediately afterward. This leaves a state for the microphysics that is adjusted261

with respect to liquid saturation. This call order eliminates the unrealistic pockets of su-262

persaturation that were left for the microphysics to handle in EAMv1. Another update263

of CLUBB is that its code has been refactored in order to improve computational per-264

formance. For instance, arrays were restructured to permit contiguous memory access.265

Loops were rearranged in order to allow calculations with no data dependencies to be266

done in parallel. Asymptotic values of functions were approximated analytically in or-267

der to avoid the unnecessary calculation of expensive special functions.268

The deep convection scheme (G. J. Zhang & McFarlane, 1995, ZM hereafter) in EAMv2269

is the same as that in EAMv1, except that ZM adopts two updates described in (Xie et270

al., 2019) to improve its simulated precipitation, in particular the diurnal cycle. The new271

ZM feature combines the dynamic Convective Available Potential Energy (dCAPE) trig-272

ger proposed in (Xie & Zhang, 2000) with an unrestricted air parcel launch level (ULL)273

approach used in (Y.-C. Wang et al., 2015) (hereafter the dCAPE-ULL trigger). The dCAPE274

trigger provides a dynamic constraint for preconditioning of convection-favoring envi-275

ronments and prevents CAPE from being released spontaneously. The ULL trigger re-276

moves the constraint that convection is always rooted within the boundary layer, as is277

often assumed in deep convection schemes. Thus, it captures mid-level convection by de-278

tecting atmospheric instability above the boundary layer. As shown in Xie et al. (2019),279

the use of the dCAPE-ULL trigger helps address the “too frequent, too weak” precip-280

itation issue — a long-standing climate model bias — as well as capture the nocturnal281

elevated convection systems which are often seen downstream of major mountains as-282

sociated with the propagation of Mesoscale Convective Systems (MCSs) but missed in283

most climate models including E3SM. It also significantly improves the phase of the di-284

urnal cycle of precipitation over both land and ocean.285

After releasing EAMv1, (Ma et al., 2022) proposed a set of recalibrated atmospheric286

parameters in the deep convection scheme, the microphysics scheme, and the CLUBB287

turbulence and macrophysics scheme (hereafter EAMv1p). Many of these parameter changes288

have been carried over to EAMv2. A new feature in EAMv1p is the inclusion of surface289

wind speed enhancements from the gustiness associated with turbulence, shallow and290

deep convection in the surface flux calculations over land and ocean (Ma et al., 2022; Har-291

rop et al., 2018; Redelsperger et al., 2000).292

In the deep convection scheme, the parcel buoyancy considers the subgrid temper-293

ature perturbation from the CLUBB scheme in addition to a constant value of 0.8 K used294

in EAMv1. A new tunable parameter with a default value of 2.0, zmconv tp fac (see295

Table A1), is introduced to scale the square root of the CLUBB subgrid temperature vari-296

ance to be the subgrid temperature perturbation. Additionally, the parameters related297

to the autoconversion rate, detrained ice cloud effective radius, and cloud fraction in deep298

convective clouds are reduced, while the parameters related to the downdraft mass flux299
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fraction and the impact of the surface temperature change are enhanced compared to300

EAMv1.301

A number of tunable parameters in the CLUBB scheme have been updated in EAMv1p302

to improve both stratocumulus and shallow cumulus clouds. Briefly, EAMv1p separated303

the setting of several coefficients at low skewness (X, with X = clubb {c1, c6, c11, gamma coef})304

and high skewness (Xb), recalibrated transition factors between the two regimes (Xc),305

and adjusted parameters controlling the low cloudiness (e.g., mu, c8, c1, c k10) to in-306

crease stratocumulus clouds and reduce shallow cumulus clouds. To better represent clouds307

and precipitation in subtropical low cloud regimes, the liquid cloud accretion enhance-308

ment factor and the exponent coefficient for liquid cloud autoconversion rate in the mi-309

crophysics scheme have been updated as well. For ice and mixed-phase clouds, the overly310

suppressed scaling factor (0.1) for the Wegener–Bergeron–Findeisen (WBF) process in311

EAMv1 has been updated to be 0.7. The Aitken mode sulfate aerosol size threshold for312

homogeneous ice nucleation is increased. The minimum subgrid vertical velocity for liq-313

uid droplet nucleation is reduced from 0.2 to 0.1 m/s in EAMv2.314

Based on atmosphere-only and coupled simulations performed during the tuning315

process, EAMv2 keeps tunable parameters related to liquid droplet sedimentation, ice316

particle fall speed, and the lateral entrainment of deep convection the same as EAMv1317

instead of EAMv1p (see Table A1 for details).318

The effective aerosol radiative forcing (ERFaer) estimated in E3SMv1 is about −1.6319

W m−2 (Golaz et al., 2019), which is relatively large compared to other CMIP6 mod-320

els (Smith et al., 2020). After applying the EAMv1p parameter tuning proposed by (Ma321

et al., 2022), the simulated magnitude of ERFaer shortwave and longwave components322

is reduced significantly, but the change in net ERFaer is small due to the compensation323

between longwave and shortwave. Clouds are more susceptible to aerosol perturbations324

under relatively clean conditions. Based on analysis of developmental configurations (to325

be documented in a separate work), unrealistically-small cloud droplet number concen-326

trations (e.g., < 10 cm−3) frequently appeared, especially in mid- and high-latitude re-327

gions. As a temporary remedy, a lower bound (10 cm−3) is applied to the simulated cloud328

droplet number concentration in EAMv2. Results show that it reduces the net ERFaer329

magnitude by 0.3-0.4 W m−2, which agrees with findings from previous studies (e.g. Hoose330

et al., 2009). The lower bound value is also consistent with other CMIP6 models (e.g.331

Mignot et al., 2021). We note however that this is not a cure for the problem. Additional332

efforts are planned to improve the simulated aerosol and cloud properties in pristine re-333

gions and reduce ERFaer in a more physical manner for future versions of E3SM.334

EAMv2 employs the same orographic and non-orographic gravity wave (GW) pa-335

rameterization as EAMv1, following (Richter et al., 2010), which includes separate rep-336

resentation of orographic GWs (McFarlane, 1987), convective GWs (Beres et al., 2004),337

and GWs generated by frontal systems (Charron & Manzini, 2002). Tunable parame-338

ters in the orographic and frontal GW parameterizations remain the same as in EAMv1.339

In EAMv1, the period of the quasi-biennial oscillation (QBO) in the tropical stratospheric340

zonal mean wind was only 18 months as compared to 28 months in observations (Richter341

et al., 2019). In order to arrive at a more realistic representation of the QBO in EAMv2,342

several combinations of tunable parameters in the (Beres et al., 2004) parameterization343

were explored, focusing on the convective fraction (CF) and efficiency with which con-344

vection generates GWs, effgw beres, starting with the setting that improved the QBO345

in EAMv1 described in Richter et al. (2019) (effgw beres=0.35 from 0.4, CF=8% from346

5%). Based on sensitivity simulations performed in parallel with the pre-industrial spinup347

simulation, CF was changed from 8% to 10% (gw convect hcf = 1/CF = 10), and effgw beres348

remained 0.35 (Table A1), resulting in a QBO period of ∼ 21 months in the pre-industrial349

control. Due to changes in tropical variability (Kelvin and mixed-Rossby gravity waves)350

related to the convective parameterization changes described above, the amplitude of the351

QBO in E3SMv2 is weaker than in observations.352
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2.1.4 Atmospheric chemistry353

The atmospheric chemistry in EAMv1 was the O3v1 model with prognostic strato-354

spheric ozone by the linearized chemistry (Linoz v2) (Hsu & Prather, 2009) and the pre-355

scribed tropospheric ozone with the v1.0 input4MIPS ozone data set (Hegglin et al., 2016).356

The prescribed tropospheric ozone data only contained decadal monthly zonal climatol-357

ogy of latitude-pressure values. Due to the sharp cross-tropopause ozone gradient, un-358

physical ozone distributions were simulated in the vicinity of the tropopause when the359

modelled tropopause was higher than that of the prescribed data, assigning stratospheric360

ozone abundances to the tropospheric model grid boxes. Since ozone interacts with the361

radiation transfer code in E3SM, such ozone deficiencies impacted the solar heating and362

radiative forcing.363

In EAMv2, we implemented the O3v2 model (Tang et al., 2021) to overcome the364

limitations in the O3v1 model by replacing the prescribed ozone data with a passive ozone365

tracer in the troposphere. Ozone is transported from the stratosphere into the tropo-366

sphere and decays within the lowest four model layers (below 1 km) with a 48-hour e-367

folding to 30 ppb (parts per billion by mole fraction). The choice of 30 ppb is based on368

observations (Ziemke et al., 2019) and gives a tropospheric ozone mass similar to full chem-369

istry models. O3v2 is capable of interacting with the tropopause changes and hence cap-370

tures the naturally sharp ozone cross-tropopause gradient. Moreover, the ozone sink at371

the lower boundary in O3v2 allows us to diagnose the stratosphere-troposphere exchange372

flux of ozone, an important tropospheric ozone budget term, which was not possible with373

O3v1. The ozone hole is simulated following Cariolle et al. (1990) to represent the rapid374

chlorine-induced ozone depletion at cold temperatures, but the polar stratospheric cloud375

(PSC) temperature threshold is increased to 197.5 K in EAMv2 from 193 K in EAMv1376

due to a warmer Antarctic winter pole. More details about O3v2 in E3SM are documented377

by (Tang et al., 2021).378

2.1.5 Aerosol379

The aerosol model in EAMv2 is based on EAMv1 (H. Wang et al., 2020) which it-380

self evolved from the four mode version of Modal Aerosol Module (MAM4) in the Com-381

munity Atmosphere Model version 5.3 (CAM5.3) (Liu et al., 2016) that represents the382

major aerosol species within four internally mixed size modes, and incorporated the new383

treatments of aerosol processes related to new particle formation, secondary organic aerosol384

formation, aerosol convective transport and wet removal, resuspension, and deposition385

and mixing with snow grain. These new treatments in EAMv1 led to significant improve-386

ments in characterizing global distributions of aerosols and interactions with clouds and387

radiation. The development and evaluation of aerosol representation in the E3SMv1 cou-388

pled model simulations with both standard resolution (Golaz et al., 2019) and high res-389

olution (Caldwell et al., 2019) configurations have mainly focused on the global budgets390

and annual mean constraints of aerosol optical depth (AOD) with observational estimates391

in the present-day conditions. While the total/speciated AOD and direct radiative ef-392

fects are constrained to a large extent, further analysis of E3SMv1 simulations suggested393

that the shortwave absorption of aerosols is too strong in the model compared with ob-394

servations especially over the dusty regions (Feng et al., 2022). The heating effect in the395

atmosphere due to the overestimated dust absorption could lead to changes of the lower396

tropospheric stability and affect the model-simulated clouds and precipitation.397

In E3SMv2, we updated dust refractive indices in the shortwave bands with the398

observationally derived values from the AERONET measurements (Dubovik et al., 2000),399

which replace the strongly absorbing dust properties used in E3SMv1 (Hess et al., 1998).400

Additionally, we implemented a different dust particle size distribution (Kok, 2011) in401

E3SMv2 for calculating fractional dust emission fluxes into the accumulation and coarse402

modes. Kok et al. (2017) suggests that dust size distributions at emission in current global403
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climate models under-represent the coarse-mode (>1 µm) dust particles in the atmosphere.404

For the same dust optical depth, coarse-mode dust particles would result in larger long-405

wave warming and less shortwave cooling than the fine particles, resulting in a less cool-406

ing net effect of dust aerosols. Compared to E3SMv1, the new size distribution imple-407

mented to E3SMv2 (Kok, 2011) predicts more particles in larger dust sizes: about 1.1%408

in the accumulation mode and 98.9% in the coarse mode, which is consistent with the409

recent measurements (Kok et al., 2017) but can substantially change the dust transport410

to remote regions (Wu et al., 2020). With these updates in E3SMv2, dust emissions are411

re-tuned for the globally constrained dust optical depth of 0.03±0.005 (Ridley et al., 2016).412

2.2 Ocean413

Due to development priorities, the ocean component (the Model for Prediction Across414

Scales-Ocean: MPAS-Ocean) in E3SMv2 is mostly unchanged from E3SMv1 (Petersen415

et al., 2018, 2019). The underlying spatial discretization (Thuburn et al., 2009) is ap-416

plied to the primitive equations with a free surface (Ringler et al., 2013), with 60 lay-417

ers using a z-star vertical coordinate (Petersen et al., 2015; Reckinger et al., 2015). The418

parameterizations of unresolved physics, such as the Gent and Mcwilliams (1990) param-419

eterization for mesoscale eddy transport, and K-Profile Parameterization (KPP, Large420

et al., 1994; Van Roekel et al., 2018) for vertical mixing, remain largely the same with421

minor updates.422

In E3SMv2, Redi isopycnal mixing is introduced following the triad formulation423

from (Griffies et al., 1998). The Gent-McWilliams mesoscale eddy mixing parameteri-424

zation continues to utilize a globally constant value for the bolus coefficient. However,425

in development of E3SMv2, a series of sensitivity simulations were conducted to find a426

more optimal value of the Gent-McWilliams bolus kappa parameter. Based on these sim-427

ulations, a value of 900 m2 s−1 was chosen. This value is half of that used in E3SMv1.428

The reduction improved the surface salinity bias and increased Antarctic Circumpolar429

Circulation (ACC) transport (not shown). A smaller globally constant value (400 m2 s−1)430

is utilized for Redi isopycnal mixing. In the Redi parameterization, slope tapering is a431

slightly modified version of (Danabasoglu & Williams, 1995) with a critical slope param-432

eter of 0.01. We also implemented the stratification-based tapering from (Danabasoglu433

& Marshall, 2007).434

In addition to the improvements in model physics, a sign error in the high-order435

reconstruction of tracer values on cell edges was discovered in the flux corrected tracer436

transport advection scheme. A set of simulations was conducted to determine the im-437

pact of this bug. The percentage change in ocean heat content (OHC) due to the bug438

fix at various levels is shown in Fig. S1. In a broad sense the effect of the bug fix was439

to increase ocean heat content, although there are broad swaths of decrease in OHC in440

the North Pacific and ACC in the upper ocean (Figs. S1a-c). In the deep ocean, the bug441

fix resulted in weaker OHC anomalies (Fig. S1d).442

2.3 Sea ice443

Improvements have been made to the column physics, coupling, and analysis of E3SM’s444

sea ice component (MPAS-Seaice) since the E3SMv1 configuration described by Turner445

et al. (2021). Here we expand on innovations new to E3SMv2. The core Delta-Eddington446

radiative transfer of Briegleb and Light (2007) has been updated to the Dang et al. (2019)447

SNICAR-AD model, ensuring radiative consistency across all snow surfaces, including448

on land, ice sheets and sea ice. The SNICAR-AD radiative transfer code includes five-449

band snow single-scattering properties, two-stream Delta-Eddington approximation with450

the adding-doubling technique, and parameterization for correcting the near-infrared (NIR)451

snow albedo biases when solar zenith angle exceeds 75◦ (Dang et al., 2019). However,452

radiative coupling with the atmosphere still integrates across just two bands (visible and453
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NIR) separated at 700nm, which does not fully exploit the five-band capability; an ex-454

pansion of the coupling bands is planned for E3SMv3.455

A new snow-on-sea ice-morphology has been added to E3SMv2 that includes the456

effects of wind redistribution: losses to leads and meltponds, and the piling of snow against457

ridges. Snow grain radius, now a prognosed tracer field on sea ice, evolves according to458

temperature gradient and wet snow metamorphisms and feeds back to the SNICAR-AD459

radiative model up to a dry maximum of 2800µm. Fresh snow falls at a grain radius of460

54.5µm, and five vertical snow layers replace the previous single snow layer atop each461

of the five sea ice thickness categories retained from E3SMv1. The combined default con-462

figurations of the new radiative and snow schemes were found to minimally impact the463

climatic state of sea ice reported in this manuscript, but greater parametric sensitivities464

are explored in a sister paper in preparation.465

The most significant improvement to the sea ice climate since E3SMv1 was achieved466

with coupling changes associated with mushy-layer thermodynamics. Whereas the basal467

temperature of the ice was held fixed at −1.8 ◦C in E3SMv1, the new version of the model468

assumes the mushy liquidus basal temperature from the sea ice as described by Turner469

and Hunke (2015). Conversion of frazil ice from MPAS-Ocean with a fixed reference salin-470

ity of 4 PSU to the mushy layer now conserves to computational accuracy over a 500-471

year control integration. This was achieved by exchanging additional mass between the472

upper ocean and sea ice model to accommodate an assumed 25% mushy liquid content473

assumed from heat and mass transferred adiabatically from the MPAS-Ocean frazil scheme474

active from a depth of 100 m. In addition to achieving perfect heat and mass conserva-475

tion between sea ice and ocean models, this improvement greatly reduces a negative sea476

ice thickness bias in the summer Arctic reported by Golaz et al. (2019) for E3SMv1; it477

only minimally impacts Southern Ocean sea ice mass that was better simulated as com-478

pared to northern hemisphere sea ice in E3SMv1. Note that E3SM does not use virtual479

ice-ocean fluxes, but instead full volume and heat flux exchange consistent with a Boussi-480

nesq ocean model as described by Campin et al. (2008).481

In addition to these core physics improvements, E3SMv2 includes a number of struc-482

tural additions to the sea ice model. E3SMv2 has significantly increased output to bet-483

ter diagnose behavior and compare against seasonal extremes and data. For example,484

daily Ice Numerals for Arctic shipping (Aksenov et al., 2017) are easily derived from this485

output, commensurate with the new E3SMv2 marine mesh that resolves major Arctic486

shipping channels (Section 2.4).487

E3SMv2 now also includes a prescribed-extent ice mode for MPAS-Seaice based488

on that found in the Community Ice CodE (CICE) in E3SMv1 and CESM (Bailey et al.,489

2011). This mode is needed for AMIP (Atmospheric Model Intercomparison Project) style490

simulations where a full prognostic sea ice model is not desired but sea ice surface fluxes,491

albedos, snow depth, and surface temperature are needed by the atmosphere model and492

are calculated by the vertical thermodynamics module of the sea ice component. The493

mode is intended for atmosphere sensitivity experiments and does not conserve energy494

or mass. In this mode, sea ice thermodynamics is active but sea ice dynamics is disabled495

and at each time step ice area and thickness are reset to specified values. Ice area is in-496

terpolated in time and space from an input data set, while ice thickness in grid cells con-497

taining sea ice is set to 2 m in the Northern hemisphere and 1 m in the Southern hemi-498

sphere. During each adjustment snow volume is adjusted to preserve the snow thickness499

prognosed in the previous time step. Snow temperatures are reset to the surface tem-500

perature, as prognosed in the previous time step, while ice temperatures are set so that501

the ice temperature gradient is linear, with the ice temperature at the top equal to the502

prognosed surface temperature, and equal to the sea freezing temperature at the base503

of the ice. The vertical ice salinity profile is reset to the profile from Bitz and Lipscomb504

(1999).505
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2.4 Unstructured marine mesh generation506

Generation of the unstructured Centroidal Voronoi-type meshes (e.g. Ringler et507

al., 2008) used in the ocean and sea ice components of E3SMv2 is handled using the JIG-508

SAW library (Engwirda, 2017), enabling the creation of complex, variable-resolution meshes509

to resolve regional ocean (Hoch et al., 2020), sea ice (Turner et al., 2021), and land-ice510

(Hoffman et al., 2018) dynamics. Compared to E3SMv1, improvements to the robust-511

ness, efficiency, and flexibility of our meshing workflows have been targeted – employ-512

ing a multi-paradigm mesh generation strategy that combines ‘off-center’ Delaunay-refinement513

and ‘hill-climbing’ optimization approaches (Engwirda & Ivers, 2016; Engwirda, 2018)514

to build the Spherical Centroidal Voronoi Tessellations (SCVTs) used in the MPAS-Ocean515

and MPAS-Seaice dynamical cores. Key to improved robustness in E3SMv2 is the elim-516

ination of invalid grid configurations centered around obtuse triangles, in which a lack517

of geometrical consistency between adjacent computational cells would lead to break-518

downs in the numerical discretization used by the ocean dynamical core. Difficulties as-519

sociated with the generation of valid meshes limited the application of variable mesh res-520

olution in E3SMv1, restricting model configurations to quasi-uniform resolution cases.521

These effects are remedied in E3SMv2, with our enhanced optimization strategies lead-522

ing to the generation of valid, well-conditioned meshes in complex, regionally-refined con-523

figurations. Equally important are improvements to E3SM’s COMPASS (Configuration524

Of MPAS Setups) package—a Python-based scripting environment that allows model-525

ers to readily customize mesh and model configurations based on proximity to geographic526

features, climatological states, and user-defined inputs, with geometric tuning param-527

eters that are easy to adjust on the fly. COMPASS tracks mesh provenance data asso-528

ciated with the creation of each new E3SM configuration to support model regression529

testing and ensure long-term reproducibility. Overall, improvements to the unstructured530

meshing workflows in E3SMv2 have led to significantly improved turnaround in the mesh531

design, simulation, and analysis process, reducing the time required to complete vari-532

ous MPAS mesh-related tasks from days-to-weeks in E3SMv1 to minutes-to-hours in E3SMv2.533

As a consequence of these improvements, the E3SMv2 coastline is more realistic across534

the globe. As one example, E3SMv2 includes key shipping routes in the Canadian Archipelago535

that were missing from E3SMv1 (Figure 1), eliciting improved archipelagic through-flow.536

Figure 1. Comparison of the (a) old and (b) new standard resolution E3SM unstructured ma-

rine mesh, highlighting improved geographic acuity in E3SMv2 including Arctic coastal shipping

channels fitting standard routes published by the Arctic Council (2009) (red).
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2.5 Land and river537

The physics configuration of E3SM Land Model version 2 (ELMv2) used in E3SMv2538

is similar to E3SMv1 (Golaz et al., 2019). ELMv2 simulates hydrologic and thermal pro-539

cesses in vegetation, snow, and soil for different land cover types, which include bare soils,540

vegetated surfaces, lakes, glaciers, and urban areas. Present-day leaf area index (LAI)541

is prescribed using satellite data and photosynthesis and is not limited by leaf nutrients.542

The prescribed vegetation distribution has been updated for E3SMv2 to resolve incon-543

sistencies across computing platforms in translating land use to changes in plant func-544

tional types. ELMv2 includes the new shortwave radiation model SNICAR-AD for snow545

which is also used for sea ice as described in Section 2.3.546

The river routing component in E3SMv2 (Model for Scale Adaptive River Trans-547

port, MOSARTv2) takes the runoff produced by ELM and routes it to the river mouth548

as freshwater input to the ocean component. The physics scheme and configuration are549

the same as used in E3SMv1 standard resolution (Golaz et al., 2019). Specifically, MOSARTv2550

uses the kinematic wave approach to route streamflow across hillslopes, tributaries, and551

main river stems on an eight-direction-based river network (Li et al., 2013) at 0.5◦ latitude-552

longitude spatial resolution.553

2.6 Coupled system554

As in E3SMv1, the coupler/driver for E3SMv2 is cpl7 (Craig et al., 2012). The driver555

of cpl7 performs the integration of the coupled model and provides the “main” for the556

single executable. cpl7 relies on the Model Coupling Toolkit (MCT; J. Larson et al., 2005)557

for inter-component communication and remapping operations.558

2.6.1 Mapping weights559

The remapping operations are performed using mapping weights precomputed by560

external tools for each grid pair using two different algorithms. Nearly all maps in both561

directions use the TempestRemap conservative, monotone map (Ullrich & Taylor, 2015;562

Ullrich et al., 2016). In the case of the atmosphere’s pg2 grid and the ocean’s Voronoi563

grid, TempestRemap implements an L2 projection between the finite-volume grids. The564

requirement of monotonicity implies the projection must use the constant-function ba-565

sis rather than a high-order reconstruction. This map type is used for all fluxes and most566

states in the coupled model. The second map type is bilinear interpolation from ESMF567

(Hill et al., 2004). This map type is used to transfer state from the atmosphere to the568

ocean and sea ice.569

2.6.2 Energy conservation570

With respect to energy conservation, EAM closely follows the design of CAM (Neale571

et al., 2012). The formulation of total energy is given in Lauritzen and Williamson (2019),572

equation 8. Each parameterization is expected to conserve energy and mass; therefore,573

there are no energy fixers (column fixers) for parameterizations at the interface level in574

EAM. Two known components of EAM that require energy fixers are the pressure ad-575

justment and the dynamical core. Parameterizations operate under the constant moist576

pressure assumption, which requires the moist pressure adjustment described in Neale577

et al. (2012) and Lauritzen and Williamson (2019). In the dynamical core, there are sev-578

eral sources of energy dissipation, as described in Section 2.1.1. Therefore, a global en-579

ergy fixer in the form of a uniform increment to the temperature field is applied to com-580

pensate for these processes as well as pressure adjustment. The fixer’s typical average581

value is −0.07 W m−2.582
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The change of energy in the atmosphere should be equal to the difference in net583

fluxes at the top of the model and the surface. A long-term average of the energy change584

should be close to zero if the model conserves energy, since storage in the atmosphere585

is minimal. EAMv1 contained a few energy leaks. For example, one source of leaks is586

the presence of a limiter for water forms (K. Zhang et al., 2018), but this source is small.587

In EAMv1, we recognized the gravity wave drag (GWD) parameterization as the source588

of the largest energy leak. In the orographic gravity wave parameterization, the change589

in kinetic energy was not properly accounted for. After a fix, the energy imbalance in590

the atmosphere is reduced from 0.07 W m−2 to 0.01 W m−2. Figure S2 depicts the en-591

ergy imbalances for atmosphere simulations with and without the GWD energy fix.592

MPAS-Ocean utilizes a fixed two band exponential formulation for penetrating short-593

wave radiation. For grid cells with shallow bottom depths, a portion of the penetrating594

shortwave radiation reaches the bottom of the ocean. In E3SMv1, this portion of the short-595

wave radiation was not accounted for, resulting in a globally averaged energy leak of ap-596

proximately 0.25 W m−2. In E3SMv2, the shortwave radiation that reaches the bottom597

of the ocean is added to the bottom layer. In the development of E3SMv2, we found that598

this change had minimal impact on the large scale ocean climate.599

After these energy conservation errors in the atmosphere and the ocean were ad-600

dressed, we realized that the coupled system was no longer in energy balance compared601

to E3SMv1. Further investigation led to the energy correction term incorporated in E3SMv1602

to account for the inconsistent definition of energy in the ocean and atmosphere (see Go-603

laz et al., 2019, Appendix A). While conceptually correct, the computation of that cor-604

rection term was based on all the precipitation, when instead it should have included only605

precipitation over ocean and ocean runoff. Precipitation over land should not have been606

included because the land model ELM does not take into account heat carried by pre-607

cipitation. The energy imbalance was corrected by calculating the needed energy to bring608

fluxes of water to a common temperature with the ocean, and then pass the globally av-609

eraged value as a correction term to be applied in the atmosphere every coupling time610

step.611

2.6.3 Coupled tuning612

The coupled tuning objectives for the pre-industrial control simulation were sim-613

ilar to Golaz et al. (2019):614

1. Near-zero long-term average net top-of-atmosphere (TOA) energy flux and total615

OHC in equilibrium.616

2. Minimum long-term drift in global mean surface air temperature.617

3. Reasonable absolute global mean surface air temperature.618

Furthermore, spatial root mean square errors (RMSEs) against observations for key619

climate variables (e.g., annual mean sea surface temperature (SST), annual and seasonal620

precipitation, TOA radiation, cloud radiative effect, sea surface wind stress, etc.) from621

the E3SM Diagnostic package (C. Zhang et al., 2022) are also considered. Tuning was622

performed iteratively through trial and error at component levels and with the coupled623

system under perpetual pre-industrial (1850) forcings.624

In the atmosphere, we firstly conducted short atmosphere sensitivity tests with re-625

peating SST and sea ice annual cycle (“F2010”) to estimate the impact of individual pa-626

rameters on the modeled precipitation, cloud radiative forcing, and other climate state627

variables. Based on the short sensitivity tests, we designed several groups of parameters628

and conducted F2010 simulations in a parallel manner. Then, we evaluated these tun-629

ing combinations based on the aforementioned key climate variables from the E3SM Di-630

agnostics package. Promising atmospheric configurations were then evaluated with longer631
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AMIP simulations (prescribed SST for the years 1980-2015) before being tested in pre-632

industrial coupled mode. Results from the coupled simulation then fed back into another633

round of atmospheric tuning. Periodically, we also performed atmospheric simulations634

to evaluate cloud feedback and aerosol ERF to inform the atmospheric tuning. Specif-635

ically, we estimated the cloud feedback using Cess-like simulations (Cess et al., 1989) by636

comparing the differences between an 11-year AMIP standard simulation (years 1980-637

1990) and the same simulation except with globally +4K SST (Ringer et al., 2014). The638

aerosol ERF was estimated with time slice simulations (e.g. Hansen, 2005) consisting639

of a 9-year 2010 simulation vs a 2010 simulation except with 1850 aerosol emissions. To640

estimate the aerosol ERF more efficiently, we also used short (1 year after 3-month spin-641

up) nudged simulations with 2010 and 1850 aerosol emissions (all other external forc-642

ings kept as year 2010 conditions), where the horizontal winds were nudged towards model643

output from a baseline simulation. Nudging was used mainly to constrain the large-scale644

circulation, so that the noises caused by the atmospheric internal variability are reduced645

and short simulations can be used to estimate the aerosol ERF (Kooperman et al., 2012;646

K. Zhang et al., 2014). Previous studies (K. Zhang et al., 2022; S. Zhang et al., 2022)647

showed good agreement in the global and regional annual mean aerosol ERF estimates648

between the free-running and nudged simulations in E3SMv1.649

Component-level development and tuning for the ocean also relied on simulations650

forced with atmospheric reanalyses (Tsujino et al., 2018) to guide the tuning of the Gent-651

McWilliams bolus kappa parameter and the newly implemented Redi isopycnal mixing652

scheme.653

As in E3SMv1, the last step was a final tuning of the CLUBB parameter clubb c14654

in the coupled system to minimize long-term drift by adjusting shortwave cloud radia-655

tive effects (SWCRE) in the low-cloud regimes.656

Pre-industrial simulations were the only coupled simulations performed before the657

model was frozen. In particular, no idealized CO2 or test historical simulations were per-658

formed before finalizing E3SMv2.659

3 Computational performance660

3.1 Performance comparison of v1 and v2 simulations661

This section examines computational performance using a set of atmosphere-only662

and fully coupled simulations. Relative to EAMv1, EAMv2 is approximately twice as663

efficient for primarily two reasons: faster passive tracer transport and fewer physics columns.664

E3SMv2 is also approximately twice as efficient because the ocean dynamics time step665

is three times larger than in E3SMv1. The sea ice component is slower in v2 than in v1666

because of additional snow layers.667

Performance benchmark simulations were performed on the ANL Chrysalis clus-668

ter. Chrysalis has 512 compute nodes. Each node of the cluster has two AMD Epyc 7532669

“Rome” 2.4 GHz processors, and each processor has 32 cores, for a total of 64 cores per670

node. Each node has 256GB 16 channel DDR4 3200MHz memory. The interconnect hard-671

ware is Mellanox HDR200 InfiniBand and uses the fat tree topology. The model code672

was compiled with Intel release 20200925 with GCC version 8.3.1 compatibility and run673

with OpenMPI 4.1.1 provided in the Mellanox HPC-X Software Toolkit.674

All throughput values reported in this section are derived using the maximum time675

(minimum throughput) over all MPI processes. Only the total throughput value is fully676

accurate, as it is computed using the top-level wallclock time of the simulation, exclud-677

ing initialization; component and subcomponent throughput values are approximations678

because these lower-level timers are not associated with global synchronization points.679

The simulations are run with one MPI process per core and no OpenMP threading. A680
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throughput data point corresponds to one simulation run for three months with the de-681

fault input/output (I/O) configuration and one restart file at the simulation end. For682

these tests, both v1 and v2 simulations use the new SCORPIO (Software for Caching683

Output and Reads for Parallel I/O) I/O library; thus, performance differences in these684

simulations are due to components’ computational and I/O volume differences rather than685

I/O library differences. Performance improvements from SCORPIO are documented sep-686

arately in Section 3.2.687
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Figure 2. Performance of the lower resolution E3SMv1 and E3SMv2 pre-industrial control

simulations. (a) Throughput vs. number of nodes. PE layouts XS, S, M, L are provided as part

of the models. Points annotated with “st” use a simple stacked layout in which each compo-

nent runs serially with respect to the others, and all components share the same processors. (b)

Throughput-resource product plots. Each component has one rectangle. A rectangle has the

area given by the product of throughput and number of nodes. In v2, the atmosphere and ocean

components have substantially smaller throughput-resource products.

Figure 2 summarizes the performance of E3SMv2 relative to E3SMv1 on the lower688

resolution E3SMv1 and E3SMv2 pre-industrial control simulations. Figure 2a plots to-689

tal throughput versus the number of computer nodes. The models provide a small num-690

ber of optimized layouts, available using the names XS (v2 only), S, M, L. In addition,691

the figure shows small-node-count simulations using a simple stacked layout (“st”) in which692

each component runs serially with respect to the others, and all components share the693

same processors. Each simulation’s data point is annotated with its throughput in sim-694

ulated years per day (SYPD) and layout. Comparing S, M, and L layouts between mod-695

els, v2 is at least 1.97 times more efficient than E3SMv1. Figure 2b illustrates this ef-696

ficiency difference by plotting the throughput-resource product for each component as697

a rectangle for the L layouts. The atmosphere (ATM), sea ice (ICE), coupler (CPL), land698

(LND), and river runoff (ROF; LND and ROF are too small to label) components run699

on one set of nodes, while the ocean (OCN) component runs on another set. An unfilled700

rectangle having “v1” or “v2” at the top-right corner shows the total product; because701

the throughput value of each component is approximate, the filled rectangles do not sum702

to the total throughput value.703

Figure 3 focuses on just the atmosphere component using prescribed SST and sea704

ice simulations. In E3SMv2, by default MPAS-Seaice now replaces CICE in such con-705

figurations (see Section 2.3). However, we use CICE for this study for three reasons. First,706

MPAS-Seaice requires a partition file for each process decomposition, and one goal of707

this study is to run simulations with a large number of decompositions. With CICE, we708

do not need to generate a decomposition file for each one. Second, MPAS-Seaice is slower709
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Figure 3. Performance of the lower resolution EAMv1 and EAMv2 atmosphere simulations.

(a) Throughput vs. number of nodes. PE layouts are simple stacked layouts. (b) Proportion of

time spent in each subcomponent, with the total time for v1 normalized to 1.

than CICE, and it must run on an MPAS grid; the combined slowdown from each of these710

would reduce the precision of our analysis of just the atmosphere component’s perfor-711

mance in this study. Finally, v1 must use CICE, so a comparison of just the changes to712

the atmosphere component is best done by using CICE in the v2 simulations as well.713

Figure 3a shows total throughput of the simulation and approximate throughputs714

of the dynamical core (“dycore”) and passive tracer transport. A subset of data points715

are annotated with throughput values. Passive tracer transport is at least six to at least716

eight times faster in v2 than in v1. Two details are apparent in this plot. First, the dy-717

namical core is sensitive to the element decomposition, while the rest of the model is sen-718

sitive to the finer physics column decomposition. Thus, between 43 and 68 nodes, per-719

formance of the dynamical core subcomponents plateaus or slightly degrades, since in720

this range an increase in node count provides no improvement to the most-burdened MPI721

processes. Nonetheless, total throughput is roughly monotonically increasing even in this722

node count range. Second, representative node counts are chosen to favor, generally sep-723

arately, v1 and v2 in roughly equal numbers. Thus, there are closely spaced pairs of points724

in this same range to show the best available throughputs of both model versions.725

Figure 3b decomposes performance of the 85-node simulations into the same sub-726

components. Only each full-height bar is fully accurate; subcomponent proportions are727

approximate. Again, tracer transport in v2 is over six times faster than in v1, speeding728

up the dynamical core by over three times in this case. The total model speedup is a lit-729

tle over two times in this case, with the speedup outside of the dynamical core coming730

from the reduction in number of physics columns.731

3.2 File Input/Output732

The EAM and E3SM simulations discussed above used the SCORPIO library for733

reading input data and writing simulation output to the file system. To improve the I/O734

write performance, the library caches and rearranges output data among MPI processes735

before using low-level I/O libraries, such as NetCDF, Parallel NetCDF (PnetCDF), and736

the Adaptable IO System (ADIOS), to write the data to the file system. In all the sim-737
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ulation campaigns we used PnetCDF as the low-level I/O library in SCORPIO, and I/O738

accounted for less than 4% of the total runtime of the simulation.739

To measure the I/O improvements in the model, we compared the old version of740

the I/O library, SCORPIO CLASSIC (based on PIO, Dennis et al., 2012), used by E3SMv1,741

with the new version of the library, SCORPIO, used by E3SMv2, by running E3SMv1742

benchmark simulations on Chrysalis with the S, M, and L configurations. The simula-743

tion was run for 90 simulated days and generated ∼30GB of history and restart model744

output for each configuration. We found that SCORPIO provides a higher write and read745

performance than SCORPIO CLASSIC for all the model configurations. SCORPIO pro-746

vides a consistent write throughput of 3-3.5 GB/s for all the configurations while the write747

throughput of SCORPIO CLASSIC drops from 1.9 GB/s for the S configuration to 356748

MB/s for the L configuration. The time to read the model input data stays relatively749

constant for SCORPIO with the different model configurations while it increases expo-750

nentially with the number of MPI processes for SCORPIO CLASSIC. The time to read751

the model input data is ∼40% higher for SCORPIO CLASSIC compared to SCORPIO752

for the S and M model configurations, and for the L model configuration the time to read753

data with SCORPIO CLASSIC is 3.3 times the time taken with SCORPIO. The total754

time, including reads and writes, spent in I/O by both the libraries was less than 8% of755

the total runtime for all the model configurations except the L configuration with the756

SCORPIO CLASSIC library, where I/O accounted for 25% of the total runtime.757

4 Simulation Campaign758

Table 1 summarizes the E3SMv2 simulation campaign. All simulations were con-759

figured to adhere to the CMIP6 specifications as closely as possible and rely on the same760

boundary files as E3SMv1 (Golaz et al., 2019). The CMIP6 DECK plus historical sim-761

ulations (Eyring et al., 2016) include the pre-industrial control (piControl) spanning a762

total of 500 years, idealized CO2 simulations (1pctCO2, abrupt-4xCO2 ; 150 years each),763

and a five-member ensemble of historical simulations (historical N ; 1850-2014). These764

simulations were initialized from piControl on Jan 1 of various years as indicated in Ta-765

ble 1. AMIP simulations (prescribed SST and sea ice extent) were also performed to cover766

the entire period for which CMIP6 provides surface boundary conditions (1870-2014).767

Atmosphere, land, and river initial conditions for amip N were taken from year 1870 of768

the corresponding historical N coupled simulations.769

To understand the relative importance of different forcing agents, a set of DAMIP770

(Gillett et al., 2016) historical simulations was performed. They consist of five-member771

ensembles with well-mixed greenhouse-gas-only (hist-GHG) and anthropogenic-aerosol-772

related (hist-aer) forcing agents. Instead of natural-only historical simulations as in Gillett773

et al. (2016), we opted for a third set with all agents active except well-mixed GHG and774

aerosols (hist-all-xGHG-xaer). This non-standard choice was motivated by a desire to775

include all forcing agents in our decomposition (including land-use and ozone).776

Finally, we performed a set of simulations following RFMIP (Radiative Forcing Model777

Intercomparison Project; Pincus et al., 2016) with slight updates to the protocol (https://778

rfmip.leeds.ac.uk/rfmip-erf). These simulations are designed to estimate time-varying779

total and aerosol-related ERF. Three sets of prescribed SST and sea ice simulations are780

performed with SST and sea ice derived from a 500-year average of piControl. piClim-781

control is the control simulation with all forcing agents held at their 1850 values. piClim-782

histall activates all time varying forcing agents, whereas piClim-histaer only activates783

time varying agents related to anthropogenic aerosols and their precursors.784

The entire simulation campaign was performed on the DOE-E3SM Chrysalis clus-785

ter located at Argonne National Laboratory. E3SMv2 experienced only a single model786

crash during the nearly 3000 simulated years. The failure occurred during year 121 of787
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abrupt-4xCO2 ensemble member 301. The failure was overcome by rerunning and tog-788

gling a flag in the coupler (“BFBFLAG”) that changes order of arithmetic operations.789

This introduces a “butterfly effect” sufficient to alter the weather and avoid the origi-790

nal failure point.791

Table 1. Summary of E3SMv2 simulations.

Label Description Period Ens. Initialization

Fully coupled
(atmosphere, ocean, sea ice, land, and river)

piControl Pre-industrial control 500 years - Pre-industrial
spinup

1pctCO2 N Prescribed 1% yr−1 CO2

increase
150 years 1 piControl (101)

abrupt-4xCO2 N Abrupt CO2 quadrupling 150 years 2 piControl (101, 301)
historical N Historical 1850-2014 5 piControl (101, 151,

201, 251, 301)
hist-GHG N DAMIP well-mixed

greenhouse-gas-only his-
torical

1850-2014 5 piControl (101, 151,
201, 251, 301)

hist-aer N DAMIP anthropogenic-
aerosol-related historical

1850-2014 5 piControl (101, 151,
201, 251, 301)

hist-all-xGHG-xaer N Other forcing historical (all
forcings except GHG and
aer)

1850-2014 5 piControl (101, 151,
201, 251, 301)

Prescribed SST and sea ice extent
(atmosphere, thermodynamic sea ice, land and river)

amip N Atmosphere with prescribed
SSTs and sea ice concentra-
tion

1870-2014 3 historical N (1870)

piClim-control RFMIP baseline control 50 years - Pre-industrial
spinup

piClim-histall N RFMIP time-varying ERF
all agents

1850-2014 3 piClim-Control (21,
31, 41)

piClim-histaer N RFMIP time-varying ERF
aerosols

1850-2014 3 piClim-Control (21,
31, 41)

4.1 Pre-industrial control792

The pre-industrial control simulation (piControl) was initialized after a 1000-year793

long spin-up simulation, itself initialized from ocean and sea ice states derived from a794

one-year forced ocean-sea ice simulation. During the spin-up, the model configuration795

was final, except for a small retuning of the gravity wave drag parameterization that was796

introduced at year 800 to improve the period of the QBO as described in Section 2.1.3.797

The climate simulated by E3SMv2 is very stable throughout the 500-year piCon-798

trol as demonstrated in Figure 4. The net TOA radiation (Fig. 4a) averages to −0.05799

W m−2 with no trend. This value is sufficiently close (compared to anthropogenic forc-800

ing) to the ideal value of 0 W m−2 for a fully equilibrated and perfectly energy conserv-801

ing model.802
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Figure 4. Time evolution of annual (a) global mean net top-of-atmosphere (TOA) radiation

(positive down), (b) global mean surface air temperature, (c) maximum and minimum of total

sea ice area for the Arctic and Antarctic, and (d) maximum Atlantic Meridional Overturning

Circulation (AMOC) at 26.5◦N below 500-m depth in the piControl simulation. Dashed lines in

(a), (b), and (d) represent linear trends. The solid straight line in (a) is the mean TOA energy

imbalance of −0.05 W m−2, while the solid straight line in (d) is the mean annual maximum

AMOC of 9.84 Sv.
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The global mean surface temperature averages to 13.70 ◦C with a very small down-803

ward trend (dashed line in Fig. 4b). The average temperature is very similar to E3SMv1804

and consistent with observational estimates (e.g. global temperature of 14.0±0.5◦C for805

the period 1961-1990 minus estimated warming; Jones et al., 1999). Along with the global806

mean temperature, maximum and minimum seasonal sea ice areas for the Arctic and Antarc-807

tic are stable as well (Fig. 4c).808

Finally, the maximum AMOC in E3SMv2 is quite weak, similar to that in E3SMv1.809

The AMOC in Fig. 4d is weaker than the value in (Golaz et al., 2019) (∼11 Sv). How-810

ever, during the E3SMv2 development it was discovered that the published AMOC did811

not include the contribution of the parameterized mesoscale eddies. In the North Atlantic812

the influence of the Gent-McWilliams parameterization opposes the resolved AMOC. When813

the eddy bolus velocity is included in the v1 calculation, the AMOC is very similar (∼9.5814

Sv) to that in E3SMv2.815

4.2 Climate sensitivity and effective radiative forcing816

Included in the DECK simulations are two idealized CO2 simulations designed to817

estimate the model response (sensitivity) to CO2-forcing at different time horizons. The818

equilibrium climate sensitivity (ECS) is defined as the equilibrium surface temperature819

change resulting from a doubling in CO2 concentrations. Because it is not practical to820

run a model to equilibrium, ECS is approximated by linear regression of TOA radiation821

vs surface temperature in a 150-year “abrupt-4xCO2” simulation (Gregory et al., 2004),822

often referred to as “effective climate sensitivity”. Response on shorter time scales is mea-823

sured by the transient climate response (TCR). TCR is defined as the change in surface824

temperature averaged for a 20-year period around the time of CO2 doubling from a 1pctCO2825

simulation. TCR depends on both climate sensitivity and ocean heat uptake rate.826

Figure 5 illustrates the time evolution of annual-average surface air temperature827

from the E3SMv1 and E3SMv2 idealized CO2 simulations, as well as their linear regres-828

sions. ECS is reduced from 5.3 K in E3SMv1 to 4.0 K in E3SMv2, a substantial reduc-829

tion (25%). TCR is reduced as well, but by a smaller fraction from 2.93 K to 2.41 K (18%).830

The effective CO2 radiative forcing is also reduced by 11% (3.34 to 2.98 W m−2). To ex-831

plore the impact of the non-linearity, we also calculate separate regressions for the first832

20 and last 130 years as proposed by Andrews et al. (2015a). Doing so leads to only slightly833

larger estimates of the forcing (3.36 vs 2.98 W m−2) and ECS (4.25 vs 4.0 K) for E3SMv2,834

and similarly for E3SMv1. The impact on ECS is small compared to some other mod-835

els (Andrews et al., 2015a, their Fig. 2).836

For comparison, Meehl et al. (2020) evaluated ECS and TCR for 37 CMIP6 mod-837

els. ECS ranged between 1.8 and 5.6 K, with 6 models above 5 K including E3SMv1.838

The multimodel mean ECS was 3.7 K with a standard deviation of 1.1 K. TCR ranged839

from 1.3 to 3.0 K, with E3SMv1 having the largest value. The multimodel mean TCR840

was 2.0 K with a standard deviation of 0.4 K. E3SMv2 is now within one standard de-841

viation of multimodel mean for both ECS and TCR, but still on the high side.842

World Climate Research Programme (WCRP) researchers conducted a recent as-843

sessment of the equilibrium climate sensitivity following multiple lines of evidence (Sherwood844

et al., 2020). They arrived at a 66% confidence range of 2.6–3.9 K for their baseline cal-845

culation and 2.3–4.5 K under their robustness tests. The broader 5–95% confidence ranges846

were 2.3–4.7 K, respectively 2.0–5.7 K. E3SMv1 with an ECS of 5.3 K is rather unre-847

alistic as it lies outside of most of those ranges. On the other hand, E3SMv2 has a high,848

but plausible ECS of 4.0 K.849

Although a part of the reduction in ECS stems from the reduced effective radia-850

tive forcing in E3SMv2 (from 3.34 to 2.98 W m−2), it is mainly due to the reduced to-851

tal climate feedback. Applying the radiative kernel method (Soden et al., 2008) imple-852
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mented in the E3SM cloud feedback diagnostic package (Qin, 2022) to decompose the853

climate feedback into different components, we find the reduced cloud feedback (E3SMv1:854

0.93 W m−2K−1; E3SMv2: 0.72 W m−2K−1), especially over the marine low cloud re-855

gions, contributes the most to the reduction in total climate feedback, whereas the changes856

in other non-cloud feedbacks are negligible. Sensitivity tests on model changes in E3SMv2857

atmosphere physics indicate that the dCAPE-ULL convective trigger in the ZM scheme858

and the updated CLUBB tuning parameters play leading roles in reducing the marine859

low cloud feedbacks in E3SMv2. The new trigger function in ZM deep convection tends860

to be activated more frequently under warming, leading to more cloud water detrain-861

ment to sustain the low clouds. The net impact of CLUBB changes on marine low cloud862

feedback is partly related to the reduced decoupling between boundary layer and free863

troposphere in mean climate. More details will be reported in an upcoming paper.864

We also evaluate the evolution of ERF from pre-industrial to present-day condi-865

tions using RFMIP simulations (Table 1). ERFtotal is the difference in net TOA radi-866

ation between piClim-histall and piClim-control and ERFaer the difference between piClim-867

histaer and piClim-control. Their time evolutions are shown in Figure 6 along with their868

counterparts from E3SMv1 (computed with a comparable but slightly different method-869

ology, see Golaz et al., 2019). The time evolutions of ERFtotal and ERFaer are nearly870

identical between E3SMv2 and E3SMv1. ERFtotal remains close to zero until the late871

1900’s, except for dips during explosive volcanic eruptions. Averaging over the last 20872

years reveals small differences between the two models. The aerosol forcing is slightly873

reduced in magnitude (−1.52 vs −1.65 W m−2), but the the total forcing does not in-874

crease as a result. In fact it is reduced (+1.00 vs +1.10 W m−2), likely as a consequence875

of the smaller CO2 ERF (Fig. 5).876

Another assessment was conducted under the auspices of the WCRP with the goal877

of bounding the aerosol radiative forcing (Bellouin et al., 2020). Following multiple lines878

of evidence, the assessment arrived at a 68% confidence interval for the total aerosol ef-879

fective radiative forcing of −1.6 to −0.6 W m−2, or −2.0 to −0.4 W m−2 with a 90%880

likelihood. With a forcing of −1.52 W m−2, E3SMv2 is close to the lower bound but within881

the narrower confidence interval.882

4.3 Historical ensemble883

To facilitate comparisons between model and observations, the bulk of the anal-884

ysis focuses on the historical simulations.885

Figure 7 provides a broad overview of the model performance. Spatial RMSEs against886

observations or reanalysis products are computed for annual and seasonal averages with887

the E3SM Diagnostics package (C. Zhang et al., 2022). The first historical ensemble mem-888

bers of E3SM are depicted with triangles, blue for E3SMv1 and red for E3SMv2. They889

are compared against 52 CMIP6 models shown with box-and-whisker plots (minimum,890

25th, 75th percentile, maximum). Underlying E3SM Diagnostics comparison figures are891

available online (https://portal.nersc.gov/project/e3sm/CMIP6 E3SMv2 Golaz et892

al 2022). For most fields, E3SMv2 outperforms E3SMv1. Notable improvements in-893

clude precipitation and sea-level pressure. The simulated precipitation in E3SMv2 is now894

competitive with the upper quartile of the CMIP6 ensemble. While sea-level pressure895

is also much improved, it is still only about average compared to CMIP6. Consistent with896

sea-level pressure, zonal wind at 850 hPa also improves. E3SMv2, similarly to E3SMv1,897

has a good representation of TOA radiation fields, moderately improving upon v1 for898

most fields and seasons. Unfortunately, two fields suffer from a degradation in E3SMv2899

as compared to E3SMv1. For the zonal wind at 200 hPa, the degradation is partly as-900

sociated with the change in stratospheric ozone chemistry (i.e., O3v2) (Tang et al., 2021,901

their Figure 10), but the differences between E3SMv2 and E3SMv1 in Figure 7 are larger902

than those between E3SMv1+O3v2 and E3SMv1, suggesting that other factors contribute903
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Figure 5. (a-b): time evolution of annual global mean surface air temperature anomalies for

the idealized CO2 forcing simulations abrupt-4xCO2 (red), 1pctCO2 (blue), and the control sim-

ulation (piControl ; green) for E3SMv1 and E3SMv2. The transient climate response (TCR) is

computed as a 20-year average around time of CO2 doubling (year 70). (c-d) Gregory regression

to estimate effective climate sensitivity (ECS) and effective 2xCO2 radiative forcing (F) using the

full 150 years as well as the first 20 years for the forcing (F1−20) and the last 130 years for the

effective climate sensitivity (ECS 21−150).
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Figure 6. Time evolution of annual global mean total ERF (brown) and aerosol-related ERF

(blue) for E3SMv1 and E3SMv2. Horizontal lines and adjacent values denote averages from 1995

to 2014.
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Figure 7. Comparison of RMSEs (1985–2014) of an ensemble of 52 CMIP6 models (first

historical members r1i1p1f1) with the first historical members of E3SMv1 (blue triangles) and

E3SMv2 (red triangles). Box and whiskers show 25th, median, 75th percentile, minimum, and

maximum RMSE for the CMIP6 ensemble. Spatial RMSE against observations are computed for

annual and seasonal averages with the E3SM Diagnostics package (C. Zhang et al., 2022). Fields

shown include TOA net radiation (a), TOA SW and LW cloud radiative effects (b, c), precipi-

tation (d), surface air temperature over land (e), sea-level pressure (f), 200- and 850-hPa zonal

wind (g, h), and 500-hPa geopotential height (i). TOA = top-of-atmosphere; SW = shortwave;

CRE = cloud radiative effects; LW = longwave; DJF = December–February; MAM = March–

April; JJA = June–August; SON = September–November; RMSE = root-mean-square error.

The mean climatology of the reference observational and reanalysis datasets are derived from:

CERES-EBAF Ed4.1 (Loeb et al., 2018) (2001-2014) for (a, b, and c), GPCP2.3 (Adler et al.,

2018) (1985-2014) for (d) and ERA5 (Hersbach et al., 2020) (1985-2014) for (e, f, g, and h). Due

to data availability, not all models are included for every variable. Complete data is available in

Table S1.
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as well. The degradation in surface air temperature over land is largely attributable to904

poor simulation of the historical temperature record (see Sections 4.3.6 and 5 below).905

Selected fields from Fig. 7 are discussed in more detail in the subsections below.906

Comparison figures between observations, E3SMv1, and E3SMv2 for the remaining ones907

are available in the Supporting Information (Figs. S3 to S9).908
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Figure 8. Annual net top-of-atmosphere (TOA) radiative flux (W m−2): (a) CERES-EBAF

Ed4.1 observational estimate (2001-2014), (b) model bias from the 5-member ensemble of

E3SMv2 historical coupled simulations (2001–2014), and (c) model bias from the 5-member

ensemble of E3SMv1 historical coupled simulations (2001–2014). RMSE = root-mean-square

error. CORR = linear correlation coefficient between observation and model.

4.3.1 Radiation and Clouds909

Annual net TOA radiative flux (2001-2014) in E3SMv1 and v2 is depicted in Fig-910

ure 8 in comparison with observations from CERES-EBAF Ed4.1 (Loeb et al., 2018).911
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The simulated global mean value is nearly identical between the two versions at +0.5912

W m−2, lower than the observational estimate (but consistent with the smaller warm-913

ing; Figure 6 and Section 4.3.6). Many regional biases are reduced in E3SMv2, includ-914

ing positive biases over stratocumulus regions, as well as negative biases over tropical915

and subtropical Pacific, Indian, and Atlantic oceans, resulting in an overall smaller RMSE916

(8.6 vs 9.3 W m−2).917
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Figure 9. Annual top-of-atmosphere shortwave and longwave cloud radiative effect model

biases (historical ensemble, 2001-2014) compared to CERES-EBAF Ed4.1 observational esti-

mate (2001-2014) (W m−2): (a) SWCRE E3SMv1, (b) LWCRE E3SMv1, (c) SWCRE E3SMv2,

(d) LWCRE E3SMv2. RMSE = root-mean-square error. CORR = linear correlation coefficient

between observation and model.

Figure 9a,c demonstrate that the TOA shortwave cloud radiative effect is improved918

in the E3SMv2 historical ensemble compared with E3SMv1 in terms of RMSE and the919

pattern correlation. Overall, the global mean SWCRE in E3SMv2 is weaker and closer920

to observations by ∼1.5 W m−2. The positive TOA SWCRE bias associated with the921

stratocumulus decks over eastern ocean basins, especially right off the coasts of Califor-922

nia, Peru and Chile, and the southern West Africa, is clearly reduced, while the nega-923

tive SWCRE bias associated with the cumulus regimes over central/western tropical oceans924

is slightly reduced as well. The improvement in the marine boundary layer cloud regimes925

is mainly from the updated CLUBB tuning parameters (Ma et al., 2022). The global mean926

TOA longwave cloud radiative effect (LWCRE) bias is weaker by ∼0.6 W m−2, slightly927

degraded compared to E3SMv1 while RMSE remains comparable (Fig. 9b,d). Regional928

biases over the equatorial Pacific and the intertropical convergence zone (ITCZ) are re-929

duced associated with the improved precipitation over these areas (described in Section 4.3.2930

below). The positive TOA LWCRE bias is also slightly reduced over the Southern Ocean.931

The enhanced Wegener-Bergeron-Findeisen (WBF) efficiency and the update to932

the ZM scheme significantly increase ice water in mixed-phase clouds, which also weak-933

ens SWCRE in the Southern Hemisphere (e.g. ∼30 ◦S in Figure 9). The liquid conden-934

sate fraction (LCF) as a function of temperature at all latitudes between 30 ◦S–80 ◦S (Fig-935

ure 10) from both E3SMv1 and E3SMv2 historical coupled simulations demonstrate that936

the updated atmosphere features and tuning parameters in E3SMv2 significantly increase937

ice cloud mass fraction in the temperature range between −50 ◦C and −10 ◦C, which is938

closer to the general pattern of the observational estimate (Y. Zhang et al., 2019). Note939

that the LCFs from the E3SMv1 historical coupled simulation and the E3SMv2 histor-940
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ical coupled simulation are both calculated throughout the whole cloud layer with the941

monthly model output at 1◦ resolution, while the observation from (Y. Hu et al., 2010)942

is based on cloud top estimates at 5-km resolution. Given the mismatch between the model943

diagnostics and observational estimates and the broad range of observed cloud phase par-944

tition from previous observational estimates (McCoy et al., 2016), it is more reasonable945

to compare the v2 LCF with the v1 LCF.946

We further quantify the improvements in the subtropical stratocumulus decks com-947

pared to E3SMv1 following Brunke et al. (2019). We define the decks as the areas within948

30◦ latitude by 35◦ longitude boxes in the Northeast Pacific (NEP; 10◦-40◦N, 110◦-145◦W),949

Northeast Atlantic (NEA; 0◦-30◦N, 15◦-50◦W), Southeast Pacific (SEP; 5◦-35◦S, 70◦-950

105◦W), Southeast Atlantic (SEA; 5◦-35◦S, 20◦W-15◦E), and the Southern Indian Ocean951

(SIO; 10◦-40◦S, 80◦-115◦E) where low cloud cover > 45%, the LCC45+ decks, over both952

the land and ocean portions of the boxes. E3SMv2 LCC from the Cloud Feedback Model953

Intercomparison Project Observation Simulator Package (COSP) Cloud-Aerosol Lidar954

and Infrared Pathfinder (CALIPSO) satellite simulator is generally improved, falling more955

within the observational spread represented by three satellite and in-situ based clima-956

tologies [the CALIPSO satellite GCM-Oriented CALIPSO Cloud Product (GOCCP),957

the International Satellite Cloud Climatology Project (ISCCP) D2 product, and the Ex-958

tended Edited Cloud Reports Archive (EECRA)] (Figure 11).959

The cloud changes that lead to the SWCRE improvements can be explained by the960

spatial errors in the simulated LCC45+ cloud decks with respect to GOCCP which are961

defined as in Brunke et al. (2019). An example of these for the seasons of maximum LCC962

for each region in Figure 11 is given in Figure 12. For “apples-to-apples” comparisons,963

the model output from the COSP CALIPSO satellite simulator is used. Centroid dis-964

tances (Figure 12a) measure the distance between the centroid of the seasonal mean cloud965

deck in GOCCP and the model. Smaller centroid distances are better than large ones.966

Area ratios (Figure 12b) are the ratio of the area of the model’s deck to that of the satel-967

lite to measure cloud deck size errors. Finally, overlap ratios (Figure 12c) are the frac-968

tion of the union of the model and satellite cloud decks in which there is overlap. This969

synthesizes the effects of location, size, and shape errors in the simulated cloud decks.970

Both of these ratios should be close to 1 for minimal errors.971

Figure 12 shows that E3SMv2 improves most the representation of the widely stud-972

ied subtropical stratocumulus cloud decks in the NEP, NEA, and SEP. In these regions,973

centroid distances are decreased and overlap ratios are similar to or increased to values974

closer to 1. Area ratios are improved in all regions with values closer to 1 except NEA.975

Similar results are found in all other seasons.976

4.3.2 Precipitation977

The model bias in annual precipitation from E3SMv2 shows notable improvement978

compared with that in E3SMv1 (Figure 13). The biases are clearly reduced in the Trop-979

ical Pacific ocean, Maritime continent, Central America, and the Amazon. The updated980

ZM tuning parameters, the dCAPE-ULL convective trigger, and the inclusion of the gusti-981

ness effects and the subgrid temperature variance are found to reduce the regional bi-982

ases of annual mean precipitation (Xie et al., 2019; Ma et al., 2022).983

As described in Section 2.1.3, the dCAPE-ULL convective trigger is expected to984

broadly improve the simulation of diurnal precipitation. This can be clearly seen in Fig-985

ure 14, which shows the comparison of the time phase (color) and amplitude (color den-986

sity) of diurnal precipitation between TRMM, and E3SMv2 and E3SMv1 historical sim-987

ulations over the tropics. Note that the precipitation from the models are the sum of con-988

vective and large-scale precipitation. The diurnal characteristics are dictated by the con-989

vective precipitation and the dCAPE-ULL trigger has little impact on the diurnal cy-990

cle of large-scale precipitation. The improvements from E3SMv1 to E3SMv2 are most991

–26–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 10. Diagnosed liquid cloud fraction (LCF) based on the monthly model output in the

30-80◦S latitude band from (blue line) the E3SMv2 historical coupled simulation (1985–2014),

(olive line) the E3SMv1 historical coupled simulations (1985–2014), and (black line) observations

from (Y. Hu et al., 2010).

Figure 11. The mean low cloud cover (LCC) for each of the LCC45+ cloud decks (see text

for definitions) for the 30◦ latitude by 35◦ longitude boxes over the Northeast Pacific (NEP),

Northeast Atlantic (NEA), Southeast Pacific (SEP), Southeast Atlantic (SEA), and the Southern

Indian Ocean (SIO).

Figure 12. Centroid distances, area ratios, and overlap ratios of the LCC45+ decks in June-

August (JJA) for the two Northern Hemisphere regions and in September-November (SON) for

the Southern Hemisphere regions.
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Figure 13. Annual precipitation rate (mm/day): (a) Global Precipitation Climatology

Project v2.3 observational estimate (1985-2014), (b) model bias from the 5-member ensemble

of E3SMv2 historical coupled simulations (1985–2014), and (c) model bias from the 5-member en-

semble of E3SMv1 historical coupled simulations (1985–2014). RMSE = root-mean-square error.

CORR = linear correlation coefficient between observation and model.
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evident in the diurnal peak phase. Over the oceans, E3SMv2 captures the observed widespread992

morning peaks, particularly along the primary precipitation bands, where the peak pre-993

cipitation occurs several hours too early (closer to midnight) in E3SMv1. Over the Mar-994

itime continent region, E3SMv2 closely reproduces the observed early evening peaks over995

land and the transition to morning peaks towards the coasts and open oceans, while E3SMv1996

has too-early diurnal precipitation peaks from noon to early afternoon over land and sim-997

ilarly much earlier peaks around midnight in the coastal regions. Over the tropical con-998

tinents, including Africa, South America, and South Asia, the observed diurnal peaks999

occur from late evening to midnight. While the diurnal precipitation peaks in E3SMv11000

are nearly phase-locked to maximum insolation over these land masses, the phase-locking1001

behaviors are avoided in E3SMv2, which sees the peak phases near midnight or shortly1002

after. However, the improvement in simulating diurnal timing phases does not translate1003

to diurnal amplitude. This is presumably due to lack of skill in simulating meso-scale1004

convective systems in coarse resolution models. Furthermore, while the diurnal ampli-1005

tudes are weaker in both models compared to observations, they are somewhat degraded1006

from E3SMv1 to E3SMv2 particularly over weakly precipitating subtropical oceans.1007

Figure 14. Annual mean time phase (color) and amplitude (color density) of the first diurnal

harmonic of 3-hourly total precipitation (mm/day) from (a) TRMM (1998-2013), and historical

simulations (1985-2014) of (b) E3SMv2 and (c) E3SMv1. Note that the diurnal properties are

computed at 0.25 degree resolution for TRMM and 1 degree resolution for the models. Remap-

ping the TRMM data to 1 degree resolution does not lead to noticeable changes in the diurnal

phases, though the amplitudes would be reduced somewhat due to spatial averaging (maximum

amplitude over the tropics reduced to 18.9 mm/day from 25.8 mm/day). To ease comparison, the

same amplitude upper bound is used for the plots, though the maximum amplitudes, as printed

above each panel, are different. Amplitudes exceeding the upper bound are shown in the highest

color density. Areas with diurnal amplitude less than 0.2 mm/day are left blank.

The improvements in summertime diurnal precipitation peak phase in E3SMv2 over1008

mid-latitude landmass such as the continental United States (Fig.15) is largely consis-1009

tent with what were shown in (Xie et al., 2019) where the dCAPE-ULL trigger was first1010

implemented in E3SMv1. Notably with the new trigger, E3SMv2 is able to produce the1011
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successive delay of precipitation peak phases from the high mountains to the plains across1012

the central U.S.. In particular, over the U.S. Great Plains, the new trigger successfully1013

captures the nocturnal precipitation peak, which has been missed by most climate mod-1014

els. However, the observed late afternoon peak over the Eastern and Southeastern U.S.1015

is missed in E3SMv2. Instead, it produces a late evening peak over the regions. This is1016

in contrast with the well simulated late afternoon peak over the regions as shown in (Xie1017

et al., 2019). Sensitivity experiments indicate this degradation is primarily caused by the1018

re-tuning of a parameter that effectively changes the air parcel launch level from 2 lev-1019

els above the bottom model level to just one level above (E3SMv1p; Ma et al., 2022).1020

The issue is being further investigated and addressed by the E3SM development team.1021

An initial test with further enhancements to the ZM scheme has indicated that a much-1022

improved diurnal cycle of precipitation could be achieved in the next version of E3SM.1023

Figure 15. Same as Fig. 14 except for the contiguous United States in June-July-August

season.

After the model was finalized, it was observed that the dCAPE trigger, indepen-1024

dent of the ULL trigger and other model settings, including the new physics pg2 grid,1025

induces a checkerboard grid-level noise pattern in a number of output fields, including1026

total grid-box cloud water liquid and ice paths, when these fields are temporally instan-1027

taneous or averaged over not more than several days (Hannah et al., 2022). Figure S101028

illustrates this issue by comparing a daily average output of the total grid-box cloud liq-1029

uid water path in four lower resolution atmosphere simulations over two binary exper-1030

imental settings: with the dCAPE trigger on and off, on the new pg2 physics grid and1031

on the original np4 physics grid. These checkerboard noises occur mostly in the sub-tropics1032

where convection is naturally weak and sparse. As indicated in many earlier studies, the1033

ZM scheme with its default CAPE trigger frequently produces spurious weak precipi-1034

tation in the subtropical region. Such spurious precipitation is mostly suppressed with1035

the use of the dCAPE trigger, which adds a dynamical constraint to suppress convec-1036
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tion when the large-scale environment is not favorable. As a result, the weak convection1037

that is still triggered when using dCAPE becomes more isolated, leading to the appar-1038

ent checkerboard noise when visualized spatially. Although this is largely an indication1039

that the dCAPE trigger is working as intended, we are testing a few approaches to re-1040

duce the checkerboard problem, including setting a threshold for dCAPE (currently zero)1041

and considering the impact of the large-scale dynamic forcing on cloud base mass fluxes.1042

We will attempt to address this problem in our next release of the model.1043

4.3.3 Tropical variability1044

As in (Golaz et al., 2019) we examine the E3SMv2 variability of the El Niño South-1045

ern Oscillation (ENSO) via wavelet analysis (Torrence & Compo, 1998) of the Niño 3.41046

SST for the piControl and historical simulations in Fig. 16. In this figure the piControl1047

has again been divided into five 100-year intervals. The 90% confidence interval is shown1048

as the dashed black line. ENSO variability in E3SMv2 shows a number of similarities1049

to E3SMv1 (compare to Golaz et al., 2019, their Fig. 20). Again E3SMv2 shows a very1050

robust peak of variability at short periods (∼2.5 years), which is similar to E3SMv1 and1051

shorter than ERSSTv4 (thick black line). While a longer period (6-9 years) remains in1052

the piControl, the mean for the five 100-year intervals has reduced relative to E3SMv1.1053

This longer term variability is weaker than simulated in other CMIP5 and CMIP6 mod-1054

els (see Orbe et al., 2020, their Fig. 10a) and observations (black line in Fig. 16). The1055

intermediate periods (3-6 years) seen in ERSSTv4 are not well captured in E3SMv2. The1056

spatial SST response to ENSO is shown in Fig. S11. The magnitude of the SST response1057

(approximately 2.5◦C) in the piControl and historical ensemble mean (panels b and c)1058

is consistent with E3SMv1, other CMIP models, and observations (Golaz et al., 2019;1059

Brown et al., 2020). However, the center of the response is shifted too far westward, which1060

is consistent with other models.1061

2

Figure 16. El Niño–Southern Oscillation (ENSO; Nino3.4) variability of the pre-industrial

(PI) control simulation and historical ensemble. The Morlet wavelet of degree 6 is used (e.g., Tor-

rence & Compo, 1998). The PI control (green lines) has been divided into five 100-year sections;

each Historical ensemble member is shown as an orange line. ERSSTv4 data (W. Liu et al., 2015)

is shown as the thick black line. The 90% confidence interval is shown as the dashed black line.
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The Madden-Julian oscillation (MJO; Madden & Julian, 1971), the dominant mode1062

of tropical variability on subseasonal (10-100 day) scales, is a key contributor to ENSO1063

events (C. Zhang & Gottschalck, 2002), monsoon activity (Wheeler & McBride, 2012),1064

extratropical atmospheric blocking episodes (Henderson et al., 2016), tropical cyclone1065

formation (Maloney & Hartmann, 2000), and weather extremes (Higgins et al., 2000; Mat-1066

sueda & Takaya, 2015; Mundhenk et al., 2016). Its accurate representation in numer-1067

ical models is essential for weather and climate prediction (Vitart & Robertson, 2018),1068

yet a satisfactory depiction of the MJO remains elusive (Jiang et al., 2015; Ahn et al.,1069

2020). Figure 17 shows the distribution of tropical precipitation spectral power, normal-1070

ized by a smoothed background spectrum, in zonal wavenumber-frequency space (Wheeler1071

& Kiladis, 1999). Model-observation comparisons span 2001-2010 within the TRMM satel-1072

lite era (Huffman et al., 2001), but comparisons between E3SM versions use the extended1073

period 1985-2015; our conclusions do not change whether the shorter or longer time win-1074

dow is used. Results from an E3SMv2 historical simulation (Fig. 17b) indicate slightly1075

lower power values for equatorial Rossby waves and the MJO and a MJO peak that is1076

at a higher frequency compared to observations (Fig. 17a). Relative to an E3SMv1 his-1077

torical simulation (see Golaz et al. (2019) and Orbe et al. (2020) for details), precipita-1078

tion normalized power in the broad MJO spectral region has increased and shifted to higher1079

frequencies (Fig. 17c). Both E3SMv2 and E3SMv1 dramatically underestimate precip-1080

itation variability associated with atmospheric Kelvin waves and other synoptic-scale dis-1081

turbances. In AMIP simulations, MJO spectral power is again larger in E3SMv2 com-1082

pared to E3SMv1 (Fig. 17e) yet, unlike the historical runs, it is not shifted to higher fre-1083

quencies and thus it is more realistic; for other wave types, intraseasonal variability bi-1084

ases in E3SM AMIP and historical simulations are generally similar.1085

Lag correlations of equatorial precipitation and 850 hPa zonal wind with Indian Ocean1086

precipitation (Figure 18) suggest some improvement in MJO propagation across the Mar-1087

itime Continent in E3SMv2 compared to E3SMv1, as evidenced by more consistent red1088

shading eastward to 125◦E. MJO eastward propagation in AMIP simulations (Figs. 18d,e),1089

particularly across the Indian Ocean and Maritime Continent between 50◦–120◦E, is much1090

improved in E3SMv2. In both E3SMv2 and E3SMv1, the quadrature phasing of precip-1091

itation and zonal wind resembles that in observations, but the MJO phase speed begins1092

to exceed the observed 5.5 m s−1 reference value (dashed green line) east of 120◦E and1093

especially in E3SMv2. E3SMv2 historical simulation results are similar to those for CESM21094

reported in Danabasoglu et al. (2020). A more detailed evaluation of tropical subseasonal1095

variability in E3SMv2 will be presented in a forthcoming manuscript.1096

4.3.4 Ozone1097

The stratospheric column ozone (SCO) of the historical ensemble mean of E3SMv21098

is compared with the satellite observations from the Ozone Monitoring Instrument (OMI)1099

and the Microwave Limb Sounder (MLS) at 60◦S to 60◦N, where the satellite observa-1100

tions have good quality all year round. Figure 19 shows the climatology of SCO zonal1101

mean annual cycle from years 2005–2014 of E3SMv2 historical simulations and years 2005–1102

2014 of the OMI+MLS observations. The E3SMv2 historical simulations match the ob-1103

served SCO seasonal phase and pattern, but generally overestimate the SCO magnitude1104

except at 40◦N – 60◦N in all months and near 30◦S from March to September. Compar-1105

ing to the E3SMv1 SCO in Fig. 1d of Tang et al. (2021), the E3SMv2 SCO better matches1106

observations in the SH mid-latitudes, but is worse in the NH mid-latitudes. This E3SMv1-1107

E3SMv2 difference in the SCO is likely associated with the QBO and GW retuning for1108

the E3SMv2.1109

The evolution of the Antarctic ozone hole during the historical time period reflects1110

the combined effect of dynamics, physics, and chemistry. The NASA Ozone Watch web-1111

site (https://ozonewatch.gsfc.nasa.gov, last access: October 11, 2021) archives the daily1112

records of the Antarctic ozone hole area (where the total column ozone (TCO) is less than1113
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a) Observations (2001-2010) b) E3SMv2 historical (2001-2010) c) (v2_hist – v1_hist)/v1_hist:  1985-2014

e) (v2_amip – v1_amip)/v1_amip:  1985-2014d) E3SMv2 AMIP (2001-2010)

Figure 17. Tropical zonal wavenumber-frequency power spectra of the component of pre-

cipitation that is symmetric about the Equator for the period 2001-2010 for (a) observations

(Tropical Rainfall Measuring Mission product 3B42v7) from 2001-2010 and (b) an E3SMv2 his-

torical simulation, and (d) an E3SMv2 AMIP simulation. Plotted values represent the summed

power from 15◦S–15◦N divided by the smoothed background power (the “normalized” power).

Solid black lines indicate shallow water dispersion curves for equivalent depths of 12, 25, and 50

m. Prominent wave types are labeled: westward inertia-gravity (n=1 WIG), Kelvin, equatorial

Rossby (n=1 ER), and the Madden-Julian oscillation (MJO). (c,e) The change, expressed as a

percent difference, in the normalized spectral power between E3SMv2 and E3SMv1 (c) historical

simulations and (e) AMIP simulations for the extended period 1985–2014.
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a) Observations (2001-2010) b) E3SMv1 historical (1985-2014) c) E3SMv2 historical (1985-2014)

d) E3SMv1 AMIP (1985-2014) e) E3SMv2 AMIP (1985-2014)

Figure 18. Latitudinally averaged (10◦S–10◦N) precipitation (colors) and 850 hPa zonal

wind (lines) anomalies lag correlated with precipitation in the Indian Ocean region (60◦–90◦E,

10◦S–10◦N) for (a) observations from 2001–2010 (Tropical Rainfall Measuring Mission [TRMM]

precipitation and Modern-Era Retrospective Analysis for Research and Applications [MERRA]

wind), and the 1985-2014 period for (b) E3SMv1 historical, (c) E3SMv2 historical, (d) E3SMv1

AMIP, and (e) E3SMv2 AMIP simulations. The dashed green line in (a) represents the observed

Madden-Julian oscillation phase speed (5.5 m s−1) in precipitation and is copied to panels (b) and

(c) for reference. The line contour interval is 0.1, solid lines indicate positive correlations, dashed

lines indicate negative correlations, and the zero correlation line is omitted. Anomalies, defined as

departures from the smoothed seasonal cycle, are bandpass filtered to retain 20-100 day signals

prior to correlation.
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(a)

(b)

(c)

Figure 19. Climatology of zonal mean annual cycle of stratospheric column ozone (SCO, in

Dobson units (DU)). The panels show data of years 2005–2014 from (a) E3SMv2 ensemble mean

of historical simulations, (b) OMI+MLS observations, and (c) the differences of E3SMv2 minus

OMI+MLS.
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(a) (b)

(c) (d)

Figure 20. Ozone hole results as shown in the historical time series (top) and daily mean

climatology and variance (bottom) of the SH minimum total column ozone (left, unit: DU) and

the SH maximum ozone hole area (right, area with total ozone < 220 DU, unit: million km2)

based on the daily data from July 1 to December 31. In the bottom panels, the lines indicate the

multi-year (1990–2014) average (observations in black and models in blue), and shading covers

±1 standard deviation.

220 DU) and minimum TCO in the SH based on daily TCO observational data. Figures1114

20a and b compare the yearly E3SMv2 historical ensemble mean time series with the yearly1115

Ozone Watch observations for the SH minimum TCO and the ozone hole area, respec-1116

tively. Both the yearly model and observational results are based on the daily data from1117

July 1 to December 31 of each year.1118

The Antarctic ozone hole emerges about 1980 after the buildup of anthropogenic1119

chlorouorocarbons (CFCs) reach a threshold that initiates rapid, catalytic destruction1120

of ozone within the Antarctic stratospheric polar vortex (Molina & Rowland, 1974; Far-1121

man et al., 1985). The ozone hole simulation in E3SMv2 is weaker than observed in terms1122

of minimum TCO (Figure 20a,c) and areal extent of the ozone hole (Figure 20b,d). Given1123

the 50 DU high bias for ozone-hole minimum TCO (Figure 20c), the temporal history1124

of the ozone hole, from onset to partial recovery, is well matched in E3SMv2 (Figure 20a).1125

In terms of seasonality, the E3SMv2 ozone hole begins almost a month later and recov-1126

ers almost a month earlier. The cause of this is not the ozone chemical model, as it works1127

well in other atmospheric models, but is likely related to the formation and persistence1128

of the wintertime vortex. The ozone hole is created chemically, but its size and duration1129

depend on the vortex remaining isolated from the mid-latitude stratosphere throughout1130

most of the lower stratosphere. The E3SMv2 ozone hole interannual variability (IAV,1131

shaded areas in Figure 20c,d), scaled to the size of the ozone hole, matches the obser-1132

vations, indicating that the vortex IAV is similar to observations. It is possible that the1133

weaker ozone hole in E3SMv2 could be improved with a colder stratosphere, or paramet-1134

rically, by increasing the PSC temperature threshold.1135
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Table 2. Global and annual mean AOD at 550 nm for total aerosol and major aerosol types.

AOD (2000-2014) Total Dust Sea salt Sulfate POMa BCa SOAa

E3SMv1 (DECK) 0.146 0.032 0.049 0.024 0.007 0.0049 0.029
E3SMv2 (historical) 0.166 0.028 0.049 0.033 0.009 0.0063 0.040

aPOM (particulate organic matter), BC (black carbon), and SOA (secondary organic aerosol)

4.3.5 Aerosols1136

The global distribution of annual mean AOD at 550 nm from E3SMv2 and E3SMv11137

historical simulations (2000-2014) is compared with observational composite (Kinne et1138

al., 2013) in Figure 21. Model results are not included for this comparison over regions1139

where the observations are not available, e.g., in the high latitudes. E3SMv1 and v2 re-1140

alistically capture the broad regional distribution in AOD, but E3SMv2 has a stronger1141

positive bias than E3SMv1 in the global mean (0.034 vs. 0.013) compared to the obser-1142

vational composite, although the low bias over mid-latitude source regions is improved1143

in E3SMv2. Larger positive biases in E3SMv2 than E3SMv1 are found over tropical and1144

subtropical oceans. Decomposition of the total AOD into major aerosol species is pro-1145

vided in Table 2. The positive biases are mostly due to an increase in anthropogenic aerosol1146

species, particularly sulfate and secondary organic aerosol (SOA). The global annual mean1147

burdens of sulfate and SOA have an increase of 1.03 and 0.95 Tg, respectively, in the E3SMv21148

historical simulations (2000-2014) compared to E3SMv1 (Fig. S12). The global annual1149

mean burdens of other anthropogenic aerosol species are also larger in E3SMv2 than those1150

in E3SMv1, although both model simulations use the same set of CMIP6 emissions, in-1151

dicating that the aerosol removal in E3SMv2 is weaker than in E3SMv1. This might be1152

an unintended consequence of intensive cloud and precipitation parameter tuning for EAMv2.1153

Salzmann et al. (2022) recently reported on the impact of moist convection parameter1154

settings on wet deposition and as a result on AOD.1155

Natural aerosols (e.g., dust and sea salt) are also affected, as shown in Fig. S12,1156

although their global burdens have small changes, contributing less than the anthropogenic1157

aerosols to the positive bias in global mean AOD in E3SMv2 (Table 2). This is because1158

the emissions of dust and sea salt are scaled to match the same global constraints of their1159

optical depth in both E3SMv1 and E3SMv2. On the regional scales, sea salt burden in-1160

creases in E3SMv2 over some portions of tropical and subtropical oceans, e.g., Indian1161

Ocean, which may contribute to the higher AOD in those regions. Similar to sulfate and1162

SOA, the increase in sea salt is related to the changes in aerosol wet deposition, as those1163

regions with increased burdens are associated mostly with tropical convection and pre-1164

cipitation. With the global constraint, the positive changes in sea salt are offset by the1165

negative changes between E3SMv2 and E3SMv1 such as over the marine stratus or stra-1166

tocumulus regions in the mid-latitude and sub-tropical oceans. Regional changes are also1167

found in dust aerosol burden. Different from the anthropogenic aerosols, since the emis-1168

sions of sea salt and dust depend strongly on the simulated surface winds, the regional1169

changes in their burdens (and AOD) may also be related to the changes in the simulated1170

meteorology between E3SMv2 and E3SMv1. On the global mean basis, however, higher1171

AOD in E3SMv2 may still be largely attributable to the anthropogenic aerosols, espe-1172

cially sulfate and SOA.1173

In addition to AOD, aerosol absorption of sunlight is also an important parame-1174

ter in determining the aerosol radiative impacts. As discussed in Section 2.1.5, dust re-1175

fractive indices in the shortwave were updated in E3SMv2. This leads to better agree-1176

ment in the simulated aerosol absorption optical depth (AAOD) at 550 nm, as shown in1177

Fig. 22, compared with the 10-year AAOD climatology derived from the ground-based1178
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Figure 21. Spatial distributions of global annual mean (a) aerosol optical depth (AOD) from

observational composite (Kinne et al., 2013) and the AOD difference between (b) E3SMv2 and

(c) E3SMv1, respectively, from the historical simulations (2000-2014) and the observational

composite. Areas with gray shading in polar regions indicate missing value. The number at the

top-right of each panel represents the global mean.
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(a) E3SMv2 AAOD (b) Comparison with AERONET

Figure 22. (a) Annual mean aerosol absorption optical depth (AAOD) at 550 nm in E3SMv2

for the time period 2000-2014. The gray dots overlaid on top denote the locations of 139

AERONET stations, of which those circled in red denote the 19 dusty sites. (b) Comparison of

the E3SMv2 AAOD with the observations derived from AERONET between 2006-2015 (Holben

et al., 1998). r is the calculated correlation coefficient, and RMSE is the root-mean-square error.

AERONET measurements (Holben et al., 1998) between 2006-2015. This 10-year time1179

period is selected as it overlaps with most of the model-simulated 15 years representa-1180

tive of a present-day climatology, but also during this time there are continuous obser-1181

vations over a large number of sites globally. The compiled AERONET data for AAOD1182

are available at a total of 139 stations mostly over land, and 19 of them with aerosol Ångström1183

exponent <0.8 are denoted as the dusty sites, which are located near the major dust source1184

regions. Compared to E3SMv1, E3SMv2 simulates smaller AAODs over all the dusty1185

sites, and the calculated multi-site mean is 0.024, reducing the overestimation of E3SMv11186

(0.044) by nearly a factor of two against the observations (0.017). Over the other AERONET1187

sites, AAODs in E3SMv2 are generally larger than those in E3SMv1 mainly due to the1188

increased BC. Overall, E3SMv2 improves from E3SMv1 (0.017) by predicting a smaller1189

mean AAOD (0.014) averaged over all the AERONET sites, similar to the observed mean1190

(0.012) and with a smaller RMSE. The spatial correlation between the modeled and ob-1191

served AAOD is noticeably improved in E3SMv2, for a larger correlation coefficient (0.83)1192

with AERONET than that of E3SMv1 (0.72). Stronger correlation and smaller RMSE1193

with the AERONET observations are also found in AOD (Fig. S13), implying a better1194

representation of AOD and AAOD in E3SMv2 than E3SMv1 over the land area near those1195

AERONET sites.1196

The AAOD improvement in E3SMv2 compared with the AERONET data implies1197

less aerosol heating in the atmosphere over the dust-influenced regions as a result of the1198

decreased AAOD (Fig. S14) mainly due to the less absorbing dust optical properties.1199

Additionally, we also updated the representation of dust size distribution in emission by1200

accounting for more coarse particles in E3SMv2, which would decrease the net cooling1201

effect of dust, but the impact is less than the enhanced cooling due to the lowered dust1202

absorption (Feng et al., 2022). Over the other regions, E3SMv2 generally predicts higher1203

AAOD than E3SMv1 resulting from the increased AOD (Fig. S14) especially due to BC,1204

which would cause more atmospheric heating by aerosols regionally. Despite a higher global1205

mean AOD, the global mean AAOD in E3SMv2 (0.0084) is slightly lower than in E3SMv11206

(0.0089), suggesting a possibly more negative direct radiative effect by aerosols.1207
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Figure 23. Time evolution of annual global mean surface temperature anomalies (with

respect to 1850-1899). Comparison between observations from HadCRUT5-Analysis (grey),

E3SMv1 ensemble mean (red) and range (orange) and E3SMv2 ensemble mean (dark blue) and

range (light blue). Also shown (gold) is a best fit estimate obtained by scaling E3SMv2 GHG and

aerosol as discussed in Section 5.

4.3.6 Historical temperature record1208

We now compare the time evolution of the global mean blended surface temper-1209

ature (defined as SST over ice-free ocean and 2-m surface air temperature over land and1210

sea ice) in E3SM with the observed historical record. We select the HadCRUT5-Analysis1211

product (Morice et al., 2021); other products are available but the differences are mi-1212

nor compared to the differences with E3SM. Figure 23 shows the temperature anoma-1213

lies normalized with respect to 1850-1899. As discussed previously (Golaz et al., 2019),1214

E3SMv1 failed to accurately simulate the record by underestimating the warming start-1215

ing around 1930 but eventually caught up to the observed record near 2010 because it1216

overestimated the pace of warming from 1990 onward. This was attributed to excessively1217

strong aerosol-related forcing and high climate sensitivity. While both have improved1218

in E3SMv2 – slightly for the aerosol-related forcing and significantly for the sensitivity1219

– E3SMv2 further underestimates the global mean surface temperature during the sec-1220

ond half of the record. E3SMv2 diverges from E3SMv1 around 1930 and remains colder1221

for the remainder of the record. A more in-depth analysis of this shortcoming is provided1222

in Section 5.1223

The temporal evolution of the magnitude of radiative feedbacks, and hence effec-1224

tive climate sensitivity, is known to be influenced by the spatial patterns of the change1225

in SSTs, particularly tropical Pacific SSTs, in climate simulations (e.g. Andrews et al.,1226

2015b; Gregory & Andrews, 2016; Dong et al., 2019, 2020; Stevens et al., 2016). This1227

is due to the impact of the east-west SST gradients in the tropical Pacific on convection,1228

low clouds, humidity, and lapse rates affecting the different radiative feedback mecha-1229

nisms over the region (e.g. Gregory & Andrews, 2016; Dong et al., 2020). Figure 24 shows1230

the difference in SSTs between the 1980-2014 and the 1870-1904 period with respect to1231

the tropical (25N-25S) mean SST change between the two periods for HadISST data, his-1232

torical simulation, historical with GHG-only forcing (hist-GHG), and historical with aerosol-1233

only forcing (hist-aer) simulation ensembles. The historical simulation shows a weak La1234
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E3SMv2 hist-GHG

E3SMv2 hist-aere.
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Surface Temperature (K)

Change in SST relative to tropical mean
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Figure 24. Difference in SST between 1980-2014 and 1870-1904 relative to the tropical mean

change between the two periods for (a) HadCRUT5 data, (b) HadISST data, (c) E3SMv2 histori-

cal ensemble, (d) E3SMv2 hist-GHG ensemble, and (e) hist-aer ensemble. Hatched areas indicate

regions where the difference is statistically significant at the 95% confidence level based on a

two-tailed Student’s t-test.
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Figure 25. Ocean heat content from the E3SMv2 historical ensemble. Blue shows the 0-

700m integrated ocean heat content, and black shows the 700-2000m heat content. The solid

lines are the ensemble average and shading shows the ensemble spread. The dashed lines are

pentad-averaged ocean heat content derived from the World Ocean Atlas 2009 (Levitus et al.,

2012).

Niña-like spatial pattern over the tropical Pacific with a weaker westward extension of1235

cold anomalies as compared to HadCRUT5-analysis and HadISST dataset. The stronger1236

than observed relative warming over the central Pacific region suggests stronger posi-1237

tive cloud radiative feedbacks over the region (e.g. Andrews et al., 2015b) in E3SMv2,1238

which also may be contributing to the strong climate sensitivity in E3SMv2 over the his-1239

torical period. The spatial pattern of the SST change in the hist-GHG and hist-aer sim-1240

ulation ensembles generally oppose each other, with the hist-GHG (hist-aer) exhibiting1241

a El Niño (La Niña)-like pattern.1242

The E3SMv2 simulated Ocean Heat Content (OHC) is shown in Fig. 25 relative1243

to the OHC derived from the 2009 World Ocean Atlas (Levitus et al., 2012). The near1244

surface (0-700m) OHC does increase in E3SMv2 (solid blue line) but is much delayed1245

relative to observations. This is consistent with the late warming in the E3SMv2 tem-1246

perature anomalies (Fig. 23). The mid-depth (700-2000m) OHC is very stable through1247

the period analyzed, whereas the observations show an increase in the late 20th century.1248

The lack of increasing OHC at that depth in E3SMv2 is likely attributable to the weak1249

simulated AMOC (Figure 4b), which impacts transport of heat anomalies to depth (e.g.,1250

A. Hu et al., 2020).1251

As mentioned above, no historical test simulations were performed prior to final-1252

izing E3SMv2. Instead, we made a decision to rely on atmosphere-only simulations to1253

estimate effective radiative forcing and feedback during the development. Once the model1254

development was concluded and the first historical simulation complete, the E3SM project1255

made a pragmatic decision to be transparent and release the model version and accom-1256

panying simulations, rather than delay in an attempt to correct the problem with the1257

simulation of the global mean temperature in the historical record. However, future ver-1258

sions of E3SM will include test historical simulations as part of their development cy-1259

cle to avoid a repeat of this problem.1260

4.4 Impacts on Polar Climate1261

In the historical ensemble (Fig. 26), Northern Hemisphere sea ice extent and vol-1262

ume both increase over the time period 1850-1978, and decrease after the mid-1980s, as1263

observed. This behavior is consistent with changes in the ocean heat content (Fig. 26e)1264
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Figure 26. Daily sea ice extent (a, b) and volume (c, d) evolution across five ensemble mem-

bers for the Northern and Southern Hemispheres, respectively, divided at the beginning of the

core passive-microwave observation period in 1979 and compared to the change in 12-month fil-

tered total ocean heat content from the start of the historical period in (e). Box plots in the left

column compare annual extremes from daily values of the 500-year pre-industrial control (blue)

with the industrial-era 5-member ensemble (purple). Trace colors for the year of the control sim-

ulation from which the ensemble members were spawned are indicated in (c; 101, 151, 201, 251,

300). Linear decadal trend in annual maximum and minimum daily extent is indicated in the

right column for the ensemble mean of each ensemble trend line from 1979 to 2015, as compared

to the Meier et al. (2017) NOAA Climate Data Record for (a) and (b). The right column in (c),

(d), and (e) indicates the change (∆) in the ensemble mean of volume extremes and non-filtered

ocean content between 1850 and 2015.
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and surface air temperature anomalies for the historical simulations (Figs. 23 and B2b1265

in Appendix B).1266

The maximum ice extent in the Arctic is larger in v2 than in v1, while it is smaller1267

in the Southern Hemisphere. The minimum ice extent is similar for v1 and v2 in both1268

hemispheres. E3SMv1’s large, cold SST bias in the North Atlantic and associated anoma-1269

lous sea ice in the Labrador Sea remain in v2. Unlike v1, which featured both warm and1270

cold SST biases in the Northern Hemisphere, the Northern Hemisphere in v2 is too cold1271

over its entirety, and so greater sea ice extent in v2 is not surprising. The Southern Hemi-1272

sphere is still biased warm, but not as badly as in v1, and sea ice in the Southern Ocean1273

is not extensive enough compared with the climate data record, year-round, in v2.1274

Trends during the satellite era (Fig. 26, right panels) indicate that the model ex-1275

tent is decreasing faster than observed in the Arctic, consistent with the faster increase1276

in surface air temperatures than observed (Fig. B2b in Appendix B). The ice extent trend1277

has the opposite sign compared with observations in the Antarctic, as in many other mod-1278

els, and the change in volume extremes (∆) between 1850 and 2015 is decreasing.1279

A counter-intuitive result is that extremes in the ice extent and volume in the his-1280

torical simulations (left column of Fig. 26) are generally larger than in the pre-industrial1281

control, with a greater range of variability. However, this behavior is consistent with the1282

aerosol forcing biases discussed in Section 5.1283

The net effect of improvements to the radiative and snow schemes in v2 only min-1284

imally impacts the climatic state of sea ice, and thus does not ameliorate biases in prior1285

v1 simulations. Lack of conservation in the ice-ocean mass coupling scheme played a much1286

more important role; the correction of mass exchanges between the upper ocean and sea1287

ice models to account for brine content in the sea ice thickens the Arctic ice pack in sum-1288

mer, reducing a bias from v1 (Fig. 26c, left column), while minimally impacting ice in1289

the Southern Ocean (Fig. 26d). With this mass-conserving scheme, the maximum and1290

minimum sea ice areas are now stable in both hemispheres for the 500-year pre-industrial1291

simulations, as shown in Fig. 4c.1292

5 Historical record: role of GHG vs aerosols1293

To understand why E3SMv2 fails to accurately simulate the second half of the his-1294

torical temperature record, we analyze an ensemble of coupled simulations spanning 1850-1295

2014, but selectively activating only certain time varying forcing agents:1296

• well-mixed greenhouse gases only (“GHG”),1297

• aerosol and aerosol precursors only, including interactions with clouds (“aer”),1298

• everything-else, all forcing agents except well-mixed GHG and aerosol (“other”).1299

This decomposition is similar to the DAMIP protocol (Gillett et al., 2016), except1300

for the everything-else configuration, which is similar to natural forcing but includes ad-1301

ditional forcing terms (in particular land-use and ozone). We chose this particular de-1302

composition so that all the forcing agents are accounted for within the set. Five ensem-1303

ble members were run for each decomposition, initialized identically to the five-member1304

ensemble of historical simulations.1305

The time evolution of annual global mean blended surface temperature is depicted1306

in Fig. 27. As expected, the dominant forcings are GHG (red) and aerosol-related (turquoise).1307

The remaining forcings (green) show inter-annual variations (mostly from volcanic erup-1308

tions and the solar cycle) with little long term trend. A summation over the decompo-1309

sition (thin blue) recovers the original historical ensemble (thick blue) very well, indi-1310

cating that the decomposition is linear. The GHG and aerosol contributions almost per-1311
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Figure 27. Global annual surface air temperature anomalies for model and observations

(gray). For E3SMv2, the decomposition includes contributions from only GHG (red), only aerosol

(turquoise), and other (green). The E3SMv2 historical is in blue, with the sum of individual

terms in thin blue. Also shown is E3SMv1 with GHG only forcing (dark red). Horizontal lines

indicate averages between 1995 to 2014. Observations from HadCRUT5-Analysis are normalized

with respect to 1850-1899. Model results are normalized with respect to the 500-year piControl

simulation.

fectly mirror each other until approximately 1960, thus explaining the lack of net warm-1312

ing until then (Fig. 23). It is only after the aerosol-related forcing stabilizes around 19901313

due to pollution control in North America and Europe that the GHG starts to dominate1314

and E3SMv2 warms as a whole. As discussed previously, E3SMv2 has a lower TCR and1315

ECS compared to E3SMv1. As a result, the warming from GHG alone is weaker than1316

in v1 (dark red; Zheng et al., 2021). The two models diverge mostly after 1960 which1317

helps explain why E3SMv2 remains colder longer. It is also informative to compare E3SMv21318

with an ensemble of CMIP6 models (Tokarska et al., 2020, their Fig. 1A). E3SMv2-GHG1319

warms a little faster than the CMIP6 ensemble (reaching ∼1.7 ◦C compared to ∼1.5 ◦C),1320

but the largest difference is observed for E3SMv2-aer, which has an average cooling of1321

1.25 ◦C over the last 20 years, twice as large as the CMIP6 ensemble.1322

Equipped with this decomposition, we can investigate hypothetical configurations1323

with different relative strengths of GHG and aerosol. We can write any variable ψ as:1324

ψall = ψpiControl +αGHG (ψGHG − ψpiControl) +αaer (ψaer − ψpiControl) + (ψother − ψpiControl)
(1)

This reconstruction is conceptually similar to Neelin et al. (2010), but applied to1325

different forcing terms rather than physics parameter perturbations. Gillett et al. (2012)1326

and Winton et al. (2020) also used a similar decomposition to reconstruct the global mean1327

surface temperature anomalies. Eq. 1 is applicable to any variable. Varying αGHG mod-1328

ulates the model response to GHG (akin to modulating the TCR), while αaer modulates1329

the model response to aerosols. Setting αGHG = αaer = 1 (“composite base”) recov-1330

ers the all-forcing configuration as long as the decomposition is linear. Linearity is a very1331

good approximation for annual global averages (Fig 27). Furthermore, it holds well for1332

two-dimensional and three-dimensional climatological fields as demonstrated in Fig. S15:1333

RMSEs for the composite base configuration (red stars) and E3SMv2 (red triangles) are1334

very similar for most fields and seasons.1335
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Optimal scaling factors αGHG and αaer are derived in Appendix B by minimizing1336

the difference between simulated and observed surface temperature, leading to αGHG =1337

0.75 and αaer = 0.17 with a probable co-linear range from (0.60, 0.04) to (0.81, 0.23).1338

This hypothetical configuration (“composite best”) matches the historical temperature1339

record much better than E3SMv2 (Fig. 23; gold).1340

The E3SMv2 scaling factors are comparable to previously reported values. Gillett1341

et al. (2012) derived factors of 0.65 for GHG and 0.3 for aerosols for CanESM2 (TCR=1342

2.3 K; ERFaer = −0.8 W m−2), while Winton et al. (2020) derived factors of 0.78 and1343

0.34 for GFDL-CM4 (TCR= 2.05 K; ERFaer = −0.73 W m−2 from Smith et al. (2020)).1344

The GHG scaling factors are consistent for all three models given their similar TCR. The1345

E3SMv2 aerosol scaling factor is smaller, likely due to its stronger ERFaer=−1.52 W m−2.1346

Based on Shindell (2014) and Rotstayn et al. (2015), the temperature change over1347

the historical record can be approximated as:1348

∆T =
TCR

F2x
(FGHG + Fother + EaerFaer) (2)

where F denotes effective radiative forcings and Eaer is an enhancement factor to account1349

for the fact that the aerosol forcing has a different impact on global mean surface tem-1350

perature than GHG. It is the same as the concept of efficacy first introduced by Hansen1351

(2005).1352

Based in Eq. 2, αGHG = 0.75 implies a reduction in E3SMv2 TCR from 2.4 to 1.81353

K (assuming no change in F2x and FGHG), close to the CMIP6 observationally constrained1354

TCR of 1.6 K from Tokarska et al. (2020). αaer = 0.17 implies a scaling of factor of 0.17/0.75 =1355

0.23 for EaerFaer, which could come from either a reduction in the aerosol enhancement1356

factor or effective forcing, or a combination of both. The E3SMv2 aerosol enhancement1357

factor can be estimated as (e.g. Winton et al., 2020):1358

Eaer =
∆Taer
Faer

F2x

TCR
=
−1.25

−1.52
× 2.98

2.41
= 1.01 (3)

It is smaller than the value of 1.4 for an ensemble of CMIP5 models (Rotstayn et al., 2015).1359

If we use their 2xCO2 radiative forcing of 3.70 W m−2, the enhancement factor increases1360

to 1.26, still lower than 1.4. We therefore postulate that the 0.23 reduction in EaerFaer1361

is more likely to come from a reduction in the aerosol effective forcing than a reduction1362

in the enhancement factor. If that is the case, the resulting ERFaer could be as small1363

as −0.35 W m−2. This would be much smaller than any other CMIP6 model analyzed1364

by Smith et al. (2020, their Table 2). Stevens (2015) argued for a weaker aerosol forc-1365

ing between −0.3 and −1.0 W m−2, although its methodology based on a box model has1366

been criticized as overly simplified (Kretzschmar et al., 2017).1367

Finally, we also reconstruct climatological fields using Eq. 1. Figure 28 shows the1368

top-of-atmosphere SW net radiation (2001-2014). Remarkably, the NH negative bias in1369

E3SMv2 (blue shading in Fig 28a) is greatly reduced in composite best (Fig. 28c) which1370

becomes much closer to observations regionally, especially over the N Atlantic and N Pa-1371

cific oceans. Global metrics also improve with a reduced mean bias and RMSE. A sim-1372

ilar picture emerges for the sea-surface temperature (1985-2014; Fig. 29) with substan-1373

tial reductions in regional cold biases in the NH. SH SST biases are essentially unchanged,1374

pointing to a different cause.1375

Taken together, our results indicate that a substantial reduction in the aerosol forc-1376

ing would not only improve the match with the historical temperature record, but also1377

improve aspects of the present-day climatology. Other fields, for example precipitation,1378

exhibit much smaller impact as seen in Figure S15 by comparing the gold (composite1379

best) and red stars (composite base). This is reassuring in the sense that E3SMv2, de-1380

spite its shortcomings, can still serve as a useful model for many studies.1381

–46–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
v2.LR.historical (2001-2014) W/m2

  50.0
  75.0

 100.0
 125.0
 150.0
 175.0
 200.0
 225.0
 250.0
 275.0
 300.0
 325.0
 350.0

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
CERES-EBAF v4.1 (2001-2014) W m-2

  50.0
  75.0

 100.0
 125.0
 150.0
 175.0
 200.0
 225.0
 250.0
 275.0
 300.0
 325.0
 350.0

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
E3SMv2 (historical ensemble) - Observations W/m2

-75.0
-50.0
-40.0
-30.0
-20.0
-10.0
 -5.0
  5.0

 10.0
 20.0
 30.0
 40.0
 50.0
 75.0

FSNTOA ANN global
Max
Mean
Min

355.21
239.86

51.03

Max
Mean
Min

363.28
241.06

49.05

Max
Mean
Min

79.69
-1.20

-54.52

RMSE
CORR

10.19
0.99

(a)

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
v2.LR.historical (2001-2014) W/m2

  50.0
  75.0

 100.0
 125.0
 150.0
 175.0
 200.0
 225.0
 250.0
 275.0
 300.0
 325.0
 350.0

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
CERES-EBAF v4.1 (2001-2014) W m-2

  50.0
  75.0

 100.0
 125.0
 150.0
 175.0
 200.0
 225.0
 250.0
 275.0
 300.0
 325.0
 350.0

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
E3SMv2 (historical ensemble) - Observations W/m2

-75.0
-50.0
-40.0
-30.0
-20.0
-10.0
 -5.0
  5.0

 10.0
 20.0
 30.0
 40.0
 50.0
 75.0

FSNTOA ANN global
Max
Mean
Min

355.21
239.86

51.03

Max
Mean
Min

363.28
241.06

49.05

Max
Mean
Min

79.69
-1.20

-54.52

RMSE
CORR

10.19
0.99

(b)

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
v2.LR.hist-composite-075_017 (2001-2014) W/m2

  50.0
  75.0

 100.0
 125.0
 150.0
 175.0
 200.0
 225.0
 250.0
 275.0
 300.0
 325.0
 350.0

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
CERES-EBAF v4.1 (2001-2014) W m-2

  50.0
  75.0

 100.0
 125.0
 150.0
 175.0
 200.0
 225.0
 250.0
 275.0
 300.0
 325.0
 350.0

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
E3SMv2 (composite best) - Observations W/m2

-75.0
-50.0
-40.0
-30.0
-20.0
-10.0
 -5.0
  5.0

 10.0
 20.0
 30.0
 40.0
 50.0
 75.0

FSNTOA ANN global
Max
Mean
Min

355.15
241.75

51.22

Max
Mean
Min

363.28
241.06

49.05

Max
Mean
Min

81.20
0.68

-55.32

RMSE
CORR

9.82
0.99

(c)

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
v2.LR.hist-composite-075_017 (2001-2014) W/m2

  50.0
  75.0

 100.0
 125.0
 150.0
 175.0
 200.0
 225.0
 250.0
 275.0
 300.0
 325.0
 350.0

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
v2.LR.historical (2001-2014) W/m2

  50.0
  75.0

 100.0
 125.0
 150.0
 175.0
 200.0
 225.0
 250.0
 275.0
 300.0
 325.0
 350.0

0°E 60°E 120°E 180° 120°W 60°W 0°W
90°S

60°S

30°S

0°

30°N

60°N

90°N
Difference W/m2

-30.0
-25.0
-20.0
-15.0
-10.0
 -5.0
 -2.0
  2.0
  5.0

 10.0
 15.0
 20.0
 25.0
 30.0

FSNTOA ANN global
Max
Mean
Min

355.15
241.75

51.22

Max
Mean
Min

355.21
239.86

51.03

Max
Mean
Min

12.99
1.89

-5.60

RMSE
CORR

2.92
1.00

(d)

Figure 28. Net TOA SW radiation: observations (CERES-EBAF 4.1; b), model error for

E3SMv2 (a), composite best configuration from Fig. B1 in Appendix B (c), and difference be-

tween E3SMv2 and composite best configuration (d). Model and observations averaged over

2001-2014.
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Figure 29. Same as Fig. 28 but for SST. Sea ice covered regions are excluded from the aver-

aging. Model and observations averaged over 1985-2014.
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It is important to note that many CMIP6 models can simulate the historical tem-1382

perature record with stronger aerosol forcing than suggested by our present analysis, for1383

example, CNRM-CM6-1 (Voldoire et al., 2019, their Fig. 23) with a forcing of −1.15 W1384

m−2 (Smith et al., 2020). CESM2 (Danabasoglu et al., 2020, their Fig. 7), from which1385

E3SM inherited most of its atmospheric physics parameterizations, also simulates the1386

temperature record more realistically than E3SMv2 and this with an aerosol forcing of1387

−1.37 W m−2 (Smith et al., 2020). CESM2 does however overestimate the rate of warm-1388

ing over the last three decades due its high sensitivity (TCR = 2.0 K, ECS = 5.3 K).1389

Tokarska et al. (2020, their Fig. 2A) identified a dozen CMIP6 models that satisfy their1390

TCR constraints and have a realistic 1981-2014 temperature trend. A subset of five [CNRM-1391

ESM2-1 (Sfrian et al., 2019); GFDL-ESM4 (Dunne et al., 2020); MIROC6 (Tatebe et1392

al., 2019); MRI-ESM2-0 (Yukimoto et al., 2019); NorESM2-LM (Seland et al., 2020)] had1393

their aerosol forcing assessed in Smith et al. (2020). Their aerosol forcings range from1394

−0.7 to −1.21 W m−2. Therefore, it is possible that our results may not be generaliz-1395

able beyond E3SMv2. Other factors not encapsulated in the simple framework repre-1396

sented by Eqs. 1 and 2 may play a role in a successful simulation of the historical tem-1397

perature record.1398

6 Summary and conclusion1399

By design, E3SMv2 represents an evolution from E3SMv1 and as such resembles1400

E3SMv1 in many aspects. There are nevertheless notable differences that justified a new1401

model release and associated simulation campaign.1402

• E3SMv2 is approximately twice as fast (or efficient if measured in terms of power)1403

compared to v1 (Fig. 2). The efficiency gains are achieved in the atmosphere and1404

ocean components. In the atmosphere, they arise from a new semi-Lagrangian tracer1405

transport method and a new grid for physics calculations (Fig. 3). The gain in the1406

ocean is due to a longer timestep.1407

• The atmospheric physics, while based on the same basic set of parameterizations1408

as v1, underwent significant retuning in v2. Many improvements from the inter-1409

mediate EAMv1p configuration (Ma et al., 2022) are incorporated with additional1410

changes to further improve clouds and precipitation (e.g. Figs. 9, 10, 11, 12, 13).1411

• A new convective trigger function for the deep convection (Xie et al., 2019) sig-1412

nificantly improves the phase of the diurnal cycle of precipitation, but the ampli-1413

tude remains weaker than observed (Figs. 14, 15).1414

• E3SMv2 captures important modes of variability such as ENSO (Fig. 16) and MJO1415

(Fig. 18). However, the ENSO spectrum has excessive energy at short periods (∼2.51416

years) and is too weak for longer periods (6-9 years). MJO phase speed is real-1417

istic west of 125◦E, but then exceeds observations east of it. Tropical variability1418

is significantly too weak (Fig. 17).1419

• A more realistic treatment of ozone is implemented (Tang et al., 2021). It cap-1420

tures the seasonal cycle of stratospheric column ozone (Fig. 19) and the ozone hole1421

in the historical period, although the size is underestimated (Fig. 20).1422

• Dust aerosol optical properties and particle size distributions are revised, result-1423

ing in a better prediction of mean AAOD over dusty AERONET sites (Fig. 22).1424

Burdens of sulfate and SOA aerosols increase likely as an unintended consequence1425

of cloud tuning efforts, giving rise to a slightly overestimated global mean AOD1426

despite regional improvements (Fig. 21). Increases of sea salt aerosol burden re-1427

lated to the changes in wet deposition also contribute to the higher AOD over some1428

portions of tropical and subtropical oceans, but the global burden of sea salt (and1429

dust) has small changes.1430

• E3SMv2 is less sensitive to GHG forcing (Fig. 5). ECS is reduced significantly com-1431

pared to v1 (4.0 K vs 5.3 K) which is mostly attributable to a smaller cloud feed-1432

back. The ECS value of 4.0 K is more plausible as assessed by WCRP (Sherwood1433
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et al., 2020). This is a substantial achievement compared to the unrealistically high1434

sensitivity of E3SMv1. On shorter time scales, TCR is also reduced to 2.4 from1435

2.9 K.1436

• The effective aerosol forcing (ERFaer = −1.5 W m−2) remains essentially unchanged1437

in E3SMv2 (Fig. 6). This value is within the likely range assessed by WCRP (Bellouin1438

et al., 2020). Some changes, mainly the introduction of the minimum cloud droplet1439

number concentration, were made in v2 that reduced the magnitude of ERFaer,1440

but their impact was likely negated by changes elsewhere in the cloud physics (con-1441

vection).1442

• E3SMv2 significantly underestimates the global mean temperature in the second1443

half of the historical temperature record (Fig. 23). An analysis of single-forcing1444

simulations indicates that correcting the historical record in E3SMv2 would re-1445

quire a substantial reduction in the magnitude of ERFaer (∼75%), and a moder-1446

ate reduction in the TCR (∼25%). Reducing ERFaer would furthermore improve1447

regional biases in TOA radiative fluxes and SST (Figs. 28, 29). Other fields are1448

less impacted (e.g. precipitation; Fig. S15), indicating that E3SMv2 can still serve1449

as a useful tool despite its shortcomings.1450

• Proper conservation of mass in ocean/sea-ice exchanges increases Arctic sea ice1451

volume, improving a low-thickness bias from v1, while impacting the Southern Ocean1452

ice pack very little. Changes to the radiation and snow physics parameterizations1453

have little net effect, highlighting the importance of coupled interactions over in-1454

ternal sea ice processes in the climate system (Hunke, 2010). The sea ice simu-1455

lations shown here are largely consistent with the overall climatic environment,1456

including excessively cool surface air and ocean temperatures.1457

This release of E3SMv2 serves as a starting point for additional configurations. They1458

include regionally refined configurations with higher resolution over North America and,1459

separately, the Southern Ocean. A configuration with interactive biogeochemistry is also1460

under development. While E3SMv2 improves upon its predecessor in many aspects, sig-1461

nificant work remains. The highest priorities for future releases of E3SM are address-1462

ing the weak AMOC, the biases in interannual and intraseasonal atmospheric tropical1463

variability, and the poor historical temperature record.1464
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Appendix A Atmosphere configuration1465

Table A1: List of the atmospheric tuning parameters. Note: the
value of microp aero wsubmin was set to 0.001 for v1p and v2
based on Ma et al. (2021). However, an additional lower bound is
present in the code that effectively resets it to 0.1 consistent with
Ma et al. (2022).

Scheme Parameter v2 v1 v1p Short Description

CLUBB clubb c14 2.5 1.06 2.0 Dissipation of ū′2 and v̄′2

clubb c1 2.4 1.335 2.4 Low-skewness value of
dissipation of w̄′2

clubb c1b 2.8 1.335 2.8 High-Skw value of

dissipation of v̄′2

clubb c1c 0.75 1.0 0.75 Smoothness of transition
between high-Skw and
low-Skw for the
dissipation of v̄′2

clubb c6rtb 7.5 6.0 7.5 High-Skw value of
pressure damping of
water flux

clubb c6rtc 0.5 1.0 0.5 Smoothness of transition
between high-Skw and
low-Skw for the pressure
damping of water flux

clubb c6thlb 7.5 6.0 7.5 High-Skw value of
pressure damping of heat
flux

clubb c6thlc 0.5 1.0 0.5 Smoothness of transition
between high-Skw and
low-Skw for the pressure
damping of heat flux

clubb c8 5.2 4.3 5.2 Pressure damping of w̄′3

clubb c11 0.7 0.8 0.7 Buoyancy damping of 2̄′3

at low Skw

clubb c11b 0.2 0.35 0.2 Buoyancy damping of 2̄′3

at high Skw
clubb c11c 0.85 0.5 0.85 Smoothness of transition

between high Skw and
low Skw for the buoyancy

damping of 2̄′3

clubb c k10 0.35 0.3 0.35 Coefficient of momentum
diffusivity, Kh zm

clubb c k10h 0.35 0.3 0.35 Coefficient of
thermodynamic
diffusivity, Kmh zm

clubb gamma coef 0.12 0.32 0.12 Constant of the width of
PDF in w-coordinate

clubb gamma coefb 0.28 0.32 0.28 High-skw value of gamma
coefficient

clubb gamma coefc 1.2 5.0 1.2 Smoothness of transition
between values of gamma
coefficient
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clubb mu 5e−4 1e−3 5e−4 Fractional parcel
entrainment rate per unit
height [1/m]

clubb wpxp l thresh 100.0 60 100 Threshold in length scale
below which extra
damping is applied to C6
and C7 functions [m]

clubb ice deep 14e−6 16e−6 14e−6 Radius of ice particles
detrained from deep
convection [m]

cldfrc dp1 0.018 0.045 0.018 parameter for deep
convective cloud fraction

clubb use sgv True False True Enables subgrid features
gustiness, tpert, and thv
fix

clubb ipdf call placement 1 2 1 Select the placement of
the call to CLUBB’s
PDF: 1 - before
advancing CLUBB’s
predictive fields, 2 - after,
3 - both before and after

ZM zmconv alfa 0.14 0.1 0.14 Maximum downdraft
mass flux fraction

zmconv c0 lnd 0.002 0.007 0.002 Autoconversion
coefficient over land for
deep convection

zmconv c0 ocn 0.002 0.007 0.002 Autoconversion
coefficient over ocean for
deep convection

zmconv dmpdz -0.7e−3 -0.7e−3 -1.2e−3 Parcel fractional mass
entrainment rate

zmconv mx bot lyr adj 1 2 1 Bottom layer adjustment
for setting ”launching”
level of maximum moist
static energy

zmconv tp fac 2 0 2 Tpert scale factor in ZM
deep convection scheme

MG2 cld sed 1.0 1.0 1.8 Scale factor for cloud
droplet sedimentation

ice sed ai 500 500 1200 Cloud ice fall speed
parameter

micro mg berg eff factor 0.7 0.1 0.7 Efficiency factor for WBF
processes

micro mg accre enhan fac 1.75 1.5 1.75 Accretion enhancement
factor

prc exp1 -1.4 -1.2 -1.4 Tunable exponent
coefficient for
autoconversion

micro mincdnc 10.D6 0.0 0.0 Minimum cloud droplet
number concentration
imposed when
micro mincdnc > 0
[m−3]
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nucleate so4 sz thresh icenuc 0.08e−6 0.05e−6 0.08e−6 Aitken mode SO2 size
threshold for ice
nucleation

microp
aero

microp aero wsubmin 0.1 0.2 0.1 See
note in
caption

Minimum subgrid vertical
velocity

aerosol seasalt emis scale 0.6 0.85 0.6 Tuning factor for sea salt
aerosol emission

dust dus emis fact 1.5 2.05 2.8 Tuning parameter for
dust emissions

Linoz linoz psc t 197.5 193.0 193.0 Tunable Linoz PSC ozone
loss temperature
threshold (K)

Gravity
wave
drag

gw convect hcf 10.0 20.0 20.0 Heating rate conversion
factor associated with
convective gravity waves

effgw beres 0.35 0.40 0.40 Efficiency associated with
convective gravity waves
from the Beres scheme

effgw oro 0.375 0.25 0.25 Efficiency associated with
orographic gravity waves

Appendix B Composite configurations1466

In order to estimate the role of GHG and aerosols in the mismatch of the histor-1467

ical temperature record, we construct hypothetical composite configurations by varying1468

αGHG and αaer scaling factors in Eq. 1 (with ψ set to surface temperature). αGHG mod-1469

ulates the model response to GHG (akin to modulating TCR), while αaer modulates the1470

model response to aerosols (akin to modulating the magnitude of the aerosol-related forc-1471

ing and feedback).1472

We construct a loss function that quantifies the mismatch between modeled and1473

observed surface air temperature:1474

F =
∑

SH,NH

(
2014∑

yr=1950

(T̄model − T̄obs)2
)1/2

(B1)

We opt to separately account for SH and NH due to the strong asymmetry in aerosol1475

forcing. We also select the latter part of the historical record (1950-2014) when obser-1476

vational uncertainties are smaller and the impact of GHG and aerosols are larger. We1477

first optimize by using five-member ensemble means for each term in Eq. 1. This recon-1478

struction is not expected to realistically capture natural multidecadal variability which1479

plays an important role (e.g. Zeng & Geil, 2016).1480

The loss function F is shown in Fig. B1 as a function of scaling parameters αGHG1481

and αaer. The surface depicts a broad valley oriented diagonally. This shape can be more1482

easily interpreted by imagining 45◦ rotated axes. The direction perpendicular to the val-1483

ley floor (x′ ∝ αGHG − αaer) measures the scaling of the total warming (since aerosol1484

is always negative) and the direction parallel (y′ ∝ αGHG +αaer) the hemispheric dis-1485

tribution of the warming.1486

The global minimum (best) is situated at αGHG = 0.75 and αaer = 0.17, indi-1487

cating that improving the historical temperature record simulated by E3SMv2 would re-1488

quire a moderate reduction in impact from GHG (TCR), but a very substantial one from1489

the aerosols. Also shown in Fig. B1 are two local minima: one holding GHG scaling (fixed1490
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Figure B1. Loss function from Eq. B1. Star represents E3SMv2, circle global minimum, and

triangles local minima by minimizing along a single dimension.

GHG; αGHG = 1 and αaer = 0.39) and one holding aerosol scaling (fixed aerosol; αGHG =1491

1.60 and αaer = 1). Both of these local minima reside on the valley floor (thus match-1492

ing the total warming), but the first one is much closer to the global minimum compared1493

to the second one, confirming that aerosols are the dominant source of the mismatch.1494

The shape of the loss function also helps explain why the simulated historical record1495

became worse in E3SMv2 than E3SMv1. Aerosol forcing is almost unchanged between1496

the two, so both models would lie on a horizontal line. But TCR is larger in E3SMv11497

and thus closer to the valley floor. In other words, E3SMv2 moved uphill compared to1498

E3SMv1 due to the lack of colinear change between GHG and aerosol impacts.1499

This can be further illustrated by constructing global and hemispheric tempera-1500

ture time series corresponding to these composite configurations (Fig. B2). The com-1501

posite best solution (gold) corresponding to the global minimum improves considerably1502

upon E3SMv2 and matches the historical record best for each region (global, NH, SH).1503

Composite fixed-GHG (purple) also does an adequate job, but with some indication of1504

excessive warming in the 2000s due to its higher response to GHG. Composite fixed-aerosol1505

(orange), which increases the response of GHG to balance the strong aerosol cooling, fails1506

to match the historical record well. This confirms the argument that higher sensitivity1507

cannot adequately compensate for excessive aerosol forcing owing to the presence of a1508

plateau in the aerosol forcing and hemispheric asymmetry (e.g. Zhao et al., 2018; Al-1509

bright et al., 2021).1510

To estimate the impact of multidecadal variability, we repeat the minimization in1511

Eq. B1 including individual ensemble members. This gives a total of 216 individual re-1512

alizations (5 ensemble member plus ensemble mean for each of GHG, aer, and other in1513

Eq. 1). While this is not expected to realistically reproduce natural variability, it does1514

provide a useful range. Optimal solutions are shown in Figure B3. Individual loss func-1515

tions (not shown) have similar shape as Figure B1, but with slight variations in the place-1516

ment of the valley. We estimate a probable range for (αGHG, αaer) from (0.60, 0.04) to1517
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Figure B2. Surface temperature anomalies (with respect to 1850-1899) for (a) global,

(b) northern hemisphere, and (c) southern hemisphere. Lines shown include observations

(HadCRUT5-Analysis, grey), E3SMv2 (blue), and composite configurations from Fig. B1 (red,

purple, red, gold).
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(0.81, 0.23) by retaining the best 66% solutions. There is a high degree of co-linearity1518

between variations in αGHG and αaer that originates from the elongated valley present1519

in the loss functions.1520
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Figure B3. Scatter and distributions of optimal solutions αGHG and αaer for the loss function

in Eq. B1 using all 216 combinations of individual ensemble members or ensemble mean. Dark

blue dots represent the best 66% solutions. Red star is the solution with ensemble mean for every

term.

Additionally, we also investigated the impact of changing assumptions in the loss1521

function by using a global average instead of separate hemispheric averages and includ-1522

ing the entire record since 1850 instead of starting in 1950. While the optimal solutions1523

change a little as a result, the probable ranges are broadly consistent. We also attempted1524

to construct a loss function based on the gridded 5◦×5◦ HadCRUT5-Analysis product.1525

However, this led to considerably poorer fits when reconstructing the global mean time1526

series. We speculate that this is caused by the loss function becoming too sensitive to1527

regional model biases not related to GHG or aerosols.1528
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