
In-SRAM Computing for Neural Network Acceleration

by

Charles S. Eckert

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2022

Doctoral Committee:

Associate Professor Reetuparna Das, Chair
Professor Trevor N. Mudge
Professor Dennis Sylvester
Professor Lingjia Tang

Charles S. Eckert

eckertch@umich.edu

ORCID iD: 0000-0002-8839-9890

© Charles S. Eckert 2022

ACKNOWLEDGMENTS

I would like to deeply thank my advisor Processor Reetuparna Das. Reetu has been instrumen-

tal during my PhD, always providing me with advice and support. This PhD wouldn’t have been

possible without her support.

I would like to thank Professor Trevor Mudge, Professor Lingjia Tang, and Professor Dennis

Sylvester for agreeing to be a part of my committee and for the helpful feedback they provided

throughout the process.

I am also thankful for my many collaborators during my Ph.D. In addition to being on my

committee, Professor Sylvester along with Professor David Blaauw were very valuable contribu-

tors from the ECE department. I also frequently collaborated with Ravi Iyer and Charles Augustine

from Intel who were able to provide an industry perspective to my research. Additionally, I worked

with fellow Ph.D. students Arun Subramaniyan, Xiaowei Wang, and Jingcheng Wang who were

all invaluable resources for questions and brainstorming with.

I would like to acknowledge my generous funding support from Applications Driving Archi-

tectures (ADA) Research Center and my NDSEG fellowship. NDSEG is a prestigious fellowship

DoD National Defense Science and Engineering Graduate fellowship that provided me funding for

the final three years of my Ph.D. In addition to funding, the fellowship gave me mentorship oppor-

tunities with two Air Force Research Labtoroies researchers, Stanley Wenndt and Andrew Noga

as well as the opportunity to network at the NDSEG conference. I would like to thank Stanley and

Andrew for their mentorship and support. I would like to thank Professor Blaauw, Ravi Iyer, and

my advisor Professor Das for writing my recommendation letters for my fellowship.

My fellow labmates have all been wonderful people to work with, share an office with, and

ii

hang out with outside of work; Daichi, Xiaowei, Vidushi, Arun, Tim, Hari, Yufeng, Ali, Yichen,

Jack, Kush, and Yuwei.

I would also like to thank my family, my friends from undergrad, Daelin, Bar, Naz, Bryan,

Zuzanna, and Hayley, and hometown friends; Ben, Bobby, Brandon, and Pat who all provided

me with support. A shout out to Daelin in particular who demanded a shout-out in exchange for

helping proofread my dissertation, Zuzanna and Julie instead simply helped out of the kindness

of their hearts. I am also thankful for my climbing partners: Tim, Amrit, and Marisa. I was only

injured twice while Tim was belaying me! I also made many wonderful friends at the university

and in the area who I would like to thank; Reid, Tan, Alextia, Gabby, Tara, Andrew, Barrett, Will,

Miles, Christian, and Julie.

iii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vii

List of Tables . ix

Abstract . x

Chapter

1 Introduction . 1

2 Background . 8

2.1 In-SRAM Computing . 8
2.2 Deep Neural Networks . 11
2.3 Accelerating Neural Networks . 16

3 Prior Works . 20

3.1 DNN Accelerators . 20
3.2 Processing in Memory, In-Memory, and Near-Memory Computing 25

4 Neural Cache . 32

4.1 Introduction . 32
4.2 Neural Cache Organization . 35
4.3 Neural Cache Arithmetic . 36

4.3.1 Bit-Serial Arithmetic . 36
4.3.2 Addition . 38
4.3.3 Multiplication . 40
4.3.4 Reduction . 41
4.3.5 SRAM Array Peripherals . 41
4.3.6 Transpose Gateway Units . 42

4.4 Neural Cache Architecture . 44
4.4.1 Data Layout . 44
4.4.2 Data Parallel Convolutions . 47
4.4.3 Orchestrating Data Movement . 48
4.4.4 Supporting Functions . 50
4.4.5 Batching . 52

iv

4.4.6 ISA support and Execution Model . 52
4.5 Evaluation Methodology . 53
4.6 Results . 55

4.6.1 Latency . 55
4.6.2 Batching . 57
4.6.3 Power and Energy . 58
4.6.4 Scaling with Cache Capacity . 60

4.7 Summary . 60

5 Eidetic . 61

5.1 Introduction . 61
5.2 Eidetic Abstractions and Execution Model . 63

5.2.1 Matrix Multiplication Systolic Arrays 63
5.2.2 Dataflow Architecture . 65
5.2.3 Dependencies and Layers . 65
5.2.4 Concurrent Execution of Pipelined Layers 66

5.3 Architecture . 68
5.3.1 PE Unit . 68
5.3.2 PE Memory Addressing . 70
5.3.3 Column Block . 71
5.3.4 Central Control . 73

5.4 Data Mapping and Eidetic Instructions . 75
5.4.1 Data Mapping . 75
5.4.2 Instructions . 78
5.4.3 Programmability Example . 80

5.5 Putting It Together . 81
5.6 Evaluation methodology . 82
5.7 Results and Analysis . 84

5.7.1 Performance . 84
5.7.2 Energy and Area . 86
5.7.3 Throughput comparison with other accelerators 87
5.7.4 Versatile Precision . 88

5.8 Summary . 89

6 Comparison of Cache vs Custom Architecture . 90

6.1 Introduction . 90
6.2 Data Mapping . 92
6.3 Results and Analysis . 94

6.3.1 Eidetic comparison to Neural Cache . 94
6.3.2 Custom Interconnect and Dataflow Architecture 95
6.3.3 Increase Storage for Weight Pinning and In-Place Computation 96
6.3.4 Efficient MACs . 97
6.3.5 Mapping Granularity . 98

6.4 Summary . 98

7 Conclusion . 100

v

Bibliography . 103

vi

LIST OF FIGURES

Figures

2.1 Prototype test chip [1]. 10
2.2 SRAM circuit for in-place operations. Two rows (WLi and WLj) are simultaneously

activated. An AND operation is performed by sensing bit-line (BL). A NOR operation
is performed by sensing bit-line complement (BLB). 10

2.3 Computation of a convolution layer. 13
2.4 Typical LSTM Cell showing micro-operations performed 14
2.5 GNMT Encoder Layout . 15

3.1 Google TPU with its 2D Systolic Array . 21

4.1 Neural Cache overview. (a) Multi-core processor with 8-24 Last Level Cache (LLC)
slices. (b) Cache geometry of a single 2.5MB LLC cache slice with 80 32KB banks.
Each 32KB bank has two 16KB sub-arrays. (c) One 16KB sub-array composed of two
8KB SRAM arrays. (d) One 8KB SRAM array re-purposed to store data and do bit
line computation on operand stored in rows (A and B), (e) Peripherals of the SRAM
array to support computation. 36

4.2 Addition operation . 37
4.3 Reduction Operation . 38
4.4 Multiplication Operation, each step is shown with four different sets of operands . . . 39
4.5 Bitline peripheral design . 42
4.6 Transpose Memory Unit (TMU) . 43
4.7 Neural Cache Data Layout for one LLC Cache Slice. 43
4.8 Array Data Layout (a) MACs (b) Reduction. 46
4.9 Partitioning of Convolutions between Slices. 47
4.10 SRAM Array Layout. 53
4.11 Inference latency by Layer of Inception v3. 56
4.12 Inference Latency Breakdown. 56
4.13 Total Latency on Inception v3 Inference. 58
4.14 Throughput with Varying Batching Sizes. 59

5.1 (a) Systolic Array (b) Optimized Systolic Array . 64
5.2 Eidetic Overview . 67
5.3 SRAM-based Eidetic PE Unit . 71
5.4 Column Block Logic Overview . 72

vii

5.5 Control Flow of Central Control Unit. Bold text between units indicates the passed
information was created in one of the units. 74

5.6 Mapping of weights to a systolic array . 76
5.7 Putting it together . 81
5.8 Throughput of TPU Batch Size 1024 vs Eidetic Input Batch Size 16 85
5.9 Latency of TPU Batch Size: 8 vs Eidetic Input Batch Size: 16 85
5.10 Eidetic throughput by input batch size . 86
5.11 Power Breakdown . 87
5.12 Avg. and Max Cycles for MAC – different precision 89

6.1 Mapping of Eidetic on Neural Cache . 92
6.2 Breakdown of Neural Cache’s Throughput . 96
6.3 Breakdown of Neural Cache’s Energy . 96

viii

LIST OF TABLES

Tables

4.1 Parameters of the Layers of Inception V3. 53
4.2 Baseline CPU & GPU Configuration. 54
4.3 Energy Consumption and Average Power. 59
4.4 Scaling with Cache Capacity (Batch Size=1). 59

5.1 Area breakdown of Eidetic by component. There are 54 Systolic Column Blocks each
with 2.375MB of compute SRAM . 86

5.2 Area and power normalized throughput comparison for different accelerators. For
comparison, the metrics in the last five rows are normalized to 22nm using Deep-
ScaleTool [2]. For TPUv3 and Hanguang 800, we conservatively assume reported
numbers are in 14nm for normalization to 22nm. 87

5.3 ML Microbenchmarks Eidetic Mapping and TPU V2 and Eidetic Performance. 88

6.1 Comparison of Eidetic and Neural Cache Latency and Throughput 95
6.2 Comparison of Eidetic and Neural Cache Energy and Power 95

ix

ABSTRACT

For decades, the computing paradigm has been composed of separate memory and compute units.

Processing-in-Memory(PIM) has often been proposed as a solution to break past the memory wall.

With PIM, compute logic is moved near the memory, which can reduce the data movement. In-

memory computing expands on PIM by morphing the memory into hybrid memory compute units,

where data can be stored and computed on in-place. Recent work has modified SRAM arrays to

allow logical operations to be performed directly inside the arrays. Our work extends basic logical

operations and additionally adds support for arithmetic operations.

Coinciding with the rise of increasing memory on-chip and more focus on near and in-memory

computing is the ascendance of neural networks. Neural networks are highly data-parallel ap-

plications that are challenging to accelerate due to being data-bound, compute-bound, or both.

In-memory computation reduces on-chip data movement and will increase the amount of compute

available as well as the amount of storage in a custom chip. These factors can greatly alleviate

compute and data bottlenecks.

First, this thesis observes that SRAM memory has increasingly dominated the on-chip area

for general-purpose processors. This area comes at the cost of compute potential and can be

repurposed to function as a dual storage and compute unit. The benefits of such repurposing are

greatly expanding the parallel compute capability of the chip while also reducing the on-chip data

movement, all with minimal area increase. When SRAM is repurposed, the storage area can be

reclaimed with minimal overhead. Modifications to the SRAM arrays are presented that allow the

SRAM to function as hybrid compute/storage units capable of arithmetic operations. Additionally,

x

this work presents a mapping strategy for supporting CNNs in the hybrid SRAM storage compute

arrays.

Second, this thesis proposes a custom ASIC called Eidetic that utilizes hybrid compute/storage

SRAM arrays as both its primary storage and compute units. Repurposing a processor’s SRAM is

hamstrung by maintaining the cache’s original functions and area footprint. Too many modifica-

tions to the cache would render the solution undesirable to chip designers. By further customizing

the SRAM we can create more efficient PE units. Additionally, the increased SRAM storage al-

lows more weights to be stored on-chip. Finally, the custom ASIC allows for a control logic that

supports a graph-based programming model that further reduces off-chip data movement. These

customizations allow Eidetic to target data-bound applications such as RNNs and MLPs.

Third, we propose a detailed comparison between the in-cache and ASIC approaches to ML

acceleration. Between repurposing the cache and creating an SRAM-based custom ASIC, in-

SRAM computing offers multiple viable approaches. In-Cache computing is cheaper but comes

with limitations, while an ASIC design is more expensive due to the total cost of ownership (TCO).

We compare the performance and energy efficiency of our repurposed cache with a server-

class GPU and the baseline CPU. We similarly evaluate our custom ASIC to other state-of-the-art

ASIC DNN accelerators. For both the repurposed cache and the ASIC, we develop cycle-accurate

simulators to determine the performance.

xi

CHAPTER 1

Introduction

Over the last two decades compute architecture has been increasingly limited by the gap between

memory and compute known as the memory wall. The performance of compute on-chip is in-

creasing at a much faster rate than the improvements in off-chip (DRAM) memory technology.

The difference in improvement rates is leading to an imbalance in the speedups of compute and

memory. As Amdhals’s law dictates, speedups for one component of execution (compute) will

result in continually decreased performance gains as the other components (memory) dominate

execution time. Thus, the current paradigm of computer architecture has led us to a memory wall

where memory bandwidth and memory energy have increasingly dominated execution time and

energy. Another trend in computer architecture is the increase in the number of cores on-chip. Pre-

viously, the frequency could be increased from one generation to another without vastly increasing

the amount of power used. However, since the end of Dennard scaling, this is no longer true, thus

motivating increasing the number of cores on-chip to increase compute performance.

Overcoming the memory wall problem is a complicated task with several suggested solutions.

One option is to address this gap by adding/increasing the amount of intermediate storage be-

tween the DRAM and compute. Static random-access memory (SRAM) is on-chip memory that

is commonly found on most chips, particularly as the cache. The cache is typically organized in a

multi-level hierarchy of SRAM, where from level to level, the amount of SRAM in that group is

increased, but so is the time and energy to fetch data. By increasing the amount of on-chip stor-

age, more data can be reused without going off-chip. However, increasing the amount of SRAM

1

comes with costs. More on-chip SRAM creates the need for a deeper and wider hierarchy, thus

increasing the time and energy of on-chip data access. This is still less than the cost of accessing

data from off-chip. Additionally, any area dedicated to on-chip storage means a reduction in the

number of compute units as well as an increase in static/leakage power from the SRAM. Since

memory access is the larger bottleneck, sacrificing some compute for storage will yield speedups.

However, sacrificing one component of the execution for another will limit the possible speedups

compared to a solution where neither is sacrificed. Thus increasing the on-chip area for storage is

an imperfect solution.

Another solution involves rethinking the memory/compute paradigm and how they are sepa-

rated on-chip. It is possible to move the compute closer to the memory. Moving the compute

closer has been referred to as processing-in-memory (PIM) or near-memory computing. PIM has

long been suggested as a solution to the memory wall. PIM helps alleviate issues with on-chip data

movement with the compute units close to the memory units. However, the compute can be moved

even closer. Instead of using separate compute and storage units, the two can be morphed together

as a single unit where data is both stored and computed on. This style of architecture termed in-

memory computing can offer intrinsically more efficiency compared to the traditional computing

paradigm or even near-memory computing. Additionally, hybrid compute memory units can offer

a lower overhead than separate compute and memory units.

The industry has largely responded with the first solution, with on-chip SRAM increasingly

growing over the last two decades. Chips today have SRAM exceeding 3/4 of the total die area.

However, these two solutions do not necessarily have to be separate. SRAM can be modified to

support in-memory computing with minimal cost. This is a very attractive solution as on-chip

memory would no longer come at sacrificing compute area. Additionally, SRAM is an existing

technology that can be found on almost any chip. SRAM has ongoing research efforts to scale

and reduce power, as well as an established manufacturing protocol. Less established technologies

would require significant investments to implement and manufacture. And since it is found every-

where, incorporating in-SRAM computing into existing architectures is a more viable solution.

2

Further exasperating the memory wall bottleneck is the rise of data-intensive applications, such

as neural networks. These data-intensive applications have created a data bottleneck from general-

purpose CPUs to accelerators. Neural networks in particular suffer from both computation and

data bottlenecks, making it difficult to balance both the amount of compute and storage on-chip.

In-memory computing with SRAMs offers a way to achieve this balance.

Previous work for in-SRAM computing has provided the basis for logical operations but lacks

support for arithmetic operations. By increasing the capabilities of the SRAM compute arrays to

perform arithmetic operations, neural networks can be supported.

This dissertation offers two solutions for accelerating DNNs using in-memory computing to

push back against Moore’s slowdown and the memory wall. By using in-SRAM computing, we

can transform existing processors and build custom chips that will see significant performance

improvements. By offering a solution for both general purpose and customs chips, we show the

vast potential of in-SRAM computing.

Firstly, our work in Neural Cache allows us to take an existing processor that is designed

for general-purpose computing and expand its capabilities to parallel computing for neural net-

work acceleration. The last level cache of the Xeon can be repurposed from a storage unit to a

hybrid compute-storage unit capable of bit-serial arithmetic. This is accomplished primarily by

augmenting logic to the peripherals of the SRAM array, resulting in a very small area penalty.

The Intel Xeon E5-2697 v3 35MB cache can be transformed into 1,146,880 bit-serial ALUs. Ad-

ditionally, Neural Cache provides a mapping for CNNs and data movement strategies that allow

these bit-serial ALUs to take advantage of the inherent parallelism of DNNs for massive perfor-

mance gains. All of this is accomplished without the need for a new chip or sacrificing the CPU’s

general-purpose computing capabilities. With the rise in demand for parallel processing, the abil-

ity to support both general-purpose and parallel processing is a huge advantage that cannot be

overstated.

The work in Neural Cache presents bit-serial computing in SRAM arrays. With modifica-

tions to the bitline peripherals, we can perform addition, subtraction, multiplication, division, and

3

comparison on any two operands stored along a bitline, without moving them outside the array.

Additionally, the computation inside the array is driven by an FSM rather than fixed logic. This al-

lows us to support configurable precision without adding additional hardware to the SRAM arrays.

Adding compute support to the SRAM arrays only incurs a 2% area overhead across the processor

chip while adding 1,146,880 bit-serial ALUs.

In order to facilitate bit-serial computation, we first need to transpose our data. This can be

done in software, but we instead developed hardware to transpose our data on the fly. Our transpose

memory units (TMU) are a custom 8T SRAM array used solely to transpose data. The additional

transistors are designed to add an extra set of bitlines and wordlines that are perpendicular to

the originals. This allows data to be written horizontally into the array as usual, but then the

perpendicular wordline can be activated to read data out vertically, as if along the bitline. As

weights can be pre-transposed, only a few TMUs in the cbox for each slice are needed to transpose

the input.

Additionally, this work provides a mapping for CNNs onto our newly compute-enabled cache.

The filters and inputs can be unrolled into 2D matrices, with one dimension being the height and

width of the filter, and the other the input and output channels. Along an SRAMs bitline, the

unrolled filters and inputs can be stored. This allows us to perform multiple multiplications and

accumulate the outputs along the bitline. Across the bitlines in the arrays, other channels of the

output activation are computed. The reduction will be performed inside the SRAM arrays. The

remaining input channels, followed by the output channels, will be mapped across the SRAM

arrays in a bank, the banks in a way, the ways in a slice, and the slices on-chip. Small layers can

be replicated to allow more output activations to be computed in parallel.

This data mapping is designed to exploit the parallelism in CNNs and reuse the weights as

much as possible. Every multiply in the convolution is independent of each other; however, the

multiplications within a filter window and across the filter channels will be accumulated. The

next sliding window of inputs can be loaded into the array to reuse the weights that are stored in

the SRAM arrays. This mapping allows accumulation to stay local while also reusing the weights.

4

Weight replication reduces the weight reuse, but will improve the parallelism that can be exploited,

and therefore throughput.

Secondly in Eidetic we look to push the power of in-SRAM computing further by designing a

custom architecture that uses in-SRAM computing as its fundamental building block. By creating

a custom architecture instead of repurposing an existing cache, Eidetic is able to break past the

limitations of Neural Cache. Eidetic can support many more compute units than Neural Cache

without the CPU logic or cache overhead. Eidetic contains 3,538,944 bit-serial ALUs while re-

maining effectively area neutral with Neural Cache. Additionally, the architecture can be designed

to more efficiently handle the data-bound problems in DNNs with a focus on pinning weights,

facilitating data movements, and handling data dependencies. Finally, the SRAM PEs can be re-

designed to improve their efficiency. These modifications give Eidetic significantly more compute

power, but also ensure the availability of data to compute on.

By customizing the SRAM arrays and their organization, we can optimize our SRAM archi-

tecture to balance power, storage density, area, and compute throughput. The SRAM PEs can be

organized into a systolic array allowing accumulation to be performed through more efficient data

propagation rather than reduction across bitlines. A systolic array is a common dataflow archi-

tecture for neural networks that focuses on data reuse and data movement. Further, the compute

operations themselves can be optimized with the addition of an input latch outside the SRAM

arrays.

The vast increase in the number of SRAM arrays coupled with a custom array structure allows

for new possibilities such as pinning weights, computing in place on the pinned weights, and

executing multiple layers in parallel. Eidetic custom control logic allows on-demand processing

of inputs for a network with complex dependencies and inputs of varying lengths. The custom

control logic creates a second tier to the dataflow architecture, where the outputs of a layer are

automatically routed to the input of the next layer. These optimizations are made to overcome

potential data bottlenecks so that the vast number of compute units can be kept occupied.

Finally, in this dissertation, we discuss the usage of both approaches, including the cost and

5

benefits of each. Providing both of these solutions and an analysis of the two allows us to make a

case for in-SRAM computing to take over the computing paradigm.

In summary, this dissertation offers the following contributions.

• Neural Cache, an architecture that repurposes the last level cache to support the inference

of DNNs. This repurposing maintains the original cache structure and results in minimal

increases in total area.

• SRAM modifications for Neural Cache that allow for arithmetic operations such as multipli-

cation, division, subtraction, and addition. Each SRAM array is transformed into 256 vector

bit-serial ALU.

• A data layout for Neural Cache to optimize the mapping of DNNs. The parallelism of DNNs

is exploited across the cache structure of the SRAM arrays.

• Eidetic, an architecture that uses in-SRAM computing to accelerate neural networks. The

ASIC design allows for more efficient neural network inference.

• Customization of the SRAM PEs to support scalar vector multiplication, resulting in sim-

plified systolic arrays. The customized SRAM allows for reduced data movement and more

efficient operations.

• A dataflow architecture capable of mapping neural networks based on high-level graphs. The

graph-based programming reduces the amount of off-chip data movement.

• A comparison and a discussion between the two approaches. This discussion provides opti-

mal use cases and makes the case for the range of in-SRAM computing.

Our experimental results show that the proposed architecture can improve inference latency by

18.3× over state-of-art multi-core CPU (Xeon E5), and 7.7× over server-class GPU (Titan Xp), for

Inception v3 model. Neural Cache improves inference throughput by 12.4× over CPU (2.2× over

GPU), while reducing power consumption by 50% over CPU (53% over GPU). We evaluate Eidetic

6

on Google’s Neural Machine Translation System (GNMT) encoder and demonstrate a 17.20×

increase in throughput and 7.77× reduction in average latency over a single TPUv2 chip.

The remainder of this dissertation is as follows. We discuss the background and related research

work in Chapter 2. Following that, we describe our proposed research in transforming a cache

into a neural network accelerator in Chapter 4 and our SRAM-based ASIC for neural network

acceleration in Chapter 5. In Chapter 6 we discuss the two approaches of using cache vs a custom

SRAM-based architecture for neural network acceleration. Finally, we conclude the dissertation in

Chapter 7.

7

CHAPTER 2

Background

In this chapter, we will first give a background on the design and usage of SRAM in modern archi-

tectures. Then we will discuss how SRAM can be modified to support computation. Finally, we

will give an overview of the types of DNNs, discussing their usages, characteristics, and features.

2.1 In-SRAM Computing

Random-access memory (RAM) is a category of memory that is extremely common in on-chip

caches and off-chip main memory. RAM is a type of volatile memory that requires constant power

to retain the stored data. The two main types are static (SRAM) and dynamic (DRAM). DRAM’s

memory cells typically consist of a capacitor and transistor and require frequent refreshes to retain

the data/charge. The memory cell for SRAM is generally composed of 6 transistors (6T) and does

not require a refresh. SRAM is less dense than DRAM, but is more energy efficient and provides

for faster memory reads and writes. For instance, SRAM arrays are capable of operating at high

frequencies such as 4.0GHz in Intel’s Xeons. Most modern processors utilize SRAM for both

register files and on-chip caches. Two sets of two transistors store the bit and inverted bit value

within the memory cell. The other two transistors are used for access control. The SRAM memory

cells have a set of complement bitlines, BL and BLB, and a wordline that is used for reading and

writing to the cells. During the read access, the set of bitlines is pre-charged, and the wordline is

activated. This connects the stored bit and the inverted bit to the pair of bitlines and will cause the

voltage on one of the bitlines to drop. A sense amp reads the difference between these bitlines to

8

determine if a one or zero is stored. To write a value, the charge and the inverted charge are applied

to the corresponding bitline and inverted bitline. The target wordline is also activated during the

write. These components are shown in Figure 2.2.

SRAM cells are typically organized in a 2D array, with cells along a column sharing a bitline

and cells across a row sharing a wordline to share the needed peripherals, decreasing the area

overhead. This structure allows reading and writing to the SRAM array in parallel across a single

row only. An SRAM array has a row decoder used to select a wordline. Typically multiple sets of

bitlines will share a single sense amp. This reduces the parallel access to a row by the amount of

sense amp sharing or column muxing. Modern processors store and compute data in a bit parallel

format. Processors have a fixed data width of a "word" that contains some multiple of 8 bits. Data

is read and written in the SRAM arrays in this granularity, with multiple words occupying a cache

line.

This dissertation builds on previous work on SRAM bitline circuit technology [1, 3, 4] shown

in Figure 2.2. To enable computation on data stored along a bitline, a second row decoder is added

so that two wordlines can be activated simultaneously. Additionally, the differential sense amp

is replaced with two single-ended sense amps. When multiple wordlines are activated, these two

single-ended sense amps can be configured to detect if the activated cells along the bitline contain

all ones or zeros. This effectively allows in-place computation of (and and nor) along a SRAM

bitlines.

Data corruption due to multi-row access is prevented by lowering the wordline voltage to bias

against the write of the SRAM array. Measurements across 20 fabricated 28 nm test chips (Fig-

ure 2.1) demonstrate that data corruption does not occur even when 64 wordlines are simultane-

ously activated during such an in-place computation, which is more than adequate as compute

cache requires only two. Monte Carlo simulations also show a stability of more than six sigma

robustness, which is considered the industry standard for robustness against process variations.

The robustness comes at the cost of an increase in delay during compute operations. Conventional

array read/write accesses remain unaffected. The increased delay is more than compensated by

9

Figure 2.1: Prototype test chip [1].

BLB0 BL0

Vref

WLi

WLj

SA SA SA SA

0 1

0 1

0 1

1 0

BLBn BLn

WLi NORWLj WLi ANDWLj

Figure 2.2: SRAM circuit for in-place operations. Two rows (WLi and WLj) are simultaneously
activated. An AND operation is performed by sensing bit-line (BL). A NOR operation is performed
by sensing bit-line complement (BLB).

10

massive parallelism exploited with in-SRAM computing.

Compute caches [5] further extends the in-SRAM bitline computing framework to support

additional operations: copy, bulk zeroing, xor, equality comparison, and search. With this, they

make a case for using a processor’s cache for processing data-centric operations by addressing

various architectural problems: operand locality, managing parallelism across various cache levels

and banks, coherency, consistency, and reliability. Performing computation along the bitline with

data stored in a bit-parallel format prevents more complicated operations, such as addition, because

there is no way to move data across the bitlines without additional hardware. Addition would

require a carry to be propagated across the bitlines.

Cache Automaton [6] introduced the concept of sense amp cycling. If an SRAM array has mul-

tiple columns that share a sense amplifier, sense amp cycling can be used to increase the throughput

of in-SRAM compute. Most of the compute cycle is spent pre-charging the bitlines with a smaller

amount of time devoted to sensing. Thus all bitlines can be precharged, and the sense amp can

cycle through each shared bitline without the pre-charging overhead.

2.2 Deep Neural Networks

The field of Deep Neural Networks (DNNs) and Machine Learning (ML) was reinvigorated by

Alexnet in 2012. Alexnet achieved significant improvements at ImageNet 2012. Alexnet showed

the importance of using multiple layers in a network and GPUs’ potential to make training these

deep neural networks feasible. DNNs are a key component in the field of Machine learning with

applications in bioinformatics, speech recognition, autonomous vehicles, economics, fraud detec-

tion speech translation, and more.

Artificial Neural Networks (ANNs) are attempts to mimic biological neural networks by creat-

ing a layer of nodes with a weight or learned value that interacts with inputs to produce an output.

Deep neural networks are ANNs with multiple layers between the input and output layers. Neu-

rons can be implemented in a variety of different ways, but typically invoke a matrix operation such

11

as matrix-matrix multiplication, vector-matrix multiplication, and convolution. Common types of

DNNs are multi-layer perceptrons (MLPs), Recurrent Neural Networks (RNNs), Convolutional

Neural Networks (CNNs), and Transformers. While CNNs utilize convolutions, the convolution is

often converted into matrix-matrix multiplication. The nodes in RNN, MLP, and Transformer all

heavily utilize matrix multiplication. RNNs introduce a recurrent data dependency and transform-

ers invoke a self-attention mechanism. The two most important operations in a neural network are

convolution and matrix multiplication. However, since a convolution can be converted to matrix

multiplication, accelerators can be optimized strictly for matrix multiplication operations.

DNNs have two important stages; training and inference. Training uses a set of test data to

determine optimal weight values for all the nodes or neurons in the network. The network will

be trained for specific applications or tasks. Training data consists of input data and the desired

output/classification for each input. Additionally, a separate set of test data is used to evaluate

the accuracy of the output without the network being specifically trained on it. Most commonly

an algorithm called gradient descent is used to update the weights based on the error from the

expected outputs and the realized outputs. Inference is running the network with inputs after the

network has been trained for the task.

MLPs are usually defined as a relatively generic feed-forward ANN. A basic MLPs layer con-

sists of matrix multiplication usually followed by a nonlinear activation such as sigmoid or tanh.

CNNs as their name suggests contains convolutional layers. In addition to convolutional layers,

CNNs will typically have pooling and fully connected layers mixed in as well. Rectified Linear

Unit (ReLU) is typically used as the activation function for each layer. Most CNNs spend the

majority of the compute during the convolution cycles. A convolution layer uses the weights as a

filter and applies the filter to the input image. Filters have four dimensions, height (R), width (S),

channels (C), and batches of 3D filters (M). Inputs have three dimensions with a height (H), width

(W), and channel (C). The filter is overlaid on the inputs, and each pixel of the input is multiplied

by the corresponding filter pixel and repeated across the M dimension. The results across the

R × S, i.e. the height and width, are accumulated together. Further, the channels are also reduced

12

E

Many Filters
(M)

Input Image
Output
Image

H

M

S

R

C

C

S

R

C

W
F

1

M

Figure 2.3: Computation of a convolution layer.

into a single element. Thus each window gives us an output of 1 × 1 × M . The filter window is

slid across the input to produce multiple output activations. The window is slid using a stride (U),

increasing the stride will decrease the number of output elements computed. The output’s channel

size is equivalent to the M dimension of the filter. The output image, after an activation function

that varies across networks and layers, is fed as the input to the next layer. CNNs vary greatly in

size and number of layers. AlexNet, for instance, has 5 convolutional layers and 3 fully connected

layers whereas Inception v3 has 94 convolutional ’sub layers’. The convolutional layers at the start

of a network tend to have an input with a large height and width, whereas the channel size and

depth of the filters are small. The layers at the end feature inputs with smaller heights and widths

but have a much larger depth and number of channels. This results in the first layers having smaller

weight matrices but a larger amount of compute, and the later layers having larger weight matrices

but a smaller amount of compute.

RNNs introduce a recurrent element through a temporal dependency. The output of a node is

not only passed to the next layer but is reused in the same node for a future input. This is extremely

13

σ σ tanh σ

X

tanh

X

X

Copy Concat

σ

Matrix Mult. +
Nonlinear Func

Element-Wise
Operation.

H{t-1}

C{t-1}

H{t}

C{t}

H{t}

X{t}

Figure 2.4: Typical LSTM Cell showing micro-operations performed

useful for speech translation, where words in a sentence are separate components of the inputs and

the meaning depends on past and future words. Incorporating the previous word’s output into

the input of the node allows past information to be retained. Additionally, a network can have a

bidirectional layer where the input is reversed allowing for translation to be based on the past and

future words in the sentence.

Long short-term memory (LSTM) is a popular subcategory of RNNs. An LSTM layer is typ-

ically referred to as an LSTM cell. Each cell takes in and concatenates an input from a previous

layer and its own output from a past or future time step. Figure 2.4 shows an LSTM cell that

consists of various micro-operations. The yellow box represents a matrix multiplication operation

(matmul) with hidden weights, followed by a non-linear activation function. The outputs of these

non-linear functions are then involved in a variety of element-wise operations. The outputs of the

cell can become inputs to the next cells and the same cell at a different time step. GNMT is a

widely used LSTM, a subclass of RNN, that features a bidirectional layer. Figure 2.5 shows how

the different LSTM cells connect across layers and time steps in the GNMT encoder.

Matrix-Matrix multiplication can be described with an input matrix of [n x k] and a weight

14

Figure 2.5: GNMT Encoder Layout

matrix of [k x m]. Note that the number of columns in the input matrix and the number of rows

in the weight matrix match. A convolution can be converted into a matrix multiplication by per-

forming an Im2col transform on the input image. This creates an input matrix of dimensions [E*F

x R*S*C] with a weight matrix of dimensions [R*S*C x M]. A column of elements from the input

matrix is multiplied by the corresponding elements of a row of the weight matrix with the products

being accumulated together. This multiplication and accumulation happen for each input row and

weight column pair. Thus the output matrix will be of dimension [n x m]. The number of multiply

and accumulations needed will be n*k*m.

DNNs have a wide range of network and layer sizes based on their application, power, la-

tency, and throughput budget. A larger network tends to have better accuracy but also increases

the amount of compute and energy needed. For instance, EfficientNet is an image classification

network designed for edge computing with 5.3M parameters. Bert Large, on the other hand, is

used in data centers for Natural Language Processing (NLP) and contains 345M parameters.

15

2.3 Accelerating Neural Networks

Matrix multiplication is a highly parallelizable operation, as every multiplication is independent of

each other and thus can be parallelized. However, the weight matrices in networks are generally

too large to parallelize every multiplication. Additionally, since the products produced need to be

accumulated with other products from the same row in the weight matrix, it is common for DNN

accelerator architectures to design PEs capable of a single fused multiply and accumulate (MAC).

Products that are accumulated together can be created sequentially in the MAC units, eliminating

the need for a separate accumulation.

Matrix multiplication acceleration can suffer from being compute-bound or data-bound, and

sometimes both across multiple layers. Compute-bound refers to when computation is limited by

the number of compute units. If a bottleneck is created because there are more available operations

to perform than compute units, the application is said to be compute-bound. Data-bound can refer

to when there are available compute units, but not enough operations are available to execute due to

lack of data. The lack of data can come from on-chip data movement and off-chip data movement

as well as from data dependencies. TPUv1 detailed the breakdown of compute cycles and data

stalls for a pair of each CNNs, MLPs, and LSTMs. The compute units in MLPs and LSTMs

were only active 8.2% to 12.7% of the execution time. Instead loading weights from memory and

moving weights on-chip resulted in stalls for between 57.6% and 79.2% of the cycles for the 4

MLPs and LSTMs. The two CNNs had the compute units active 78.2% and 46.2% of the cycles,

with weight stalls and shifts between 0.0% to 35.1%. These number help show the extreme range

that DNNs can have for being compute-bound or data-bound.

Critical factors for accelerating DNNs consist of supporting optimal precision(s), optimizing

data reuse, facilitating optimal dataflow, and having a large amount of compute units available. Ad-

ditionally, these factors affect throughput, latency, and power budgets which need to be balanced.

The type of precision(s) supported affects not only the accuracy of the network but the ability to

do training, the compute units’ speed, the power of the compute units, the area of the compute

units as well as the available software support. Data reuse is also a key factor, as every off-chip

16

memory access and on-chip storage access adds an energy and delay penalty. Efficient caching

can prevent multiple off-chip memory access for the same data. Further data can be reused in reg-

isters. Both reducing off-chip and on-chip accesses are achieved by creating an architecture and

data mapping designed for the parallel computation and data reuse of neural networks. Facilitating

an efficient dataflow can be key to making reuse available without stalls. Accumulations, depen-

dencies between layers, and replications of weights or inputs for parallelization all have dataflow

considerations. Throughput and latency will often have an inverse relationship when inputs are

batched together to increase the reuse of the weights.

DNNs are most commonly designed using single-precision floating-point format (FP32) data

format. FP32 is used to represent a dynamic range of decimal numbers. IEEE FP32 contains a sign

bit, 8 exponent bits, and 23 fraction or mantissa bits. With this dynamic range, FP32 can represent

both 1.4012984643 × 10−45 and 3.4028234664 × 1038. Floating point is used for training neural

networks due to its increased flexibility in range and precision. Training with floating point results

in significantly better accuracy than with integers.

Other reduced precision floating point formats can also be used. IEEE half-precision floating-

point format (FP16) uses 5 exponent bits and 10 mantissa bits. Bfloat16 instead uses a truncated

version of IEEE FP32, maintaining 8 bits for the exponent but reducing the mantissa bits to 7.

Nvidia’s TensorFloat uses a 19-bit format, 8 for the exponent and 10 for the mantissa. AMD’s

fp24 uses 7 exponent bits and 16 mantissa bits. Note that all of these formats have a single bit for

the sign.

Additionally, networks can be quantized to an integer format for inference. Oftentimes the

activations and weights are converted to int8 but extremely low precisions with binary quantization

are also used. The range of values for activations and weights can be calculated. The range can be

used to create a scale and offset value that is used to convert the floating point values to integers.

After a layers computation, the output is converted back to floating point using the scale. Networks

can be trained in floating point and run in either floating point or quantized integer. Networks can

also specifically be trained for quantization, reducing the accuracy loss. Training in integer is

17

very uncommon, using floating-point during training is more common even when inference uses

quantization.

Using reduced format precisions data format can reduce the amount of storage and memory

bandwidth needed. Reducing the precisions can also result in significantly faster compute times.

However, this requires ALU units and instructions capable of running reduced precisions opera-

tions efficiently.

Modern architectures provide support for both integer and floating point operations. But won’t

necessarily support the reduced precisions effectively as a custom architecture. For instance, quan-

tized inference for matrix multiplication might want to support 8-bit inputs and weights with the

result of the multiplication stored at 16 bits. Further accumulation can be supported with 16, 24, or

32-bits. Integer ALUs occupy significantly less area and are faster than floating point ALUs. How-

ever, designing an architecture that only uses integer ALUs results in some accuracy loss which

can limit the networks and applications. Additionally, it prevents using the custom architecture for

training.

A challenging aspect of accelerating DNNs is optimizing for data reuse. Given an input and

weight matrix of [n x k] and [k x m] respectively, the reuse factor, or the number of times a weight

element is accessed is n. If the value of n is 1, the input is a vector instead of a matrix. It is

common for RNNs, MLPs, and fully connected layers in CNNs to have an input vector instead of

an input matrix. In the case of RNNs, the input sequence is a matrix of inputs that are separated

into vectors by time. Because of a temporal dependency, these vectors cannot be combined into

a matrix for greater reuse. However, multiple independent inputs can be combined into a batch.

Batching of inputs allows the input vectors to be combined into a matrix, as well as input matrices

concatenated together. Batching is done to increase the reuse of the weights. Batching inputs can

have huge gains for throughput as it amortizes costly weight loading, but comes at a direct cost to

latency. Inputs will have to wait for the other inputs in the batch to finish before the next layer can

start executing resulting in increased latency. Additionally, batching also requires that there are

available inputs to be batched at the time of inference. Each input will further increase the amount

18

of on-chip memory needed as each input will create its own intermediates that need to be stored.

In addition to weight reuse, the networks also have reuse with the inputs. With an input and

weight matrix of [n x k] and [k x m], each input matrix or vector is applied to each of the m rows

of the weight matrix. If the m rows of the weight matrix are separated across multiple compute

units, the input would have to be either replicated or passed from one compute unit to another.

Finally, products reuse exists during the accumulation of the matrix multiplication. The output

of each MAC is a product that needs to be accumulated with other MACs from the same column

in the weight matrix. The product can be reused in the compute unit if a new input and weight are

loaded in. The products can also be passed to other compute units where they will be accumulated

with another product in its column. Or, the products can all be collected and accumulated outside

the matrix compute units.

There are multiple approaches to designing an architecture for accelerating DNNs. One ap-

proach is using many parallel compute units for single instruction multiple data (SIMD) process-

ing. The computation is parallelized across the compute units with all compute units acting in

lockstep. The outputs from these units would have to be collected and accumulated together. In

chapter 4 we present Neural Cache which uses a SIMD approach.

Another approach involves using a dataflow architecture such as a systolic array. With a systolic

array, one of the 3 operands is kept stationary, with the other two passed to neighboring PE units.

This style of architecture is explored in chapter 5 where we present Eidetic which uses a dataflow

architecture.

19

CHAPTER 3

Prior Works

In this chapter, we will cover both industry and academic work for designing DNN accelerators.

Additionally, we will discuss the prior work on in-memory computing that has led to in-SRAM

computing as well as other in-memory DNN accelerators.

3.1 DNN Accelerators

Many industry giants, promising startups, and academic researchers have proposed their own ar-

chitecture for DNN/ML acceleration. A common approach is to have a small number of cores per

chip, with each core having a large or several large matrix compute units. These architectures are

often dataflow architectures, with emphasis on data movement between PEs, with a systolic array

being a very common option. Another option for ML accelerator architecture is a many-cores so-

lution. GPU for instance is a specific type of many-core architecture. A many-core architecture

can improve the granularity compared to a dense matrix multiplication unit. The mapping of op-

erations is not as rigid as these large matrix multiplications units and will have a smaller array of

compute units. This can improve efficiency for mapping and leveraging sparsity. A core can be

turned off or mapped with other operations. Utilizing unoccupied PEs in a large dense compute

array is a harder task. Additionally, each core can have more control over how data is passed and

shared. This finer granularity comes at a cost in efficiency. Each core will have added overhead

with its control logic. Simple data movement from PE to PE is less expensive in the area, energy,

and time compared to moving data from one core to another. Often times the dataflow architecture

20

Figure 3.1: Google TPU with its 2D Systolic Array

will have a few complex instructions for the matrix operations. These instructions and the matrices

will need to be broken up into many parallel instructions increasing the instruction overhead and

the amount of software support needed for a many-core architecture. The work in Eidetic sup-

ports many large matrix multiplication units due to the density of in-SRAM computing. The 54

systolic arrays on-chip may look similar to a many-core architecture, however, the dataflow and

programming between the systolic arrays is more similar to the PE dataflow architecture. Instead

of a many-core architecture Eidetic is two-level dataflow architecture, connecting PEs together to

compute a layer, and systolic arrays together to compute the network.

TPUv1 [7] is a neural network accelerator that Google introduced in 2016 and published the

21

details of in 2017. The first version of TPU has a matrix multiplication unit that was a 256 x 256

systolic array of PEs. Figure 3.1 shows the TPU systolic array. Each PE supported both 8-bit and

16-bit integer for each input operand. An 8-bit and 16-bit operand would cause the PEs to operate

at half speed. Two 16-bit operands would cause them to operate at a quarter speed. Like Neural

Cache and Eidetic, TPU supports a weight stationary mapping. Weight tiles are loaded into the

systolic array, inputs are propagated across the systolic array and products are passed downwards.

At the bottom of each column in the systolic array is an accumulator to hold the products and

accumulate them with the products from the next weight tile. An activation pipeline takes the

accumulated output and performs the needed activation and passes its output to the local buffer.

TPUv1 devotes a significant 24 MB and 29% of its chip area to its local unified buffer. This allows

TPU to support a large batch size to increase the utilization of the systolic array. Additionally,

training was not supported in this version.

TPUv2 [8] was first deployed in 2017 and no longer supported integer arithmetic. Instead,

it supports its own custom Bfloat16 data format. Additionally, it supported FP32 but resulted in

an 8× performance loss from Bfloat16. With a floating point data format, this TPU was able to

support inference and training. TPUv2 additionally has two identical cores per chip, with each core

featuring a 128 x 128 systolic array. Despite having half the matrix compute units and an improved

technology node, the TPUv2 is almost twice the size of TPUv1. This can be explained by the

floating point units occupying a significantly larger amount of area than their integer counterparts.

TPUv3 introduced a second matrix multiplication unit per core while keeping the same systolic

array structure. TPUv2 and v3 feature 32MB of on-chip SRAM.

Amazon Inferentia chips [9] is another example of industry utilizing systolic arrays as their

matrix multiplication unit. Each chip consists of 4 Neuron Cores with a systolic array that supports

BF16, INT8, and FP16 data types. Each chip has a large on-chip cache and a commodity DRAM.

Tesla’s Full Self-Driving Chip features two Neural Processing Units, a light GPU for post-

processing, and 12 Cortex-A72 cores for general-purpose processing. Each neural processing unit

has a 96x96 multiply-accumulate array for performing MACs. Unlike some other accelerators,

22

these are not systolic arrays. Additionally, each neural processing unit has 32MB of SRAM for a

total of 64 MB on-chip. The SRAM is used to store intermediates and reduce the main memory

accesses.

Another prominent DNN accelerator is Project Brainwave [10] from Microsoft. Brainwave is a

"soft processor" that is synthesized onto its cloud FPGAs. Like Eidetic brainwave seeks to process

AI, specifically RNNs, in real-time. Brainwave processes a single input and pins the weights in the

distributed on-chip SRAM. However, unlike Eidetic, Brainwave’s weights are not computed on in-

place, requiring the weights to be moved to the compute units for each input. Brainwave relies on

RNNs having multiple elements in the input to achieve a high utilization. Additionally, Brainwave

uses a block floating point format that shares 5-bit exponents across a group of numbers.

Nvidia introduced Tensor Cores [11] in its Volta GPU micro-architecture. Tensor Core per-

forms matrix-multiply-and-accumulate on 4×4 matrix each cycle. The Tensor Core takes in half-

precision input operands and performs the multiplication in half-precision but the accumulation in

single precision. Each streaming multiprocessor is partitioned into four processing blocks, each

with two Tensor Cores, 8 FP64 cores, 16 FP32 cores, 16 INT32 cores, and one Special Function

Unit. The second generation [12] added support for Int8, Int4, and Int1. The third generation

included Bfloat16, TF32, and FP64. The fourth generation adds support for FP8. The GPU archi-

tecture is designed to support many parallel threads. Each processing block has a large register file

to support temporal and spatial locality. The Volta architecture contains 36MB of on-chip memory

across the 80 streaming multiprocessors.

Tenstorrent Grayskull [13] architecture is another many-core example with their architecture

containing 120 cores in a 12x10 grid. Each core features a small 1MB SRAM, a compute engine,

and 5 scalar RISC CPUs. The compute engines are optimized for INT8 but can support FP16 and

Bfloat16 as well as a custom FP8 with the same throughput of INT8. Additionally, the chip has 4

super-scalar CPUs to manage the data flow.

Grog’s Think Fast TSP [14] presents another take on the many-core architecture. Each tile in

the network is designed to implement a specific function. A slice is composed of 20 of these tiles

23

stacked vertically. All the tiles in a slice use the same instruction stream for SIMD and pipelined

execution. Think Fast TSP presents results for ResNet50 with a batch size of one.

In addition to industry, many academic works have proposed various DNN accelerators. Many

of these works [15, 16, 17, 18, 19, 20] focus solely on CNN acceleration. Using systolic arrays

as the computing engine is also an extremely common theme [15, 21, 22]. Approximation can be

used to improve the compute performance and reduce energy consumption while not significantly

reducing accuracy. This is done through dynamic quantization and bit-widths [21, 23, 24] and

using approximate memory [25]. Leveraging sparsity in DNNs can improve compute performance

and save significant amounts of energy. Architectures and mappings to leverage sparsity have also

been proposed [15, 19, 26].

Eyeriss [20] was a trend-setting DNN accelerator published and tapped out back in 2016. This

accelerator focuses on CNN acceleration, processing a CNN layer-by-layer. The core computing

unit employs a spatial array of 168 PEs organized as a 12 x 14 rectangle. The PEs are capable

of doing 16-bit fixed-point arithmetic. The convolution is broken into multiple 2D convolutions

for inference. They present a row-stationary dataflow to optimize energy efficiency for any con-

volutional layer. The row stationary dataflow involves passing all three operands to adjacent PEs.

Filters are passed horizontally, inputs are passed diagonally, and partial products are passed verti-

cally. Neural Cache also uses a layer-by-layer approach and employs a hybrid of weight stationary

and output stationary reuse pattern. Eidetic uses a weight stationary design and does not follow a

layer-by-layer approach.

Our work in Neural Cache and Eidetic leverage bit-serial computation to exploit parallelism at

the level of numerical representation. Stripes [27] leverages bit-serial computation for inner prod-

uct calculation to accelerate DNNs. Its execution time scales proportionally with the bit length,

and thus enables a direct trade-off between precision and speed. Our work in Neural Cache dif-

fers from Stripe in that Neural Cache performs in-situ computation in the SRAM arrays, while

Stripe requires arithmetic functional units and dedicated eDRAM. DaDianNao [28] is an archi-

tecture for DNNs which integrates filters into on-chip eDRAM. It relieves the limited memory

24

bandwidth problem by minimizing external communication and doing near-memory computation.

Bitfusion [29] introduces bit-level fusion and decomposition among the PEs. The BitBricks PEs

can be decomposed to support lower bit-level arithmetic for bit-level granularity for each layer.

3.2 Processing in Memory, In-Memory, and Near-Memory Com-

puting

Processing-in-memory (PIM) [30, 31, 32, 33, 34] was a popular concept in the 90s that had fallen

out of favor, but has seen a resurgence with in-memory and near-memory computing. These works

moved the compute units near main memory (DRAM), thereby reducing the gap between mem-

ory and compute units. Today this method of computing is generally referred to as near-memory

computing as the computation is performed outside of the actual memory units. This distinction

is important because there has also been a rise in in-memory computing, where the compute units

exist as part of the memory/storage units. These PIM architectures of the 90s were mainly DRAM

and faced challenges integrating the logic inside the DRAM cells or even on the same die. Since

then the memory wall problem has accelerated and exasperated the need to improve the memory

bandwidth of the Von Neumann architecture. This increased need coupled with the newly avail-

able 3D stacked memory has led to a resurgence in moving compute closer to memory. The work

presented in this dissertation is an example of in-memory computing as the computations are per-

formed inside the SRAM arrays. This is an example of in-SRAM computing. Processing in/near

memory can be done with a variety of storage/memory types. In addition to DRAM and SRAM,

other memory technologies such as flash and ReRAM also exist.

Memristors/ReRAM-based architectures were some of the first in-memory computing that was

proposed in this current iteration. ReRAM is an extremely dense non-volatile memory that has

been looked at to replace Flash memory. ReRAM is often referred to as memristors. Memristors

can be programmed with up to 32 different resistance values that remain even without access to

power. Applying an input voltage to the memristor creates a resulting current that is the multipli-

25

cation of the programmed weight and input voltage. When two currents are joined, the resulting

current is the sum of the two. This allows multiple rows of memristor cells to be activated with

the results accumulated along the shared bitline. Built-in accumulation and ReRAM density make

it an attractive option, however, ReRAM faces several challenges that limit ReRAM potential.

ReRAM is highly susceptible to process variation. The multiply relies on a linear current-voltage

curve for the resistance. Process variation can break this curve causing inaccuracies or forcing the

memristor to store fewer bits per cell. Compared to volatile memories, ReRAM has a lower cell

life, as well as a higher latency and energy cost to program due to a higher voltage needed. Finally,

the representation is limited because negative values cannot be stored in the cells and also because

of the limited range of programmed resistance and scalability of ADC and DAC logic. The area

and energy overhead of an ADC increases exponentially with the resolution.

PRIME [35] presents a memristor design for accelerating MLPs and CNNs. PRIME handles

the bit-precision challenge by using 8-bit weights and 6-bit inputs. The weight and inputs are

further split in half across four cells. The four outputs are decoded by a smaller ADC and are

pierced together with peripheral adders and shifters. ISAAC [36] is another CNNs memristor

accelerator. ISAAC presents a different approach to precision. Weights are still split across the

cells in a row, but the input is fed sequentially, one bit at a time. This reduces the DAC and

ADC precision needed. ADC peripheral logic is needed to collect each output over the 16 cycles.

This allows ISAAC to use 16-bit operands. Additionally, ISAAC creates a pipeline for the CNN

layers. The density of the memristors allows it to pin multiple layers in the network and separate

the layers into different tiles. The output of one tile is sent to the input of the next, creating the

pipeline. ISAAC can replicate the weights of a slow layer to spare tiles to improve the compute

performance. FPSA [37] is a full stack solution that proposes reconfigurable routing architecture

to break the communication bottleneck. Additionally, they support a spiking schema to improve

PE density and efficiency. FloatPIM [38] introduces support for floating point and supports all

operations using a NOR operation. The NOR operation is performed only on single-bit operands

eliminating the overhead of the costly ADC and DAC. The cycles for FP multiplication are based

26

on the number of mantissa and exponent bits. Single-bit memristors also increase the feasibility

from a manufacturing standpoint. Like the work in Eidetic and Neural Cache, floatPIM operates

on only one bit of the operands per cycle. PipeLayer [39] creates a pipelined ReRam architecture

for training CNNs. Training for CNNs increases the complexity of dependencies but does not

include support for temporal dependencies and on-demand processing.

In-SRAM/Near-SRAM computing has been well explored in the last several years. A majority

of the works listed are designed for neural network acceleration. There are many ways that these

works differentiate themselves from each other. Some of the novelties in these in-SRAM comput-

ing works involve using analog/mixed sensing, using alternative in-SRAM computing methods,

and modifying the SRAM bit cells and peripherals. Additionally, the cells or the hardware and

software can be designed to support weight sparsity and processing can be done near-SRAM in-

stead of in-SRAM.

Our work proposes bit-serial arithmetic in the digital domain. From our differential sense-

amps, we can calculate if the activated cells are all ones (AND) or all zeros (NOR). Another

approach is to use ADC and perform a popcount. These approaches often are used for low pre-

cision or binary networks as they do not scale well for higher precision computation and require

more energy than a sense amp. Nand-net [40] proposes compressing the popcount by converting

XNORs to NANDs which decreases the magnitude of the output allowing the ADC resolution to be

considerably reduced. Using a mixed signal [41] has also been proposed to increase the scalability

and efficiency of in-memory. Computations that have a high signal-to-noise ratio can be performed

in the analog domain. Promise [42] proposes a compiler where the precision of the operations is

adjustable based on a target accuracy for an algorithm. The mixed signal approach allows them to

reduce accuracy to save energy.

Instead of performing the computation in the SRAM peripherals like the work in this disserta-

tion, it’s possible to design arrays that integrate a local compute cell among multiple SRAM cells.

Several works have proposed [43, 44] bitwise multiply-units that consist of 16 6T SRAM cells and

1 local computing cell. Another proposes [45] a compute engine 32 6T SRAM cell with a local

27

computing unit as well as segmented bitlines. These local compute units enable support for more

compute operations.

Other work has also explored modifying the SRAM bit-cells for in-SRAM computing. Our

work utilizes standard SRAM 6T cells for in-memory computation. Multiple works [46, 47, 48]

have proposed modifying the SRAM cells and using 8T cells instead of 6T. One version of the

8T-SRAM allows zero-skipping to support weight sparsity [48]. The work proposed in Eidetic

supports input sparsity but not weight sparsity. Other versions [46, 47] propose versions of the 8T

SRAM to improve stability when increasing the number of activated cells. However, increasing

the number of transistors in each cell will increase the area and power usage of the SRAM. Our

work does utilize custom 8T SRAM cells, but they are used for performing transpose rather than

performing computation.

Other modifications have been proposed to the peripheral logic of the SRAM arrays to improve

the efficiency of the computation. Su et. al. [45] propose a design segmenting the bit-lines in the

array. By segmenting the bit-lines into smaller groups, the SRAM read energy can be reduced.

Bit Prudent explored leveraging structured sparsity of Neural Networks with in-SRAM com-

puting. DNNs were specifically pruned to coalesce non-zero filters enabling efficient dense com-

putation. Previously mentioned work [48] supported sparsity with their proposed 8T SRAM cell.

Just as there is in-memory and near-memory computing, there is also in-SRAM and near-

SRAM computing. All near-SRAM computing differs from the work in this dissertation by per-

forming the computation outside the SRAM arrays and their peripherals. Near-SRAM computing

was proposed as far back as the 1990s with Terasys [30]. Terasys presents a bit-serial arithmetic

PIM architecture. Terasys reads the data out and performs the computation in bit-serial ALUs out-

side the array. Further Terasys performs software transposes while Neural Cache and Eidetic have

a dedicated hardware transpose unit, the TMU. More modern examples of near-SRAM computing

have specifically been designed for neural network acceleration. Multiple works have proposed

using the SRAM arrays as look-up tables [49, 50]. The logic to support the look-ups exists outside

the SRAM arrays. Another approach is Reduct [51], which adds tensor functional units outside

28

each level of the cache. Like Neural Cache these works are designed to augment a cache in an

existing processor to enable support for parallel computation.

In-DRAM computing is an attractive solution but suffers from several key challenges. The

process for manufacturing DRAM is not designed for logic and creates inefficiencies in the logic

circuits. The process is not optimized for logic speed and additionally, the in-DRAM logic can in-

cur a 2-3× area overhead [52, 53] due to the in-DRAM logic only having access to two or three of

the metal layers. Another challenge is that the DRAM writes are destructive. Performing in-place

computation will corrupt the input operand data. Solutions which copy data and compute on them

are possible [54], but slow. Reusing the input operands is very common in neural networks and

is heavily utilized in our in-SRAM designs. Finally, data scrambling, and address scrambling in

commodity DRAMs [55, 56, 57, 58, 59] contribute to making re-purposing commodity DRAM for

computation challenging. One example of in-DRAM is DRISA: A DRAM-based Reconfigurable

In-Situ Accelerator [52]. DRISA offers computation both by adding external logic peripherals to

the cell as well as modifying the DRAM cell for computation. DRISA optimizes its architecture

for CNN acceleration. PIM processing near-DRAM of the 90s was not widely adopted due to in-

efficiencies with logic and memory on the same die. However, recent advancements in 3D stacked

DRAM have led to their resurgence. Multiple separate 2D DRAM dies can be stacked on top of

each other with communication along the stack. Since they are separate dies, near-memory logic

can exist on its own die where the process is properly optimized. There are several examples of

near-DRAM computing. Neurocube[60] creates a compute engine layer that is broken across dif-

ferent tiles that have access to different vaults of a Hybrid Memory Cube (HMC) DRAM. Tetris

[61] also utilizes HMC DRAM and creates a NN engine in a vault in a tile. Each engine has 100s

of PEs organized in a 2D array. The array of PEs leverage a row-stationary dataflow to optimize

for data movement and reuse. NAND-net [40] mentioned for mixed-signal SRAM also supports

near-DRAM computing. All of the above near-DRAM accelerators optimize for CNN acceleration

and perform layer-by-layer computation. TransPIM [62] uses a token-based dataflow, where com-

putations across multiple layers of the same token are kept in the same memory location to reduce

29

movement. This design is implemented in high bandwidth memory, a type of 3D stacked DRAM.

TransPIM’s design is optimized for transformers. TensorDIMM [63] uses near-DRAM computing

with a custom DIMM module. This module is integrated into a GPU systems interconnect and

targets sparse embedding operations.

In addition to in-memory in these established memory technologies, in-memory computing

for neural network acceleration has been shown in emerging memory technologies such as SST-

MRAM, Phase Change Memory, and Flash Memory.

NAND Flash memory is a well-established NVM memory technology that offers non-volatile

and high-density storage. Flash memory has been widely adapted in Solid State Drives (SDD),

which have been overtaking Hard Disk Drives (HDD) in recent years. Flash memory additionally

supports multicell storage of 4 bits or more. Despite its widespread use, flash offers unique chal-

lenges due to its long read time, and even longer write time. Both in and near flash computing

have been proposed to accelerate neural networks. One example of near-flash is RM-SSD [64].

RM-SSD uses an SSD with an FPGA-based in-storage computing engine. RM-SSD pipelines the

top and bottom MLPs in a recommendation system. The MLPs do not have the increased com-

plexity that RNNs have with temporal dependencies. Mythic AI [65] has developed an in-NAND

Flash neural network accelerator. Each flash cell is capable of storing an 8-bit weight based on the

capacitance of the cell. Much like in Memristors, a voltage is applied to the cell and the produced

current is analog to the multiplication of the voltage and capacitance.

Spin-Transfer Torque Magnetoresistive RAM (STT-MRAM) is another non-volatile memory

looking to replace DRAM. It has a faster and more energy-efficient write coupled with a longer

lifespan than other NVM technologies. Some previous work has focused primarily on bitwise

binary operations [66]. Jain [67] extends support for addition by adding peripherals logic gates to

support sum and carry. This is a very similar approach to how our work in Neural Cache supports

in-SRAM arithmetic. Multi-level cell in-memory computing for STT–MRAM has been shown

possible [68]. This works leverages its in-memory computing to accelerate binary convolutional

neural networks.

30

Phase Change Memory (PCM) uses glass that alternates between an amorphous and crystal-

lization structure based on the applied current. Additionally, it can support multi-level cells and

has a similar in-memory computing approach to ReRAM. Multiple works [69, 70] have explored

using in-memory PCM for neural network acceleration. A mixed precision architecture [71] using

PCM has also been proposed. PCM writes take longer and requires significantly more energy than

other NVM limiting its potential.

31

CHAPTER 4

Neural Cache

The amount of on-chip memories, such as caches, has grown significantly in the last decade. This

growth, coupled with the rise in popularity of data-parallel neural networks, creates a unique op-

portunity to leverage these trends by repurposing cache to become a data-parallel DNN accelerator.

In this chapter, we present Neural Cache, an advancement in in-SRAM computing that allows for

an existing cache to be repurposed into a data-parallel DNN accelerator.

4.1 Introduction

In the last two decades, the number of processor cores per chip has steadily increased while mem-

ory latency has remained relatively constant. This has led to the so-called memory wall [72] where

memory bandwidth and memory energy have come to dominate computation bandwidth and en-

ergy. With the advent of data-intensive systems, this problem is further exacerbated and as a result,

today a large fraction of energy is spent in moving data back and forth between memory and com-

pute units. At the same time, neural computing and other data-intensive computing applications

have emerged as increasingly popular applications domains, exposing much higher levels of data

parallelism. In this dissertation, we exploit both these synergistic trends by opportunistically lever-

aging the huge caches present in modern processors to perform massively parallel processing for

neural computing.

Traditionally, researchers have attempted to address the memory wall by building a deep mem-

ory hierarchy. Another solution is to move compute closer to memory, which is often referred to

32

as processing-in-memory (PIM). Past PIM [30, 32, 34] solutions tried to move computing logic

near DRAM by integrating DRAM with a logic die using 3D stacking [73, 74, 60]. This helps

reduce latency and increase bandwidth, however, the functionality and design of the DRAM itself

remains unchanged. Also, this approach adds substantial cost to the overall system as each DRAM

die needs to be augmented with a separate logic die. Integrating computation on the DRAM die

itself is difficult since the DRAM process is not optimized for logic computation.

In this dissertation, we instead completely eliminate the line that distinguishes memory from

compute units. Similar to the human brain, which does not separate these two functionalities

distinctly, we perform computation directly on the bit lines of the memory itself, keeping data

in-place. This eliminates data movement and hence significantly improves energy efficiency and

performance. Furthermore, we take advantage of the fact that over 70% of silicon in today’s

processor dies simply stores and provides data retrieval; harnessing this area by re-purposing it to

perform computation can lead to massively parallel processing.

The proposed approach builds on an earlier silicon test chip implementation [1] and architec-

tural prototype [5] that shows how simple logic operations (AND/NOR) can be performed directly

on the bit lines in a standard SRAM array. This is performed by enabling SRAM rows simultane-

ously while leaving the operands in-place in memory. This dissertation presents the Neural Cache

architecture which leverages these simple logic operations to perform arithmetic computation (add,

multiply, and reduction) directly in the SRAM array by storing the data in a transposed format and

performing bit-serial computation while incurring only an estimated 7.5% area overhead (trans-

lates to less than 2% area overhead for the processor die). Each column in an array performs a

separate calculation and the thousands of memory arrays in the cache can operate concurrently.

The end result is that cache arrays morph into massive vector compute units (up to 1,146,880

bit-serial ALU slots in a Xeon E5 cache) that are one to two orders of magnitude larger than

modern graphics processor’s (GPU’s) aggregate vector width. By avoiding data movement in and

out of memory arrays, we naturally save vast amounts of energy that is typically spent in shuffling

data between compute units and on-chip memory units in modern processors.

33

Neural Cache leverages opportunistic in-cache computing resources for accelerating Deep

Neural Networks (DNNs). There are two key challenges to harnessing a cache’s computing re-

sources. First, all the operands participating in an in-situ operation must share bitlines and be

mapped to the same memory array. Second, intrinsic data-parallel operations in DNNs have to be

exposed to the underlying parallel hardware and cache geometry. We propose a data layout and

execution model that solves these challenges and harnesses the full potential of in-cache compute

capabilities. Further, we find that thousands of in-cache compute units can be utilized by replicat-

ing data and improving data reuse. Techniques for low-cost replication, reducing data movement

overhead, and improving data reuse are discussed.

In summary, this dissertation offers the following contributions:

• This is the first work to demonstrate in-situ arithmetic compute capabilities for caches. We

present a compute SRAM array design that is capable of performing additions and multipli-

cations. A critical challenge for enabling complex operations in cache is facilitating inter-

action between bit lines. We propose a novel bit-serial implementation with transposed data

layout to address the above challenge. We designed an 8T SRAM-based hardware transpose

unit for dynamically transposing data on the fly.

• Compute capabilities transform caches to massively data-parallel co-processors at negligible

area cost. For example, we can re-purpose the 35 MB Last Level Cache (LLC) in the server

class Intel Xeon E5 processor to support 1,146,880 bit-serial ALU slots. Furthermore, in-situ

computation in caches naturally saves the on-chip data movement overheads.

• We present the Neural Cache architecture which re-purposes the last-level cache to acceler-

ate DNN inferences. A key challenge is exposing the parallelism in DNN computation to

the underlying cache geometry. We propose a data layout that solves these challenges and

harnesses the full potential of in-cache compute capabilities. Further, techniques that reduce

data movement overheads are discussed.

• The Neural Cache architecture is capable of fully executing convolutional, fully connected,

34

and pooling layers in-cache. The proposed architecture also supports quantization and nor-

malization in-cache. Our experimental results show that the proposed architecture can im-

prove inference latency by 18.3× over state-of-the-art multi-core CPU (Xeon E5), and 7.7×

over server-class GPU (Titan Xp), for the Inception v3 model. Neural Cache improves infer-

ence throughput by 12.4× over CPU (2.2× over GPU), while reducing power consumption

by 59% over CPU (61% over GPU).

4.2 Neural Cache Organization

Neural Cache builds on the last level cache organization of a typical multi-core processor. Here

we provide a brief overview of a cache’s geometry in a modern processor.Figure 4.1 illustrates a

multi-core processor modeled loosely after Intel’s Xeon processors [75, 76]. Shared Last Level

Cache (LLC) is distributed into many slices (14 for Xeon E5 we modeled), which are accessible

to the cores through a shared ring interconnect (not shown in the figure). Figure 4.1 (b) shows a

slice of LLC cache. The slice has 80 32KB banks organized into 20 ways. Each bank is connected

by two 16KB sub-arrays. Figure 4.1 (c) shows the internal organization of one 16KB sub-array,

composed of 8KB SRAM arrays. Figure 4.1 (d) shows one 8KB SRAM array. An SRAM array is

organized into multiple rows of data-storing bit-cells. Bit-cells in the same row share one wordline,

whereas bit-cells in the same column share one pair of bit lines.

Our proposal is to perform in-situ vector arithmetic operations within the SRAM arrays (Fig-

ure 4.1 (d)). The resulting architecture can have massive parallelism by re-purposing thousands of

SRAM arrays (4480 arrays in Xeon E5) into vector computational units.

We observe that LLC access latency is dominated by wire-delays inside a cache slice, accessing

upper-level cache control structures, and network-on-chip. Thus, while a typical LLC access can

take ∼30 cycles, an SRAM array access is only 1 cycle (at 4 GHz clock [75]). Fortunately, in-

situ architectures such as Neural Cache require only SRAM array accesses and do not incur the

overheads of a traditional cache access. Thus vast amounts of energy and time spent on wires and

35

LS

CBOX

W
ay

 1

W
ay

 2
0

W
ay

 2

W
ay

 1
9

16kB subarray32kB
data
bank

16kB subarray

TMU

Tag,
State,
LRU

I/
O

Chunk 62

Chunk 1
Chunk 0

Chunk 63

I/
OSRAM SRAM

SRAMSRAM

4
:1

4
:1

4
:1

4
:1

2
:1

2
:1

2
:1

2
:1

Decoder

WL

Row
decoders

0

255

255

8kB SRAM array

A
B

= A op B

BL/BLB

Logic
D E
N

Q
C

A&B

A^B

S
Cout

Cin

Vref

C_EN

~A & ~B

SA SA

BL BLB

D
R

S = A^B^C

Figure 4.1: Neural Cache overview. (a) Multi-core processor with 8-24 Last Level Cache (LLC)
slices. (b) Cache geometry of a single 2.5MB LLC cache slice with 80 32KB banks. Each 32KB
bank has two 16KB sub-arrays. (c) One 16KB sub-array composed of two 8KB SRAM arrays. (d)
One 8KB SRAM array re-purposed to store data and do bit line computation on operand stored in
rows (A and B), (e) Peripherals of the SRAM array to support computation.

higher-levels of memory hierarchy can be saved.

4.3 Neural Cache Arithmetic

Compute cache [5] supported several simple operations (logical and copy). These operations are

bit-parallel and do not require interaction between bit lines. Neural Cache requires support for

more complex operations (addition, multiplication, reduction). The critical challenge in support-

ing these complex computing primitives is facilitating interaction between bit lines. Consider

supporting an addition operation that requires carry propagation between bit lines. We propose

bit-serial implementation with transposed data layout to address the above challenge.

4.3.1 Bit-Serial Arithmetic

Bit-serial computing architectures have been widely used for digital signal processing [77, 78]

because of their ability to provide massive bit-level parallelism at low area costs. The key idea

36

Vector A

Vector B

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

0

Sum
1

0

0

1

1

1

1

0 RWL

RWL

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

0

WWL 1

1

0

0

1

1

1

1

0

RWL

RWL

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 1 0 0 0

0

WWL 0

1

1

0

0

1

1

1

1

0

RWL

RWL

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 1 0 0 0

0

WWL 0

0

1

1

0

0

1

1

1

1

0

RWL

RWL

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

0

WWL
0

0

1

1

0

0

1

1

1

1

0

Figure 4.2: Addition operation

is to process one bit of multiple data elements every cycle. This model is particularly useful in

scenarios where the same operation is applied to the same bit of multiple data elements. Consider

the following example to compute the element-wise sum of two arrays with 512 32-bit elements.

A conventional processor would process these arrays element-by-element taking 512 steps to com-

plete the operation. A bit-serial processor, on the other hand, would complete the operation in 32

steps as it processes the arrays bit-slice by bit-slice instead of element-by-element. Note that a bit-

slice is composed of bits from the same bit position, but corresponding to different elements of the

array. Since the number of elements in arrays is typically much greater than the bit-precision for

each element stored in them, bit-serial computing architectures can provide much higher through-

put than bit-parallel arithmetic. Note also that bit-serial operation allows for flexible operand

bit-width, which can be advantageous in DNNs where the required bit width can vary from layer

to layer.

Note that although bit-serial computation is expected to have higher latency per operation,

it is expected to have significantly larger throughput, which compensates for higher operation

latency. For example, the 8KB SRAM array is composed of 256 wordlines and 256 bitlines and

can operate at a maximum frequency of 4 GHz for accessing data [75, 76]. Up to 256 elements

can be processed in parallel in a single array. A 2.5 MB LLC slice has 320 8KB arrays as shown

in Figure 4.1. Haswell server processor’s 35 MB LLC can accommodate 4480 such 8KB arrays.

37

C 1 C 2 C 3C 4 C 1 C 2 C 3C 4 C 1,3 C 2,4 C 1,3 C 2,4 C 1,2,3,4

Figure 4.3: Reduction Operation

Thus up to 1,146,880 elements can be processed in parallel, while operating at a frequency of 2.5

GHz when computing. By repurposing memory arrays, we gain the above throughput for near-zero

cost. Our circuit analysis estimates an area overhead of additional bit line peripheral logic to be

7.5% for each 8KB array. This translates to less than 2% area overhead for the processor die.

4.3.2 Addition

In conventional architectures, arrays are generated, stored, accessed, and processed element-by-

element in the vertical direction along the bit lines. We refer to this data layout as the bit-parallel or

regular data layout. Bit-serial computing in SRAM arrays can be realized by storing data elements

in a transpose data layout. Transposing ensures that all bits of a data element are mapped to the

same bit line, thereby obviating the necessity for communication between bit lines. Section 4.3.6

discusses techniques to store data in a transposed layout. Figure 4.2 shows an example 12 × 4

SRAM array with a transpose layout. The array stores two vectors A and B, each with four 4-bit

elements. Four word lines are necessary to store all bit-slices of 4-bit elements.

We use the addition of two vectors of 4-bit numbers to explain how addition works in the

SRAM. The 2 words that are going to be added together have to be put in the same bit line. The

38

Vector A

Vector B

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

1

1

1

0

0

1

1

1

1

1

1

0

Product
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

Tag 0 0 0 0

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

110

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

Tag 0 1 0 1

RWL 1010

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

110

111

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Tag 0 1 0 1

RWL

1010

Cycle 1:
Load T

Initial Cycle 2:
Copy

1101

WWL 1000

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

110

0

0

0

0

0

00

0

0

Tag 0 1 0 1

RWL

1010

Cycle 3:
Copy

1101

WWL
1000

111

1010

0

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

0

0

0

0

0

00

0

Tag 0 0 1 1

RWL
1010

Cycle 4:
Load T

1101

1000

111

1010

0

1100

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 1

110

0

0

0

0

0

00

0

0

Tag 0 0 1 1

RWL

1010

Cycle 5:
Copy

1101

WWL
1000

111

0110

0

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 1

110

0000

0

Tag 0 0 1 1

RWL

1010

Cycle 6:
Copy

1101

WWL

1000

111

0110

0

0100

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 1

1100

Tag 0 0 1 1

1010

Cycle 7:
Store C

1101

WWL

1000

111

0110

0

0100

1000

Vector A

Vector B

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

1

1

1

0

0

1

1

1

1

1

1

0

Product
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

Tag 0 0 0 0
W

o
rd

 1
W

o
rd

 2
W

o
rd

 3
W

o
rd

 4

Carry 0 0 0 0

110

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

Tag 0 1 0 1

RWL 1010

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

110

111

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Tag 0 1 0 1

RWL

1010

Cycle 1:
Load T

Initial Cycle 2:
Copy

1101

WWL 1000

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

110

0

0

0

0

0

00

0

0

Tag 0 1 0 1

RWL

1010

Cycle 3:
Copy

1101

WWL
1000

111

1010

0

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 0

0

0

0

0

0

00

0

Tag 0 0 1 1

RWL
1010

Cycle 4:
Load T

1101

1000

111

1010

0

1100

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 1

110

0

0

0

0

0

00

0

0

Tag 0 0 1 1

RWL

1010

Cycle 5:
Copy

1101

WWL
1000

111

0110

0

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 1

110

0000

0

Tag 0 0 1 1

RWL

1010

Cycle 6:
Copy

1101

WWL

1000

111

0110

0

0100

W
o

rd
 1

W
o

rd
 2

W
o

rd
 3

W
o

rd
 4

Carry 0 0 0 1

1100

Tag 0 0 1 1

1010

Cycle 7:
Store C

1101

WWL

1000

111

0110

0

0100

1000

Figure 4.4: Multiplication Operation, each step is shown with four different sets of operands

39

vectors A and B should be aligned in the array like Figure 4.2. Vector A occupies the first 4 rows

of the SRAM array and vector B the next 4 rows. Another 4 empty rows of storage are reserved

for the results. There is a row of latches inside the column peripheral for the carry storage. The

addition algorithm is carried out bit-by-bit starting from the least significant bit (LSB) of the two

words. There are two phases in a single operation cycle. In the first half of the cycle, two read

wordlines (RWL) are activated to simultaneously sense and compute on the value in cells on the

same bit line. To prevent the value in the bitcell from being disturbed by the sensing phase, the

RWL voltage should be lower than the normal VDD. The sense amps and logic gates in the column

peripheral (Section 4.3.5) use the 2 bitcells as operands and carry latch as carry-in to generate sum

and carry-out. In the second half of the cycle, a write word line (WWL) is activated to store back

the sum bit. The carry-out bit overwrites the data in the carry latch and becomes the carry-in of

the next cycle. As demonstrated in Figure 4.2, in cycles 2, 3, and 4, we repeat the first cycle to add

the second, third, and fourth bit respectively. Addition takes n + 1, to complete with the additional

cycle to write a carry at the end.

4.3.3 Multiplication

We demonstrate how bit-serial multiplication is achieved based on addition and predication using

the example of a 2-bit multiplication. In addition to the carry latch, an extra row of storage, the

tag latch, is added to the bottom of the array. The tag bit is used as an enable signal to the bit

line driver. When the tag is one, the addition result sum will be written back to the array. If the

tag is zero, the data in the array will remain. Two vectors of 2-bit numbers, A and B, are stored

in the transposed fashion and aligned as shown in Figure 4.4. Another 4 empty rows are reserved

for the product and initialized to zero. Suppose A is a vector of multiplicands and B is a vector

of multipliers. First, we load the LSB of the multiplier to the tag latch. If the tag equals one, the

multiplicand in that bit line will be copied to the product in the next two cycles, as if it is added

to the partial product. Next, we load the second bit of the multiplier to the tag. If the tag equals

1, the multiplicand in that bit line will be added to the second and third bit of the product in the

40

next two cycles, as if a shifted version of A is added to the partial product. Finally, the data in the

carry latch is stored to the most significant bit of the product. Including the initialization steps, it

takes n2+5n−2 cycles to finish an n-bit multiplication. Division can be supported using a similar

algorithm and takes 1.5n2 + 5.5n cycles.

4.3.4 Reduction

Reduction is a common operation for DNNs. Reducing the elements stored on different bit lines

to one sum can be performed with a series of word line moves and additions. Figure 4.3 shows an

example that reduces 4 words, C1, C2, C3, and C4. First words C3 and C4 are moved below C1

and C2 to different word lines. This is followed by addition. Another set of moves and additions

reduces the four elements to one word. Each reduction step increases the number of word lines to

move as we increase the bits for the partial sum. The number of reduction steps needed is log2 of

the words to be reduced. In column multiplexed SRAM arrays, moves between word lines can be

sped up using sense-amp cycling techniques [6].

When the elements to be reduced do not fit in the same SRAM array, reductions must be

performed across arrays which can be accomplished by inter-array moves. In DNNs, reduction is

typically performed across channels. In the model we examined, our optimized data mapping is

able to fit all channels in the space of two arrays that share sense amps. We employ a technique

called packing that allows us to reduce the number of channels in large layers (Section 4.4.1).

4.3.5 SRAM Array Peripherals

The bit-line peripherals are shown in Figure 4.5. Two single-ended sense amps sense the wire-and

result from two cells, A and B, in the same bitline. The sense amp in BL gives the result of A & B,

while the sense amp in BLB gives the result of A′ & B′. The sense amps can use reconfigurable

sense amplifier design [3], which can combine into a large differential SA for speed in normal

SRAM mode and separate into two single-ended SA for area efficiency in computation mode.

Through a NOR gate, we can get A ⊕ B which is then used to generate the sum (A ⊕ B ⊕ Cin)

41

	

D EN

Q
C

A&B

A^B

SCout

Cin

Vref

C_EN

~A	
 &	
 ~B

T_EN

SA SA

M
U
X

4:1

Tag

DR DRWPS

EnEn

Predication

D

EN

QT
DIN DOUT

BL BLB

Column	
 Peripheral

Figure 4.5: Bitline peripheral design

and Carry ((A & B) + (A ⊕ B & Cin)). As described in the previous sections, C and T are

latches used to store carry and tag bits. A 4-to-1 mux selects the data to be written back among

Sum, Carryout, Datain, and Tag. The Tag bit is used as the enable signal for the bit line driver

to decide whether to write back or not.

4.3.6 Transpose Gateway Units

The transpose data layout can be realized in the following ways. First, leverage programmer

support to store and access data in the transpose format. This option is useful when the data to

be operated on does not change at runtime. We utilize this for filter weights in neural networks.

However, this approach increases software complexity by requiring programmers to reason about

a new data format and cache geometry.

42

Regular(read/write(

Transpose(read/
w
rite(

Ro
w
$D
ec
od

er

A0[MSB]
A1[MSB]

A2[MSB]

A0[LSB]
A1[LSB]

A2[LSB]

... ...

... ...
...

...

...

...

...

...

Col$Decoder

SA SA SA

DRDRDR

SA
DR

SA SA SA

DRDRDR

...

...

...

...

...

...

... ...

... ...
...

...

...

...

...

...

...

...

...

...

...

...

Control

SA

SA
SA

SA

SA

SA

SA

SA

SA

SA

DR
DR
DR

DR

DR

DR

DR

DR

DR

DR

DR

B0[MSB]
B1[MSB]

B2[MSB]

B0[LSB]
B1[LSB]

B2[LSB]

84T(transpose(bit4cell(

Area(=(0.019(mm2((

Figure 4.6: Transpose Memory Unit (TMU)

64

Bank 3

32
32

 S/AArray Array

 S/AArray Array

64

Bank 2

32
32

 S/AArray Array

 S/AArray Array

64

Bank 1

32
32

 S/AArray Array

 S/AArray Array

Way 20
(Reserved)

64

Bank 4

32
32

 S/AArray Array

 S/AArray Array

64

Bank 3

32
32

 S/AArray Array

 S/AArray Array

64

Bank 2

32
32

 S/AArray Array

 S/AArray Array

64

Bank 1

32
32

 S/AArray Array

 S/AArray Array

64

Bank 4

32
32

 S/AArray Array

 S/AArray Array

C=128

M5

R
xS

x8

Fi
lte

r

256 Bitlines

256 W
ordlines

256

E1 [M1-M32]

Way 1

Bank 1

6432
32

 S/AM7
M8

M5
M6Array Array

 S/AM3
M4

M1
M2Array Array

Bank 2

6432
32

 S/AM15
M16

M13
M14Array Array

 S/AM11
M12

M9
M10Array Array

Bank 3

6432
32

 S/AM23
M24

M21
M22Array Array

 S/AM19
M20

M17
M18Array Array

Bank 4

6432
32

 S/AM31
M32

M29
M30Array Array

 S/AM27
M28

M25
M26Array Array

Way 2

Bank 1

6432
32

 S/AM7
M8

M5
M6Array Array

 S/AM3
M4

M1
M2Array Array

Bank 2

6432
32

 S/AM15
M16

M13
M14Array Array

 S/AM11
M12

M9
M10Array Array

Bank 3

6432
32

 S/AM23
M24

M21
M22Array Array

 S/AM19
M20

M17
M18Array Array

Bank 4

6432
32

 S/AM31
M32

M29
M30Array Array

 S/AM27
M28

M25
M26Array Array

E4 [M1-M32]

Way 19-20
(Reserved)

More E’s

.
(Way 3 - Way 18)

R
xS

x8

In
pu

t
M

ap

4x
8

O
ut

pu
t

M
ap

C=128

M6

Figure 4.7: Neural Cache Data Layout for one LLC Cache Slice.

Second, design a few hardware transpose memory units (TMUs) placed in the cache control box

(C-BOX in Figure 4.1 (b)). A TMU takes data in the bit-parallel or regular layout and converts it

to the transpose layout before storing into SRAM arrays or vice-versa while reading from SRAM

arrays. The second option is attractive because it supports dynamic changes to data. TMUs can

be built out of SRAM arrays with multi-dimensional access (i.e., access data in both horizontal

and vertical direction). Figure 4.6 shows a possible TMU design using an 8T SRAM array with

sense-amps in both horizontal and vertical directions. Compared to a baseline 6T SRAM, the

transposable SRAM requires a larger bitcell to enable read/write in both directions. Note that only

a few TMUs are needed to saturate the available interconnect bandwidth between cache arrays. In

essence, the transpose unit serves as a gateway to enable bit-serial computation in caches.

43

4.4 Neural Cache Architecture

The Neural Cache architecture transforms SRAM arrays in LLC to compute functional units. We

describe the computation of convolution layers first, followed by other layers. Figure 4.7 shows the

data layout and overall architecture for one cache slice, modeled after Xeon processors [75, 76].

The slice has twenty ways. The last way (way-20) is reserved to enable normal processing for CPU

cores. The penultimate way (way-19) is reserved to store inputs and outputs. The remaining ways

are utilized for storing filter weights and computing.

A typical DNN model consists of several layers, and each layer consists of several hundred

thousands of convolutions. For example, Google’s Inception v3 has 20 layers, most of which

have several branches. Inception v3 has ≈ 0.5 million convolutions in each layer on average.

Neural Cache computes layers and each branch within a layer serially. The convolutions within a

branch are computed in parallel to the extent possible. Each of the 8KB SRAM arrays computes

convolutions in parallel. The inputs are streamed in from the reserved way-19. Filter weights are

stationary in compute arrays (way-1 to way-18).

Neural Cache assumes 8-bit precision and quantized inputs and filter weights. Several works [79,

80, 81] have shown that 8-bit precision has sufficient accuracy for DNN inference. 8-bit precision

was adopted by Google’s TPU [82]. Quantizing input data requires re-quantization after each layer

as discussed in Section 4.4.4.

4.4.1 Data Layout

This section first describes the data layout of one SRAM array and the execution of one convolu-

tion. Then we discuss the data layout for the whole slice and parallel convolutions across arrays

and slices.

The convolutions performed can be broken down into many different dimensions of matrix-

vector multiplications. Neural Cache breaks down a convolution to vector-vector dot product

(vector dimension R × S), followed by reduction across channels (C). The different filter batches

44

(M) are computed in parallel using the above step. A new input vector is used for each stride. In

this paper, we analyze the state-of-art Inception v3 model which has 94 convolutional sub-layers.

Neural Cache is utilized to accelerate not only convolutional layers but also pooling and fully

connected layers.

A single convolution consists of generating one of the E × E × M output elements. This is

accomplished by multiplying R × S × C input filter weights with the same size window from the

input feature map across the channels. Neural Cache exploits channel-level parallelism in a single

convolution. For each convolution, an array executes R × S Multiply and Accumulate (MAC) in

parallel across channels. This is followed by a reduction step across channels.

An example layout for a single array is shown in Figure 4.8 (a). Every bitline in the array has

256 bits and can store 32 1-byte elements in a transpose layout. Every bitline stores R × S filter

weights (green dots). The channels are stored across bit lines. To perform MACs, space is reserved

for accumulating partial sums (lavender dots) and for the scratch pad (pink dots). Partial sums and

scratch pad take 3× 8 and 2× 8 word lines.

Reduction requires an additional 8 × 8 word lines as shown in Figure 4.8 (b). However, the

scratch pad and partial sum can be overwritten for reduction as the values are no longer needed.

The maximum size for reducing all partial sums is 4 bytes. So to perform reduction, we reserve

two 4-byte segments. After adding the two segments, the resultant can be written over the first

segment again. The second segment is then loaded with the next set of reduced data.

Each array may perform several convolutions in series, thus we reserve some extra space for

output elements (red dots). The remaining word lines are used to store input elements (blue dots).

It is desirable to use as many word lines as possible for inputs to maximize input reuse across

convolutions. For example in a 3 × 3 convolution with a stride of 1, 6 of the 9 bytes are reused

across each set of input loads. Storing many input elements allows us to exploit this locality and

reduce input streaming time.

The filter sizes (R × S) range from 1-25 bytes in Inception v3. The common case is a 3 × 3

filter. Neural Cache data mapping employs filter splitting for large filters. The filters are split

45

B
itlin

e
 1

B
itlin

e
 2

B
itlin

e
 3

B
itlin

e
 4

B
itlin

e
 5

B
itlin

e
 6

B
itlin

e
 7

B
itlin

e
 8

4x8 Bits
Reduction
Operand A

4x8 Bits
Reduction
Operand B

4x8 Bits
Output

RxSx8 Bits
Filters

RxSx8 Bits
Inputs

C=8

B
itlin

e
 1

B
itlin

e
 2

B
itlin

e
 3

B
itlin

e
 4

B
itlin

e
 5

B
itlin

e
 6

B
itlin

e
 7

B
itlin

e
 8

RxSx8 Bits
Filters

RxSx8 Bits
Inputs

2x8 Bits
Scratchpad

3x8 Bits
Partial Sum

4x8 Bits
Output

C=8

Figure 4.8: Array Data Layout (a) MACs (b) Reduction.

across bitlines when their size exceeds 9 bytes. The other technique employed is filter packing.

For 1 × 1 filters we compress multiple channels into the same bit line. Instead of putting a single

byte of the filter, we can instead put 16 bytes of the filter. Since 1× 1 has no input reuse, we only

need one input byte at a time. By packing the filters, the number of reductions is decreased at no

cost to input loading. More importantly, by packing all channels in the network it is guaranteed to

fit within 2 arrays that share sense-amps, making reduction faster and easier.

When mapping the layers, first the new effective channel size after packing and filter splitting

is calculated. This channel number is then rounded up to the nearest power of 2, by padding the

46

extra channels with zero. Depending on parameters, filters from different output channels (M’s)

can be placed in the same array as well. For instance, the first layer of Inception v3 has so few

channels, that all M’s can be placed in the same array.

Finally, although all operations are accomplished at the bit level, each data element is stored

as a multiple of a byte, although it may not necessarily require that many bits. This is done for

simplicity, software programmability, and easier data movement.

4.4.2 Data Parallel Convolutions

Each layer in the network produces M×E×E outputs, and each output requires one convolution.

All the outputs can be produced in parallel, provided we have sufficient computing resources. We

find that in most scenarios half an array or even a quarter of an array is sufficient to computes each

output element. Thus Neural Cache’s massively parallel computing resources can be utilized to do

convolutions in parallel.

W
ay

 1
9

- 2
0

W
ay

 1
 -

18

M=32

Slice 1

W
ay

 1
9

- 2
0

W
ay

 1
 -

18

E=32

E=32

Slice 14

E1-E73
E74-E146
E147-E219

E950-E1024

E1-E73
E74-E146
E147-E219

E950-E1024

E1-E73
E74-E146
E147-E219

E950-E1024

Figure 4.9: Partitioning of Convolutions between Slices.

Figure 4.9 shows the division of convolutions among cache slices. Each slice can be visualized

as a massively parallel SIMD core. Each slice gets roughly an equal number of outputs to work on.

47

Mapping consecutive output elements to the same slice has the nice property that the next layer

can find much of its required input data locally within its reserved way. This reduces the number

of inter-slice transfers needed when loading input elements across layers.

Figure 4.7 shows the layout of one slice for an example layer. This layer has parameters:

R × S = 3 × 3, C = 128, M = 32, E = 32. Figure 4.7 (right) shows a single array. Each array

can pack two complete filters (R × S × C). The array shown in figure 4.7 packs M = 5 and

M = 6 in the same array. Thus each array can compute two convolutions in parallel. Each way

(4 banks, or 16 arrays) computes 32 convolutions in parallel (Ei ∀ M ′s M1 −M32). The entire

slice can compute 18 × 32 convolutions in parallel. Despite this parallelism, some convolutions

need to be computed serially, when the total number of convolutions to be performed exceeds the

total number of convolutions across all slices. In this example, about 4 convolutions are executed

serially.

When mapping inputs and filters to the cache, we prioritize uniformity across the cache over

complete (i.e., 100%) cache compute resource utilization. This simplifies operations as all data is

mapped in such a way that all arrays in the cache will be performing the exact same instruction at

the same time and also simplifies data movement.

4.4.3 Orchestrating Data Movement

Data parallel convolutions require replication of filters and streaming of inputs from the reserved

way. This section discusses these data-movement techniques.

We first describe the interconnect structure. Our design is based on the on-chip LLC [75] of the

Intel Xeon E5-2697 processor. There are in total 14 cache slices connected by a bidirectional ring.

Figure 4.7 shows the interconnect within a cache slice. There is a 256-bit data bus that is capable

of delivering data to each of the 20 ways. The data bus is composed of 4 64-bit data buses. Each

bus serves one quadrant. A quadrant consists of a 32KB bank composed of four 8KB data arrays.

Two 8 KB arrays within a bank share sense-amps and receive 32 bits every bus cycle.

Filter Loading: We assume that all the filter data for a specific layer reside in DRAM before

48

the entire computation starts. Filter data for different layers of the DNN model are loaded in serial.

Within a convolution layer, regardless of the number of output pixels done in serial, the positions of

filter data in the cache remain stationary. Therefore, it is sufficient to load filter data from memory

only once per layer.

Across a layer, we use M sets of R × S filters. By performing more than M convolutions, we

will replicate filters across and within slices. Fortunately, the inter-slice ring and intra-slice bus

are both naturally capable of broadcasting, allowing for easy replication for filter weights. Each

filter weight loaded from DRAM is broadcasted to all slices over the ring and all ways over the

intra-slice bus.

In each array that actively performs computation, R′ × S ′ × 8 word lines are loaded with

filter data, where R′ × S ′ is the equivalent filter dimension after packing and filter splitting, and

8 is the bit-serial factor due to 8-bits per element. Neural Cache assumes that filter weights are

preprocessed to a transposed format and laid out in DRAM such that they map to correct bitlines

and wordlines. Our experiments decode the set address and faithfully model this layout. Software

transposing of weights is a one time cost and can be done cheaply using x86 SIMD shuffle and

pack instructions [83, 84].

Input Data Streaming: We only load the input data of the first layer from DRAM, because,

for the following layers, the input data have already been computed and temporarily stored in the

cache as outputs. In some layers, there are multiple output pixels to be computed in serial, and we

need to stream in the corresponding input data as well since different input data is required at any

specific cache array for generating different output pixels.

Within each array that actively performs computation, R′ × S ′ × 8 word lines of input data are

streamed in, where R′×S ′ is the equivalent filter dimension after packing and filter splitting and 8

is the bit-serial factor. When loading inputs from DRAM for the first layer, input data is transposed

using the TMUs at C-BOX.

Since each output pixel requires a different set of input data, input loading time can be high.

We exploit duplicity in input data to reduce transfer time. For different output channels (M’s) with

49

the same output pixel position (i.e. same Ei for different M’s), the input data is the same and can

be replicated. Thus for scenarios where these different output channels are in different ways, the

input data can be loaded in one intra-slice bus transfer. Furthermore, a large portion of input data

can be reused across output pixels done in serial as discussed in Section 4.4.1. This helps reduce

transfer time. We also observe that often the input data is replicated across arrays within a bank.

We put a 64-bit latch at each bank so that the total input transfer time can be halved.

Note, that intra-bus transfers happen in parallel across different cache slices. Thus distributing

E’s across slices significantly reduces input loading time as well by leveraging intra-slice network

bandwidth.

Output Data Management: One way of each slice (128 KB), is reserved for temporarily

storing the output data. After all the convolutions for a layer are executed, data from compute

arrays are transferred to the reserved way. We divide the computation into different slices according

to the output pixel position. Contiguous output pixels are assigned to the same slice so that one

slice will need neighboring inputs for at most R × E pixels. This design significantly reduces

inter-slice communication for transferring outputs.

4.4.4 Supporting Functions

Max Pooling layers compute the maximum value of all the inputs inside a sliding window. The

data mapping and input loading would function the same way as convolution layers, except without

any filters in the arrays.

Calculating the maximum value of two or more numbers can be accomplished by designating

a temporary maximum value. The temporary maximum is then subtracted by the next output value

and the resultant is stored in a separate set of word lines. The most significant bit of the result

is used as a mask for a selective copy. The next input is then selectively copied to the maximum

location based on the value of the mask. This process is repeated for the rest of the inputs in the

array.

Quantization of the outputs is done by calculating the minimum and maximum value of all

50

the outputs in the given layer. The min can be computed using a similar set of operations described

for max. For quantization, the min and max will first be calculated within each array. Initially, all

outputs in the array will be copied to allow performing the min and max at the same time. After

the first reduction, all subsequent reductions of min/max are performed the same way as channel

reductions. Since quantization needs the min and max of the entire cache, a series of bus transfers

are needed to reduce min and max to one value. This is slower than in-array reductions, however,

unlike channel reduction, min/max reduction happens only once in a layer making the penalty

small.

After calculating the min and max for the entire layer, the result is then sent to the CPU. The

CPU then performs floating point operations on the min and max of the entire layer and computes

two unsigned integers. These operations take too few cycles to show up in our profiling. Therefore,

it is assumed to be negligible. The two unsigned integers sent back by the CPU are used for in-

cache multiplications, adds, and shifts to be performed on all the output elements to finally quantize

them.

Batch Normalization requires first quantizing to 32-bit unsigned. This is accomplished by

multiplying all values by a scalar from the CPU and performing a shift. Afterward, scalar integers

are added to each output in the corresponding output channel. These scalar integers are once again

calculated in the CPU. Afterward, the data is re-quantized as described above.

In Inception v3, ReLU operates by replacing any negative number with zero. We can write

zero to every output element with the MSB acting as an enable for the write. Similar to max/min

computations, ReLU relies on using a mask to enable selective write.

Avg Pool is mapped in the same way as in max pool. All the inputs in a window are summed

and then divided by the window size. Division is slower than multiplication, but the divisor is only

4 bits in Inception v3.

Fully Connected layers are converted into convolution layers in TensorFlow. Thus, we are

able to treat the fully connected layer as another convolution layer.

51

4.4.5 Batching

We apply batching to increase the system throughput. Our experiments show that loading filter

weights takes up about 46% of the total execution time. Batching multiple input images signifi-

cantly amortizes the time for loading weights and therefore increases system throughput. Neural

Cache performs batching in a straightforward way. The image batch will be processed sequentially

in the layer order. For each layer, at first, the filter weights are loaded into the cache as described

in Section 4.4.1. Then, a batch of input images is streamed into the cache, and computation is

performed in the same way as without batching. For the whole batch, the filter weights of the

involved layer remain in the arrays, without reloading. Note that for the layers with heavy-sized

outputs, after batching, the total output size may exceed the capacity of the reserved way. In this

case, the output data is dumped to DRAM and then loaded again into the cache. In the Inception

v3, the first five layers require dumping output data to DRAM.

4.4.6 ISA support and Execution Model

Neural Cache requires supporting a few new instructions: in-cache addition, multiplication, reduc-

tion, and moves. Since at any given time only one layer in the network is being operated on, all

compute arrays execute the same in-cache compute instruction. The compute instructions are fol-

lowed by move instructions for data management. The intra-slice address bus is used to broadcast

the instructions to all banks. Each bank has a control FSM which orchestrates the control signals

to the SRAM arrays. The area of one FSM is estimated to be 204 µm2, across 14 slices which

sums to 0.23 mm2. Given that each bank is executing the same instruction, the control FSM can

be shared across a way or even a slice. We chose not to optimize this because of the insignificant

area overheads of the control FSM. Neural Cache computation is carried out in 1-19 ways of each

slice. The remaining way (way-20) can be used by other processes/VMs executing on the CPU

cores for normal background operation. Intel’s Cache Allocation Technology (CAT) [85] can be

leveraged to dynamically restrict the ways accessed by CPU programs to the reserved way.

52

W
L#
Dr
iv
er
s

Array

248um

10
8u

m

263um

W
L#Drivers

Sense#Amps,#BL#Driver,#Compu6ng#Logic,#Latches

Array

248um

108um

120um

263um

DE
CO

DE
R

Extra/Area/due/to/Computa6on/Logic:/7um

Figure 4.10: SRAM Array Layout.

Layer H R× S E C M Conv Filter Size / MB Input Size / MB
Conv2D_1a_3x3 299 9 149 3 32 710432 0.001 0.256
Conv2D_2a_3x3 149 9 147 32 32 691488 0.009 0.678
Conv2D_2b_3x3 147 9 147 32 64 1382976 0.018 0.659
MaxPool_3a_3x3 147 9 73 0 64 0 0.000 1.319
Conv2D_3b_1x1 73 1 73 64 80 426320 0.005 0.325
Conv2D_4a_3x3 73 9 71 80 192 967872 0.132 0.407
MaxPool_5a_3x3 71 9 35 0 192 0 0.000 0.923

Mixed_5b 35 1-25 35 48-192 32-192 568400 0.243 0.897
Mixed_5c 35 1-25 35 48-256 48-256 607600 0.264 1.196
Mixed_5d 35 1-25 35 48-288 48-288 607600 0.271 1.346
Mixed_6a 35 1-9 17 64-288 64-384 334720 0.255 1.009
Mixed_6b 17 1-9 17 128-768 128-768 443904 1.234 0.847
Mixed_6c 17 1-9 17 160-768 160-768 499392 1.609 0.847
Mixed_6d 17 1-9 17 160-768 160-768 499392 1.609 0.847
Mixed_6e 17 1-9 17 192-768 192-768 499392 1.898 0.847
Mixed_7a 17 1-9 8 192-768 192-768 254720 1.617 0.635
Mixed_7b 8 1-9 8 384-1280 192-1280 208896 4.805 0.313
Mixed_7c 8 1-9 8 384-2048 192-2048 208896 5.789 0.500
AvgPool 8 64 1 0 2048 0 0.000 0.125

FullyConnected 1 1 1 2048 1001 1001 1.955 0.002

Table 4.1: Parameters of the Layers of Inception V3.

4.5 Evaluation Methodology

Baseline Setup: For a baseline, we use dual-socket Intel Xeon E5-2697 v3 as CPU, and Nvidia

Titan Xp as GPU. The specifications of the baseline machine are in Table4.2. Note that the CPU

specs are per socket. Note that the baseline CPU has the exact cache organization (35 MB L3 per

socket) as we used in Neural Cache modeling. The benchmark program is the inference phase of

the Inception v3 model [86]. We use TensorFlow as the software framework to run NN inferences

on both baseline CPU and GPU. The default profiling tool of TensorFlow is used for generating

execution time breakdown by network layers for both CPU and GPU. The reported baseline results

are based on the unquantized version of Inception v3 model, because we observe that the 8-bit

53

CPU Intel Xeon E5-2697 v3
Base Frequency 2.6 GHz
Cores/Threads 14/28

Process 22 nm
TDP 145 W

Cache 32 kB i-L1 per core, 32 kB d-L1 per core,
256 kB L2 per core, 35 MB shared L3

System Memory 64 GB DRAM, DDR4

GPU Nvidia Titan Xp
Frequency 1.6 GHz

CUDA Cores 3840
Process 16 nm

TDP 250 W
Cache 3MB shared L2

Graphics Memory 12 GB DRAM, GDDR5X

Table 4.2: Baseline CPU & GPU Configuration.

quantized version has a higher latency on the baseline CPU due to a lack of optimized libraries for

quantized operations (540 ms for quantized / 86 ms for unquantized). To measure the execution

power of the baseline, we use RAPL[87] for CPU power measurement and Nvidia-SMI [88] for

GPU power measurement.

Modeling of Neural Cache: To estimate the power and delay of the SRAM array, the SPICE

model of an 8KB computational SRAM is simulated using the 28 nm technology node. The

nominal voltage for this technology is 0.9V. Since we activate two read word lines (RWL) at the

same time in computation, we reduce the RWL voltage to improve bit cell read stability. But

lowering the RWL voltage will increase the read delay. We simulated various RWL voltages and

to achieve the industry standard 6 sigma margin, we choose 0.66V as the RWL voltage. The total

computing time is 1022ps. The delay of a normal SRAM read is 654ps given by the standard

foundry memory compiler. So the computation SRAM delay is about 1.6× larger than the normal

SRAM read. Xeon processor cache arrays can operate at 4 GHz [75, 76]. We conservatively

choose a frequency of 2.5 GHz for Neural Cache in the compute mode. Our SPICE simulations

54

also provided the total energy consumption in one clock cycle for reading out 256 bits in SRAM

mode or operating on 256 bitlines in computation mode. This was estimated to be 13.9pJ for

SRAM access cycles and 25.7pJ for compute cycles. Since we model Neural Cache for the Intel

Xeon E5-2697 v3 processor at 22 nm, the energy was scaled down to 8.6pJ for SRAM access

cycles and 15.4pJ for compute cycles. The SRAM array layout is shown in Figure 4.10. Compute

capabilities incur an area overhead of 7.5% increase due to extra logic and an extra decoder.

For the in-cache computation, we developed a cycle-accurate simulator based on the determin-

istic computation model discussed in Section 4.4. The simulator is verified by running data traces

on it and matching the results with traces obtained from instrumenting the TensorFlow model for

Inception v3. To model the time of data loading, we write a C micro-benchmark, which sequen-

tially reads out the exact sets within a way that needs loading with data. The set decoding was

reverse engineered based on Intel’s last level cache architecture [75, 76]. We conduct this mea-

surement for all the layers according to their different requirement of sets to be loaded. Then,

the measured time is multiplied with a factor that accounts for the sequential data transfer across

different ways, as well as the sequential computation of different output pixels within a layer. Note

that the measured time includes the data loading from DRAM to the on-chip cache, but for input

data loading, the data is already in the cache (except the first layer). For more accurate model-

ing, the micro-benchmark is profiled by the VTune Amplifier[89] for estimating the percentage of

DRAM bound cycles, and such DRAM-loading time is excluded from the input data loading time.

4.6 Results

4.6.1 Latency

Figure4.11 reports the latency of all layers in the Inception v3 model. A majority of time is spent on

the mixed layers for both CPU and GPU, while Neural Cache achieves significantly better latency

than baseline for all layers. This is primarily because Neural Cache exploits the available data

parallelism across convolutions to provide low-latency inference. Neural Cache’s data mapping not

55

0
1
2
3
4
5
6
7
8
9

Co
nv

2D
_1
a_
3x
3

Co
nv

2D
_2
a_
3x
3

Co
nv

2D
_2
b_

3x
3

M
ax
Po

ol
_3
a_
3x
3

Co
nv

2D
_3
b_

1x
1

Co
nv

2D
_4
a_
3x
3

M
ax
Po

ol
_5
a_
3x
3

M
ix
ed

_5
b

M
ix
ed

_5
c

M
ix
ed

_5
d

M
ix
ed

_6
a

M
ix
ed

_6
b

M
ix
ed

_6
c

M
ix
ed

_6
d

M
ix
ed

_6
e

M
ix
ed

_7
a

M
ix
ed

_7
b

M
ix
ed

_7
c

Av
g_
Po

ol

Fu
lly
_C

on
nc
et
ed

La
ye
r	
 L
at
en

cy
	
 (m

s)
CPU	
 -­‐ Xeon	
 E5 GPU	
 -­‐ Titan	
 Xp Neural	
 Cache

Figure 4.11: Inference latency by Layer of Inception v3.

Figure 4.12: Inference Latency Breakdown.

56

only makes the computation entirely data independent, but the operations performed are identical,

allowing for SIMD instructions.

Consider an example layer, Conv2D_Layer_2b_3×3. This layer computes ≈ 1.4 million

convolutions, out of which Neural Cache executes ≈ 32 thousand convolutions in parallel and 43

in series. The compute cache arrays show 99.7% utilization for this layer during convolutions (after

data loading). Each convolution takes 2784 cycles (236 cycles/MAC× 9 + 660 reduction cycles).

Then reduction takes a further 660 cycles. The whole layer takes 117912 cycles (43 convolutions

in series × 2784 cycles), taking 0.0479 ms to finish the convolutions for Neural Cache running

at 2.5 GHz. The remaining time for the layer is attributed to data loading. CPU and GPU cannot

take advantage of data parallelism on this scale due to a lack of sufficient compute resources and

on-chip data-movement bottlenecks.

Figure4.12 shows the breakdown of Neural Cache latency. Loading filter weights into the

cache and distributing them into arrays takes up 46% of the total execution time, and 15% of the

time is spent on streaming in the input data to the appropriate position within the cache. Trans-

ferring output data to the proper reserved space takes 4% of the time. Filter loading is the most

time consuming part since data is loaded from DRAM. The remaining parts are for computation,

including multiplication in convolution (MACs) (20%), reduction (10%), quantization (5%), and

pooling (0.04%).

Figure4.13 shows the total latency for Neural Cache, as well as the baseline CPU and GPU,

running inference on the Inception v3 model. Neural Cache achieves a 7.7× speedup in latency

compared to baseline GPU, and 18.3× speedup on baseline CPU. The significant speedup can be

attributed to the elimination of high overheads of on-chip data movement from the cache to the

core registers, and data parallel convolutions.

4.6.2 Batching

Figure 4.14 shows the system throughput in the number of inferences per second as the batch

size varies. Neural Cache outperforms the maximum throughput of baseline CPU and GPU even

57

0

20

40

60

80

100

CPU GPU Neural	
 Cache

La
te
nc
y	

(m

s)

Figure 4.13: Total Latency on Inception v3 Inference.

without batching. This is mainly due to the low latency of Neural Cache. Another reason is that

Neural Cache scales linearly with the number of host CPUs, and thus the throughput of Neural

Cache doubles with a dual-socket node.

As the batch size N increases from 1 to 16, the throughput of Neural Cache increases steadily.

This can be attributed to the amortization of filter loading time. For even higher batch sizes,

the effect of such amortization diminishes, and therefore the throughput plateaus. As shown in

the figure, the GPU throughput also plateaus after batch size exceeds 64. At the highest batch

size, Neural Cache achieves a throughput of 604 inferences/sec, which is equivalent to 2.2× GPU

throughput, or 12.4× CPU throughput.

4.6.3 Power and Energy

This section discusses the energy and power consumption of Neural Cache. Table4.3 summarizes

the energy/power comparison with baseline. Neural Cache achieves an energy efficiency that is

16.6× better than the baseline GPU and 37.1× better than the CPU. The energy efficiency improve-

58

0

100

200

300

400

500

600

700

1 4 16 64 256

Th
ro
ug
hp

ut
	
 (I
nf
er
en

ce
s	
 /
	
 se

c)

Batch	
 Size

CPU	
 -­‐ Xeon	
 E5 GPU	
 -­‐ Titan	
 Xp Neural	
 Cache

Figure 4.14: Throughput with Varying Batching Sizes.

CPU GPU Neural Cache
Total Energy / J 9.137 4.087 0.246

Average Power / W 105.56 112.87 52.92

Table 4.3: Energy Consumption and Average Power.

ment can be explained by the reduction in data movement, the increased instruction efficiency of

SIMD-like architecture, and the optimized in-cache arithmetic units.

The average power of Neural Cache is 53.11% and 49.87% lower than the GPU and CPU

baselines respectively. Thus, Neural Cache does not form a thermal challenge for the servers.

Neural Cache also outperforms both CPU and GPU baselines in terms of energy-delay product

(EDP), since it consumes less energy and has a shorter latency.

Cache Capacity 35MB 45MB 60MB
Inference Latency 4.72 ms 4.12 ms 3.79 ms

Table 4.4: Scaling with Cache Capacity (Batch Size=1).

59

4.6.4 Scaling with Cache Capacity

In this section we explore how increasing the cache capacity affects the performance of Neural

Cache. We increase the cache size from 35MB (14 slices) to 45MB (18 slices), and 60MB (24

slices). Increasing the number of slices speedups most aspects of the inference. The total number

of arrays that compute increases, thereby increasing convolutions that can be done in parallel. This

reduces the convolution compute time. Filter loading will not be affected as unique filters are

not done across slices, rather filters are replicated across the slices. Input loading, however, will

decrease since we are using the additional intra-slice bandwidth of new slices to decrease the time

it takes to broadcast inputs. Inter-layer data transfer will also be reduced due to fewer outputs being

transferred in each slice.

4.7 Summary

Caches have traditionally served only as intermediate low-latency storage units. Our work di-

rectly challenges this conventional design paradigm and proposes to impose a dual responsibility

on caches: store and compute data. By doing so, we turn them into massively parallel vector

units and drastically reduce on-chip data movement overhead. In this dissertation, we propose

the Neural Cache architecture to allow massively parallel compute for Deep Neural Networks.

Our advancements in compute cache arithmetic and neural network data layout solutions allow

us to provide competitive performance comparably to modern GPUs with negligible area over-

heads. Nearly three-fourths of a server class processor die area today is devoted to caches. Even

accelerators use large caches. Why would one not want to turn them into compute units?

60

CHAPTER 5

Eidetic

Neural Cache showed huge gains for CNNs in throughput, latency, and energy by repurposing the

LLC of a Xeon for in-SRAM computing. However, this architecture was limited by the existing

cache structure. A custom architecture would allow for modifications to make storage, compute,

and dataflow more efficient. In this chapter we present Eidetic, an in-memory matrix multiplication

accelerator for neural networks.

5.1 Introduction

In-memory computing has emerged as a way to bridge the memory wall where memory bandwidth

and memory energy have come to dominate computation bandwidth and energy [72]. Combining

the memory and compute into a single unit increases both the compute and storage resources

available on-chip. An increase in available memory capacity also allows applications with larger

working sets to be stored on-chip, reducing the effect of the memory wall. In particular, in-SRAM

computing requires minimal modifications to the SRAM array to enable arithmetic computation,

making it an ideal candidate for getting the best of compute and memory together.

The rise in popularity of neural networks has further exasperated the problems of the memory

wall. Neural networks can be compute-bound from the matrix multiplication, data-bound from the

large number of weights and intermediates results or sometimes both compute-bound and data-

bound. Further, accelerators designed for these applications often need to balance the strict latency

61

requirements and the need to support batching to offset weight loading overheads and to keep the

compute units saturated.

Many accelerators have achieved this in a variety of ways. Common methods include increas-

ing the available SRAM storage on-chip, increasing the amount of batching to amortize weight

loading overheads, increasing the bandwidth to memory, using a lower precision to reduce weight

sizes, and taking advantage of sparsity. In-SRAM computing is an attractive solution for the mem-

ory wall problem experienced by neural networks [1, 3, 4, 5, 90, 42, 41, 40, 91, 92, 93, 94, 46, 47,

48, 45, 43, 44]. On-chip SRAM memory can be morphed into compute units, effectively increasing

the amount of memory on-chip without sacrificing area for compute units. Further, bit-serial based

in-SRAM computing techniques can inherently support variable bit-precisions without requiring

additional hardware [90, 95].

In this dissertation, we present Eidetic, an in-SRAM computing based matrix multiplication ac-

celerator for deep neural networks. Eidetic utilizes a system of systolic arrays composed of hybrid

SRAM-compute capable processing elements (PEs) interconnected using a ring network. Multiple

matrix multiplication operations can be mapped concurrently across the many systolic arrays. Ei-

detic additionally provides support for non-matrix operations commonly found in neural networks.

Eidetic’s dataflow architecture is also specifically well-suited for running neural networks. The

control logic is carefully designed to allow for easy programmability.

Eidetic is able to capture and map data flow graphs which can be used to describe the common

operations of most neural networks. Networks such as Long Short-Term Memory (LSTMs) in-

crease the complexity of these graphs with temporal elements. Eidetic central control logic drives

its dataflow architecture, allowing high-level programmability where functions or operations are

mapped to the chip. Using its central control logic Eidetic is able to establish the connections be-

tween mapped operations and facilitate data movement from one function to another. After being

programmed with setup instructions for the initial operations, Eidetic processes inputs (identified

by their corresponding labels) on-demand based on their availability. This eliminates the need for

compiler support to generate instructions for each batch of inputs and enables a true on-demand

62

system. The high-level programmability will make extending support for Eidetic easier compared

to accelerators that only support lower-level compute and data orchestration instructions. Further,

it allows mappings of multiple layers from a neural network, or even the entire network to be

mapped on-chip.

In summary, this dissertation makes the following contributions:

• This dissertation proposes the Eidetic architecture, an in-SRAM computing based matrix

multiplication engine for deep neural networks. Eidetic eliminates weight loading stalls by

storing weights in on-chip SRAM. Further, Eidetic leverages in-SRAM computing to reduce

the overheads of on-chip data movement between storage and compute elements.

• Eidetic consists of multiple 1-D systolic arrays that are interconnected using a ring network.

Each systolic array is composed of a novel system of compute-capable SRAM processing

elements (PEs) that can efficiently support scalar-vector multiplication.

• Eidetic implements a novel dataflow architecture optimized for RNNs with custom control

logic to allow for high-level programmability while also reducing off-chip interactions in the

form of instructions and data.

• We evaluate Eidetic on Google’s Neural Machine Translation (GNMT) encoder and observe

a 4.30× increase in throughput over the TPUv2 Board and a 17.20× increase of a single TPU

chip. Additionally, this is achieved with on-demand input processing instead of batching

resulting in 7.77× lower average latency when compared to TPUv2.

5.2 Eidetic Abstractions and Execution Model

5.2.1 Matrix Multiplication Systolic Arrays

Systolic arrays are a popular architecture for implementing matrix multiplication. A weight sta-

tionary mapping is a common approach where the weight matrix is stored across the PE units. The

63

Figure 5.1: (a) Systolic Array (b) Optimized Systolic Array

input matrix is propagated along one dimension of the array. Each PE can perform a multiply-and-

accumulate (MAC) involving the weight, input, and an existing product. Afterward, the input is

propagated to the next PE. Across the other dimension, the product is passed to the next adjacent

PE allowing accumulation of the matrix multiplication’s products.

Systolic arrays work particularly well when the input is a matrix with a large number of

columns. Systolic arrays are optimal when a continuous stream of inputs is available to ensure

high PE utilization. In practice, a continuous stream is not possible due to limitations on batch

size and latency requirements. Batches can only be so large before exceeding storage space and

violating latency requirements. With data-bound applications, new weight tiles being loaded will

eventually cause the array to stall.

The weight stationary systolic array can be further optimized to reduce data propagation and

latency. A scalar-vector PE can be used to replace a row of PEs that propagates the inputs from

one PE to another. The scalar-vector PE unit merges the PEs in a row into a single PE that shares

an input. Figure 5.1 shows a typical systolic array on the left and our optimized implementation

on the right. Previous work [96] [97] has created a systolic tensor array with multiple PEs across

a row and column sharing operand buffers and operating in parallel.

64

5.2.2 Dataflow Architecture

Eidetic has a flexible dataflow architecture that is able to map multiple operations or layers on-

chip. Each operation includes a reference to its corresponding inputs and outputs. Eidetic uses

these references to match outputs of an operation to inputs of other operations and facilitates the

data movement between them. Unconnected outputs are sent back to the host. This allows Eidetic

to take a model broken into nodes, and map as many supported nodes that can fit on-chip, with any

remaining nodes being handled by the host or a co-processor.

Operation mapping and connections are predefined before execution. Additionally, weights are

preloaded. This allows our data-flow architecture to significantly reduce the number of instructions

that are sent from the host. After the setup period, the host only needs to feed inputs to Eidetic

with a corresponding identifier to uniquely identify each input. Removal of host instructions also

makes way to implement more real-time processing. Inputs can be sent to Eidetic the moment they

become available, without waiting to group inputs into a batch or to generate instructions for the

inputs.

Our data-flow architecture makes Eidetic an ideal accelerator to pair with a host as a co-

processor, or even be integrated into a system with other accelerators. The reduction/elimination of

the need to transfer weights, instructions, and intermediate results can greatly improve the perfor-

mance of data-bound applications (detailed evaluation in Section 5.7). Further, it will help reduce

bottlenecks arising from frequent host interactions.

5.2.3 Dependencies and Layers

Neural network models can be broken down into directed graphs with each node representing a

core operation. The nodes can use feedback in the case of recurrent networks, creating a cyclical

directed graph. A variety of frameworks with varying paradigms exist for implementing neural

networks, ranging from TensorFlow dataflow programming to JAX [98] functional programming.

Regardless of the programming paradigms, most neural networks can be described with the di-

rected graph abstraction.

65

Depending on the operations, Eidetic can map a single operation or a group of operations as a

single node. We refer to any singular or grouped operations as a layer with the inputs and outputs

connections as dependencies. Each layer is assigned a node ID, with each unique output/input

given an edge ID. Additionally, a input index is used to differentiate each new input. Lastly, a

temporal index is used to support inputs with various time steps. Both layers and dependencies are

referenced with their temporal and input index as well as their node ID and edge ID respectively.

Figure 2.5 illustrates the computation graph for two dimensions of a modified GNMT encoder.

Each box represents a layer composed of an operation(s) in the network. Each arrow represents a

dependency or edge that connects the outputs of one LSTM cell or node to the inputs of another.

Vertically in the graph, each cell has a unique node ID, and each unique data output from a node

has a unique edge ID. Moving horizontally introduces a time step. Some nodes will use edges that

have a different time step introducing horizontal data movement. Finally, this 2-D graph would be

replicated for each input with a unique input index. The replicated instances of the 2-D graph have

no connections between them and are independent of each other.

5.2.4 Concurrent Execution of Pipelined Layers

Two execution flows were considered for Eidetic design; a layer-by-layer execution and a concur-

rent execution of pipelined layers. The layer-by-layer execution is analogous to how most CPUs,

GPUs, TPUs, and many other accelerators operate. However, some work [99] has performed

pipelined inference on CPUs/GPUs. The weights for a layer/tile will be loaded on-chip, and a

batch of inputs would be run through the PEs. Upon completion of the batch, the next layer can

be started. In contrast, concurrent pipelined execution partitions the PE resources so that each

layer mapped to the chip is assigned to its own subset of PEs. This allows multiple/all layers to

be executed concurrently. In both approaches, weight loading can be skipped as Eidetic stores

multiple layers/weight tiles on-chip. Changing the execution flow from layer-by-layer to concur-

rent pipelined changes how the data is mapped. A layer-by-layer approach would maximize the

number of PEs that are used to store weights for each layer. Extra space in each PE would be used

66

Figure 5.2: Eidetic Overview

to map additional layers. By spreading a layer out across more PEs, the layer gains more compu-

tation resources. On the other hand, concurrent execution seeks to map each layer to as few PEs as

possible. The additional PEs are then able to map additional layers, allowing multiple layers to be

executed simultaneously.

The layer-by-layer approach fits with the traditional batch model. Neural network accelerators

typically group inputs together in a batch. Despite frameworks being designed for batches of

inputs, on-demand input processing has several advantages over the traditional batch approach.

Firstly, streaming inputs can improve both inference latency and system latency. With a batch,

each input is forced to wait for the entire batch to finish before moving on. In networks with

sequences of inputs, the penalty can be more pronounced, as the batch is constricted by the longest

sequence in the batch. With on-demand processing, inputs can be moved to the next layer as

soon as they finish, and downstream resources become available. This will reduce the latency of

most inputs. Further, waiting for a full batch of inputs from the host side will delay the start of

computation. If the input can be started the moment it becomes available, it will reduce the average

and tail latency of the system.

67

5.3 Architecture

Eidetic is a matmul accelerator that utilises systolic arrays of processing elements composed of

compute-capable SRAM. Combining compute and storage into a single unit allows for an increased

amount of compute and storage that is available on-chip. The nature of SRAM computing allows

for data to be stored where it is operated on. To minimize the amount of on-chip data movement

and reduce complexity, the compute SRAM PEs are organized in a system of systolic arrays that

utilizes a weight stationary data flow. Figure 5.2 shows the different components of the Eidetic

architecture.

We now provide a high-level overview of the different components of Eidetic.

(1) Compute SRAM-based PEs. Eidetic PEs are in-memory computing SRAMs. Every PE

can perform scalar-vector multiplication and accumulation needed for matrix multiplication. Each

PE can operate on a 256-element weight vector. The PEs can hold additional weights in addition

to the weight set it is currently operating on. Additionally, the data for the dependencies can be

stored within the PEs.

(2) Column Block which contains the systolic array matrix multiplication engine of compute

SRAM PEs, element-wise compute engines, intermediate storage, and block controller.

(3) Central Control Logic which tracks the dependencies of each layer and creates and issues

the layers. It ensures that layers are only issued when all dependencies are available. Further, it

tracks the address of each dependency and generates fetch instructions to move the dependency

from its storage location to its needed Column Block.

5.3.1 PE Unit

Figure 5.3 shows the composition of each PE Unit in Eidetic. Each PE consists of a 9.5 KB

modified compute SRAM array, a control FSM, an input latch, and a data buffer. The PEs are then

organized into a systolic array.

Compute SRAM Array: Our SRAM contain a modified version of the 8KB compute SRAM

68

arrays used in Neural Cache [90]. The modified SRAM arrays have bitline peripherals that allow us

to perform in-place computation. Our SRAM PEs are only used to perform matrix multiplications.

Thus, these SRAMs have been modified to only support scalar-vector multiply and vector-vector

accumulation over the ability to perform a vector-wise MAC or other operations.

The length of the bitlines in the SRAM arrays have been extended from 256 to 304, increasing

the number of wordlines in an array and bringing the SRAM to 9.5 KB. Extending the bitlines has

two benefits: firstly, storage density is increased, secondly, it allows networks to be mapped more

efficiently. The extra 48 wordlines are used to hold products and perform computation. Many

networks’ dimensions are powers of two, thus leaving 256 wordlines for weights allows better

mapping than the 208 wordlines without the extension. Additionally, the SRAM arrays use 4x1

sense amp column muxing and 1x1 write driver muxing.

Input Latch: In previous compute SRAM works [90, 95], the SRAMs performed element-wise

operations, with an element from both of the operand vectors in each bitline. However, in Eidetic,

every weight across the bitlines in the SRAM will eventually be multiplied by the same inputs.

Instead of propagating the input across bitlines, it is more efficient to have every bitline use the

same input. If every bitline is using the same input, the input can be pulled out of the SRAM and

stored in a specific input latch, eliminating the need to write the input to every bitline in the SRAM

and also saving space in the SRAM for more weights. Thus, every PE has an input latch.

FSM: Each PE also has an FSM attached to it. The FSM controls data propagation from one

PE to the next, controls the input latch, and activates the correct wordlines to perform a bit-serial

MAC.

Buffer: At the bottom of each SRAM is a double-buffer. The buffer enables the SRAMs to start

moving products as soon as it creates them, while also accepting products from the buffer above it,

as soon they are available and the PE has a free slot for it.

PE MAC: Similar to prior in-SRAM computing works, weights are stored in the transposed

format in SRAM arrays. With the transposed data format, each 16-bit weight occupies 16 word-

lines and each PE array can hold 256 weights across the bitlines. Each PE has 256 wordlines and

69

is able to accommodate up to 4096 elements of the weight matrix. The PE can be configured with

the number of weight sets in use. The FSM will perform a scalar-vector MAC on a set of weights

across the bitlines before cycling to the next set of weights across the wordlines. Additionally, the

PEs can be configured to keep the product accumulating it with the MAC from the next weight set,

or the product can be immediately propagated to the next PE.

5.3.2 PE Memory Addressing

In order to facilitate easy addressing and mapping, we provide the storage slot abstraction which

is the smallest addressable granularity in the Eidetic architecture. One storage slot consists of 16

rows of 256-bit wordlines in the PEs SRAM in a systolic array. This amounts to 0.5 KB of storage.

Every PEs SRAM has 19 storage slots. 3 of these are reserved for computation and the remain-

ing 16 can be used for weights or data. Storage slots are addressed with a 19-bit value. The first 6

bits are used to address the specific systolic array column. The next 5 bits address the storage slot

in the PE. And the last 8 address the PE in the systolic array.

Fetching/Storing Slots: A fetch or store request is sent to the top of the systolic array where it

is propagated down to the correct PE. In the case of a store, the data is also sent to the top of the

systolic array and propagated. Similarly, a fetch propagates the data downwards from where it is

stored. Data from the storage slots can be fetched at a smaller granularity than a single slot. A

fetch request can additionally include the number of rows to fetch, and starting row within the slot.

The latency for fetching/storing slots is 256 cycles plus transfer time to the column block which is

low as the storage columns blocks can be placed next to blocks producing the outputs. This is less

than the average number of cycles for a MAC.

Column Control: In addition to the PE, each column has a column control unit which is used

to facilitate data movement between columns for accumulation and to execute micro-operations.

70

Figure 5.3: SRAM-based Eidetic PE Unit

5.3.3 Column Block

The Column Block is where all computations take place, and all data is stored. The Column

Block is composed of the 1-D systolic array of PEs, the storage slot FIFO, the block controller,

the intermediate storage and element-wise compute units. The Column Block is also responsible

for performing all non-matrix multiplication operations, such as element-wise multiplication and

addition and other non-linear operations. Additionally, the Column block is responsible for some

data movement, sending inputs to the systolic array and moving some outputs to other columns.

The operations are repeated over and over for each set of outputs from the systolic array, for each

set of inputs to the systolic array, and for each set of intermediate results from other columns.

Figure 5.4 shows the details of the Column Block logic.

Systolic Array: The systolic array consists of 256 PE arranged in a column. Each PE is directly

connected with a 256-bit bus to the PE below it. The buffer from the top PE sends data downwards

to the bottom PE SRAM. This allows products to be passed down and accumulated through the

Column Block.

Instructions Circular FIFO: All instructions for intermediate operations are programmed into

71

Figure 5.4: Column Block Logic Overview

this FIFO. These instructions contain the operation to perform, the addresses of the two input

operands as well as the output address. Additionally, the instruction has a read stall for each

operand to indicate if it hasn’t been generated yet. Additionally, the instruction FIFO can contain

instructions to move data to another Column Block. In addition to a read stall, the move instruction

also has a write stall in order to prevent a Column Block from overwriting another column that is

still working on its data.

Outputs Assignment Circular FIFO: The systolic array produces outputs in fragments of 256

elements. A single output can have up to 16 (i.e. the maximum number of weight slots) of these

fragments. These output fragments are written into a circular FIFO that contains up to 32 entries

with intermediate storage addresses. This allows it to store two sets of outputs.

Input Controller: Fetching of inputs needed for the systolic array is handled by the input con-

troller. Depending on the mapping, each systolic column can use up to 256 different inputs. As a

result, each input is collected in smaller segments, with the exact size determined by the data map-

ping. The inputs for each matmul will be stored in predetermined locations in the intermediate

storage. When the input loader has space, the controller will load the input from the intermediate

72

storage and if the said input has no more reuse, it can start fetching a new input to fill that spot.

Intermediate Storage Bank: Every Column Block has a storage bank for intermediate results

and inputs that need to be loaded.

Storage Slot FIFO: Each Column Block contains a FIFO containing free storage slots’ ad-

dresses. The FIFO receives addresses from the central control logic.

5.3.4 Central Control

The central control logic is used to generate layer IDs from output dependencies and track the stor-

age slots’ addresses of the dependencies. It controls when layers can be issued, when dependencies

need to be fetched, and to where, and sends free slots to the Column Blocks. The central control

does not hold or operate on any data.

The relationship between dependencies and layers can be described as parents and children.

Each dependency will have a variable number of child layers that need this dependency to issue.

Each of these child layers needs a variable number of parent dependencies to issue. Figure 5.5

shows the flow diagram of the central control module.

The central control can be split into 2 separate parts; Layer ID Generation and Issuing, and

Storage Slot Tracking. Whenever an output is created by a Column Block, the Column Block

sends the edge ID of the dependency it created as well as the storage address of where it is being

stored.

5.3.4.1 Layer ID Generation and Issue

The central control only receives the edge ID of each intermediate output dependency that is gen-

erated from a Column Block, while the temporal index and the input index are missing. The full

dependency ID consisting of the tuple (edge ID, input index, and temporal index) is obtained from

the Output Dependency Lookup Unit. Every intermediate output that is generated can be an input

dependency for several other child layers. Using the dependency ID of an output, the Layer ID

Generator generates the child layer IDs for the layers that use that output. Each of the child layer

73

Figure 5.5: Control Flow of Central Control Unit. Bold text between units indicates the passed
information was created in one of the units.

IDs generated can now be tracked along with the storage slot address of the parent dependency.

In order to issue a layer, the central control needs to ensure all of its dependencies have been

created and it needs to track the storage slot address of each dependency. Whenever a new layer

ID is generated the central control needs to determine if the layer is already being tracked. It also

needs to determine which of the possible parent dependencies generated the layer ID so the storage

slot address can be matched to it. This is handled concurrently by two units: the Dependency ID

Generator and the Layer CAM Index. The Pending Layer Unit keeps track of the dependencies

remaining for each layer ID before it can be issued. If the layer is issued, the layer ID as well as

the dependency storage slot addresses where its output is stored are sent to the Layer Lookup Unit.

The unit can then generate fetch instructions to retrieve the generated outputs and move them to

the correct Column Blocks.

5.3.4.2 Storage Slot Tracking

Each Column Block has a FIFO with the storage slots reserved for the outputs it will create. The

central control is responsible for tracking which storage slots are open and sending available stor-

age slots’ addresses to the Column Block FIFO. The storage slot for each generated output depen-

dency must be kept until all of its child layers have been issued. In addition to its other functions,

74

the Layer ID Generator also sends the number of child layers that consume each output depen-

dency to the Dependency Uses Tracker unit. Every time a Column Block finishes using an input,

it sends the slot number to the central control allowing the slot number for that table entry to be

decremented and be made available if the uses remaining reaches zero. Upon reaching zero, the

storage slot status can be updated in the Slot Status Tracker unit described below.

The Slot Status Tracker stores both the type and availability of every storage slot. Storage slots

can have different types based on whether they store weights or intermediate outputs. Weights slots

are reserved during setup. In addition, this unit has a counter for each Column Block, tracking the

number of elements in their FIFOs. The unit also allows contiguous storage slots to be grouped

together to create a larger data slot for intermediate results. Without grouping, each slot would

need to be tracked as a separate dependency, vastly increasing the number of dependencies tracked

per layer.

5.4 Data Mapping and Eidetic Instructions

5.4.1 Data Mapping

5.4.1.1 Weight Matrix Mapping

Matrix multiplication in a layer is performed by mapping the weight matrix onto the systolic array.

However, most networks will have weight matrices that are too large to fit in a single systolic array.

Instead, the matrix multiplication is broken up across multiple systolic arrays with accumulation

and/or concatenation performed outside the systolic array. Figure 5.6 illustrates how matrix mul-

tiplications are mapped to systolic arrays with a very small layer and shows the 3 granularities of

the mapping. The example shows miniature systolic arrays, each with 2 bitlines in a PE, 3 PEs

in a systolic array, and 2 weight storage slots in a PE. The weight matrix can be referred to with

the dimensions (k,m). With matrix multiplication, partial products along the "k" dimension are

accumulated whereas along the "m" dimension they are not. The different indices in the weight

75

Figure 5.6: Mapping of weights to a systolic array

matrix are highlighted using different shades of green. We use the same color coding to show how

each element of the weight matrix is mapped to each PE.

(1) Bitline Mapping: Across 2 bitlines in a PE’s SRAM. The "m" dimension of the weight

matrix is mapped across the bitlines in a PE’s SRAM. The bitlines have no communication between

each other and elements across the weight matrix columns are not accumulated.

(2) PE Column Mapping: Across the 3 PEs in the systolic array. The "k" dimension of the

weight matrix is mapped along each PE. This is because partial products are easily accumulated as

they are passed down from one PE to another.

(3) PE storage slot Mapping: Finally, each PE’s SRAM has 2 weight storage slots where ele-

ments are stored across the PE’s wordlines. This granularity can hold elements from either the "k"

or "m" dimension. By mapping "k", each PE will perform 2 MACs before propagating the partial

product. Conversely, if "m" is mapped, each PE will perform a single MAC and propagate the

partial product.

The bitline mapping and PE column mapping policies are fixed in their weight dimension

76

mapping. The flexibility in the PE storage slot mapping is shown in Figure 5.6. In Figure 5.6 (a),

the systolic arrays have the "k" dimension of the weight matrix stored in the PE storage slots. In this

example, the outputs of the systolic arrays must be concatenated together. Conversely, in Figure 5.6

(b), the "m" dimension of the weight matrix is stored in the PE storage slots. Accumulation needs

to be performed across the 2 systolic arrays.

5.4.1.2 Data Mapping Flexibility

Eidetic ability to map either dimension of the weight matrix across the PE storage slots increases

the efficiency of mapping the weight matrix with a range of shapes and sizes. With 256 bitlines in

a PE, 256 PEs in a systolic column and 16 PE storage slots in a PE, Eidetic can map a [256x4096]

or [4096x256] weight matrix to the systolic column. However, the 16 PE storage slots can be

split into both dimensions, allowing any weight matrix between [256x4096] or [4096x256] such

as [1024x1024].

How weights are mapped in the weight storage slots has a large effect on the number of inputs

needed to keep a systolic array saturated. By performing accumulations in the weight storage

slots Figure 5.6 (a), no input segment is reused for a PE and each PE will be using an input with

a different input index. However, the alternate mapping Figure 5.6 (b) will result in the same

input segment being reused. While the input segment is being reused, the next PE will be using

a different input segment of the same input index. The greater the time that an input segment

is reused, the greater the number of PEs that will be concurrently sharing the same input index,

reducing the number of inputs needed for saturation. The number of inputs needed for saturation

is: (Number of PEs – 1) / (Input Reuse) + 1

Both Figures 5.6 (a) and (b) describe a packed mapping scheme where the amount of weights

stored in a systolic array is maximized. If the network does not utilize all the systolic arrays, some

matrix multiplication operations can be spread out across more systolic arrays. This is particularly

useful when a layer requires more concurrent inputs to maintain saturation than the other layers.

It is also useful for matrix-matrix multiplication. In the first case; consider a layer with a weight

77

matrix of dimension [6x4] that maps to the systolic array in Figure 5.6. With a packed mapping, the

matrix multiplication occupies only one systolic array, and thus there is no flexibility in the weight

storage slot mapping. This mapping requires 3 different inputs concurrently to keep the systolic

array saturated. If it is anticipated that not enough inputs will be available, the matrix can be spread

out across multiple systolic arrays. This increases the amount of compute for the layer decreasing

its saturation requirements. In the other case, an unbalanced matrix-matrix multiplication can

be balanced by spreading out across more systolic arrays. This can prevent such a layer from

becoming the bottleneck due to a lack of computation. In both cases, the storage slots in the

systolic arrays will be underutilized. These unused slots can be used to store data intermediates

instead of storing them in a separate systolic array.

5.4.1.3 Other Operations

While the bulk of the focus is on matrix multiplication, Eidetic also allows mapping of other

operations to reduce the need to go off-chip. Inside the column block, separate from the systolic

arrays, are more compute-based SRAM and other compute units. Other operations needed are

mapped to these units.

5.4.2 Instructions

Eidetic is programmed using 3 categories of instructions. Central Control Setup Instructions,

Column Block Setup Instructions and Input Loading Instructions. Eidetic is designed to use setup

instructions to define the model and allows for inputs to be processed continually without additional

instructions. Eidetic does not have an explicit matmul instruction called for two operands. Rather

the user defines all the connections in the model. With the model defined, inputs are sent in and

are handled entirely by the control logic without additional user instructions.

78

5.4.2.1 Central Control Setup Instructions

The central control’s primary focus is facilitating data movement for the column blocks by deter-

mining when a layer’s operations can be issued and tracking the dependencies for the layer. The

central control accomplishes this by tracking the storage location of all dependencies as well as

tracking when a layer has all of its dependencies available.

Weight Loading: This instruction is used to load weights into a PE’s storage slot. Weights are

sent from off-chip in 512 B increments. The user provides the storage slot address and the weights

to be stored there.

Layer to Dependencies Connections: This instruction is used to define the dependencies that

are needed for each layer. The connections for each node ID are defined. A connection consists of

an edge ID and a temporal modifier. Up to 3 connections are available for each node ID.

Dependency to Layers Connections: This instruction is the inverse of the Layer to Dependen-

cies Connections. Each dependency type has 3 connections to the layers that use it.

Layer Outputs: Every layer can create up to 4 different dependencies as an output. The edge

ID of each possible one is defined in this instruction. The output of a layer has the same temporal

index and input index as the layer, so these values are not defined in the instruction.

Layer Dependency Columns: This instruction defines which column blocks need to receive a

layer’s dependencies when the layer is issued.

Host Output Edge Type: All dependencies with this edge ID are sent off-chip to the host.

5.4.2.2 Column Block Setup Instructions

There are two types of column block setup instructions.

Column Matrix Multiplication Configuration: This instruction is used to enable the flexible

mapping of the matrix multiplications in the systolic arrays. The instruction has two components:

the number of weight storage slots and MACs per propagation. The number of weight storage

slots is the number of storage slots in each PE that are storing weights. Each PE will only cycle

through the number of weight storage slots indicated, rather than all 16 possible weight storage

79

slots. MACs per propagate are based on the weight mapping scheme used for the systolic array.

Depending on the mapping, each partial product can be accumulated with 16 MACs or a single

MAC or some number in-between.

Intermediate Operation Instructions: In order to perform operations on intermediates, the col-

umn block is programmed with several types of instructions such as: assigning an operand ID/address

to outputs from the systolic array, performing an operation on two operands, moving an operand

to another column, and giving read/write permissions to other units.

5.4.2.3 Input Instructions

Inputs can be received and segmented into elements of their temporal sequence. The edge ID, the

input index, and the temporal index are included with the input.

5.4.3 Programmability Example

Below is an example of Eidetic programmability. The 4-layer network in Figure 2.5 is programmed

with 6 nodes. The addition between Layers 3 and 4 gets its own nodes as it is separate from the

LSTM cells. We describe the different node types below: Nodes 1-4 (LSTM), Node 5 (Add), and

Node 6 (LSTM).

As shown in Figure 5.5, many of the units are driven by the instructions programmed into the

table. Each LSTM node has two outputs, Ht and Ct. Ht is passed to the next time step and the

next layer, while Ct is just passed to the next time step. Xt is either the initial input to the graph

or the output of the Add node. The following shows the data programmed into the Dependency ID

Generator and Output Dependency Lookup. The number before X, H, and C indicate the layer ID.

Additionally, the Layer ID Generator contains the inverse of the Dependency ID Generator.

Dependency ID Generator:

Node1: 0Xt, 1Ht−1, 1Ct−1, Node2: 0Xt, 2Ht+1, 2Ct+1, Node3: 1Ht, 2Ht, 3Ht−1, 3Ct−1, Node4:

3Ht, 4Ht−1, 4Ct−1, Node5: 3Ht, 4Ht, Node6: 5Xt, 5Ht−1, 5Ct−1

Output Dependency Lookup:

80

Node1: 1Ct, 1Ht, Node2: 2Ct, 2Ht, Node3: 3Ct, 3Ht, Node4: 4Ct, 4Ht, Node5: 5Xt, Node6:

6Ct, 6Ht

Additionally, Eidetic has instructions to assign nodes to systolic column blocks and config-

ure the mapping of each Matmul. Each type of node i.e Matmul, LSTM, Add would generate

instructions stored in the Col Control.

5.5 Putting It Together

Figure 5.7: Putting it together

Figure 5.7 (a) shows an example of a very small and simple LSTM, showing how layers are

issued and executed. In this example, a 2-layer network with a pair of bidirectional layers is shown

with a single input for two time steps (i.e., with a temporal width of 2). The network has been

81

simplified to have a single output dependency that connects across the layers and time steps.

Snapshot 1: Two inputs that are a part of the same sequence are fed in and stored in free slots

in a systolic array that has been reserved for storage. Both elements generate two child layers each.

Two of the 4 generated layers have zero missing dependencies and can issue. Layer 1, the forward

layer, starts at the first time step in the sequence, while layer 2, the backward layer, starts at the

end. The slot tracker records the number of child operations involved for each input. This number

is recorded as Uses Remaining.

Snapshot 2: The two layers ready to issue are removed from the pending layer table. The data

stored in the slots needed for each layer are fetched and sent to the PE input loader. The slot tracker

decrements the uses remaining for that slot. Execution of the two layers begins in their respective

column block.

Snapshot 3: The matrix multiplication for the first input sequence has finished for both layers

while the matrix multiplication for the second input is starting. The layer execution has moved onto

the compute units where all non-matrix operations such as non-linear activations are performed.

The output of each layer produces the missing dependency for the same layers at the next/previous

time step.

5.6 Evaluation methodology

Eidetic Performance Model: We developed a cycle-accurate simulator in C++ to model the sys-

tolic array execution. The simulator creates systolic array PE structures capable of simulating

each cycle in a bit-serial MAC to get accurate utilization estimates for the PEs. The simulator

overestimates the cycles by counting the cycles for the longest MAC across every PE on-chip. The

simulator also tracks the number of dependencies that have been created and are waiting to be used.

A delay of 300 cycles is added to account for the non-matrix operation, storing and fetching data

dependencies, and issuing instructions from the output dependencies. The setup instructions are

used to program the layer connections and load weights into the systolic arrays. Then the simulator

82

is fed the input trace to begin execution. The simulator provides us with cycle-accurate profiling

needed to evaluate Eidetic performance. It provides utilization of Eidetic at multiple levels of

granularity, the throughput achieved and the amount of storage that is needed.

Validation: The GNMT encoder model was taken from MLPerf [100] and the inputs, weights,

and outputs to each layer were collected. The inputs and weights were then run through our Eidetic

simulator. The outputs were matched to ensure accuracy. The Verilog design for the central control

was further verified by using the same input trace for our simulator and matching the output traces.

Frequency Estimation: At the baseline frequency of 4 GHz for the SRAM arrays [101] with

8:1 sense amplifier multiplexing, during a read cycle, ∼75% of the cycle is spent precharging

the bitlines. The remaining ∼25% is used in sense amplifier cycling [90]. Additionally, on

write cycles, ∼60% of the time is used to perform writebacks. We chose 4:1 multiplexing for

sense amplifiers and 1:1 multiplexing for write drivers as it created the best balance between fre-

quency/throughput and area.

Area Estimation: To estimate the area of our custom SRAM array, we used previously pub-

lished numbers from Intel 22nm SRAM [101], scaled to 9.5 KB and accounting for the area of an

additional decoder needed for In-SRAM computing. Sense amplifier and write drivers account for

25% of the area of the SRAM array, with the remaining I/O area dedicated to the decoder. A write

driver has the same area as ∼40 bitcells. The FSM, Input latch, and Buffer, Central Control, and

Column Block Control were written in Verilog and synthesized. All area estimates are scaled to

22 nm. The Sigmoid and Tanh functions are implemented with LUT [102].

Power Estimation: To obtain the SRAM dynamic energy for read, write, and computation,

we used previously reported estimates from Neural Cache [90]. The SRAM read/write cycles take

8.6 pJ while computation cycles take 15.4 pJ. For leakage energy of the SRAM arrays, we use

reported numbers from [101]. Scaling these estimates for the increased bitline length (304 vs 256)

and reduced frequency of Eidetic SRAM arrays, we estimate the energy for read/write to be 5.67

pJ and computation to be 8.78 pJ.

TPU Profiling: For comparison we ran the same GNMT model on TPUv2. Our experiment

83

used 1 board, which consists of 4 chips and 8 total cores. To measure the throughput and latency

of the chip, we ran 102,400 inputs in various batch sizes from 8 to 1024. For our experiment, we

gave all inputs in a batch the same sentence length. This is ideal for running on TPU, however, it

is not always possible given the variability in workloads.

Additionally, we ran several ML microbenchmarks on TPU v2. The batch size was increased

until the throughput was saturated. On Eidetic the benchmarks were replicated across multiple

systolic columns where possible.

5.7 Results and Analysis

5.7.1 Performance

The major focus of our evaluation is demonstrating the acceleration of GNMT’s encoder. The ver-

sion we implemented is taken from MLPerf [100]. Additionally we compare Eidetic and TPUV2

to several ML microbenchmarks.

5.7.1.1 Latency and Throughput

Figure 5.8 shows how Eidetic compares to TPU for throughput of GNMT. Additionally, the aver-

age latency is also shown in Figure 5.9. It is important to note that for both throughput and latency,

Eidetic uses an input batch size of 16, whereas the TPU uses a batch size of 1024 for throughput

and 8 for latency. 1024 was the max batch size tested for TPU and gave the best throughput. Fur-

ther 8 is the minimum batch size for TPU and provided the best latency. An input batch size of

16 was used for Eidetic because it is the sweet spot for both throughput and latency. As shown

in Figure 5.10, Eidetic offers minimal improvements in throughput past an input batch size of 16.

Additionally, latency remains mostly constant up to an input batch size of 16 and then increases

linearly afterward. An Input batch size of 16 is enough to saturate the systolic arrays. As previ-

ously mentioned that batch size refers to the size of a streaming window of inputs that drop out

after the last temporal step starts inference.

84

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

TPUv2 Chip TPUv2 Board EideticTh
ro

ug
hp

ut
 (S

en
te

nc
es

/ s
)

Figure 5.8: Throughput of TPU Batch Size 1024 vs Eidetic Input Batch Size 16

0

10

20

30

40

50

60

TPUv2 Board Eidetic

Av
er

ag
e

La
te

nc
y

(m
s)

Figure 5.9: Latency of TPU Batch Size: 8 vs Eidetic Input Batch Size: 16

5.7.1.2 Utilization

Eidetic PEs can be configured to store data or compute. PE compute utilization is the percentage

of arrays that are actively doing compute. Allocating PEs for data storage will result in reduced

utilization. Additionally, some compute arrays can become inactive without any inputs. One factor

is the warm-up and warm-down penalty of the systolic propagation and layer propagation. Each PE

in a systolic column must wait for the PE above it to perform a MAC before it can. Additionally,

inputs with different sequence lengths can cause minor imbalances that reduce the utilization. On-

demand processing reduces this effect but does not eliminate it. Eidetic running GNMT has 81.5%

of PEs configured for computation. Of those PEs, 94.6% of them are active during inference for

a total utilization of 76.2%. Accelerators such as TPU struggle to have even a modest utilization

85

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

8 16 32 64Th
ro

ug
hp

ut
 (S

en
te

ns
ce

s /
 s)

Input Batch Size

Figure 5.10: Eidetic throughput by input batch size

Component Sub-component Area (mm2) Group Area (mm2)

Systolic Column Block
Compute SRAM 185.05

234.43PE Overhead 37.12
Control Logic 12.26

Central Control
Control Logic 0.23

2.57SRAM CAM 0.61
SRAM TABLE 1.73

MISC I/O 24.45
Total - - 266.40

Table 5.1: Area breakdown of Eidetic by component. There are 54 Systolic Column Blocks each
with 2.375MB of compute SRAM

for RNN and MLP inference. GNMT inference results from TPUv1 show an extremely low useful

MAC as only 8.2% of cycles. Weight stall and weight shift cycles take up 58.1% and 15.8% of the

cycles respectively, for a total time percentage of 73.9% of the cycles stalling for weights. With

the Eidetic design, weights can be preloaded and pinned in place, eliminating the need to spend

time in weight stall and weight shift for inference. Instead, weight stalls/shifts would be performed

during setup time.

5.7.2 Energy and Area

The area breakdown for the different components in Eidetic is shown in Table 5.1. The vast major-

ity of the area is dedicated to the Systolic Column Block, with the Compute SRAM arrays being

the main component. The total area for Eidetic is 256.48mm2. Additionally, the power breakdown

is also shown in Figure 5.11. SRAM consumes power in 3 ways: performing compute, moving

86

Figure 5.11: Power Breakdown

Accelerator Eidetic (this work) Google TPUv3 [8] Alibaba Hanguang 800 [103] Groq ThinkFast TSP [14] Neural Cache [90]
Technology 22nm 12nm 12nm 14nm 22nm

Precision Supported Versatile Precision fp16, fp32 int8, int16, fp24 int8, fp16 int8
Frequency (GHz) 1.5 - 0.7 0.9 -

Area (mm2) 266.4 648.0 709.0 725.0 268.0
TFLOPS (fp16) 41.8 123.0 - 410.0 -

TOPS (int8) 175.5 - 825.0 820.0 28.0
POWER (W) 235.7 450.0 275.9 300.0 52.9

KB/mm2 481.4 18.0 - 110.3 130.6
GOPS/mm2 659.0 - 423.1 411.2 104.4

GOPS/mm2/W 2795.6 - 1022.3 913.9 1974.5
GFLOPS/mm2 156.9 69.0 - 205.6 -

GFLOPS/mm2/W 665.8 102.2 - 456.9 -

Table 5.2: Area and power normalized throughput comparison for different accelerators. For com-
parison, the metrics in the last five rows are normalized to 22nm using DeepScaleTool [2]. For
TPUv3 and Hanguang 800, we conservatively assume reported numbers are in 14nm for normal-
ization to 22nm.

data, and from SRAM leakage. SRAM compute dominates the power profile at 82.4%. Followed

by this, SRAM leakage contributes 9.6% and Central control contributes 7.9%. Other compo-

nents such as Router and SRAM Data contribute a negligible fraction to the total power consumed.

SRAM Data refers to the energy to move and fetch intermediates to and from array storage slots.

Eidetic operates at a TDP of 161W and consumes 81.43W on average.

5.7.3 Throughput comparison with other accelerators

Table 5.2 shows how Eidetic compares to other accelerators in this space. We compared to Google

TPUv3 [8], Alibaba Hanguang 800 [103] Grog ThinkFast TSP ,[14] and Neural Cache [90]. We

87

Input Matrix Weight Matrix MB of Weights Replications BL ALU Util Weight Slots Util Eidetic Inf/sec TPU V2 Inf/secs
Matrix Mult [1500,2560] [2560,5124] 25.02 3 73% 69% 556.4 142.1
Matrix Mult [7000,4096] [4096,4096] 32.00 3 89% 89% 113.0 23.9
Matrix Mult [16,2048] [2048,6144] 24.00 4 79% 89% 58575.7 13860.1

Dim(H,W,c,r,s) Pad, Stride
Conv [14,14,1024,1,1] [0,2] 4.00 24 71% 89% 103785.0 25762.0

Hidden Units Time Steps
GRU 2816.00 1500.00 90.75 1 76% 84% 15967.4 2450.1

Table 5.3: ML Microbenchmarks Eidetic Mapping and TPU V2 and Eidetic Performance.

normalized power and area to 22nm in the last 4 rows using DeepScaleTool [2]. TPUv3 and

Hanguang 800 are implemented at 12nm. We conservatively assumed area and power estimates for

these two accelerators to be at 14nm for the purpose of normalization to 22nm. When normalized to

22nm, Eidetic outperforms the next best accelerator by 1.56×, 1.89× and 1.95× for GOPS/mm2,

GOPS/mm2/W, and GFLOPS/mm2 respectfully. On GFLOPS/mm2, ThinkFast TSP outperforms

Eidetic by 1.31×.

Additionally Table 5.3 compares the performance of Eidetic and TPU on ML microbench-

marks [104]. Where possible, the microbenchmark is replicated on Eidetic to improve perfor-

mance, with the bitline ALU and weight storage utilization provided. The throughput per chip

speedup ranges from 3.9× to 6.5× across the microbenchmarks. Eidetic 17.20× speedup for

GNMT can be explained by the increased amount of intermediate storage needed for the bidi-

rectional layer, coupled with the inefficiency of variable time steps in a batch that TPU would

experience.

5.7.4 Versatile Precision

Eidetic bit-serial arithmetic naively supports variable bit-precision. The FSMs that control each

PE can be designed with multiple algorithms and/or with dynamic values for the bit precision

allowing an extremely wide range of precision without complex hardware. Figure 5.12 shows how

the number of cycles needed for a MAC changes based on the data precision used.

88

0
50

100
150
200
250
300
350
400

Bfloat16 Int16 Int8 Int4

Cy
cl

es
 fo

r M
AC

Maximum Cycles Average Cycles

Figure 5.12: Avg. and Max Cycles for MAC – different precision

5.8 Summary

This dissertation proposes the Eidetic architecture, a novel dataflow architecture customized for

RNN execution. Eidetic is designed based on the observation that RNN accelerators like the TPU

spend significant amounts of time and energy in weight loading stalls and on-chip data movement.

To eliminate weight loading stalls, Eidetic pins all weights to on-chip SRAM. To reduce on-chip

data movement, Eidetic leverages a novel system of in-SRAM computing based processing el-

ements, organized into 1-D systolic arrays. Eidetic supports execution of both low-level matrix

operations as well as entire neural network models. We evaluate Eidetic on the GNMT encoder

model and observe a 17.20× increase in throughput over a single TPUv2 chip.

89

CHAPTER 6

Comparison of Cache vs Custom Architecture

This chapter discusses the advantages and disadvantages of using the two in-SRAM computing

architectures to accelerate different types of neural networks. How does the performance compare

between the two and what factors lead to the performance gap.

6.1 Introduction

While both Neural Cache and Eidetic present in-SRAM computing for neural network acceler-

ation, the two architectures differ in terms of costs, benefits, and use cases. Neural Cache re-

purposes an existing cache structure in a Xeon processor to accelerate DNNs, with a focus on

accelerating CNNs. Modifications are made to the SRAM arrays in the last level cache to sup-

port in-SRAM computing along the bitlines. The modifications to the SRAM arrays are minimal

to preserve the original cache functionality. Additionally, the original cache geometry is left in-

tact. Neural Cache utilizes a layer-by-layer approach for DNN inference. A single layer is mapped

across the cache, with the weights replicated as many times as possible. By replicating the weights,

the required computations are spread out across more PEs. After a layer is finished the next layer

is loaded in. Neural Cache provides a large amount of compute ability to one layer at a time and

reduces on-chip data movement.

Eidetic is a custom ASIC that uses SRAM PEs as its main source of storage and compute.

The SRAM PEs are arranged in a systolic column that provides easy accumulation from one PE

to another. Additionally, Eidetic has a custom control logic to facilitate on-chip data movement

90

and allow for high-level dataflow programming. Eidetic uses concurrent pipelining as its execution

model. This allows it to map multiple layers on-chip that are executed in parallel while also pinning

weights on-chip. Eidetic spreads out its compute across multiple layers and reduces on and off-chip

data movement.

The major advantages of Neural Cache are that it has a low cost for implementation and works

well with compute-bound applications. Implementing Neural Cache requires minimal modifica-

tions to an existing processor cache to turn the SRAM arrays into parallel compute engines. Server

processors such as the Xeon are common and relatively inexpensive. Furthermore, with the layer-

by-layer execution model, Neural Cache is optimized for breaking through compute bottlenecks.

Additional modifications to the cache would be nonviable if they could cause the processor to no

longer be effective in its original workloads. Because Neural Cache is limited to an existing cache

structure, it is unable to take advantage of more customized SRAM arrays and SRAM organization.

The cache design is inherently a limitation as it can restrict the mapping of networks. Additionally,

a large amount of area is dedicated to traditional compute units, limiting the total amount of SRAM

compute area on-chip. This area is wasted space and is limiting especially if model sizes continue

to grow.

The major advantages of Eidetic are in its customization and its data-bound focus. The cus-

tomization allowed for more efficient SRAM arithmetic that reduces the energy and time it takes to

perform computations. Additionally, the custom control logic allows for dataflow programming,

reducing the amount of off-chip data movement for instructions. The concurrent pipelining execu-

tion and a larger amount of on-chip SRAM allows for the weights to be pinned in place, greatly

reducing the off-chip data movement. However, the TOC is much higher for an ASIC, and thus

the performance gains must be higher to justify its usage. In addition, there is a cost to adding

a host-accelerator interaction. Inputs and instructions have to go through another layer, from the

host to the accelerator, creating energy and delay penalties.

91

Figure 6.1: Mapping of Eidetic on Neural Cache

6.2 Data Mapping

Mapping networks on Neural Cache have a lower granularity due to Neural Cache rigid cache

structure and lockstep execution. The granularity is fixed based on four SRAM arrays in a bank,

four banks in a way, 20 ways in a slice (18 for computation), and 14 slices. When mapping the

weight matrix to the cache structure, the amount of units needed is rounded if more than half the

units in the group are needed. For instance, if 3 SRAM arrays are needed to finish mapping one

dimension, all four SRAMs in the bank will be reserved, leaving one unoccupied. Neural Cache

does not support spilling over the mapping as it would create more complexities for instructions

and data movement. Each SRAM array has 256 wordlines with 48 of the wordlines reserved for

compute and a partial product, and another 16 wordlines for the inputs. This leaves 12 storage slots

available for 16-bit weights. We show the mapping of GNMT on Neural Cache in 6.1 as well as

discuss why this mapping was chosen below.

92

Multiple weights can be stored in each bitline in the SRAM arrays. Unlike in Eidetic, mapping

GNMT on Neural Cache prioritizes mapping the accumulating dimension of the weight matrix

across the bitlines in the SRAM array and within the SRAM array. There are two main reasons

that Eidetic prioritizes the non-accumulating dimension of the weight matrix across the bitlines.

Firstly this mapping results in every MAC using the same input, which in Eidetic means the inputs

can be pulled out into the input latch. Instead, Neural Cache keeps the inputs in the array, so having

repeated inputs across each bitline doesn’t give an advantage. Secondly, Eidetic systolic columns

allow for efficient dataflow and accumulation of partial products. The fixed cache structure of

Neural Cache limits easy accumulation between SRAM arrays. If the non-accumulating dimension

of the weight matrix is mapped across the weight sets, each weight set would produce a partial

product that either needs to be stored in the array or accumulated with a partial product outside

its bitline or array. Mapping the accumulating dimension allows for the partial products for each

weight set to be accumulated. Accumulating across other bitlines or arrays would only be needed

after cycling through all the weight sets.

GNMT has multiple layers with 2048 and one layer with 3072 as the accumulating dimension.

Despite having 12 storage slots, the GNMT mappings would occupy 8 and 12 storage slots for the

2048 and 3072 dimensions respectively. In the case of 2048, the layers do not need all 256 bitlines

and 12 storage slots to map the dimension. Reducing the number of storage slots occupied is more

efficient than reducing the number of bitlines as the bitlines all operate in parallel while the MACs

from the storage slots are all sequential.

The accumulating dimension is satisfied across a PE’s bitlines and the storage slots. The non-

accumulating dimension is then mapped across the arrays in a bank, banks in a way, and ways in

a slice. However, the GNMT layers are too large to fully map the weight matrix in the cache and

require partitioning the network into two. Half the weights are loaded on-chip and after the matrix

multiplication, the second half of the weights are loaded in. At least one way needs to be reserved

for the CPU while another is needed for intermediates. However, using 18 ways versus 10 ways

has only a marginal effect on performance as the layer still needs to be split in two. Thus, 10 ways

93

are used for compute, with 9 ways used to store intermediates, allowing for a larger batch size and

thus better performance.

6.3 Results and Analysis

6.3.1 Eidetic comparison to Neural Cache

Eidetic significantly outperforms Neural Cache in several key metrics. Eidetic has a 19.5× im-

provement in throughput as seen in Table 6.1. The large difference in throughput can be explained

by several key factors. Eidetic has 3.2× as many SRAM PE arrays with 14336 compared to Neu-

ral Cache 4480 SRAM PE arrays. Due to mapping factors, Eidetic has 11264 SRAM PE arrays

active for compute while Neural Cache only has 2080. This is roughly 5.4× more active PEs.

Further impacting the performance is the utilization of PEs with compute mapped to them. Con-

current execution with efficient data movement in combination with a fused MAC operation allows

the Eidetic’s PEs to have a utilization of almost 2.5× of Neural Cache with lockstep execution.

Although Neural Cache frequency is 1.67× higher than Eidetic, this factor is more than offset

by Neural Cache taking 2 cycles for a compute operation due to the higher frequency and lower

amount of write drivers in the SRAM PEs. Finally, Eidetic MACs finish roughly 1.2× faster than

Neural Cache because they are able to skip cycles.

Eidetic improvement in throughput does not come at a cost of energy, instead, it is 5.3× more

energy efficient per sentence than Neural Cache. The main difference is how 55.6% of Neural

Cache’s energy is spent in compute vs. 88.2% of Eidetic. Eidetic is more efficient in moving

inputs and eliminates filter loading. Eidetic MAC speedup is limited by other PEs in the systolic

column that does not skip as many cycles. Eidetic has an average wordline activation during the

MACs of 72% while also having 1.2× fewer cycles in the MAC. Additionally, within the compute,

Eidetic is more energy efficient. Eidetic operates at a lower frequency and is thus more efficient

per SRAM activation. Additionally, Eidetic is able to skip MAC cycles, resulting in fewer SRAM

activations per MAC.

94

NC Batch Size 1 NC Batch Size 32 Eidetic Batch Size 32
Latency Per Sentence (ms) 10.51 70.89 6.63

Throughput (Sentences/Sec) 95.2 451.3 8,833

Table 6.1: Comparison of Eidetic and Neural Cache Latency and Throughput

NC Batch Size 1 NC Batch Size 32 Eidetic Batch Size 32
Average Watts (W) 27.4 35.6 115.0

Energy Per Sentence (J) 0.288 0.079 0.013

Table 6.2: Comparison of Eidetic and Neural Cache Energy and Power

Past in-SRAM computing for neural network acceleration has involved modifying a Xeon LLC

to augment the SRAM arrays with computing peripherals [90]. This previous work, Neural Cache,

involved limited modifications to maintain the LLC’s original functionality and performance. Ei-

detic allows for significant customization to improve on performance of Neural Cache. Eidetic has

the ability to pin weights for computation, has a custom interconnect and dataflow architecture,

more efficient MACs, and a more efficient and finer mapping granularity.

6.3.2 Custom Interconnect and Dataflow Architecture

Neural Cache cache structure is optimized for efficiently fetching and storing data while balancing

access latency, read/write throughput, energy per access, and area. However, with Eidetic, the

SRAM arrays can be organized into systolic columns that simplify the data movement between the

SRAM arrays. Compared to the layout of slices to ways to quads to banks to arrays, connecting

the SRAM arrays to the arrays above and below in the systolic column is a simpler structure and

is more efficient for the data movement required in neural networks.

The systolic arrays also allow Eidetic to map either dimension of the weight matrix to the

storage slots. Neural Cache on the other hand only supports mapping the accumulating dimension.

GNMT mapped on Neural Cache experiences reduced weight storage density in the SRAM arrays

as several layers only used 8 of the storage slots. The reduced density played a large role in

requiring the layers to be partitioned in two.

Neural Cache is limited without a well-defined programming model to handle its data move-

95

Figure 6.2: Breakdown of Neural Cache’s Throughput

Figure 6.3: Breakdown of Neural Cache’s Energy

ment. Eidetic is able to take advantage of the directed graph nature of neural networks with its

dataflow architecture and its custom control logic to facilitate both the required data movement

and the scheduling of operations for concurrent parallel execution of multiple layers. The custom

control logic allows multiple layers each having multiple inputs executing in the systolic columns,

all without off-chip instructions. The output of layers will become the input to future layers, al-

lowing the control logic to seamlessly issue the layers as all of its inputs become available. These

architectural designs make it possible to fully take advantage of pinned weights and offer concur-

rent parallel execution with minimal off-chip instructions.

6.3.3 Increase Storage for Weight Pinning and In-Place Computation

Neural Cache and Eidetic are effectively area neutral with areas of 268.0 and 266.4 mm2 respec-

tively. However, despite being area neutral, Eidetic offers 128.25 MB of compute SRAM compared

96

to Neural Cache 35 MB, allowing Eidetic to store a much larger amount of weights on-chip. Eide-

tic offers more on-chip storage due to its simplified SRAM layout, higher density SRAM arrays,

and lack of a separate compute area for the CPU.

By keeping weights on-chip, Eidetic is able to run multiple layers in parallel if correctly par-

titioned. Running multiple layers in parallel offers the significant advantage of delivering low

latency results without sacrificing throughput. Systolic arrays need multiple inputs to remain sat-

urated, a layer-by-layer approach would thus need batching and have a penalty when switching

from layer to layer increasing the latency of inference.

Increasing on-chip weight storage significantly helps data-bound applications. Bottlenecks in

data-bound applications can stem from both loading weights from off-chip and also from moving

weights from on-chip storage to the compute units. Increasing the weights storage and pinning

weights addresses both of these issues respectively. Finally, extending the length of the bitlines in

the SRAM PEs makes Eidetic denser for storing weights at a slight cost of compute density.

6.3.4 Efficient MACs

Eidetic pulling the inputs out of the array and into the input latch allows for more efficient MACs

in both energy and throughput. If the number of cycles differs across the PEs in a systolic column,

the slowest PE dictates the throughput of the column. This is the case with the MAC algorithm that

skips cycles based on both multiplier and multiplicand. But by pulling the input out and perform-

ing vector-scalar multiplication, Eidetic is able to reduce the number of cycles for the worst-case

MAC and the average MAC. Reducing the worst-case MAC reduces energy consumption and in-

creases throughput. Decreasing the average MAC further saves energy. Neural Cache MAC is

approximately 400 cycles, while Eidetic average MAC is 238 cycles, and the average worst case

MAC is 330 cycles.

97

6.3.5 Mapping Granularity

Eidetic benefits from a finer and more efficient mapping granularity. By storing the inputs outside

the SRAM and extending the length of the bitlines, Eidetic can store a weight matrix of 16x256

in the PE. Neural Cache on the other hand, can store a 12x256 weight matrix in its SRAM arrays.

Each of Eidetic 54 systolic columns can map a 16x[256x256] weight matrix. Additionally, the

weight matrix can be as small as [256x256] without losing any compute resources. Neural Cache

multi-tier cache hierarchy increases the likelihood that a network will have an inefficient mapping.

Consider an example where the weight matrix mapping only occupies 3 of the arrays in a bank.

The 4th array would be unused across all banks, eliminating 25% of the cache’s compute power.

Each level in the hierarchy introduces another opportunity for inefficient mapping. Eidetic SRAM

structure allows for far greater control and more efficient mapping of weight matrices.

6.4 Summary

In Neural Cache we extend the capabilities of a Xeon processor to increase its parallel comput-

ing capabilities with a focus on CNNs. In-cache in-SRAM computing shows benefits for both

data-bound and compute-bound neural network layers. However, more of the benefits come from

increasing the amount of compute available rather than addressing available data. For instance,

with a batch size of 1 for GNMT, Neural Cache spends 10.4% of the time doing compute with the

remaining 89.6% spent moving data. With the batch size increased, however, this split becomes

closer to 50% for each.

With Eidetic, 16 of the 330 cycles for a MAC are used to move data between PE units. Addi-

tionally, during execution, the PE units are active 94.6% of the time. Between these two factors,

Eidetic can keep its PEs active at 90.0% with only 10.0% spent on data stalls.

The optimizations in Eidetic are particularly suited for data-bound applications, where Neural

Cache falls short. The pinning of weights helps to solve off-chip data movement. The systolic

arrays are able to target on-chip data movement, and the custom control logic and the interconnect

98

are optimized for data dependencies. Further, it has enough compute units that it is capable of

producing GFLOPS/mm2 in line with other industry ASICs.

However, Eidetic is an ASIC that is considerably expensive to design and build. Applications

with low data reuse and complex data dependencies will be needed to justify its cost. This lines up

with MLPs, RNNs, and Transformers.

CNNs are primarily compute-bound applications. Eidetic however focuses on how to remove

off-chip data movement. While CNNs will benefit from a reduction of off-chip data movement

Amdahl’s law tells us that speedup gains will be limited. Furthermore, the execution model for Ei-

detic does not favor CNNs. RNNs and MLPs utilize vector-matrix multiplication while CNNs use

convolutions that can be converted into matrix-matrix multiplication. The matrix-matrix multipli-

cation results in unbalanced compute to storage requirements which create slowdowns in a concur-

rent pipelined approach. Instead, a layer-by-layer approach or a hybrid approach where multiple

layers are pipelined together before moving to the next grouping of layers might be needed.

Instead, Neural Cache is a much cheaper option that can be applied to many different cache

structures. Neural Cache can add significant amounts of parallel computing to a chip that otherwise

had little to none. The problem is these compute units are not optimized for data movement or

facilitating pinning of weights. Neural Cache is great for compute-bound applications such as

CNNs.

99

CHAPTER 7

Conclusion

The field of computer architecture is experiencing an inflection point for the current computing

paradigm. The slowing of Moore’s law, the end of Denard’s scaling, and the memory wall are

forcing the community to innovate in order to continue realizing performance gains they were

previously accustomed to.

Further complicating the issue is the immense increase in the amount of data available as well

as the popularity of data-parallel applications such as DNNs. Increasing the emphasis on parallel

computing with CPU vector processing, multi-core, GPUs, GPGPUs, and accelerators is a good

start for handling data-parallel applications. The trade-off with focusing on parallel computing is

that it comes at the cost of general computing and requires more specialized and separate units.

Further, while ASICs can achieve significant performance increases, we can further improve the

performance gains by eliminating the constraints of separate storage and compute.

Near-memory, in-memory, and emerging memory technologies can offer us new opportunities

if we are willing to stray from traditional computing. In-memory computing provides a new com-

puting paradigm that can help alleviate the costs that come with traditional computing. In-SRAM

bit-serial computing also has the advantage of programmable precision. The computation is driven

by an FSM which can be designed to support multiple precisions without having additional hard-

ware for separate units. This adds significant flexibility over traditional ALU units.

First, in Chapter 4 we have demonstrated how an existing processor can be repurposed into

a neural network accelerator by transforming the LLC into compute units capable of performing

100

arithmetic operations. With this, we provide the mapping strategy for using the SRAM PE to

process neural networks. The re-purposed SRAM adds minimal area overhead but vastly improves

the performance over the original CPU. Instead of devoting area and power to more vector units,

more cores, or off-loading the work off-chip, we can simply modify a CPU’s cache. This allows

CPUs to gain the ability of parallel computing without sacrificing their general computing abilities.

Second, in Chapter 5 we have proposed a design for a custom ASIC that targets the challenges

of data-bound DNNs by removing the need to go off-chip for both data and instructions and pro-

vides a data mapping that allows for pinned weights to be computed on in place. Eidetic goes

further by handling on-chip data movement and dependencies, allowing for on-demand processing

and concurrent layer execution. Finally, the PE units were customized to improve the compute

efficiency. These improvements allow our design to compete with and outperform other state-of-

the-art accelerators.

Industry leaders and startups have proposed in/near memory computing for memory-bound ap-

plications and/or neural network acceleration. These solutions and products span existing DRAM

technologies to emerging such as Flash and PCM. Samsung has proposed three separate prod-

ucts that use processing near-memory for DRAM. These products; Aquabolt-XL HBM2-PIM,

AXDIMM, and LPDDR5-PIM [105, 106, 107], target bandwidth-intensive workloads. Aquabolt-

XL HBM2-PIM takes an eight-stack HBM and replaces four of the dies with a hybrid PIM DRAM

die. Each PIM DRAM die contains 32 compute blocks. Each compute block dedicates half its

area for DRAM and the other half to programmable compute units for a total of 128 compute

cores in the system. Aquabolt-XL was integrated with commercially available GPU and FPGA

to accelerate neural networks. Aquabolt-XL showed the post-performance gain from memory-

bound applications with a batch size of one. AXDIMM offers acceleration buffers inside the

DIMM. DIMM PIM offers a plug-in solution to existing commercial systems. The acceleration

buffers contain programmable FPGA fabrics allowing support for a range of computations and

applications. Samsung has also proposed PIM with mobile DRAM to target edge and low-energy

applications. These three products are a significant investment in near/in-memory computing by

101

an industry leader. The startup mythic AI [65] has designed two generations of in-flash analog

computing for neural network acceleration. IBM has created a prototype chip using computational

phase-change memory [108] to accelerate neural network inference.

In Chapter 3 we detail the vast amount of academic work for in/near-memory computing with

a particular focus on neural network acceleration. This, coupled with a large investment from

industry, shows the importance of retooling our computing paradigm to support in/near-memory

computing. The Von Neumann architecture is insufficient for today’s computing and industry and

academics know it. The work in this dissertation details both repurposing existing on-chip memory

structures and a custom architecture with in-SRAM computing. Together, our work offers a com-

plete solution that is missing from other works. In Chapter 3 we discuss emerging memory works

such as ReRAM, STT-MRAM, Flash, and PCM. Additionally Ferroelectric RAM (FeRAM) [109]

and Carbon Nanotube RAM (NANO RAM/ NRAM) [110] have also been proposed as alternative

memories. Our work in Neural Cache and Eidetic utilized in-SRAM computing but is applicable

to any on-chip in-memory computing technology.

Managing both computation and data movement/availability will be a huge challenge in de-

signing efficient architectures. Large data-parallel applications with heavy compute requirements

are here to stay. This dissertation offers scalable solutions for applications in high demand. By

offering both the ability to extend support to a general purpose processor for parallel computing as

well as a custom architecture, we show that in-SRAM computing has high potential to become a

new computing paradigm.

102

BIBLIOGRAPHY

[1] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm configurable memory
(tcam/bcam/sram) using push-rule 6t bit cell enabling logic-in-memory,” IEEE Journal of
Solid-State Circuits, vol. 51, no. 4, pp. 1009–1021, 2016.

[2] S. Sarangi and B. Baas, “Deepscaletool: A tool for the accurate estimation of technology
scaling in the deep-submicron era,” in 2021 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1–5, IEEE, 2021.

[3] S. Jeloka, N. Akesh, D. Sylvester, and D. Blaauw, “A configurable tcam / bcam / sram using
28nm push-rule 6t bit cell,” IEEE Symposium on VLSI Circuits, pp. C272–C273, IEEE,
2015.

[4] M. Kang, E. P. Kim, M. s. Keel, and N. R. Shanbhag, “Energy-efficient and high throughput
sparse distributed memory architecture,” in 2015 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 2505–2508, IEEE, 2015.

[5] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das, “Compute
caches,” in Proceedings of the 23rd International Symposium on High Performance Com-
puter Architecture (HPCA-23), pp. 481–492, IEEE, 2017.

[6] A. Subramaniyan, J. Wang, E. Balasubramanian, D. Blaauw, D. Sylvester, and R. Das,
“Cache automaton,” in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 259–272, ACM, 2017.

[7] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, R. Boyle, P. luc Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagara-
jan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of
a tensor processing unit,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, pp. 1–12, ACM, 2017.

103

[8] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young, and D. Patterson,
“A domain-specific supercomputer for training deep neural networks,” Communications of
the ACM, vol. 63, no. 7, pp. 67–78, 2020.

[9] “Deep dive into Amazon Inferentia: A custom-built chip to enhance ML and AI,”

[10] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay,
M. Haselman, L. Adams, M. Ghandi, et al., “A configurable cloud-scale dnn processor
for real-time ai,” in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pp. 1–14, IEEE, 2018.

[11] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, “NVIDIA tensor core
programmability, performance & precision,” CoRR, vol. abs/1803.04014, 2018.

[12] “Nvidia tensor cores: Versatility for hpc and; ai.”

[13] L. Gwennap, “Tenstorrent scales ai performance,” Apr 2020.

[14] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker, T. Hawkins, A. Bell, J. Thomp-
son, T. Kahsai, G. Kimmell, et al., “Think fast: a tensor streaming processor (tsp) for accel-
erating deep learning workloads,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pp. 145–158, IEEE, 2020.

[15] H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse convolutional neural networks
for efficient systolic array implementations: Column combining under joint optimization,”
in Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 821–834, 2019.

[16] A. Azizimazreah and L. Chen, “Shortcut mining: Exploiting cross-layer shortcut reuse in
dcnn accelerators,” in 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 94–105, 2019.

[17] C.-T. Huang, Y.-C. Ding, H.-C. Wang, C.-W. Weng, K.-P. Lin, L.-W. Wang, and L.-D.
Chen, “ecnn: A block-based and highly-parallel cnn accelerator for edge inference,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 182–195, 2019.

[18] S. Gudaparthi, S. Narayanan, R. Balasubramonian, E. Giacomin, H. Kambalasubramanyam,
and P.-E. Gaillardon, “Wire-aware architecture and dataflow for cnn accelerators,” in Pro-
ceedings of the 52nd annual ieee/acm international symposium on microarchitecture, pp. 1–
13, 2019.

[19] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar, “Sparten: A sparse ten-
sor accelerator for convolutional neural networks,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 151–165, 2019.

[20] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” in Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on, pp. 367–379, IEEE, 2016.

104

[21] G. Shomron and U. Weiser, “Non-blocking simultaneous multithreading: Embracing the
resiliency of deep neural networks,” in 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pp. 256–269, IEEE, 2020.

[22] E. Baek, D. Kwon, and J. Kim, “A multi-neural network acceleration architecture,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
pp. 940–953, IEEE, 2020.

[23] Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and X. Liang, “Drq: Dynamic region-
based quantization for deep neural network acceleration,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pp. 1010–1021, IEEE, 2020.

[24] A. D. Lascorz, S. Sharify, I. Edo, D. M. Stuart, O. M. Awad, P. Judd, M. Mahmoud,
M. Nikolic, K. Siu, Z. Poulos, et al., “Shapeshifter: Enabling fine-grain data width adapta-
tion in deep learning,” in Proceedings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 28–41, 2019.

[25] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi, K. Kanellopoulos, and
O. Mutlu, “Eden: Enabling energy-efficient, high-performance deep neural network infer-
ence using approximate dram,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 166–181, 2019.

[26] A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud, S. Sharify, M. Nikolic,
K. Siu, and A. Moshovos, “Bit-tactical: A software/hardware approach to exploiting value
and bit sparsity in neural networks,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 749–763, 2019.

[27] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes: Bit-
serial deep neural network computing,” in Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on, pp. 1–12, IEEE, 2016.

[28] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and
O. Temam, “Dadiannao: A machine-learning supercomputer,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 609–622, IEEE
Computer Society, 2014.

[29] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh, “Bit fusion:
Bit-level dynamically composable architecture for accelerating deep neural network,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
pp. 764–775, IEEE, 2018.

[30] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The terasys massively par-
allel pim array,” Computer, vol. 28, no. 4, pp. 23–31, 1995.

[31] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas,
“Flexram: toward an advanced intelligent memory system,” in Computer Design, 1999.
(ICCD ’99) International Conference on, 1999.

105

[32] P. M. Kogge, “Execube-a new architecture for scaleable mpps,” in Parallel Processing,
1994. Vol. 1. ICPP 1994. International Conference on, vol. 1, pp. 77–84, IEEE, 1994.

[33] M. Oskin, F. Chong, and T. Sherwood, “Active pages: a computation model for intelli-
gent memory,” in Computer Architecture, 1998. Proceedings. The 25th Annual International
Symposium on, 1998.

[34] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
and K. Yelick, “A case for intelligent ram,” Micro, IEEE, vol. 17, no. 2, pp. 34–44, 1997.

[35] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: a novel
processing-in-memory architecture for neural network computation in reram-based main
memory,” in ACM SIGARCH Computer Architecture News, vol. 44, pp. 27–39, IEEE Press,
2016.

[36] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S.
Williams, and V. Srikumar, “Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars,” in Proceedings of the 43rd International Symposium on
Computer Architecture, pp. 14–26, IEEE Press, 2016.

[37] Y. Ji, Y. Zhang, X. Xie, S. Li, P. Wang, X. Hu, Y. Zhang, and Y. Xie, “Fpsa: A full system
stack solution for reconfigurable reram-based nn accelerator architecture,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 733–747, 2019.

[38] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory acceleration of deep
neural network training with high precision,” in 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), pp. 802–815, IEEE, 2019.

[39] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based accelerator
for deep learning,” in 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 541–552, 2017.

[40] H. Kim, J. Sim, Y. Choi, and L.-S. Kim, “Nand-net: Minimizing computational complexity
of in-memory processing for binary neural networks,” in 2019 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), pp. 661–673, IEEE, 2019.

[41] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable heterogeneous micro-
processor based on bit-scalable in-memory computing,” IEEE Journal of Solid-State Cir-
cuits, vol. 55, no. 9, pp. 2609–2621, 2020.

[42] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve, N. S. Kim, and
N. Shanbhag, “Promise: An end-to-end design of a programmable mixed-signal accelerator
for machine-learning algorithms,” in 2018 ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 43–56, IEEE, 2018.

[43] J.-W. Su, X. Si, Y.-C. Chou, T.-W. Chang, W.-H. Huang, Y.-N. Tu, R. Liu, P.-J. Lu, T.-W.
Liu, J.-H. Wang, et al., “15.2 a 28nm 64kb inference-training two-way transpose multibit 6t

106

sram compute-in-memory macro for ai edge chips,” in 2020 IEEE International Solid-State
Circuits Conference-(ISSCC), pp. 240–242, IEEE, 2020.

[44] X. Si, Y.-N. Tu, W.-H. Huang, J.-W. Su, P.-J. Lu, J.-H. Wang, T.-W. Liu, S.-Y. Wu, R. Liu,
Y.-C. Chou, et al., “15.5 a 28nm 64kb 6t sram computing-in-memory macro with 8b mac
operation for ai edge chips,” in 2020 IEEE International Solid-State Circuits Conference-
(ISSCC), pp. 246–248, IEEE, 2020.

[45] J.-W. Su, Y.-C. Chou, R. Liu, T.-W. Liu, P.-J. Lu, P.-C. Wu, Y.-L. Chung, L.-Y. Hung, J.-S.
Ren, T. Pan, et al., “16.3 a 28nm 384kb 6t-sram computation-in-memory macro with 8b
precision for ai edge chips,” in 2021 IEEE International Solid-State Circuits Conference
(ISSCC), vol. 64, pp. 250–252, IEEE, 2021.

[46] Q. Dong, M. E. Sinangil, B. Erbagci, D. Sun, W.-S. Khwa, H.-J. Liao, Y. Wang, and
J. Chang, “15.3 a 351tops/w and 372.4 gops compute-in-memory sram macro in 7nm finfet
cmos for machine-learning applications,” in 2020 IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 242–244, IEEE, 2020.

[47] X. Si, J.-J. Chen, Y.-N. Tu, W.-H. Huang, J.-H. Wang, Y.-C. Chiu, W.-C. Wei, S.-Y. Wu,
X. Sun, R. Liu, et al., “24.5 a twin-8t sram computation-in-memory macro for multiple-bit
cnn-based machine learning,” in 2019 IEEE International Solid-State Circuits Conference-
(ISSCC), pp. 396–398, IEEE, 2019.

[48] J.-H. Kim, J. Lee, J. Lee, H.-J. Yoo, and J.-Y. Kim, “Z-pim: An energy-efficient spar-
sity aware processing-in-memory architecture with fully-variable weight precision,” in 2020
IEEE Symposium on VLSI Circuits, pp. 1–2, IEEE, 2020.

[49] A. K. Ramanathan, G. S. Kalsi, S. Srinivasa, T. M. Chandran, K. R. Pillai, O. J. Omer,
V. Narayanan, and S. Subramoney, “Look-up table based energy efficient processing in
cache support for neural network acceleration,” in 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pp. 88–101, IEEE, 2020.

[50] A. Dhar, X. Wang, H. Franke, J. Xiong, J. Huang, W.-m. Hwu, N. S. Kim, and D. Chen,
“Freac cache: folded-logic reconfigurable computing in the last level cache,” in 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 102–117,
IEEE, 2020.

[51] A. V. Nori, R. Bera, S. Balachandran, J. Rakshit, O. J. Omer, A. Abuhatzera, B. Kuttanna,
and S. Subramoney, “Reduct: Keep it close, keep it cool! : Efficient scaling of dnn in-
ference on multi-core cpus with near-cache compute,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pp. 167–180, 2021.

[52] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A dram-based recon-
figurable in-situ accelerator,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 288–301, ACM, 2017.

[53] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory accelerator for bulk bitwise operations

107

using commodity dram technology,” in Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp. 273–287, ACM, 2017.

[54] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. Kozuch, O. Mutlu, P. Gibbons, and T. Mowry,
“Fast bulk bitwise and and or in dram,” Computer Architecture Letters, 2015.

[55] Intel Corporation, Desktop 4th Generation Intel® Core™ Processor Family, Desktop Intel®

Pentium® Processor Family, and Desktop Intel Celeron® Processor Family, 2015.

[56] Intel Corporation, 5th Generation Intel® Core™ Processor Family, Intel® Core™ M Proces-
sor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron® Proces-
sor Family Datasheet, 2015.

[57] Intel Corporation, 6th Generation Intel® Processor Datasheet for S-Platforms, 2015.

[58] I. Skochinsky, “Secrets of intel management engine.” "http://www.slideshare.
net/codeblue_jp/igor-skochinsky-enpub". Accessed: 2016-02-17.

[59] S. Gueron, “A memory encryption engine suitable for general purpose processors.,” IACR
Cryptology ePrint Archive, vol. 2016, p. 204, 2016.

[60] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube: A pro-
grammable digital neuromorphic architecture with high-density 3d memory,” in Proceed-
ings of ISCA, vol. 43, pp. 380–392, IEEE, 2016.

[61] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable and efficient
neural network acceleration with 3d memory,” SIGARCH Comput. Archit. News, vol. 45,
p. 751–764, apr 2017.

[62] M. Zhou, W. Xu, J. Kang, and T. Rosing, “Transpim: A memory-based acceleration via
software-hardware co-design for transformer,” in 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 1071–1085, IEEE, 2022.

[63] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory processing architec-
ture for embeddings and tensor operations in deep learning,” CoRR, vol. abs/1908.03072,
2019.

[64] X. Sun, H. Wan, Q. Li, C.-L. Yang, T.-W. Kuo, and C. J. Xue, “Rm-ssd: In-storage comput-
ing for large-scale recommendation inference,” in 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 1056–1070, 2022.

[65] Mythic, “Taking powerful, efficient inference to the edge.” https://mythic.ai/
wp-content/uploads/2022/02/MythicWhitepaper-2019oct31.pdf. Ac-
cessed: 2022-8-15.

[66] W. Kang, H. Wang, Z. Wang, Y. Zhang, and W. Zhao, “In-memory processing paradigm
for bitwise logic operations in stt–mram,” IEEE Transactions on Magnetics, vol. 53, no. 11,
pp. 1–4, 2017.

108

http://www.slideshare.net/codeblue_jp/igor-skochinsky-enpub"
http://www.slideshare.net/codeblue_jp/igor-skochinsky-enpub"
https://mythic.ai/wp-content/uploads/2022/02/MythicWhitepaper-2019oct31.pdf
https://mythic.ai/wp-content/uploads/2022/02/MythicWhitepaper-2019oct31.pdf

[67] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-transfer
torque magnetic ram,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 3, pp. 470–483, 2017.

[68] Y. Pan, P. Ouyang, Y. Zhao, W. Kang, S. Yin, Y. Zhang, W. Zhao, and S. Wei, “A multi-
level cell stt-mram-based computing in-memory accelerator for binary convolutional neural
network,” IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1–5, 2018.

[69] G. Burr, R. Shelby, C. di Nolfo, J. Jang, R. Shenoy, P. Narayanan, K. Virwani, E. Giacometti,
B. Kurdi, and H. Hwang, “Experimental demonstration and tolerancing of a large-scale
neural network (165,000 synapses), using phase-change memory as the synaptic weight
element,” in 2014 IEEE International Electron Devices Meeting, pp. 29.5.1–29.5.4, 2014.

[70] G. W. Burr, P. Narayanan, R. M. Shelby, S. Sidler, I. Boybat, C. di Nolfo, and Y. Leblebici,
“Large-scale neural networks implemented with non-volatile memory as the synaptic weight
element: Comparative performance analysis (accuracy, speed, and power),” in 2015 IEEE
International Electron Devices Meeting (IEDM), pp. 4.4.1–4.4.4, 2015.

[71] S. R. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian, and E. Eleftheriou,
“Mixed-precision architecture based on computational memory for training deep neural net-
works,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5,
2018.

[72] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,”
SIGARCH Comput. Archit. News, vol. 23, pp. 20–24, Mar. 1995.

[73] “Hybrid memory cube specification 2.0,” 2014.

[74] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: a low-overhead,
locality-aware processing-in-memory architecture,” in Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium on, pp. 336–348, IEEE, 2015.

[75] M. Huang, M. Mehalel, R. Arvapalli, and S. He, “An energy efficient 32-nm 20-mb shared
on-die L3 cache for intel® xeon® processor E5 family,” J. Solid-State Circuits, vol. 48,
no. 8, pp. 1954–1962, 2013.

[76] W. Chen, S.-L. Chen, S. Chiu, R. Ganesan, V. Lukka, W. W. Mar, and S. Rusu, “A 22nm
2.5 mb slice on-die l3 cache for the next generation xeon® processor,” in VLSI Technology
(VLSIT), 2013 Symposium on, pp. C132–C133, IEEE, 2013.

[77] K. E. Batcher, “Bit-serial parallel processing systems,” IEEE Transactions on Computers,
vol. 31, no. 5, pp. 377–384, 1982.

[78] P. B. Denyer and D. Renshaw, VLSI signal processing: a bit-serial approach, vol. 1.

[79] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with lim-
ited numerical precision,” in Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), pp. 1737–1746, 2015.

109

[80] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149,
2015.

[81] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint
arXiv:1606.06160, 2016.

[82] N. P. Jouppi, C. Young, N. Patil, D. Patterson, et al., “In-datacenter performance analysis
of a tensor processing unit,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, pp. 1–12, ACM, 2017.

[83] “Parabix Transform..” http://parabix.costar.sfu.ca/wiki/
ParabixTransform. Accessed: 2017-11-20.

[84] D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and R. Cameron, “Parabix: Boosting the
efficiency of text processing on commodity processors,” in High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International Symposium on, pp. 1–12, IEEE, 2012.

[85] Intel Corporation, “Cache Allocation Technology.” https://software.intel.
com/en-us/articles/introduction-to-cache-allocation-technology.
Accessed: 2017-11-20.

[86] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2818–2826, 2016.

[87] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl: memory power
estimation and capping,” in Low-Power Electronics and Design (ISLPED), 2010 ACM/IEEE
International Symposium on, pp. 189–194, IEEE, 2010.

[88] Nvidia Corporation, “Nvidia system management interface.” https://developer.
nvidia.com/nvidia-system-management-interface. Accessed: 2017-11-
18.

[89] Intel Corporation, “Intel vtune amplifier performance profiler.” https://software.
intel.com/en-us/intel-vtune-amplifier-xe. Accessed: 2017-11-18.

[90] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaauw, and
R. Das, “Neural cache: Bit-serial in-cache acceleration of deep neural networks,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
pp. 383–396, IEEE, 2018.

[91] J. Yue, X. Feng, Y. He, Y. Huang, Y. Wang, Z. Yuan, M. Zhan, J. Liu, J.-W. Su, Y.-L. Chung,
et al., “A 2.75-to-75.9 tops/w computing-in-memory nn processor supporting set-associate
block-wise zero skipping and ping-pong cim with simultaneous computation and weight
updating,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol. 64,
pp. 238–240, IEEE, 2021.

110

http://parabix.costar.sfu.ca/wiki/ParabixTransform
http://parabix.costar.sfu.ca/wiki/ParabixTransform
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

[92] R. Guo, Z. Yue, X. Si, T. Hu, H. Li, L. Tang, Y. Wang, L. Liu, M.-F. Chang, Q. Li, et al.,
“15.4 a 5.99-to-691.1 tops/w tensor-train in-memory-computing processor using bit-level-
sparsity-based optimization and variable-precision quantization,” in 2021 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), vol. 64, pp. 242–244, IEEE, 2021.

[93] J. Yue, Z. Yuan, X. Feng, Y. He, Z. Zhang, X. Si, R. Liu, M.-F. Chang, X. Li, H. Yang,
et al., “14.3 a 65nm computing-in-memory-based cnn processor with 2.9-to-35.8 tops/w sys-
tem energy efficiency using dynamic-sparsity performance-scaling architecture and energy-
efficient inter/intra-macro data reuse,” in 2020 IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 234–236, IEEE, 2020.

[94] H. Jia, M. Ozatay, Y. Tang, H. Valavi, R. Pathak, J. Lee, and N. Verma, “15.1 a pro-
grammable neural-network inference accelerator based on scalable in-memory computing,”
in 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 236–238,
IEEE, 2021.

[95] D. Fujiki, S. Mahlke, and R. Das, “Duality cache for data parallel acceleration,” in Proceed-
ings of the 46th International Symposium on Computer Architecture, pp. 397–410, 2019.

[96] Z.-G. Liu, P. N. Whatmough, and M. Mattina, “Systolic tensor array: An efficient structured-
sparse gemm accelerator for mobile cnn inference,” 2020.

[97] Z.-G. Liu, P. N. Whatmough, Y. Zhu, and M. Mattina, “S2ta: Exploiting structured sparsity
for energy-efficient mobile cnn acceleration,” in 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 573–586, 2022.

[98] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transfor-
mations of Python+NumPy programs,” 2018.

[99] Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu scheduling for multi-dnn real-time
inference,” in 2019 IEEE Real-Time Systems Symposium (RTSS), pp. 392–405, 2019.

[100] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Ander-
son, M. Breughe, M. Charlebois, W. Chou, et al., “Mlperf inference benchmark,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
pp. 446–459, IEEE, 2020.

[101] E. Karl, Y. Wang, Y. Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya, K. Zhang, K. Mistry,
and M. Bohr, “A 4.6ghz 162mb sram design in 22nm tri-gate cmos technology with inte-
grated active vmin-enhancing assist circuitry,” in 2012 IEEE International Solid-State Cir-
cuits Conference, pp. 230–232, 2012.

[102] A. Namin, K. Leboeuf, H. Wu, and M. Ahmadi, “Artificial neural networks activation func-
tion hdl coder,” pp. 389 – 392, 07 2009.

[103] Y. Jiao, L. Han, R. Jin, Y.-J. Su, C. Ho, L. Yin, Y. Li, L. Chen, Z. Chen, L. Liu, Z. He,
Y. Yan, J. He, J. Mao, X. Zai, X. Wu, Y. Zhou, M. Gu, G. Zhu, R. Zhong, W. Lee, P. Chen,

111

Y. Chen, W. Li, D. Xiao, Q. Yan, M. Zhuang, J. Chen, Y. Tian, Y. Lin, W. Wu, H. Li,
and Z. Dou, “7.2 a 12nm programmable convolution-efficient neural-processing-unit chip
achieving 825tops,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC),
pp. 136–140, 2020.

[104] https://asc.llnl.gov/sites/asc/files/2020-09/
coral2-ml-dl-microbenchmark-summary-v3.pdf. Accessed: 2022-7-18.

[105] J. H. Kim, S.-h. Kang, S. Lee, H. Kim, W. Song, Y. Ro, S. Lee, D. Wang, H. Shin, B. Phuah,
et al., “Aquabolt-xl: Samsung hbm2-pim with in-memory processing for ml accelerators
and beyond,” in 2021 IEEE Hot Chips 33 Symposium (HCS), pp. 1–26, IEEE, 2021.

[106] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho, J. H. Kim, Y. Kwon,
et al., “Near-memory processing in action: Accelerating personalized recommendation with
axdimm,” IEEE Micro, vol. 42, no. 1, pp. 116–127, 2021.

[107] J. H. Kim, S.-h. Kang, S. Lee, H. Kim, Y. Ro, S. Lee, D. Wang, J. Choi, J. So, Y. Cho,
et al., “Aquabolt-xl hbm2-pim, lpddr5-pim with in-memory processing, and axdimm with
acceleration buffer,” IEEE Micro, 2022.

[108] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar, C. Piveteau, M. Dazzi,
B. Rajendran, A. Sebastian, and E. Eleftheriou, “Accurate deep neural network inference
using computational phase-change memory,” Nature communications, vol. 11, no. 1, pp. 1–
13, 2020.

[109] T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M. Kastner, N. Nagel, M. Moert, and
C. Mazure, “Feram technology for high density applications,” Microelectronics Reliabil-
ity, vol. 41, no. 7, pp. 947–950, 2001.

[110] W. Zhang, N. K. Jha, and L. Shang, “Low-power 3d nano/cmos hybrid dynamically re-
configurable architecture,” ACM Journal on Emerging Technologies in Computing Systems
(JETC), vol. 6, no. 3, pp. 1–32, 2010.

112

https://asc.llnl.gov/sites/asc/files/2020-09/coral2-ml-dl-microbenchmark-summary-v3.pdf
https://asc.llnl.gov/sites/asc/files/2020-09/coral2-ml-dl-microbenchmark-summary-v3.pdf

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	In-SRAM Computing
	Deep Neural Networks
	Accelerating Neural Networks

	Prior Works
	DNN Accelerators
	Processing in Memory, In-Memory, and Near-Memory Computing

	Neural Cache
	Introduction
	Neural Cache Organization
	Neural Cache Arithmetic
	Bit-Serial Arithmetic
	Addition
	Multiplication
	Reduction
	SRAM Array Peripherals
	Transpose Gateway Units

	Neural Cache Architecture
	Data Layout
	Data Parallel Convolutions
	Orchestrating Data Movement
	Supporting Functions
	Batching
	ISA support and Execution Model

	Evaluation Methodology
	Results
	Latency
	Batching
	Power and Energy
	Scaling with Cache Capacity

	Summary

	Eidetic
	Introduction
	Eidetic Abstractions and Execution Model
	Matrix Multiplication Systolic Arrays
	Dataflow Architecture
	Dependencies and Layers
	Concurrent Execution of Pipelined Layers

	Architecture
	PE Unit
	PE Memory Addressing
	Column Block
	Central Control
	Layer ID Generation and Issue
	Storage Slot Tracking

	Data Mapping and Eidetic Instructions
	Data Mapping
	Weight Matrix Mapping
	Data Mapping Flexibility
	Other Operations

	Instructions
	Central Control Setup Instructions
	Column Block Setup Instructions
	Input Instructions

	Programmability Example

	Putting It Together
	Evaluation methodology
	Results and Analysis
	Performance
	Latency and Throughput
	Utilization

	Energy and Area
	Throughput comparison with other accelerators
	Versatile Precision

	Summary

	Comparison of Cache vs Custom Architecture
	Introduction
	Data Mapping
	Results and Analysis
	Eidetic comparison to Neural Cache
	Custom Interconnect and Dataflow Architecture
	Increase Storage for Weight Pinning and In-Place Computation
	Efficient MACs
	Mapping Granularity

	Summary

	Conclusion
	Bibliography

