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Effects of frustum slant angle 6, shell thickness, and crease stiffness on the bending
stability. (A) Energy profiles with different combinations of the above three parame-
ters. The first three cases have zero crease stiffness, while the crease stiffness of case
4 is defined by L*/R = 30. (B) Energy redistributions from the peak point to the val-
ley point of the stretching energy curve. The redistribution is presented by plotting the
change of energy in bars and bending hinges. The sheet thicknesses are ¢/ R = 0.0175.
The color scale indicates the magnitude of energy change, and the compressive side of
the straw is shown. (C) The stability map for twenty five cases of varied thicknesses
and slant angles, with zero-stiffness folding hinges. Each grid shows the stability type
with different colors for the corresponding case. (D) An expanded stability map with
various crease stiffness defined by Eq. 3.5, where the transition boundaries of tubes
with L* /R = oo, 30, 3 are marked with dashed lines. . . . ... ...........
Four-bar linkage model that can capture key geometric influences on bending stabil-
ity. (A) The linkage model in its original configuration, and the bent state via partial
inversion of cranks. (B) A typical bi-stable energy profile, where the slant angle is
01 = 30° and t/R = 0.0145. (C) Stability map that captures the trend that bi-stable
bending is possible with lower thickness or higher slant angle. (D) Energy during the
inversion of the left (or compressive) side of the mechanism dominates the total strain
energy. S indicates the stretching of the translational springs while B indicates bend-
ing of the rotational springs. (E) Bi-stable configurations v, and (F) Energy barriers
E, both increase with 6, and only experience a minor influence from the thickness.
These trends are consistent with those of the bar and hinge, and FE models. . . . . . .
Orthotropic bending stabilities of the track shape. (A) Isotropic bending with circu-
lar cross-sections turns into orthotropic bending about the strong and weak axis with
the track shape. (B) The stability map of the track shape with d/r = 0.18 and (C)
d/r = 0.75. The top row corresponds to the strong-axis bending, and the bottom
row corresponds to the weak-axis bending. Transition boundary of the circular cross-
section from mono-stable domain to the bi-stable domain is marked with dashed lines.
(D) As the distance d increases, the energy barrier £} decreases in both bending di-
rections; the second stable state ¢, of the weak-axis bending stays roughly the same,
whereas that of the strong-axis bending is decreased. . . . . . .. ... ... .....
Bending stabilities for cross-sections that have negative curvature. (A) The strong-
axis and weak-axis bending with the dumbbell shape. (B) The stability map of the
dumbbell shape with A, = 2.5 and (C) A\, = 1.5. Transition boundary of the track
shape of the same distance d is marked with dashed lines. (D) The dumbbell shape
morphs to the track shape as the controlling parameter )\, increases towards oo. For
both bending directions, energy barriers £, decrease during the process, and the stable
rotation ¢, stays at the same level. . . . . . . . ... ... L oL
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4.1

Redistributions of stretching (top row) and bending energy (bottom row) from the
peak point to the valley point of the stretching energy curve. From the left to the right:
strong-axis bending of the track shape, weak-axis bending of the track shape, and
strong-axis bending of the dumbbell shape. The outer radius R is fixed to be 31 mm,
and the other parameters are: d/r = 0.75, ¢; = 20°,¢/R = 0.019, and A\, = 1.5. The
color scale indicates the magnitude of the energy change. The limits of the color scale
of the bending energy are trimmed to be the same as the stretching energy, and any
magnitude that exceeds the range is plotted using the threshold color. The energy is
shown for exaggerated bar and hinge elements, with elements near zero energy staying

hidden. . . . . . . e

Energy behavior of bending the orthotropic cross-sections in different directions. (A)
The track-shape cross-section and (B) the dumbbell-shape cross-section are bent along
all the directions in the XY-plane. (C) Energy landscapes of the track shape and (D)
the dumbbell shape, where the distance from the centroid represents rotation ¢. Four
local minima of energy are marked with pentagrams, and the rotations at which the
peak energy is achieved are denoted with the green dashed lines. (E) Strain energy
magnitude for the track shape and (F) the dumbbell shape at specific rotations: ¢ =
19,1.5°, and the peak and valley of the directional energy profiles. The peak energy is
nearly-identical for all directions, while valley energies show four local minima.

Energy behaviors and stabilities of the clover cross-section. (A) The two-units struc-
ture with cross-sections of the clover shape is bent along all directions in the XY-plane.
(B) Energy landscape has six local minima and they are marked with pentagrams.
Peak-energy rotations are denoted with the dashed line. (C) Strain energy magnitude
at specific rotations: ¢ = 1.2°,1.8°, and the peak and the valley of directional energy
profiles. (D) Stability map for the clover shape with A\, = 1.5 and different d/r ratios,
when bending along two unique stable directions 0°, (E) 180°, and (F) the unstable

direction 90°. . . . . L L L

Physical models with non-zero folding stiffness and simulated results of the bar and
hinge model with L*/R = 3. (A) The paper model with circular cross-sections can
stay at the bent state. (B) The model with the track-shape cross-sections bent about
the weak-axis and (C) the strong-axis. The weak-axis bending is mono-stable while
the strong-axis bending stays at the second stable configuration. Their stabilities are

predicted correctly using the same stiffness parameter as the circular case. . . . . . . .

Geometry of the Kresling cone and the corrugated tube. (A) A multi-stable straw in
its three stable states. (B) An origami unit can be decomposed into Kresling frusta, for
which the geometry can be described by the planar views. (C) A Kresling corrugated
tube in its extended, bent, and collapsed states, illustrated by computer models (top
row) and paper prototypes (bottom row). The two angles are #; = 30°, 7 = 0°
(top frusta) and ¢#; = 70°, 7 = 0° (bottom frusta) (D) Three stable states of the
Kresling frustum (6; = 65°, 7 = 50°) shown by computer models (top row) and
paper prototypes (bottom row). (E) Three components of the bar and hinge model
shown on the single frustum. (F) The numerical predictions of stability for different
geometry of the Kresling tube. (G) A ten-frusta corrugated tube showing three types

of stable states (A1 = 65°, 7 =50°). . . . . . . ...
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Stiffness definition of the bar and hinge model. (A) A frustum is discretized into bars
and hinges. (B) The in-plane bars and the area definition. (C) The hinges for capturing
the out-of-plane bending of the panels. (D) The hinges for representing the folding of
thecreases. . . . . . . . . . L e
Comparison of the numerical predictions between the finite-element (FE) model and
the bar and hinge model. In-plane deformations of triangular panels are simulated
as stretching and shearing using the bar and hinge model (A, D) and the FE model
(B, E), respectively. The normalized stiffness of stretching and shearing are shown in
(C) and (F) for triangles of various shapes. (G) Finite-element model of the Kresling
frustum shown with a representative sketch of the meshing scheme, while a finer mesh
is used for the actual analyses. The zoom-in plot shows the details of the connections
between adjacent panels. (H) Predictions of the axial stiffness of the frustum with the
bar and hinge model and the FE model. (I) A sample bi-stable axial loading response
of the frustum, where the critical force and the corresponding axial displacement are
denoted by P, and A, respectively. (J) Predictions of P, and A, with the bar and
hinge model and the FEmodel. . . . . .. .. ... ... ... .. .......
Pop-through of valley creases converts the cone to a dome-like shape. (A) A paper
cone in its initial state (i) and pop-up state (ii). The zoom-in photo (iii) shows the
panel curvature after pop-up. (B) By placing a node on the valley crease, the pop-up
process can be simulated by the bar and hinge model. (C) The energy landscape of a
bi-stable pop-up process. (D) The bar strains experienced during the pop-up process.
(E) The energy distribution at the pop-up state. The folding, stretching, and bending
energy plots are counterclockwise arranged. (F) Left: Numerical predictions of the
pop-up stability with respect to the geometric parameters and the sheet thickness;
Right: underlying energy behaviors of two mono-stable cases. (G) Shape change
from the initial state to the pop-up state, including the enclosed volume (Left), the
twisting angle (Middle), and the slant angle (Right). . . .. ... ... ... .....
Pop-through of valley creases enables the switching of deformation modes. (A) Under
vertical loading, many Kresling frusta geometries are mono-stable and collapse via a
twisting motion from their initial states. However, they can also be axially inverted
after experiencing a pop-up deformation. (B) The axial mode switch demonstrated
with a paper prototype. (C) By pop-through of only one crease, the Kresling frus-
tum reaches a tilted state, which allows for continuously-changing orientations and
bending-like multi-stability over the tube length, as shownin(D). . . . ... ... ..
The conical Kresling has a tunable axial stiffness. (A) The paper frustum can be
collapsed by a thin plastic panel when it is in the initial state, but can support three
calibration weights of 1.5 kg when in a pop-up state. (B) The simulation setup using
the bar and hinge model. (C) Numerical predictions of the axial force-displacement
(A) curves of the initial frustum and the pop-up frustum show that the structure stiffer
by more than ten thousand times. (D) The change of energy in different bending,
folding, and stretching elements during the vertical loading for the initial frustum and
(E) the pop-up frustum. (F) The ratio of the pop-up stiffness to the initial stiffness for
different geometric parameters. . . . . . . . . ... oL e e e e e e e e e e
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The tunable axial stiffness is verified by experimental tests. (A) A paper frustum being
quasi-statically compressed in its initial state (top) and pop-up state (bottom). (B) The
axial loading responses of paper frusta with four geometries. The solid lines are the
averaged responses, and the shaded region denote the range of experimental data. The
dashed lines denote the bar and hinge predictions when the Young’s modulus equals
to 3.5 GPa. (C) Comparison of the stiffness ratio between the bar and hinge model
and the experimental results. The bars show one standard error for seven tests.
Multi-stability of twisting and pop-up leads to tunable bending stiffness of the Kres-
ling corrugated tube. (A) Deformation eigenmodes that correspond to the global bend-
ing of the twelve-frustum tube at its twisted state (top), initial state (middle), and pop-
up state (bottom). (B) The normalized bending eigenvalue () vs. the initial twisting
angle for the three stable states. (C) Deformation of the corrugated tube when used
as cantilevers at different stable configurations. The left end is fixed, and a uniform
load is applied on the right end. The deformed shapes are scaled so the maximum
displacement for each case is equal to the difference of the inner and the outer radius.
(D) The equivalent section modulus (mm*) based on the cantilever test for loads in the
X-Y plane represented as a polar plot at the three stable states, respectively. Here, the
outer radius R is set to be 31 mm, and the section modulus is shown as distance from
OTIZIN. . & v v v o e e e e e e e e e e e e e e e e e
Sensitivity of the axial stiffness tuning with respect to the crease stiffness. . . . . . . .
Reinforcing the ends of the tube prevents localized deformation modes but does not
lead to a significant change in the bending eigenvalues. The deformation modes of
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ABSTRACT

Thin-walled origami-inspired tubes can be used as lightweight systems for various functional ap-
plications in engineering. Folding motions can allow for deployment, reconfiguration, and compact
storage of the systems, while buckling of the thin walls can be used to tune the system properties
or achieve secondary functions such as energy absorption. This thesis aims to explore the stability
of morphing tubes and harness buckling for functional applications.

The dissertation first explores a deployable design where origami tubes extend, lock, and absorb
energy through crushing (buckling and plasticity). Numerical and experimental studies investigate
the tunable stiffness and energy absorption behaviors of these systems under static and dynamic
scenarios. The stiffness, peak crushing force, and total energy absorption of these origami tubes can
be changed through reconfiguration. These deployable systems can increase the crushing distance
between impacting bodies and can allow for on-demand energy absorption characteristics.

Next, the bending stability that allows for morphing in corrugated tubes is explored (bending
in drinking straws). Finite element models and a reduced-order elastic simulation package can
capture the nonlinear multi-stable behaviors. Modified cross-sections for the corrugated tubes
are introduced and explored to identify how geometry affects bending stability, energy barriers,
and stable configurations. Results show that thinner shells, steeper cones, and weaker creases are
required to achieve bending bi-stability.

A bar and hinge simulation model is then used to identify and capture a unique pop-up mech-
anism in Kresling origami that enables shape-morphing and stiffness tuning. By buckling the
valley creases, the conical Kresling will pop into a dome-like shape and the crease network will
be distorted. As a result, the flexible twisting motion via crease folding is prohibited, and the cone
stiffness can be increased by up-to-four orders of magnitude. Parametric studies revealed that a
shallower and more twisted Kresling unit will have more significant stiffness tuning. Experimental
tests were used to verify the numerical predictions of tunable stiffness.

This thesis explores how buckling in thin-walled origami tubes can be harnessed for functional
purposes. The mechanics of three different tubular designs are explored to give insight on how
geometry, sheet thickness, and material properties affect the buckling and multi-stable behaviors.
These findings can inform future designs of tubular origami for shape-morphing and other func-

tional uses.
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CHAPTER 1

Introduction

Origami, the ancient art of folding thin sheets, provides an efficient method to build 3D systems
from planar sheets with predefined patterns of creases. People may have adopted the idea from na-
ture, as some flying animals [1] are equipped with folding mechanisms to pack their wings when
relaxing, and to deploy them when flying. These natural instances are unlikely to be deliberately
designed, but they reveal the core functionality brought by creases. Through concentrated local ro-
tations around crease lines, the origami systems can undergo substantial change of shape, enabling
deployable and reconfigurable designs with properties that are otherwise not achievable through
conventional structures.

Recently, origami principles have gone far beyond artwork and have stepped into various engi-
neering fields, including structures that can be deployed to achieve complex functions [2,3,4,5,6,7],
metamaterials that are benefitted by the morphing potentials [8,9,10,11,12,13], and new fabrication
techniques [14, 15, 16,17, 18]. Many applications come from the morphing potential of origami,
and in particular, origami-inspired tubular structures have gained increasing interests [2,19,20,21].
Tubular structures with creases can either be deployed through kinematic foldings, or by snap-
through instabilities that involve panel deformations. Those deployable tubes have been utilized
for versatile applications, such as tunable stiffness [8], achieving gripping motions [21], recon-
figurable robotic arms [22], and energy absorptions [20]. Our work in this thesis focuses on the
tubular origami structures, exploring associated tunable properties and applications, as well as the
geometric influences.

The following sections of this chapter are organized as follows. Section 1.1 will give a brief
overview of multi-scale morphable structures in different disciplines. Section 1.2 narrows the
scope from general morphing structures to a specific category: deployable tubes. In this section,
we will review the common designs of origami tubes, their novel properties and associated appli-
cations, and the perspectives from which buckling can be utilized. Section 1.3 summarizes the

highlights of the thesis work that will be presented in the following chapters.



1.1 A brief overview of origami-inspired morphable structures

Origami principles have been applied in various engineering disciplines by utilizing their mor-
phing potential. The morphable structures can be deployed and compactly stowed to save storage
space, without sacrificing the complexity of functionalities. Moreover, deployability and recon-
figurability enable designs of meta-systems, in which geometries and properties can be adaptable
and programmable. These designs and systems can be found in drastically different scales from

micrometer to infrastructure scale, and some of the representative applications are shown in Fig.
1.1.

(F)

Figure 1.1: Origami-inspired morphable structures at multiple scales and in different disciplines.
(A) Deployable sandwich surfaces [23]. (B) Origami solar panel in its folded state (on the top)
and deployed state (on the bottom) [24]. (C) An accordion shelter [25]. (D) Interlocking cellular
assemblages of origami tubes [3]. (E) Rotorcraft protector based on modified Miura-ori pattern
[26]. (F) and (G) Micrometer-scale active origami structures [27,28].

At structural-engineering scales, origami-inspired structures provide deployable solutions for
creating building components such as canopies (Fig. 1.1A). The smooth functional surfaces main-
tain a high out-of-plane stiffness during and after deployment. At human scales, origami pat-
terns can be designed into thin-shell structures to create deployable surface systems, which can be

rapidly deployed to enable optimal solar insulation (Fig. 1.1B). A similar strategy has also been



used to manufacture accordion shelters that are easy to transport when stowed and adaptable to
various environments when deployed (Fig. 1.1C).

At decimeter scales, origami morphable structures offer efficient methods for creating structures
of which the mechanical properties can be tuned. Cellular assemblages of pre-folded thin sheets
can be deployed and interlocked into a stiff conforming shape during the deployment (Fig. 1.1D).
The popular Miura-ori pattern is employed to develop a free-to-spin protector for rotorcraft to
reduce the impact forces of collision (Fig. 1.1E). At micro scales, origami patterns can be cut
into planar systems to create 3D active structures, which are otherwise difficult to build through
traditional methods. Photolitography-based methods have been used to create micro-origami that

are suitable for creating medical devices and micro-robots (Fig. 1.1F, G).

1.2 Origami-inspired tubular structures

1.2.1 Origami-inspired tube applications

Among various forms of morphable structures, the deployable tubular structure is a specific
group that shares a similar shape to thin-walled tubes, yet can deform via concentrated deforma-
tions of crease lines. Based on the morphing potential and tubular form, there are three main
benefits from engineering perspective:

The first benefit is inherited from morphable structures: these tubes are deployable and recon-
figurable. As a specific category of deployable structures, they can be compactly stowed to save
space, and rapidly deployed to certain functional shapes (Fig. 1.2A, B). Typically, these tubes have
only one flexible mode (longitudinal deployment) through which they can deform without bend-
ing or stretching of panels. The limitation of deployment motion could be a drawback in some
situations, but it also facilitates the tubular system advantages for suitable applications. With the
simple actuation only on one end, the zipper-coupled tube can be deployed along its longitudinal
direction while maintaining stiffness for other directional loads [3]. There also exist some tubu-
lar designs that can be reconfigured along other directions. For instance, the Yoshimura tube can
be transformed from the load-bearing mode to a flexible mode by reconfiguring the cross-section
(Fig. 1.2C). Moreover, origami tubes can be further assembled into deployable metamaterials (Fig.
1.2D).

The second benefit comes from the continuity of the structure envelope. By carefully sealing
both ends, the deployable tubes are airtight, and thus can be pneumatically actuated to achieve
complex tasks, and acquire distinct mechanical properties. Based on the corrugated tubes, du
Pasquier et al. proposed a pneumatic toolkit that can achieve bending and extending motions (Fig.

1.2E). Internal pressure can also change the energy landscape of deployable tubes and enable more



stable states [19].

(A) (©)

(F) (1

(K)

Figure 1.2: Properties and applications of origami tubes. (A) A deployable traffic cone and (B)
vase [29]. (C) Switching between two modes by reconfiguring the Yoshimura tube cross-section
[30]. (D) A deployable metamaterial based on the Miura-ori pattern [31]. (E) A corrugated tube
becomes curved after pressurization [21]. (F) Programmable stiffness of the Kresling tower [8].
(G) Axial energy-absorbing test of an origami tube [32]. (H) A crawler [33] and (I) a robotic arm
based on the Kresling origami [22]. (J) An inflatable arch in its flat and deployed stable states [34].
(K) A transformable wheel [35].

The third benefit is the programmability facilitated by the large design space. The programma-
bility is reflected in the way that mechanical properties can be drastically tailored by changing the
design parameters. Stiffness of the Kresling origami tube, for example, can be differed by sev-
eral orders of magnitude via changing the design angles (Fig. 1.2F). In the following chapters of
main results, I will present parametric studies that reveal how the design parameter can change the
energy-absorbing performance, the multi-stability, and the stiffness tuning.

As empowered by these benefits, origami tubes have inspired numerous applications, in which

they can either improve the performance of conventional devices or create novel functions, such as



improved energy-absorbing performance (Fig. 1.2G), complex motions of crawling and gripping
(Fig. 1.2H, I), pneumatic deployment of a meter-scale arch (Fig. 1.2J), and the transformable
wheel that can adapt to different terrains (Fig. 1.2K).

1.2.2 Buckling in origami tubes

Structural buckling, once regarded as an undesired phenomenon that causes catastrophic fail-
ures, has now emerged as a new route to create functionalities in structures and artificial materials.
In nature, the doubly curved leaves of the Venus flytrap can rapidly snap to a closed state to capture
insects (Fig. 1.3A). A similar snap-through process often causes a sudden release of stored elastic
energy that can generate powerful motions, e.g., jumping of an inflated soft shell (Fig. 1.3B). From
the static perspective, buckling of structural elements opens a route for assembling 3D structures
from planar 2D surfaces, which is crucial in the field of photolithography-based fabrication (Fig.
1.30).

In this work, I aim to create functionality in origami tubes with strategically-triggered buckling
from three perspectives. For tubular energy absorbers that dissipate energy through the buckling
and plastic yielding of thin shells, an ideal design should have both low peak force P,.. and
high mean crushing force P, (Fig. 1.3D). The peak force, defined as the largest reaction force
during the axial crushing, needs to be low to reduce the possible damage that is transmitted to
the protected object [36]. The mean crushing force, is the total energy absorption divided by the
crushing distance §, needs to be high to absorb more impact energy (Fig. 1.3D). As compared to the
prismatic counterpart, stamping origami patterns onto the tube surfaces will introduce geometric
imperfections, which can reduce the peak force and trigger a buckling mode that is equally or more
efficient in terms of energy absorption, i.e., lower P, and similar P, (Fig. 1.3D).

Besides the improvement of plastic energy absorption, the instability can also be utilized in
designing a reusable elastic mechanism that traps impact energy (Fig. 1.3E). For a bi-stable mech-
anism, the reaction force is first positive then negative. The difference between the energy input

and output, Ey, — Eoy, 1s the amount of energy that is locked into the system.
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Figure 1.3: Buckling-induced mechanics and applications. (A) A Venus flytrap in its open and
closed states [37]. (B) An inflatable jumper by shell snapping [38]. (C) A planar origami pattern is
snapped into a 3D soccer shape [39]. (D) Typical load-displacement curves of axially compressing
prismatic tubes and origami tubes. (E) The load-displacement curve of a bi-stable origami tube.
(F) A corrugated origami tube in its two stable states: deployed and bent. (G) The Kresling module
can be popped up into a much stiffer, dome-like shape. (H) A Kresling module will typically be
elongated due to inflation. By buckling a single valley crease, a Kresling module can bend after
inflation [40].

For the thin-walled origami tubes, another benefit of elastic buckling is multiple stable states.
The bendy straw, for example, can morph and lock with both longitudinal and rotational defor-
mations [41]. From the geometry perspective, a bendy straw is a corrugated tube consisting of

frusta that are serially connected by creases (Fig. 1.3F). Each frustum can experience either a full



shell inversion that shortens the tube length, or a partial inversion that enables global rotation (Fig.
1.3F). Those functions allow the corrugated tube to conform to different shapes [42], and transport
fluids and gases [43,44]. The shape-morphing and multi-stable features then lead to the tunable
mechanics. As an example, the Kresling cone is flexible in its original configuration, which can
collapse under a plastic plate that weighs only ~ 20 g (Fig. 1.4G, i to i1). Once it is popped up into
a dome-like shape (i to iii), it can support more than 1500 g of weight, without showing visible
deformations (iii to iv). Moreover, the crease buckling can break up the topological arrangement
of crease lines, opening up different deformation modes for tubes that will otherwise only elongate

or shorten under pressurization (Fig. 1.3H).

1.2.3 Origami-inspired tube geometries

Figure 1.4: Some common designs of origami tubes. From left to right: zipper-coupled origami
tube [45], bendy straw [46], conical Kresling tube, cylindrical Kresling tower [8], Yoshimura tube
[5], and waterbomb tube [47].

Three different testbeds are selected for exploring the benefits of buckling in origami tubes,
ranging from the well-known Miura origami to modified conical origami patterns. For the energy-
absorbing improvement, I proposed a deployable energy absorber based on the zipper-coupled
origami tubes (Fig. 1.4). The zipper-coupled tube is a rigid-foldable tubular mechanism that
shows high bending stiffness when deployed [3]. It can be assembled to form a foldable cellular
metamaterial [31] or a deployable canopy with high out-of-plane stiffness [23]. With a self-locking
mechanism, the tube can be deployed to and locked at various configurations. As a result, the
energy performance can be tuned for different application scenarios.

I then use the bendy straw to explore how geometry affects the local snap-through of frustum
shells and the associated multi-stability of corrugated tubes. The corrugated flexible drinking straw
has been used in daily life for decades [48]. Recently, it has drawn research attention for its axial

and bending multi-stability, such as a reusable energy absorber [20] and a wire-like structure that



can fit arbitrary 3D shapes [42]. In this thesis, I use an elasticity-based bar and hinge model to
simulate its multi-stable bending behavior. Since the model can predict accurate elastic response
rapidly, I also run extensive parametric studies to explore the geometric influences.

The next tubular design investigated in this thesis is the conical Kresling tube, a generalization
of the traditional Kresling tower. Typically, the Kresling tube family can transition between two
axial stable configurations via a twisting motion [49]. Such axial bi-stability can be employed to
build a mechanical memory device [50], or be used to design a meta-structure with tunable band
frequency [51]. Recently, the Kresling tube has also received research attention for its bending
properties, such a magneto robotic arm [22] and an articulated robotic arm with tunable bending
stiffness [52]. In Chapter 4, I identify a new stable configuration of the Kresling tube. By buckling
the valley creases outwards, a unit cell of the Kresling tube can be converted to a dome-like shape
which will be substantially stiffer than the initial configuration.

Besides the above tubular designs that will be presented in the following chapters, there are
other tubular designs that have received increasing research attention, such as the Yoshimura tube
and the Waterbomb tube (Fig. 1.4). As comparing to the conventional energy absorbers, origami
crashboxes based on the Yoshimura pattern show superior performance [53]. By squeezing the
sides, the Yoshimura tube can be reconfigured to show drastically different stiffness [30]. The
waterbomb tube, as a reconfigurable structure, can be used to build a transformable wheel [35], or

be assembled to an earthworm-like robot [54].

1.3 Scope of the thesis

The main objective of this thesis is to explore the aforementioned buckling-induced functions
of origami tubes. The global mechanical properties are investigated using a reduced-order bar and
hinge model, the finite-element method, and with experiments. Based on the zipper-coupled tubes,
I explore a deployable design concept that can be extended and locked at various lengths to tune
the energy-absorbing performance. I next explore the bending stability of curved-crease origami
tubes, showing the influence of geometry and tube cross-section on the system stability. Finally, I
explore the conical Kresling origami tube, where the valley creases can be buckled to increase the
stiffness in both the axial and bending directions. A detailed discussion of the thesis organization
is as follows.

Chapter 2 presents a deployable energy absorber that can extend, lock, and is intended to
absorb energy through crushing (buckling and plasticity). Energy absorption devices are widely
used to mitigate damage from collisions and impact loads. Due to the inherent uncertainty of
possible impact characteristics, passive energy absorbers with fixed mechanical properties are not

capable of serving in versatile application scenarios. The proposed system concept is unique be-



cause origami deployment can increase the crushing distance between two impacting bodies and
can tune the energy absorption characteristics. I show that the stiffness, peak crushing force, and
total energy absorption of the origami tubes all increase with the deployed state. I present nu-
merical and experimental studies that investigate these tunable behaviors under both static and
dynamic scenarios. The energy-absorbing performance of the deployed origami tubes is slightly
better than conventional prismatic tubes in terms of total absorbed energy and peak force. When
the origami tubes are only partially deployed, they exhibit a nearly-elastic collapse behavior, how-
ever, when they are locked in a more deployed configuration they can experience non-recoverable
crushing with higher energy absorption. Parametric studies reveal that the geometric design of the
tube can control the nonlinear relationship between energy absorption and deployment. A phys-
ical model shows the potential of the self-locking after deployment. This concept for deployable
energy-absorbing origami tubes can enable future protective systems with on-demand properties
for different impact scenarios.

Chapter 3 investigates the geometric influence on the bending stability of corrugated tubes
with curved creases. Thin-walled corrugated tubes that have a bending multistability, such as the
bendy straw, allow for variable orientations over the tube length. Compared to the long history
of corrugated tubes in practical applications, the mechanics of the bending stability and how it
is affected by the cross-sections and other geometric parameters remain unknown. To explore
the geometry-driven bending stabilities, I used several tools, including a reduced-order simulation
package, a simplified linkage model, and physical prototypes. I found the bending stability of a
circular two-unit corrugated tube is dependent on the longitudinal geometry and the stiffness of
the crease lines that connect separate frusta. Thinner shells, steeper cones, and weaker creases
are required to achieve bending bi-stability. I then explored how the bending stability changes as
the cross-section becomes elongated or distorted with concavity. I found the bending bi-stability
is favored by deep and convex cross-sections, while wider cross-sections with a large concavity
remain mono-stable. The different geometries influence the amounts of stretching and bending
energy associated with bending the tube. The stretching energy has a bi-stable profile and can
allow for a stable bent configuration, but it is counteracted by the bending energy which increases
monotonically. The findings from this work can enable informed design of corrugated tube systems
with desired bending stability behavior.

In Chapter 4, I study the tunable stiffness and the multi-stability of corrugated tubes consisting
of serially interconnected polygonal frusta based on Kresling origami pattern. Under appropriate
geometric designs, the origami corrugated tube either has straw-like multi-stability with axial in-
version and bending, or has multiple axial stable states via a twisting motion. I focus on the latter
category and reveal another stable ”pop-up” configuration via local buckling of the valley creases.

By switching among the three types of stable configurations, the corrugated tube can exhibit dras-



tically different axial and bending stiffness. Moreover, the deformation mode can switch from
twisting to inversion after the pop-up. To quantify the tunable mechanical properties, I employ an
elasticity-based bar and hinge model and perform parametric studies to discover the relationship
between the geometry and the mechanics. The results suggest that a higher initial twisting and a
lower initial slope will provide more significant stiffness and shape tuning, and the frustum stiff-
ness can be increased by four orders of magnitude. To validate the numerical results, I fabricate
proof-of-concept origami frusta and corrugated tubes. These prototypes demonstrate the desired
multi-stable behavior, the tunable stiffness, and the deformation mode switching. This design of
corrugated tubes has potential applications including tunable energy absorbers, deployable traffic
cones, and reconfigurable robotic arms.

Chapter 5 summarizes the main findings and conclusions from the thesis. I also present out-
looks into future studies that can push the origami tubes with structural instability towards real-

world applications.
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CHAPTER 2

Locking Zipper-coupled Origami Tubes for
Deployable Energy Absorption

Origami principles can be beneficial to tubular energy absorbers from three aspects. First, an
origami tubular energy absorber can be deployed to increase the crushing distance. Second, it
can be reconfigured to tune its performance. Third, as compared to prismatic tubes, a tube with
origami pattern will crush in a mode that is more efficient in terms of absorbing impact energy.
In this chapter, we propose a deployable energy absorber based on the zipper-coupled origami
tube. With zip-tie mechanisms, the system can be deployed and locked at various configurations to
provide tunable energy absorption. Here, we use finite-element simulations and quasi-static tests
to quantify the tunability, and we perform parametric studies to find out the optimal design under
different application scenarios. This work has been published as: Wo, Z., Raneses, J.M., and
Filipov, E. T., Locking Zipper-coupled Origami Tubes for Deployable Energy Absorption, ASME.
J. Mech. Rob. 14(4): 041007. doi:10.1115/1.4054363.

2.1 Introduction

Conventional energy absorption systems serve as passive sacrificial structures that absorb the
kinetic energy of an impact through buckling, crumpling, and plastic deformation. Thin walled
prismatic tubes and cellular structures are effective in this role because they can provide a large
amount of energy absorption for their small overall mass [55]. The energy absorption charac-
teristics of such structures are typically evaluated from quasi-static compressive tests where the
crushing distance (9), mean crushing force (P,,), and peak crushing force ( P,y ), are of primary
interest (Fig. 2.1A). The total energy that can be absorbed by the system is ¢ - P,,, while the peak
crushing force is of interest as it correlates with the forces and accelerations translated to the object
that is to be protected.

One recent innovation for energy-absorbing tubes has been to use origami inspired patterns in

the design and fabrication of the thin-walled structures [36]. The pre-patterned geometry triggers
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controlled buckling modes during crushing, which in turn can reduce the peak forces and increase
the total amount of energy absorbed (Fig. 2.1B). Origami can also offer a variety of geometric de-
sign options and can have the benefit of easy fabrication from a flat developable surface [53,56,57].
For example, a thin-walled tube with pre-folded Yoshimura pattern [32] and a sandwich-like struc-
ture with Kresling pattern [58] can both provide favorable energy-absorbing behaviors. However,
all of these previous origami systems are passive, and the entire energy absorption performance is
determined by the design geometry and material properties.

In this chapter, we present a concept that takes further advantage of the origami principles and
uses the folding kinematics of zipper-coupled tubes [3] to enable deployment and tuning of the
energy absorber. By deploying the origami, it becomes possible to initiate earlier contact between
colliding objects and to increase the crushing distance () of the system. The longer crushing
distance allows for an increase in the amount of absorbed energy if we assume that forces would
be in the same range (Fig. 2.1C). Additionally, a deployable energy absorber could be stowed
compactly prior to impact in 