
Acceleration Techniques of Sparse Linear Algebra on
Emerging Architectures

by

Siying Feng

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2022

Doctoral Committee:

Associate Professor Ronald G. Dreslinski, Chair
Professor Scott Mahlke
Professor Trevor N. Mudge
Professor Zhengya Zhang

Siying Feng

fengsy@umich.edu

ORCID iD: 0000-0002-2685-4149

© Siying Feng 2022

Dedicated to my parents, Jianping Feng and Xianshi Feng,

for all the love, support, and sacrifice they have given to me.

ii

ACKNOWLEDGMENTS

My greatest thank goes to my advisor, Professor Ronald Dreslinski, who introduced me
to academic research and gave me invaluable support and guidance throughout my Ph.D.
journey. I also express my gratitude to Professor Trevor Mudge, who is always willing
to share his wisdom and advise me on my studies. I would like to thank Professor Scott
Mahlke and Professor Zhengya Zhang for providing important, wider perspectives to my
work and guiding me as my dissertation committee member.
I gratefully acknowledge Professor Chaitali Chakrabarti, David Blaauw, Hun-Seok Kim,
Christophe Dubach, Murray Cole, and Michael O’Boyle for their insights and guidance in
the Defense Advanced Research Projects Agency (DARPA) Software-Defined Hardware
(SDH) program, which supports a significant portion of work in this dissertation. I am also
extremely grateful for the fellowships from Rackham Graduate School and the Computer
Science and Engineering (CSE) department that enabled me to focus on research and ex-
plore my own research interests.
I sincerely thank all my collaborators for their contributions to the works presented in this
dissertation. I want to give my special thanks to Subhankar Pal, who led the develop-
ment of Transmuter and has been my closest collaborator, my best friend, and my mentor.
I would also like to thank my other close collaborators: Jiawen Sun, Aporva Amarnath,
Kuan-Yu Chen, Dong-hyeon Park, Liu Ke, Yichen Yang, for their valuable efforts and
innovative ideas. I additionally thank my lab mates and friends: Tutu Ajayi, Nishil Ta-
lati, Javad Bagherzadeh, Heewoo Kim, Austin Rovinski, Jielun Tan, Deepika Natarajan,
Morteza Fayazi, Suman Kumar Mallik, Haojie Ye, and Yuhan Chen, for the memorable
moments we share that make working in the lab an enjoyable experience.
Last but not least, I want to express my profound gratitude to my family. I would not be
who I am today without the love and support of my parents, Jianping Feng and Xianshi
Feng. They have always been there for me, encouraging me during tough times, supporting
all my decisions, and being my never-ending source of strength. Finally, I would like to
thank Xin He, my partner both in work and in life, for keeping me company through all the
lows and highs of life.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . xii

LIST OF PROGRAMS . xiii

LIST OF ABBREVIATIONS . xiv

ABSTRACT . xviii

CHAPTER

1 Introduction . 1

1.1 Emerging Architecture Techniques . 1
1.2 Dissertation Overview . 4

2 Challenges of Executing Sparse Linear Algebra on Contemporary Hardware . 6

2.1 A Parallelism Analysis on Prominent Desktop Applications 6
2.1.1 Methodology . 7
2.1.2 Evaluation Overview . 7
2.1.3 Evolution of Concurrency . 9
2.1.4 Analyses on GPU . 10
2.1.5 Takeaways . 13

2.2 Prevalence and Challenges of Sparse Linear Algebra 13

3 General-Purpose Acceleration through Reconfigurable Memory Hierarchy . . 17

3.1 Introduction . 18
3.1.1 Contribution . 20

3.2 Motivation . 21
3.2.1 Contemporary Computing Platforms 21
3.2.2 Taming the Diversity across Kernels 22
3.2.3 Hardware Implication of Disparate Patterns 24

3.3 Transmuter Overview . 26

iv

3.4 Transmuter Architecture Design . 29
3.4.1 General-purpose Processing Element and Local Control Processor 29
3.4.2 Work and Status Queues . 29
3.4.3 Reconfigurable Data Cache (R-DCache) 30
3.4.4 Reconfigurable Crossbar (R-XBar) 30
3.4.5 Synchronization Scratchpad Memory 32

3.5 Transmuter Reconfiguration Design . 32
3.6 Prototype Software Stack . 34
3.7 Experimental Methodology . 36

3.7.1 Performance Models . 36
3.7.2 Power and Area Models . 38

3.8 Kernel Implementations on Transmuter 38
3.8.1 Dense Matrix Multiplication and Convolution 39
3.8.2 Fast Fourier Transform . 41
3.8.3 Sparse Matrix Multiplication . 42
3.8.4 Performance with Different Configurations 45

3.9 Evaluation . 48
3.9.1 Comparison with the CPU and GPU 48
3.9.2 Comparison with FPGA, CGRA, and ASIC 50
3.9.3 Power and Area . 50
3.9.4 End-to-End Workload Analysis 50
3.9.5 Throughput and Bandwidth Analysis 53
3.9.6 Design Space Exploration . 54
3.9.7 Control Divergence and Data Reuse Analysis 54

3.10 Related Work . 56
3.11 Conclusion . 57

4 Intelligent Software and Hardware Reconfiguration for Graph Processing . . 59

4.1 Introduction . 60
4.2 Background and Related Work . 62

4.2.1 Graph Frameworks using Software Reconfigurations 62
4.2.2 Optimized Hardware Acceleration for Graph Analytics 62
4.2.3 Opportunities in Combining Software/Hardware Optimizations . 63

4.3 CoSPARSE Reconfiguration Layer Design 63
4.3.1 Reconfigurable SpMV Implementation 64
4.3.2 Workload Balancing Strategies 66
4.3.3 Reconfiguration Threshold Analysis 67
4.3.4 Graph Analytics Algorithms on CoSPARSE 71

4.4 Methodology . 73
4.5 Evaluation . 73

4.5.1 Workload Balancing Evaluation 74
4.5.2 Comparison against Existing Platforms 75

4.6 Conclusion . 78

5 Near-Memory Multi-way Merge Solution for Sparse Data Merging 79

v

5.1 Introduction . 80
5.2 Background and Motivation . 83

5.2.1 Sparse Matrix Formats and Sparse Matrix Transposition 83
5.2.2 Characterizations on Sparse Matrix Transposition 85

5.3 MeNDA System Architecture . 87
5.3.1 Algorithm and Dataflow . 88
5.3.2 Processing Unit (PU) Microarchitecture 88
5.3.3 Seamless Back-to-back Merge Sort 90
5.3.4 Memory Bandwidth Utilization Optimizations 91
5.3.5 Input Operand Co-location and Workload Balancing 92
5.3.6 Adaptation to SpMV . 93

5.4 Programming Model and Interface . 95
5.4.1 Integrating MeNDA with Existing Platforms 96

5.5 Experimental Methodology . 97
5.5.1 Simulation Methodology . 98
5.5.2 Baseline and Benchmarks . 98

5.6 Evaluation . 99
5.6.1 Comparison with CPU and GPU Baselines 99
5.6.2 Area and Power Analysis . 100
5.6.3 Benefits and Overhead Analysis on End-to-end Workloads 101
5.6.4 Memory Bandwidth Utilization Optimization Analysis 102
5.6.5 Scalability Analysis . 103
5.6.6 Matrix Distribution Analysis . 104
5.6.7 Design Space Exploration . 104
5.6.8 SpMV Analysis . 105

5.7 Related Works . 106
5.8 Conclusion . 107

6 Conclusion . 109

BIBLIOGRAPHY . 111

vi

LIST OF FIGURES

1.1 Growing trend in the number of transistors and microprocessor performance
and power over the past 42 years [164]. 2

1.2 Comparison in performance, efficiency, and programmability/flexibility for
different architecture designs [129]. 2

1.3 The growing trend of (a) DNN model complexity over the past 8 years [82]
and (b) DRAM capacity, bandwidth, and latency over the past 20 years [143]. . 3

2.1 Comparison between TLP of desktop applications for 2000 [56, 57], 2010
[22], and 2018 [this work]. 9

2.2 Comparison between GPU utilization of desktop applications for 2010 [22]
and 2018 [this work]. 10

2.3 Transcode rates (GTX 1080 Ti only) and GPU utilization of HandBrake and
WinX for 2, 4, and 6 logical cores, showing the effect of GPU offloading. The
transcode rates for GTX 680 are not shown as they overlap exactly with those
for GTX 1080 Ti. 11

2.4 GPU utilization of GTX 680 and 1080 Ti for Premiere Pro. Video export with
CUDA support shows higher utilization and lower TLP than without CUDA,
and the utilization is higher for GTX 680. 12

2.5 GPU utilization of GTX 680 and 1080 Ti for applications that show substan-
tial use of GPU. VR is excluded as it requires a GPU better than GTX 970.
PhoenixMiner does not support GTX 680. 12

2.6 High-level overview of SpMM using the inner product algorithm [153] 15

3.1 Left: Transmuter compared to contemporary platforms in terms of programma-
bility, hardware flexibility, and reconfiguration overhead. Right. Energy-
efficiency comparisons for kernels spanning a wide range of arithmetic intensi-
ties (FLOPS/B). Note that for ASICs and CGRAs, no single piece of hardware
supports all kernels. Transmuter achieves 2.0× better average efficiency over
state-of-the-art CGRAs while retaining the programmability of GPPs. 19

3.2 Trade-offs between programmability and efficiency in prominent computer ar-
chitectures. 21

vii

3.3 Fraction of execution time of kernels in applications spanning the domains of
ML, signal processing, and graph analytics [207, 139, 93, 43, 130, 120, 44,
131, 35, 27] on a heterogeneous CPU-GPU platform. Some key characteris-
tics, namely arithmetic intensity, data reuse, and divergence, of each kernel are
also listed. 23

3.4 Left: Performance of an SPM over a cache-based single-core system for a syn-
thetic workload with variable access patterns and arithmetic intensity. Right:
Performance of a shared cache over a private cache-based 8-core system on a
synthetic program with varying access strides and working set overlaps across
cores. “Contending” is a case where all cores, in a given cycle, access ad-
dresses that map to the same bank in the shared mode. 24

3.5 High-level Transmuter architecture showing the configurations evaluated in
this work, namely a) Trans-SC (L1: shared cache, L2: shared cache), b) Trans-
PS (L1: private SPM, L2: private cache), and c, d) Trans-SA (L1: systolic
array, L2: private cache). 27

3.6 a) High-level overview of a host-Transmuter system. b) Transmuter architec-
ture showing 4 tiles and 4 L2 R-DCache banks, along with L2 R-XBars, the
synchronization SPM, and interface to off-chip memory. Some L2 R-XBar
input connections are omitted for clarity. c) View of a single tile, showing 4
GPEs and the work/status queues interface. Arbiters, instruction paths, and
caches (ICaches) are not shown. d) Microarchitecture of an R-XBar, with
the circled numbers indicating the mode of operation: 1⃝: ARBITRATE, 2⃝:
TRANSPARENT, 3⃝: ROTATE. 28

3.7 a) Logical view of an R-DCache bank in FIFO+SPM mode, with 4 FIFO par-
titions, one for each direction in 2D. b) Loads and stores to special addresses
corresponding to each direction are mapped to POP and PUSH calls, respec-
tively, into the FIFOs. 30

3.8 a) Physical and b) logical views of 1D systolic array connections within a
Transmuter tile. Spatial dataflow is achieved by the R-XBar rotating between
the two port-connection patterns. 31

3.9 Transmuter software stack. Application code is written using Python and in-
vokes library code for the host, LCPs, and GPEs. The implementations are
written by experts using our C++ intrinsics library. Also shown is an exam-
ple of a correlation kernel on Trans-SA (host library code not shown). The
end-user writes standard NumPy code and changes only the import package to
transpy.numpy (App:L1). Upon a library call (App:L5), the host performs
data transfers and starts execution on Transmuter. The LCP broadcasts the vec-
tor x to all GPEs (LCP:L7). Each GPE pops the value (GPE:L4), performs a
MAC using its filter value (f) and east neighbor’s partial sum (GPE:L7), and
sends its partial sum westward (GPE:L11). The last GPE stores the result into
HBM. The host returns control to the application after copying back the result
vector y. 34

3.10 Illustration of dense matrix-matrix and matrix-vector multiplication kernels
mapped onto Transmuter. 39

viii

3.11 Top: Mapping of FFT stages onto GPEs in Transmuter (Trans-SA). Bottom:
Each GPE executes butterfly operations greedily, leading to a fully-pipelined
schedule. 41

3.12 SpMM mapping on Transmuter. Left: Multiply phase: each GPE multiplies
an element of a column of A with a row of B, generating a partial product ma-
trix. Right: Merge phase: each GPE independently streams in partial product
matrix rows, performs mergesort, and stores the result. 42

3.13 Performance of 2×8 Trans-SC, Trans-PS, and Trans-SA configurations across
different inputs for the kernels in Sec. 3.8. All matrix operations are performed
on square matrices without loss of generality. Convolution uses 3×3 filters, 2
input/output channels, and a batch size of 2. 46

3.14 Cycle breakdown for the kernels in Sec. 3.8. * (red) indicates the best-performing
configuration. “Other” comprises stalls due to synchronization and bank con-
flicts. ▼: work imbalance across GPEs (σ/µ of # FLOPS). Inputs are: 1k
(GEMM), 8k (GEMV), 2k (Convolution), 16k (FFT), 4096, 0.64% (SpMM),
4k, 2.6%, dense vector (SpMV). 47

3.15 Throughput (left) and energy-efficiency (right) improvements of Transmuter
over the CPU and GPU. Data is averaged across the inputs: 256-1k (GEMM),
2k-8k (GEMV), 512-2k (Convolution), 4k-16k (FFT), 1k-4k, 0.64% (SpMM),
and 2k-4k, 2.6% (rM), 10.2%-100% (rv) (SpMV). Geometric mean improve-
ments for the compute-bound and memory-bound kernels are shown separately. 48

3.16 Mapping of a multi-kernel, mixed data application, Sinkhorn, on Transmuter.
Computation iterates between M-GEMM and DMSpM, with Trans-SC ↔ Trans-
PS reconfiguration before and after DMSpM-Merge. DMSpM-Merge benefits
from the private SPMs in Trans-PS, since each GPE works on multiple disjoint
lists. 52

3.17 Per inner-loop iteration energy (left) and EDP (right) comparing Trans-SC,
Trans-PS and Reconf. (Trans-SC ↔ Trans-PS) for Sinkhorn normalized to
CPU. Input matrix dimensions and densities are — query: (8k×1), 1%, data:
(8k×1k), 1%, M: (8k×8k), 99%. 53

3.18 Effect of scaling tiles and GPEs per tile on performance and memory band-
width for GEMM (Trans-SC), GEMV (Trans-SC) and SpMM (Trans-PS). In-
puts are: 1k (GEMM), 8k (GEMV), 4096, 0.64% (SpMM). 54

3.19 Left: A synthetic parallel application that launches threads to process N×N
matrices. Each thread (i) reads the input value and bins it into one of D bins,
(ii) applies R instances of function fd unique to bin d and writes the result.
Each element of a coefficient array feeds into fd. Thus the input is reused R
times and the degree of divergence scales with D. Right: Speedup of Trans-
muter with a uniform-random matrix (# GPEs = # GPU threads = 64). Trans-
muter reconfigures from Trans-PS to Trans-SC beyond R = 4. 55

4.1 Overview of the proposed CoSPARSE framework. 61

ix

4.2 Structure of CoSPARSE hardware and software reconfiguration framework.
For every invocation to CoSPARSE, we select the best software (inner product
or outer product), followed by hardware configurations (Trans-SCS or Trans-
SC for inner product, Trans-PC or Trans-PS for outer product), assuming a
2×4 system. 64

4.3 Matrix partitioning based on NZEs and algorithm mapping of inner product
on Trans-SCS and outer product on Trans-PS that focuses on maximizing data
reuse and reducing stalls for random accesses on a 2×2 system. 65

4.4 Speedup of outer product (Trans-PC) vs. inner product (Trans-SC). Generally,
inner product performs better for dense vectors and outer product performs
better for sparse vectors. The crossover vector density decreases when more
PEs are present in a tile. 68

4.5 Speedup of Trans-SC vs. Trans-SCS for inner product. Trans-SCS achieves
more performance gain for denser vectors or when the reuse of data in SPM is
higher. 69

4.6 Speedup of Trans-PC vs. Trans-PS for outer product. The performance gain
of Trans-PS grows with increasing vector density, increasing number of tiles,
and decreasing number of PEs per tile. 70

4.7 The SpMV execution time of power-law matrices normalized to uniform ma-
trices on Trans-SC (inner product) and Trans-PC (outer product) on an 8×16
system. Workload balancing benefits inner product more than outer product,
especially Trans-SC for inner product. 74

4.8 Speedup and energy efficiency gain of CoSPARSE (16×16) over CPU and
GPU. The vector density sweeps from 0.001 to 1.0. CoSPARSE achieves an
average speedup (energy efficiency gain) of 4.5×(282.5×) and 17.3×(730.6×)
over CPU and GPU, respectively. 76

4.9 Vector density, execution time normalized to inner product in Trans-SC, and
the best software/hardware configuration for each iteration of CoSPARSE (16×16)
for SSSP on soc-pokec. Each iteration is color coded with the best configu-
ration. The best configuration changes with the active vertex set, which con-
forms to the analysis in Sec. 4.3.3. 77

4.10 Speedup and efficiency gain of CoSPARSE (16×16) over Ligra (Intel Xeon
E7-4860 at 2.6 GHz, 48 cores with 256GB DRAM). 78

5.1 Transposition and compressed storage formats for sparse matrices. 83
5.2 (a) Breakdown of SSSP execution time on CoSPARSE [54] for graph amazon

based on common misconceptions, using mergeTrans[195], and using our
work, MeNDA. (b) Execution time comparison of recent proposals for sparse
matrix transposition (mergeTrans) and SpMM (OuterSPACE[151] / SpArch[214]).
Recent hardware breakthroughs have greatly optimized sparse applications,
e.g. SpMM and SpMV, whereas little research effort has been spent on ac-
celerating sparse matrix transposition, making transposition an increasingly
evident bottleneck. 85

x

5.3 (a) Roofline model of mergeTrans [195] running with 64 threads. Sparse
matrix transposition is memory bandwidth bound because the data points are
close to the ”roof”, i.e. the red and blue lines that label the peak throughputs
which can be achieved when the system memory bandwidth is fully utilized.
(b) Memory bandwidth utilized by mergeTrans with an increasing num-
ber of threads. The memory bandwidth utilization saturates before reaching
maximum due to the bottleneck at the memory interface. 86

5.4 Dataflow of MeNDA performing transposition on the sparse matrix in Fig-
ure 5.1. Each round of merge sort is executed sequentially on a 4-way merge
tree. Left: The outcome of each round in the dense data structure. Right: The
real input and output data of each round that are stored in memory. The input
and output data are stored in the compressed data storage formats (CSR/CSC),
and the intermediate data are stored in COO. 87

5.5 Architecture of MeNDA (top) and a MeNDA PU (bottom). A PU consists of
a merge tree, prefetch buffers, a controller, a request queue, and a memory
interface unit. The extra units required to support SpMV, i.e. a delay buffer
and floating point adders and multipliers, are highlighted in red boxes. 89

5.6 Timing diagram of data propagation for merge sort shown in Figure 5.1 on a
4-leaf merge tree assuming a memory latency of 3 cycles. The cycle number
and the corresponding memory activities are shown in the bottom right table.
End-of-line signal propagation is shown with red arrows. 91

5.7 Matrix partitioning across 4 ranks. 93
5.8 (a) Sample pseudo-code of CoSPARSE using the programming interface of

MeNDA and (b) the microarchitecture of the hardware substrate of CoSPARSE
with 2 processing tiles and 4 PEs per tile. 95

5.9 Experimental methodology for MeNDA. 97
5.10 Speedup of MeNDA over scanTrans and mergeTrans on CPU [195] and

cuSPARSE on GPU. The red line labels the speedup of 1. 100
5.11 Execution time of SSSP on CoSPARSE for amazon without runtime trans-

position, with runtime transposition using mergeTrans, and with runtime
transposition using MeNDA. CoSPARSE (∼2xStorage) avoids runtime trans-
position at the cost of storing two copies of the graph [54]. 101

5.12 The execution time of MeNDA applying different optimizations normalized to
that of the baseline implementation. In the legend, ”prefetch” refers to stall-
reducing prefetching enabled, ”coal” refers to request coalescing enabled, and
the number refers to the size of the prefetch buffers. 102

5.13 Execution time and throughput of MeNDA sweeping matrix size and density
and the number of channels. 103

5.14 The execution time of the uniform matrices compared with that of the power-
law matrices with the same sizes and densities. 104

5.15 The execution time and EDP of MeNDA sweeping the accelerator frequency
(left) and number of leaf PEs (right). 105

5.16 Energy efficiency gain of MeNDA over Sadi et al. [165] for SpMV. 106

xi

LIST OF TABLES

2.1 Specifications of the benchmarking desktop system. 7
2.2 Summary of application TLP and GPU utilization of all applications in the

benchmarking suite. The color of the heat map region corresponding to ci in-
dicates the percentage of time when i threads are running concurrently. (*for
PhoenixMiner, two packets were simultaneously executing on the GPU through-
out the experiment) . 8

2.3 Transcode rate, TLP, and GPU utilization of WinX with and without NVIDIA
CUDA/NVENC. Enabling the GPU improves the transcode rate and lowers
the TLP. 11

3.1 Reconfigurable features at each level in Transmuter. In the “hybrid” memory
mode, banks are split between caches and SPMs. 26

3.2 Critical host- and Transmuter-side C++ intrinsics used to write optimized ker-
nel libraries (TID = Tile ID, GID = GPE ID). Note that the API is depicted for
a single-cluster design, for simplicity. 35

3.3 Microarchitectural parameters of Transmuter gem5 model. 37
3.4 Specifications of baseline platforms and libraries evaluated. 38
3.5 Energy-efficiency improvements (black) and deteriorations (red) of Transmuter

over prior FPGAs, CGRAs, and ASICs. 50
3.6 Power and area of a 64×64 Transmuter cluster in 14 nm. 51
3.7 Estimated speedups for the end-to-end workloads in Fig. 3.3. 51
3.8 Qualitative comparison with prior work. 57

4.1 Definitions of Matrix Op and Vector Op of Algorithms mapped to CoSPARSE,
where Sp represents the adjacency sparse matrix and V represents the frontier
vector. src is the source vertex and dst is the destination vertex. 72

4.2 Specifications for real-world graphs. 74

5.1 Parameters of Ramulator and MeNDA. 97
5.2 Specifications of CPU and GPU baselines. 98
5.3 Specifications of Synthetic Uniform* (N#) and Power-law†(p#) Matrices. . . . 99
5.4 Specifications of SuiteSparse Matrices [40]. 99

xii

LIST OF PROGRAMS

3.1 GEMV pseudocode on Transmuter in Trans-SC. 40
3.2 FFT pseudocode on Transmuter in Trans-SA. 43
3.3 SpMV pseudocode on Transmuter in Trans-SA. 44

xiii

LIST OF ABBREVIATIONS

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

BFS Breadth-First Search

BLAS Basic Linear Algebra Subprograms

CAM Content-Addressable Memory

CF Collaborative Filtering

CGRA Coarse-Grain Reconfigurable Architecture

COO Coordinate Format

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CS Critical Section

CSC Compressed Sparse Column Format

CSR Compressed Sparse Row Format

DFG Data-Flow Graph

DIMM Dual In-line Memory Module

DMA Direct Memory Access

DMSpM Dense Matrix - Sparse Matrix Multiplication

DNN Deep Neural Network

DRAM Dynamic Random Access Memory

xiv

DSL Domain-Specific Languages

EDP Energy-Delay Product

FCFS-FR First Come First Serve - First Ready

FFT Fast Fourier Transform

FIFO First-In-First-Out buffer

FLOPS Floating-Point Operations

FP Floating-Point

FPGA Field Programmable Gate Array

FSM Finite-State Machine

FU Functional Unit

GEMM General (dense) Matrix-Matrix multiplication

GEMV General (dense) Matrix-Vector multiplication

GTEPS Giga Traversed Edges Per Second

GPE General-purpose Processing Element

GPP General-Purpose Processor

GPU Graphics Processing Unit

HBM High-Bandwidth Memory

HLL High-Level Language

HMC Hybrid Memory Cube

HPC High-Performance Computing

ISA Instruction Set Architecture

MAC Multiply-And-Accumulate

M-GEMM Masked General Matrix - Matrix multiplication

MIMD Multiple-Instruction, Multiple Data

ML Machine Learning

xv

MLP Memory-Level Parallelism

MSB Most Significant Bit

MSHR Miss Status Holding Register

NMP Near-Memory Processing

NZE Non-zero Element

NNZ Number of Non-Zeros

LCP Local Control Processor

LRG Least-Recently Granted

LS Load/Store

OT Optimal Transport

PE Processing Element

POSIX Portable Operating System Interface

PR PageRank

PU Processing Unit

RTL Register-Transfer Level

SIMD Single Instruction, Multiple Data

SIMT Single Instruction, Multiple Threads

SM Streaming Machine

SMT Simultaneous Multi-Threading

SpMM Sparse Matrix-Matrix Multiplication

SpMV Sparse Matrix-Vector Multiplication

SPM Scratchpad Memory

SPMD Single-Program, Multiple Data

SRAM Static Random Access Memory

SSN Swizzle-Switch Network

xvi

SSSP Single-Source Shortest Path

TLP Thread-Level Parallelism

VR Virtual Reality

XCU crosspoint control unit

xvii

ABSTRACT

Recent years have witnessed a tremendous surge of interest in accelerating sparse linear
algebra applications. Sparse linear algebra is a fundamental building block and usually the
performance bottleneck of a wide range of applications, such as machine learning, graph
processing, and scientific computing. Optimizing sparse linear algebra kernels is thus crit-
ical for the efficient computation of these workloads. The key challenge of sparse linear
algebra lies in the irregular access pattern induced by the sparseness nature, which renders
the deep cache hierarchy in General-Purpose Processors (GPPs) useless and makes sparse
linear algebra applications notoriously memory intensive. This dissertation proposes multi-
ple approaches to optimize the performance and efficiency of sparse linear algebra kernels
by taking advantage of emerging architecture techniques, including hardware specializa-
tion, architecture reconfiguration, and Near-Memory Processing (NMP).

Aiming for a balance among efficiency, flexibility, and programmability for architec-
ture designs, this dissertation first proposes Transmuter, a reconfigurable architecture that
features massively-parallel Processing Elements (PEs) and a flexible on-chip memory hi-
erarchy that reconfigures the memory type, resource sharing, and dataflow at runtime to
adapt to different applications. Transmuter demonstrates significant efficiency gains over
the Central Processing Unit (CPU) and Graphics Processing Unit (GPU) across a diverse set
of commonly-used kernels while offering GPU-like programmability. More importantly,
Transmuter retains high performance for sparse linear algebra kernels, achieving an energy
efficiency within 4.1× compared to state-of-the-art functionally-equivalent Application-
Specific Integrated Circuits (ASICs).

As the algorithm mapping and hardware configuration play a crucial role in the perfor-
mance of Transmuter, the next piece of this dissertation proposes the CoSPARSE frame-
work, which guides the runtime reconfiguration of Transmuter to achieve the best perfor-
mance for graph analytics workloads. During execution, CoSPARSE intelligently reconfig-
ures to the best-performing software algorithm and hardware configuration for Transmuter
based on the input characteristics. The synergistic software and hardware reconfiguration

xviii

amass a net speedup of up to 2.0×, over a naı̈ve baseline implementation with no soft-
ware or hardware reconfiguration. Compared to a recent graph processing framework on a
server-class CPU, CoSPARSE achieves an average speedup and energy efficiency improve-
ment of 1.5× and 404.4×, respectively, across a suite of widely-used graph algorithms.

The dynamic algorithm reconfiguration of CoSPARSE and many other graph frame-
works requires the input graph to be stored in multiple data formats to avoid runtime
transposition, trading off storage for performance. As data sizes keep growing, to prevent
designs like CoSPARSE from expensive disk accesses when memory storage is limited,
the final part of this dissertation presents MeNDA, a scalable near-memory accelerator
for sparse matrix transposition and sparse merging dataflows. The wide application of
multi-way merge sorting allows MeNDA to be easily adapted to other sparse primitives
such as Sparse Matrix-Vector Multiplication (SpMV). Compared to two state-of-the-art
implementations of sparse matrix transposition on a CPU and a sparse library on a GPU,
MeNDA achieves a speedup of 19.1×, 12.0×, and 7.7×, respectively. Because MeNDA
greatly reduces the runtime transposition overhead, integrating MeNDA can save reconfig-
urable graph frameworks such as CoSPARSE from storing two or more copies of the graph
in the main memory with a minor power overhead of 78.6 mW per rank for commodity
Dynamic Random Access Memory (DRAM) devices.

xix

CHAPTER 1

Introduction

The emergence of big data and massive social networks, as well as the prevalence of arti-
ficial intelligence, have resulted in increasing interest in sparse linear algebra applications.
Today, sparse linear algebra is prevailing in a wide variety of important application do-
mains, such as machine learning, graph analytics, scientific computing, etc [10, 80, 151,
155]. Sparse linear algebra refers to linear algebra routines on data structures, where a
significant number of data elements are zero. To avoid redundant storage and computa-
tions on the zero elements, the sparse data structures are often stored in compressed data
formats, which store only indices and values of the Non-zero Elements (NZEs) [34]. The
performance of sparse linear algebra computation thus relies heavily on efficient encod-
ing/decoding of the compressed data formats when traversing the sparse data structure.
The distribution of the NZEs in real-world sparse data structures tends to be irregular,
which often results in uneven work distribution on hardware units, making parallelizing
sparse linear algebra computation even harder [54]. Improving the performance and effi-
ciency of sparse linear algebra applications is challenging, and therefore requires not only
algorithms that minimize redundant computations and data accesses but also architecture
designs that take full advantage of the algorithmic benefits with minimal overhead [151].

1.1 Emerging Architecture Techniques

The impending demise of Moore’s law coupled with the end of Dennard scaling have led to
the appearance of dark silicon (transistor under-utilization) [48] and consequently a surge
in more specialized, application-specific architecture designs. As shown in Figure 1.1,
the saturation of single-thread performance and the limitation in power consumption have
made it difficult for chips to achieve the same performance benefits through advancements
in process technology as before. Therefore, to extract more performance from a limited
number of active on-chip transistors, computer architects gravitated towards heterogeneous

1

Figure 1.1: Growing trend in the number of transistors and microprocessor performance
and power over the past 42 years [164].

computing systems that couple GPPs with fixed-function accelerators and are turning to
ASIC for further improvements in performance and efficiency. Because of the irregular
access pattern of sparse linear algebra applications induced by the sparseness nature, which
renders the deep cache hierarchy in GPPs useless, the increasing interest in sparse linear
algebra has led to a plethora of architecture proposals aiming to accelerate key computation
kernels such as Sparse Matrix-Matrix Multiplication (SpMM) and SpMV [151, 214, 176,
10, 175, 79, 9, 165, 54, 80, 211].118:2 L. Liu et al.

Fig. 1. Architecture comparison in terms of flexibility, performance, and energy e!iciency.

large amount of popular or emerging applications (e.g., neural networks and bioinformatics) have
led to unprecedented demand for computing power. Traditionally, computing fabrics have taken
advantage of integrated circuit technology advances as a major measure to improve the computing
power in the past decades. However, this measure becomes invalidate as Moore’s Law and Dennard
scaling are slowing down or even terminating. A well-known problem of the power wall arises: the
power budget of integrated circuits becomes tighter in many applications, and worse still, the en-
ergy e!ciency has a diminishing return with new technologies, resulting in a limitation on the
feasible computing power [1–4]. Consequently, computer architecture designers have to shift their
focus from performance to energy e!ciency. However, "exibility has also become an important
consideration in circuit design. As software is evolving rapidly with emerging applications, user
needs, and scienti#c progress, the hardware that cannot adapt to software (e.g., application-speci#c
integrated circuits, ASICs) will su$er from a short lifecycle and high nonrecurring engineering
(NRE) cost. The situation becomes even worse for expensive new circuit technology. Overall, both
energy e!ciency and "exibility have become the main criteria for computing fabrics [5, 6].

Nevertheless, it is challenging for the mainstream computing fabric to meet this new demand.
ASICs have extremely low "exibility, whereas Von Neumann processors, such as general-purpose
processors (GPPs), graphics processing units (GPUs), and digital signal processors (DSPs), have ex-
tremely low energy e!ciency. Field-programmable gate arrays (FPGAs) appear promising to some
extent, but this architecture is more challenging to program than central processing units (CPUs)
and is less energy-e!cient than ASICs. Therefore, none of these options can achieve a satisfac-
tory balance between the two criteria, which raises an urgent demand for novel architecture, as
evidenced by industry’s adoption of domain-speci#c accelerators in many important areas, such
as machine learning and big data.

Coarse-grained recon#gurable architectures (CGRAs) are a natural coarse-grained implementa-
tion of the concept of recon#gurable computing proposed in 1960s [7]. This architecture originated
in the 1990s [8, 9] and has been developing rapidly since the 2000s [10–13]. CGRAs continue to at-
tract increasing interest because they possess near-ASIC energy e!ciency and performance with
post-fabrication software-like programmability [14–18]. The comprehensive comparison provided
in Figure 1 compares CGRAs with ASICs, FPGAs, DSPs, GPUs and CPUs in terms of the energy
e!ciency, "exibility and performance [14, 18]. In academia, many researchers consider CGRAs
a strong competitor for mainstream computing fabrics, as evidenced by the substantial works
published at leading conferences [19, 20] and the important foundation supports by, e.g., the De-
fense Advanced Research Projects Agency (DARPA) [21]. The goal of the DARPA ERI (electronics

ACM Computing Surveys, Vol. 52, No. 6, Article 118. Publication date: October 2019.

Figure 1.2: Comparison in performance, efficiency, and programmability/flexibility for
different architecture designs [129].

Figure 1.2 demonstrates the performance, efficiency, and programmability of architec-
ture designs with different levels of specialization. Despite the tremendous performance

2

and efficiency gains provided by ASICs, the fast pace of algorithmic innovation has made
the short lifecycle and non-recurring engineering cost of ASICs a rising concern [129].
In addition, the stagnating on-chip transistor budget due to the end of Moore’s law will
eventually limit the optimization space of ASICs, leading to diminishing hardware special-
ization returns [61]. Therefore, flexibility has also become an important consideration in
architecture design, and many Coarse-Grain Reconfigurable Architectures (CGRAs) were
proposed to strive for a balance between performance and efficiency as well as flexibility,
in terms of software programmability or hardware reconfigurability [64, 162, 72, 147, 36].Exponentially growing algorithm complexity

4

Alexnet ResNet
25M

340M

YOLO
GNMT BERT-LG

1.5B

8B

GPT-2

GPT-2 8B

Time

Model Complexity
(# of parameters)

175B

GPT-3

20202012

DNN model size doubles
every 3.5 months

* source from Intel AI

a) DNN Model Complexity

b) DRAM Capacity, Bandwidth, and Latency

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 Im
pr

ov
em

en
t

(lo
g)

Capacity Bandwidth Latency

DRAM Capacity, Bandwidth & Latency

128x

20x

1.3x

Figure 1: Scaling of DRAM capacity, bandwidth and latency between
1999 and 2017, normalized to the value in 2017. Data depicted for the
most common type of DDRx chip of each year. Reproduced from [203].
Originally presented in [31, 204, 205].

ory technology scaling causes memory errors to appear
more frequently. For example, a study of Facebook’s
entire production datacenter servers showed that mem-
ory errors, and thus the server failure rate, are strongly
positively correlated with the density of the chips em-
ployed in the servers [212]: the higher the density of
the chip used in a server, the more likely the server is to
experience a memory error and server failure. Thus, it is
critical to make the main memory system more reliable
to build reliable computing systems on top of it.

The third key issue is that the reliability problems
caused by aggressive DRAM technology scaling can lead
to new security vulnerabilities. The RowHammer phe-
nomenon [20, 24, 45, 46] shows that it is possible to pre-
dictably induce errors (bit flips) in most modern DRAM
chips. Repeatedly reading the same row in DRAM can
corrupt data in physically-adjacent rows. Specifically,
when a DRAM row is opened (i.e., activated) and closed
(i.e., precharged) repeatedly (i.e., hammered), enough
times within a DRAM refresh interval, one or more bits
in physically-adjacent DRAM rows can be flipped to the
wrong value. A very simple user-level program [213]
can reliably and consistently induce RowHammer errors
in vulnerable DRAM modules. The seminal paper that
introduced RowHammer [20] showed that more than
85% of the chips tested, built by three major vendors be-
tween 2010 and 2014, were vulnerable to RowHammer-
induced errors. In particular, all DRAM modules from
2012 and 2013 are vulnerable, as shown by the Figure 2
which depicts the observed RowHammer error vulnera-
bility of DRAM modules manufactured between 2008
and 2014 by all three major DRAM manufacturers A, B,
C [20]. A recent technology scaling study [45] of 1580

DRAM chips belonging to three di↵erent DRAM types
and various di↵erent technology node sizes experimen-
tally demonstrated that the RowHammer vulnerability is
getting much worse at the circuit level: fewer number of
activates to a row can cause bit flips in the most recent
chips and recent chips experience higher bit flip rates
due to RowHammer. The same work [45] also showed
that existing RowHammer mitigation mechanisms will
not be e↵ective in future DRAM chips that will be much
more vulnerable to RowHammer, and thus RowHammer
remains to be an open vulnerability to securely protect
against.

All modules from 2012–2013	are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable

Figure 2: RowHammer vulnerability for DRAM modules manufac-
tured between 2008 and 2014. Reproduced from [214]. Originally
presented in [20, 215].

The RowHammer phenomenon entails a real reliabil-
ity, and perhaps even more importantly, a real and preva-
lent security issue. It breaks physical memory isolation
between two addresses, one of the fundamental build-
ing blocks of memory, on top of which system security
principles are built. With RowHammer, accesses to one
row (e.g., an application page) can modify data stored in
another memory row (e.g., an OS page). This was con-
firmed in 2015 by researchers from Google Project Zero,
who developed a user-level attack that uses RowHammer
to gain kernel privileges [216, 217]. Other researchers
have shown how RowHammer vulnerabilities can be
exploited in various ways to gain privileged access to
various systems: in a remote server RowHammer can
be used to remotely take over the server via the use
of JavaScript [218]; a virtual machine can take over
another virtual machine by inducing errors in the vic-
tim virtual machine’s memory space [219]; a malicious
application without permissions can take control of an
Android mobile device [220]; or an attacker can gain
arbitrary read/write access in a web browser on a Mi-
crosoft Windows 10 system [221]. Over the past six

5

Figure 1.3: The growing trend of (a) DNN model complexity over the past 8 years [82] and
(b) DRAM capacity, bandwidth, and latency over the past 20 years [143].

The arrival of big data has also posed great challenges to computer architecture studies.
Figure 1.3(a) presents the growth of Deep Neural Network (DNN) model size over time.
It is concluded that the DNN model size doubles every 3.5 months, which is much faster
than the growth rate of memory size in modern computing systems. However, as shown

3

in Figure 1.3(b), the DRAM capacity doubles only every three years, while the trend is
even worse for DRAM bandwidth and latency [143]. With the main memory becoming
an increasingly significant bottleneck, exploring the available data locality and maximizing
the on-chip data reuse has become the main focus of many ASIC designs, especially those
targeting sparse linear algebra [151, 80, 155, 214, 176, 10, 175, 79, 9, 54, 80, 211]. The
main memory bottleneck, which is majorly caused by the high energy and latency cost as-
sociated with data movement, has also given rise to memory-centric architecture designs,
where computations are performed by processing logic inside the memory subsystem or
the memory itself [143]. As sparse linear algebra is famous for its memory-bound nature
resulting from the irregular memory access pattern, in-memory processing and NMP has
been widely used for sparse linear algebra applications, such as sparse gathering in recom-
mender systems [117, 97, 98, 8], and graph analytics [165, 200, 5, 144, 37, 213, 218].

1.2 Dissertation Overview

This dissertation proposes to accelerate sparse linear algebra workloads by taking advan-
tage of these emerging architecture techniques, specifically hardware specialization, archi-
tecture reconfiguration, and NMP. To motivate the need for these emerging architecture
techniques to accelerate sparse linear algebra, this dissertation starts with a parallelism
analysis of contemporary hardware to understand the bottleneck and trend in hardware
architecture designs. The analysis is then followed by a deeper discussion of the key chal-
lenges posed by sparse linear algebra applications on contemporary hardware.

To efficiently support the diverse and irregular sparse linear algebra kernels, this dis-
sertation first proposes a reconfigurable, programmable architecture named Transmuter.
Transmuter consists of massively parallel lightweight General-purpose Processing Ele-
ments (GPEs) that support a Commercial Off-The-Shelf (COTS) Instruction Set Archi-
tecture (ISA). A fabric of reconfigurable crossbars and reconfigurable caches connects the
GPEs and the main memory and enables on-the-fly reconfiguration of the on-chip memory
types, the resource sharing, and the dataflow. To ease the efforts of programming on Trans-
muter, a software stack is integrated to provide high-level python Application Programming
Interfaces (APIs) for end users and low-level C++ APIs for library programmers. Evalua-
tion shows that Transmuter achieves an efficiency gain of 59.5× and 10.7× over the CPU
and GPU across a diverse set of kernels, respectively. While offering GPU-like programma-
bility, Transmuter retains high performance on sparse linear algebra kernels, presenting an
efficiency within 4.1× on average compared to functional equivalent ASICs.

Next, CoSPARSE, a software and hardware reconfigurable framework is developed to

4

further enhance the performance of Transmuter on SpMV and graph analytics workloads.
CoSPARSE embeds SpMV implementations in the framework and automatically selects
and switches to the best-performing software algorithm and hardware configuration upon
an invocation of the SpMV routine. The reconfiguration decisions are heuristically driven
based on extensive experiments on inputs with different sizes and densities. The combined
software and hardware reconfiguration is able to achieve a speedup of up to 2.0× across the
evaluated benchmarks compared to a naı̈ve baseline with no reconfiguration. To implement
a graph analytics algorithm, end users only need to define the key computations, similar
to existing graph frameworks. For end-to-end graph processing workloads, CoSPARSE
obtains a maximum speedup of 3.51× and a maximum energy efficiency gain of 877×
compared to a state-of-the-art graph framework on a server-class CPU.

Finally, this dissertation presents MeNDA, a scalable near-DRAM multi-way merge so-
lution for sparse matrix transposition and sparse merging dataflows. MeNDA deploys cus-
tom rank-level Processing Units (PUs) in the data buffer chips to expose the high-internal
memory bandwidth of DRAM devices while limiting hardware modifications within the
buffer chips. Because sparse data merging is widely applied in sparse linear algebra,
MeNDA can be easily extended to support other sparse kernels, such as SpMV. Com-
pared to two recently proposed sparse matrix transposition implementations on the CPU
and a sparse library implementation on the GPU, MeNDA achieves an average speedup
of 19.1×, 12.0×, and 7.7×, respectively, while introducing a minor overhead of 78.6 mW
per DRAM rank. More importantly, as MeNDA significantly reduces graph transposi-
tion overhead, graph frameworks like CoSPARSE can perform runtime graph transposition
at algorithm reconfiguration with a minor latency overhead to avoid storing two or more
copies of the input graph in different formats.

The rest of the document is organized as follows. Chapter 2 studies the parallelism of
modern applications on contemporary architectures as well as the characteristics of sparse
linear algebra workloads, motivating the need for emerging architecture techniques to ac-
celerate sparse linear algebra. Chapter 3 presents the design details of Transmuter, a flexi-
ble architecture that efficiently supports a variety of kernels through runtime memory and
dataflow reconfiguration, and evaluates it on a set of diverse kernels. Chapter 4 describes
CoSPARSE, which enhances Transmuter by integrating an intelligent framework by judi-
ciously choosing the best-performing algorithm and hardware configurations during exe-
cution for SpMV and graph analytics. Chapter 5 presents MeNDA a near-memory solution
for sparse matrix transposition and sparse data merging, aiming to further improve the per-
formance of sparse linear algebra applications by taking advantage of the high internal
memory bandwidth of commodity DRAM devices. Chapter 6 concludes the document.

5

CHAPTER 2

Challenges of Executing Sparse Linear Algebra
on Contemporary Hardware

To justify the need for emerging architecture techniques to accelerate sparse linear algebra
applications, this chapter first presents a parallelism analysis on a high-end desktop com-
puter to showcase the limitation of contemporary general-purpose computing systems and
the hardware architecture design trend for emerging desktop applications. Then, a further
discussion on the characteristics of sparse linear algebra is presented to explain the chal-
lenges of executing sparse linear algebra applications efficiently on GPPs as well as the
opportunities provided by emerging computer architectures.

2.1 A Parallelism Analysis on Prominent Desktop Appli-
cations

Innovation in the domain of improving single-threaded performance hit a plateau in the
early 21st century. Anticipating the end of Dennard scaling, which states that the power den-
sity of a chip remains almost constant across technology nodes [42], the hardware industry
swiftly pivoted towards multi-core processors. The post-Dennard scaling era is plagued by
the problem of dark silicon because improvements in cooling technology failed to keep up
with the thermal design power requirements of newer technology node chips [48]. Today,
the hardware world is experiencing a move to specialization, trading away silicon area for
gains in energy efficiency [184, 151]. Modern systems are almost ubiquitously heteroge-
neous, involving a combination of the CPU with a GPU and/or fixed-function accelerators.
Common desktop systems at homes and offices have 4-8 logical CPUs with a discrete GPU
connected via PCI-Express.

To analyze how software has evolved to reap the benefits of multi-core and heteroge-
neous computers, we provide an 18-year perspective on the evolution of parallelism in desk-

6

top workloads based on studies on state-of-the-art systems in 2000 [56, 57] and 2010 [22].
We study a wide spectrum of commonly-used applications on a high-end desktop machine
and analyze two important metrics, Thread-Level Parallelism (TLP) and GPU utilization.
The work presented in this section was published in the form of a paper at ISPASS’19 [53].

2.1.1 Methodology

Table 2.1 shows the specifications of the evaluated system. TLP is defined in Equation 2.1,
where ci denotes the percentage of execution time when i threads are running simultane-
ously, in a system with n logical CPUs. c0 represents the idle time in the application.

TLP =

∑n
i=1 cii

1− c0
(2.1)

For GPU utilization, we consider the amount of time spent by work packets actually run-
ning over a period of time, where a packet is defined as a large collection of API calls
packaged into a command stream. GPU utilization is measured by aggregating for all
packets the ratio of packet running time to total time.

CPU Intel Core i7-8700K, 3.70-4.70 GHz, 6 cores / 12 threads
Graphics NVIDIA GTX 1080 Ti, 1481 MHz, 3584 CUDA cores
RAM 64 GB (16 GB × 4) DDR4 @ 3200 MHz
Storage 2 TB (1 TB × 2) PCIe NVMe SSD
OS Windows 10 Education Version 1803

Table 2.1: Specifications of the benchmarking desktop system.

2.1.2 Evaluation Overview

Table 2.2 summarizes the TLP of the 6-core processor with Simultaneous Multi-Threading
(SMT) enabled and the GPU utilization of the GTX 1080 Ti for all the applications. The
“execution time” column illustrates the amount of time when 0, 1,..., 12 logical cores are
active simultaneously. The color of the heat map region corresponding to ci illustrates
the percentage of execution time when i threads are executed simultaneously. The “TLP”
column shows the average of the TLP derived from 3 test iterations (with the same duration)
for each application. Similarly, the “GPU utilization” column contains the average of the
measured GPU utilization. Based on the low standard deviations from the 3 test iterations,
we conclude that our experimental results are consistent. The last two columns in Table 2.2
present the average TLP and GPU utilization for each category, respectively.

7

Category Application Execution Time (%) TLP GPU
Util (%)

Avg.
TLP

Avg. GPU
Util (%)C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Image
Authoring

Adobe Photoshop CC 8.6 1.6
Autodesk Maya 3D 2019 2.7 9.9
Autodesk AutoCAD LT 1.2 9.0

4.2 6.8

Office

Adobe Acrobat Pro DC 1.3 0.0
Microsoft Excel 2016 2.1 2.1
Microsoft PowerPoint 2016 1.2 4.0
Microsoft Word 2016 1.3 1.7
Microsoft Outlook 2016 1.3 2.5

1.4 1.7

Multimedia
Playback

QuickTime Player 7.7.9 1.1 16.4
Windows Media Player 12.0 1.3 16.1
VLC Media Player 3.0.3 1.8 15.7

1.4 16.0

Video
Authoring

CyberLink PowerDirector v16 4.3 6.3
Adobe Premier Pro CC 1.8 0.6 3.1 3.4

Video
Transcoding

HandBrake 1.1.0 9.4 0.4
WinX HD Video Converter 5.12.1 9.2 13.6 9.3 7.0

Web
Browsing

Firefox v60 2.2 8.6
Chrome v60 2.2 5.1
Edge 42.17134.1.0 2.0 4.0

2.1 5.9

VR
Gaming

Arizona Sunshine 1.5.11046 3.4 68.2
Fallout 4 VR 1.2 4.0 84.9
RAW Data 1.1.0 2.6 90.9
Serious Sam VR BFE 341433 2.4 72.2
Space Pirate Trainer 1.01 2.7 61.6
Project CARS 2 1.7.1.0 3.8 80.2

3.1 76.3

Crypto-
currency
Mining

Bitcoin Miner 1.54.0 5.4 98.9
EasyMiner v.0.87 11.9 96.1
PhoenixMiner 3.0c 1.0 *100.0
Windows Ethereum Miner 1.5.27 1.0 99.7

4.8 98.7

Personal
Assistant

Cortana 1.4 2.7
Braina 1.43 1.1 0.0 1.3 1.4

Execution Time %

Table 2.2: Summary of application TLP and GPU utilization of all applications in the
benchmarking suite. The color of the heat map region corresponding to ci indicates the per-
centage of time when i threads are running concurrently. (*for PhoenixMiner, two packets
were simultaneously executing on the GPU throughout the experiment)

In summary, every application exploits parallelism to some extent, with a few applica-
tions showing more concurrency than others. For categories like office, multimedia play-
back, personal assistant, and web browsing, the degree of parallelism exploited is quite
low, as concluded from the average TLP of around 2. Virtual Reality (VR) gaming displays
moderate concurrency, with an average TLP ranging from 2 to 4. The TLP is expected to be
similar within a category, but some categories are exceptions, including image authoring,
video authoring, and cryptocurrency mining. There also exist applications that effectively
utilize most of the available cores, e.g. applications for video transcoding exhibit an aver-
age TLP over 9. Overall, the average TLP across all benchmarks is 3.1, where 6 out of 30

applications have an average TLP higher than 4.

The values of GPU utilization are lower than 10% for most applications. Video author-
ing and transcoding applications exhibit moderate GPU usage. VR games and cryptocur-
rency miners, however, show significant utilization of the GPU, achieving an average GPU
utilization of over 90%. In general, the GPU is underutilized under most circumstances,

8

except for graphic-intensive and cryptocurrency mining applications.

2.1.3 Evolution of Concurrency

The experimental results are compared to those collected from similar applications in prior
work in 2000 [56, 57], and 2010 [22]. Figures 2.1 and 2.2 show the comparison of TLP
and GPU utilization respectively. Although the TLP of benchmarks in media playback and
video authoring has decreased (by 0.5-1.0), possibly due to the enhancements in single-core
performance, most applications present either comparable or higher TLP. The significantly
larger number of inputs (from sensors) and the escalation in computational complexity of
VR games result in a noticeable rise in TLP compared to 3D games. Applications that
have shown a large amount of concurrency in previous work, e.g. HandBrake, see a further
increase in TLP. Even applications with little growth in average TLP exhibit progress.
For example, Excel only has an average TLP of 2, yet its instantaneous TLP reaches the
maximum of 12 during execution, which was not the case 8 years ago.

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

Q
ua

ke
 2

Cr
ys

is
Ca

ll
of

 D
ut

y
4

Bi
os

ho
ck

Ar
izo

na
 S

un
sh

in
e

Fa
llo

ut
 4

RA
W

 D
at

a
Se

rio
us

 S
am

Sp
ac

e
Pi

ra
te

 T
ra

in
er

Pr
oj

ec
t C

AR
S

2
Ph

ot
os

ho
p

4.
0.

1
M

ay
a3

D
20

10
Ph

ot
os

ho
p

CS
4

M
ay

a3
D

20
18

Ph
ot

os
ho

p
CC

Ad
ob

eR
ea

de
r 4

.0
Po

w
er

Po
in

t 9
7

W
or

d
97

Ex
ce

l 9
7

Ad
ob

eR
ea

de
r 9

.0
Po

w
er

Po
in

t 2
00

7
W

or
d

20
07

Ex
ce

l 2
00

7
Ad

ob
eR

ea
de

r D
C

Po
w

er
Po

in
t 2

01
6

W
or

d
20

16
Ex

ce
l 2

01
6

W
in

 M
ed

ia
 P

la
ye

r
Q

ui
ck

tim
e

4.
0.

3
Q

ui
ck

tim
e

7.
6

Q
ui

ck
tim

e
7.

7.
9

W
in

 M
ed

ia
 P

la
ye

r
Pr

em
ie

r 4
.2

Po
w

er
Di

re
ct

or
 v

7
Pr

em
ie

r P
ro

 C
C

Po
w

er
Di

re
ct

or
 v

16
Ha

nd
Br

ak
e

0.
9

Ha
nd

Br
ak

e
1.

1.
0

IE
 5

Fi
re

fo
x 3

.5
Fi

re
fo

x v
60

Ed
ge

TL
P

3D
Gaming

VR
Gaming

Image
Authoring Office Media

Playback
Video

Authoring
Web

Browsing

2000 2010 2018

Figure 2.1: Comparison between TLP of desktop applications for 2000 [56, 57], 2010 [22],
and 2018 [this work].

On the other hand, all benchmarks, except for those in VR gaming, show lower GPU
utilization. This can be attributed to advancements in the GPU hardware, since a higher
utilization of an older GPU, with fewer resources, is comparable to a lower utilization of a
newer GPU, with more resources. The GPU utilization of VR games is commensurate with
that of traditional 3D games. Since the current GPU has 15× more cores, a viable expla-
nation is that the amount of offloaded work has also increased by an order of magnitude.

9

0

10

20

30

40

50

60

70

80

90

100

C
al

l o
f D

ut
y

4

B
io

sh
o

ck

C
ry

si
s

A
ri

zo
n

a
Su

ns
h

in
e

Fa
llo

ut
 4

R
A

W
 D

at
a

Se
ri

ou
s

Sa
m

Sp
ac

e
Pi

ra
te

 T
ra

in
er

Pr
oj

ec
t

CA
RS

 2

M
ay

a3
D

 2
01

0

Ph
ot

o
sh

op
 C

S4

M
ay

a3
D

 2
01

9

Ph
ot

o
sh

op
 C

C

A
u

to
C

A
D

 L
T

St
re

et
 &

 T
ri

ps
 2

01
0

A
d

ob
eR

ea
de

r
9.

0

Po
w

er
Po

in
t

2
00

7

W
o

rd
 2

00
7

Ex
ce

l 2
00

7

A
d

ob
eR

ea
de

r
D

C

Po
w

er
Po

in
t

2
01

6

W
o

rd
 2

01
6

Ex
ce

l 2
01

6

Q
ui

ck
ti

m
e

7.
6

Q
ui

ck
ti

m
e

7.
7

.9

W
in

 M
ed

ia
 P

la
ye

r

V
LC

 M
ed

ia
 P

la
ye

r

Po
w

er
D

ir
ec

to
r

v7

Po
w

er
D

ir
ec

to
r

v1
6

Pr
em

ie
re

 P
ro

 C
C

H
an

dB
ra

ke
 0

.9

H
an

dB
ra

ke
 1

.1
.0

W
in

X

Sa
fa

ri
 4

.0

Fi
re

fo
x

3
.5

Fi
re

fo
x

v6
0

C
hr

om
e

v6
6

Ed
ge

G
PU

U
ti

liz
at

io
n

%

3D
Gaming

VR
Gaming

Image
Authoring

Office Media
Playback

Video
Authoring

Web
Browsing

2010 2018

Figure 2.2: Comparison between GPU utilization of desktop applications for 2010 [22] and
2018 [this work].

2.1.4 Analyses on GPU

The dramatic breakthrough in GPU hardware over the past couple of decades has made it
crucial to understand how GPUs are used to effectively assist compute-intensive tasks and
whether GPUs are exploited to their full potential.

2.1.4.1 GPU Offloading

The performance and GPU utilization of HandBrake and WinX with the high-end GTX
1080 Ti and the mid-end GTX 680 are shown in Figure 2.3. HandBrake does not offload
tasks to the GPU, so the GPU utilization stays below 1%, regardless of the number of active
cores and the GPU settings. WinX, on the other hand, supports hardware acceleration with
CUDA/NVENC. The transcode rates for different GPUs are almost the same (the plots
for GTX 680 are omitted as they overlap with those for GTX 1080 Ti). In order to achieve
similar performance, the GTX 680, which is inferior to the GTX 1080 Ti, harnesses a much
higher GPU utilization. If we use an even lower-end GPU, we expect the GPU utilization
to further increase, and the performance will start to degrade after the GPU utilization
saturates at the maximum.

The transcode rate, TLP, and GPU utilization of WinX, with and without GPU accel-
eration, are shown in Table 2.3. During video transcoding, the CPU offloads compute-
intensive transcoding tasks to the GPU through specific APIs, and the amount of offload-
ing, indicated by the GPU utilization, grows almost linearly with the increase in TLP. With

10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2 4 6

HB-1080-SMT HB-1080 HB-680-SMT HB-680
WinX-1080-SMT WinX-1080 WinX-680-SMT WinX-680

GTX 1080 GTX 680

0

10

20

30

40

2 4 6

Tr
an

sc
od

e
Ra

te
 (F

PS
)

Number of Logical Cores

(a) Transcode Rate

0

15

30

45

60

2 4 6

GP
U
Ut
ili
za
tio

n
(%
)

Number of Logical Cores

(b) GPU Utilization

Figure 2.3: Transcode rates (GTX 1080 Ti only) and GPU utilization of HandBrake and
WinX for 2, 4, and 6 logical cores, showing the effect of GPU offloading. The transcode
rates for GTX 680 are not shown as they overlap exactly with those for GTX 1080 Ti.

Logical
Cores

Transcode Rate TLP GPU Utilization (%)
No GPU GPU No GPU GPU No GPU GPU

4 9 14 4.0 3.8 0.0 5.2
8 19 27 7.9 7.0 0.0 10.0
12 28 37 11.5 9.1 0.0 13.9

Table 2.3: Transcode rate, TLP, and GPU utilization of WinX with and without NVIDIA
CUDA/NVENC. Enabling the GPU improves the transcode rate and lowers the TLP.

CUDA/NVENC enabled, the transcode rate of WinX improves by 143% on average and
TLP decreases by up to 22%. GPU acceleration not only increases performance but also

relieves stress on the CPU, making it available for other tasks and protecting it from ther-

mal throttling. Similar offloading behavior is observed for Premiere Pro while exporting
video with CUDA support, as shown in Figure 2.4. The assistance of GPU does not cause
a significant change in runtime but slightly lowers the instantaneous TLP.

2.1.4.2 GPU Utilization

As shown in Table 2.2, the GPU is under-utilized for most of the applications, which is pos-
sibly because the computational power of the GPU greatly exceeds what is demanded from
it. The GPU indeed executes substantial tasks in various applications, such as hardware
rendering in Maya and video export in PowerDirector, yet both exhibit GPU utilization
lower than 10%. Even for WinX Video Converter, which uses CUDA/NVENC in the GPU

11

Non-CUDA CUDA

Figure 2.4: GPU utilization of GTX 680 and 1080 Ti for Premiere Pro. Video export
with CUDA support shows higher utilization and lower TLP than without CUDA, and the
utilization is higher for GTX 680.

for transcoding, the average GPU utilization is 13.6%. On the other hand, there are appli-
cations that utilize the GPU much more efficiently, such as VR games and cryptocurrency
miners. We measure the GPU utilization of the mid-end GPU for video-related applica-
tions and cryptocurrency miners, as these use the GPU more than the others, and compare
them to the utilization of the high-end GPU. The results are shown in Figure 2.4. Most
applications see a notable improvement in utilization, except for cryptocurrency mining.
Both GPUs show utilizations of up to 100% for Bitcoin Miner and EasyMiner, but as ex-
pected, the hash rate of GTX 680 is at least 2× lower despite the assistance of the CPU.
Windows Ethereum Miner, however, has a higher GPU utilization with the superior GPU,
since NVIDIA’s Kepler architecture in GTX 680, released before the prevalence of cryp-
tocurrency, is not optimized to run mining workloads.

0
25
50
75

100

WMP VLC WinX BitcoinM EasyMiner WinEth

GP
U

U
til

iza
tio

n
%

GTX 680 GTX 1080 Ti

Figure 2.5: GPU utilization of GTX 680 and 1080 Ti for applications that show substantial
use of GPU. VR is excluded as it requires a GPU better than GTX 970. PhoenixMiner does
not support GTX 680.

In summary, a mid-end GPU is sufficient for most applications, including video editors
and transcoders. However, for applications, such as VR gaming and mining, that perform
intensive computations on the GPU, a high-end GPU is indispensable, as the mid-end GPU

12

causes a significant performance loss.

2.1.5 Takeaways

Major advancements have taken place in desktop hardware over the past decade. Our re-
sults showed that software has improved to take advantage of the parallelism available in
the hardware compared to the work in 2010 [22]. Noticeable increases were seen in many
applications, including those reputed for effective utilization of processor cores like Hand-
Brake and Photoshop. For applications with slight changes in TLP over the past 18 years,
efforts for exploiting available parallelism were exhibited by them achieving high instan-
taneous TLP during execution. For example, Excel spent 3.7% of the time using the max-
imum number of available logical cores concurrently, and web browsers have shifted from
single-process models to multi-process models, resulting in better responsiveness and re-
liability. Emerging applications also demonstrated good utilization of hardware resources.
The average TLP of VR gaming is twice that of traditional 3D gaming, and cryptocurrency
miners involving CPU mining have a TLP higher than that of over 80% of the benchmarks.
However, despite all the appreciable progress made by software in exploiting parallelism,
the average TLP across all benchmarks is still 3.1, where 6 out of 30 applications have an
average TLP higher than 4, while the maximum achievable TLP is 12.

On the other hand, the overall GPU utilization was lower than that observed in 2010.
This showed that the improvements in the number of available hardware resources in the
GPU have been growing at a faster pace than improvements in the parallelism harnessed
by software. However, emerging workloads, e.g. VR games and cryptocurrency miners,
exhibited great potential, as they fully exploited the computation power of the GPU.

The above observations imply that efforts in exploiting parallelism have hit a plateau on
general-purpose platforms like CPUs but domain-specific hardware such as fixed-function
units and GPUs shows promising performance acceleration, especially on emerging ap-
plications. This characterization hence further justifies the recent research efforts toward
emerging hardware architectures such as ASIC, CGRA, and NMP.

2.2 Prevalence and Challenges of Sparse Linear Algebra

Sparse data structures are ubiquitous in modern applications that operate on big data. Re-
cent years have witnessed a rapidly growing interest in applications involving sparse data
structures, such as sparse neural networks [155] and graphs [181]. The key computation
components of these applications are sparse linear algebra. One fundamental kernel in

13

sparse linear algebra is SpMM. SpMM is a significant building block of multiple algo-
rithms prevalent in graph analytics, such as breadth-first search [67, 68], matching [159],
graph contraction [25], peer pressure clustering [170], cycle detection [209], Markov clus-
tering [188], and triangle counting [13]. It is also a key kernel in many scientific-computing
applications. For example, SpMM is a performance bottleneck in the hybrid linear solver
applying the Schur complement method [205] and algebraic multigrid methods [18]. Other
computing applications, such as color intersection searching [94], context-free grammar
parsing [159], finite element simulations based on domain decomposition [77], molecular
dynamics [85], and interior point methods [96] also rely heavily on SpMM.

Among the applications characterized in the previous section, domains such as personal
assistants and web browsing are likely to widely deploy sparse linear algebra. However,
they tend to display low parallelism in not only TLP but also in GPU utilization. This
suggests that it is challenging to exploit parallelism for sparse linear algebra on CPUs and
GPUs simply from the software aspect due to the limitations in the hardware and emerging
architectures are required to harvest further performance and efficiency improvements.

Sparse linear algebra tends to incur plenty of irregular data accesses due to the sparse-
ness and the datasets usually have much greater sizes than the on-chip memories. As a
widely-used representative of sparse linear algebra, SpMM exposes the major challenges
of sparse linear algebra, which lie in efficiently indexing and traversing data stored in the
sparse data structure and maximizing the on-chip data reuse. Real-world matrices are often
large and extremely sparse, e.g. the adjacency sparse matrix representing Facebook friend-
ships is of size 1.08 B×1.08 B but with only 0.0003% NZEs [151]. Because the majority of
elements are zeros, sparse matrices are typically stored in compressed formats to avoid re-
dundant storage and computation on zero elements. Figure 2.6 gives a high-level overview
of SpMM using the inner product algorithm, which is widely applied to General (dense)
Matrix-Matrix multiplication (GEMM). In the inner product method, a row of the input
matrix A is multiplied by a column of the input matrix B to produce a single element in the
result matrix C. GEMM achieves great throughput through this algorithm because of the
predictable access pattern. For SpMM, however, a significant portion of the execution time
is spent on matching the indices of the two operands to find the NZEs with the same row
or column indices. Due to matrix sparsity, the majority of the index matching failed and
thus a large amount of memory bandwidth is wasted on fetching data that do not contribute
to the final result. Hence, recent architecture proposals tend to apply either the outer prod-
uct algorithm [151, 214] or the row-wise algorithm [175, 211] for SpMM to avoid index
matching. However, decoding the compressed data formats for computation still results in
irregular data accesses and the limited on-chip storage further leads to repetitive fetching of

14

the same data, worsening the memory bottleneck. The memory-bound nature of SpMM is
shared by many sparse linear algebra kernels. Therefore, optimizing sparse linear algebra
execution requires not only algorithms and scheduling that minimize redundant computa-
tions and data fetching and maximize on-chip data reuse but also architecture designs that
efficiently support the proposed dataflows.

Inner Product Approach Outer Product Approach

AA B

C

B

=

......

......

Only 1
valid
Multiplication

C

Compare & check
to match index

Each column-row
pair produce a matrix

partial
product
matrices

merged to
result matrix

Inner Product Approach Outer Product Approach

AA B

C

B

=

......

......

Only 1
valid
Multiplication

C

Compare & check
to match index

Each column-row
pair produce a matrix

partial
product
matrices

merged to
result matrix

Figure 2.6: High-level overview of SpMM using the inner product algorithm [153]

Despite the great efforts spent on creating high-performance sparse linear algebra li-
braries for GPPs, e.g. Intel MKL and NVIDIA cuSPARSE, executing SpMM efficiently
poses challenges on commodity general-purpose platforms, i.e. GPUs and CPUs [151].
Although CPUs can exploit memory-level parallelism and hide memory latencies through
context switching among multiple threads, they are mainly optimized for complex instruc-
tion flows and therefore are equipped with complicated pipeline logic, such as advanced
branch predictors, which introduces significant power and area overhead but does not help
the performance of sparse linear algebra applications. The sparseness nature of the massive
datasets also leads to a huge number of unpredictable memory accesses, rendering the tra-
ditional deep cache hierarchy designed to explore spatial and data locality useless. While
GPUs demonstrate satisfactory compute efficiency on SpMV and dense matrix-matrix mul-
tiplication [19], compute units are significantly underutilized when the density drops below
0.1%, often achieving fewer than 1 GFLOPS [151], despite a peak theoretical throughput
of over 4 TFLOPS [186]. This is further supported by the fact that rankings, such as the
Green Graph 500 list [1], are dominated by CPU-based systems.

For large dense matrices, block partitioning and tiling techniques are used to take advan-
tage of data locality [151]. However, when the density of the input matrices is decreased,
the run-time is dominated by irregular memory accesses and index-matching in order to
perform the multiplication. Moreover, while tiling techniques can reduce redundant reads
to main memory in the short term, the on-chip storage constraints still necessitate that many
data elements be redundantly fetched multiple times across tiles [90]. Finally, the irregu-

15

lar distribution of the NZEs further increases the difficulty of partitioning because of the
potential workload imbalance issue [54].

As the efforts to extract more performance and efficiency from contemporary comput-
ing systems hit a plateau, many emerging computer architecture techniques have sprung
up and shown great potential during the past decade. With the demise of Dennard scaling
and Moore’s law, researchers have turned to ASICs for further performance and efficiency
boosts [151]. Because accelerators can adopt custom architecture designs that best suit the
desired dataflow, many accelerators have been proposed to satisfy the demands of various
sparse linear algebra kernels [151, 214, 176, 10, 175, 79, 9, 165, 54, 80, 211]. On the other
hand, accelerators remove redundant hardware logic at the cost of flexibility. As is similar
to many other modern application domains, sparse linear algebra applications also fea-
ture diverse workload characteristics and fast-evolving algorithms. Hence, flexibility is no
doubt a significant factor in architecture design for sparse linear algebra applications, in ad-
dition to performance and efficiency, which can be realized through software programma-
bility or hardware reconfigurability [64, 162, 72, 147, 36]. Finally, with data movement
becoming an increasingly significant bottleneck, NMP has gained a surge of interest be-
cause NMP reduces data movement and increases the effective system memory bandwidth
by moving processing logic inside the memory subsystem [143]. Sparse linear algebra is
known for its memory-bound nature and high data movement cost due to the large dataset
size and the irregular memory access pattern, suggesting that sparse linear algebra has great
potential to benefit substantially from NMP [117, 97, 98, 8, 165, 200, 5, 144, 37, 213, 218].
The stark inefficiencies on the hardware fronts and the opportunities suggested by the
emerging architectures both motivate this work to formulate new approaches to acceler-
ate sparse linear algebra kernels by exploring emerging architecture techniques.

16

CHAPTER 3

General-Purpose Acceleration through
Reconfigurable Memory Hierarchy

As mentioned in Chapter 2, with the demise of Dennard’s scaling and Moore’s law, re-
searchers have turned to ASICs for further performance and efficiency boost. Despite the
superior performance and efficiency, ASICs compromise on generality and flexibility by
removing extraneous hardware [152]. A naı̈ve solution to cover the diverse algorithms
and data characteristics in sparse linear algebra is to incorporate many ASICs in a system.
However, if followed blindly, this approach will eventually hit the “accelerator wall” [61].
The fast-evolving algorithms and datasets also make accelerators subject to near-term ob-
solescence [152]. Therefore, the rising complexity in modern applications and the need for
efficient and high-performance computing systems are urging for a solution that carefully
trades off efficiency and flexibility.

To bridge the gap between efficiency and flexibility, this chapter presents Transmuter
as a novel general-purpose architecture that adapts to the nature of the kernels through a
flexible fabric of reconfigurable on-chip memory and interconnects. Transmuter supports
compile-time and runtime reconfiguration of the on-chip memory type (cache/scratchpad),
resource sharing (shared/private), and dataflow (demand-driven/systolic array) within 10s
of nanoseconds. Each PE is designed to be an energy-efficient core that supports a stan-
dard ISA, allowing the architecture to be general-purpose and programmable. To further
improve ease of adoption, a software stack is created so that drop-in replacements (e.g.

Transpy) for standard libraries (e.g. Numpy) in host Python programs can be used to in-
voke embedded hand-optimized kernel implementations on Transmuter.

Transmuter is modeled using gem5 and the timing and power are validated against a
simplified chip prototype. Iso-bandwidth/area comparisons demonstrate average through-
put (energy-efficiency) improvements of 5.0× (18.4×) and 4.2× (4.0×) over a high-end
CPU and GPU, respectively, across a diverse set of kernels used in graph analytics, scien-
tific computing, machine learning, etc. More importantly, Transmuter achieves an average

17

energy efficiency of within 9.3× compared to state-of-the-art ASICs, while retaining sup-
port for arbitrary kernels. The work presented in this chapter was published in the form of
an architecture paper at PACT’20 [152].

3.1 Introduction

The past decade has seen a surge in emerging applications that are composed of multi-
ple kernels1 with varying data movement and reuse patterns, in domains such as Machine
Learning (ML), and graph, image, and signal processing. A growing number of such appli-
cations operate on compressed and irregular data structures [130, 93, 44], or on a combina-
tion of regular and irregular data [207, 43, 35]. While conventional GPPs generally suffice
for desktop computing [53], areas such as High-Performance Computing (HPC) clusters
and datacenters that demand higher performance for such applications require more spe-
cialized hardware; such systems are typically comprised of CPUs paired with GPUs and
other domain-specific ASIC based accelerators [134, 91, 78], or Field Programmable Gate
Arrays (FPGAs) [163, 149, 197]. CGRAs have also been proposed as promising alterna-
tives for achieving near-ASIC performance [146, 183]. These platforms have been his-
torically bounded by three conflicting constraints: programmability, algorithm-specificity,
and performance/efficiency [129], as is illustrated in Fig. 3.1. Owing to these trade-offs,
there is currently no single architecture that is the most efficient across a diverse set of
workloads [154].

Thus, the rising complexity of modern applications and the need for efficient computing
necessitate a solution that incorporates:

• Flexibility. Ability to cater to multiple applications, as well as emerging applications
with changing algorithms, that operate on both regular and irregular data structures.

• Reconfigurability. Enabling near-ASIC efficiencies by morphing the hardware to
specific kernel characteristics, for applications that are composed of multiple cas-
caded kernels.

• Programmability. Facilitating better adoption of non-GPP hardware by providing
high-level software abstractions that are familiar to end-users and domain experts,
and that mask the details of the underlying reconfigurable hardware.

To this end, we propose Transmuter, a reconfigurable accelerator that adapts to the na-
ture of the kernel through a flexible fabric of lightweight cores, and reconfigurable memory

1This work refers to kernels as the building blocks of larger applications.

18

Platform Program-
mability Flexibility Reconfig.

Time
ASIC Low/None Low N.A.

CGRA Low-
Medium Medium ~1 μs -

~100 ns

FPGA Medium Medium-
High

~1 ms -
~1 μs

GPU High High N.A.
CPU High High N.A.

Trans-
former High High ~10 ns

Energy-Efficiency Gain over CPU

Memory-
Bound
Kernels
0.002-0.5
FLOPS/B

Compute-
Bound
Kernels
1.25-171
FLOPS/B

Trans-
muter

Figure 3.1: Left: Transmuter compared to contemporary platforms in terms of programma-
bility, hardware flexibility, and reconfiguration overhead. Right. Energy-efficiency compar-
isons for kernels spanning a wide range of arithmetic intensities (FLOPS/B). Note that for
ASICs and CGRAs, no single piece of hardware supports all kernels. Transmuter achieves
2.0× better average efficiency over state-of-the-art CGRAs while retaining the programma-
bility of GPPs.

and interconnect. Worker cores are grouped into tiles that are each orchestrated by a con-
trol core. All cores support a standard ISA, thus allowing the hardware to be fully kernel-

agnostic. Transmuter overcomes inefficiencies in vector processors such as GPUs for ir-
regular applications [151] by employing a Multiple-Instruction, Multiple Data (MIMD) /
Single-Program, Multiple Data (SPMD) paradigm. On-chip buffers and Scratchpad Mem-
ory (SPM) are used for low-cost scheduling, synchronization, and fast core-to-core data
transfers. The cores interface to a High-Bandwidth Memory (HBM) through a two-level
hierarchy of reconfigurable caches and crossbars.

Our approach fundamentally differs from existing solutions that employ gate-level re-
configurability (FPGAs) and core/pipeline-level reconfigurability (most CGRAs) — we re-
configure the on-chip memory type, resource sharing, and dataflow, at a coarser granularity
than contemporary CGRAs, while employing general-purpose cores as the compute units.
Moreover, Transmuter’s reconfigurable hardware enables run-time reconfiguration within
10s of nanoseconds, faster than existing CGRA and FPGA solutions (Sec. 3.2). Transmuter
performs particularly well for sparse-data applications while remaining on average at least
as efficient as a GPU for dense workloads. For mixed-data workloads, Transmuter rapidly
reconfigures at run-time to cater to the nature of the application.

We further integrate a prototype software stack to abstract the reconfigurable Trans-
muter hardware and support ease of adoption. The stack exposes two layers: (i) a C++
intrinsics layer that compiles directly for the hardware using a COTS compiler, and (ii) a
drop-in replacement for existing High-Level Language (HLL) libraries in Python, called

19

TransPy, that exposes optimized Transmuter kernel implementations to an end-user. Li-
braries akin to heterogeneous platforms (e.g. GPUs) are written by experts using the C++
intrinsics to access reconfigurable hardware elements. These libraries are then packaged
and linked to existing HLL libraries, e.g. NumPy, SciPy, etc.

In summary, this work makes the following contributions:

• Proposes a general-purpose, reconfigurable accelerator design composed of a sea
of parallel cores interweaved with a flexible cache-crossbar hierarchy that supports
fast run-time reconfiguration of the memory type, resource sharing, and dataflow.

• Demonstrates the flexibility of Transmuter by mapping and analyzing six funda-
mental compute- and memory-bound kernels, that appear in multiple HPC and data-
center applications, onto three distinct Transmuter configurations. A key takeaway is
that the best configuration is dependent on the kernel as well as the input parameters.

• Illustrates the significance of fast reconfiguration by evaluating Transmuter on
ten end-to-end applications (one in detail) spanning the domains of ML and graph /
signal / image processing, that involve reconfiguration at kernel boundaries. Detailed
analysis is presented for a representative mixed-data workload.

• Proposes a prototyped compiler runtime and an HLL library called TransPy

that expose the Transmuter hardware to end-users through drop-in replacements for
existing HLL libraries. The stack also comprises C++ intrinsics, which foster expert
programmers to efficiently co-design new algorithms.

• Evaluates the Transmuter hardware against existing platforms with two pro-
posed variants, namely TransX1 and TransX8, that are each comparable in area
to a high-end CPU and GPU.

In summary, Transmuter demonstrates average energy-efficiency gains of 18.4×, 4.0×,
3.4×, and 2.0×, over a CPU, GPU, FPGAs, and CGRAs respectively, and remains within
3.0×-32.1× of state-of-the-art ASICs, while providing GPP-level programmability. Fig. 3.1
(right) presents a summary of these comparisons.

3.1.1 Contribution

The Transmuter architecture was developed and implemented in close collaboration with
Subhankar Pal and Dong-hyeon Park for the Defense Advanced Research Projects Agency
(DARPA) Software-Defined Hardware (SDH) program, with Subhankar Pal leading the ar-
chitecture design and modeling. My main contributions lie in algorithm mapping, power

20

modeling, and performance evaluations. I implemented the kernel mappings in collabora-
tion with Subhankar Pal (General (dense) Matrix-Vector multiplication (GEMV), GEMM),
Dong-hyeon Park (SpMV, SpMM), Sung Kim(Fast Fourier Transform (FFT)) and Xin He
(SpMV, SpMM in Trans-SA). The prototype software stack in Sec. 3.6 was developed
by collaborators from the University of Edinburgh. The work presented in this chapter is
mainly from our publication in PACT’20 [152].

3.2 Motivation

In this section, we first present some background on conventional approaches and their
shortcomings in terms of bridging the gap between flexibility and performance. Next, we
discuss the characterization studies of a suite of real-world applications that are composed
of disparate kernels. We then analyze how inherent characteristics within these kernels
motivate the choice of hardware and the need for hardware reconfigurability.

3.2.1 Contemporary Computing Platforms

Figure 3.2 shows a summary of prior studies that show trade-offs between performance/en-
ergy efficiency and flexibility/programmability across these architectural paradigms. CGRAs,
FPGAs, and Application-Specific Instruction-set Processors (ASIPs) lie in the middle of
the spectrum with GPPs and ASICs appearing at opposite ends.

Programmability / Flexibility

Pe
rfo

rm
an

ce
 /

Ef
fic

ie
nc

y

ASIC
CGRA

FPGA
ASIP

GPPReconfigurable
Architectures

X
Target

Trade-off eff. for flexibility

Design

Tape-out

Fabrication

Testing

Production

Bugfix SW
Patch

Figure 3.2: Trade-offs between programmability and efficiency in prominent computer
architectures.

ASICs have been the subject of extensive research in the dark silicon era due to their
superior performance and efficiency [169]. However, ASICs compromise on generality by
stripping away extraneous hardware, such as control logic, thus limiting their functionality

21

to specific algorithms. An obvious solution is to design systems with multiple ASICs,
(e.g. one per kernel) but that leads to high under-utilization for applications with cascaded
kernels. In reality, emerging real-world problems seldom consist of just one algorithm
or kernel (Sec. 3.2.2). Moreover, fast-moving domains, such as ML, involve algorithms
that evolve faster than the turnaround time to fabricate and test new ASICs, despite efforts
on accelerating the design flow [39], thus subjecting them to near-term obsolescence [29,
83]. Finally, ASICs are generally non-programmable, barring a few that use sophisticated
software frameworks [2].

FPGAs have been successful in fast prototyping and deployment by eliminating non-
recurring costs through programmable blocks and routing fabric. Moreover, high-level
synthesis tools have reduced the low-level programmability challenges associated with de-
ploying efficient FPGA-based designs [113, 112, 14]. Despite that, power and cost over-
heads prohibit FPGAs from adapting to scenarios that demand the acceleration of a diverse
set of kernels [162, 28, 161]. Besides, reconfiguration overheads of FPGAs are in the
ms-µs range, even for partial reconfiguration [191, 201, 202], thus impeding fast run-time
reconfiguration across kernel boundaries.

CGRAs overcome some of the energy and performance inefficiencies of FPGAs by
reconfiguring at a coarser granularity. However, CGRA reconfiguration usually happens
at compile-time, and the few that support run-time reconfiguration only support reconfig-
uration in the compute datapath [121], with overheads ranging from a few µs to 100s of
ns [60, 64, 128]. Furthermore, many CGRAs require customized software stacks but have
inadequate tool support, since they typically involve Domain-Specific Languages (DSL)
and custom ISAs [198].

Finally, while CPUs and GPUs carry significant energy and area overheads compared
to lean ASIC designs, they are the de facto choice for programmers as they provide high
flexibility and abstracted programming semantics [24]. Although GPUs are efficient across
many regular HPC applications, i.e. those exhibiting low control divergence, improving
their effectiveness on irregular workloads remains a topic of research today [148, 26].

3.2.2 Taming the Diversity across Kernels

Many real-world workloads consist of multiple kernels that exhibit differing data access
patterns and computational (arithmetic) intensities. In Fig. 3.3, we show the percentage
execution times of key kernels that compose a set of ten workloads in the domains of ML,
graph analytics, and signal/image/video processing. These workloads are derived from an
ongoing multi-university program to study software-defined hardware.

22

Kernel
Characteristic

Arithmetic Intensity High Med. High Med. Low Low
Data Reuse High Med. Med. Low Low Low
Ctrl. Divergence Low Low Low Med. High High

* probability
calculation phase

Workload Class

DANMF Graph
Embedding

LSTM-RNN Language
Modeling

Marian Machine
Translation

Max-Cut Graph
Processing

Mel Freq. Cepstral
Coeff.

Audio
Processing

Naïve Bayes SGD * Sentiment
Analysis

Role Prediction Unsupervised
Learning

Semantic
Segmentation

Image
Processing

Sinkhorn Distance
**

Optimal
Transport

Video
Segmentation

Video
Processing

40%

20%

60%

80%

** SpMM is with
first matrix dense

GeMM GeMV Conv FFT SpMM SpMVOthers

Figure 3.3: Fraction of execution time of kernels in applications spanning the domains of
ML, signal processing, and graph analytics [207, 139, 93, 43, 130, 120, 44, 131, 35, 27] on a
heterogeneous CPU-GPU platform. Some key characteristics, namely arithmetic intensity,
data reuse, and divergence, of each kernel are also listed.

The underlying kernels exhibit a wide range of arithmetic intensities, from 1
1000

ths
to 100s of floating-point operations per byte, i.e. Floating-Point Operations (FLOPS)/B
(Fig. 3.1). We briefly introduce the kernels here. GEMM and GEMV are regular kernels
in ML, data analytics, and graphics [51, 63]. Convolution is a critical component in image
processing [4] and convolutional neural networks [109]. FFT is widely used in speech and
image processing for signal transformation, with vast prior work on improving the speed
and efficiency of FFT algorithms and architecture designs [140, 12]. SpMM is an impor-
tant irregular kernel in graph analytics (part of GraphBLAS [100]), scientific computation
[46, 18, 205], and problems involving big data with sparse connections [159, 85]. An-
other common sparse operation is SpMV, which is predominant in graph algorithms such
as PageRank and Breadth-First Search [137], as well as ML-driven text analytics [7].

Takeaways. Fig. 3.3 illustrates that real-world applications exhibit diverse character-
istics not only across domains but also within an application. One example of the latter

23

is Sinkhorn, an Optimal Transport (OT) application whose inner loop comprises GEMM
followed by element-wise division with a sparse matrix, and dense matrix - sparse matrix
multiplication. Thus, taming both the inter- and intra-application diversity efficiently in a
single piece of hardware calls for an architecture capable of tailoring itself to the charac-
teristics of each composing kernel.

3.2.3 Hardware Implication of Disparate Patterns

Intuition dictates that the diverse characteristics of kernels, as explored in Sec. 3.2.2, would
demand an equivalent diversity in hardware. We study the implications of kernel character-
istics on different hardware choices by analyzing the performance of synthetic microbench-
marks, and present our findings below.

0 50 100 150 200
Arithmetic Intensity (FLOPS/B)

0.1

1

10

Sp
ee

du
p

(S
PM

ov

er
 C

ac
he

)

Contiguous
Random

5 10 15
Memory Access Stride

1

10
Sp

ee
du

p
(S

ha
re

d
ov

er
 P

riv
at

e)

No overlap
Full overlap
Contending

Figure 3.4: Left: Performance of an SPM over a cache-based single-core system for a syn-
thetic workload with variable access patterns and arithmetic intensity. Right: Performance
of a shared cache over a private cache-based 8-core system on a synthetic program with
varying access strides and working set overlaps across cores. “Contending” is a case where
all cores, in a given cycle, access addresses that map to the same bank in the shared mode.

On-Chip Memory Type: Cache vs. Scratchpad. Cache and SPM are two well-known
and extensively researched types of on-chip memory [108, 16, 190]. To explore their trade-
offs, we performed experiments on a single-core system that employs these memories. The
results of the experiments are shown in Fig. 3.4 (left), and our observations are as follows:

• Workloads that exhibit low arithmetic intensity (i.e. are memory-intensive) but high
spatial locality (e.g. contiguous memory accesses) favor a cache-based system.

• Workloads that are compute-intensive and have high traffic to disjoint memory lo-
cations favor an SPM if those addresses are known a priori. In this case, an SPM
outperforms a cache because the software-managed SPM replacement policy super-
sedes any standard cache replacement policy.

24

Thus, caching is useful for kernels that exhibit high spatial locality and low-to-moderate
FLOPS/byte, whereas SPMs are more efficient when the data is prone to thrashing, but is
predictable and has sufficient reuse and is better managed by the programmer.

On-Chip Resource Sharing: Private vs. Shared. The performance of shared versus
private on-chip resources is dependent on the working set sizes and overlaps across cores,
i.e. inter-core data reuse. Specifically, we analyze the choice between and their accessibility
to the compute fabric (shared and private). The amenability of these hardware features is
heavily dependent upon two important kernel characteristics, namely arithmetic intensity
(a measure of compute/memory-boundedness) and data locality. Fig. 3.4 (right) shows the
trade-offs between sharing and privatizing the on-chip memories among cores in a multi-
core, multi-banked system. From our experiments we noted:

• When there is significant overlap between the threads’ working sets, sharing leads to
speedups exceeding 10× over privatization. This is owed to memory access coalesc-
ing and deduplication of data in the shared mode.

• When cores work on disjoint data, there is an insignificant difference in performance
with sharing over no-sharing, if the union of the threads’ working sets fit on-chip.

• Regular kernels may exhibit strided accesses that can be hazardous for a shared multi-
banked cache, due to conflicting accesses at the same bank. In this case, a private
configuration delivers better performance. We illustrate this in the “contending” case,
where all cores load/store with a stride that causes contention for a specific cache
bank in the shared mode.

Dataflow: Demand-Driven vs. Spatial. In this work, we refer to demand-driven
dataflow as the dataflow used by GPPs, wherein cores use on-demand loads/stores to read-
/write data and communicate via shared memory. In contrast, spatial dataflow architectures
(e.g. systolic arrays) are data-parallel designs consisting of multiple PEs with direct PE-to-
PE channels. Each PE receives data from its neighbor(s), performs an operation, and passes
the result to its next neighbor(s) [110]. If pipelined correctly, this form of data orchestration
harnesses the largest degree of parallelism. However, it is harder to map and write efficient
software for certain applications on spatial architectures [89]. This is especially true for
applications that operate on sparse data, where the inter-PE reuse is limited due to irregular
memory accesses.

Takeaways. Through these observations, we derive the key insight that the on-chip
memory type, resource sharing, and dataflow are three key hardware design choices that
are each amenable to a different workload characteristic. This motivates the intuition that

25

an architecture that reconfigures between these designs can accelerate diverse workloads
that exhibit a spectrum of characteristics. We thus propose Transmuter, a general-purpose
accelerator that delivers high efficiency through dynamic reconfiguration (within 10 cycles)
to tailor itself to the nature of the kernel.

3.3 Transmuter Overview

The takeaways from the previous section are the fundamental design principles behind
our proposed architecture, Transmuter. In this section, we present an overview of our
architecture and the reconfigurability features that enable it to cater to disparate workload
characteristics.

Transmuter is a tiled architecture composed of a massively parallel fabric of sim-
ple cores. It has a two-level hierarchy of crossbars and on-chip memories that allows
for fast reconfiguration of the on-chip memory type (cache/scratchpad/First-In-First-Out
buffer (FIFO)), resource sharing (shared/private) and dataflow (demand-driven/spatial).
The various modes of memory and dataflow configurations are listed in Table 3.1. The
two levels of the memory hierarchy, i.e. L1 and L2, support 8 modes each. Furthermore,
each Transmuter tile can be configured independently, however these tile-heterogeneous
configurations are not evaluated in this work.

Table 3.1: Reconfigurable features at each level in Transmuter. In the “hybrid” memory
mode, banks are split between caches and SPMs.

Dataflow On-Chip Memory Resource Sharing # Modes
Demand-driven Cache / SPM / Hybrid Private / Shared 6
Spatial FIFO + SPM 1D / 2D Systolic Sharing 2

In this work, we identify three distinct Transmuter configurations to be well-suited for
the evaluated kernels based on characterization studies on existing platforms (Sec. 3.2.2).
These configurations are shown in Fig. 3.5 and discussed here.

• Shared Cache (Trans-SC). Trans-SC uses shared caches in the L1 and L2. The
crossbars connect the cores to the L1 memory banks and the tiles to the L2 banks,
respectively, and perform arbitration when there is resource contention. This resem-
bles a manycore system, but with a larger compute-to-cache ratio, and is efficient for
workloads with regular data accesses and high inter-core reuse.

• Private Scratchpad (Trans-PS). Trans-PS reconfigures to private scratchpads in the
L1, while retaining the shared caches in the L2. The crossbars privatize the L1 SPMs

26

Figure 3.5: High-level Transmuter architecture showing the configurations evaluated in this
work, namely a) Trans-SC (L1: shared cache, L2: shared cache), b) Trans-PS (L1: private
SPM, L2: private cache), and c, d) Trans-SA (L1: systolic array, L2: private cache).

and the L2 cache banks to their corresponding cores and tiles, respectively. This
configuration is suited for workloads with high intra-core but low inter-core reuse
of data that is prone to cache-thrashing. The private L2 banks enable caching of
secondary data, such as spill/fill variables.

• Systolic Array (Trans-SA). Trans-SA employs systolic connections between the
cores within each tile and is suited for highly data-parallel applications where the
work is relatively balanced between the cores. Transmuter supports both 1D and 2D
systolic configurations. Note that the L2 is configured as a cache for the same reason
as with Trans-PS.

While Transmuter supports a total of 64 configurations, we omit an exhaustive evalua-
tion of all possible Transmuter configurations, given the space constraints of the paper. In
the rest of the chapter, we use the notation of NT×NG Transmuter to describe a system
with NT tiles and NG GPEs per tile.

27

Figure 3.6: a) High-level overview of a host-Transmuter system. b) Transmuter architecture
showing 4 tiles and 4 L2 R-DCache banks, along with L2 R-XBars, the synchronization
SPM, and interface to off-chip memory. Some L2 R-XBar input connections are omitted
for clarity. c) View of a single tile, showing 4 GPEs and the work/status queues interface.
Arbiters, instruction paths, and caches (ICaches) are not shown. d) Microarchitecture of an
R-XBar, with the circled numbers indicating the mode of operation: 1⃝: ARBITRATE, 2⃝:
TRANSPARENT, 3⃝: ROTATE.

28

3.4 Transmuter Architecture Design

In this section, we detail the design of the Transmuter hardware, synchronization handling,
and reconfiguration overheads. A full Transmuter system is shown in Fig. 3.6-a. A Trans-
muter chip consists of one or more Transmuter clusters interfaced to HBM stack(s) in a
2.5D configuration, similar to modern GPUs [119]. A small host processor sits within the
chip to enable low-latency reconfiguration. It is interfaced with a separate DRAM module
and data transfer is orchestrated through Direct Memory Access (DMA) controllers (not
shown) [62]. The host is responsible for executing serial/latency-critical kernels, while
parallelizable kernels are dispatched to Transmuter.

3.4.1 General-purpose Processing Element and Local Control Proces-
sor

A GPE is a small processor with Floating-Point (FP) and Load/Store (LS) units that uses
a standard ISA. Its small footprint enables Transmuter to incorporate many such GPEs
within standard reticle sizes. The large number of GPEs coupled with Miss Status Holding
Registers (MSHRs) in the cache hierarchy allows Transmuter to exploit Memory-Level Par-
allelism (MLP) across the sea of cores. Minor modifications are made to the GPE pipelines
to handle control hazards introduced due to a custom PUSH/POP interface (Sec. 3.4.2).
The GPEs operate in a MIMD/SPMD fashion, and thus have private instruction (I-) caches.

GPEs are grouped into tiles and are coordinated by a small control processor, the Local
Control Processor (LCP), which belongs to the same class of cores as the GPEs. Each
LCP has private D- and ICaches that connect to the HBM interface. The LCP is primarily
responsible for distributing work across GPEs, using either static (e.g. greedy) or dynamic

scheduling (e.g. skipping GPEs with full queues), thus trading-off code complexity for
workload balance.

3.4.2 Work and Status Queues

The LCP distributes work to the GPEs through private FIFO work queues. A GPE simi-
larly publishes its status via private status queues that interface to the LCP (Fig. 3.6-c). The
queues block when there are structural hazards, i.e. if a queue is empty and a consumer
attempts a POP, the consumer is idled until a producer PUSHes to the queue, thus prevent-
ing wasted energy due to busy-waiting. This strategy is also used for systolic accesses,
discussed next. The interface uses low-overhead decode logic that translates loads/stores
to reserved addresses into POP/PUSH commands that transfer pointers and data.

29

3.4.3 Reconfigurable Data Cache (R-DCache)

Figure 3.7: a) Logical view of an R-DCache bank in FIFO+SPM mode, with 4 FIFO parti-
tions, one for each direction in 2D. b) Loads and stores to special addresses corresponding
to each direction are mapped to POP and PUSH calls, respectively, into the FIFOs.

Transmuter has two layers of multi-banked memories, called reconfigurable data caches,
i.e. R-DCaches (Fig. 3.6 – b, c). Each R-DCache bank is a standard cache module with
enhancements to support the following modes of operation:

• CACHE. Each bank is accessed as a non-blocking, write-back, write-no-allocate
cache with a least recently used replacement policy. The banks are interleaved at
a set granularity, and a cacheline physically resides in one bank. Additionally, this
mode uses a simple stride prefetcher to boost performance for regular kernels.

• SPM. The tag array, set-index logic, prefetcher, and MSHRs are powered off and the
bank is accessed as a scratchpad.

• FIFO+SPM. A partition of the bank is configured as SPM, while the remainder
is accessed as FIFO queues (Fig. 3.7 – left), using a set of head/tail pointers. The
queue depth can be reconfigured using memory-mapped registers. The low-level
abstractions for accessing the FIFOs are shown in Fig. 3.7 (right). This mode is
used to implement spatial dataflow in Trans-SA (Fig. 3.5). This mode inherits the
ldr/str-based PUSH/POP capabilities (Sec. 3.4.2).

3.4.4 Reconfigurable Crossbar (R-XBar)

A multicasting Nsrc × Ndst crossbar creates one-to-one or one-to-many connections be-
tween Nsrc source and Ndst destination ports. Transmuter employs Swizzle-Switch Net-

30

work (SSN)-based crossbars that support multicasting [168, 88]. These and other works [3]
have shown that crossbars designs can scale better, up to radix-64, compared to other on-
chip networks. We augment the crossbar design with a crosspoint control unit (XCU) that
enables reconfiguration by programming the crosspoints. A block diagram of a reconfig-
urable crossbar (R-XBar) is shown in Fig. 3.6-d.

The R-XBars support the following modes of operation:

• ARBITRATE. Any source port can access any destination port, and contended ac-
cesses to the same port get serialized. Arbitration is done in a single cycle using
a Least-Recently Granted (LRG) policy [168], while the serialization latency varies
between 0 and (Nsrc − 1) cycles. This mode is used in Trans-SC.

• TRANSPARENT. A requester can only access its corresponding resource, i.e. the
crosspoints within the crossbar are set to 0 or 1 (Fig. 3.6-d). Thus, the R-XBar is
transparent and incurs no arbitration or serialization delay in this mode. Trans-PS (in
L1 and L2) and Trans-SA (in L2) employ TRANSPARENT R-XBars.

• ROTATE. The R-XBar cycles through a set of one-to-one port connections pro-
grammed into the crosspoints. This mode also has no crossbar arbitration cost.
Fig. 3.8 illustrates how port multiplexing is used to emulate spatial dataflow in a
1D systolic array configuration (Trans-SA).

Figure 3.8: a) Physical and b) logical views of 1D systolic array connections within a
Transmuter tile. Spatial dataflow is achieved by the R-XBar rotating between the two port-
connection patterns.

There are two L1 R-XBars within a tile (Fig. 3.6-c). The upper R-XBar enables GPEs to
access the L1 R-DCache, and the lower R-XBar amplifies the on-chip bandwidth between

31

the L1 and L2. Each L1 and L2 R-XBar has an additional “bypass” port to allow GPEs
to communicate to the main memory when the corresponding R-DCache banks operate as
SPMs. The L1 crossbars in the proposed Transmuter design have a bus width of 64 bits
(32 address + 32 data bits) in each direction. L2 crossbars are wider (32 address + 128 data
bits = 160 bits), as they transfer cachelines in bursts.

3.4.5 Synchronization Scratchpad Memory

Transmuter implements synchronization and enforces happens-before ordering using two
approaches. The first is implicit, in the form of work/status/R-DCache queue accesses that
block when the queue is empty or full. Second, it also supports explicit synchronization
through a global synchronization SPM for programs that require mutexes, condition vari-
ables, barriers, and semaphores. For instance, say that GPEs 0 and 1 are to execute a
Critical Section (CS) in a program. With explicit synchronization, the programmer can
instantiate a mutex in the synchronization SPM and protect the CS with it. The same can
also be achieved through implicit synchronization, with the following sequence of events:

1⃝ both GPEs ← LCP, 2⃝ LCP → GPE0, 3⃝ GPE0 executes the CS, 4⃝ GPEs0→ LCP, 5⃝
LCP → GPE1, 6⃝ GPE1 executes the CS, 7⃝ GPE1 → LCP, where ← denotes POP-from
and → is a PUSH-to the work or status queue.

Compared to traditional hardware coherence, these techniques reduce power through
lower on-chip traffic [99, 151]. Transmuter has a small global SPM, the Synchronization
SPM, exclusively for synchronization operations that allow for the implementation of soft-
ware coherence and standard primitives such as locks, condition variables, barriers, and
semaphores. The synchronization SPM is interfaced to the LCPs and GPEs through a low-
throughput two-level arbiter tree, as accesses to this SPM were not bottleneck for any of
the evaluated workloads.

3.5 Transmuter Reconfiguration Design

Transmuter can self-reconfigure at run-time (initiated by an LCP) if the target configuration
is known a priori. Reconfiguration can also be initiated by the host using a command packet
with relevant metadata. The programming interface used to initiate such reconfiguration is
discussed in Sec. 3.6.

Transmuter supports a MIMD paradigm with different cores running independent code,
useful for applications composed of independent kernels, such as for wireless commu-
nication [127]. In order to support the MIMD paradigm, Transmuter consists of private

32

instruction caches for each GPE and LCP. The ICaches share access to the main memory
with the L2 datapath through a two-level arbiter tree, not shown in Fig. 3.6. The GPE LS
unit is augmented with logic to route packets to the work/status queue, synchronization
SPM, and the L1 or L2 R-DCache, based on a set of base/bound registers. Reconfiguration
changes the active base/bound registers, without external memory traffic. LCPs include
similar logic but do not have access to the L1 or L2. Lastly, the system enables power-
gating individual blocks, i.e. cores, R-XBars, and R-DCaches, based on reconfiguration
messages. This is used to boost energy efficiency for memory-bound kernels.

Each step of the hardware reconfiguration happens in parallel and is outlined below.

• GPE. Upon receiving the reconfiguration command, GPEs switch the base/bound
registers that their LS units are connected to (Sec. 3.5) in a single cycle.

• R-XBar. ARBITRATE ↔ TRANSPARENT reconfiguration entails a 1-cycle la-
tency, as it only switches MUXes in the R-XBar (Fig. 3.6-d). The ROTATE mode
uses set/unset patterns, which require a serial transfer of bit vectors from on-chip
registers (e.g. a 64×64 design incurs a 6-cycle latency2).

• R-DCache. Switching from CACHE to SPM mode involves a 1-cycle toggle of the
scratchpad controller. The FIFO+SPM mode involves programming the head and tail
pointer for each logical FIFO queue, which are transferred from control registers (4
cycles for 4 FIFO partitions).

Thus, the net reconfiguration time, accounting for buffering delays, amounts to ˜10

cycles, which is faster than FPGAs and many CGRAs (Sec. 3.2.1). For host-initiated re-
configuration, overheads associated with host-to-Transmuter communication leads to a net
reconfiguration time of few 10s of cycles. We limit our discussions to self-reconfiguration
in this work. Since Transmuter does not implement hardware coherence, switching be-
tween certain Transmuter configurations entails cache flushes from L1 to L2, from L2 to
HBM, or both. The levels that use the SPM or FIFO+SPM mode do not need flushing. Fur-
thermore, our write-no-allocate caches circumvent flushing for streaming workloads that
write output data only once. Even when cache flushes are inevitable, the overhead is small
(<1% of execution time) for the evaluated kernels in Sec. 3.9.

33

Transmuter Hardware

C++ Intrinsics
Host API

TransPy Libraries
NumPy SciPy

LCP GPE GPE…
Host

LCP API GPE API

…

Application
Code

Host Code

1: import transpy.numpy as np
2: //Init input x and filter f
3: x=np.arange(...)
4: f=np.arange(...)
5: y=np.correlate(f, x, mode="full")
6: [...]

Ap
p
Co
de

1: [...]
2: //Iterate over size of array x
3: for(int i=0; i<x_N; ++i) {
4: float x = T_WORKQ_POP();
5: float psum = 0;
6: #if (GPE_ID != (N_TILES-1))
7: psum = T_SA_POP(Dir::East);
8: #endif
9: psum += x * f; //MAC operation
10: #if (GPE_ID != 0)
11: T_SA_PUSH(Dir::West, psum);
12: #else
13: y[i] = psum;
14: #endif
15: }
16: [...]

GP
E
Co
de

1: //Init input x & filter f
2: float x[x_N]={...};
3: float f[f_N]={...};
4: [...]
5: for(int i=0; i<f_N; ++i) {
6: //Stream x to all GPEs
7: T_WORKQ_PUSH_BCAST(x[i]);
8: }
9: [...]

LC
P
Co
de

GPE CodeGPE CodeLCP Code

Transmuter Software Stack

GPE CodeGPE CodeGPE Code
… …

Figure 3.9: Transmuter software stack. Application code is written using Python and in-
vokes library code for the host, LCPs, and GPEs. The implementations are written by
experts using our C++ intrinsics library. Also shown is an example of a correlation kernel
on Trans-SA (host library code not shown). The end-user writes standard NumPy code
and changes only the import package to transpy.numpy (App:L1). Upon a library call
(App:L5), the host performs data transfers and starts execution on Transmuter. The LCP
broadcasts the vector x to all GPEs (LCP:L7). Each GPE pops the value (GPE:L4), per-
forms a MAC using its filter value (f) and east neighbor’s partial sum (GPE:L7), and sends
its partial sum westward (GPE:L11). The last GPE stores the result into HBM. The host
returns control to the application after copying back the result vector y.

3.6 Prototype Software Stack

We implement a software stack for Transmuter in order to support good programmability
and ease of adoption of our solution. The software stack has several components: a high-
level Python API, and lower-level C++ APIs for the host, LCPs, and GPEs. An outline of
the software stack and a working Transmuter code example are shown in Fig. 3.9.

The highest level API, called TransPy, is a drop-in replacement for the well-known
high-performance Python library NumPy, i.e. the TransPy API exactly mirrors that of
NumPy. In the code example in Fig. 3.9, note that only one change is needed to convert

2Latency (in cycles) = ceil(Nrotate patterns × Ndst × log2(Nsrc) / xfer width)

34

the NumPy program to TransPy, i.e. the change of the imported module. Use of un-
supported NumPy kernels will not result in an error - TransPy will simply fall back to
the NumPy implementation. The np.correlate function is trapped in TransPy, dis-
patched to the Transmuter host layer, and a pre-compiled kernel library is invoked. We use
pybind11 [87] as the abstraction layer between Python and C++. TransPy also con-
tains drop-in replacements for SciPy, PyTorch, NetworkX, and other libraries used in
scientific computing, ML, graph analytics, etc.

Table 3.2: Critical host- and Transmuter-side C++ intrinsics used to write optimized kernel
libraries (TID = Tile ID, GID = GPE ID). Note that the API is depicted for a single-cluster
design, for simplicity.

Host-side Intrinsic Signature Description
H INIT() Initialize host-Transmuter interface
H LAUNCH() Trigger Transmuter to start executing the kernel
H FINISH() Wait (block) until Transmuter finishes executing
H SEND DATA(&dst,&src,size) Mem-copy from external DRAM to HBM
H RETR DATA(&dst,&src,size) Mem-copy from HBM to external DRAM
H SET † ARG(argID,&arg,TID,[GID]) Copy an argument to an LCP or GPE
H COMPILE BIN(path to bin,flags) Dynamically compile GPE/LCP code
H LD BIN †(&bin,TID,[GID]) Stream compiled GPE/LCP binary into the HBM
H SYNC ALL() Synchronize with all LCPs and GPEs
H RECONF(en flag,TID,[GID]) Dynamically enable/disable GPE/LCP
H RECONF<level>(config) Trigger R-DCache/XBar reconfiguration
H CLEANUP() Teardown host interface and deallocate structures

Transmuter-side Intrinsic Signature Description
T LD WORD(addr) Read a word from SPM; addr determines the bank
T ST WORD(addr,val) Write a word into SPM; addr determines the bank
T SA POP(direction) Pop data from systolic neighbor GPE
T SA PUSH(direction,val) Push data to systolic neighbor GPE
T +Q PUSH(val,[GID]) Push data to work/status queue
T +Q POP([GID]) Pop data from work/status queue
T FREE WORKQ PUSH(val) Push to the work queue of a free GPE
T WORKQ PUSH BCAST(val) Broadcast to all work queues in the tile
T FLUSH<level>(bank) Flush dirty data from to the next level
T SPM BOT<level,config>() Get a pointer to bottom of R-DCache/Sync. SPM
T SPM TOP<level,config>() Get a pointer to top of R-DCache/Sync. SPM
T SYNC LCPs() Synchronize with all LCPs in Transmuter
T SYNC TILE() Synchronize with all GPEs and LCP in the tile
T SYNC ALL() Synchronize with all LCPs, GPEs and host
T SLEEP() Put self into sleep to conserve power
T RECONF<level>(self flag,config) Self-reconfigure R-DCache/XBar / wait for host

†: LCP/GPE +: WORK/STATUS

TransPy invokes kernels that are implemented by library writers and expert program-
mers, with the aid of the C++ intrinsics layer. A Transmuter SPMD kernel implementation

35

consists of three programs, one each for the host, LCP, and GPE. The host code is written
in the style of OpenCL [179], handling data transfers to and from Transmuter, launch-
ing computation, initializing reconfigurable parameters (e.g. R-DCache FIFO depth), and
triggering reconfiguration if needed. On the Transmuter side, notable API methods in-
clude those associated with the queue interface, for accessing SPMs and FIFOs, triggering
cache flushes, and reconfiguration. Synchronization is handled using intrinsics that wrap
around Portable Operating System Interface (POSIX) threads functions [141]. These calls
allow for synchronization at different granularities, such as globally, within tiles, and across
LCPs. A set of these intrinsics is listed in Table 3.2, and the code example in Fig. 3.9 re-
flects the use of some of these calls.

Thus, the Transmuter software stack is designed to enable efficient use of the Trans-
muter hardware by end-users, without the burden of reconfiguration and other architectural
considerations. At the same time, the C++ layer allows expert programmers to write their
own implementations, such as sophisticated heterogeneous implementations that partition
the work between the host CPU and Transmuter. As an alternative to writing hand-tuned
kernels for Transmuter, we are actively working on prototyping a compiler to automatically
generate optimized C++-level library code for Transmuter based on the LIFT data-parallel
language [178], the details of which are left for future work.

3.7 Experimental Methodology

This section describes the methodology used to derive performance, power, and area es-
timates for Transmuter. Table 3.3 shows the parameters used for modeling Transmuter.
We compare Transmuter with an Intel Core i7 CPU and NVIDIA Tesla V100 GPU run-
ning optimized commercial libraries. The baseline specifications and libraries are listed
in Table 3.4. For fair comparisons, we evaluate two different Transmuter designs, namely
TransX1 and TransX8, that are each comparable in area to the CPU and GPU, respec-
tively. TransX1 has a single 64×64 Transmuter cluster and TransX8 employs 8 such
clusters. Both designs have one HBM2 stack/cluster to provide sufficient bandwidth.

3.7.1 Performance Models

We used the gem5 simulator [20, 21] to model the Transmuter hardware. We modeled
the timing for GPEs and LCPs after an in-order Arm Cortex-M4F, and cache and cross-
bar latencies based on a prior chip prototype that uses SSN crossbars [153, 156]. Data
transfer/set-up times are excluded for all platforms. The average number of instructions

36

Table 3.3: Microarchitectural parameters of Transmuter gem5 model.
Module Microarchitectural Parameters

GPE/LCP

1-issue, 4-stage, in-order (MinorCPU) core @ 1.0 GHz, tournament
branch predictor, Functional Units (FUs): 2 integer (3 cycles), 1 integer
multiply (3 cycles), 1 integer divide (9 cycles, non-pipelined), 1 FP (3
cycles), 1 LS (1 cycle)

Work/Status
Queue

4 B, 4-entry FIFO buffer between each GPE and LCP within a tile,
blocks loads if empty and stores if full

R-DCache
(per bank)

CACHE: 4 kB, 4-way set-associative, 1-ported, non-coherent cache
with 8 MSHRs and 64 B block size, stride prefetcher of degree 2, word-
granular (L1) / cacheline-granular (L2)
SPM: 4 kB, 1-ported, physically-addressed, word-granular
FIFO+SPM: 4 kB, 1-ported, physically-addressed, 32-bit head and tail
pointer registers

R-XBar

Nsrc ×Ndst non-coherent crossbar with 1-cycle response
ARBITRATE: 1-cycle arbitration latency, 0 to (Nsrc-1) serialization la-
tency depending upon the number of conflicts
TRANSPARENT: no arbitration, direct access
ROTATE: switch port config. at programmable intervals
Width: 32 address + 32 (L1) / 128 (L2) data bits

GPE/LCP
ICache

4 kB, 4-way set-associative, 1-ported, non-coherent cache with
8 MSHRs and 64 B block size

Sync. SPM 4 kB, 1-ported, physically-addressed scratchpad
Main
Memory

1 HBM2 stack: 16 64-bit pseudo-channels, each @ 8000 MB/s, 80-
150 ns average access latency

simulated was 2.3 billion (maximum 38.7 billion). Throughput is reported in FLOPS/s and
only accounts for useful (algorithmic) FLOPS.

The resource requirement for simulations using this detailed gem5model is only tractable
for Transmuter systems up to 8×16. For larger systems, we substitute the gem5 cores with
trace replay engines while retaining the gem5 model for the rest of the system. Offline
traces are generated on a native machine and streamed through these engines. This allows
us to simulate systems up to one 64×64 cluster. On average, across the evaluated kernels,
the trace-driven model is pessimistic to 4.5% of the execution-driven model. For a multi-
cluster system, we use analytical models from gem5-derived bandwidth and throughput
scaling data (Sec. 3.9.5).

We implemented each kernel in C++ and hand-optimized it for each Transmuter con-
figuration using the intrinsics discussed in Sec. 3.6. Compilation was done using an Arm
GNU compiler with the -O2 flag. Each GPE and LCP executes its own process and the pro-
cesses communicate through loads and stores to a set of shared pages in the global address
space. All experiments used single-precision FP arithmetic.

37

Table 3.4: Specifications of baseline platforms and libraries evaluated.
Platform Specifications Library Name and Version

CPU
Intel i7-6700K, 4 cores/8 threads at 4.0-
4.2 GHz, 16 GB DDR3 memory @ 34.1
GB/s, AVX2, SSE4.2, 122 mm2 (14 nm)

MKL 2018.3.222 (GEMM / GEMV /
SpMM / SpMV), DNNL 1.1.0 (convolution),
FFTW 3.0 (FFT)

GPU
NVIDIA Tesla V100, 5120 CUDA cores at
1.25 GHz, 16 GB HBM2 memory at 900
GB/s, 815 mm2 (12 nm)

cuBLAS v10 (GEMM/GEMV), cuDNN
v7.6.5 (convolution), cuFFT v10.0 (FFT),
CUSP v0.5.1 (SpMM), cuSPARSE v8.0
(SpMV)

3.7.2 Power and Area Models

To obtain accurate estimations for power and area, we designed Register-Transfer Level
(RTL) models for Transmuter hardware blocks and synthesized them. The GPEs and LCPs
are modeled as Arm Cortex-M4F cores. For the R-XBar, we use the SSN design proposed
in [168], augmented with an XCU. The R-DCaches are cache modules enhanced with SPM
and FIFO control logic. The crossbar and core power models are based on RTL synthesis
reports and the Arm Cortex-M4F specification document. The R-XBar power model is
calculated based on the values obtained from synthesis results and calibrated against the
data reported in [168]. For the caches and synchronization SPM, we used CACTI 7.0 [15]
to estimate the dynamic energy and leakage power. We further verified our power estimate
for SpMM on Transmuter against a prior SpMM ASIC prototype [153] and obtained a
pessimistic deviation of 17% after accounting for the architectural differences. Finally, the
area model uses estimates from synthesized Transmuter blocks and is also cross-verified
with the simplified 40 nm chip prototype.

We note that this work considers only the chip power on all platforms, for fair compar-
isons. We used standard profiling tools for the CPU and GPU, namely nvprof and RAPL.
For the GPU, we estimated the HBM power based on per-access energy [150] and the mea-
sured memory bandwidth and subtracted it out. The power is scaled for iso-technology
comparisons using quadratic scaling.

3.8 Kernel Implementations on Transmuter

Transmuter is built using COTS cores that lend the architecture to be kernel-agnostic. Here,
we present our mappings of the fundamental kernels in Sec. 3.2 on the selected Transmuter
configurations, and list the code snippets for three of our implementations. Then, we ana-
lyze the performance of each kernel on the selected Transmuter configurations. Additional
kernels in the domain of linear algebra have been mapped and evaluated on a preliminary
version of Transmuter for different resource sharing configurations [173]. It is worth noting

38

that while executing memory-bound kernels, Transmuter can power-down resources within
a tile to conserve energy when the available memory bandwidth is saturated, without hurt-
ing the system throughput.

3.8.1 Dense Matrix Multiplication and Convolution

Figure 3.10: Illustration of dense matrix-matrix and matrix-vector multiplication kernels
mapped onto Transmuter.

We describe the mappings of two common Level-2 and Level-3 Basic Linear Algebra
Subprograms (BLAS) kernels, namely GEMM and GEMV multiplication.

GEMM. GEMM is a compute-bound kernel that performs C = α · A · B + β · C,
where α and β are scalars, while A, B, and C are dense matrices. GEMM produces O(N3)

FLOPS for O(N2) fetches and exhibits very high reuse [74]. It also presents contiguous
accesses, thus showing amenability to a shared memory based architecture. Without loss
of generality, GEMM is evaluated on Transmuter with N ×N square matrices.

Our implementation of GEMM on Trans-SC uses a common blocking optimization [125]
(Fig. 3.10-a). Based on our discussion in Sec. 3.2.3, Trans-SC is a good fit for blocked-
GEMM, as the L1 and L2 shared caches exploit this reuse efficiently. We similarly im-
plement GEMM on Trans-PS but with the blocked partial results stored in the private L1
SPMs. Naturally, Trans-PS misses the opportunity for data sharing. For Trans-SA, the

39

GPEs execute GEMM in a systolic fashion with the rows of A streamed through the L2
cache, and the columns of B loaded from the L1 SPM.

GEMV. GEMV is defined by y = α · A · x + β · y, where α and β are scalars, x and
y are vectors and A is a dense matrix. It is a memory-bound kernel that involves lower
FLOPS/B — O(N2) FLOPS for O(N2) fetches — than GEMM, but still involves con-
tiguous memory accesses [55]. The Trans-SC and Trans-PS implementations are similar to
those for GEMM, but blocking is not implemented due to lower data reuse (Fig. 3.10-b).
Each GPE performs a dot-product of an A-row with x, along with the element-wise oper-
ations. On Trans-SA, the vector is streamed into each GPE through the L2 cache, while
the matrix elements are fetched from the L1 SPM. Each GPE performs a Multiply-And-
Accumulate (MAC) and passes the partial sum and input matrix values to its neighbors. We
avoid network deadlock in our GEMM and GEMV Trans-SA implementations by recon-
figuring the FIFO depth of the L1 R-DCache (Sec. 3.4.3) to allow for sufficient buffering.
A pseudocode snippet for GEMV Trans-SC implementation is shown in Program 3.1, and
the API definitions are in Table 3.2.

void GEMV_LCP(int start, int end, int N_G) {
// start: start row index, end: end row index
// N_G: number of GPEs per tile
for (int row = start; row < end; row++) {

T_WORKQ_PUSH(gid, row);
gid = (gid == N_G - 1) ? 0 : (gid + 1);

} // gid is GPE ID
T_WORKQ_PUSH_BCAST(-1);

}
void GEMV_GPE(Matrix A, Vector x, Vector y, N, int a, int b) {

// y = a * A * x + b * y
// N: matrix and vector dimension
int row = 0;
while ((row = T_WORKQ_POP()) != -1) {

float psum = 0.0;
for (int col = 0; col < N; col++) {

psum += A[row][col] * x[col]
}
y[row] = b * y[row] + a * psum;

}
}

Program 3.1: GEMV pseudocode on Transmuter in Trans-SC.

Convolution. Convolution in 2D is comprised of adding each input element (e.g. image

40

pixels) to its neighbors, weighted by a filter, to obtain an output element. Convolution
produces (2 · F 2 · N2 · IC · OC)/S FLOPS, for an F×F filter convolving with stride
S over an N×N image, with IC input and OC output channels. The filter is reused
while computing one output channel, and across multiple images. Input reuse is limited
to O(F · OC), for S < F . On Trans-SC, we assign each GPE to compute the output of
multiple rows, to maximize the filter reuse across GPEs. For Trans-PS and Trans-SA, we
statically partition each image into B×B×IC sub-blocks, such that the input block and
filter fit in the private L1 SPM. Each block is then mapped to a GPE for Trans-PS, and to a
set of F adjacent GPEs of a 1D systolic array for Trans-SA using a row stationary approach
similar to [31].

3.8.2 Fast Fourier Transform

GPE
0

GPE
1

GPE
2

SPM SPM SPM

TM or
prev. Tile

TM or
next Tile

Local Intermediate Result Storage

0, 4 1, 5 2, 6 3, 7
0, 2 1, 3 4, 6 5, 7

0, 1 2, 3 4, 5 6, 7

GPE 0

GPE 1

GPE 2

Time

in [0]

in [1]

out [0]

out [1]

Twiddle Coefficient

0
1
2
3
4
5
6
7

Figure 3.11: Top: Mapping of FFT stages onto GPEs in Transmuter (Trans-SA). Bottom:
Each GPE executes butterfly operations greedily, leading to a fully-pipelined schedule.

FFT. FFT in 1D computes an N -point discrete Fourier transform in log(N) sequential
stages. Each stage consists of N/2 butterfly operations. While an entire stage can be com-
puted in parallel if the input data is all available, FFT applications often operate on stream-
ing input samples, where operands are produced at a constant rate. Thus, FFT is amenable
to spatial dataflow architectures [86, 47]. Our Trans-SA mapping is similar to pipelined
systolic ASICs; each stage is assigned to a single GPE, and each GPE immediately pushes
its outputs to its neighbor. The butterflies in each stage are computed greedily. This is
illustrated in Fig. 3.11. To reduce storage and increase parallelism, Trans-SA uses run-time
twiddle coefficient generation when the transform size is too large for on-chip memory, e.g.

>256 for 2×8, with the trade-off of making the problem compute-bound. For sizes larger

41

than 2N GPES , FFT computation needs to be time-multiplexed across GPEs. For smooth
cross-tile transfers, the L2 in this mapping is also configured as 1D systolic, thus precluding
corner case handling in software. A pseudocode snippet for LCP and GPE for FFT Trans-
SA implementation is shown in Program 3.2, and the API definitions are in Table 3.2. On
Trans-SC, the butterfly operations are distributed evenly among GPEs to compute a stage
in parallel. LCPs assign inputs and collect outputs from GPEs. All cores synchronize after
each stage. For Trans-PS, the same scheduling is used and partial results are stored in the
L1 SPM.

3.8.3 Sparse Matrix Multiplication

Matrix A Matrix B Partial Products

×

GPE

GPE

GPE

GPE

Figure 3.12: SpMM mapping on Transmuter. Left: Multiply phase: each GPE multiplies
an element of a column of A with a row of B, generating a partial product matrix. Right:
Merge phase: each GPE independently streams in partial product matrix rows, performs
mergesort, and stores the result.

SpMM. SpMM is a memory-bound kernel with low FLOPS that decrease with in-
creasing sparsity, e.g. ∼ 2N3r2M , for uniform-random N × N matrices with density
rM . Furthermore, sparse storage formats lead to indirection and thus irregular memory
accesses [118, 151]. We implement SpMM in Trans-SC using a prior outer product ap-
proach [151] (Fig. 3.12). In the multiply phase of the algorithm, the GPEs multiply a
column of A with the corresponding row of B, such that the row elements are reused in
the L1 cache. In order to exploit this reuse, both the L1 and L2 layers of Transmuter are
configured as shared caches. In the merge phase, a GPE merges all the partial products
corresponding to one row of C. Each GPE maintains a private list of sorted partial results
and fills it with data fetched from off-chip. Trans-PS operates similarly, but with the sort-
ing list placed in private L1 SPM, given that SPMs are a better fit for operations on disjoint
memory chunks. This prevents cache pollution that would have occurred while operating

42

void FFT_LCP(Complex* input, Complex* output, int N,
bool is_input, bool is_output) {

// N: FFT size, log2(N): number of FFT stages
if (is_input) {

for (int i = 0; i < N; i++) {
T_WORKQ_PUSH(0, input[i]);

}
}
if (is_output) {

for (int i = 0; i < N; i++) {
output[i] = T_STATUSQ_POP(log2(N)-1);

}
}

}
void FFT_GPE(Complex* input, Complex* output, int N,

int N_G, int S, int P) {
// N_G: number of GPEs per tile
// S: step size, P: next step size
int id = gid + tid * N_G; // gid: GPE ID, tid: Tile ID
Complex *sp = T_SPM_BOT<Lev::L1, Conf::systolic_array_1d>();
for (int i = 0; i < N/2; i++) {

in1= (id == 0) ? T_WORKQ_POP() : T_SA_POP(Dir::West);
in2= (id == 0) ? T_WORKQ_POP() : T_SA_POP(Dir::West);
out1,out2 = compute_butterfly(in1,in2);
if (id == log2(N) - 1)

T_STATUSQ_PUSH(out1); T_STATUSQ_PUSH(out2);
else {

T_ST_WORD(sp + i, out1); T_ST_WORD(sp + i + S, out2);
if (i > P - 1) {

T_SA_PUSH(Dir::East, T_LD_WORD(sp + i - P));
T_SA_PUSH(Dir::East, out1);

}
}

}
for (int i = 0; i < P; i++) {

T_SA_PUSH(Dir::East, T_LD_WORD(sp + S + i));
T_SA_PUSH(Dir::East, T_LD_WORD(sp + S + P + i));

}
}

Program 3.2: FFT pseudocode on Transmuter in Trans-SA.

in Trans-SC, but trades-off with a loss of reuse during the multiply phase. Lastly, SpMM in
Trans-SA is implemented following a recent work that uses sparse packing [79]. Directly

43

mapping SpMM on Transmuter in systolic mode would lead to degraded GPE utilization.
A recent study proposes to map sparse matrices onto a systolic array for acceleration [111].
By packing the sparse matrices into their dense counterpart, the utilization of the systolic
array running SpMM could be improved significantly. The computation is equally split
across the tiles.

void SpMV_LCP() {
T_WORKQ_PUSH_BCAST(1);

}
void SpMV_GPE(A_row, A_col, A_val, A_part, x, x_part, y, N, P) {

// y = A * x, gid: GPE ID, tid: Tile ID
// P: row partition per tile, N: matrix/vector dimension
// N_T: number of tiles, N_G: number of GPEs per tile
T_WORKQ_POP();
int parts_per_tile = ceil(N/N_T);
int i = A_part[gid * N_T * N_G + tid];
for (int part = tid * parts_per_tile;

part < (tid + 1) * parts_per_tile; part++) {
int b_start = x_part[part][gid];
int b_end = x_part[part][gid + 1];
float *sp = T_SPM_BOT<Lev::L1, Conf::systolic_array_1d>();
float *sp_start = sp;
for (int j = b_start; j < b_end; j++)

T_ST_WORD(sp++,x[j]);
float *sp_sum = sp;
for (int row = part * P; row < (part + 1) * P; row++) {

float psum = 0;
while (A_row[i] == row)

psum += A_val[i++] * T_LD_WORD(sp_start + A_col[i]);
T_ST_WORD(sp++, psum);

}
for (int row = 0; row < P; row++) {

float popped = (gid == 0) ? T_SA_POP(Dir::West) : 0;
float sum = popped + T_LD_WORD(sp_sum + row);
if (gid == N_G - 1) y[part * P + row] = sum;
else T_SA_PUSH(Dir::East, sum);

}
}

}

Program 3.3: SpMV pseudocode on Transmuter in Trans-SA.

SpMV. SpMV, similar to SpMM, is bandwidth-bound and produces low FLOPS (∼

44

2N2rMrv for a uniformly random N×N matrix with density rM , and vector with density
rv). We exploit the low memory traffic in the outer product algorithm for sparse vectors,
mapping it to Trans-SC and Trans-PS. The vector NZEs are distributed across the GPEs,
so each GPE generates partial product vectors. Rather than writing the partial products to
memory, the GPEs send them to the LCP through the status queues. Each LCP performs
the partial merge phase on the partial products of its own tile that are streamed in through
the work queue. Finally, the partially merged vectors are sent to Tile 0 through the syn-
chronization SPM and the LCP in Tile 0 performs the final merge across the partial vectors
generated by each tile and writes the resulting vector to memory. SpMV on 1D Trans-SA is
implemented using inner product on a packed sparse matrix as described in [79]. The pack-
ing algorithm packs 64 rows as a slice and assigns one slice to each 1×4 sub-tile within
a tile. Each GPE loads the input vector elements into the SPM, fetches the matrix ele-
ment, and performs MAC operations, with the partial results being streamed to its neighbor
within the sub-tile. A pseudocode snippet for SpMV Trans-SA implementation is shown
in Program 3.3, and the API definitions are in Table 3.2.

Finally, for both SpMM and SpMV, we use dynamic scheduling for work distribution
to the GPEs (Sec. 3.4.1), in order to fully exploit the amenability of sparse workloads to
SPMD architectures [151].

3.8.4 Performance with Different Configurations

Fig. 3.13 presents the comparisons between Trans-SC, Trans-PS, and Trans-SA in terms
of performance. This analysis was done on a small 2×8 system, such that the working
sets spill out of on-chip memory and stress the hardware. The results show that the best-

performing Transmuter configuration is kernel-dependent, and in certain cases also input-

dependent. Fig. 3.14 shows the cycle breakdowns and the work imbalance across GPEs.
For GEMM, Trans-SC achieves high L1 hit rates (>99%), as efficient blocking leads

to good data reuse. Trans-PS suffers from capacity misses due to lack of sharing, noted
from the large fraction of L2 misses. Further, Trans-SC performs consistently better than
Trans-SA, as it does not incur the overhead of manually fetching data into the L1 SPM.
For GEMV, Trans-SC and Trans-PS behave the same as GEMM. However, Trans-SA ex-
periences cache thrashing (increasing with matrix size) in the private L2. For Convolution,
as with GEMM/GEMV, Trans-SC performs the best due to a regular access pattern with
sufficient filter and input reuse. Across these kernels, stride prefetching in Trans-SC is
sufficient to capture the regular access patterns.

For FFT, Trans-SA achieves significantly higher throughput because it benefits from

45

~

864.2

~

864.2

~

864.2

Figure 3.13: Performance of 2×8 Trans-SC, Trans-PS, and Trans-SA configurations across
different inputs for the kernels in Sec. 3.8. All matrix operations are performed on square
matrices without loss of generality. Convolution uses 3×3 filters, 2 input/output channels,
and a batch size of 2.

the streaming inputs and exploits better data reuse, evidenced by ∼10× less memory band-
width usage compared to Trans-SC/Trans-PS. Trans-SA performs better for sizes <512
compared to other sizes, as the twiddle coefficients are loaded from on-chip rather than be-
ing computed. Despite the intra-stage parallelism, low reuse in Trans-PS results in >25%
L1 misses. More importantly, inter-GPE synchronization and coherence handling at the
end of each stage limit the performance for Trans-SC/Trans-PS. Finally, the control flow in
the non-systolic code is branchy and contributes to expensive ICache misses.

For SpMM, the performance is highly dependent on input matrix dimension and spar-
sity. Trans-SC favors smaller/sparser matrices, whereas Trans-PS performs the best for
larger matrices with moderate sparsity. The multiply phase of outer product is better suited
to Trans-SC as the second input matrix rows are shared. The merge phase is amenable to
Trans-PS since the private SPMs overcome the high thrashing that Trans-SC experiences
while merging multiple disjoint lists. SpMM achieves an additional performance boost of
3.2% by reconfiguring between the two phases (not shown in Fig. 3.13). Trans-SA domi-
nates for matrices with densities >∼11%. However, it performs poorly in comparison to

46

Trans- SC* SC* SC* SA* PS* SA*
GeMM GeMV Conv FFT SpMM SpMV

Figure 3.14: Cycle breakdown for the kernels in Sec. 3.8. * (red) indicates the best-
performing configuration. “Other” comprises stalls due to synchronization and bank con-
flicts. ▼: work imbalance across GPEs (σ/µ of # FLOPS). Inputs are: 1k (GEMM), 8k
(GEMV), 2k (Convolution), 16k (FFT), 4096, 0.64% (SpMM), 4k, 2.6%, dense vector
(SpMV).

outer product for highly-sparse matrices. Although ˜50% of the time is spent on computa-
tions, as shown in Fig. 3.14, most of which are wasted on fetched data that are discarded
after failed index matches.

For SpMV, the performance depends on the input matrix size, dimensions, as well as
the vector density. Notably, Trans-SA benefits through the spatial dataflow for SpMV but
not for SpMM, because the SpMV implementation treats the vector as dense, and thus can
stream in the vector elements efficiently into the GPE arrays. At sufficiently high vector
sparsities, outer product on Trans-SC/Trans-PS outperforms Trans-SA by avoiding fetches
of zero-elements. However, for higher densities, Trans-SC and Trans-PS suffer from the
overhead of performing mergesort that involves frequent GPE-LCP synchronization, and
the serialization at LCP 0.

Takeaways. Demand-driven dataflow with shared caching outperforms other config-
urations for GEMM, GEMV, and convolution due to sufficient data sharing and reuse.
Streaming kernels such as FFT and SpMV (with dense vectors) are amenable to spatial
dataflow. SpMM and high-sparsity SpMV show amenability to private scratchpads or
shared caches depending on the input size and sparsity, with the systolic mode outper-
forming only for very high densities.

47

3.9 Evaluation

In this section, we first compare the best-performing Transmuter kernel implementations
to the CPU, the GPU, and existing FPGAs, CGRAs, and ASICs. Then we show the power
and area analysis. Next, we deep-dive into the evaluation of an application that exercises
rapid reconfiguration. Finally, we present further analysis of Transmuter on throughput and
bandwidth, design space exploration, and control divergence and data reuse.

3.9.1 Comparison with the CPU and GPU

We now compare the best-performing Transmuter configuration with the CPU and GPU
running optimized commercial libraries (Table 3.4). The throughput and energy-efficiency
gains of Transmuter for each kernel in Sec. 3.8 are presented in Fig. 3.15. We compare
TransX1 to the CPU and TransX8 to the GPU, as discussed in Sec. 3.7.

Ge
oM
ea
n

(C
om
p-B
.)

Ge
oM
ea
n

(M
em
-B
.)

Ge
oM
ea
n

(C
om
p-B
.)

Ge
oM
ea
n

(M
em
-B
.)

50.0
46.2
394.0

62.0
28.1

Figure 3.15: Throughput (left) and energy-efficiency (right) improvements of Transmuter
over the CPU and GPU. Data is averaged across the inputs: 256-1k (GEMM), 2k-8k
(GEMV), 512-2k (Convolution), 4k-16k (FFT), 1k-4k, 0.64% (SpMM), and 2k-4k, 2.6%
(rM), 10.2%-100% (rv) (SpMV). Geometric mean improvements for the compute-bound
and memory-bound kernels are shown separately.

Compute-Bound Kernels (GEMM, Convolution, FFT). TransX1 harnesses high
data-level parallelism, and thus achieves performance improvements of 1.2-2.5× over the
CPU, despite clocking at 1

4
th the speed of the deeply-pipelined CPU cores. The true ben-

efit of Transmuter’s simple cores and efficient crossbars appears in the form of energy-
efficiency gains, ranging from 3.6-16.3×, which is owed largely to the high power con-
sumption of the bulky out-of-order CPU cores. Over the GPU, TransX8 gets perfor-
mance gains of 1.3-2.6× and efficiency improvements of 0.8-4.4× with an efficient imple-
mentation on Trans-SC for GEMM and convolution. The ∼20% energy-efficiency loss

48

for GEMM is explained by the amenability of GEMM to a Single Instruction, Multi-
ple Threads (SIMT) paradigm; although the performance is similar between SIMT and
SPMD, SPMD incurs slightly larger energy costs associated with higher control overhead
over SIMT. On FFT, Transmuter sustains consistent performance scaling using the spatial
dataflow of Trans-SA, with each tile operating on an independent input stream, thus lead-
ing to minimized conflicts. The gap between throughput gain (4.0×) and energy-efficiency
gain (1.3×) over the GPU is explained by the cuFFT algorithm which is more efficient for
batched FFTs.

Memory-Bound Kernels (GEMV, SpMM, SpMV). TransX1 on GEMV achieves
a 2.4× better throughput over the CPU, with the CPU becoming severely DRAM-bound
(>98% bandwidth utilization) for input dimensions beyond 1,024. The 14.2× energy-
efficiency gain of TransX1 stems from tuning down the number of active GPEs to curtail
bandwidth starvation, thus saving power.

On SpMM and SpMV, the performance of Transmuter is highly sensitive to the den-
sities and sizes of the inputs, with improvements ranging from 4.4-110.8× over the CPU
and 5.9-37.7× over the GPU. With SpMM, execution in Trans-PS enables overcomes the
CPU’s limitation of an inflexible cache hierarchy, as well as harnesses high MLP across the
sea of GPEs. While Transmuter is memory-bottlenecked for SpMM, SpMV is bounded by
the scheduling granularity of the packing algorithm deployed on Trans-SA. Despite that,
for SpMV, TransX1 outperforms both the CPU as well as the GPU that has 7.2× greater
available bandwidth. In the case of the GPU, while there are sufficient threads to saturate
the Streaming Machines (SMs), the thread divergence in the SIMT model is the bottleneck.
The GPU achieves just 0.6% and 0.002% of its peak performance, respectively for SpMM
and SpMV, impaired by memory and synchronization stalls. In comparison, SPMD on
Transmuter reduces synchronization, resulting in 21-42% time spent on useful computa-
tions (Fig. 3.14). For SpMM, the outer product implementation demonstrates ASIC-level
performance gains of 5.9-11.6× [151] over the GPU, by minimizing off-chip traffic and ex-
ploiting the asynchronicity between GPEs. As with GEMV, disabling bandwidth-starved
resources contributes to the energy-efficiency gains.

Effect of Iso-CPU Bandwidth. TransX1 uses one HBM stack that provides 125 GB/s
peak bandwidth, about 3.6× greater than the DDR3 bandwidth to the CPU. If given the
bandwidth of the DDR3 memory, TransX1 still achieves performance gains averaging
17.4× and 6.3× for SpMM and SpMV, respectively. For GEMV, TransX1 remains
within a modest 6-8% of the CPU with this low bandwidth.

49

3.9.2 Comparison with FPGA, CGRA, and ASIC

Table 3.5 shows the estimated energy-efficiency improvements of Transmuter over recent
FPGA, CGRA, and ASIC implementations. The efficiencies reported in prior work are
scaled quadratically for iso-technology comparisons with Transmuter. Overall, Transmuter
achieves average efficiency gains of 3.4× and 2.0× over FPGAs and CGRAs, respectively,
and is within 9.3× (maximum 32.1×) of state-of-the-art ASICs for the evaluated kernels.

Table 3.5: Energy-efficiency improvements (black) and deteriorations (red) of Transmuter
over prior FPGAs, CGRAs, and ASICs.

Platform GEMM GEMV Convolution FFT SpMM SpMV
FPGA 2.7× [65] 8.1× [115]3 2.7× [210] 2.2× [65] 3.6× [66] 3.0× [45]
CGRA 2.2× [162] 3.0× [36] 1.2× [36] 1.0× [95]4 1.9× [36] 2.9× [36]

ASIC (32.1×) [157] (10.5×) [167] (13.8×) [189] (18.1×) [158] (3.0×) [153] (3.9×) [151](7.6×) [167] (17.0×) [49] (4.1×) [216]
3Performance/bandwidth used as power is N/A. 4Estimated for floating-point based on [187].

3.9.3 Power and Area

Table 3.6 details the power consumption and area footprint of a 64×64 Transmuter cluster
in 14 nm. Most of the power is consumed by the network and memory, i.e. L1 R-XBars,
R-DCaches, and ICaches, while the cores only consume 20.8%. This is consistent with a
growing awareness that the cost of computing has become cheaper than the cost to move
data, even on-chip [81]. GPEs and L1 R-XBars, the most frequently switched modules,
consume 84.2% of the total dynamic power. The estimated power for a single Transmuter
cluster is 13.3 W in 14 nm with an area footprint within 1.7% of the CPU’s area. The
estimated worst-case reconfiguration overhead is 74.9 nJ.

3.9.4 End-to-End Workload Analysis

We report the estimated speedups of Transmuter over the CPU and GPU for the end-to-
end workloads (Fig. 3.3) in Table 3.7. File I/O and cross-platform (e.g. CPU→GPU)
data transfer times are excluded for all platforms. Overall, Transmuter achieves speedups
averaging 3.1× over the CPU and 3.2× over the GPU.

Next, we elucidate how rapid reconfiguration enables efficient execution of workloads
that involve mixed sparse-dense computation in an inner loop. We make a case study on
a representative mixed-data application, namely Sinkhorn, that performs iterative compu-
tation to determine the similarity between documents [114, 166]. Sinkhorn computation

50

Table 3.6: Power and area of a 64×64 Transmuter cluster in 14 nm.

Module Power (mW) Area
Static Dynamic Total (mm2)

GPE Cores 361.3 2380.5 2741.7 28.9
LCP Cores 5.6 22.5 28.1 0.4
Sync. SPM 0.6 0.1 0.6 0.1
All ICaches 2566.6 373.6 2940.1 25.7

LCP DCaches 39.5 0.9 40.4 0.5
L1 R-DCaches 2527.1 204.0 2731.0 30.7
L2 R-DCaches 37.4 18.3 55.7 0.5

L1 R-XBars 1757.8 2149.3 3907.1 30.3
L2 R-XBars 36.9 14.8 51.7 0.8

MUXes/Arbiters 581.9 87.6 669.5 0.7
Memory Controllers 47.5 129.0 176.4 5.5

Total 8.0 W 5.4 W 13.3 W 124.1 mm2

Table 3.7: Estimated speedups for the end-to-end workloads in Fig. 3.3.
Speedup DANMF LSTM Marian MaxCut MFCC

TransX1 vs. CPU 4.1× 1.1× 2.2× 6.2× 1.7×
TransX8 vs. GPU 3.5× 3.8× 2.1× 7.2× 1.6×

NBSGD RolePred SemSeg Sinkhorn VidSeg
TransX1 vs. CPU 3.5× 2.7× 2.4× 3.1× 2.2×
TransX8 vs. GPU 2.8× 2.3× 2.5× 3.0× 2.8×

typically involves large, sparse matrices in conjunction with dense matrices. We imple-
ment the algorithm described in [35] (Algorithm 3.9.1). The inner loop has two major
kernels: a GEMM operation masked by a sparse weight matrix (Masked General Matrix
- Matrix multiplication (M-GEMM)), and a dense matrix - sparse matrix multiplication
(Dense Matrix - Sparse Matrix Multiplication (DMSpM)).

The mapping on Transmuter is shown in Fig. 3.16. M-GEMM uses a variation of
blocked-GEMM, wherein only rows/columns of the dense matrices that generate an ele-
ment with indices corresponding to NZEs in the weight matrix are fetched and multiplied.
DMSpM uses a simplified outer product algorithm similar to SpMM (Sec. 3.8.3) that splits
the kernel into DMSpM-Multiply and DMSpM-Merge.

We show the analysis of Sinkhorn on different Transmuter sizes in Fig. 3.17 in order
to illustrate the scalability and benefits of reconfiguration. As observed, M-GEMM and
DMSpM-Multiply exhibit the best performance in Trans-SC configuration, due to good
data reuse across GPEs. In contrast, DMSpM-Merge has optimal performance on Trans-PS,
exhibiting a 84.9-98.3% speedup (not shown in the figure) over Trans-SC. Therefore, the

51

Algorithm 3.9.1 Sinkhorn Distance (MATLAB syntax)
function SINKHORN(query, data, M, γ, ϵ)

▷ M: distance matrix, γ: regularization parameter, ϵ: tolerance
o = size(M, 2);
H = ones(length(query), o)/length(query);
K = exp(−M/γ); K̃ = diag(1./query)K;
err = ∞; U = 1./H;
while err > ϵ do

V = data./(K ′U); ▷ M-GEMM
U = 1./(K̃V); ▷ DMSpM
err = sum((U − Uprev)

2)/sum((U)2);
end while
D = U. ∗ ((K. ∗M)V);

return sum(D) ▷ Sinkhorn Distance between query and data
end function

(2) DMSpM-Multiply (Trans-SC)

(3) DMSpM-Merge (Trans-PS)

(1) Masked-GeMM (M-GeMM) (2)+(3) Dense×Sparse MM (DMSpM)

.

.../ =× × =1 ./
!′ #!$%&% ' (! ' #!"#

(Dense) (Sparse) (Dense)(Sparse)(Dense)(Dense)(Sparse)

T_RECONF()

T_RECONF()

(1) Masked-GeMM (Trans-SC)

SPM
GPE0

SPM
GPE1

SPM
GPE0

SPM
GPE1GPE0 GPE1 GPE0 GPE1

TI
LE

 1 L1 R-D$

L2 R-D$

L1 R-D$

TI
LE

 0

TI
LE

 1

TI
LE

 0

L2 R-D$ L2 R-D$

Figure 3.16: Mapping of a multi-kernel, mixed data application, Sinkhorn, on Transmuter.
Computation iterates between M-GEMM and DMSpM, with Trans-SC ↔ Trans-PS re-
configuration before and after DMSpM-Merge. DMSpM-Merge benefits from the private
SPMs in Trans-PS, since each GPE works on multiple disjoint lists.

optimal Sinkhorn mapping involves two reconfigurations per iteration: Trans-SC → Trans-
PS before the start of DMSpM-Merge, and Trans-PS → Trans-SC at the end of it, for the
next M-GEMM iteration. Recall from Sec. 3.5 that the reconfiguration time is ˜10 cycles,
and hence does not perceptibly impact the performance or energy. Cache flushing (net 0.2%
of the total execution time) is required for M-GEMM but not DMSpM, as DMSpM uses a
streaming algorithm. Overall, dynamic reconfiguration results in 47.2% and 96.1% better
performance and Energy-Delay Product (EDP), respectively, over Trans-SC-only for the
4×16 Transmuter. A heterogeneous solution is also compared against, where M-GEMM

52

2× GPEs/tile 2× tiles

~ ~ ~
1.
00

0.
47

0.
83

(2×8) (2×16) (4×16) (2×8) (2×16) (4×16)

1.81× 1.88×
1.96×

Figure 3.17: Per inner-loop iteration energy (left) and EDP (right) comparing Trans-SC,
Trans-PS and Reconf. (Trans-SC ↔ Trans-PS) for Sinkhorn normalized to CPU. Input ma-
trix dimensions and densities are — query: (8k×1), 1%, data: (8k×1k), 1%, M: (8k×8k),
99%.

is done on the CPU and DMSpM on the GPU, but this implementation is bottlenecked by
CPU → GPU data transfers. As derived from Figure 3.17, the 4×16 Transmuter achieves
38.8× and 144.4× lower EDP than the GPU and heterogeneous solutions, respectively.

3.9.5 Throughput and Bandwidth Analysis

We investigate here the impact of scaling the number of tiles (NT) and GPEs per tile (NG)
for an NT×NG Transmuter. Fig. 3.18 illustrates the scaling of Transmuter running the
largest input sizes for GEMM, GEMV, and SpMM. GEMM shows near-linear performance
scaling with the GPE count. The bandwidth utilization, however, does not follow the same
trend as it is dependent on the data access pattern at the shared L2 R-DCache that influences
the L2 hit rate. GEMV exhibits increased bank conflicts in the L1 shared cache upon scaling
up NG, e.g. from 32×32 to 32×64. Thus, the performance scaling shows diminishing
returns with increasing NG, but scales well with increasing NT . The performance of SpMM
scales well until the bandwidth utilization is close to peak, at which point bank conflicts
at the HBM controllers restrict further gains. SpMV follows the trend of GEMV, while
FFT and convolution, show near-linear scaling with increasing system size (not shown in
Fig. 3.18). In summary, both the bandwidth and throughput exhibit good scaling with
Transmuter system size. We use this data to construct analytical performance models for
each kernel, which we adopt for fair comparisons with the CPU and GPU.

We also discuss some takeaways from our cache bandwidth analysis for the best-performing
Transmuter configuration. GEMM exhibits a high L1 utilization (20.4%) but low L2 uti-
lization (2.7%), as most of the accesses are filtered by the L1. In contrast, SpMM and

53

Ba
nd

w
id

th
 (G

B/
s)

Th
ro

ug
hp

ut

(G
FL

O
PS

/s
)

Figure 3.18: Effect of scaling tiles and GPEs per tile on performance and memory band-
width for GEMM (Trans-SC), GEMV (Trans-SC) and SpMM (Trans-PS). Inputs are: 1k
(GEMM), 8k (GEMV), 4096, 0.64% (SpMM).

SpMV in Trans-PS and Trans-SA modes, respectively, have higher L2 utilizations of 68.5-
90.5%. The linear algebra kernels show a relatively balanced utilization across the banks,
with the coefficient of variation ranging from 0-10.1%. In contrast, both FFT and convolu-
tion have a skewed utilization, due to the layout of twiddle coefficients in the SPM banks
for FFT, and the small filter size for convolution.

3.9.6 Design Space Exploration

We performed a design space exploration with the mapped kernels to select R-DCache sizes
for Transmuter. Sizes of 4 kB per bank for both L1 and L2 show the best energy efficiency
for all kernels except SpMV. SpMV in Trans-SA benefits from a larger L2 private cache
that lowers the number of evictions from fetching discrete packed matrix rows (recall that
in Trans-SA, all GPEs in a tile access the same L2 bank). Other kernels achieve slim
speedups with larger cache capacities. The dense kernels already exhibit good hit rates
due to blocking and prefetching in Trans-SC. SpMM is bottlenecked by cold misses due
to low reuse. FFT has a 3.0× speedup with 64 kB L1/L2, compared to 4 kB L1/L2, as
the number of coefficients stored on-chip scales with L1 size. But, this is outweighed by
a 6.4× increase in power. Other parameters such as work and status queue depths were
chosen to be sufficiently large such that the GPEs are never idled waiting on the LCP.

3.9.7 Control Divergence and Data Reuse Analysis

In Section 3.2.2, we characterized some fundamental kernels based on their control diver-

gence, data reuse, and arithmetic intensity. We now build an intuition around the architec-
tural advantages of Transmuter over a GPU for applications with notable contrast in these

54

characteristics. We implement a parallel microbenchmark on Transmuter and the GPU that
allows independent tuning of the divergence and reuse. Fig. 3.19 (left) illustrates this ap-
plication and the caption details the mechanism. The reuse (R) is controlled by the size of
the coefficient array, while the divergence (D) scales with the number of bins, since threads
processing each input element apply functions unique to a bin.

N×N Inputs

chk
Rng()

f0

f1

fN-1

…

a1,2

f0

f1

fN-1
c0 c1

…D R

1×R Coeff. Array

…
N×N Outputs
…

of Bins (D) [= # Divergent Threads]

Reconfigure
Trans-PS ⇨ Trans-SC

Figure 3.19: Left: A synthetic parallel application that launches threads to process N×N
matrices. Each thread (i) reads the input value and bins it into one of D bins, (ii) applies R
instances of function fd unique to bin d and writes the result. Each element of a coefficient
array feeds into fd. Thus the input is reused R times and the degree of divergence scales
with D. Right: Speedup of Transmuter with a uniform-random matrix (# GPEs = # GPU
threads = 64). Transmuter reconfigures from Trans-PS to Trans-SC beyond R = 4.

While this is a synthetic application, it is representative of real-world algorithms that
perform image compression using quantization. We execute this microbenchmark with a
batch of 1,000 32×32 images on a 4×16 Transmuter design and compare it with the GPU
running 64 threads (2 warps, inputs in shared memory) to ensure fairness. Fig. 3.19 (right)
presents two key observations:

• The speedup of Transmuter roughly doubles as the number of divergent paths dou-
bles. This is because threads executing different basic blocks get serialized in the
SIMT model (as they are in the same warp), whereas they can execute parallel in
SPMD.

• Transmuter has the inherent flexibility to reconfigure based on the input size. In this
example, Trans-PS is the best-performing until R = 4. Beyond that, switching to
Trans-SC enables better performance – up to 7.4× over Trans-PS – as the benefit
of sharing the coefficient array elements across the GPEs in Trans-SC outweighs its
higher cache access latency.

55

Takeaways. The SPMD paradigm in Transmuter naturally lends itself well to kernels
exhibiting large control divergence, and its ability to reconfigure dynamically allows it to
perform well for very low- and high-reuse, and by extension mixed-reuse, workloads.

3.10 Related Work

A plethora of prior work has gone into building programmable and reconfigurable systems
in attempts to bridge the gap between flexibility and efficiency in architecture design. A
qualitative comparison of our work over related designs is shown in Table 3.8. Transmuter
differentiates by supporting two different dataflows, reconfiguring faster at a coarser gran-
ularity, and supporting a COTS ISA/compiler.

Reconfigurability. A few prior works reconfigure at the sub-core level [135, 84, 101,
36, 162] and the network level [72, 105, 185, 147]. In contrast, Transmuter uses native
in-order cores and the reconfigurability lies in the memory and interconnect. Some re-
cent work propose reconfiguration at a coarser granularity [126, 6, 162, 36]. Composite
Cores [133] proposes a big.LITTLE architecture and techniques to switch execution threads
between the cores. PipeRench [70] builds an efficient reconfigurable fabric and uses a cus-
tom compiler to map a large logic configuration on a small piece of hardware. HRL [64]
is an architecture for near-data processing, which combines coarse- and fine-grained re-
configurable blocks into a compute fabric. The Raw microprocessor [185] implements
a tiled architecture focusing on developing an efficient, distributed interconnect. Stream
Dataflow [147] and SPU [36] reconfigure at runtime, albeit with non-trivial overheads to
initialize the Data-Flow Graph (DFG) configuration. Transmuter, on the other hand, re-
lies on flexible memories and interconnect that enable fast on-the-fly reconfiguration, thus
catering to the nature of the application.

Flexibility. Prior work has also delved into efficient execution across a wide range of
applications. Plasticine [162] is a reconfigurable accelerator for parallel patterns, consist-
ing of a network of Pattern Compute/Memory Units (custom Single Instruction, Multiple
Data (SIMD) FUs/single-level SPM) that can be reconfigured at compile-time. Stream
Dataflow [147] is a new computing model that efficiently executes algorithms express-
ible as DFGs, with inputs/outputs specified as streams. The design comprises a control
core with stream scheduler and engines, interfaced around a custom, pipelined FU-based
CGRA. SPU [36] targets data-dependence using a stream dataflow model on a reconfig-
urable fabric composed of decomposable switches and PEs that split networks into finer
sub-networks. The flexibility of Transmuter stems from the use of general-purpose cores
and the reconfigurable memory subsystem that morphs the dataflow and on-chip memory,

56

thus catering to both inter- and intra-workload diversity.

Table 3.8: Qualitative comparison with prior work.

Architecture PE Compute
Paradigm Dataflow Compiler

Support
Reconfiguration

Granularity
On-chip
Memory

Plasticine [162] SIMD Spatial DSL
Pipeline-level,
compile-time SPM

Stream Dataflow [147] SIMD Stream ISA extension
Network-level,

run-time SPM+FIFO

SPU [36] SIMD Stream ISA extension
Network-/

Sub-PE-level,
run-time

Compute-
enabled

SPM+FIFO

Ambric [75]
MIMD/
SPMD

Demand-
driven Custom

Network-level,
run-time SPM+FIFO

RAW [185]
MIMD/
SPMD

Demand-
driven

Modified
COTS

Network-level,
run-time Cache

Transmuter
[this work]

MIMD/
SPMD

Demand-
driven/
Spatial

COTS

Network-/
On-chip-

memory-level,
run-time

Reconfig.
Cache/SPM/
SPM+FIFO

Programmability. There have been proposals for programmable CGRAs that ab-
stract the low-level hardware. Some work develops custom programming models, such
as Rigel [99] and MaPU [193]. Others extend an existing ISA to support their architec-
ture, such as Stitch [182] and LACore [177]. Plasticine [162] uses a custom DSL called
Spatial [107]. Ambric [75] is a commercial system composed of asynchronous cores with
a software stack that automatically maps Java code onto the processor array. Transmuter
distinguishes itself by using a standard ISA supported by a simple library of high-level lan-
guage intrinsics and a COTS compiler, alleviating the need for ISA extensions or a DSL.

3.11 Conclusion

This work tackled the important challenge of bridging the flexibility-efficiency gap with
Transmuter. Transmuter consists of simple processors connected to a network of reconfig-
urable caches and crossbars. This fabric supports fast reconfiguration of the memory type,
resource sharing, and dataflow, thus tailoring Transmuter to the nature of the workload.
We also presented a software stack comprised of drop-in replacements for standard Python
libraries. We demonstrated Transmuter’s performance and efficiency on a suite of fun-
damental kernels, as well as mixed data-based multi-kernel applications. Our evaluation
showed average energy-efficiency improvements of 46.8× (9.8×) over the CPU (GPU)
for memory-bound kernels and 7.2× (1.6×) for compute-bound kernels. In comparison

57

to state-of-the-art ASICs that implement the same kernels, Transmuter achieves average
energy efficiencies within 9.3×.

58

CHAPTER 4

Intelligent Software and Hardware
Reconfiguration for Graph Processing

A key observation obtained when evaluating Transmuter is that the algorithm and the un-
derlying hardware configuration play a crucial role in the performance and efficiency of
a kernel implementation on a reconfigurable architecture (Sec. 3.8.4). Based on the ob-
servation, we made a bold assumption that the diverse nature of graph analytics makes
a great candidate to benefit from a programmable and reconfigurable architecture. Real-
world graphs have distinct sizes, densities, and edge distributions. The active vertex set also
varies from iteration to iteration for iterative graph algorithms. It has long been a challenge
to arrive at a “one-size-fits-all” design for efficient graph processing.

Recent studies have shown that large-scale iterative graph analytics can achieve promis-
ing performance on an optimized SpMV backend. This chapter presents CoSPARSE,
a software and hardware reconfigurable SpMV framework which makes the best use of
Transmuter to accelerate diverse graph algorithms. CoSPARSE explores reconfiguration
opportunities in both the software algorithm and the hardware configuration in SpMV im-
plementations on Transmuter. A lightweight partitioning strategy is co-developed to reduce
workload imbalance. Heuristic-driven reconfiguration decisions are automatically made
by CoSPARSE based on the input data properties and the graph algorithm upon invoca-
tion to an SpMV execution. To facilitate programmability, CoSPARSE embeds the SpMV
scheduling and implementation in the framework so that end users only need to define key
computations to realize a graph algorithm. The combined software and hardware recon-
figuration is able to achieve a speedup of up to 2.0x across all benchmarks. Compared to
a Xeon CPU executing a state-of-the-art software reconfigurable graph processing frame-
work, CoSPARSE shows up to 877× better energy efficiency and 3.51× speedup for a
variety of common graph algorithms.

The work presented in this chapter was published as a paper at DAC’21 [54].

59

4.1 Introduction

SpMV is an essential linear algebraic operation that has been widely adopted in many irreg-
ular workloads, such as ML and data mining [151]. Recent studies have shown that large-
scale iterative graph analytics can achieve promising performance on a high-performance
backend optimized for SpMV [181]. However, guaranteeing high performance consis-
tently across different input graphs, graph algorithms, or algorithm iterations, is challeng-
ing. First, real-world graphs have distinct sizes and distributions. The adjacency matrices
used to represent graphs have sizes scaling from hundreds to billions and densities ranging
from 10−7 to 10−1 [116], leading to dramatically different memory footprints. Second, the
active vertex set, i.e. the frontier vector, varies from iteration to iteration, causing highly
optimized solutions for certain use cases to encounter significant performance loss for the
other cases. Therefore, it is hard to arrive at a “one-size-fits-all” design for the efficient
execution of graph algorithms [30].

To adapt to different scenarios, prior work has followed two distinct routes: (i) software-
level optimizations, e.g. deciding a suitable sparse storage format based on the density and
size of the input matrix and vector and selecting either a dense or sparse dataflow [172, 217,
30, 212, 196, 194, 206], and (ii) hardware-level optimizations that target specifically SpMV
or graph algorithms by focusing on the efficient use of on-chip memory [151, 165, 76, 215].
Merely relying on software optimizations could fail to fully explore on-chip data reuse
due to limitations in hardware. On the other hand, hardware-only optimizations are also
likely to achieve suboptimal performance for certain graph algorithms and inputs. For
example, a hardware accelerator optimized for graph algorithms based on sparse matrix
dense vector computations will consume unnecessary compute cycles for those involving
sparse vector computations. The ideal design for SpMV-based graph analytics should run
the desired algorithm on hardware that is most efficient for the data access pattern based
on the input characteristics. This complex and high-dimensional design space, therefore,
calls for a reconfigurable SpMV framework that provides both the flexibility to adapt to
different inputs and algorithms and a faithful strategy to speedily traverse the available
reconfiguration points to achieve the highest achievable performance.

Our proposed solution, CoSPARSE, explores reconfiguration opportunities in both soft-
ware and hardware, as shown in Figure 4.1. In software, it considers two SpMV algorithms
based on inner and outer product. The choice of the algorithm directly affects the access
pattern of the input/output data, and the load-balancing strategy. In hardware, reconfig-
urability is manifested in the on-chip memory hierarchy of the underlying hardware, since
SpMV is known to be memory-intensive and is bottlenecked by irregular memory accesses.

60

Software
Reconfiguration

Hardware Reconfiguration

CoSPARSE
Runtime

Graph Algorithm
(BFS, PR, SSSP, CF, etc.)

Optimized Code

Reconfigurable
Hardware

Figure 4.1: Overview of the proposed CoSPARSE framework.

CoSPARSE uses a hardware substrate that supports reconfigurations in both the on-chip
memory sharing pattern (shared/private) and on-chip memory type (cache/scratchpad). The
software and hardware reconfiguration decisions are made in an integrated dynamic frame-
work, guided by knowledge from extensive experiments and in-depth analysis. On top of
software and hardware reconfiguration, CoSPARSE provides a workload-balancing strat-
egy to harness maximum parallelism for irregular sparse matrices. All of these synergis-
tic benefits are showcased on a suite of common iterative graph analytics algorithms, in-
cluding Breadth-First Search (BFS), Single-Source Shortest Path (SSSP), PageRank (PR),
and Collaborative Filtering (CF), constructed on top of CoSPARSE’s SpMV abstraction.
Specifically, we make the following contributions:

• On-the-fly, automatic, coordinated reconfiguration of the hardware and software based
on the input data properties, i.e. the dimensions and densities of matrices and the
density of vectors, including:

– Software reconfiguration between inner product and outer product based SpMV
implementations, and

– Hardware reconfiguration of the memory subsystem to exploit data-sharing pat-
terns (private/shared) and on-chip memory types (cache/scratchpad).

• Extensive experiments with in-depth analysis to derive the threshold for software and
hardware reconfiguration decisions.

• A consistently efficient, high-performance SpMV framework for graph analytics
across diverse algorithms and datasets.

• Evaluation of CoSPARSE against competing systems that demonstrates up to 877×
better energy efficiency and 3.51× speedup for a variety of graph algorithms over
Ligra on a Xeon CPU.

61

4.2 Background and Related Work

Graph algorithms can be implemented as iterative SpMVs to take advantage of highly opti-
mized SpMV backends [181]. However, the diverse nature of graph processing workloads
creates challenges for achieving high performance across a wide range of graph algorithms
and input datasets.

4.2.1 Graph Frameworks using Software Reconfigurations

For graph traversal algorithms such as BFS and SSSP, the size of the active vertex set
varies from iteration to iteration [206]. For example, the SSSP algorithm on soc-pokec,
a commonly used graph benchmark, shows that during execution the percentage of active
vertices increases from <0.1% to 47% and again decreases to <0.1% (Figure 4.9). To
harness this property, switching between dense and sparse representations of the active
vertex set and the corresponding dataflows across iterations is widely adopted in recent
graph frameworks [172, 217, 30, 212, 196, 194, 206]. In terms of SpMV, the dense rep-
resentation is equivalent to the inner product algorithm and the sparse one corresponds to
the outer product algorithm. Graph frameworks usually target existing platforms with no
hardware modifications and require user input for accurate reconfiguration. For example,
Ligra [172], a lightweight shared memory based graph framework implementing software
reconfiguration, uses an empirical parameter, i.e. |V | = |E|/20, as the reconfiguration
threshold unless users set it differently, where |V | denotes the active vertex size and |E| is
the number of edges. CoSPARSE, instead, automatically analyzes choices at both software
and hardware levels within a tightly-coupled framework to achieve the best performance at
graph iteration granularity.

4.2.2 Optimized Hardware Acceleration for Graph Analytics

Many vertex-programming based graph processing accelerators using frontier schedul-
ing have been proposed recently [73]. Graphicionado [76] exploits the on-chip scratch-
pad memory for random accesses and applies graph slicing to maximize data reuse. Tu-
Nao [215] maps the Gather-Apply-Scatter paradigm to ECGRA modules and enhances
data reuse by storing high-degree vertices in on-chip buffers. GraphPIM [144] provides
efficient processing-in-memory offloading with minor architectural extensions to achieve
dramatic memory bandwidth improvement. To obtain the best efficiency with minimum
hardware, graph processing accelerators tend to target one dataflow, and often do not con-
sider the characteristics of the input vector. CoSPARSE, instead, is implemented on top of

62

a programmable general-purpose hardware substrate that can be easily extended to support
different graph algorithms by providing an SpMV framework abstraction and efficiently
executes both inner product and outer product.

4.2.3 Opportunities in Combining Software/Hardware Optimizations

CoSPARSE requires a hardware substrate that is programmable and reconfigurable to or-
chestrate software and hardware reconfiguration. Recent work has proposed a many-core
general-purpose accelerator called Transmuter [152] that supports reconfiguration of the
resource sharing pattern (private/shared), and on-chip memory type (cache/SPM). Trans-
muter has been demonstrated to accelerate applications in sparse and dense linear alge-
bra [173, 152], signal processing [152], and deep neural networks [203]. The architecture
features a massive number of lightweight PEs and a reconfigurable memory hierarchy. The
PEs are grouped into tiles and are coordinated by a LCP. Each PE and LCP are lightweight
in-order processors with standard ISA support. The PEs are connected to a two-level mem-
ory hierarchy consisting of reconfigurable crossbars (R-XBars) and reconfigurable data
caches (R-DCaches). Each level of the reconfigurable memory hierarchy (L1/L2) can be
configured into shared/private caches/SPMs. The reconfiguration can happen both at com-
pile time or at runtime. For runtime hardware reconfiguration, one of the LCPs would call
the reconfiguration API to reconfigure the R-DCaches and R-XBars. The runtime hardware
reconfiguration overhead is estimated to be ≤10 clock cycles. From this point of the chap-
ter, We will refer to an A×B system as a Transmuter design with A tiles and B PEs per tile.
The use of programmable cores facilitates dataflow reconfiguration and support for diverse
graph algorithms. The hardware reconfigurability of Transmuter also lends a good fit to
CoSPARSE, since the hardware is amenable to different data access patterns and flexible in
response to properties of the evolving data set. Note that though CoSPARSE is evaluated
on the Transmuter hardware platform, the concept and strategy of this work are applicable
to any general programmable reconfigurable hardware.

4.3 CoSPARSE Reconfiguration Layer Design

Figure 4.2 gives an overview of the heuristic-driven reconfiguration strategy, which is trig-
gered before each SpMV execution. Based on the density of the input vector, we decide
whether to use the inner product or outer product based SpMV algorithm; this is the soft-
ware (re)configuration choice. Then, based on the density and size of the matrix and the
vector, we decide on the two-level on-chip memory configuration of the hardware; this is

63

the hardware (re)configuration. In the following subsections, we highlight the supported
on-chip memory modes and address the load balancing for irregular matrices. We also
present the rationales behind the decision-making heuristic by studying the trade-offs in
the inner product vs. outer product mapping and the choice of memory/sharing mode.
Note that we determine the various thresholds used at each level of our decision tree based
on empirical data from our analysis in Sec. 4.3.3.

Adjacency Matrix (G) Iteratively call SpMV abstraction:
f_next = SpMV(G.T, f) , f is frontier (active vertex set)

f is dense f is sparse

G.T and f fits in cacheG.T and f exceeds
cache size

G.T and f exceeds
cache size

L1: shared cache spm
L2: shared cache

(SCS)

L1: shared cache
L2: shared cache

(SC)

L1: private cache
L2: private cache

(PC)

L1: private spm
L2: private cache

(PS)

PE SPM Cache RCache SHARED PRIVATE RXBar
L2
L1

PE SPM Cache RCache SHARED PRIVATE RXBar
L2
L1

PE SPM Cache RCache SHARED PRIVATE RXBar
L2
L1

PE SPM Cache RCache SHARED PRIVATE RXBar
L2
L1L1

L2

PE: Reconfigurable Cache: SPM
Cache

Reconfigurable Crossbar:
Shared
Private

Inner
Product

Outer
Productx = x =

Figure 4.2: Structure of CoSPARSE hardware and software reconfiguration framework.
For every invocation to CoSPARSE, we select the best software (inner product or outer
product), followed by hardware configurations (Trans-SCS or Trans-SC for inner product,
Trans-PC or Trans-PS for outer product), assuming a 2×4 system.

4.3.1 Reconfigurable SpMV Implementation

Figure 4.2 shows the four hardware configurations that we identified to be most suitable for
SpMV, i.e. Trans-SC (L1: shared cache and L2: shared cache) and Trans-SCS (L1: shared
cache scratchpad and L2: shared cache) for inner product and Trans-PC (L1: private cache
and L2: private cache) and Trans-PS (L1: private scratchpad and L2: private cache) for
outer product.

Inner Product Implementation. To maximize parallelism, the matrix is partitioned
into disparate row partitions which are stored in a row-major Coordinate Format (COO)
format to facilitate spatial locality for memory accesses. The COO format stores the row

64

PE PE

1 0 10 0 0
1 0 0

PE PE
1

2

1 0 0 1 0 0

L1 SPM L1 SPML1 Cache L1 Cache

3

vblock 0
vblock 1

0 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 1 1 0 1
1 0 0 1 1 0

ⅹ

1
0
0
1
1
1

Tile0 PE0

Tile1 PE0
Tile0 PE1

Tile1 PE1

0 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 1 1 0 1
1 0 0 1 1 0

ⅹ

1
0
0
1
1
1

PE0

PE1

Tile0
PE0
Tile1
PE0

Tile0
PE1
Tile1
PE1

1 1
id v

0 1
id v

4 1
id v

4 1
4 1
id v

5 1

PE PE PE PE

LCP LCP

0
1
1
1

1
1
1
1

1
1
1
1

0
1

1
0

2

3

4

L2 Cache L2 Cache

L1
SPM

L1
SPM

Load matrix elements sequentially
Load the corresponding vector element
Multiply and accumulate the partial
result into the output vector

1
2
3

Create a sorted list of the head elements of
non-empty matrix columns
Pop the element with the smallest index and
load next element in the matrix column
Merge elements with the same index and
send the element to the LCP
LCP writes results back to main memory

1

2

3

4

1

In
ne

rP
ro
du

ct
Ou

te
rP

ro
du

ct

vblock 0 vblock 1
1 0 01 0 0

1 0 0

1 1 1

PE PE

1 0 10 0 1
0 0 1

PE PE

1 1 00 0 1
0 0 1 1 1 1

Figure 4.3: Matrix partitioning based on NZEs and algorithm mapping of inner product
on Trans-SCS and outer product on Trans-PS that focuses on maximizing data reuse and
reducing stalls for random accesses on a 2×2 system.

index, column index, and the value for each matrix NZE. The vector is stored as a dense
array. Each tile performs multiplication and accumulation on one of the matrix row parti-
tions with the vector. Hence, each tile works on different segments of the output vector in
parallel without introducing data races, and thus avoids synchronization overheads. In ad-
dition, the mapping exploits reuse opportunities of the input vector, which is shared among
the tiles and PEs within a tile. Therefore, to maximize data sharing, CoSPARSE selects the
Trans-SC and Trans-SCS modes, which enables the PEs and the tiles to share a large chunk
of on-chip memory.

Figure 4.3 (top) illustrates the computation scheme of inner product for Trans-SCS. The
input vector elements are stored in the shared SPM in L1 to curtail the overhead of random
accesses to the vector elements due to matrix sparsity. The vector elements in the SPM are
shared among all PEs within a tile. For large matrices, the matrix is partitioned vertically
to ensure that the vector segment corresponding to a vertical partition (vblock) fits in the
SPM. Trans-SC uses the same scheduling except that the vector elements are randomly
accessed from the L1 shared caches.

65

Outer Product Implementation. Similar to inner product, outer product also involves
each tile multiplying an exclusive row partition with the vector. The matrix is stored in a
column-based sparse format, i.e. Compressed Sparse Column Format (CSC) format, which
stores the row index and the value for each matrix NZE and an array of pointers to the start
row index of each column. The vector is stored in a sparse format, i.e. (index, value) tuples
of the vector NZEs. The LCP assigns a contiguous chunk of vector NZEs to each PE and the
PEs perform mergesort with the corresponding matrix columns. Since each PE accesses an
exclusive set of columns, there is no data sharing between PEs and between tiles. Therefore,
private on-chip memories are used in both L1 and L2 to prevent data thrashing and cache
contamination. The PEs can also benefit from higher access bandwidth and shorter latency
to L1, since bank conflicts and arbitration in the crossbars are eliminated.

Figure 4.3 (bottom) shows the execution flow of outer product in Trans-PS. The sorted
list maintaining the head elements of the non-empty matrix columns is kept in the private
SPM to support fast random accesses from list management. For higher scalability, the
sorted list uses a heap structure, i.e. a binary tree which guarantees that the parent is
smaller than its children. When the sorted list cannot fit in the SPM, it spills over to
the shared memory, but the tree nature of the heap structure ensures that the majority of
comparisons and swaps still happen in the SPM. The scheduling for Trans-PC is the same.
However, since Trans-PC uses caches in L1 and has no control over the cache replacement
policies, the sorted list elements may be evicted to L2 or even the main memory.

4.3.2 Workload Balancing Strategies

Many real-world sparse matrices have non-uniform distributions [30], causing imbalanced
workload distribution across PEs. To achieve maximum parallelism through workload bal-
ancing, both static matrix partitioning (before execution) and dynamic task distribution
(during execution) are applied.

Inner product treats the vector as dense, so the execution time of a PE is highly depen-
dent on the number of matrix NZEs assigned to it. Figure 4.3 (top) illustrates the matrix
partitioning method used by inner product. The sparse matrix is first statically partitioned
into row partitions with the same Number of Non-Zeros (NNZ). Each PE is assigned one of
the row partitions and thus obtains a similar amount of work. The row partitions are further
divided into multiple vertical blocks (vblocks) so that the vector elements corresponding to
each vblock can fit in the shared SPM. Ideally, PEs work on the same vblock at a time so
that each tile can fetch the vector elements for the other tiles into L2 caches. The vertical
partition is not required for the Trans-SC mode but can still be beneficial because of the im-

66

proved spatial and temporal locality of vector accesses. Since each tile works on disparate
row partitions, no synchronization is needed after each PE finishes processing a vblock.
Also, since the matrix is sparse, the imbalance in the NNZ within a vblock is not large
enough to visibly impact performance. The proposed partitioning scheme is sufficiently
lightweight and effective in that it balances the workload by assigning each PE the same
number of matrix NZEs and fully utilizes the underlying hardware by considering the size
of the on-chip storage.

Outer product is different from inner product in that the vector density affects the
workload (actual NNZ) assigned to PEs. If the vector used for SpMV remains the same
throughout execution, the matrix partitioning can also take into account vector sparsity.
However, this is not the case for our target applications, i.e. iterative graph algorithms,
and thus dynamic workload-balancing is needed. Similar to inner product, the matrix is
first divided into row partitions with the same number of NZEs and assigned to each tile.
Within a tile, the LCP distributes the NZEs of the vector evenly to each PE, such that
the number of columns assigned to each PE, i.e. the storage needed for the sorted list, is
roughly the same. The combination of static and dynamic workload balancing provides
an effective solution for irregular matrix distribution and works well for applications with
evolving vectors, e.g. graph algorithms.

4.3.3 Reconfiguration Threshold Analysis

The thresholds used at each level of the reconfiguration decision tree, i.e. software and
hardware reconfiguration, are based on extensive experiments and analysis. The methodol-
ogy for these experiments is detailed later in Sec. 4.4.

4.3.3.1 Software Reconfiguration Threshold

When the vector is sparse, outer product tends to outperform inner product because it only
considers the matrix columns that have corresponding NZEs in the input vector, and thus
significantly reduces the number of matrix elements fetched during computation. How-
ever, the overhead of mergesort grows in a super-linear fashion with the number of matrix
columns to merge, which grows with increasing vector density and matrix dimension, and
causes the benefits of outer product to diminish in comparison to inner product.

Figure 4.4 shows the speedup of outer product over inner product and demonstrates
a clear crossover point between the two algorithms for different system sizes and input
matrices. We define the crossover vector density (CVD) as the density above which the
inner product algorithm should be used, and below which, the outer product algorithm

67

0
1
2
3
4
5
6
7

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16 4x32
8x8 8x16 8x32

0
1
2
3
4
5
6
7

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16 4x32
8x8 8x16 8x32

0
1
2
3
4
5
6
7

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16 4x32
8x8 8x16 8x32

0
1
2
3
4
5
6
7

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16 4x32
8x8 8x16 8x32

N=131k, r=2.3e-04 N=262k, r=5.8e-05 N=524k, r=1.5e-05 N=1M, r=3.6e-06
Sp

ee
du

p
of

 O
P

vs
. I

P

IP

OP

Figure 4.4: Speedup of outer product (Trans-PC) vs. inner product (Trans-SC). Generally,
inner product performs better for dense vectors and outer product performs better for sparse
vectors. The crossover vector density decreases when more PEs are present in a tile.

should be used to achieve the best performance. The CVD decreases with an increasing
number of PEs per tile because the performance of outer product does not scale with the
number of PEs as well as it does for inner product. Since the LCP does the final round of
merging and serves as the serialization point, increasing the number of PEs improves the
parallelism of the first round of merge sort but the performance of the outer product is then
bottlenecked by the serial processing performance of the LCP.

The dimension and density of the matrix also have an impact on the CVD. When the
matrix becomes sparser, the total amount of reuse for vector elements becomes smaller
for inner product, whereas outer product is not affected by the matrix sparsity, causing the
CVD and the performance benefit of outer product to increase slightly.

Takeaways. There exists a crossover point at which CoSPARSE switches from inner

product to outer product to achieve the best performance as the vector density decreases.

The crossover density decreases from ∼2% to ∼0.5% as the number of PEs in a tile in-

creases from 8 to 32.

4.3.3.2 Hardware Reconfiguration Threshold for Inner Product

The best hardware reconfiguration for inner product depends on both the dimension and
density of the matrix, as well as the density of the vector. Although the vector is stored
in a dense format, the MAC operation and the write-back of the partial sum are bypassed
when the vector element is zero. Therefore, as the vector density increases, the execution
times for both the Trans-SC and Trans-SCS modes increase due to the increasing number of
floating point computations and store operations. As shown in Figure 4.5, the performance
benefit of the Trans-SCS mode is positively correlated to the vector density. In the Trans-SC
mode, the vector elements are fetched into L1 caches on-demand and could be evicted to L2

68

caches or even the main memory by the cache replacement policy. The Trans-SCS mode,
on the other hand, stores the vector elements in the L1 SPM to allow fast random accesses.
Since Trans-SCS eliminates the case where useful vector elements are evicted from L1
and reloaded afterward, Trans-SCS encounters a lower number of L2 cache accesses than
Trans-SC mode and thus fewer cache misses and fewer memory stalls, especially for high-
density vectors. The reduced L2 cache accesses also make the execution time on Trans-
SCS increase more slowly as the vector density grows and thus increases the performance
benefit of Trans-SCS mode.

-20%
-10%

0%
10%
20%
30%
40%

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16
8x8 8x16

N=131k, r=2.3e-04 N=1M, r=3.6e-06

Sp
ee

du
p

of
 S

CS
vs

. S
C

SC

SCS

-20%
-10%

0%
10%
20%
30%
40%

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16
8x8 8x16

N=262k, r=5.8e-05 -20%
-10%

0%
10%
20%
30%
40%

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16
8x8 8x16

N=524k, r=1.5e-05 -20%
-10%

0%
10%
20%
30%
40%

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16
8x8 8x16

Figure 4.5: Speedup of Trans-SC vs. Trans-SCS for inner product. Trans-SCS achieves
more performance gain for denser vectors or when the reuse of data in SPM is higher.

The matrices evaluated here have the same NNZ, so the largest matrix is also the
sparsest matrix. The performance benefit obtained by Trans-SCS is highly dependent
on the number of times the vector elements in the SPM are reused (Nreuse). For uni-
formly random matrices, Nreuse is proportional to the NNZ in a vblock (Figure 4.3), i.e.
N ·r·NUM PES PER TILE

NUM TILES
, where N is the matrix dimension and r is the matrix density. Based

on the formula, the largest matrix exhibits the least reuse among the four matrices, and thus
the least speedups. For the same reason, the performance benefit reduces when the sys-
tem size changes from 4×8 to 8×8 or from 4×16 to 8×16, since Nreuse decreases as the
number of tiles increases. When the number of PEs increases, Nreuse also increases. How-
ever, as the Trans-SC mode also has a larger cache to fit more vector elements in L1, the
performance benefit does not show a clear trend.

Takeaways. The speedup of Trans-SCS is positively correlated to vector density as well

as the number of times that the vector elements stored in the SPM are reused, i.e. the

number of matrix elements corresponding to these vector elements.

69

4.3.3.3 Hardware Reconfiguration Threshold for Outer Product

The speedup of Trans-PS over Trans-PC is reported in Figure 4.6. A key observation is
that the performance benefit of Trans-PS is closely related to the number of columns that
need merging, which is determined primarily by the matrix dimension and vector density.
Among the matrices evaluated in Figure 4.6, the matrix with a size of 131k has the least
dimension, and the Trans-PS mode underperforms compared to Trans-PC when the vector
density is less than 0.01. However, Trans-PS always outperforms Trans-PC for the matrix
with a size of 1M, the largest and most sparse matrix. As the vector density increases, more
matrix columns need to be merged, resulting in an increase in speedup with Trans-PS. This
is because Trans-PS maintains the sorted list of the head elements of the non-empty matrix
columns in a heap structure in the SPM, and the majority of random accesses are handled
by the SPM. Trans-PC, however, does not have control over the locations of the sorted
list elements. When the sorted list cannot fit in L1, the list management accesses can span
across the memory hierarchy. The situation becomes severe with high vector density since
the length of the sorted list grows with the vector density, which is indicated by the lower
hit rates of both the L1 and L2 caches. On the other hand, when the vector sparsity allows
the sorted list to fit in the L1, Trans-PC outperforms Trans-PS as Trans-PC does not have
SPM management overheads.

-20%

0%

20%

40%

60%

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16
8x8 8x16

N=131k, r=2.3e-04 N=1M, r=3.6e-06

Sp
ee

du
p

of
 P

S
vs

. P
C

PC
-20%

0%

20%

40%

60%

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16
8x8 8x16

N=262k, r=5.8e-05 -20%

0%

20%

40%

60%

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16
8x8 8x16

N=524k, r=1.5e-05 -20%

0%

20%

40%

60%

0.0025
0.005

0.01
0.02

0.04

Vector Density

4x8 4x16
8x8 8x16

PS

Figure 4.6: Speedup of Trans-PC vs. Trans-PS for outer product. The performance gain of
Trans-PS grows with increasing vector density, increasing number of tiles, and decreasing
number of PEs per tile.

The best-performing configuration is also related to the size of the hardware system.
Since the number of PEs and L1 RCache banks are the same, the increased number of PE
in a tile allows Trans-PC to have a larger cache to fit the sorted list. As the L1 hit rates
increase for Trans-PC, the speedup of Trans-PS drops when there are more PEs per tile.
On the other hand, the performance benefit of Trans-PS increases rapidly with the number
of tiles. As the number of cores doubles by switching from a 4×8 to an 8×8 system, the
Trans-PC mode achieves an average speedup of 1.80× and the Trans-PS mode achieves

70

1.96×. Increasing the number of tiles keeps the number of matrix columns to merge the
same, but reduces the length of the matrix columns, and thus the total NNZ to merge. In
this case, the performance benefit of the Trans-PS mode becomes more obvious, because
the chances of loading the next elements in the matrix column are reduced, and the random
accesses to the sorted list become a more significant bottleneck.

Takeaways. Trans-PS achieves better performance when there are more columns to

merge, or when the length of columns to merge reduces. The speedup of Trans-PS decreases

for systems with more PEs in a tile.

4.3.4 Graph Analytics Algorithms on CoSPARSE

Hardware-accelerated graph processing solutions often require programmers with in-depth
architectural knowledge of the hardware to fully exploit the available performance bene-
fit [76]. Existing graph processing frameworks, on the other hand, enhance user-friendliness
by abstracting away scheduling and implementation details, but achieving the best perfor-
mance still requires expert intervention, e.g. to define accurate thresholds [212]. CoSPARSE
addresses both performance and programmability with a software and hardware reconfig-
urable SpMV framework. The software and hardware configurations are automatically
determined based on algorithms and input characteristics upon invocation of the decision
tree. The runtime hardware reconfigurations are triggered by one of the LCPs and are
estimated to take ≤10 cycles. The SpMV scheduling and implementation are embedded
in the framework. End users only need to define the key computations to realize a graph
algorithm, similar to [172]. Example algorithm implementations are shown below.

4.3.4.1 Graph Analytics Algorithm Mapping

To map a graph algorithm to CoSPARSE, two key operations need to be specified. Ma-
trix Op defines the computation between the NZEs of the adjacency sparse matrix and
the elements of the frontier vector. Vector Op applies computation to the vector elements.
Taking SpMV as an example, Matrix Op denotes the dot product between a matrix row and
the vector. Since Matrix Op already calculates the final result, Vector Op is not applicable
for SpMV. All graph algorithm implementations in CoSPARSE are mapped based on code
from the Ligra framework [172].

In this work, we implement and evaluate four common graph algorithms which are
representative of machine learning and graph traversal, i.e. BFS, SSSP, PR, and CF. The
definitions of the key operations of these graph algorithms are detailed in Table 4.1.

BFS is a graph search algorithm used in social network analysis, GPS navigation, web

71

Table 4.1: Definitions of Matrix Op and Vector Op of Algorithms mapped to CoSPARSE,
where Sp represents the adjacency sparse matrix and V represents the frontier vector. src
is the source vertex and dst is the destination vertex.

Algorithm Matrix Op(Sp,V) Vector Op(V)
SpMV

∑
Spsrc,dst ∗ Vsrc N/A

BFS min(Vsrc) N/A
SSSP min(Vsrc + Spsrc,dst,Vdst) N/A
PR

∑
(Vsrc/deg(src)) α + (1− α) ∗ Vupdated dst

CF
∑

(Spsrc,dst − Vsrc ∗ Vdst) ∗ Vsrc − λ ∗ Vdst β ∗ Vupdated dst + Vdst

page crawling, etc. BFS [206] explores all connected vertices of a graph from a start
vertex. At each iteration, each unvisited destination is updated by its first active source
vertex. Matrix Op checks the active sources of target destinations; if active, it updates the
values in the vector for the next iteration.

SSSP [172] is a graph traversal algorithm that computes the distance between a single
source and all other vertices in a weighted graph. The algorithm is used in many ap-
plications such as finding driving directions in maps or computing the min-delay path in
telecommunication networks. Matrix Op computes the distance between the source to all
destinations of an active vertex and uses the minimum to update the frontier vector. In
contrast to BFS, the result of SSSP depends on the edge weights.

PR [172] is used to rank web pages based on specific metrics (e.g. popularity) by
computing the probability that a hyperlink (i.e. edge) would end in a particular page (i.e.

vertex). In PR, all vertices are always active. In each iteration, Matrix Op calculates an in-
fluence value for each vertex based on the popularity of its incoming neighbors. Vector Op
adds a constant to the vertex properties updated by Matrix Op.

CF [181] is a machine learning algorithm used by recommendation systems, which es-
timates users’ rating for a given item based on an incomplete set of (user, item) ratings. The
users’ ratings are based on a set of hidden/latent features and each item can be expressed
as a combination of these features. The CF implementation [171] here is accomplished
using gradient descent, where Matrix Op computes the gradient and Vector Op applies the
gradient to the frontier vector.

4.3.4.2 Input and Output Conversion Overhead

Throughout the execution of a graph analytics algorithm, the sparse matrix remains con-
stant, but the sparsity of the vector may vary from iteration to iteration. A new output
vector is produced and serves as the input vector for the next iteration. To support the inner
product and outer product algorithms and runtime reconfiguration, two copies of the in-

72

put compressed sparse matrix (in COO and CSC formats, respectively) are stored in main
memory to avoid matrix conversion overhead, similar to [172], whereas the lightweight
vector conversion between sparse and dense format is performed for the iterations that re-
quire reconfiguration. The overhead of vector conversion, however, is minimal compared
with the total execution time of graph algorithms and is therefore performed during execu-
tion when needed. In most of the graph analytics algorithms in our experiments, switching
between inner product and outer product only happens once or twice during execution, e.g.

for BFS and SSSP, where the vector changes from sparse to dense and then back to sparse.
The other algorithms, namely PR and CF, always use dense vectors, and thus no format
conversion is needed.

4.4 Methodology

CoSPARSE is modeled using the gem5 simulator [20]. The microarchitectural parameters
are listed in Table 3.3. The PEs and LCPs are modeled after an in-order ARM Cortex M4F,
and the cache and crossbar latencies are based on prior work [152]. For systems larger than
8×16, the simulation resources required become prohibitive and a trace-based simulation
model is used [152].

A power model is built based on the static and dynamic power of each individual com-
ponent of the system and cross-verified with a fabricated chip prototype [153]. The cross-
bar and core power models are based on synthesis reports and cache power is calculated by
CACTI 7.0 [142].

The SpMV implementation in CoSPARSE is compared against state-of-the-art SpMV
implementations on a CPU (Intel i7-6700K) running MKL 2018.3 and a GPU (NVIDIA
Tesla V100) running cuSPARSE v8.0. The graph algorithm implementations are evaluated
against Ligra [172]. To evaluate the performance and efficiency of CoSPARSE, we use a
combination of uniformly random matrices, power-law matrices generated by NetworkX,
and real-world graphs from SNAP dataset [124] and SuiteSparse Matrix Collection [40].
The details of the real-world graphs are listed in Table 4.2.

4.5 Evaluation

In this section, we first evaluate the benefits of the proposed workload balancing tech-
niques. Then, we compare the performance of standalone SpMV to that of state-of-the-art
implementations on the CPU and GPU. To showcase the automatic reconfiguration, we
present a case study to illustrate the execution of a graph algorithm on CoSPARSE. Finally,

73

Table 4.2: Specifications for real-world graphs.
Graphs # Vertices # Edges Type Kind Density
livejournal 4,847,571 68,992,772 Directed 2.9 ×10−6

pokec 1,632,803 30,622,564
Social Network

Directed 1.2 ×10−5

youtube 1,134,890 2,987,624 Undirected 2.3 ×10−6

twitter 81,306 1,768,149 Directed 2.7×10−4

vsp 21,996 2,442,056 Random Undirected 5.0 ×10−3

we compare the performance across a set of common iterative graph analytics algorithms
with that of Ligra running on a server-class CPU.

4.5.1 Workload Balancing Evaluation

0.0

0.5

1.0

1.5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

SC, w/o partition SC, w/ partition
SCS, w/o partition SCS, w/ partition

0.0

0.5

1.0

1.5
No

rm
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

PC, w/o partition PC, w/ partition
PS, w/o partition PS, w/ partition

(a) Inner Product (vector density = 1.0) (b) Outer Product (vector density = 0.1)

N=
13

1k
r=

4.9
e-

05
N=

26
2k

r=
2.6

e-
05

N=
52

4k
r=

1.3
e-

05
N=

1M
r=

6.7
e-

06

N=
13

1k
r=

4.9
e-

05
N=

26
2k

r=
2.6

e-
05

N=
52

4k
r=

1.3
e-

05
N=

1M
r=

6.7
e-

06

Figure 4.7: The SpMV execution time of power-law matrices normalized to uniform matri-
ces on Trans-SC (inner product) and Trans-PC (outer product) on an 8×16 system. Work-
load balancing benefits inner product more than outer product, especially Trans-SC for
inner product.

The execution time of SpMV for power-law matrices, normalized to that for uniformly
random matrices of the same dimension and density on cache-only hardware configura-
tions, is shown in Figure 4.7. For inner product, the workload-balancing technique im-
proves the execution time by 7% to 30% and benefits Trans-SC more than Trans-SCS. Since
Trans-SC does not have SPMs, it cannot efficiently handle random accesses. In addition,
in Trans-SC, the workload imbalance could cause some PEs to finish their assigned work
early and remain idle, instead of fetching vector elements that could be reused by other
PEs into the shared L1. Therefore, the performance of Trans-SC is more sensitive to the
irregular matrix distribution, and thus more likely to benefit from the workload-balancing
scheme. It is worth noting that in some cases for inner product, the execution time of power-

74

law matrices is less than that of uniform matrices. This is because the existence of dense
rows/columns in power-law matrices results in fewer non-empty matrix rows/columns. In
this case, fewer input vector elements are used for computation and fewer output vector
elements are generated, which are more likely to fit in the L1, improving both locality and
performance.

As shown in Figure 4.7-b, for outer product, the execution time of power-law matrices
is also shorter than that of uniformly random matrices. This is because the irregular dis-
tribution of the matrices increases the possibility that the matrix column corresponding to
a vector NZE has no elements, thus reducing both the number of columns and the NNZ
to merge. The matrix partitioning technique further improves the execution time of both
hardware configurations by up to 10%.

4.5.2 Comparison against Existing Platforms

The hardware substrate used in CoSPARSE is programmable so as to support easy imple-
mentations of SpMV-based applications, such as graph algorithms. Therefore, we eval-
uate SpMV against CPU and GPU and compare the graph algorithm implementations to
Ligra [172]. Accelerators are specifically optimized for certain applications by eliminating
extraneous hardware overhead for programmability and flexibility and thus are not consid-
ered for performance and energy efficiency analysis for a fair comparison.

4.5.2.1 Standalone SpMV

Figure 4.8 demonstrates the speedup and energy efficiency gain of SpMV, on a suite of
real-world graphs, over CPU and GPU implementations. Overall, CoSPARSE achieves an
average speedup of 4.5× and 17.3× compared to the CPU and GPU, respectively. Although
the GPU has a significantly higher core count and peak memory bandwidth compared to the
CPU, the irregular and low-locality memory accesses, coupled with the thread divergence
inherent in the SIMT model, bottleneck the GPU. Memory dependence stalls account
for 32% of the GPU stalls (increasing with vector density), and most of the remaining
cycles (averaging 35%) are spent in synchronization, instruction fetching, and throttled
memory accesses. Despite the high memory bandwidth, the highest average bandwidth
utilized by a kernel varies from 12-71%, and the overall performance is <0.006% of the
peak performance. The CPU shows better performance than the GPU because the out-of-
order cores can hide the overhead of the irregular memory accesses and handle complex
execution flow. High power consumption is observed in both the CPU and GPU because
of the massive number of threads in the GPU and the high-performance out-of-order cores

75

vsp twitter youtube pokec

Figure 4.8: Speedup and energy efficiency gain of CoSPARSE (16×16) over CPU and
GPU. The vector density sweeps from 0.001 to 1.0. CoSPARSE achieves an average
speedup (energy efficiency gain) of 4.5×(282.5×) and 17.3×(730.6×) over CPU and GPU,
respectively.

in the CPU. In contrast, the underlying architecture of CoSPARSE uses lightweight in-
order cores and a flexible memory hierarchy. CoSPARSE improves memory parallelism
and locality by determining the best software and hardware configuration, and carefully
scheduling and balancing the workload. The average energy efficiency gain over CPU and
GPU are 282.5× and 730.6×, respectively.

The performance and energy efficiency gains grow as the vector becomes sparser, since
CoSPARSE takes advantage of the vector sparsity and skips computations and accesses to
the output vector if the vector element is zero. For vectors with densities lower than 0.01,
the underlying algorithm switches from inner product to outer product (except for soc-
pokec), and further eliminates accesses to matrix elements that correspond to zero elements
in the vector. Since soc-pokec has the largest dimension, it has more columns to merge for
the same vector density, and thus, outer product only performs better than inner product for
a vector density of 0.001.

4.5.2.2 Graph Analytics Algorithms

We first conduct a case study illustrating the execution of graph analytics on our CoSPARSE
framework. Figure 4.9 shows the execution time per iteration running SSSP with soc-pokec
normalized to inner product in the Trans-SC mode. From Iter 4 to Iter 8, the inner product
implementation outperforms outer product because of the high vector density (as large as
47% in Iter 6). Within these inner product iterations, Iter 6 and Iter 7 have the highest vec-
tor density and achieve the best performance in the Trans-SCS mode, whereas Iters 4, 5,

76

and 8 favor the Trans-SC mode. The rest of the iterations involve vector densities less
than 0.5% and achieve better performance using outer product in the Trans-PC mode. The
synergistic software and hardware reconfiguration amass a net speedup of 1.51×, over the
Trans-SC-only inner product execution, i.e. a baseline implementation with no software or
hardware reconfiguration. Similar trends are observed with BFS and SSSP for the rest of
the graphs. The combined software and hardware reconfiguration achieves a speedup of up
to 2.0× across different algorithms and input graphs.

Iteration Vector
Density

Normalized Execution Time Best
ConfigurationInner Product Outer Product

SC SCS SC PC PS SW HW
0 <1% 1.0 1.0 <0.1 <0.1* <0.1 OP PC
1 <1% 1.0 1.1 <0.1 <0.1* <0.1 OP PC
2 <1% 1.0 1.2 0.1 0.1* 0.1 OP PC
3 <1% 1.0 1.2 0.6 0.5* 0.6 OP PC
4 1% 1.0* 1.2 7.5 6.7 6.8 IP SC
5 12% 1.0* 1.1 >10 >10 >10 IP SC
6 47% 1.0 0.8* >10 >10 >10 IP SCS
7 27% 1.0 0.9* >10 >10 >10 IP SCS
8 5% 1.0* 1.0 4.1 3.7 3.8 IP SC
9 <1% 1.0 1.1 0.5 0.4* 0.4 OP PC
10 <1% 1.0 1.0 0.1 0.1* 0.1 OP PC
11 <1% 1.0 1.0 <0.1 <0.1* <0.1 OP PC
12 <1% 1.0 1.1 <0.1 <0.1* <0.1 OP PC
13 <1% 1.0 1.1 <0.1 <0.1* <0.1 OP PC

* The execution time of the best configurationReconfiguration

Figure 4.9: Vector density, execution time normalized to inner product in Trans-SC, and the
best software/hardware configuration for each iteration of CoSPARSE (16×16) for SSSP
on soc-pokec. Each iteration is color coded with the best configuration. The best configu-
ration changes with the active vertex set, which conforms to the analysis in Sec. 4.3.3.

The performance and energy efficiency gain of CoSPARSE on a 16×16 system over
Ligra on a Xeon CPU is shown in Figure 4.10. In terms of performance, CoSPARSE
outperforms Ligra in most cases and achieves a maximum speedup of 3.5×. Ligra out-
performs CoSPARSE for soc-pokec on BFS and SSSP slightly because the CPU has much
more hardware resources, e.g. on-chip memory, to handle the large memory footprint of
soc-pokec. However, the CPU consumes at least 200× more power and 40× more area
than CoSPARSE. Upon normalizing the performance by the power consumption, we ob-
tain an efficiency gain of 84× for BFS and 129× for SSSP. Overall, CoSPARSE achieves

77

vs
p

tw
itt

er
yo

ut
ub

e
po

ke
c

liv
ej

ou
rn

al
vs

p
tw

itt
er

yo
ut

ub
e

po
ke

c
liv

ej
ou

rn
al

vs
p

tw
itt

er
yo

ut
ub

e
po

ke
c

vs
p

tw
itt

er
yo

ut
ub

e
po

ke
c

ge
om

ea
n

0

1

2

3

4

5

Sp
ee

du
p PR CF BFS SSSP

Speedup

200
400
600
800
1000
1200

En
er

gy
 E

ffi
cie

nc
y

Ga
in

Efficiency Gain

Figure 4.10: Speedup and efficiency gain of CoSPARSE (16×16) over Ligra (Intel Xeon
E7-4860 at 2.6 GHz, 48 cores with 256GB DRAM).

an average energy efficiency gain of 404.4× across all evaluated algorithms and graphs,
compared to Ligra.

4.6 Conclusion

This work proposed CoSPARSE as a novel solution that combines software and hardware
reconfiguration strategies to optimize the performance and efficiency of SpMV, and thereby
SpMV-based graph analytics algorithms. We mapped different SpMV algorithms with cus-
tom scheduling and workload balancing onto an architecture with fast reconfiguration of the
on-chip memory hierarchy. In contrast to other established heuristics, which require user
input for configuration decisions, CoSPARSE is a fully-automated system that judiciously
decides the best-performing software/hardware configuration. The parameters that guide
the reconfiguration decision-making engine are obtained by evaluating SpMV on a wide
range of matrices and system sizes. CoSPARSE is evaluated against existing platforms, for
both SpMV and a selection of common graph analytics algorithms. For SpMV, CoSPARSE
showed significant speedups (4.5× and 17.3× on average) and energy-efficiency gains
(282.5× and 730.6× on average) compared to the CPU and GPU, respectively. CoSPARSE
also provides an energy efficient platform for graph analytics; compared to Ligra on CPU,
CoSPARSE achieved an average speedup and energy efficiency improvement of 1.5× and
404.4×, respectively.

78

CHAPTER 5

Near-Memory Multi-way Merge Solution for
Sparse Data Merging

The design process of CoSPARSE helps us discover a challenge that was neglected but
has become increasingly important in recent years, i.e. the matrix (graph) transposition
overhead. (Sec. 4.3.4.2). In CoSPARSE and many state-of-the-art graph processing frame-
works, different matrix formats are stored simultaneously in the main memory for fast
algorithm reconfiguration by avoiding the transposition overhead on-the-fly, trading off
storage for performance. Sparse matrix transposition is also widely used in preprocessing.
Though many prior works claim that the overhead can be amortized through repeated exe-
cution, as we step into the big data era, the dataset size has exploded to a certain level that
the preprocessing cost has become no longer negligible. As an important building block
of sparse linear algebra applications, sparse matrix transposition has received much less
attention than many other sparse kernels, such as SpMM and SpMV.

This chapter presents MeNDA, a near-memory multi-way merge solution for sparse ma-
trix transposition and general sparse data merging. NMP has been extensively studied to op-
timize memory-intensive workloads. However, none of the proposed designs address sparse
matrix transposition. Prior work shows that sparse matrix transposition does not scale as
well as other sparse primitives such as SpMV and hence has become a growing bottle-
neck in common applications. Sparse matrix transposition is highly memory-intensive but
low in computational intensity, making it a promising candidate for NMP. Our proposed
solution, MeNDA, is a scalable near-DRAM multi-way merge accelerator that eliminates
the off-chip memory interface bottleneck and exposes the high internal memory bandwidth
to improve performance and reduce energy consumption for sparse matrix transposition.
MeNDA adopts a merge sort based algorithm, exploiting spatial locality, and proposes a
near-memory PU featuring a high-performance hardware merge tree. Because of the wide
application of merge sort in sparse linear algebra, MeNDA is an extensible solution that
can be easily adapted to support other sparse primitives such as SpMV. Techniques includ-

79

ing seamless back-to-back merge sort, stall-reducing prefetching, and request coalescing
are further explored to take full advantage of the increased system memory bandwidth.
Compared to two state-of-the-art implementations of sparse matrix transposition on a CPU
and a sparse library on a GPU, MeNDA is able to achieve a speedup of 19.1×, 12.0×,
and 7.7×, respectively. MeNDA also shows an efficiency gain of 3.8× over a recently
proposed SpMV accelerator integrated with HBM. Incurring a power consumption of only
78.6 mW, a MeNDA PU can be easily accommodated by commodity Dual In-line Memory
Modules (DIMMs).

The work presented in this chapter was published as a paper at ISCA’22 [52].

5.1 Introduction

As a fundamental primitive in many important application domains such as graph analyt-
ics, machine learning, and scientific computation [160, 69, 23, 192, 151, 80, 214, 211, 175,
54, 10], Sparse linear algebra applications are notoriously memory-intensive due to the ir-
regular memory access pattern. Recently, there has been a surge in customizing hardware
accelerators near memory to tackle sparse linear algebra applications such as sparse gather-
ing [8, 97, 117], SpMV [8, 165, 200], and graph analytics [37, 144, 213, 218, 5]. However,
none of these works address sparse matrix transposition.

Sparse matrix transposition converts a sparse matrix stored in the column-major order
to the row-major order or vice versa. It is an essential building block for a wide range of
applications, such as biconjugate gradient [58], standard quasi-minimal residual [59], and
algebraic multigrid methods [204]. In addition, many recent graph analytics frameworks
adaptively switch between different representations of the dataflow, which requires either
frequent sparse matrix transposition on-the-fly or multiple copies of the input graph in
different orders [172].

Merge sort is a common approach for sparse matrix transposition [195]. Some re-
cent NMP proposals implement outer product based SpMV by adopting a reduction tree to
merge sort the partial columns [165, 8]. But these designs targeting SpMV cannot perform
sparse matrix transposition for two reasons. First, reduction trees in these systems usu-
ally perform merge sort based on the row indices of matrix elements and thus do not care
about the order of the column indices, while sparse matrix transposition needs to take into
account the order of both indices. Second, unlike SpMV, which outputs a dense vector,
sparse matrix transposition outputs a sparse matrix, which is irregular and requires a much
higher output bandwidth. To support sparse matrix transposition, all these issues need to
be addressed.

80

In contrast to many other sparse primitives, sparse matrix transposition involves no
arithmetic operations but integer comparisons to reorder the nonzero elements. Therefore,
the performance of sparse matrix transposition highly depends on the attainable memory
bandwidth. However, the effective system bandwidth that can be utilized by transposition
is restricted both by the theoretical peak bandwidth that the memory interface can pro-
vide and the contention at the memory interface, which is confirmed by the roofline model
and the scalability analysis presented in Sec. 5.2.2. All these constraints make sparse ma-
trix transposition a promising candidate for NMP because NMP exposes the high internal
memory bandwidth of memory devices and avoids the contention bottleneck at the memory
interface. Instead of integrating accelerators with 3D/2.5D-stacked memory devices, in this
paper, we focus on a DIMM-based design for its cost-efficient capacity scaling, which is
critical for workloads involving large datasets.

Designing a near-DRAM solution for sparse matrix transposition poses four unique
challenges. First, for lack of reduction, sparse matrix transposition requires high band-
width for both input fetching and output streaming. Hence, sending the output directly
to the host like prior sparse gathering proposals [97, 8] is not feasible. Second, due to
the large dataset size and the limited on-chip storage, recent CPU implementations [195]
for transposition transfer intermediate data back-and-forth between the host and the main
memory, exhibiting a significant amount of memory traffic. Because near-DRAM acceler-
ators have more strict area restrictions and consequently even less area for Static Random
Access Memory (SRAM), reducing the amount of intermediate data transfer is more dif-
ficult. Third, performing parallel transposition on multiple concurrent PUs is non-trivial.
To exploit the high internal bandwidth, accelerators are usually employed in the buffer
chip of a DIMM beside each rank. Thus communications across PUs in different DIMMs
need to go through the off-chip memory interface, which is prohibitively expensive and can
easily become the performance bottleneck [180]. Finally, near-memory transposition puts
additional requirements on the data layout. The transposition process should not change
the data representation and should allow easy access to the matrix NZEs as the standard
compressed formats after transposition. These requirements together make designing an
efficient and scalable PU with minimal modifications to the commodity DIMM hardware a
challenging task.

To tackle these challenges, we propose MeNDA, a scalable NMP solution for sparse
matrix transposition. The key component of MeNDA is a lightweight PU featuring a hard-
ware merge tree deployed in the buffer chip of a DIMM. The merge tree is designed to
be very wide to reduce the number of merge sort iterations, which is proportional to the
amount of intermediate data transfer, and supports seamless execution of multiple rounds of

81

merge sort to minimize stalls in execution. Techniques including stall-reducing prefetching
and request coalescing are also explored to further improve memory bandwidth utilization.
MeNDA proposes a novel data layout to avoid communications between PUs and keep
a consistent compressed format for both the input and output matrix, enabling a software-
agnostic transposition backend. The data layout also considers workload balancing to max-
imize parallelism and memory bandwidth utilization.

Merge sort is widely employed in sparse linear algebra applications, making MeNDA
an efficient solution for many sparse dataflows. Finally, to showcase its applicability to
other sparse dataflows, we illustrate how MeNDA can be adapted to perform SpMV, which
is a fundamental kernel for machine learning and graph analytics [54, 165, 8, 151].

Specifically, we make the following contributions:

1. An in-depth characterization of sparse matrix transposition which unveils the memory-
bound nature and the request contention bottleneck at the memory interface, moti-
vating the adoption of NMP.

2. A scalable NMP solution for sparse matrix transposition, MeNDA, which explores
DIMM- and rank-level parallelism by placing custom PUs beside each DRAM rank.
The PUs feature lightweight hardware merge trees and are enhanced with techniques
including seamless back-to-back merge sort, stall-reducing prefetching, request co-
alescing, and workload balancing to fully utilize the exposed high internal memory
bandwidth.

3. Adaptation of MeNDA to SpMV, demonstrating that MeNDA is an extensible and
efficient solution to multi-way merge dataflows in sparse linear algebra applications.

4. A heterogeneous programming model to completely hide the implementation details
of MeNDA from end users and enhance ease of adoption.

5. Qualitative and quantitative analyses of the benefits and overhead of integrating
MeNDA into existing designs for sparse linear algebra applications.

MeNDA is an efficient solution that can be easily integrated into the buffer chip of a
commodity DIMM and is evaluated against state-of-the-art implementations on CPU and
GPU on a suite of real-world sparse matrices. . Experiments show that MeNDA achieves
an average speedup of 19.1× and 12.0× over scanTrans and mergeTrans on CPU,
respectively, and 7.7× over cuSPARSE on GPU. Compared to a recent near-memory
SpMV accelerator based on HBM, MeNDA shows an efficiency gain of 3.8×.

82

5.2 Background and Motivation

Sparse matrix transposition is widely used in sparse linear algebra applications but has re-
ceived much less attention than many other sparse kernels, such as SpMM and SpMV [195].
Based on the roofline model and the thread scaling analysis, sparse matrix transposition can
potentially achieve great performance benefits and energy savings from NMP since it has
low computational intensity while being heavily memory bandwidth bound.

5.2.1 Sparse Matrix Formats and Sparse Matrix Transposition

Sparse matrices are often stored in compressed formats to save storage and avoid com-
putations on zero elements. Commonly used formats are Compressed Sparse Row For-
mat (CSR) and CSC. As shown in Figure 5.1, CSR/CSC) stores a sparse matrix in three
arrays: (1) an index array for the column(/row) index of each NZE, (2) a value array
for the value of each NZE, and (3) a pointer array for the start pointer of NZEs of each
row(/column).

a b
c d

e f g
h i

j k l
m n

o p q

0 2 4 7 9 12 14 17

0 2 1 4 0 4 6 3 5 0 2 5 1 3 2 5 6

a b c d e f g h i j k l m n o p q

0 3 5 8 10 12 15 17

0 2 4 1 5 0 4 6 3 5 1 2 3 4 6 2 6

a e j c m b k o h n d f i l p g q

A
Pointer

Index

Value

A in CSR / AT in CSC

Pointer

Index

Value

A in CSC / AT in CSR

Figure 5.1: Transposition and compressed storage formats for sparse matrices.

Sparse matrix transposition transforms a M×N sparse matrix A to a N×M matrix AT

by swapping the row index and column index of each NZE. Therefore, transposing a sparse
matrix is in essence equivalent to converting a sparse matrix from the CSR format to the
CSC format, or the opposite. As can be seen from Figure 5.1, the CSC representation
of a sparse matrix A is equivalent to the CSR representation of its transpose AT . For
simplicity, we will use converting a matrix from CSR to CSC to denote general sparse
matrix transposition from this point of the dissertation.

Sparse matrix transposition is an essential building block in both the processing and
preprocessing stages of sparse linear algebra applications [195]. Typical examples are lin-
ear system solvers such as biconjugate gradient [58] and standard quasi-minimal resid-

83

ual [59]. Despite the fact that considering the scenario of consuming a fixed sparse matrix,
the overhead of preprocessing (including sparse matrix transposition) can be amortized
by iterative execution, many recent works have shown that this overhead is becoming no
longer negligible as the dataset size grows and have taken this overhead into account in the
evaluation [136, 208]. There are also applications that are not iterative enough to amor-
tize the transposition overhead or have to transpose a changed sparse matrix each iteration.
For example, the simultaneous localization and mapping problem requires a new informa-
tion matrix at each step, and performing ATA on the new matrix dominates the execution
time [41, 123].

Since Beamer et al. [17] first proposed a hybrid approach for BFS, many recent graph
analytics frameworks have built upon this work and adopted dynamic reconfiguration be-
tween a sparse and a dense representation of the dataflow based on the active vertex set [30,
38, 54, 71, 132, 145, 172, 194, 196, 212, 217]. The dynamic reconfiguration greatly im-
proves performance but requires the original graph A for one representation and its trans-
pose AT for the other representation during execution. A common misconception regarding
the transposition overhead is shown in the top bar in Figure 5.2(a), i.e. the transposition
overhead is minor compared to the execution time of an end-to-end workload and can be
easily amortized. However, the reality (middle bar in Figure 5.2(a)) is that recent break-
throughs in algorithms and architectures have significantly improved the performance of
graph processing. Consequently, runtime transposition using a state-of-the-art implemen-
tation [195] can introduce a 126% performance overhead to a recently proposed graph
framework [54]. Therefore, graph frameworks usually store more than one copy of the in-
put graph in different formats to avoid the performance overhead of transposing the graph
on-the-fly.

Although many recent efforts have been spent on optimizing sparse primitives, sparse
matrix transposition has not received as much attention. As shown in Figure 5.2(b), the
execution time of SpMM has been improved from being comparable to that of sparse ma-
trix transposition (OuterSPACE, 2018 [151]) to being much less than that of transposition
(SpArch, 2020 [214]). These efforts only further increase the percentage of time taken
by sparse matrix transposition in a workload, making it a more noteworthy bottleneck.
Therefore, coming up with an efficient solution for sparse matrix transposition has become
increasingly important.

84

a) Execution breakdown of Single Source Shortest Path (SSSP) with runtime transposition

b) Execution time of transposition(mergeTrans) and SpMM(OuterSPACE/SpArch)

Figure 5.2: (a) Breakdown of SSSP execution time on CoSPARSE [54] for graph
amazon based on common misconceptions, using mergeTrans[195], and using our
work, MeNDA. (b) Execution time comparison of recent proposals for sparse matrix trans-
position (mergeTrans) and SpMM (OuterSPACE[151] / SpArch[214]). Recent hardware
breakthroughs have greatly optimized sparse applications, e.g. SpMM and SpMV, whereas
little research effort has been spent on accelerating sparse matrix transposition, making
transposition an increasingly evident bottleneck.

5.2.2 Characterizations on Sparse Matrix Transposition

To understand the bottleneck of sparse matrix transposition, we performed characteriza-
tions on mergeTrans [195], a merge sort based sparse matrix transposition implementa-
tion on CPUs. The methodology for these experiments is detailed in Sec. 5.5.

5.2.2.1 Roofline Analysis

A roofline mode [199] of sparse matrix transposition is built and presented in Figure 5.3(a).
The throughput is measured through the NNZ generated per second (NNZ/s), which is a
metric introduced in [153]. The roofline model shows that sparse matrix transposition lies
in the memory-bound region. Specifically, the throughput achieved is within only 25% of
the theoretical maximum and bottlenecked by the system memory bandwidth. The impact
of exposing the high internal memory bandwidth on throughput is revealed by lifting the
roofline by 8× [97]. The throughput is improved by 4.1-5.2×, which shows the poten-
tial benefit of applying NMP on sparse matrix transposition. Meanwhile, sparse matrix
transposition has much lower computational intensity than common sparse routines such
as SpMM and SpMV because no floating point operations are involved. The high mem-

85

b) Utilized bandwidth scaling with threads

Dimension NNZ Dimension NNZ Dimension NNZ Dimension NNZ
S1 1,048,576 2,147,484 S3 262,144 2,147,484 S5 262,144 4,294,967 S7 262,144 1,072,024
S2 524,288 2,147,484 S4 131,072 2,147,484 S6 262,144 2,147,484 S8 262,144 536,699

theoretical peak BW 76.8 GB/s

59.6 GB/s

8x

Baselin
e BW

Baselin
e BW x8

5.2x

a) Roofline Model

mergeTransmergeTrans x8

Number/Color Coding and Specifications of Matrices used for Characterizations

Figure 5.3: (a) Roofline model of mergeTrans [195] running with 64 threads. Sparse
matrix transposition is memory bandwidth bound because the data points are close to the
”roof”, i.e. the red and blue lines that label the peak throughputs which can be achieved
when the system memory bandwidth is fully utilized. (b) Memory bandwidth utilized by
mergeTrans with an increasing number of threads. The memory bandwidth utilization
saturates before reaching maximum due to the bottleneck at the memory interface.

ory requirement and low arithmetic intensity make sparse matrix transposition a promising

candidate for NMP [33].

5.2.2.2 Thread Scaling Analysis

Prior work shows that the performance of state-of-the-art sparse matrix transposition im-
plementations does not scale well with the increasing number of threads [195]. To further
analyze the scalability of sparse matrix transposition, we measured the utilized bandwidth
with an increasing number of threads, as shown in Figure 5.3(b). While the theoretical peak
bandwidth, represented by the green horizontal line, is 76.8 GB/s, the achievable maximum
bandwidth is around 62 GB/s [97]. In Figure 5.3(b), the utilized memory bandwidth starts
to saturate at 16 threads and reaches the maximum at 64 threads at 59.6 GB/s. In practice,
little performance benefit is observed beyond 16 threads and further bandwidth saturation
is undesirable due to significantly increased memory latency. What efficient sparse ma-

trix transposition will most benefit from is an approach that reduces memory latency and

relieves the contention at the off-chip memory interface by avoiding transferring data back-

and-forth between the host and the memory device.

86

Intermediate
Storage
(COO)

0 2
a b

1 4
c d

0 4 6
e f g

3 5
h i

0 2 1 0 3 1 2 3 2
0 0 1 2 3 4 4 5 6
a e c b h d f i g

rowID
colID
value

1 3
m n

2 5 6
o p q

4 5 4 6 5 4 6 6
0 1 2 2 3 5 5 6
j m k o n l p q

0 2 5
j k l

0 2 4 1 5 0 4 6 3 5 1 2 3 4 6 2 6

a e j c m b k o h n d f i l p g q

0 3 5 8 10 12 15 17colPtr

rowID

value

0 2 4 7 9 12 14 17rowPtr

row0 row1 row2 row3 row4 row5 row6

colID
value

merge sort (round 2)

Output Compressed
Data Storage

(AT in CSR / A in CSC)

Input Compressed
Data Storage
(A in CSR)

merge sort (round 2)

merge sort (round 0) merge sort (round 1)

a

e

c

b

d

f g

h i

j k l

m n

o p q

a
e

c
b

h
d
f

i
g

j
m

k
o

n
l
p q

a

e
c

b

h
d
f

i
g

j k
m

o
n

l
p q

Iteration 0

Iteration 1

Leaf 0

Leaf 1

Leaf 2

Leaf 3

Leaf 0

Leaf 1

Leaf 2

Leaf 0
Leaf 1

Leaf 0 Leaf 1 Leaf 2 Leaf 3

merge sort (round 0)

Leaf 0 Leaf 1 Leaf 2

Leaf 0 Leaf 1

merge sort (round 1)

Figure 5.4: Dataflow of MeNDA performing transposition on the sparse matrix in Fig-
ure 5.1. Each round of merge sort is executed sequentially on a 4-way merge tree. Left:
The outcome of each round in the dense data structure. Right: The real input and output
data of each round that are stored in memory. The input and output data are stored in the
compressed data storage formats (CSR/CSC), and the intermediate data are stored in COO.

5.3 MeNDA System Architecture

Prior work proposed two algorithms for parallel sparse matrix transposition - a count sort
based algorithm (scanTrans) and a merge sort based algorithm (mergeTrans) [195].
In this work, we adopted the merge sort algorithm not only because merge sort presents
higher spatial locality but also because merge sort is widely used in sparse linear alge-
bra [151, 54, 165]. Inspired by prior near-DRAM accelerators [97, 11], the near-memory
PUs are embedded in the buffer chips of DIMMs to minimize the modifications to com-
modity DRAM devices. The proposed solution is scalable as a higher throughput can be
achieved by populating a memory channel with multiple MeNDA-enabled DIMMs. To
take full advantage of the exposed high internal memory bandwidth, the custom PU fea-
tures a very wide multi-way merge tree supporting seamless back-to-back merge sort, stall-
reducing prefetching, and request coalescing. To further improve parallelism, a novel data
layout is proposed to eliminate communications and balance workloads among PUs. As
mentioned in Section 5.2, the design details of MeNDA are explained using the paradigm
of converting a sparse matrix from the CSR format to the CSC format.

87

5.3.1 Algorithm and Dataflow

MeNDA applies the merge sort algorithm to perform sparse matrix transposition. Fig-
ure 5.4 demonstrates the dataflow of transposing the matrix in Figure 5.1 using a 4-leaf
hardware merge tree. An l-leaf merge tree merges l incoming sorted streams into a sin-
gle sorted stream in a round. Since the 4-leaf merge tree does not have enough hardware
resources to merge sort all matrix rows, more than one iteration is needed. As shown in Fig-
ure 5.4, in iteration 0, the first four rows and the last three rows are merged subsequently.
Then in iteration 1, the two sorted streams are merged into the final output. In practice,
the number of iterations required to finish transposition equals loglN , where l refers to the
number of leaves in the merge tree and N refers to the number of non-empty matrix rows.

The input and output data are both stored in the compressed format, i.e. the input in
CSR and the output in CSC. If the algorithm needs more than one iteration to finish, the
intermediate data are stored in the COO format. COO stores the row index, column index,
and value of each NZE in three separate arrays so that accesses to the intermediate data
can exploit bank-level parallelism. Due to matrix sparsity, an intermediate sorted stream
may contain numerous empty rows/columns. Therefore, COO tends to take up less storage
than CSR/CSC and is also easier to decode. The memory space for the input sorted streams
is freed immediately after they are processed. Therefore, a runtime storage overhead of
O(l · N) is required, where l << N . In contrast, storing a second copy of the matrix
requires an overhead of O(N2).

5.3.2 Processing Unit (PU) Microarchitecture

MeNDA places PUs in the data buffer chips of DIMMs beside each rank to minimize
modifications to DRAM devices and to explore DIMM- and rank-level parallelism. Each
PU concurrently transposes a partition of the matrix and issues memory requests to the
corresponding ranks in parallel. The effective memory bandwidth available to MeNDA
thus scales with the total number of ranks.

A MeNDA PU consists of a merge tree, prefetch buffers, a controller, a request queue,
and a memory interface unit (Figure 5.5). In the merge tree, each PE is connected to two
child PEs through a FIFO unless it is a leaf node. An l-leaf merge tree thus has l − 1 PEs
and log2l levels, i.e. at least log2l cycles are required for data to travel from a leaf PE to
the root PE. The existence of FIFOs allows each PE to pop one data packet every cycle
without a critical path from the root PE to the leaf PEs. The root PE is connected to an
output buffer, which allows store requests to be sent at memory block granularity (64B).
Each leaf PE is connected to two prefetch buffers through FIFOs. Prefetch buffers are in

88

ReadQ

WriteQ

Address Decoder

CMD Generator

Request Scheduler

Request Queue Multi-way
Merge Tree

Memory
Mapped
Registers

ptr addr
ind addr
val addr

start M
NNZdone

N

D
D

R
.C

/A
D

D
R

.D
Q

Merge Tree PEMemory Interface Unit

PE

PE PE

PE PE PE PE

Output
Buffer

Vectorized
Multiplier

vector
elements

partial
columns

Compute Units

Buffer Units

MUXes

Registers

SpMV Units

delay
buffer

…X X X X

HOST
MC

DIMM

DRAM

B
u

ff
e

r
ch

ip

D
IM

M

L.end xor
R.end

L.v &
R.v

L.col <
R.col

select
[1:0]

0 1 0 {0,1}
0 1 1 {0,0}
0 0 X {1,X}
1 X X {0,L.end}

*L: left packet, R: right packet, X: don’t careR

se
le

ct

0 1 2

L.end

R.end

out.end

0

L

Table. PE Select Signal Value

Reduction Unit

out

+

PE PE PE PE PE PE PE PE

Prefetch Buffers

D
IM

M DRAM
DRAM
DRAM

Rank
PU

Rank
PU

D
IM

M

D
IM

M

Controller

Figure 5.5: Architecture of MeNDA (top) and a MeNDA PU (bottom). A PU consists of
a merge tree, prefetch buffers, a controller, a request queue, and a memory interface unit.
The extra units required to support SpMV, i.e. a delay buffer and floating point adders and
multipliers, are highlighted in red boxes.

89

charge of sending memory load requests and feeding the leaves with correct data. The
controller is a Finite-State Machine (FSM) that assigns each prefetch buffer the start and
end addresses of the corresponding sorted streams. Theoretically, in each cycle, only one
load request is sent to the prefetch buffers because only one element is popped from the
root PE. Similarly, only one store request is sent to the prefetch buffers to fill in the data
from the memory bus because only one memory response can return each cycle. Therefore,
to reduce power consumption, the prefetch buffers are implemented as multi-bank SRAM.
The design goal of the merge tree is to saturate the internal memory bandwidth while fitting
in the buffer chip, which, according to the evaluation, is satisfied by the current design.

Data are transferred among PEs through data packets containing a 1-bit valid signal and
the 32-bit row index, the 32-bit column index, and the 32-bit value of a NZE. Only when
both child PEs provide valid packets will a PE pop the data packet with the smaller column
index and send the packet to its parent PE or the output buffer if it is the root PE. All
the memory requests are sent to a request queue with separate queues for loads and stores
and processed by a memory interface unit, which mimics a simplified memory controller.
The memory interface unit consists of a request scheduler that selects the request with the
highest priority from the request queue, an address decoder that translates the incoming
physical address to a DRAM address, and a command generator that generates DRAM
commands for the chosen request. The request scheduler selects requests based on a First
Come First Serve - First Ready (FCFS-FR) policy that prioritizes requests ready to launch
and requests resulting in DRAM row hits.

5.3.3 Seamless Back-to-back Merge Sort

Real-world sparse matrices tend to be extremely large and sparse, causing each iteration of
sparse matrix transposition, especially the first iteration, to handle many rounds of merge
sort of short input streams. Hence, it is important to reduce the stalls between different
rounds of merge sort. An end-of-line signal is added to the data packet to signify the end
of a sorted stream and allow seamless execution of multiple rounds of merge sort. The
prefetch buffer sets the end-of-line signal when the last element of a sorted stream is sent.
The PEs propagate the end-of-line signal when both child PEs set the end-of-line signal.
Instead of starting a new round of merge sort after the current round of merge sort has
finished, the prefetch buffers feed their PEs with data for the next round immediately after
the end-of-line signal is set.

Figure 5.6 illustrates the seamless execution of the first and second rounds of merge
sort in Figure 5.4. Load requests for the second round of merge sort are sent in cycle 1,

90

a c e h

b d f i
g

a e

b c f h

d g i
Load

a

c e

b d f h

g i

e

c h

b d f i

g

c

b h

j d f i

k g
l

b

d h

j m f i

k n g
l

h

d f

j m g i

k n
l

d

j f

k m g i

l n

f

j i

k m g

l n

i

j g

k m o

l n p
q

CYCLE 0 CYCLE 1 CYCLE 2 CYCLE 3

CYCLE 4 CYCLE 5 CYCLE 6 CYCLE 7

CYCLE 8 CYCLE 9

Load

Load

Cyc. Memory
Action Cyc. Memory

Action
1 Load Row 4 5 Row 5 recv’d
2 Load Row 5 6 Load Row 6
4 Row 4 recv’d 9 Row 6 recv’d

Cycle and Action of Memory Activities

Figure 5.6: Timing diagram of data propagation for merge sort shown in Figure 5.1 on
a 4-leaf merge tree assuming a memory latency of 3 cycles. The cycle number and the
corresponding memory activities are shown in the bottom right table. End-of-line signal
propagation is shown with red arrows.

2, and 6, i.e. as soon as the prefetch buffers become empty. Propagating the end-of-line
signals enables the merge tree to produce effective results without stalls. If the merge sort
is executed one after another, in the scenario presented in Figure 5.6, the first round of the
merge sort ends at cycle 10 and then the three load requests for the second round are sent.
The second round of the merge sort is not able to start until cycle 15 due to memory stalls,
and the merge tree thus remains idle for 5 cycles. The use of the end-of-line signals not
only maximizes the hardware resource utilization but also helps distribute burst memory
requests at the start of a new round of merge sort evenly over time.

5.3.4 Memory Bandwidth Utilization Optimizations

The prefetch buffers aim to make the best use of the fetched memory blocks and reduce
merge tree stalls. However, even launching load requests as soon as the prefetch buffers
become empty would cause the merge tree to stall while waiting for the memory responses.
Therefore, stall-reducing prefetching is proposed so that memory load requests are sent
whenever a prefetch buffer can fit the requested data. Assuming a prefetch buffer can fit

91

16 NZEs and 4 NZEs have been popped to the leaf PE, if the number of NZEs left in the
current sorted stream is less than or equal to 4, the memory requests for the subsequent
NZEs will be issued. However, a prefetch buffer is not allowed to send memory requests
for more NZEs when there are outstanding memory requests even if the prefetch buffer can
accommodate the NZEs. This is because, to reduce merge tree stalls, it is more desirable
to keep all prefetch buffers non-empty than serially filling each prefetch buffer until full.

While stall-reducing prefetching aims at taking full advantage of the available memory
bandwidth, request coalescing is designed to reduce the total memory traffic. Due to ma-
trix sparsity, multiple matrix rows can be co-located in the same memory block. In this
case, memory load requests for the same memory block can be sent from different prefetch
buffers in the first iteration. Request coalescing avoids sending these duplicate memory
requests to the memory device by checking the read request queue each time a new load
request is enqueued. If a load request to the same memory block is found, the incom-
ing request will be merged into the same request queue slot. Since the memory response is
broadcast to all the prefetch buffers, merging the duplicate memory requests does not affect
the functional correctness of the design and there is no need to keep track of the requesters.
Because the prefetch buffers are implemented as multi-bank SRAM and the prefetch buffers
that send the same memory requests are usually neighbors, the memory response from a
merged request can fill multiple prefetch buffers in one cycle by interleaving neighbor-
ing prefetch buffers to different SRAM banks. Minimal additional hardware is required to
support request coalescing. Specifically, a comparator is added to each entry of the read
request queue to enable parallel address matching, similar to a Content-Addressable Mem-
ory (CAM). Synthesis of the RTL model shows that the additional hardware has negligible
impact on the frequency and the area of PUs.

Taking the example in Figure 5.6, if row 6 of the input matrix has only one element o,
stall reducing prefetching allows the load request for o to be issued in cycle 1 instead of
cycle 6. Request coalescing merges this request into the prior request for row 4, making o

available in cycle 4 instead of cycle 9.

5.3.5 Input Operand Co-location and Workload Balancing

In near-DRAM accelerators, communications between PUs, especially those across DIMMs,
need to go through the off-chip memory interface and thus are prohibitively expensive. A
common challenge is to keep all the input operands local in a single rank for a rank-level
PU [33]. To avoid communications between MeNDA PUs, each PU is assigned a contigu-
ous chunk of the sparse matrix, i.e. each PU is responsible for transposing a horizontal

92

partition of the input sparse matrix. The original CSR format can then be directly used
without preprocessing, and it is also easy to locate a NZE after transposition.

A naı̈ve way to partition the sparse matrix is to use the Most Significant Bits (MSBs)
of the address to assign NZEs to a rank. However, this could cause severe workload im-
balance. For example, assuming a total of 8 ranks, if the 3 MSBs of the input array range
from 000 to 100, only rank 0 to rank 4 will be assigned work while rank 5 to rank 7 remain
idle throughout the execution. Since the execution time of a PU is roughly proportional to
the NNZ assigned to it, an NNZ-based partitioning technique is desired.

Rank 0

Rank 1

Rank 2

Rank 3

RowPtr

Indices

Values
Rank 0 Rank 1 Rank 2 Rank 3

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0 Rank 1 Rank 2 Rank 3

Duplicated Page across ranks

Figure 5.7: Matrix partitioning across 4 ranks.

The workload balancing takes place during data allocation using the technique proposed
in [33]. The host first uses the number of MeNDA PUs and the NNZ of the input matrix to
determine the NNZ assigned to each PU and then allocates contiguous chunks of physical
memory accordingly. To ensure that the index and value of each NZE assigned to a PU are
mapped to the corresponding rank, page coloring is used to specify the rank a physical page
belongs to, and thus the data assigned to a PU needs to be aligned by page. However, the
same technique does not apply to the row pointer array because the rank that a row pointer
belongs to depends on the matrix distribution. Therefore, the host needs to calculate the
start and end row indices of the NZEs assigned to a PU and then assign the corresponding
pages of the row pointer array to the target rank using page coloring. In the case that one
page of the row pointer array is needed by two ranks, the page will be duplicated and each
rank will have a private copy, leading to a maximum total storage overhead of page size×
#ranks, which is negligible for typical datasets. Figure 5.7 shows a partitioned sparse
matrix given 4 ranks. The start and end addresses of the row pointer, index, and value
arrays of each rank are written to specific memory-mapped registers for PUs to calculate
the target addresses during computation.

5.3.6 Adaptation to SpMV

Merge sort is widely used in sparse linear algebra applications. A typical example is outer
product based SpMV. The merge phase of SpMV has the same dataflow as sparse matrix

93

transposition and thus can be implemented directly on MeNDA. As transposition does not
involve floating point computations, to support SpMV, a reduction unit consisting of three
pipelined floating point adders is inserted between the root PE and the output buffer. In
addition, a vectorized floating point multiplier is placed next to the prefetch buffers. The
additional hardware units required to support SpMV are highlighted with red rectangles in
Figure 5.5. When executing sparse matrix transposition, these units will be gated and incur
no power overhead.

The input matrix is stored in a partitioned CSC format, which matches the format of
the transposed matrix generated by our work. The reason to apply horizontal partitioning
to the input matrix is that each PU would generate a partition of the final vector instead of
a partial result vector. Due to the irregular distribution of sparse matrices, the horizontal
matrix partition processed by a PU can have numerous empty columns. To reduce the
memory loads to the pointers and vector elements that correspond to the empty columns,
an auxiliary pointer array is constructed to label the memory blocks in the pointer array
that contain non-empty columns.

Each time the controller sends a load request for the column pointers based on the aux-
iliary array, it also issues a request to fetch the vector elements that need to be multiplied
with these columns. In contrast to sparse matrix transposition, the column indices are not
needed for computation because all columns are eventually merged into a single vector.
Hence, the space in the prefetch buffers aimed to store the column indices for transposition
is now reused to store the vector elements instead. When a read request for the matrix
values returns, the data is sent to the multiplier. Meanwhile, the prefetch buffers that are
waiting for this memory response snoop the memory bus and send the stored vector ele-
ments to the multiplier. However, the needed vector elements could be unavailable at the
moment because the load request for the vector elements is still outstanding. This is very
likely due to request reordering caused by the scheduling policy and request coalescing. To
deal with this situation, a delay buffer is designed to register the response and notify the
request scheduler to prioritize requests for vector elements until the request needed by the
registered response is served. The outputs of the multiplier are broadcasted and stored into
the prefetch buffers. Note that the multiplication is only performed in the first iteration,
i.e. the multiplier is disabled starting from the second iteration. When an element with
the smallest row index is popped from the root PE, the root PE compares its index with
prior outputs and merges the elements with the same index using the reduction unit. The
intermediate vectors are stored in (index, value) pairs, and the output vector is stored in a
dense array.

94

5.4 Programming Model and Interface

MeNDA adopts a heterogeneous programming model, similar to prior NMP proposals [97,
11]. The host is responsible for memory allocation and initialization for tasks offloaded
to PUs. Figure 5.8(a) shows the pseudo-code of a sample graph analytics workload based
on the CoSPARSE implementation [54]. In line 0-2, the host performs memory allocation
and workload balancing partitioning as described in Sec. 5.3.5 for the input sparse matrix.
The allocation functions also write the necessary metadata to the corresponding memory-
mapped registers. The host can access the allocated data structures with no modifications to
the original implementation because the allocation functions have taken care of the virtual
to physical address mapping, which is hidden from the host.

// memory allocation and initialization
0 NMP::array<int> colID(NNZ, #ranks, type::NNZ);
1 NMP::array<float> values(NNZ, #ranks, type::NNZ);
2 NMP::array<int> rowPtr(N, #ranks, type::PTR);
3 array<float> vector(N), result(N);

// CoSPARSE dense iteration
4 rowStart, rowEnd= NMP::getRowPartition(tileID());
5 for (i = rowStart; i < rowEnd; i++) {
6 for (j = rowPtr[i]; j < rowPtr[i+1]; j++)
7 partial_sum += values[j] * vector[colID[j]];
8 result[i] += partial_sum; partial_sum = 0;
9 }
10 NMP::transpose(); // sparse matrix transposition
11 NMP::wait(); // wait for transposition to finish

// CoSPARSE sparse iteration
12 colPtr, rowID, values = NMP::getAddr(tileID());
13 v_tasks = CoSPARSE::getVectorTasks();
14 for (v : v_tasks) {
15 head = colPtr[v];
16 headList.push(rowID[head], values[head]);
17 } // construct a sorted list of head elements

.

PE PE PE PE PE PE PE PE

R$ R$ R$ R$ R$ R$ R$

R$ R$

Channel 1

LCP LCP

Rank 0

Rank 1

Channel 0
Rank 0

Rank 1

Channel 1
Rank 0

Rank 1

Channel 2
Rank 0

Rank 1

Channel 3

(a) Sample pseudo-code of CoSPARSE (b) CoSPARSE Microarchitecture
*R$: reconfigurable cache banks

DDR4 Memory Interface

R$

Figure 5.8: (a) Sample pseudo-code of CoSPARSE using the programming interface of
MeNDA and (b) the microarchitecture of the hardware substrate of CoSPARSE with 2
processing tiles and 4 PEs per tile.

In line 10, the host launches the sparse matrix transposition through a non-blocking
function call NMP::transpose(), which sets the start signals of PUs by writing to
the memory-mapped registers. While the PUs are transposing the matrix, the host can
concurrently execute other kernels. Prior work has proposed techniques to efficiently allow
concurrent accesses from both the host and NMP PUs [33]. However, it is still undesirable
for the host to execute memory-intensive workloads because sparse matrix transposition

95

is already heavily memory bandwidth bound. Since sparse matrix transposition can easily
saturate the memory bandwidth, executing another memory-intensive workload on the host
will only severely hurt the performance of both tasks.

Upon finishing transposition, a PU sets the finish signal and updates the addresses of
the transposed matrix in the memory-mapped registers. In the case that the transposed
matrix is required for subsequent code execution, NMP::wait() can be used to block
the host execution until the transposition finishes, as shown in line 11. NMP::wait()

is implemented similarly to a conditional variable, which gets notified to resume the host
execution as soon as the finish signals of all the PUs are set. After transposition, each rank
will hold a horizontal partition of the sparse matrix stored in CSC. To access the data in
a column, NMP::getAddr(i) is used to obtain the start addresses of the data arrays in
rank i (line 12).

5.4.1 Integrating MeNDA with Existing Platforms

The programming interface of MeNDA aims at minimizing the modifications to the stan-
dard compressed storage format of sparse matrices so that minimal code changes are re-
quired to integrate MeNDA. The potential performance overhead of integrating MeNDA
comes in two ways. First, the proposed data layout assigns each rank with a contiguous
chunk of the sparse matrix with the same NNZ. This requires modifications to the address
mapping and support from the page table of the operating system. Second, after transposi-
tion, the sparse matrix is stored in multiple horizontal partitions in CSC, which needs the
host implementation to adapt to the partitioned data storage. To access an entire column,
the host needs to access the sub-column in each rank.

To analyze the performance overhead, we implemented MeNDA on CoSPARSE [54],
a recent graph analytics framework on a reconfigurable hardware substrate [152]. An ar-
chitecture overview of CoSPARSE is shown in Figure 5.8(b). CoSPARSE performs SpMV
in inner product using row-major COO for the dense iterations, and outer product using
CSC for the sparse iterations. To apply MeNDA, the dense iteration implementations are
the same except that the memory address mapping is different. For the sparse iterations,
since CoSPARSE uses preprocessing that performs horizontal partitioning based on NNZ,
CoSPARSE can directly use the post-transposition data format and save preprocessing over-
head with minor modifications to the implementation. Assuming a CoSPARSE system of
A tiles and B PEs per tile and where there are R DRAM ranks in total, for simplicity, we
let tile A/R× i to A/R× (i+ 1)− 1 work on the horizontal partition in rank i.

Many recent designs use NNZ-based partitioning [54, 165] and thus similar implemen-

96

Table 5.1: Parameters of Ramulator and MeNDA.
Ramulator CPU Parameters

L1 32KB L2 256KB LLC 3MB
Cache 64B block size, 8-way associative, 16 MSHR entries

Ramulator DRAM Parameters
Standard DDR4 2400R
Orginization 4Gb x8
Scheduling 32-entry RD/WR queue, FRFCFS PriorHit
Timing
Parameters

tRC=55, tRCD=16, tCL=16, tRP=16, tBL=4,
tCCDS=4, tCCDL=6, tRRDS=4, tRRDL=6, tFAW=26

Processing Unit Parameters
Frequency 800 MHz Number of Leaves 1024
No. FIFO Entry 2 No. Prefetch Buffer Entry 32
No. Read/Write Queue Entry 32
FP Units (SpMV only) 16 3-stage FP Mult, 3 2-stage FP Add

tations can apply. Even if the host needs to access each DRAM rank to access and process
a column, for graph analytics workloads, the sparse iterations access only a small subset
of columns, and the dense iterations usually take up the majority of the total execution
time (Figure 5.11). Therefore, there are many use cases that would benefit from MeNDA
without introducing a significant performance overhead.

5.5 Experimental Methodology

This section details the experimental methodology that is used to characterize mergeTrans
and evaluate MeNDA.

Cycle-accurate
Simulator

Data
Generator

Single-rank Ramulator

Rank N

Cycle-accurate
Simulator

Data
Generator

Single-rank Ramulator

Rank 0

Matrix partitioning engine

… …

Input Matrix File

MAXPower Model

……

Transposition TimePower

Cycles
Stats

CoSPARSE Gem5 Simulator

Input Matrix File

Address Mapping Engine

Ramulator

Ramulator

Original
Execution Time

Execution Time w/ Overhead

In-Memory Accelerator Simulation CoSPARSE Simulation

Partitioned Matrix

Memory Trace

Remapped Trace

Figure 5.9: Experimental methodology for MeNDA.

97

Table 5.2: Specifications of CPU and GPU baselines.
Platform Specifications

CPU
AMD Ryzen Threadripper 2990WX, 32 cores/64 threads at 3.0-4.2 GHz,
128 GB DDR4 memory @ 68.3 GB/s, 213 mm2 (12 nm)

GPU
NVIDIA Tesla V100, 5120 CUDA cores at 1.25 GHz, 16 GB HBM2 memory
at 900 GB/s, 815 mm2 (12 nm)

5.5.1 Simulation Methodology

To model the performance of MeNDA, we designed a cycle-accurate simulator and con-
nected the memory interface to Ramulator [106], as shown in Figure 5.9 (left). The system
parameters are shown in Table 5.1. The area and power estimations are based on the syn-
thesis of an RTL model of the PU in 40nm using Synopsys design compiler.

Characterizations on mergeTrans The roofline model and the thread scaling analy-
sis (Figure 5.3) are built through trace simulation of mergeTrans[195] on Ramulator. We
created a trace generator that collects the memory trace and ran the traces in cpu mode of
Ramulator with a custom implementation of barrier synchronization to improve simulation
accuracy. The parameters used in Ramulator are shown in Table 5.1.

Integration with CoSPARSE The performance impact of integrating MeNDA is esti-
mated on CoSPARSE [54] assuming a system size of 8×16, i.e. 8 tiles with 16 PEs per
tile. As shown in Figure 5.9 (right), the memory trace is collected using the gem5 simu-
lator [20] and then processed by a memory re-mapping engine based on the strategy de-
scribed in Sec. 5.3.5. Both the original and the re-mapped memory trace are then executed
on Ramulator in dram mode to obtain the performance of CoSPARSE after integrating
MeNDA.

5.5.2 Baseline and Benchmarks

We evaluate MeNDA against scanTrans and mergeTrans from [195] on the CPU and
cusparseCsr2cscEx2 from cuSPARSE v11.4.0 on the GPU. The specifications of the
CPU and GPU are detailed in Table 5.2. The CPU and GPU power are measured using
AMDuProf and nvidia-smi, respectively. The specifications of the evaluated synthetic
and real-world matrices are shown in Table 5.3 and Table 5.4, respectively. The power-law
matrices are generated using SNAP RMat generator GenRMat. The real-world matrices
are selected from the SuiteSparse Matrix Collection [40].

98

Table 5.3: Specifications of Synthetic Uniform* (N#) and Power-law†(p#) Matrices.
Matrix Dimension NNZ Matrix Dimension NNZ
N1/P1 262,144 3,435,973 N5/P5 524,288 8,388,608
N2/P2 262,144 1,717,986 N6/P6 1,048,576 8,388,608
N3/P3 262,144 858,993 N7/P7 2,097,152 8,388,608
N4/P4 262,144 429,496 N8/P8 4,194,304 8,388,608

*Generated by randomly sampling NZEs until NNZ is reached.
†Generated using GenRMat(Dimension,NNZ,0.1,0.2,0.3) (snap.py).

Table 5.4: Specifications of SuiteSparse Matrices [40].
Matrix
Dimension,NNZ
Kind

Plot
Matrix
Dimension,NNZ
Kind

Plot
Matrix
Dimension,NNZ
Kind

Plot

amazon
262K,1.23M
Directed graph

ASIC 320K
321K,1.93M
Circuit simulation

bcsstk32
44K,2.01M
Structural problem

language
399K,1.22M
Directed graph

mac econ
206K,1.27M
Economic problem

parabolic
525K,3.67M
Fluid dynamics

rajat21
411K,1.88M
Circuit simulation

sme3Dc
43K,3.15M
Structural problem

Slashdot0902
82K,948K
Directed graph

stomach
213K,3.02M
2D/3D problem

transient
178K,961K
Circuit simulation

twotone
120K,1.21M
Circuit simulation

venkat01
62K,1.72M
Fluid Dynamics

webbase-1M
1.00M,3.11M
Directed graph

wiki-Talk
2.39M,5.02M
Directed graph

5.6 Evaluation

This section evaluates the performance, area, and power of MeNDA for sparse matrix trans-
position and SpMV. In addition, the benefits of integrating MeNDA with existing designs
and the optimizations proposed in Sec. 5.3.4 are presented. Finally, the performance impact
of the matrix properties and the system size and frequency on MeNDA are studied.

5.6.1 Comparison with CPU and GPU Baselines

MeNDA is compared to state-of-the-art sparse matrix transposition implementations on
CPU and GPU in Figure 5.10. The speedup of MeNDA over baselines comes from both

the reduction in memory traffic and the improvement in memory bandwidth utilization.

99

Taking wiki-Talk as an example, compared to mergeTrans, MeNDA reduces the
memory traffic by 11.2× while exhibiting 2.7× higher bandwidth utilization. These re-
sult from both the exposed high internal memory bandwidth and the optimizations in
Sec. 5.3.4. In general, MeNDA achieves higher throughput on large, less sparse matri-

ces. MeNDA performs better on less sparse matrices because less memory bandwidth is
then spent on accessing and updating the pointer array, which does not contribute to the
throughput, which is measured in NNZ/s. In the case that the number of iterations to finish
transposition remains the same, MeNDA favors larger matrices as bank-level parallelism
can be better exploited when there are more sorted streams to merge in the last iteration.
mergeTrans and scanTrans, however, do not scale as well for large, sparse matrices,
and perform the worst on wiki-Talk. Accordingly, MeNDA shows the most speedup
over mergeTrans and scanTrans on this matrix.

ASIC_320k
amazon

bcsst
k32

language

mac_econ
parabolic

rajat21
sme3Dc

Slashdot
stomach

transient
twotone

venkat01
webbase

wiki-Talk

geomean
0

10
20
30
40
50
60

Sp
ee

du
p

speedup over scanTrans
speedup over mergeTrans
speedup over cuSPARSE

Figure 5.10: Speedup of MeNDA over scanTrans and mergeTrans on CPU [195] and
cuSPARSE on GPU. The red line labels the speedup of 1.

The performance of cuSPARSE also favors less sparse matrices and is sensitive to
matrix distribution. bcsstk32 and sme3dc have similar dimensions and densities, but
the throughput of cuSPARSE on bcsstk32 is much higher than sme3dc. Because the
performance of MeNDA is not affected by matrix distribution, which is further proved
in Sec. 5.6.6, MeNDA achieves the highest speedup over cuSPARSE on sme3dc and
the lowest speedup for bcsstk32. Overall, MeNDA achieves an average speedup of

19.1×, 12.0×, and 7.7× compared to scanTrans, mergeTrans, and cuSPARSE, re-

spectively.

5.6.2 Area and Power Analysis

A MeNDA PU consumes 78.6 mW at 800 MHz and takes up 7.1 mm2 in 40 nm. The extra
logic required to support SpMV adds negligible area and up to 13.8 mW power consump-

100

tion. Given the estimations of prior works [97, 11] and that a typical data buffer chip takes
up 100 mm2 [138], the PU is within the power constraint and can be integrated into the
buffer chip of a DIMM, introducing a small area and power overhead.

5.6.3 Benefits and Overhead Analysis on End-to-end Workloads

To analyze the performance benefits and overhead of integrating MeNDA into existing de-
signs, the execution time of CoSPARSE performing SSSP algorithm on the graph amazon
with and without MeNDA is illustrated in Figure 5.11. Though the number of the sparse
iterations is twice that of the dense iterations, the majority (87%) of execution time is taken
up by the dense iterations. The potential performance overhead of MeNDA comes from two
sources – the additional execution time due to the memory mapping required by MeNDA
and the execution time of the transposition.

sparse iterations dense iterationstransposition

Figure 5.11: Execution time of SSSP on CoSPARSE for amazon without runtime trans-
position, with runtime transposition using mergeTrans, and with runtime transposition
using MeNDA. CoSPARSE (∼2xStorage) avoids runtime transposition at the cost of stor-
ing two copies of the graph [54].

Although integrating MeNDA requires the matrix partition assigned to a PU to reside
in a rank, as shown in Figure 5.11, the change in memory mapping has a negligible impact
on the execution time of the SSSP algorithm. This is because the PEs in CoSPARSE
work on all matrix partitions concurrently to exploit memory-level parallelism, resulting in
all the DRAM ranks being accessed in parallel. Therefore, rank-level parallelism is still
well exploited. Sparse matrix transposition is launched each time CoSPARSE switches
from the dense dataflow to the sparse dataflow or the opposite. In practice, sparse matrix
transposition is commonly performed at most twice for a graph algorithm execution. As
shown in Figure 5.11, integrating MeNDA for dynamic matrix transposition decreases the
transposition overhead from 126% to 5% while allowing CoSPARSE to store only one
copy of the graph in DRAM, reducing the required storage by almost half, thus supporting
a larger graph within a fixed DRAM size. As dataset sizes keep growing, MeNDA can
prevent designs like CoSPARSE from expensive disk accesses when the DRAM devices

101

can only fit a single copy of the graph, at the cost of a minor transposition latency.

5.6.4 Memory Bandwidth Utilization Optimization Analysis

The execution time of MeNDA with different optimizations enabled and prefetch buffer
sizes is shown in Figure 5.12. A key observation is that request coalescing greatly benefits

the first iteration by reducing total memory traffic while stall-reducing prefetching improves

the performance of the following iterations by increasing memory bandwidth utilization.

Baseline prefetch_24
prefetch_coal_24

prefetch_32
prefetch_coal_32

prefetch_40
prefetch_coal_40

Iteration 0 Iteration 1

Figure 5.12: The execution time of MeNDA applying different optimizations normalized
to that of the baseline implementation. In the legend, ”prefetch” refers to stall-reducing
prefetching enabled, ”coal” refers to request coalescing enabled, and the number refers to
the size of the prefetch buffers.

Stall-reducing prefetching fetches data needed in the future in advance to keep the
prefetch buffers non-empty and thus reduce the stalls of the merge tree. Although stall-
reducing prefetching has little impact on the total amount of memory traffic, it improves
the memory bandwidth utilization by 8-16%, leading to 12-16% better performance. Larger
prefetch buffers enable the merge tree to send out more prefetch requests. However, little
performance improvement is seen after the size of the prefetch buffer reaches 32. This is
because the memory bandwidth is already saturated and the prefetch buffers are not able
to send out more requests even if there are vacancies. This is also demonstrated by the
fact that, when request coalescing is not enabled, stall-reducing prefetching can sometimes
worsen the performance of the first iteration. The reason is that the excessive prefetching
requests block the critical read requests on demand, resulting in performance degradation.

Request coalescing, instead, benefits the first iteration much more than the other itera-
tions, especially for sparser matrices. Because sparser matrices have fewer NZEs per row,
i.e. each memory block can accommodate more rows, a single memory response can fill
more prefetch buffers. On the other hand, after the first iteration, sorted streams are usu-

102

ally much longer than a memory block, so there is little opportunity for request coalescing.
Therefore, the following iterations barely benefit from request coalescing. Experiments
show that request coalescing reduces the memory traffic of iteration 0 by up to 60%, lead-
ing to a maximum speedup of 2×. Overall, stall-reducing prefetching and request merging

can achieve a speedup of 1.2× to 2.1× compared to a baseline with no optimizations.

5.6.5 Scalability Analysis

MeNDA places PUs at DRAM rank level, and thus the performance scales with the number
of ranks. In the synthetic matrices, N1−N4 have the same matrix dimensions but decreas-
ing densities while N5 − N8 have the same NNZs but increasing matrix dimensions. As
shown in Figure 5.13, the throughput of MeNDA scales almost linearly with the increasing
number of channels. The execution time of transposing N1 to N4 decreases with NNZ
while that of N5 to N8 remains similar. The throughput of MeNDA decreases slightly
from N1 to N4 and from N5 to N8 under a fixed number of channels. This is because
when the size of the pointer array increases with the matrix dimension and becomes even
larger compared to the index and value array, accessing and updating the pointer array takes
up a larger portion of the memory bandwidth usage. However, this does not contribute to
the throughput, which is defined as NNZ/s, and thus results in a throughput degradation. In

summary, the throughput of MeNDA is proportional to the total number of ranks, and the

execution time scales with the NNZ of the input matrix, assuming the number of iterations

in the execution is fixed.

0.03

Execution Time / Throughput: 1 Channel 2 Channel 4 Channel/ / /

Figure 5.13: Execution time and throughput of MeNDA sweeping matrix size and density
and the number of channels.

Transposing N8 on one channel is an outlier because N8 is the largest synthetic matrix
and requires three iterations to finish while all other matrices finish within two iterations.
Adding an iteration to the execution significantly increases the total memory traffic and
severely degrades the throughput. Therefore, it is desirable to minimize the number of iter-

103

ations in the execution. In this work, the nominal number of leaf PEs is 1024, which allows
transposition to be finished within two iterations for matrices with a size up to 10242 × R,
where R is the total number of DRAM ranks.

5.6.6 Matrix Distribution Analysis

Many real-world matrices have irregular distributions, especially those in the graph ana-
lytics domain. However, Figure 5.14 shows that the performance of MeNDA is barely af-
fected by matrix distribution. Although in most cases, the power-law matrices take longer

to transpose, the differences in execution time remain within 10%. This can be attributed
to the workload balancing strategy (Sec. 5.3.5), which divides tasks evenly among PUs to
improve parallelism, and the seamless back-to-back merge sort feature (Sec. 5.3.3), which
maximizes hardware resource utilization.

iteration 0 iteration 1 iteration 0 iteration 1Uniform: Power-law:

Figure 5.14: The execution time of the uniform matrices compared with that of the power-
law matrices with the same sizes and densities.

5.6.7 Design Space Exploration

Figure 5.15 (left) presents the execution time and EDP of MeNDA under different frequen-
cies. Because MeNDA already saturates the memory bandwidth, increasing the system

frequency beyond 800 MHz brings little performance benefit and simply boosts the power

consumption, resulting in a higher EDP. Although 600 MHz presents a lower EDP, this
work prioritizes performance and selects 800 MHz as the nominal frequency. In a scenario
where EDP is the most important metric, a lower frequency can be used at the cost of
performance.

The execution time and EDP of MeNDA with merge trees of different sizes are shown
in Figure 5.15 (right). The size of the merge tree does not affect the throughput but impacts
the number of iterations needed to finish the sparse matrix transposition. A PU with a

104

EDP:Execution Time: Iter 0 Iter 1 Iter 2 Iter 3 Total
600 MHz 800 MHz 1 GHz 1024 leaves 256 leaves 64 leaves

Figure 5.15: The execution time and EDP of MeNDA sweeping the accelerator frequency
(left) and number of leaf PEs (right).

1024-leaf merge tree can transpose N5 to N8 in two iterations. With 256 leaves, three
iterations are needed. With only 64 leaves, N5 to N7 can still finish in three iterations but
N8 requires four iterations. The reduction in power consumption resulting from using a
merge tree with fewer leaf PEs does not offset the performance degradation caused by the
increase in the number of iterations. Hence, the PU with a 1024-leaf merge tree has not

only the best performance but also the lowest EDP.

The execution time of N6 is much longer than that of the other matrices on a 256-leaf
merge tree. This is because N6 does not have enough rows that the third iteration only
merges two sorted streams, and loading the two sorted streams induces many row conflicts.
Although N5 has an even lower number of rows and the third iteration has at most two
sorted streams, the majority of the NZEs reside in one of the sorted streams. Therefore
spatial locality is well exploited when loading the long sorted stream. N7 and N8, on the
other hand, have much more rows than N6 and thus have more sorted streams to merge
in the third iteration. The percentage of row conflicts in the third iteration is 57% for N6

but 43% for N7. This is because the bank-level parallelism exploited by loading multiple
sorted streams reduces the row conflicts and enables MeNDA to transpose N7 and N8

faster than N6.

5.6.8 SpMV Analysis

We evaluate SpMV against an HBM-based NMP SpMV accelerator [165]. [165] inter-
leaves the output vector elements among reduction trees to reduce the on-chip buffer to a
feasible size, taking advantage of the regular output data. However, sparse matrix transpo-
sition outputs an irregular sparse matrix, which has an unknown number of elements per
row/column. Therefore, [165] cannot perform sparse matrix transposition without intro-
ducing frequent synchronization and large on-chip buffers, which will severely degrade the

105

ASIC_320k
amazon

bcsst
k32

language

mac_econ
parabolic

rajat21
sme3Dc

Slashdot
stomach

transient
twotone

venkat01
webbase

wiki-Talk

geomean
0

2

4

6
Ef

fic
ie

nc
y(

GT
EP

S/
W

)
Ga

in 3.2 2.6

6.0

2.6

4.5
3.1 3.5

4.4
3.2

5.5

3.2

5.1
5.8

3.4 2.9
3.8

Figure 5.16: Energy efficiency gain of MeNDA over Sadi et al. [165] for SpMV.

performance. While [165] is a monolithic design with a high peak throughput saturating the
memory bandwidth of four HBM stacks, MeNDA features lightweight PUs that can be inte-
grated into commodity DIMMs, which have better capacity scalability than HBM devices.
For a fair comparison, we use Giga Traversed Edges Per Second (GTEPS) per bandwidth
(GB/s) as the performance metric. As [165] achieves 0.049 GTEPS/(GB/s) on average,
MeNDA achieves a comparable average iso-bandwidth throughput of 0.043 GTEPS/(GB/s)
with a maximum of 0.073 GTEPS/(GB/s). For efficiency gain, we scale our power to match
the technology while keeping the performance because the performance of MeNDA is lim-
ited by the memory bandwidth instead of the system frequency. Overall, MeNDA presents
an average improvement of 3.8× in efficiency (GTEPS/W) (Figure 5.16).

5.7 Related Works

Near-DRAM Accelerators In recent years, many near-DRAM accelerators have been pro-
posed to accelerate memory bandwidth bound workloads and save data transfer energy.
Chameleon integrates CGRAs into the data buffer chip on load-reduced DIMMs [11].
Inspired by Chameleon, TensorDIMM [117] and RecNMP [97] place accelerators in the
DRAM buffer devices to optimize sparse embedding operations in recommender systems.
The performance benefits of RecNMP are further demonstrated on AxDIMM, an FPGA-
based NMP prototyping and evaluation platform [98]. Fafnir identifies the limitations of
TensorDIMM and RecNMP and proposes a near-DRAM reduction tree consisting of cus-
tom PEs for sparse gathering [8]. GraFboost [92] and MetaStrider [174] are sort-reduce
accelerators. GraFboost [92] targets datasets that exceed DRAM capacity and reside in
flash-based systems. The intermediate data are reduced by more than 80% before being
written back to improve latency and flash lifetime. MetaStrider [174] deploys merger units

106

and metadata storage at HBM memory controllers and interleaves data by indices at bank
level to achieve memory-level parallelism. In sparse matrix transposition, however, there is
no data reduction. More importantly, data interleaving can cause output data fragmentation
and create difficulties in quickly locating specific NZEs post-merge. In summary, none of
the above designs can perform sparse matrix transposition efficiently as is.

There are also designs placing accelerators at bank (group) level to further exploit the
inherent parallelism in DRAM devices [50, 103, 32, 104, 102, 122]. However, these designs
are mostly used for element-wise or multiply-and-accumulate operations because they re-
quire all input operands to sit within a specific bank (group). This is infeasible for sparse
matrix transposition as it would pose challenges not only to restricting the required input
operands to reside in a bank (group) but also to locating elements in the output matrix after
sparse matrix transposition.

Hybrid Memory Cube (HMC)/HBM accelerators for SpMV and graph analyt-
ics Apart from near-DRAM accelerators, plenty of designs have been proposed to tightly
integrate computation logic with 3D/2.5D-stacked memory devices to optimize sparse lin-
ear algebra applications, such as SpMV and graph algorithms [165, 200, 5, 144, 37, 213,
218]. These designs usually involve communications between NMP cores, which are pro-
hibitively expensive for near-DRAM accelerators. Besides, HBM/HMC devices often suf-
fer from limited capacity whereas capacity scalability is critical in sparse linear algebra
workloads due to the exploding dataset sizes.

None of the aforehand mentioned works address sparse matrix transposition, nor can
they be used to perform sparse matrix transposition, including those designs featuring near-
memory reduction trees that can compute SpMV [8, 165, 92, 174]. However, based on the
insights provided in the prior works, we identify sparse matrix transposition as a promising
candidate for NMP because of its low arithmetic complexity and high memory bandwidth
requirements.

5.8 Conclusion

MeNDA is a scalable solution to near-DRAM multi-way merge for sparse dataflows, in-
cluding sparse matrix transposition and SpMV. A MeNDA PU features a high-performance
merge tree enhanced with techniques to maximize bandwidth utilization. To ease the de-
ployment of MeNDA, a heterogeneous programming model is designed and showcased by
integrating MeNDA with a recent graph analytics framework. Overall, MeNDA achieves
an average speedup of 19.1× over scanTrans and 12.0× over mergeTrans on CPU
and 7.7× over cuSPARSE on GPU for sparse matrix transposition, and shows an average

107

efficiency gain of 3.8× over an HBM-based SpMV accelerator. Incurring a power overhead
of 78.6 mW per PU, MeNDA can be accommodated by commodity DIMMs, introducing a
small area and power overhead.

108

CHAPTER 6

Conclusion

Data in modern applications are not only growing with increasing volume and velocity but
also with higher sparsity. The computations on these enormous, sparse data structures pose
unique challenges to contemporary computing systems due to the irregular memory access
pattern and large memory footprints. With the stagnating scaling of transistor size and
power due to the demise of Moore’s law and Dennard scaling, the pressure is on computer
architects to develop system designs with better performance and efficiency, giving rise to
many emerging architectures. Specialized hardware accelerators are put forward to adopt
custom hardware designs that are specifically tuned for the desired dataflows and are free
of extraneous logic that does not contribute to the performance of the target workload. On
top of that, reconfigurable architectures are developed to trade off some performance and
efficiency for better flexibility to address the diversity and fast algorithmic evolution in
modern applications. Finally, as memory becomes an increasingly significant bottleneck,
processing logic is moved closer or even into the memory subsystems to save the costly
data movement. This dissertation proposes to apply these emerging architecture techniques
to accelerate sparse linear algebra, starting with a parallelism analysis on contemporary
processors to expose the current architecture design trend.

To cover the diverse algorithms and data characteristics in sparse linear algebra, Trans-
muter is proposed as a programmable and reconfigurable architecture consisting of massively-
parallel general-purpose cores connected to a reconfigurable on-chip memory hierarchy.
Transmuter achieves an average throughput (energy-efficiency) improvement of 5.0× (18.4×)
and 4.2× (4.0×) over a high-end CPU and GPU, respectively, across a wide spectrum of
commonly used kernels. The true efficacy of Transmuter actually lies in its outstanding
performance for sparse linear algebra kernels, which is an energy efficiency within 4.1×
compared to state-of-the-art ASICs for SpMM and SpMV.

Based on the observation that the performance of sparse linear algebra kernels on Trans-
muter can benefit significantly from carefully chosen algorithms and hardware configura-
tions, CoSPARSE is designed to enhance the performance of Transmuter on SpMV and

109

graph analytics applications. As an intelligent framework that guides the runtime reconfig-
uration, CoSPARSE automatically determines the best-performing algorithm and hardware
configuration during execution and demonstrates an average speedup and energy efficiency
improvement of 1.5× and 404.4×, respectively, compared to a recent graph processing
framework on a high-end server-class CPU.

The final part of the dissertation proposes MeNDA, a near-memory multi-way merge
solution for sparse matrix transposition, which is widely used in sparse linear algebra ap-
plications, including the preprocessing stage. MeNDA deploys custom accelerators in the
data buffer chips to expose the high internal DRAM memory bandwidth while minimizing
hardware modifications to DRAM devices. Because of the wide application of sparse data
merging, MeNDA can be easily adapted to support other sparse kernels. Compared to two
recently proposed implementations on CPU and a sparse library on GPU, MeNDA achieves
a speedup of 19.1×, 12.0×, and 7.7× respectively, while introducing a minor power over-
head of 78.6 mW per DRAM rank. More importantly, MeNDA provides a fast runtime
graph transposition implementation to graph analytics frameworks like CoSPARSE so that
they no longer need to store more than two copies of the input graph to support runtime
dataflow reconfiguration.

While this dissertation covers optimizations for sparse linear algebra execution from
hardware architecture designs to software scheduling strategies, there is still scope for fu-
ture research opportunities. First, because of the flexibility of Transmuter, mapping ap-
plications to the Transmuter architecture involves complicated trade-off considerations,
posing challenges to library programmers. Creating efficient kernel implementations on
Transmuter requires knowledge of both the kernel characteristics and the various Trans-
muter configurations. To further improve ease of adoption, software tools that can generate
efficient kernel implementations on Transmuter or perform fast design space exploration for
possible algorithm mappings are desired. Second, Transmuter applies lightweight general-
purpose cores as GPEs, which improves programmability by supporting a standard ISA but
may result in redundant instructions after compilation as a GNU compiler is used. Further
optimizations can be made at the compiler level to tailor the compiled instructions to be-
come most efficient for the Transmuter architecture. Finally, as data sizes keep exploding,
it is highly possible for sparse matrices to become too large to fit in the main memory.
To accommodate these datasets for near-memory sparse data merging, potential solutions
include extending the technique applied in MeNDA to deploy custom PUs in secondary
storage, which has different hardware design constraints, or applying data compression
techniques to reduce the sizes of the datasets without losing the information.

110

BIBLIOGRAPHY

[1] Seventh green graph 500 list. http://green.graph500.org/lists.php,
2016.

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),
pages 265–283, 2016.

[3] Nilmini Abeyratne, Reetuparna Das, Qingkun Li, Korey Sewell, Bharan Giridhar,
Ronald G. Dreslinski, David Blaauw, and Trevor Mudge. Scaling towards kilo-
core processors with asymmetric high-radix topologies. In Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), pages 496–507. IEEE Computer Society, 2013.

[4] Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and Joan M
Ogden. Pyramid methods in image processing. RCA Engineer, 29(6):33–41, 1984.

[5] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A
scalable processing-in-memory accelerator for parallel graph processing. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture,
pages 105–117, 2015.

[6] Omid Akbari, Mehdi Kamal, Ali Afzali-Kusha, Massoud Pedram, and Muhammad
Shafique. X-cgra: An energy-efficient approximate coarse-grained reconfigurable
architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2019.

[7] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Tel-
garsky. Tensor decompositions for learning latent variable models. Journal of ma-
chine learning research, 15:2773–2832, 2014.

[8] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu Lim, and
Hyesoon Kim. Fafnir: Accelerating sparse gathering by using efficient near-memory
intelligent reduction. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 908–920, 2021.

111

http://green.graph500.org/lists.php

[9] Bahar Asgari, Ramyad Hadidi, and Hyesoon Kim. Ascella: Accelerating sparse
computation by enabling stream accesses to memory. In 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 318–321. IEEE, 2020.

[10] Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, and Sudhakar Yala-
manchili. Alrescha: A lightweight reconfigurable sparse-computation accelerator. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 249–260. IEEE, 2020.

[11] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim.
Chameleon: Versatile and practical near-dram acceleration architecture for large
memory systems. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–13, 2016.

[12] Tuba Ayhan, Wim Dehaene, and Marian Verhelst. A 128˜2048/1536 point fft hard-
ware implementation with output pruning. In 2014 22nd European Signal Process-
ing Conference (EUSIPCO), pages 266–270. IEEE, 2014.

[13] Ariful Azad, Aydin Buluç, and John Gilbert. Parallel triangle counting and enu-
meration using matrix algebra. In 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, pages 804–811. IEEE, 2015.

[14] David F Bacon, Rodric Rabbah, and Sunil Shukla. Fpga programming for the
masses. Communications of the ACM, 56(4):56–63, 2013.

[15] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. Cacti 7: New tools for interconnect exploration in innova-
tive off-chip memories. ACM Transactions on Architecture and Code Optimization
(TACO), 14(2):1–25, 2017.

[16] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrishnan, and Peter
Marwedel. Scratchpad memory: A design alternative for cache on-chip memory
in embedded systems. In Proceedings of the Tenth International Symposium on
Hardware/Software Codesign. CODES 2002, pages 73–78. IEEE, 2002.

[17] Scott Beamer, Krste Asanovic, and David Patterson. Direction-optimizing breadth-
first search. In SC’12: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1–10. IEEE, 2012.

[18] Nathan Bell, Steven Dalton, and Luke N Olson. Exposing fine-grained parallelism in
algebraic multigrid methods. SIAM Journal on Scientific Computing, 34(4):C123–
C152, 2012.

[19] Nathan Bell and Michael Garland. Efficient sparse matrix-vector multiplication on
cuda. Technical report, Citeseer, 2008.

[20] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali G. Saidi, Arkaprava Basu, Joel Hestness, Derek Hower, Tushar Krishna, So-
mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib Bin Altaf, Nilay

112

Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput.
Archit. News, 39(2):1–7, 2011.

[21] Nathan L Binkert, Ronald G Dreslinski, Lisa R Hsu, Kevin T Lim, Ali G Saidi, and
Steven K Reinhardt. The m5 simulator: Modeling networked systems. Ieee micro,
26(4):52–60, 2006.

[22] Geoffrey Blake, Ronald G. Dreslinski, Trevor Mudge, and Krisztián Flautner. Evo-
lution of thread-level parallelism in desktop applications. In Proceedings of the 37th
Annual International Symposium on Computer Architecture, ISCA ’10, pages 302–
313, New York, NY, USA, 2010. ACM.

[23] Azzedine Boukerche and Carl Tropper. A distributed graph algorithm for the de-
tection of local cycles and knots. IEEE Transactions on Parallel and Distributed
Systems, 9(8):748–757, 1998.

[24] Ian Buck. The evolution of gpus for general purpose computing. In Proceedings of
the GPU Technology Conference 2010, page 11, 2010.

[25] Aydın Buluç and John R Gilbert. The combinatorial blas: Design, implementation,
and applications. The International Journal of High Performance Computing Appli-
cations, 25(4):496–509, 2011.

[26] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A quantitative study of ir-
regular programs on gpus. In 2012 IEEE International Symposium on Workload
Characterization (IISWC), pages 141–151. IEEE, 2012.

[27] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel
Cremers, and Luc Van Gool. One-shot video object segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 221–
230, 2017.

[28] Benton Highsmith Calhoun, Joseph F Ryan, Sudhanshu Khanna, Mateja Putic, and
John Lach. Flexible circuits and architectures for ultralow power. Proceedings of
the IEEE, 98(2):267–282, 2010.

[29] Web Chang. Embedded configurable logic asic, July 10 2001. US Patent 6,260,087.

[30] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen.
Powerlyra: Differentiated graph computation and partitioning on skewed graphs.
ACM Transactions on Parallel Computing (TOPC), 5(3):1–39, 2019.

[31] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural networks. IEEE
Journal of Solid-State Circuits, 52(1):127–138, 2016.

[32] Benjamin Y Cho, Jeageun Jung, and Mattan Erez. Accelerating bandwidth-bound
deep learning inference with main-memory accelerators. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–14, 2021.

113

[33] Benjamin Y Cho, Yongkee Kwon, Sangkug Lym, and Mattan Erez. Near data accel-
eration with concurrent host access. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 818–831. IEEE, 2020.

[34] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. Format abstraction for
sparse tensor algebra compilers. Proceedings of the ACM on Programming Lan-
guages, 2(OOPSLA):1–30, 2018.

[35] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, pages 2292–2300, 2013.

[36] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. Towards general purpose
acceleration by exploiting common data-dependence forms. In Proceedings of the
52Nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
’52, pages 924–939. ACM, 2019.

[37] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan Liu,
Yu Wang, Yuan Xie, and Huazhong Yang. Graphh: A processing-in-memory ar-
chitecture for large-scale graph processing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 38(4):640–653, 2018.

[38] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. Gluon: A communication-
optimizing substrate for distributed heterogeneous graph analytics. In Proceedings
of the 39th ACM SIGPLAN conference on programming language design and imple-
mentation, pages 752–768, 2018.

[39] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawai, Austin Rovin-
ski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao, Steve Dai, Aporva Amar-
nath, Bandhav Veluri, Paul Gao, Anuj Rao, Gai Liu, Rakesh K Gupta, Zhiru Zhang,
Ronald G Dreslinski, Christopher Batten, and Michael B Taylor. The celerity
open-source 511-core risc-v tiered accelerator fabric: Fast architectures and design
methodologies for fast chips. IEEE Micro, 38(2):30–41, 2018.

[40] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1–25, 2011.

[41] Frank Dellaert and Michael Kaess. Square root sam: Simultaneous localization
and mapping via square root information smoothing. The International Journal of
Robotics Research, 25(12):1181–1203, 2006.

[42] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R
LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions.
IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[43] Chris HQ Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D Simon. A
min-max cut algorithm for graph partitioning and data clustering. In Proceedings
2001 IEEE International Conference on Data Mining, pages 107–114. IEEE, 2001.

114

[44] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning struc-
tural node embeddings via diffusion wavelets. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
1320–1329. ACM, 2018.

[45] Richard Dorrance, Fengbo Ren, and Dejan Marković. A scalable sparse matrix-
vector multiplication kernel for energy-efficient sparse-blas on fpgas. In Proceed-
ings of the 2014 ACM/SIGDA international symposium on Field-programmable gate
arrays, pages 161–170. ACM, 2014.

[46] Iain S Duff, Michael A Heroux, and Roldan Pozo. An overview of the sparse basic
linear algebra subprograms: The new standard from the blas technical forum. ACM
Transactions on Mathematical Software (TOMS), 28(2):239–267, 2002.

[47] E Swartzlander Earl Jr. Systolic fft processors: Past, present and future. In IEEE
17th International Conference on Application-specific Systems, Architectures and
Processors (ASAP’06), pages 153–158. IEEE, 2006.

[48] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark silicon and the end of multicore scaling. In Computer Architec-
ture (ISCA), 2011 38th Annual International Symposium on, pages 365–376. IEEE,
2011.

[49] Nasim Farahini, Shuo Li, Muhammad Adeel Tajammul, Muhammad Ali Shami, Guo
Chen, Ahmed Hemani, and Wei Ye. 39.9 gops/watt multi-mode cgra accelerator for
a multi-standard basestation. In 2013 IEEE International Symposium on Circuits
and Systems (ISCAS2013), pages 1448–1451. IEEE, 2013.

[50] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam Sung Kim.
Nda: Near-dram acceleration architecture leveraging commodity dram devices and
standard memory modules. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 283–295, 2015.

[51] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. Understanding the ef-
ficiency of gpu algorithms for matrix-matrix multiplication. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 133–
137, 2004.

[52] Siying Feng, Xin He, Kuan-Yu Chen, Liu Ke, Xuan Zhang, David Blaauw, Trevor
Mudge, and Ronald Dreslinski. Menda: A near-memory multi-way merge solution
for sparse transposition and dataflows. In Proceedings of the 49th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’22, page 245–258, New York,
NY, USA, 2022. Association for Computing Machinery.

[53] Siying Feng, Subhankar Pal, Yichen Yang, and Ronald G. Dreslinski. Parallelism
analysis of prominent desktop applications: An 18- year perspective. In 2019 IEEE
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), pages 202–211, 2019.

115

[54] Siying Feng, Jiawen Sun, Subhankar Pal, Xin He, Kuba Kaszyk, Dong-hyeon
Park, Magnus Morton, Trevor Mudge, Murray Cole, Michael O’Boyle, Chaitali
Chakrabarti, and Ronald Dreslinski. Cosparse: A software and hardware recon-
figurable spmv framework for graph analytics. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 949–954, 2021.

[55] Jiřı́ Filipovič, Matúš Madzin, Jan Fousek, and Luděk Matyska. Optimizing cuda
code by kernel fusion: application on blas. The Journal of Supercomputing,
71(10):3934–3957, 2015.

[56] Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-level
parallelism and interactive performance of desktop applications. SIGOPS Oper. Syst.
Rev., 34(5):129–138, November 2000.

[57] Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-level
parallelism of desktop applications. Workshop on Multi-threaded Execution, Archi-
tecture and Compilation, 2000.

[58] Roger Fletcher. Conjugate gradient methods for indefinite systems. In Numerical
analysis, pages 73–89. Springer, 1976.

[59] Roland W Freund and Noël M Nachtigal. Qmr: a quasi-minimal residual method
for non-hermitian linear systems. Numerische mathematik, 60(1):315–339, 1991.

[60] Florian Fricke, André Werner, Keyvan Shahin, and Michael Hübner. Cgra tool flow
for fast run-time reconfiguration. In International Symposium on Applied Reconfig-
urable Computing, pages 661–672. Springer, 2018.

[61] Adi Fuchs and David Wentzlaff. The accelerator wall: Limits of chip specialization.
In 2019 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), pages 1–14. IEEE, 2019.

[62] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, and Masato Edahiro.
Data transfer matters for gpu computing. In 2013 International Conference on Par-
allel and Distributed Systems, pages 275–282. IEEE, 2013.

[63] Noriyuki Fujimoto. Dense matrix-vector multiplication on the cuda architecture.
Parallel Processing Letters, 18(04):511–530, 2008.

[64] Mingyu Gao and Christos Kozyrakis. Hrl: Efficient and flexible reconfigurable logic
for near-data processing. In 2016 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 126–137. Ieee, 2016.

[65] Heiner Giefers, Raphael Polig, and Christoph Hagleitner. Measuring and model-
ing the power consumption of energy-efficient fpga coprocessors for gemm and fft.
Journal of Signal Processing Systems, 85(3):307–323, December 2016.

116

[66] Heiner Giefers, Peter Staar, Costas Bekas, and Christoph Hagleitner. Analyzing the
energy-efficiency of sparse matrix multiplication on heterogeneous systems: A com-
parative study of gpu, xeon phi and fpga. In 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 46–56. IEEE, 2016.

[67] John R Gilbert, Steve Reinhardt, and Viral B Shah. High-performance graph algo-
rithms from parallel sparse matrices. In International Workshop on Applied Parallel
Computing, pages 260–269. Springer, 2006.

[68] John R Gilbert, Steve Reinhardt, and Viral B Shah. A unified framework for numer-
ical and combinatorial computing. Computing in Science & Engineering, 10(2):20–
25, 2008.

[69] Andrew Goldberg and Tomasz Radzik. A heuristic improvement of the bellman-
ford algorithm. Technical report, STANFORD UNIV CA DEPT OF COMPUTER
SCIENCE, 1993.

[70] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matthew
Moe, and R Reed Taylor. Piperench: A reconfigurable architecture and compiler.
Computer, 33(4):70–77, 2000.

[71] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
pages 17–30, 2012.

[72] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. Dy-
namically specialized datapaths for energy efficient computing. In 2011 IEEE 17th
International Symposium on High Performance Computer Architecture, pages 503–
514. IEEE, 2011.

[73] Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen, Xiao-Fei
Liao, and Hai Jin. A survey on graph processing accelerators: Challenges and op-
portunities. Journal of Computer Science and Technology, 34(2):339–371, 2019.

[74] Azzam Haidar, Mark Gates, Stan Tomov, and Jack Dongarra. Toward a scalable
multi-gpu eigensolver via compute-intensive kernels and efficient communication.
In Proceedings of the 27th international ACM conference on International confer-
ence on supercomputing, pages 223–232. ACM, 2013.

[75] Tom R Halfhill. Ambric’s new parallel processor. Microprocessor Report,
20(10):19–26, 2006.

[76] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

117

[77] Václav Hapla, David Horák, and Michal Merta. Use of direct solvers in tfeti mas-
sively parallel implementation. In International Workshop on Applied Parallel Com-
puting, pages 192–205. Springer, 2012.

[78] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and Xi-
aodong Wang. Applied machine learning at facebook: A datacenter infrastructure
perspective. In 2018 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pages 620–629. IEEE, 2018.

[79] Xin He, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon Park, Austin
Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski, and Trevor Mudge. Sparse-
tpu: Adapting systolic arrays for sparse matrices. In Proceedings of the 34th ACM
International Conference on Supercomputing, pages 1–12, 2020.

[80] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. Extensor: An
accelerator for sparse tensor algebra. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 319–333, 2019.

[81] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 10–14. IEEE, 2014.

[82] Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah, James
Demmel, John Wawrzynek, and Yakun Sophia Shao. Cosa: Scheduling by con-
strained optimization for spatial accelerators. In 2021 ACM/IEEE 48th Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 554–566. IEEE,
2021.

[83] Randall A Hughes and John D Shott. The future of automation for high-volume
wafer fabrication and asic manufacturing. Proceedings of the IEEE, 74(12):1775–
1793, 1986.

[84] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. Core fusion:
Accommodating software diversity in chip multiprocessors. In Proceedings of the
34th Annual International Symposium on Computer Architecture, ISCA ’07, pages
186–197. ACM, 2007.

[85] Satoshi Itoh, Pablo Ordejón, and Richard M Martin. Order-n tight-binding molecular
dynamics on parallel computers. Computer physics communications, 88(2-3):173–
185, 1995.

[86] Preston A. Jackson, Cy P. Chan, Jonathan E. Scalera, Charles M. Rader, and
M. Michael Vai. A systolic fft architecture for real time fpga systems. In High
Performance Embedded Computing Conference (HPEC), 2004.

118

[87] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11–seamless oper-
ability between c++ 11 and python, 2017.

[88] Supreet Jeloka, Reetuparna Das, Ronald G Dreslinski, Trevor Mudge, and David
Blaauw. Hi-rise: a high-radix switch for 3d integration with single-cycle arbitration.
In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 471–483. IEEE, 2014.

[89] Kurtis T. Johnson, Ali R Hurson, and Behrooz Shirazi. General-purpose systolic
arrays. Computer, 26(11):20–31, 1993.

[90] Rodney W Johnson, Chua-Huang Huang, and John R Johnson. Multilinear algebra
and parallel programming. The Journal of Supercomputing, 5(2):189–217, 1991.

[91] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley,
Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gotti-
pati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Ka-
plan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Ho-
ria Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,
and Doe Hyun Yoon. In-datacenter performance analysis of a tensor processing unit.
In Proceedings of the 44th Annual International Symposium on Computer Architec-
ture, ISCA ’17, page 1–12. Association for Computing Machinery, 2017.

[92] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. Grafboost:
Using accelerated flash storage for external graph analytics. In Proceedings of the
45th Annual International Symposium on Computer Architecture, ISCA ’18, page
411–424. IEEE Press, 2018.

[93] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang,
Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri
Aji, Nikolay Bogoychev, André F. T. Martins, and Alexandra Birch. Marian: Fast
neural machine translation in C++. In Proceedings of ACL 2018, System Demon-
strations, pages 116–121, Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics.

[94] Haim Kaplan, Micha Sharir, and Elad Verbin. Colored intersection searching via
sparse rectangular matrix multiplication. In Proceedings of the twenty-second an-
nual symposium on Computational geometry, pages 52–60, 2006.

119

[95] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan Peh. Hy-
cube: A cgra with reconfigurable single-cycle multi-hop interconnect. In Proceed-
ings of the 54th Annual Design Automation Conference 2017, pages 1–6, 2017.

[96] George Karypis, Anshul Gupta, and Vipin Kumar. A parallel formulation of inte-
rior point algorithms. In Supercomputing’94: Proceedings of the 1994 ACM/IEEE
Conference on Supercomputing, pages 204–213. IEEE, 1994.

[97] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku
Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng
Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail
Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hempstead,
and Xuan Zhang. Recnmp: Accelerating personalized recommendation with near-
memory processing. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 790–803, 2020.

[98] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang, Sukhan Lee,
Songyi Han, Yeongon Cho, Jin Hyun Kim, Yongsuk Kwon, Kyungsoo Kim, Jin
Jung, Ilkwon Yun, Sung Joo Park, Hyunsun Park, Joonho Song, Jeonghyeon Cho,
Kyomin Sohn, Nam Sung Kim, and Hsien-Hsin Sean Lee. Near-memory processing
in action: Accelerating personalized recommendation with axdimm. IEEE Micro,
pages 1–1, 2021.

[99] John Kelm, Daniel Johnson, Matthew Johnson, Neal Crago, William Tuohy, Aqeel
Mahesri, Steven Lumetta, Matthew Frank, and Sanjay Patel. Rigel: An architecture
and scalable programming interface for a 1000-core accelerator. In ACM SIGARCH
Computer Architecture News, volume 37, pages 140–151. ACM, 2009.

[100] Jeremy Kepner, Peter Aaltonen, David A. Bader, Aydin Buluç, Franz Franchetti,
John R. Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning
Meyerhenke, Scott McMillan, Carl Yang, John D. Owens, Marcin Zalewski, Tim-
othy G. Mattson, and José E. Moreira. Mathematical foundations of the graph-
blas. In 2016 IEEE High Performance Extreme Computing Conference, HPEC 2016,
Waltham, MA, USA, September 13-15, 2016, pages 1–9. IEEE, 2016.

[101] Khubaib, M. Aater Suleman, Milad Hashemi, Chris Wilkerson, and Yale N. Patt.
Morphcore: An energy-efficient microarchitecture for high performance ilp and high
throughput tlp. 2012 45th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 305–316, 2012.

[102] Byeongho Kim, Jongwook Chung, Eojin Lee, Wonkyung Jung, Sunjung Lee, Jae-
wan Choi, Jaehyun Park, Minbok Wi, Sukhan Lee, and Jung Ho Ahn. Mvid: Sparse
matrix-vector multiplication in mobile dram for accelerating recurrent neural net-
works. IEEE Transactions on Computers, 69(7):955–967, 2020.

[103] Byeongho Kim, Jaehyun Park, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn. Trim:
Tensor reduction in memory. IEEE Computer Architecture Letters, 20(1):5–8, 2021.

120

[104] Heesu Kim, Hanmin Park, Taehyun Kim, Kwanheum Cho, Eojin Lee, Soojung Ryu,
Hyuk-Jae Lee, Kiyoung Choi, and Jinho Lee. Gradpim: A practical processing-in-
dram architecture for gradient descent. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 249–262, 2021.

[105] Martha Mercaldi Kim, John D. Davis, Mark Oskin, and Todd Austin. Polymorphic
on-chip networks. In Proceedings of the 35th Annual International Symposium on
Computer Architecture, ISCA ’08, pages 101–112. IEEE Computer Society, 2008.

[106] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and extensible
dram simulator. IEEE Computer architecture letters, 15(1):45–49, 2015.

[107] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and
Kunle Olukotun. Spatial: A language and compiler for application accelerators.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, pages 296–311. ACM, 2018.

[108] Rakesh Komuravelli, Matthew D. Sinclair, Johnathan Alsop, Muhammad Huzaifa,
Maria Kotsifakou, Prakalp Srivastava, Sarita V. Adve, and Vikram S. Adve. Stash:
Have your scratchpad and cache it too. In Proceedings of the 42Nd Annual Inter-
national Symposium on Computer Architecture, ISCA ’15, pages 707–719. ACM,
2015.

[109] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[110] Hsiang-Tsung Kung. Why systolic architectures? IEEE computer, 15(1):37–46,
1982.

[111] HT Kung, Bradley McDanel, and Sai Qian Zhang. Packing sparse convolutional
neural networks for efficient systolic array implementations: Column combining
under joint optimization. In Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pages 821–834. ACM, 2019.

[112] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics.
IEEE Transactions on computer-aided design of integrated circuits and systems,
26(2):203–215, 2007.

[113] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA architecture: Survey and
challenges. Now Publishers Inc, 2008.

[114] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. From word
embeddings to document distances. In Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning - Volume 37, ICML’15,
pages 957–966, 2015.

121

[115] Georgi Kuzmanov and Mottaqiallah Taouil. Reconfigurable sparse/dense matrix-
vector multiplier. In 2009 International Conference on Field-Programmable Tech-
nology, pages 483–488. IEEE, 2009.

[116] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a
social network or a news media? In WWW, pages 591–600, 2010.

[117] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensordimm: A practical near-
memory processing architecture for embeddings and tensor operations in deep learn-
ing. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’52, page 740–753, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[118] Benjamin C Lee, Richard W Vuduc, James W Demmel, and Katherine A Yelick. Per-
formance models for evaluation and automatic tuning of symmetric sparse matrix-
vector multiply. In International Conference on Parallel Processing, 2004. ICPP
2004., pages 169–176. IEEE, 2004.

[119] Chang-Chi Lee, CP Hung, Calvin Cheung, Ping-Feng Yang, Chin-Li Kao, Dao-
Long Chen, Meng-Kai Shih, Chien-Lin Chang Chien, Yu-Hsiang Hsiao, Li-Chieh
Chen, Michael Su, Michael Alfano, Joe Siegel, Julius Din, and Bryan Black. An
overview of the development of a gpu with integrated hbm on silicon interposer. In
2016 IEEE 66th Electronic Components and Technology Conference (ECTC), pages
1439–1444. IEEE, 2016.

[120] Chang-Hwan Lee. A gradient approach for value weighted classification learning in
naive bayes. Knowledge-Based Systems, 85:71–79, 2015.

[121] Dongwook Lee, Manhwee Jo, Kyuseung Han, and Kiyoung Choi. Flora: Coarse-
grained reconfigurable architecture with floating-point operation capability. In
2009 International Conference on Field-Programmable Technology, pages 376–379.
IEEE, 2009.

[122] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun
Kim, O Seongil, Anand Iyer, David Wang, Kyomin Sohn, and Nam Sung Kim. Hard-
ware architecture and software stack for pim based on commercial dram technology
: Industrial product. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 43–56, 2021.

[123] John J Leonard, Hugh F Durrant-Whyte, and Ingemar J Cox. Dynamic map building
for an autonomous mobile robot. The International Journal of Robotics Research,
11(4):286–298, 1992.

[124] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology (TIST),
8(1):1–20, 2016.

122

[125] Jiajia Li, Xingjian Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. An opti-
mized large-scale hybrid dgemm design for cpus and ati gpus. In Proceedings of
the 26th ACM international conference on Supercomputing, pages 377–386. ACM,
2012.

[126] Cao Liang and Xinming Huang. Smartcell: A power-efficient reconfigurable archi-
tecture for data streaming applications. In 2008 IEEE Workshop on Signal Process-
ing Systems, pages 257–262. IEEE, 2008.

[127] Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor Mudge,
Chaitali Chakrabarti, and Krisztian Flautner. Soda: A low-power architecture for
software radio. In Proceedings of the 33rd Annual International Symposium on
Computer Architecture, ISCA ’06, pages 89–101. IEEE Computer Society, 2006.

[128] Leibo Liu, Dong Wang, Min Zhu, Yansheng Wang, Shouyi Yin, Peng Cao, Jun
Yang, and Shaojun Wei. An energy-efficient coarse-grained reconfigurable process-
ing unit for multiple-standard video decoding. IEEE Transactions on Multimedia,
17(10):1706–1720, 2015.

[129] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie Han, Shouyi
Yin, and Shaojun Wei. A survey of coarse-grained reconfigurable architecture and
design: Taxonomy, challenges, and applications. ACM Computing Surveys (CSUR),
52(6):1–39, 2019.

[130] Beth Logan. Mel frequency cepstral coefficients for music modeling. In ISMIR,
volume 270, pages 1–11, 2000.

[131] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431–3440, 2015.

[132] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. Graphlab: A new framework for parallel machine learning.
arXiv preprint arXiv:1408.2041, 2014.

[133] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M Sleiman, Ronald
Dreslinski, Thomas F Wenisch, and Scott Mahlke. Composite cores: Pushing het-
erogeneity into a core. In 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 317–328. IEEE, 2012.

[134] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Taylor.
Asic clouds: Specializing the datacenter. In 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 178–190. IEEE, 2016.

[135] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark
Horowitz. Smart memories: A modular reconfigurable architecture. In Proceed-
ings of the 27th Annual International Symposium on Computer Architecture, ISCA
’00, pages 161–171, New York, NY, USA, 2000. ACM.

123

[136] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. Everything you always
wanted to know about multicore graph processing but were afraid to ask. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages 631–643, 2017.

[137] Tim Mattson, David A. Bader, Jonathan W. Berry, Aydin Buluç, Jack J. Dongarra,
Christos Faloutsos, John Feo, John R. Gilbert, Joseph Gonzalez, Bruce Hendrick-
son, Jeremy Kepner, Charles E. Leiserson, Andrew Lumsdaine, David A. Padua,
Stephen Poole, Steven P. Reinhardt, Mike Stonebraker, Steve Wallach, and Andrew
Yoo. Standards for graph algorithm primitives. In IEEE High Performance Extreme
Computing Conference, HPEC 2013, Waltham, MA, USA, September 10-12, 2013,
pages 1–2. IEEE, 2013.

[138] Patrick J Meaney, Lawrence D Curley, Glenn D Gilda, Mark R Hodges, Daniel J
Buerkle, Robert D Siegl, and Roger K Dong. The ibm z13 memory subsystem for
big data. IBM Journal of Research and Development, 59(4/5):4–1, 2015.

[139] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural
language modeling at multiple scales. arXiv preprint arXiv:1803.08240, 2018.

[140] Badri Narayan Mohapatra and Rashmita Kumari Mohapatra. Fft and sparse fft tech-
niques and applications. In 2017 Fourteenth International Conference on Wireless
and Optical Communications Networks (WOCN), pages 1–5. IEEE, 2017.

[141] Frank Mueller. Pthreads library interface. Florida State University, 1993.

[142] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. Cacti 6.0:
A tool to model large caches. HP laboratories, 27:28, 2009.

[143] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. A
modern primer on processing in memory, 2020.

[144] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. Graphpim: Enabling instruction-level pim offloading in graph com-
puting frameworks. In 2017 IEEE International symposium on high performance
computer architecture (HPCA), pages 457–468. IEEE, 2017.

[145] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastruc-
ture for graph analytics. In Proceedings of the twenty-fourth ACM symposium on
operating systems principles, pages 456–471, 2013.

[146] Chris Nicol. A coarse grain reconfigurable array (cgra) for statically scheduled data
flow computing. Wave Computing White Paper, 2017.

[147] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. Stream-dataflow acceleration. In Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture, ISCA ’17, pages 416–429. ACM,
2017.

124

[148] Molly A O’Neil and Martin Burtscher. Microarchitectural performance characteri-
zation of irregular gpu kernels. In 2014 IEEE International Symposium on Workload
Characterization (IISWC), pages 130–139. IEEE, 2014.

[149] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin Strauss,
and Eric S Chung. Accelerating deep convolutional neural networks using special-
ized hardware. Microsoft Research Whitepaper, 2(11):1–4, 2015.

[150] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya
Agrawal, Stephen W Keckler, and William J Dally. Fine-grained dram: energy-
efficient dram for extreme bandwidth systems. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 41–54. IEEE, 2017.

[151] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and
Ronald Dreslinski. Outerspace: An outer product based sparse matrix multiplication
accelerator. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 724–736, Feb 2018.

[152] Subhankar Pal, Siying Feng, Dong-hyeon Park, Sung Kim, Aporva Amarnath,
Chi-Sheng Yang, Xin He, Jonathan Beaumont, Kyle May, Yan Xiong, Kuba
Kaszyk, John Magnus Morton, Jiawen Sun, Michael O’Boyle, Murray Cole, Chaitali
Chakrabarti, David Blaauw, Hun-Seok Kim, Trevor Mudge, and Ronald Dreslinski.
Transmuter: Bridging the efficiency gap using memory and dataflow reconfigura-
tion. In Proceedings of the ACM International Conference on Parallel Architectures
and Compilation Techniques, pages 175–190, 2020.

[153] Subhankar Pal, Dong-Hyeon Park, Siying Feng, Paul Gao, Jielun Tan, Austin Rovin-
ski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Timothy Wesley, Jonathan Beau-
mont, Kuan-Yu Chen, Chaitali Chakrabarti, Michael Bedford Taylor, Trevor N.
Mudge, David T. Blaauw, Hun-Seok Kim, and Ronald G. Dreslinski. A 7.3 M
output non-zeros/j sparse matrix-matrix multiplication accelerator using memory re-
configuration in 40 nm. In 2019 Symposium on VLSI Circuits, Kyoto, Japan, June
9-14, 2019, page 150. IEEE, 2019.

[154] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A
Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W
Keckler, and Joel Emer. Timeloop: A systematic approach to dnn accelerator evalu-
ation. In 2019 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 304–315. IEEE, 2019.

[155] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Ranghara-
jan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J
Dally. Scnn: An accelerator for compressed-sparse convolutional neural networks.
ACM SIGARCH Computer Architecture News, 45(2):27–40, 2017.

125

[156] Dong-Hyeon Park, Subhankar Pal, Siying Feng, Paul Gao, Jielun Tan, Austin Rovin-
ski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Timothy Wesley, Jonathan Beau-
mont, Kuan-Yu Chen, Chaitali Chakrabarti, Michael Bedford Taylor, Trevor N.
Mudge, David T. Blaauw, Hun-Seok Kim, and Ronald G. Dreslinski. A 7.3 M
output non-zeros/j, 11.7 M output non-zeros/gb reconfigurable sparse matrix-matrix
multiplication accelerator. Journal of Solid-State Circuits, 55(4):933–944, 2020.

[157] Ardavan Pedram, Andreas Gerstlauer, and Robert A Van De Geijn. A high-
performance, low-power linear algebra core. In ASAP 2011-22nd IEEE Interna-
tional Conference on Application-specific Systems, Architectures and Processors,
pages 35–42. IEEE, 2011.

[158] Ardavan Pedram, John D. McCalpin, and Andreas Gerstlauer. A highly efficient
multicore floating-point fft architecture based on hybrid linear algebra/fft cores.
Journal of Signal Processing Systems, 77(1):169–190, Oct 2014.

[159] Gerald Penn. Efficient transitive closure of sparse matrices over closed semirings.
Theoretical Computer Science, 354(1):72–81, 2006.

[160] C.A. Philips. Parallel graph contraction. In Proceedings of the first annual ACM
symposium on Parallel algorithms and architectures, pages 148–157, 1989.

[161] Kara KW Poon, Steven JE Wilton, and Andy Yan. A detailed power model for field-
programmable gate arrays. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 10(2):279–302, 2005.

[162] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Stefan
Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. Plasticine: A
reconfigurable architecture for parallel patterns. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), pages 389–402. IEEE,
2017.

[163] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Jan Gray, Michael Hasel-
man, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka,
Eric Peterson, Aaron Smith, Jason Thong, Phillip Yi Xiao, Doug Burger, Jim Larus,
Gopi Prashanth Gopal, and Simon Pope. A reconfigurable fabric for accelerating
large-scale datacenter services. In Proceeding of the 41st Annual International Sym-
posium on Computer Architecture (ISCA), pages 13–24. IEEE, June 2014.

[164] Karl Rupp. 42 years of microprocessor trend data. https://www.karlrupp.
net/2018/02/42-years-of-microprocessor-trend-data/. Ac-
cessed: 2019-10-01.

[165] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C Hoe, Larry Pileggi, and Franz
Franchetti. Efficient spmv operation for large and highly sparse matrices using scal-
able multi-way merge parallelization. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 347–358, 2019.

126

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

[166] Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving gans
using optimal transport. arXiv preprint arXiv:1803.05573, 2018.

[167] Fabian Schuiki, Michael Schaffner, and Luca Benini. Ntx: An energy-efficient
streaming accelerator for floating-point generalized reduction workloads in 22 nm
fd-soi. In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 662–667. IEEE, 2019.

[168] Korey Sewell, Ronald G. Dreslinski, Thomas Manville, Sudhir Satpathy,
Nathaniel Ross Pinckney, Geoffrey Blake, Michael Cieslak, Reetuparna Das,
Thomas F. Wenisch, Dennis Sylvester, David T. Blaauw, and Trevor N. Mudge.
Swizzle-switch networks for many-core systems. IEEE J. Emerg. Sel. Topics Cir-
cuits Syst., 2(2):278–294, 2012.

[169] Muhammad Shafique and Siddharth Garg. Computing in the dark silicon era: Cur-
rent trends and research challenges. IEEE Design & Test, 34(2):8–23, 2016.

[170] Viral B Shah. An interactive system for combinatorial scientific computing with an
emphasis on programmer productivity. PhD thesis, 2007.

[171] Julian Shun. Ligra: A lightweight graph processing framework for shared memory.
url= http://jshun.github.io/ligra/, 2013.

[172] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing framework
for shared memory. In Proceedings of the 18th ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 135–146, 2013.

[173] Anuraag Soorishetty, Jian Zhou, Subhankar Pal, David Blaauw, H Kim, Trevor
Mudge, Ronald Dreslinski, and Chaitali Chakrabarti. Accelerating linear alge-
bra kernels on a massively parallel reconfigurable architecture. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1558–1562. IEEE, 2020.

[174] Sriseshan Srikanth, Anirudh Jain, Joseph M. Lennon, Thomas M. Conte, Erik
Debenedictis, and Jeanine Cook. Metastrider: Architectures for scalable memory-
centric reduction of sparse data streams. ACM Trans. Archit. Code Optim., 16(4),
oct 2019.

[175] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. Matrap-
tor: A sparse-sparse matrix multiplication accelerator based on row-wise product. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pages 766–780. IEEE, 2020.

[176] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi, and
Zhiru Zhang. Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 689–702. IEEE, 2020.

127

[177] Samuel Steffl and Sherief Reda. Lacore: A supercomputing-like linear algebra accel-
erator for soc-based designs. In 2017 IEEE International Conference on Computer
Design (ICCD), pages 137–144. IEEE, 2017.

[178] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: a functional data-
parallel ir for high-performance gpu code generation. In 2017 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO), pages 74–85.
IEEE, 2017.

[179] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in science & engineer-
ing, 12(3):66–73, 2010.

[180] Weiyi Sun, Zhaoshi Li, Shouyi Yin, Shaojun Wei, and Leibo Liu. Abc-dimm: Al-
leviating the bottleneck of communication in dimm-based near-memory processing
with inter-dimm broadcast. In 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 237–250. IEEE, 2021.

[181] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R.
Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. Graphmat: High performance graph analytics made productive.
Proc. VLDB Endow., 8(11):1214–1225, July 2015.

[182] Cheng Tan, Manupa Karunaratne, Tulika Mitra, and Li-Shiuan Peh. Stitch: Fusible
heterogeneous accelerators enmeshed with many-core architecture for wearables. In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pages 575–587. IEEE, 2018.

[183] Masakazu Tanomoto, Shinya Takamaeda-Yamazaki, Jun Yao, and Yasuhiko
Nakashima. A cgra-based approach for accelerating convolutional neural networks.
In 2015 IEEE 9th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip, pages 73–80. IEEE, 2015.

[184] Michael Bedford Taylor. Is dark silicon useful? harnessing the four horsemen of
the coming dark silicon apocalypse. In DAC Design Automation Conference 2012,
pages 1131–1136, June 2012.

[185] Michael Bedford Taylor, Jason Sungtae Kim, Jason E. Miller, David Wentzlaff, Fae
Ghodrat, Ben Greenwald, Henry Hoffmann, Paul R. Johnson, Jae W. Lee, Walter
Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen,
Matthew I. Frank, Saman P. Amarasinghe, and Anant Agarwal. The raw micropro-
cessor: A computational fabric for software circuits and general-purpose programs.
IEEE Micro, 22(2):25–35, 2002.

[186] A Tech. Nvidia launches tesla k40. http://www.anandtech.com/show/
7521/nvidia-launches-tesla-k40, 2013.

128

http://www.anandtech.com/show/7521/nvidia-launches- tesla-k40
http://www.anandtech.com/show/7521/nvidia-launches- tesla-k40

[187] Vaishali Tehre, Pankaj Agrawal, and RV Kshrisagar. Implementation of fast fourier
transform accelerator on coarse grain reconfigurable architecture. International
Journal of Computer Science and Network (IJCSN), pages 955–959, 2016.

[188] Stijn Marinus Van Dongen. Graph clustering by flow simulation. PhD thesis, 2000.

[189] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das,
Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat
Kaul, Pradeep Dubey, and Anand Raghunathan. Scaledeep: A scalable compute
architecture for learning and evaluating deep networks. ACM SIGARCH Computer
Architecture News, 45(2):13–26, 2017.

[190] Manish Verma, Lars Wehmeyer, Peter Marwedel, and Peter Marwedel. Cache-aware
scratchpad allocation algorithm. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe - Volume 2, DATE ’04, pages 21264–. IEEE Computer
Society, 2004.

[191] Kizheppatt Vipin and Suhaib A Fahmy. Fpga dynamic and partial reconfiguration:
A survey of architectures, methods, and applications. ACM Computing Surveys
(CSUR), 51(4):1–39, 2018.

[192] James Vlasblom and Shoshana J Wodak. Markov clustering versus affinity propaga-
tion for the partitioning of protein interaction graphs. BMC bioinformatics, 10(1):1–
14, 2009.

[193] Donglin Wang, Xueliang Du, Leizu Yin, Chen Lin, Hong Ma, Weili Ren, Huijuan
Wang, Xingang Wang, Shaolin Xie, Lei Wang, Zijun Liu, Tao Wang, Zhonghua
Pu, Guangxin Ding, Mengchen Zhu, Lipeng Yang, Ruoshan Guo, Zhiwei Zhang,
Xiao Lin, Jie Hao, Yongyong Yang, Wenqin Sun, Fabiao Zhou, NuoZhou Xiao,
Qian Cui, and Xiaoqin Wang. Mapu: A novel mathematical computing architecture.
2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 457–468, 2016.

[194] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xiaodong
Zhang. Sep-graph: finding shortest execution paths for graph processing under a
hybrid framework on gpu. In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming, pages 38–52, 2019.

[195] Hao Wang, Weifeng Liu, Kaixi Hou, and Wu-chun Feng. Parallel transposition
of sparse data structures. In Proceedings of the 2016 International Conference on
Supercomputing, ICS ’16, New York, NY, USA, 2016. Association for Computing
Machinery.

[196] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. Gunrock: A high-performance graph processing library on the gpu.
In Proceedings of the 21st ACM SIGPLAN symposium on principles and practice of
parallel programming, pages 1–12, 2016.

129

[197] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkersdorf.
Enabling fpgas in hyperscale data centers. In 2015 IEEE 12th Intl Conf on Ubiqui-
tous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and
Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Com-
munications and Its Associated Workshops (UIC-ATC-ScalCom), pages 1078–1086.
IEEE, 2015.

[198] Mark Wijtvliet, Luc Waeijen, and Henk Corporaal. Coarse grained reconfigurable
architectures in the past 25 years: Overview and classification. In 2016 Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), pages 235–244. IEEE, 2016.

[199] Samuel Williams. Roofline: An insightful visual performance model for floating-
point programs and multicore. ACM Communications, 2009.

[200] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing
Hu, and Yuan Xie. Spacea: Sparse matrix vector multiplication on processing-in-
memory accelerator. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 570–583. IEEE, 2021.

[201] Xilinx. Partial Reconfiguration User Guide UG702 (v13.3).

[202] Xilinx. Partial Reconfiguration User Guide UG909 (v2018.1).

[203] Yan Xiong, Jian Zhou, Subhankar Pal, David Blaauw, Hun-Seok Kim, Trevor
Mudge, Ronald Dreslinski, and Chaitali Chakrabarti. Accelerating deep neural net-
work computation on a low power reconfigurable architecture. In 2020 International
Symposium on Circuits and Systems (ISCAS), page to appear. IEEE, 2020.

[204] Jinchao Xu and Ludmil Zikatanov. Algebraic multigrid methods. Acta Numerica,
26:591–721, 2017.

[205] Ichitaro Yamazaki and Xiaoye S Li. On techniques to improve robustness and scal-
ability of a parallel hybrid linear solver. In International Conference on High Per-
formance Computing for Computational Science, pages 421–434. Springer, 2010.

[206] Carl Yang, Aydın Buluç, and John D Owens. Implementing push-pull efficiently in
graphblas. In Proceedings of the 47th International Conference on Parallel Process-
ing, pages 1–11, 2018.

[207] Fanghua Ye, Chuan Chen, and Zibin Zheng. Deep autoencoder-like nonnegative ma-
trix factorization for community detection. In Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge Management, pages 1393–1402,
2018.

[208] Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas. Speeding up
spmv for power-law graph analytics by enhancing locality & vectorization. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–15. IEEE, 2020.

130

[209] Raphael Yuster and Uri Zwick. Detecting short directed cycles using rectangular
matrix multiplication and dynamic programming. In Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, page 254–260,
USA, 2004. Society for Industrial and Applied Mathematics.

[210] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing fpga-based accelerator design for deep convolutional neural net-
works. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 161–170. ACM, 2015.

[211] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. Gamma: leverag-
ing gustavson’s algorithm to accelerate sparse matrix multiplication. In Proceedings
of the 26th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 687–701, 2021.

[212] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-aware graph-structured an-
alytics. In Proceedings of the 20th ACM SIGPLAN symposium on principles and
practice of parallel programming, pages 183–193, 2015.

[213] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. Graphp: Reducing communication
for pim-based graph processing with efficient data partition. In 2018 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages
544–557. IEEE, 2018.

[214] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch: Efficient
architecture for sparse matrix multiplication. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 261–274. IEEE, 2020.

[215] Jinhong Zhou, Shaoli Liu, Qi Guo, Xuda Zhou, Tian Zhi, Daofu Liu, Chao Wang,
Xuehai Zhou, Yunji Chen, and Tianshi Chen. Tunao: A high-performance and
energy-efficient reconfigurable accelerator for graph processing. In 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pages 731–734. IEEE, 2017.

[216] Qiuling Zhu, Tobias Graf, H. Ekin Sumbul, Lawrence T. Pileggi, and Franz
Franchetti. Accelerating sparse matrix-matrix multiplication with 3d-stacked logic-
in-memory hardware. 2013 IEEE High Performance Extreme Computing Confer-
ence (HPEC), pages 1–6, 2013.

[217] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
computation-centric distributed graph processing system. In 12th {USENIX} sympo-
sium on operating systems design and implementation ({OSDI} 16), pages 301–316,
2016.

[218] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang,
and Xuehai Qian. Graphq: Scalable pim-based graph processing. In Proceedings of

131

the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages
712–725, 2019.

132

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Programs
	List of Abbreviations
	Abstract
	Introduction
	Emerging Architecture Techniques
	Dissertation Overview

	Challenges of Executing Sparse Linear Algebra on Contemporary Hardware
	A Parallelism Analysis on Prominent Desktop Applications
	Methodology
	Evaluation Overview
	Evolution of Concurrency
	Analyses on GPU
	GPU Offloading
	GPU Utilization

	Takeaways

	Prevalence and Challenges of Sparse Linear Algebra

	General-Purpose Acceleration through Reconfigurable Memory Hierarchy
	Introduction
	Contribution

	Motivation
	Contemporary Computing Platforms
	Taming the Diversity across Kernels
	Hardware Implication of Disparate Patterns

	Transmuter Overview
	Transmuter Architecture Design
	General-purpose Processing Element and Local Control Processor
	Work and Status Queues
	Reconfigurable Data Cache (R-DCache)
	Reconfigurable Crossbar (R-XBar)
	Synchronization Scratchpad Memory

	Transmuter Reconfiguration Design
	Prototype Software Stack
	Experimental Methodology
	Performance Models
	Power and Area Models

	Kernel Implementations on Transmuter
	Dense Matrix Multiplication and Convolution
	Fast Fourier Transform
	Sparse Matrix Multiplication
	Performance with Different Configurations

	Evaluation
	Comparison with the CPU and GPU
	Comparison with FPGA, CGRA, and ASIC
	Power and Area
	End-to-End Workload Analysis
	Throughput and Bandwidth Analysis
	Design Space Exploration
	Control Divergence and Data Reuse Analysis

	Related Work
	Conclusion

	Intelligent Software and Hardware Reconfiguration for Graph Processing
	Introduction
	Background and Related Work
	Graph Frameworks using Software Reconfigurations
	Optimized Hardware Acceleration for Graph Analytics
	Opportunities in Combining Software/Hardware Optimizations

	CoSPARSE Reconfiguration Layer Design
	Reconfigurable SpMV Implementation
	Workload Balancing Strategies
	Reconfiguration Threshold Analysis
	Software Reconfiguration Threshold
	Hardware Reconfiguration Threshold for Inner Product
	Hardware Reconfiguration Threshold for Outer Product

	Graph Analytics Algorithms on CoSPARSE
	Graph Analytics Algorithm Mapping
	Input and Output Conversion Overhead

	Methodology
	Evaluation
	Workload Balancing Evaluation
	Comparison against Existing Platforms
	Standalone SpMV
	Graph Analytics Algorithms

	Conclusion

	Near-Memory Multi-way Merge Solution for Sparse Data Merging
	Introduction
	Background and Motivation
	Sparse Matrix Formats and Sparse Matrix Transposition
	Characterizations on Sparse Matrix Transposition
	Roofline Analysis
	Thread Scaling Analysis

	MeNDA System Architecture
	Algorithm and Dataflow
	Processing Unit (PU) Microarchitecture
	Seamless Back-to-back Merge Sort
	Memory Bandwidth Utilization Optimizations
	Input Operand Co-location and Workload Balancing
	Adaptation to SpMV

	Programming Model and Interface
	Integrating MeNDA with Existing Platforms

	Experimental Methodology
	Simulation Methodology
	Baseline and Benchmarks

	Evaluation
	Comparison with CPU and GPU Baselines
	Area and Power Analysis
	Benefits and Overhead Analysis on End-to-end Workloads
	Memory Bandwidth Utilization Optimization Analysis
	Scalability Analysis
	Matrix Distribution Analysis
	Design Space Exploration
	SpMV Analysis

	Related Works
	Conclusion

	Conclusion
	Bibliography

