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chain with bond length 1.0 Å in the STO-6G basis evaluated using
FCI and QSE. Inset on respective plots shows the difference between
Green’s function calculated using FCI and QSE . . . . . . . . . . . 78

viii



6.3 The real(top) and imaginary(bottom) part of G11(ιω) element for H4
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molecule with bond length 1.0 Å in the STO-6G basis evaluated using
FCI and QSE done on the QASM simulator. . . . . . . . . . . . . . 80

6.5 The real(top) and imaginary(bottom) parts of G11(ιω) element for
H2 molecule with bond length 1.0 Å in the STO-6G basis evaluated
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The second row lists 2-body integrals that were used in the evaluation
of self-energies. All values of energy are listed in a.u. In case of
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ABSTRACT

The accurate and efficient simulation of many body systems has been a long-

standing challenge for quantum chemists and physicists. At the heart of this chal-

lenge lies the correlation between quantum particles, which is crucial in understanding

various physical phenomena, but is numerically hard to calculate. Over the decades,

there has been remarkable progress in simplifying this problem aided by mathematical

and chemical approximations and the availability of powerful computers. However,

an exact solution to the problem still remains intractable as it requires exponential

resources with respect to the system size.

Recent advances in the field of quantum computing have shown promise in Feynman’s

idea of simulating quantum mechanics on quantum computers. It has been proposed

that an ideal fault-tolerant quantum computer can reduce the scaling of these sim-

ulations from exponential to polynomial. However, initial quantum algorithms have

shown that there is a large gap between the capabilities of current hardware and

the resources required for simulating quantum systems of interest. The work of this

thesis focuses on reducing this gap by introducing two novel algorithms for quantum

chemistry simulations, which are suitable for near-term hardware. First, we intro-

duce a hybrid algorithm to decrease the total number of operations required for the

quantum simulations. We use a classical computer to generate an effective Hamilto-

nian containing O(n2) terms compared to the O(n4) terms of the full Hamiltonian,

where n is the number of orbitals. This sparse Hamiltonian can then be used with

xiv



a high-level method to recover the ground state energies. We demonstrate that this

sparsification of the Hamiltonian reduces the number of quantum operations required

for the simulation by an order of magnitude, thus making it accessible for the near-

term Hardware. Our second algorithm aims to make the calculation of dynamic

correlation functions (Green’s functions) more feasible on these quantum machines.

This algorithm is designed with the motive of avoiding the use of time-evolution and

reduced use of two-qubit gates. We demonstrate that we can reproduce the Green’s

function within reasonable error limits using this approach. We have also discussed

the use of re-sampling techniques for proper error-propagation of the stochastic data

obtained from the quantum machines.

The general structure of this thesis is as follows. We begin by motivating this work in

Chapter 1. Chapters 2 and 3 provide a general introduction of quantum computing

and Green’s function based methods, respectively. In chapter 4, the development of

effective Hamiltonian is discussed in detail. Chapter 5 demonstrates the use of these

effective Hamiltonians on the quantum machine for time evolution. In chapter 6, we

have discussed the algorithm to calculate Green’s functions on a quantum machine.

This is followed by conclusions and future directions in Chapters 7 and 8, respectively.

xv



CHAPTER I

Introduction

Recent advances in material sciences have led to major breakthroughs in tech-

nology with increasing demand for new and environment-friendly materials. These

range from high-temperature superconductors for low-cost electricity transmission to

lightweight materials for spacecraft and satellites and low-cost and high absorptivity

materials for solar panels. A combined experimental and theoretical effort is necessary

to efficiently explore these materials and enhance our understanding of the mechanism

behind their properties. Since the 1960s, there have been many developments and

innovations in the field of theoretical chemistry parallel to the evolution of computa-

tional power. One can now investigate a lot of things theoretically, from structural

properties to reactivity, simple reactions to reactions in complex biological systems,

conformational changes, reaction mechanisms, and many biological phenomena.

Theoretical chemistry research is governed by principles of quantum mechanics

and classical mechanics. The nature of the problem under study is the deciding factor

between the two methods. For example, spectroscopic studies involve the interaction

of matter with electromagnetic waves, which depends on the motion of subatomic

particles and can be described by quantum mechanics. On the other hand, properties

like the dielectric field, enthalpy of phase change, density, etc are dependent on the

atomic motion and therefore can be predicted by classical mechanics.
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In classical mechanics, the evolution of a system in time is described by Newton’s

second law.

−dV
dr

= m
d2r

dt2
(1.1)

where V is the potential, m is mass, t is time and r is the displacement. However, for

the description of microscopic systems, we need quantum mechanics and the time evo-

lution of a quantum system is described by the time-dependent Schrodinger equation.

ĤΨ(x, t) = −ℏ
ι

dΨ(x, t)

dt
(1.2)

This equation can be solved by separating the time and space variables, which gives

rise to two separate differential equations.

1

Ψ(t)

dΨ(t)

dt
= −ιE

ℏ
(1.3)

ĤΨ(x) = EΨ(x) (1.4)

The former equation is solved easily to yield

Ψ(t) = exp

{
−ιEt
ℏ

}
(1.5)

Whereas solving the latter equation is one of the central challenges of non-relativistic

quantum chemistry. In Equation 1.2, H is the Hamiltonian operator, Ψ is the wave-

function, x represents electronic and nuclear coordinates collectively, and E is elec-

tronic energy. Hamiltonian operator for a molecular system with N electrons and M

nuclei is given by

Ĥ = −
N∑

i=1

1

2
∇2

i −
M∑

A=1

1

2MA

∇2
A −

N∑

i=1

M∑

A=1

ZA

riA
+

N∑

i=1

N∑

j>i

1

rij
+

M∑

A=1

M∑

B>A

ZAZB

RAB

(1.6)

2



where ZA is the nuclear charge of nucleus A, ∇2
i and ∇2

A involve differentiation with

respect to electronic and nuclear coordinates respectively. The first and second terms

in Eq. 1.6 are the kinetic energy operators for electrons and nuclei, the third term

represents the coulomb attraction between electrons and nuclei and the last two terms

represent the repulsion between electrons and between nuclei respectively. According

to the Born-Oppenheimer approximation, we can consider the electrons to be moving

in the field of fixed nuclei because of the slow motion of nuclei compared to electrons.

This allows us to separate the electronic and nuclear Hamiltonian. Electronic part of

the Hamiltonian is

Ĥelec = −
N∑

i=1

1

2
∇2

i −
N∑

i=1

M∑

A=1

ZA

riA
+

N∑

i=1

N∑

j>i

1

rij
(1.7)

The solution to the Schrödinger equation involving only the electronic motion gives

us the electronic wavefunction and the electronic energy. These explicitly depend on

the electronic coordinates while parametrically depending on the nuclear coordinates.

However, solving the Schrödinger equation for multiple particles is non-trivial because

of the presence of electron-electron interactions[1].

1.1 Electron Correlation

One way to approximately treat these electron-electron interactions is through

mean-field theories like Hartree-Fock, where in an n-electron system, the impact of

n-1 electrons on the nth electron is approximated in an average manner.

Hartree-Fock theory approximates the wavefunction of the system as an antisym-

metrized product of n orthonormal spin orbitals, χ(x), which can be represented by

3



the Slater determinant

ψ(x1, x2, ...xn) =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χn(x1))

χ1(x2) χ2(x2) . . . χn(x2))

...
...

. . .
...

χ1(xn) χ2(xn) . . . χn(xn))

∣∣∣∣∣∣∣∣∣∣∣∣∣

(1.8)

The variation principle is then used to identify the best possible wavefunction of

the above functional form that minimizes the expectation value of the energy

E0 = ⟨ψ0| Ĥ |ψ0⟩ (1.9)

The above determinant is only one of the possible forms that could be obtained

from n spin orbitals. Therefore, Hartree-Fock energy is always higher than the exact

ground state energy of the system. The difference between the exact energy of the

system and Hartree-Fock energy gives us correlation energy. Correlation can be di-

vided into two major categories; dynamic and static[2]. It is defined as dynamic if the

contribution of the Hartree-Fock slater determinant to the FCI wavefunction is large,

that is c0 >> cra, c
rs
ab, . . .. The dynamic correlation arises because of small non-zero

occupancies of virtual orbitals. Whereas static correlation is the result of degeneracies

between multiple determinants. Mathematically, static correlation occurs when the

Hartree-Fock contribution is comparable to or smaller than one of the other determi-

nants, for example c0 ≈ cra > crsab. The exact wavefunction which contains information

about both static and dynamic correlation can be obtained by taking a linear com-

bination of all the possible slater determinants formed from a complete set of spin

orbitals. This exact wavefunction with reference to the Hartree-Fock determinant is
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given by

|Φ⟩ = c0 |ψ0⟩ +
∑

ra

cra |ψr
a⟩ +

∑

a¡b
r¡s

crsab |ψrs
ab⟩ +

∑

a¡b¡c
r¡s¡t

crstabc

∣∣ψrst
abc

〉
+ . . . (1.10)

where indices a,b,. . . denote the occupied set of orbitals and indices r,s,. . . denote

unoccupied/virtual orbitals. This procedure of including all the spin-orbital config-

urations is called full configuration interaction(FCI). Unfortunately, implementing

this method in practice is computationally infeasible because of the exponential in-

crease in the number of determinants as the system size grows. Therefore, to study

the chemical systems of interest, one has to make a trade-off between accuracy and

computational cost. We need theoretical methods which can capture the electronic

correlation in a chemically reliable, computationally efficient, and systematically im-

provable way.

1.2 Electronic Structure Theory Formalisms

1.2.1 Wavefunction Theories

In the wavefunction domain, many other approximations beyond the level of

Hartree-Fock approximation have been made. Most of these approximations tend

to capture one of the two types of nature of electron correlation, static or weak cor-

relation and dynamic or strong correlation. Methods that capture weak correlations

are classified as single reference methods, and those that capture strong correlations

are classified as multi-reference methods. Single reference methods include perturba-

tive methods (MP2 [3], MP3 [4], . . .), configuration interaction methods (CIS, CISD,

CISDT, . . .)[5] and couple-cluster methods (CCSD, CCSDT, CCSD(T), CCSDTQ,

. . .) [6, 7]. Table 1.1 provides an estimate of the cost of all these methods with respect
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!bth

Cost Method
N4 HF
N5 MP2
N6 MP3, CISD, MP4, CCSDQ CCSD, QCISD
N7 MP4, CCSD(T) QCISD(T)
N8 MP5, CISDT, CCSDT
N9 MP6
N10 MP7, CISDTQ, CCSDTQ

Table 1.1: Computational cost of many of the approximate wavefunction based meth-
ods. Here N is the number of orbitals in the system in a given basis.

to system size. Active space based methods like complete active space self-consistent

field(CASSCF)[8], complete active space second order perturbation(CASPT2)[9], n-

electron valence second order perturbation(NEVPT2)[10, 11], restricted active space

self-consistent field(RASSCF)[12], etc can capture some fraction of the strong correla-

tion but they are limited by how big the active space can be. Moreover, wavefunction

based methods are mostly used for zero temperature calculations, including temper-

ature dependence in these methods is very expensive.

1.2.2 Density Based Theories

Frameworks other than the wavefunction framework have also been explored. One

such example is density functional theory(DFT)[13, 14, 15, 16]. DFT works with

electronic density, n(−→r ) instead of the wavefunction,

n(−→r ) = N

∫
d3−→r2 ...

∫
d3−→rNΨ∗(−→r ,−→r2 , ...,−→rN)Ψ(−→r ,−→r2 , ...,−→rN) (1.11)

hence reducing the number of coordinates from 3N of wavefunction to 3. It is in

essence the mapping of many electron interacting system to a non-interacting Kohn-

Sham system that has the same electronic density as the actual system. In principle,

it is an exact theory if one can find a universal functional to describe exchange and

correlation in all physical systems but finding such a functional remains a challenge
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till date. Various approximations to this functional have been made over the years

which include local density approximation(LDA)[17, 18], generalized gradient approx-

imation(GGA) [19, 20], hybrid functional [21, 22] etc. DFT can be used to obtain

an accurate energetic and structural description of many materials with reasonable

computational effort, but it can sometimes lead to qualitatively wrong results when

used for calculating quantities like band gaps. For example, DFT underestimates

the band gaps for low-gap semiconductors like Si, Ge, etc, thus predicting a metallic

ground state [23]. Another difficulty with DFT is the semi-empirical nature of DFT

functionals and the absence of a universal functional which can be used for all the

systems.

1.2.3 Green’s Function Theories

A slightly different and less explored electronic structure theory framework is

in terms of one-particle Green’s function. In quantum chemistry, Green’s functions

can be described as response functions when a particle is added or removed from

an n-electron system. In this thesis, we work with the Green’s function formalism.

We choose this method because of the convenience associated with multiple unique

features of Green’s functions. Most importantly, Green’s function language makes

it easier to study the contribution of the nth order perturbation theory compared

to other field operators[24]. Moreover, they contain information about the excited

state spectra along with the ground state properties of the system. We can also access

thermodynamic properties at various temperatures using certain Green’s function for-

malism. The spectral function can also be calculated from Green’s function, which de-

scribes the dispersion relation of quasi-particle excitation of a system and helps study

the mechanism behind high-temperature superconductivity, magnetic materials, etc.

However, Green’s function is a complex quantity to compute. Various approximate

Green’s function theories include perturbation theories[25, 26, 27] like GF2, GF3, etc,
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coupled cluster theories like Green’s function coupled cluster(GFCC)[28, 29, 30, 31],

and embedding theories like dynamic mean field theory(DMFT)[32, 33], self-energy

embedding theory(SEET)[34, 35, 36, 37], etc.

Despite its advantages over other formalisms, Green’s function theories suffer from

the same problem of exponential computational scaling. Therefore, we propose the

use of quantum computers for calculating Green’s function.

1.3 Quantum Chemistry on Quantum Computers

In 1982, Feynman came up with the idea of using quantum machines instead of

classical machines for the simulation of quantum mechanics[38]. Quantum computers

reduce the scaling of classical algorithms from exponential to polynomial by leverag-

ing the superposition and entanglement between the quantum bits.

Feynman’s idea was followed by various quantum algorithms such as Shor’s algorithm[39]

for factorization of integers, Grover’s algorithm[40] for unstructured search, etc. All

these algorithms showed a reduction in computational complexity compared to their

classical counterparts. The first quantum algorithm for the simulation of quantum

mechanics was proposed by Lloyd in 1996 [41]. And the first realization of a quantum

simulation on a quantum machine was achieved in 1999 [42] on an NMR-based quan-

tum information processor [43, 44]. More information on this early history can be

found in ref [45]. Since then, there has been steady progress in the field both in terms

of hardware development as well as quantum algorithms. The most recent hardware

implementations include a 127-qubit quantum processor based on superconducting

technology [46]. And BeH2 and N2 are the largest molecules to be simulated on

quantum hardware [47, 48, 49].

In theory, quantum computing has shown promise in solving exponentially scaling

algorithms in polynomial time[50, 51] but there are multiple challenges associated
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with the physical realization of those theories. The most obvious limitation is the

number of qubits on a machine, however, that is not the only thing we care about.

The current machines have limited interconnectivity between the qubits and suffer

from environmental noise. They are also plagued by shorter coherence times and the

noise associated with each quantum operation, thus limiting the length of calculations

that can be performed on them. Error-correction codes[52, 53, 54, 55, 56, 57, 58, 59]

have been suggested to tackle the problems of noise and decoherence, but they are

far from realization in practice. While these difficulties seem disconcerting, we should

realize that the field of quantum computing is still in its budding stage and classical

computing had to face these challenges as well and that classical algorithms were

already being studied before the field was fully developed. Moreover, working with

existing technology, which was coined as noisy intermediate scaling quantum(NISQ)

technology [60], might enhance our understanding of the principles of quantum me-

chanics. This motivates us to develop algorithms that are suitable for these NISQ

machines so that we can study more complex systems with the current or near-term

hardware.

The work of this thesis primarily focuses on developing the above-mentioned al-

gorithms i.e. which require a low circuit depth and can be executed within a limited

coherence time. The general framework of this dissertation is as follows. I will start

by giving a brief overview of existing quantum algorithms in chapter 2, followed by a

discussion on Green’s function based methods necessary for understanding this work

in chapter 3. Chapters 4 and 5 of this thesis are based on our published articles

[61, 62]. Chapter 6 is based on the manuscript under preparation.
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CHAPTER II

Quantum Computing

The advent of quantum computers has revolutionized the field of physics and

chemistry simulations. It has been proposed that quantum computers can attain a

reduction in scaling of certain algorithms by leveraging the principles of quantum

mechanics, namely superposition and entanglement. This is achieved through quan-

tum bits. Analogous to the way bits are fundamental units of classical computers,

quantum bits or qubits are the units of a quantum computer. Unlike classical bits

which are binary in nature, qubits can exist in a superposition of two states before

being measured. For instance, while a classical bit can be in only 0 or 1 state at a

time, a qubit can exist in any superposition of the basis states |0⟩ and |1⟩,

α0 |0⟩ + α1 |1⟩ (2.1)

where α0 and α1 are complex numbers satisfying |α0|2 + |α1|2 = 1 and |0⟩ =




1

0




and |1⟩ =




0

1


 are vectors in the 2 dimensional Hilbert space. Similarly, the state

of an n-qubit register can exist as a statevector of 2n dimensional Hilbert space.
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2.1 Experimental Realization

A lot of effort is directed toward building quantum computers these days. The

first question that arises while building such systems is what kind of systems can be

used to physically realize the qubits. Although it is very hard to find the technology

that provides us with the required level of control over quantized 2-level systems, we

list here the physical systems that have shown potential in their ability to construct

scalable, fault-tolerant quantum computers:

• Superconducting Qubits: There are three types of superconducting qubits:

flux, charge, and phase. The two quantum states in these qubits are character-

ized by different states of the superconducting circuit concerning the respective

properties[63, 64]. For the flux qubits, it is the different number of flux quanta

trapped in the circuit, for the charge qubits, it is the number of cooper pairs

of electrons and for the phase qubits, the two states correspond to different

charge oscillation amplitudes. These qubits have been used to construct the

largest known quantum computers including IBM’s 127-qubit eagle processor

[46], Google’s 53-qubit machine used to show quantum supremacy [65], and

62-qubit computer at the University of Science and Technology of China [66].

Superconducting qubits have low error rates associated with the gates and are

easier to implement, thus making them scalable but they suffer from shorter

coherence times.

• Trapped-ion Qubits: Ions trapped in free space by an electromagnetic field

can also be used to encode qubits. The two quantum states are achieved through

the different energy states of the ions and coupling can be induced by lasers[67,

68]. Trapped-ion qubits are extremely stable and have longer coherence times,

however, they are very hard to implement. The largest trapped ion quantum

machine has 32 qubits [69].

11



Apart from the above-discussed technologies, many other physical systems are being

studied, for example, spin qubits, linear optical system, etc. It is still a matter

of debate on which one is better as most of these technologies are in their early

experimental stages.

2.2 Qubit States and Operations

A single qubit can be visualized as a point on the surface of the Bloch sphere as

in Fig. 2.1 and any single qubit gate can be defined as the operation that can cause

these changes in the qubit [70]. Using the spherical coordinates, a general qubit state

can be written as

|Ψ⟩ = cos

(
θ

2

)
+ eιϕsin

(
θ

2

)
(2.2)

Figure 2.1: Bloch Sphere representing the state of a single qubit geometrically

Systems with more than one qubit cannot be represented using this sphere and

exist in the tensor product state of the basis states of qubits. For example, a system
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with two qubits has 4 possible states, |0⟩ ⊗ |0⟩, |1⟩ ⊗ |1⟩, |0⟩ ⊗ |1⟩ and |1⟩ ⊗ |0⟩.

More generally speaking, a system with n-qubits has 2n basis states of the form

|Ψ1⟩ ⊗ |Ψ2⟩ ⊗ · · · ⊗ |Ψn⟩.

Quantum computations are performed by circuits of quantum logic gates. An

example of a very basic quantum circuit that creates and measures an entangled

state can be seen in Figure 2.2.

Figure 2.2: Quantum circuit for creation and measurement of bell state. Here the
initial states of two qubits are |0⟩ and |1⟩, entanglement is being produced by the
application of the Hadamard gate on the control qubit followed by the CNOT gate,
and the measurement is done in the standard basis.

A quantum circuit is read from left to right and the horizontal lines in the circuit

represent the flow of information. And the quantum gates can be represented using a

2n × 2n matrix for any n qubit operation. Some of the most common quantum gates

are listed in table 2.1 along with their symbols and matrices [71]. One important fea-

ture of quantum gates unlike many classical gates is that they need to be reversible in

nature, that is the matrix representing them should be unitary. This follows directly

from Landauer’s principle which states that when some information is erased it leads

to energy dissipation. This dissipated energy or extra information can disturb the

functioning of a quantum computer [71]. This reversible model of computation can

be achieved using extra qubits whose values are known apriori, called ancilla qubits

and by using the controlled gates mentioned in table 2.1.
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Operation Gate Symbol Matrix

Single Qubit Gates

Hadamard H




1 1

1 −1




Pauli-X X




0 1

1 0




Pauli-Y Y




0 −ι

ι 0




Pauli-Z Z




1 0

0 −1




Phase S




1 0

0 ι




Rotation Rz(θ)




1 0

0 eιθ




Two Qubit Gates

CNOT




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
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SWAP




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




Multi Qubit Gates

Toffoli(CCNOT)




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




Table 2.1: List of Quantum Logic Gates.

2.3 Early Quantum Algorithms For Quantum Chemistry

Quantum chemistry simulation is considered one potential area where one could

achieve quantum advantage[72]. The first step to simulating quantum systems on

quantum machines is representing the quantum problem on the machine. Therefore,

before discussing the quantum simulation algorithms, we would like to discuss some

of the popular mapping techniques. The idea is to transform the Hamiltonian repre-
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senting fermionic interactions into qubit Hamiltonian, which is a more natural form

for quantum simulation.

2.3.1 Fermionic Hamiltonian to Qubit Hamiltonian

• Jordan-Wigner Mapping: This is the most straightforward form of mapping

where the occupation of ith spin orbital is represented by the state of ith qubit

[73]. The qubit state |1⟩ indicates an occupied spin-orbital whereas state |⟩ 0

indicates an unoccupied one, thus there is a one-to-one correspondence between

the Slater determinants and the qubit states. We then require a way to rep-

resent the electronic creation and annihilation operators in terms of the qubit

operators, which can perform the following operations:

Q̂† |0⟩ = |1⟩ ; Q̂† |1⟩ = 0; Q̂ |0⟩ = 0; Q̂ |1⟩ = |0⟩ (2.3)

and follow the anti-commutation relations: {a†i , a
†
j} = {ai, aj} = 0 and {a†i , aj} =

δijI. This is accomplished by performing a sequence of Pauli Z operations on

the preceding qubits

a†i =
1

2
(Xi − ιYi) ⊗(j<i) Zj; ai =

1

2
(Xi + ιYi) ⊗(j<i) Zj (2.4)

The purpose of this operation is to introduce a phase shift of -1 if the parity of

the qubits before index j is odd and to not make a change if the parity is even.

Using the Jordan-Wigner encoding, fermionic Hamiltonian can be expressed as

a linear combination of products of Pauli operators

H =
∑

j

hjPj =
∑

j

hj

N−1∏

i=0

σj
i (2.5)
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where σj
i represents the Pauli operator acting on the ith qubit and N is the num-

ber of spin-orbitals. hj are real scalar coefficients and should not be confused

with the 1-electron and 2-electron integrals.

• Parity Mapping: Parity mapping is an alternative form of mapping which

differs from Jordan-Wigner mapping in terms of how the occupation number

and parity are stored. In Jordan-Wigner, occupation number is stored locally

whereas parity is stored non-locally i.e. one needs to measure all the preceding

qubits to determine the parity. Whereas in parity mapping, instead of using

qubit j to store the parity of only jth orbital, we use it to store the parity of

all the orbitals up to j [74]. However, now we cannot represent the creation

and annihilation operators by using Q̂† and Q̂, because jth qubit doesn’t hold

information about the orbital occupation but about the parity of qubits up to j.

The operator equivalent to Q̂† and Q̂ in the parity basis is given by a two-qubit

operator acting on qubits j and j-1:

P̂ †
j = Q̂†

j ⊗ |0⟩ ⟨0|j−1 − Q̂j ⊗ |1⟩ ⟨1|j−1 =
1

2
(Xj ⊗ Zj−1 − ιYj);

P̂j = Q̂j ⊗ |0⟩ ⟨0|j−1 − Q̂†
j ⊗ |1⟩ ⟨1|j−1 =

1

2
(Xj ⊗ Zj−1 + ιYj) (2.6)

It is important to realize here that the creation or annihilation of a particle will

change the parity data and thus we must update that by the application of σx

to all the qubits after j. Parity equivalent of creation and annihilation operators

is thus given by:

â†j =
1

2
((

N∏

j+1

σx) ⊗Xj ⊗ Zj−1 − (
N∏

j+1

σx) ⊗ ιYj);

âj =
1

2
((

N∏

j+1

σx) ⊗Xj ⊗ Zj−1 + (
N∏

j+1

σx) ⊗ ιYj) (2.7)
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Note that we do not improve on the efficiency of the mapping by using this

alternative scheme, since, we are just trading the string of σzs with the string

of σxs.

• Bravyi-Kitaev Mapping: Bravyi-Kitaev mapping attempts to improve the

scaling of both Jordan-Wigner and parity mappings by balancing the local stor-

age of parity and occupation[75, 76]. The information stored locally depends on

the index of the orbital, when j is even, qubit j stores the occupation number

of orbital j and when j is odd, qubit j stores the parity of a particular set of

orbitals. The qubit equivalents of creation and annihilation operators in this

transformation are given by:

a†j =
1

2
(XU(j) ⊗Xj ⊗ Zp(j) − ιXU(j) ⊗Xj ⊗ Zp(j))

aj =
1

2
(XU(j) ⊗Xj ⊗ Zp(j) + ιXU(j) ⊗Xj ⊗ Zp(j)) (2.8)

where U(j) and P(j) represent the update and parity sets of qubit j. These

sets are explained in more detail in reference [76]. Bravyi-Kitaev mapping thus

provides an alternative fermion to qubit mapping that balances the storage of

occupation number and parity with the complexity of O(log(N)), where N is

the number of orbitals.

The first quantum system was simulated on a quantum computer by Seth Lloyd

in the year 1996 [41], using Kitaev’s algorithm [77] for estimating the eigenvalues

of unitary operators. Subsequent works by Lloyd and Abrams [51] implemented

these techniques for the fermionic systems. This algorithm is now widely known as

Quantum Phase Estimation(QPE) and a brief description of the algorithm follows in

the next section.
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2.3.2 Quantum Phase Estimation(QPE)

In quantum chemistry, QPE is a quantum algorithm used for estimating the eigen-

values of the Hamiltonian operator. It works under the assumption that we have

access to the exact ground state |Ψ⟩ of operator H. The general algorithm for QPE

is as follows:

1. Represent the Hamiltonian operator in the form of unitary operator such that

Û = eιHτ and Û |Ψ⟩ = eι2πϕ |Ψ⟩. Here, the eigenvalue of H is mapped to the

phase of U, E = 2πϕ/τ .

2. Prepare two-qubit registers as shown in Fig. 2.3, readout register(top) contain-

ing m ancilla qubits in the state |0⟩⊗m and the state register(bottom) containing

N qubits to represent the wavefunction of the system under study. The initial

state of the system is in state: |Φ⟩ = |0⟩ |Ψ⟩

3. Apply Hadamard gates to the readout register, this puts the circuit in a super-

imposed state given by |Φ1⟩ = 1√
2m

∑2m−1
x=0 |x⟩ |Ψ⟩.

4. Apply the controlled unitary gates shown in Fig. 2.3 to time evolve the state

register. Controlled application of U when the ancilla is in |1⟩ state, helps

accumulate the phase between |0⟩ and |1⟩ state of ancilla. Time evolved state

of the system is |Φ2⟩ = 1√
2m

|Ψ⟩
∑2m−1

x=0 e2πιxE |x⟩

5. Perform a Fourier transform on the readout register to record the phase, which

in turn will give us the eigenvalue with a precision that scales linearly with the

number of ancilla qubits.

The efficiency of QPE is governed by two factors. One is the construction and im-

plementation of the unitary operators for time-evolving the state and the other is

access to a wavefunction with significant operlap with ground state. We begin by

discussing the time evolution followed by the description of a method for generating
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...
. . . . . . . . . . . . . . . ...

. . .

|0⟩ H

FFT−1

|0⟩ H

|0⟩ H

|Ψ⟩ (e2πιH)m−1 (e2πιH)m−2 (e2πιH)0 |Ψ⟩

|Φ1⟩ |Φ2⟩

Figure 2.3: Quantum phase estimation circuit with m ancilla qubits. FFT−1 here
means inverse fast Fourier transform and |Ψ⟩ is the ground state of the system.

such wavefunctions.

The general idea of the time evolution is to represent the unitary matrix as a prod-

uct of quantum logic gates, U = eιHt = eι
∑

j Hjt. Note that this cannot be written

as a product of exponential operators because the Hjs don’t necessarily commute.

Early approximations in this direction are focused on using Trotter-based expansions

[78, 79]. Alternative approaches to approximating the unitary operator can be found

in references [80, 81, 82, 83, 84].

QPE scales polynomially with the number of orbitals thus providing us with the

exponential speedup[50, 51]. Some of the most efficient simulations of QPE have

shown a complexity of O(N5t) and O(n2N3t), where N is the number of spin or-

bitals and n is the number of electrons[85]. Further improvements to QPE have been

introduced over the years. One of them is iterative phase estimation, where the num-

ber of ancilla qubits required to achieve the required precision was decreased [86].

Wiebe and Granade developed Bayesian phase estimation [87], where bayesian infer-

ence helps keep track of time-dependent properties and helps increase the algorithm’s

resilience towards noise and decoherence.
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As mentioned earlier, QPE must have access to a wavefunction that has significant

overlap with the exact ground state of the system. This problem was addressed with

the introduction of adiabatic quantum computing in 2000 [88], which was used by

Aspuru-Guzik et al.[89] to prepare the ground state of the fermionic Hamiltonians.

QPE and adiabatic state preparation were then combined to study the ground state

of chemical systems on the quantum machines.

2.3.3 Adiabatic State Preparation

Adiabatic state preparation (ASP) works on the principles of the adiabatic the-

orem to generate a correlated wavefunction for a given Hamiltonian, HF . The adia-

batic theorem states that a system will remain in its ground state if its Hamiltonian

is evolved slowly enough and if there is a non-zero gap between the ground state

and excited state of the given Hamiltonian. Therefore, a correlated wavefunction can

be generated by starting from an initial Hamiltonian, say the Hartree-Fock Hamilto-

nian HHF and Hartree-Fock wavefunction, |ΨHF ⟩ and slowly varying the Hamiltonian

using a scheduling function, s(t) from 0 to 1 as shown in Eq. 2.9

H(t) = (1 − s(t))HHF + s(t)HCI (2.9)

where s(t) is often defined as t/T , and T is the total time of evolution. The efficiency

of ASP depends on how fast we can vary the time, which is decided based on the

magnitude of the gap between the ground state and excited state energies along the

path from HHF to HCI . A detailed discussion on the time evolution and choosing the

adiabatic path can be found in references [89, 49]

While these algorithms show that quantum problems can be simulated on quantum

machines with polynomial scaling. Such scaling is not sufficient to make them practi-

cal for the near-term machines, as the exponents and constants for these polynomials
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can be quite high. It is also important to emphasize that there are multiple sources

of errors which can disturb the functioning of these quantum circuits.

2.4 Quantum Noise

Alike early classical computers, quantum machines also suffer from many errors.

Classical systems were developed over the years to avoid this noise in most processes

while the error-correction codes were used for the rest. Building quantum systems

without any errors is a formidable task, quantum computations, therefore, depend

majorly on error-correcting codes to protect against noise. The quantum error cor-

recting codes work by using many physical qubits to store the logical information

redundantly. Quantum error correction is designed based on the principles of clas-

sical error correction but is much more difficult. The reasons behind this are as

follows:

• Observing a quantum state destroys the state under observation. Although we

need to avoid any interactions of the quantum system with the environment, it

is also imperative to control the system from outside to observe the results.

• A quantum state cannot be duplicated as per the no-cloning theorem [90, 91],

making it impossible to study and correct the errors by using repetitive code.

• Quantum errors are continuous and accumulate over a large circuit.

The noise associated with a quantum computer can be categorized as coherent and

decoherent noise. Decoherent errors occur when a quantum state gets destroyed be-

cause of its interaction with the environment. This is often termed decoherence and

can arise because of fluctuations in the environment such as temperature changes or

external electromagnetic fields. Coherent noise is defined as the slight disturbance

to the quantum state as the system progresses through multiple operations. Errors
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in quantum gates, measurement errors, and imperfect control of the pulse can all

add to coherent noise. This noise doesn’t destroy the state of the qubit entirely but

leads to accumulation of the errors and thus limits the depth of a quantum circuit.

Coherent errors are not as fatal as decoherent errors and can be controlled using

error-mitigation techniques.

In theory [92], it is possible to build quantum computers with error-corrected logical

qubits, composed of numerous physical qubits, but we are decades away from the

hardware required to achieve this. We are now in the era of devices that are beyond

the limit of classical simulation but are not yet able to do fully fault-tolerant com-

putations. Preskill [60] used the term ”Noisy Intermediate Scaling Quantum(NISQ)”

to describe the devices which fall in this gap.

2.5 Algorithms For Noisy Intermediate Scaling Quantum(NISQ)

Machines

The algorithms discussed in the previous section are based on the time evolution

of a quantum state, and hence require a large number of time steps to reach chemical

accuracy, which puts these algorithms out of the reach of near-term computers. In this

section, we will discuss algorithms that are more practically suited for NISQ devices.

One such set of algorithms which follow the above criteria is hybrid quantum-classical

algorithms, where computational tasks are divided between classical and quantum

computers based on their inherent advantages. A major workhorse of these hybrid

algorithms is the variational quantum eigensolver(VQE).

2.5.1 Variational Quantum Eigensolver(VQE)

Variational quantum eigensolver is a hybrid algorithm based on the variational

principle. The variation principle is the basis of various classical quantum chemistry
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algorithms and states that given a normalized wave function |Ψ⟩ which satisfies the

boundary conditions, then the expectation value of Hamiltonian is an upper bound

to the exact ground state energy[1]. VQE variationally minimizes the eigenvalue of

the Hamiltonian operator by optimizing the trial wavefunction. Figure 2.4 shows the

schematics of the VQE algorithm and it proceeds as follows:

1. Prepare a trial wavefunction |Ψ(θ)⟩ on the quantum computer, where θ are the

variational parameters

2. Calculate the expectation value, E(θ), of Hamiltonian operator for this trial

wavefunction. This is done through a Hamiltonian averaging procedure, where

multiple measurements of tensor products of Pauli terms replace the longer

coherence time required for QPE.

3. Optimize the parameters, θ to minimize the energy eigenvalue using a classical

optimizer.

4. Repeat step 1 and 2 until E(θ) converges to a given threshold.

The major component of VQE is identifying the ansatz suitable for the trial wave-

function mentioned in step 1, results of VQE depend on how good an ansatz is for a

particular problem at hand. One of the most commonly used ansatz for VQE calcula-

tions is the unitary couple-cluster(UCC) ansatz [93]. Coupled cluster wavefunctions

are parameterized by an exponential ansatz,

|Ψ⟩ = eT |ϕ⟩ (2.10)

where |ϕ⟩ is a reference state, usually the Hartree-Fock state, and T is a linear com-

bination of excitation operators. The UCC ansatz is a chemically motivated ansatz

that preserves the properties of the system. However, this ansatz leads to unfavorably
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Figure 2.4: Circuit for variational quantum eigensolver.

deep circuits as the number of electrons and spin orbitals in the system increase. An-

other common ansatz is a hardware efficient ansatz [47] which is built to prepare the

ground state in as few gates as possible. They are well adapted to the hardware by

design but since they lack the chemical motivation, it can lead to failures beyond some

smaller molecules [94]. Several methods[95, 96, 97, 98] have been proposed to miti-

gate this issue but there is further work required to improve this approach. Therefore,

choosing the right kind of ansatz acts as the bottleneck for these VQE algorithms.

The chemically motivated and variationally flexible ansatzes require deeper quantum

circuits for the state preparation whereas the hardware efficient ansatzes are more

system specific.

Alternative approaches to implement VQE have also been explored. The Adaptive

Derivative Assembled Pseudo-Trotter (ADAPT) VQE is one such approach, where

the ansatz is constructed dynamically from a predetermined pool of operators. The

operators that lead to major changes in energy are iteratively added to the ansatz.

More details about this method can be found in reference [99]. The projective quan-
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tum eigensolver (PQE)[100] is another such example, where the authors make use of

projective measurements instead of using the variational principle to minimize the

ground state energy. Another alternative implementation VQE is through analog

quantum computations, where the parameterized quantum circuit is replaced by di-

rect optimization of a pulse based ansatz. A complete description of this ctrl-VQE

approach can be found in reference[101]. Although all these approaches have shown a

promise in finding the VQE ansatzes suitable for NISQ machinee, investigating more

efficient ways to generate a VQE ansatz which minimizes the circuit depth while max-

imizing the accuracy and universality is an open research question.

All of the above-discussed algorithms work toward finding the correlated wavefunc-

tion and the expectation values of the Hamiltonian operator. Quantum algorithms

for calculating Green’s functions are based on the same principles as these algorithms.

In the next chapter, we will discuss these quantum Green’s function algorithms in

more detail.
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CHAPTER III

Green’s Function on Quantum Computers

Green’s function theories play a fundamental role in our treatment of many particle

systems as they can be used to study many experimental phenomena theoretically.

They are directly related to the experimental quantities, since the response of a

system to external probes can be determined through Green’s functions. There are

two components of Green’s functions, one containing information about the cationic

states, that is the elimination of a particle from the system and the other contains

information about all the anionic states, that is through the addition of a particle

to the system. Let us consider a grand-canonical ensemble of n particles, i.e. the

system can exchange energy and particles with the environment. If an electron is

added to this n particle state
∣∣ΨI(t

′
)
〉

at a point (x
′
, t

′
) and propagated in time, the

propagation amplitude of a state containing an additional particle for time t < t
′

is

given by

⟨ΨI(t)| âIα(xt)Û(t, t
′
)â†Iβ(x

′
t
′
)
∣∣∣ΨI(t

′
)
〉

= ⟨Ψ0| âHα(xt)â†Hβ(x
′
t
′
) |Ψ0⟩ (3.1)

where â†Iβ(x
′
t
′
) and âIα(xt) are time-dependent fermionic creation and annihilation

operators. Similarly, we can obtain the propagator for a state containing an addi-

tional hole. Since there can be multiple possibilities of |Ψ⟩ with an added electron or

hole, the one-particle green’s function is given by the ensemble average of all these
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amplitudes.

ιGαβ(xt, x
′
t
′
) = ⟨τ âHα(xt)â†Hβ(x

′
t
′
)⟩ =





⟨âHα(xt)â†Hβ(x
′
t
′
)⟩ t > t

′

±⟨â†Hβ(x
′
t
′
)âHα(xt)⟩ t

′
> t

(3.2)

where ⟨. . .⟩ stands for the grand canonical ensemble average

⟨. . .⟩ =
1

Z
Tr[e−βH ] (3.3)

Z is the partition function for the grand canonical ensemble. τ is a time ordering

operator which orders the operators in increasing order of time from right to left,

while taking into consideration any fermionic exchange through a negative sign. Two

separate pairs of correlation functions can now be defined as retarded and advanced

Green’s functions.

ιGR
αβ(xt, x

′
t
′
) = ⟨{âHα(xt), â†Hβ(x

′
t
′
)}⟩θ(t− t

′
) (3.4)

ιGA
αβ(xt, x

′
t
′
) = −⟨{âHα(xt), â†Hβ(x

′
t
′
)}⟩θ(t′ − t) (3.5)

These advanced and retarded correlation functions are equal to the one-particle

Green’s function except for near singularities. We must note that for time-independent

Hamiltonian, Green’s function depends only on the variables x−x′
and t− t′ and not

on individual time and position variables (A rigorous proof of this statement can be

found in [24]). Retarded Green’s function can therefore be rewritten as

GR
αβ(t) = −ιθ(t)⟨âHα(t), â†Hβ(0)⟩ − ιθ(t)⟨â†Hβ(0), âHα(t)⟩ (3.6)

28



We can go a step further by writing the time dependence more explicitly

GR
αβ(t) = −ιθ(t) 1

Z
Tr[e−βHeιHtâHαe

−ιHtâ†Hβ] − ιθ(t)
1

Z
Tr[e−βH â†Hβe

ιHtâHαe
−ιHt]

= −ιθ(t) 1

Z

∑

n

e−βEn [eιEnt ⟨A| âHαe
−ιHtâ†Hβ |n⟩ − e−ιEnt ⟨n| â†Hβe

ιHtâHα |n⟩]

= −ιθ(t) 1

Z

∑

nm

e−βEn [eι(En−Em)t ⟨n| âHα |m⟩ ⟨m| â†Hβ |n⟩

−e−ι(En−Em)t ⟨n| â†Hβ |m⟩ ⟨m| âHα |n⟩]

(3.7)

Relabeling the indices in the second term and taking the Fourier transform of Eq.3.7

gives us the spectral representation of Green’s function. We can extract information

about the spectral density of states from this representation.

GR
αβ(ω) =

1

Z

∑

nm

⟨n|A |m⟩ ⟨m|B |n⟩ (e−βEn − e−βEm)

ω − (Em − En)
(3.8)

where ω is the frequency. For a non-interacting Green’s function, the spectral density

function provides us with the delta peaks corresponding to the eigenvalues of the

Hamiltonian. When interactions are added to the system, it leads to the broadening

of these peaks, providing information about excited state energies and lifetimes.

Green’s function, however, is a difficult quantity to compute. One way to calculate

Green’s function is through perturbative expansion. This expansion however is made

difficult by the presence of two mismatching exponentials in Eq. 3.7, one of which,

e−βH , is real while the other, e−ιHt, is imaginary. A simple solution to this complica-

tion is to set the temperature to zero but that restricts the scope of Green’s function

to only zero temperature calculations. Another way to solve this problem is by re-

placing real time with imaginary time, ιt→ τ . This imaginary time formalism helps

perform finite temperature calculations, thus providing us access to thermodynamic

quantities. Similar to real-time Green’s function, the Fourier transform of imaginary
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time Green’s function is given by

Gij(ιωn) =

β∫

0

Gij(ιτ)eιωnτdτ (3.9)

where β = kB/T and ωn is the frequency and is defined as ωn = (2n + 1)π/β. Real

time and frequency retarded Green’s functions can be obtained from their imaginary

counterparts by analytical continuation. In the scope of this thesis, we will be dis-

cussing mostly about Matsubara Green’s function. We refer the interested reader to

the references [24, 102, 103] for more details on other Green’s function formalisms.

We can now go back to using perturbation theory to calculate Green’s functions. Let

us start by dividing the Hamiltonian into two parts,

H = H0 + V (3.10)

where H0 is the non-interacting Hamiltonian and V describes its interactions with

other particles. This way we can construct G by summing the non-interacting prop-

agator (G0), propagator with one interaction, propagator with two interactions, etc.

G = G0 +G0V G0 +G0V G0V G0+... (3.11)

This is the Dyson equation, and the sum of interactions between all the particles

is referred to as self-energy. Self-energy is the difference between the energy of the

free particle and its quasiparticle form. A quasi-particle can be defined as a particle

surrounded by a cloud that forms around it as it propagates through the system and

interacts with its environment. Self-energy is the measure of the correlation between

particles and can be calculated from interacting and non-interacting Green’s function

using the Dyson equation.

Σ = G−1
0 −G−1 (3.12)
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Calculating exact self-energy is equally hard as calculating exact Green’s function

and it can be represented in terms of a perturbative expansion as well. A variety of

approaches have been used for calculating the Green’s function, either by truncating

the series at a finite length or by using embedding techniques like DMFT, SEET, etc.

We propose the use of quantum computers for calculating Green’s function.

3.1 Quantum Algorithms For Green’s Function

As mentioned earlier, the quantum algorithms for Green’s function calculation are

built on the same principles as QPE and VQE algorithms. All of these algorithms

start by preparing the ground state of the system using conventional QPE or VQE,

followed by the representation of Green’s function through unitary operators. The

real time Green’s function for particle and hole is defined as

Gp
αβ(t) = ⟨Ψ| cα(t)c†β(0) |Ψ⟩

Gh
αβ(t) = ⟨Ψ| c†α(t)cβ(0) |Ψ⟩ (3.13)

Creation and annihilation operators can then be defined in terms of unitary operators.

q1(t) = c(t) + c†(t); q2(t) = ι[c(t) − c†(t)] (3.14)

In this section, we give a brief overview of how these algorithms differ from each other.

3.1.1 Quantum Phase Estimation Based Algorithms

Some of the early algorithms for calculating Green’s functions are based on the

QPE scheme. In references [104, 105], authors compute the real time Green’s func-

tion through time evolution after preparing the ground state using QPE. They first

represent the Green’s function in terms of unitary operators and then introduce a
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probe qubit for all product operators. This probe qubit is coupled to the system of

interest, yielding the total density operator, ρtotal = ρsys ⊗ |0⟩ ⟨0|. The state of probe

qubit after time evolving the system followed by the controlled application of Pauli

gates determines the expectation value for the corresponding Pauli product.

In references [106, 107], authors calculate the real time Green’s function on the quan-

tum machine and extract the imaginary time Green’s function by using spectral func-

tion. They start by preparing the ground state of the system through QPE and ASP

algorithms. Green’s function is then represented in unitary operators as defined above.

Expectation values for these can be obtained by entangling an ancilla with the qubits

on which the unitary is applied. The output state of ancilla thus provides the cor-

responding expectation value. Their algorithm requires eight measurements for each

Green’s function element at a given t. A quantum measurement collapses the state

of the system. Therefore, to avoid re-preparation of state after every measurement,

a coherent measurement procedure was adopted from the reference[108].

We should note that these algorithms require time-evolution in some form. Here, we

would like to emphasize again that time evolution requires a large number of trotter

steps, thus rendering these algorithms impractical for NISQ machines. A detailed

discussion on the complexity of time evolution algorithms for calculating Green’s

functions can be found in reference [109].

3.1.2 Variational Quantum Eigensolver Based Algorithms

Variational methods provide a good alternative for calculating Green’s functions

on these near-term machines. Reference [110] uses two different methods to calculate

Green’s functions. The first method uses a modified version of VQE while the second

one is based on Lehmann’s representation of Green’s functions. In the first method,

they first prepare the ground state of the system using conventional VQE. This is

again followed by representing the creation and annihilation operators in the form of
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product of Pauli operators

ak =

Nk∑

n=1

λ(k)n Pn; a†k =

Nk∑

n=1

λ(k)∗n Pn (3.15)

Particle Green’s function can then be defined as

Gp
αβ(t) =

∑

αβ

λ(k)α λ
(k)∗
β ⟨Ψ| eιHtPαe

−ιHtPβ |Ψ⟩ (3.16)

Thus reducing the problem to solving for the expectation value of Pauli products. In

their algorithm, they modify the VQE circuit for measuring expectation value so as

to reduce the number of low-fidelity CNOT gates. The second method in the same

paper uses Lehmann’s representation of the spectral function

Ak(ω) =
∑

n

(
| ⟨En| a†k |Ψ⟩ |2

ω + E0 − En + ιη
+

| ⟨En| ak |Ψ⟩ |2

ω − E0 + En + ιη

)
(3.17)

Energy eigenstates and transition amplitudes of fermion operators are then computed

based on subspace search VQE (SSVQE)[111] and multistate contracted VQE(MCVQE)[112]

methods. These VQE based methods are an efficient way of calculating the Green’s

functions but they need quantum circuits with a large number of ancilla qubits and

CNOT gates. Both ancilla qubits and CNOT gates are known to decrease the effi-

ciency of quantum calculations because of the large error rates associated with them.

Another major challenge associated with variational algorithms is the accurate prepa-

ration of wavefunctions on a parameterized quantum circuit.

3.1.3 Quantum Subspace Expansion Based Algorithms

Recent work by Rungger[113] and coworkers explores the use of a new class of

algorithms, called quantum subspace expansion for Green’s function calculations.

Quantum subspace expansion(QSE) algorithms work by representing the wavefunc-
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tion as a linear combination of basis states instead of preparing it directly on the

quantum computer. These basis states can be prepared on the quantum computer

individually. The main advantage of QSE algorithms over variational algorithms is

that they don’t require optimization of circuit parameters, which can be a difficult

problem at times. Moreover, QSE can be parallelized over many quantum computers,

because each basis state can be prepared on a different machine at the same time.

This approach has been used by a lot of algorithms, we direct the interested reader

to following references for more details on QSE [114, 115, 116, 117, 118, 112].

The above-mentioned article first prepares the ground state of the system using QSE

followed by computation of continued fraction representation of Green’s function us-

ing Lanczos scheme[119]. They construct an orthogonalized Krylov basis set, starting

with |χ0⟩ = a† |GS⟩, and iterating to larger n, |χn⟩ = Ĥna† |GS⟩.

We base our quantum algorithm for calculating Green’s function on Quantum

subspace expansion as well. Our approach however uses QSE to calculate the tran-

sition matrix elements, which can then be used to calculate the Green’s functions in

Lehmann’s representation.

We go a step further in making all these algorithms more suitable for NISQ devices by

developing an effective Hamiltonian that is sparser in nature. Decreasing the number

of terms in the Hamiltonian operator decreases the number of quantum operations,

hence making the quantum circuit shallower. This leads to shorter calculations which

are good for devices with shorter coherence times. Moreover, a decrease in the num-

ber of gates lowers the gate error. We begin by describing this scheme in the next

chapter followed by our algorithm for calculating Green’s functions.
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CHAPTER IV

Dynamical Self-energy Mapping (DSEM) for

creation of sparse Hamiltonians suitable for

quantum computing
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This chapter is adapted from our published article [61].

4.1 Abstract

We present a two step procedure called the dynamical self-energy mapping (DSEM)

that allows us to find a sparse Hamiltonian representation for molecular problems. In

the first part of this procedure, the approximate self-energy of a molecular system is

evaluated using a low level method and subsequently a sparse Hamiltonian is found

that best recovers this low level dynamic self-energy. In the second step, such a sparse

Hamiltonian is used by a high level method that delivers a highly accurate dynamical
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Evaluate new Green’s function
and electronic energy

G(!) = [G�1
0 �⌃Q(!, ṽ)]�1
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part of the self-energy that is employed in later calculations. The tests conducted on

small molecular problems show that the sparse Hamiltonian parametrizations lead to

very good electronic energies. DSEM has potential to be used as a classical-quantum

hybrid algorithm for quantum computing where the sparse Hamiltonian containing

only O(n2) terms in a Gaussian orbital basis, where n is the number of orbitals in

the system, could reduce the depth of the quantum circuit by at least an order of

magnitude when compared with simulations involving a full Hamiltonian.
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4.2 Introduction

Creating model Hamiltonians is especially important in condensed matter physics

when only a few “important degrees” of freedom need to be modeled at a more

accurate level while the reminder of the physical system of interest can be treated

approximately. Such effective Hamiltonians can make intractable physical problems

accessible to regular classical computations as well as provide a conceptual under-

standing of the physical processes present in the system. Effective Hamiltonians

are commonly used in embedding methods capable of treating strongly correlated

problems [120, 121, 122] where many of such Hamiltonians are recovered as a re-

sult of a downfolding procedure. In such a procedure, a 1-body Hamiltonian is ob-

tained from a density functional theory (DFT) calculation which is then followed

by a projection onto Wannier orbitals [123, 124] and estimation of the lattice model

with all the necessary hopping parameters. Subsequently, the 2-body interactions

are produced from constrained DFT or random phase approximation (RPA). Ef-

fective Hamiltonians can be also obtained as a result of canonical transformation

procedure [125, 126, 127], Löwdin orthogonalization method [128], or density matrix

downfolding [129, 130]. Effective Hamiltonian formalism has a long history, especially

in the context of multi-reference coupled cluster methods (both in Fock as well as in

Hilbert space formulations) that result in some form of effective Hamiltonians. This

continues to be an active area of development and some important research papers

are cited in Refs.[ [131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,

144, 145, 146, 147, 148, 149, 150, 151, 152, 10, 153, 154]] In all these methods, a full,

computationally demanding solution of a problem is replaced by a computationally

less demanding two step procedure involving the construction of a model Hamiltonian

and accurate computation with the resulting Hamiltonian.

It is straightforward to envision that a variant of such a procedure could be used

in quantum chemistry computations involving quantum computers and here in partic-
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ular calculations on noisy intermediate-scale quantum (NISQ) devices [60]. Since in

quantum computing applications the number of measurements scales with the num-

ber of non-zero terms in the Hamiltonian, handling the full Hamiltonian containing

n4 2-body terms, where n is the number of orbitals present in a molecular problem is

very challenging particularly for NISQ devices, where the number of accessible qubits,

gates, and circuits depths are very limited. Consequently, classical–quantum hybrid

algorithms resulting in sparse Hamiltonians are naturally best suited computing solu-

tions [155, 156, 157]. The advent of classical-quantum hybrid algorithms has resulted

recently in multiple algorithms suitable for this mode of execution, most notably a

subspace VQE methods by Takeshita et al. [158], coupled-cluster downfolding meth-

ods by Bauman et al. [159, 160, 161], and algorithms by Somma et al. for Hamiltonian

simulations in the low energy subspaces [162].

In this paper, we discuss a two step procedure that we call the dynamical self-

energy mapping (DSEM) that can in the future be employed as a classical–quantum

hybrid algorithm. The first part of this algorithm is using a polynomially scaling

algorithm with respect to the number of orbitals present in the problem in order to

produce a total approximate Green’s function and self-energy of the molecular prob-

lem. The resulting self-energy is then used to parameterize an effective Hamiltonian.

This effective Hamiltonian containing only a small parameterized subset of 2-body

integrals describes a fictitious system that has the same dynamical part of the self-

energy as the parent molecular problem containing all 2-body integrals. Subsequently,

this fictitious system described by the sparse Hamiltonian is passed to and solved by

an accurate solver yielding non-perturbative dynamical part of the self-energy.

While in this paper, we employ a classical computer to validate this approach,

in the future such a solver can be replaced by a quantum machine that produces

the self-energy. Since in such a procedure the quantum machine deals only with

a very sparse Hamiltonian containing at most n2 2-body integrals, the number of
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gates and the circuit depth are severely reduced as compared to a case when all n4

2-body interactions are present in the molecular Hamiltonian. Note, that the DSEM

algorithm results in a sparse Hamiltonian parameterization for the fictitious system

and it gives access to the evaluation of all relevant observables and the electronic

energy since it has the same dynamic part of self-energy as the parent system. The

ability to rightfully reproduce the self-energy is not always present in the traditional

model Hamiltonians that may be designed to reproduce only specific properties.

This paper proceeds as follows. In Sec. 4.3, we explain the basics of the DSEM

procedure and discuss how the self-energy necessary for the model Hamiltonian evalu-

ation can be approximated. In Sec. 4.4, we demonstrate the accuracy of our procedure.

We conclude in Sec. 4.5.

4.3 Method

We define a general Hamiltonian for a chemical system of interest as

Ĥfull =
n∑

ij

tija
†
iaj +

1

2

n∑

ijkl

vijkla
†
ia

†
kalaj, (4.1)

where vijkl, denoted in short as ⟨ij|kl⟩, are 2-body Coulomb interactions defined as

vijkl =

∫ ∫
dr1dr2ϕ

∗
i (r1)ϕj(r1)

1

r12
ϕ∗
k(r2)ϕl(r2) (4.2)

and containing n4 terms, where n is the number of orbitals present in the full molecular

problem. The 1-body operator is defined as

tij =

∫
dr1ϕ

∗
i (r1)h(r1)ϕj(r1), (4.3)
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h(r1) = −1

2
∇2(r1) −

∑

A

ZA

|r1 −RA|
. (4.4)

For a molecular system of interest the exact Green’s function is related to its

non-interacting Green’s function via Dyson equation

Σ∞ + Σ(ω) = [G0(ω)]−1 − [G(ω)]−1, (4.5)

where Σ∞ and Σ(ω) are the static and the dynamical, frequency dependent part of the

self-energy, respectively. [1] Both these self-energies arise due to electronic correlations

present in the system of interest. The zeroth order Green’s function is defined as

G0(ω) = [(ω + µ)S − F ]−1, (4.6)

where µ, S, and F are chemical potential, overlap, and Fock matrix, respectively.

Note that here the Fock matrix is defined as

Fij = tij +
∑

kl

γkl(vijkl − 0.5vilkj) (4.7)

and can be evaluated using a 1-body density matrix γ that does not necessarily need

to come from Hartree-Fock but may come from a correlated method.

The first assumption of the DSEM procedure is that for a molecular system, we

will be able to produce an approximate self-energy at a low polynomial cost. In the

future when DSEM will be employed as a classical-quantum hybrid algorithm, this

approximation to the true self-energy will be produced in the classical part of the

algorithm and it can be evaluated in multiple ways, for details see Sec. 4.3.1. In this

paper, we approximated the exact dynamical self-energy either as Σ1, the first coeffi-

cient of the high frequency expansion [163] or as Σ(2)(ω), the dynamical second-order

self-energy from the second order, finite temperature, fully self-consistent Green’s
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function method (GF2) [164, 165, 166, 167]. In principle, on a classical machine,

the approximate self-energy can be evaluated using any polynomially scaling algo-

rithm capable of treating a large number of orbitals (eq. GW [168], FLEX [169, 170],

Møller-Plesset second order (MP2) [16]).

The second assumption of our algorithm is that using this approximate self-energy,

a Hamiltonian of the fictitious system, Hfic can be evaluated in such a way that with

only a subset of 2-body integrals (here at most n2) and all 1-body integrals of the

original problem it recovers very well the approximate self-energy of the original

molecular problem. This sparse Hfic is then used to produce a Green’s function

and subsequently a self-energy using a high level non-perturbative method. When

DSEM would be executed as quantum-classical hybrid then this part is performed

on a quantum machine. In such a case, the sparse fictitious Hamiltonian Hfic will

result in a shallow quantum circuit requiring only a limited number of qubits due to

the sparsity of the 2-body integrals. Note that here, the quantum machine evaluated

self-energy is exact for a fictitious, auxiliary system defined using a classical machine,

however, it is not an exact self-energy of the Hamiltonian containing all interactions.

Nevertheless, we expect that the self-energy of the fictitious system will approximate

the exact self-energy of the true molecular system very well as we will show in the

subsequent sections. The self-energy evaluated using the high level method can then

be used to evaluate the total electronic energy and other desired properties.

Here, we summarize the two part DSEM algorithm. LLP denotes a part executed

by an approximate perturbative method, while HLP is employed to describe an

accurate high level, non-perturbative solver. Note that if DSEM was executed as

a classical–quantum hybrid algorithm then LLP is executed on a classical machine

while HLP part is employing a quantum machine. A schematic picture showing the

DSEM algorithm is presented in Fig. 4.1.

LLP0 Using the Hamiltonian Ĥfull from Eq. 4.1 containing all interactions perform
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Evaluate effective 2-body interactions ṽ
that best approximate the original self energy

Σ(ω, v) ≈ Σ(ω, ṽ)

Construct effective molecular
1-body Hamiltonian, F̃

Use sparse Hamiltonian
Ĥ =

∑∑∑
ij

F̃ija
†
iaj +

∑∑∑
i
ṽini↑ni↓

Solve for Green’s function
and self-energy

ΣQ(ω, ṽ)

Evaluate new Green’s function
and electronic energy

G(ω) = [G−1
0 −ΣQ(ω, ṽ)]−1

Find molecular self-energy using
a low-level affordable method

Low-Level Method

and original 2-body interactions

Σ(ω, v)

High-Level Method/Quantum Computer

Figure 4.1: Dynamical self-energy mapping (DSEM) algorithm to produce a sparse
Hamiltonian for a fictitious molecular system. DSEM can be used as a classical-
quantum hybrid algorithm for quantum computing, in which case, the high level
method will be executed on the quantum machine.

a HF calculation for the system of interest.

LLP1 Employ Ĥfull to evaluate a self-energy defined as Σ∞(tfull, vfull)+Σ(ω)(tfull, vfull)

using a polynomially scaling method (in this paper, we are using GF2). Note,

that here we explicitly denote that both parts of the approximate self-energy

are evaluated using full 1- and 2-body integrals.

LLP2 Use the least square fit to find effective integrals ṽ for which Σ(ω)(F̃ , ṽ) best

approximates Σ(ω)(tfull, vfull) evaluated with full integrals. Note that Σ(ω)(F̃ , ṽ)

is evaluated using fictitious Hamiltonian Hfic that contains effective 2-body

integrals. For details see Sec. 4.3.1 and 4.3.2.

HLP0 The fictitious Hamiltonian given by Eq. 4.17 and obtained by a perturbative

method is passed to a non-perturbative solver (or a quantum machine).

HLP1 Evaluate Green’s function G(ω)(F̃ , ṽ) using a high level solver such as exact

diagonalization, quantum Monte Carlo, or one of the truncated configuration

42



interaction (CI) schemes. In a case of quantum execution of this step the Green’s

function evaluation can be done based on one of the algorithms described in

Refs. [171, 172, 110, 105, 173, 174, 107, 175, 176, 108].

LLP3 Evaluate the self-energy Σ(ω)(F̃ , ṽ) using the Dyson equation.

LLP4 Employ the self-energy evaluated in HLP1 to calculate the new Green’s func-

tion G(ω) according to

G(ω) = [(ω + µ)S − F − Σ(ω)(F̃ , ṽ)]−1 (4.8)

Note that by writing Σ(ω)(F̃ , ṽ), we explicitly denote that this self-energy came

from the solution of the fictitious problem solved in HLP1.

LLP5 Find chemical potential µ yielding a proper number of electrons.

LLP6 Evaluate a new density matrix γ from the Green’s function obtained in CP4

and a new Fock matrix.

LLP7 Evaluate 1-body electronic energy as

E1b =
1

2

∑

i,j

γij(tij + Fij). (4.9)

LLP8 Using the new Green’s function and self-energy evaluate 2-body energy ac-

cording to

E2b =
2

β

∑

i,j

Re[
∑

ω

Gij(ω)Σij(ω)(F̃ , ṽ)]. (4.10)

LLP9 Using the Green’s function defined in LLP4, it is possible to re-evaluate the

self-energy in the LLP part of the algorithm and find a new set of effective

integrals and continue iterating until electronic energies stop to change
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Note that iterations described in LLP9 are optional, in Sec 4.4, we report results

without them. Our observations indicated that the difference between performing

only the first iteration and all iterations is small (usually below 1 mEh) for the systems

studied.

4.3.1 Approximating self-energy

Here, we focus on possible approximations to the exact self-energy evaluated in

the LLP part of the algorithm that can be computed with a polynomial cost. This

approximate self-energy is later used to find best effective 2-body integrals for the

fictitious Hamiltonian.

4.3.1.1 High frequency expansion of the self-energy

In our previous work [163], we showed that in certain molecular cases, a good

approximation to the exact self-energy is obtained by using a high frequency expansion

of the self-energy

Σ(ω) =
Σ1

ω
+

Σ2

ω2
+

Σ3

ω3
+O

( 1

ω4

)
(4.11)

that is then truncated only to preserve

Σ(ω) ≈ Σ1

ω
, (4.12)

where Σ1 is the first coefficients of the high frequency expansion. This coefficient can

be evaluated either in approximate perturbative theories or by employing formulas

listed in Ref. [163] that use both 1- and 2-body density matrices. Such a simple

approximation for the self-energy can be then employed to evaluate fictitious Hamil-

tonian containing only on-site 2-body integrals given by the following expression

ṽiiii =

√
2[Σ1]ii

γii(1 − 1
2
γii)

, (4.13)
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where γii is the on-site 1-body density matrix.

4.3.1.2 Frequency dependent self-energy from the second order finite

temperature Green’s function perturbation theory (GF2)

For molecular systems, the self-energy obtained in the GF2 method

Σ
(2)
ij (τ) = −

∑

klmnpq

Gkl(τ)Gmn(τ)Gpq(−τ) × vimqk(2vlpnj − vnplj) (4.14)

is a very good approximation to the exact self-energy. Therefore, we evaluate it in a

lower level part of the algorithm using the full molecular Hamiltonian. This evaluation

scales as n5nτ , where n is the number of orbitals in the molecular problem while nτ

is the size of imaginary time grid. Since in this approach, all the elements of the

self-energy matrix are produced, we use the least square fitting to find a set of sparse

2-body integrals that yield the best approximation to the second order self-energy,

namely

Σ
(2)
ij (τ, tfull, vfull) ≈ Σ

(2)
ij (τ, F̃ , ṽ). (4.15)

We require the sparse 2-body integrals ṽ depend at most on two indices thus resulting

in only n2 2-body integrals. These optimizations are done in the imaginary time

domain. We calculate the distance between the self-energies for a given imaginary

time grid point and use the Frobenius norm of the resulting difference matrix as our

cost function. All the values for all time grid points were then summed up to create

the total objective function

f =
t=τmax∑

t=τ1

∥ Σ
(2)
ij (τ, tfull, vfull) − Σ

(2)
ij (τ, F̃ , ṽ)∥. (4.16)

The optimization is stopped when the desired threshold of 0.001 is reached.

To check the accuracy of this approximation we tested and included multiple
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groups of integrals starting from just the on-site integrals and then gradually increas-

ing the set to n2 integrals containing at most two independent indices.

4.3.2 Fictitious Hamiltonian

Note that using the effective integrals obtained either in Sec. 4.3.1.1 or 4.3.1.2,

the sparse Hamiltonian that is used subsequently by the high level solver has the

following form

Ĥfic =
∑

ij

F̃ija
†
iaj +

1

2

∑

ijkl

ṽijkla
†
ia

†
jakal, (4.17)

where ṽijkl are non-zero only for the chosen integrals groups. The modified Fock

matrix F̃ij is given by the following equation

F̃ij = tij +
∑

kl

γkl(vijlk −
1

2
viklj) −

∑

kl

γkl(ṽijlk −
1

2
ṽiklj), (4.18)

where Fij = tij +
∑

kl γkl(vijlk −
1
2
viklj) is the Fock matrix produced in GF2, where

γ is the 1-body density matrix from GF2 and vijkl are the full 2-body integrals.

The term
∑

kl γkl(ṽijlk −
1
2
ṽiklj) corresponds to the double counting correction that

should be evaluated with the effective 2-body integrals evaluated as discussed either

in Sec 4.3.1.1 or 4.3.1.2.

4.4 Results

In this section, we will examine our results from different fictitious Hamiltonian

parameterizations, namely (p1) ⟨ii|ii⟩ on-site 2-body integrals, (p2) both on-site

integrals as well as ⟨ii|jj⟩, ⟨ij|ij⟩ integrals, and (p3) on-site integrals and all modified

two body integrals with two varying indices out of the total of four indices, namely

⟨ii|jj⟩, ⟨ij|ij⟩, and ⟨ij|jj⟩ integrals. Note that while the DSEM scheme is designed
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to be used as a classical–quantum hybrid algorithm, here, to provide validations

and benchmarking of this procedure, we performed it entirely on a regular, classical

machine. All the parametrizations performed here were done in symmetrized atomic

orbitals (SAO). It is an important fact since paramatrizations performed in different

orbital bases can lead to different structure of the 2-body integrals. To best preserve

the existing symmetries, we are retaining all integrals that are equivalent due to

symmetry and their final values are made equal.

4.4.1 Hamiltonians with parameterized on-site integrals from high fre-

quency expansion

Initially, we parameterized simple molecular Hamiltonians used for the self-energy

evaluation to contain only on-site effective integrals. These integrals can be defined

as the 2-body integrals of the form ṽiiii = ⟨ii|ii⟩ where i is the orbital number. In

this paper, to simulate a classical–quantum hybrid computing process, the self-energy

was calculated using a polynomially scaling GF2 algorithm. In this section, we focus

on the parameterization of the Hamiltonian using only the on-site 2-body integrals

coming from the high frequency expansion of the GF2 self-energy.

In Tab. 4.1, for the H6 ring in the STO-6G basis, we list the 2-body integrals

obtained from the high frequency expansion of the GF2 self-energy. The 1-body

energies and 2-body energies listed were obtained by employing Eq. 4.9 and Eq. 4.10,

respectively. The GF2 and FCI results were evaluated using all n4 integrals, where n

is the total number of orbitals in the problem. By FCI(ṽ), we denote an FCI energy

evaluated using effective on-site ṽiiii 2-body integrals parameterized using the GF2

self-energy. We note that the total electronic energy that is recovered by FCI(ṽ) is very

close to the true FCI energy and constitutes 102% of the original correlation energy.

The effective on-site integral evaluated in the symmetrized atomic orbital (SAO) basis

ṽiiii = 0.598096 is smaller than the bare on-site Coulomb integral viiii = 0.9060789 as

47



GF2 FCI FCI(ṽ)

2-body integrals all integrals all integrals ṽiiii = 0.598096

1-body energy -9.221596 -9.162680 -9.194815

2-body energy -0.104371 -0.185912 -0.155320

Correlation energy -0.052695 -0.075320 -0.076999

Electronic energy -9.325966 -9.348592 -9.350271

Table 4.1: Energy values obtained using GF2, FCI and parameterized FCI(ṽ) for
H6 ring with interatomic distance R=0.95 Å in the STO-6G basis. The second row
lists 2-body integrals that were used in the evaluation of self-energies. All values of
energy are listed in a.u. In case of FCI(ṽ), ṽiiii denotes the value of the 2-body on-site
integral for i = 1, . . . , 6, all other 2-body integrals are equal to zero.

is expected since it includes the effects of other non-local integrals.

To assess the effect of the basis set increase, we also performed calculations in

the DZ basis. In Tab. 4.2, we list results for H6 ring at R=0.95 Å in the DZ basis.

Here, the solution of FCI(ṽ) with parameterized on-site integrals recovers 94% of

correlation energy. Note also the values of the effective integrals ṽiiii = 1.001197 and

ṽjjjj = 0.424057 are smaller than the bare on-site Coulumb integrals viiii = 1.20619

and vjjjj = 0.447542. Such a difference is expected and it is arising due to inclusion

of the non-local effects.

While these results are encouraging, in most cases for more complicated molecu-

lar examples, employing only on-site 2-body effective integrals cannot lead to the full

recovery of the off-diagonal elements of the self-energy. Since here the off-diagonal

elements are only evaluated as a result of the following multiplication Σ
(2)
ij (τ) =

−
∑

ij[Gij(τ)]2Gij(−τ)ṽiiiiṽjjjj not enough freedom may be present to find best on-

site integrals ṽiiii that lead to best approximation Σ
(2)
ij (τ, tfull, vfull) ≈ Σ

(2)
ij (τ, F̃ , ṽiiii).

We illustrate this observation in Fig. 4.2 by displaying the elements of imaginary

part of the self-energy for the H6 chain in the DZ basis. It is evident that while the

diagonal elements of the self-energy are recovered reasonably well, the off-diagonal

self-energy elements are not recovered well and are almost equal to zero. Conse-
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GF2 FCI FCI(ṽ)

2-body integrals all integrals all integrals ṽiiii=1.001197

ṽjjjj=0.424057

1-body energy -9.257054 -9.204537 -9.248869

2-body energy -0.132880 -0.206746 -0.157235

Correlation energy -0.066384 -0.087733 -0.082553

Electronic energy -9.389935 -9.411284 -9.406104

Table 4.2: Energy values obtained using GF2, FCI and parameterized FCI(ṽ) for H6

ring with interatomic distance R=0.95 Å in the DZ basis. The second row lists 2-body
integrals that were used in the evaluation of self-energies. All values of energy are
listed in a.u. In case of FCI(ṽ), ṽiiii denotes the value of the 2-body on-site integral
for 1s i = 1, . . . , 6, ṽjjjj denotes the value of the 2-body on-site integral for 2s, all
other 2-body integrals are equal to zero.

quently, we conclude that the Hamiltonians with only on-site effective interactions

will yield accurate results for systems where the self-energy is majorly diagonal. For

other cases a larger number of 2-body integrals is necessary to recover the off-diagonal

elements of self-energy.

4.4.2 Modified Hamiltonian parameterization using GF2 self-energy

Here, we focus on parameterization of the fictitious Hamiltonian by finding a small

number of effective 2-body integrals that produced a best match between the original

GF2 self-energy and the GF2 self-energy evaluated with only the effective ṽ integrals

Σ
(2)
ij (τ, tfull, vfull) ≈ Σ

(2)
ij (τ, F̃ , ṽ) as described in Sec. 4.3.1.2. In order to perform these

fits we used the least-squares optimization subroutine from scipy [177]. We investigate

parameterizations with both only on-site and more extensive parameterizations with

up to n2 integrals. Here, we perform the DSEM procedure for several small molecular

systems such as H6 ring, H6 chain, H2O, and Be dimer. We believe that these systems

are good examples of molecular problems that at present can be solved using NISQ

devices.
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Figure 4.2: The imaginary part of the self-energy for H6 chain in the DZ basis evalu-
ated in FCI with all integrals (denoted here as FCI(v)) and FCI with effective, on-site
2-body integrals (denoted as FCI(ṽiiii)). Top left: Im[Σ(iω)]00 element. Bottom left:
Im[Σ(iω)]01 element. Top right: Im[Σ(iω)]11 element. Bottom right: Im[Σ(iω)]03
element.

4.4.2.1 H6 ring in the STO-6G basis set

Both the correlation energies and electronic energies for the H6 ring in the STO-6G

basis are presented in Tab. 4.3. We observe that increasing the number of the effective

2-body integrals leads to a significant improvement in the match of the GF2 self-

energies Σ
(2)
ij (τ, tfull, vfull) ≈ Σ

(2)
ij (τ, F̃ , ṽ) and consequently a significant improvement

of GF2 electronic and correlation energies when compared to a GF2 energy evaluated

with all the integrals. We analyze three previously mentioned parameterizations p1,

p2, and p3. We observed that p2 and p3 parameterizations were completely sufficient

to recover the electronic energy beyond 4th digit after decimal point.

In Tab. 4.3, we also list the results of FCI (FCI(p1), FCI(p2), and FCI(p3))
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H6 ring; Basis: STO-6G

GF2(v) GF2(p1) GF2(p2) GF2(p3) FCI(v) FCI(p1) FCI(p2) FCI(p3)

Correlation energy -0.05269 -0.06202 -0.05268 -0.05266 -0.07532 -0.06191 -0.08107 -0.06694

Electronic energy(a.u.) -9.32597 -9.33529 -9.32595 -9.32593 -9.34859 -9.33518 -9.35434 -9.34021

Table 4.3: Energy values obtained using GF2, parameterized GF2, FCI, and parame-
terized FCI. Symbol p1 stands for a parameterization using ⟨ii|ii⟩ integrals. Symbol
p2 stands for a parameterization using ⟨ii|ii⟩, ⟨ij|ij⟩, ⟨ij|ji⟩ groups of the effective
integrals. Symbol p3 stands for a parameterization that uses all the integrals from
the p2 group as well as ⟨ij|jj⟩ effective integrals. All values of energy are listed in
a.u.

performed using the Hamiltonian parameterized at the GF2 level using the three

previously discussed parameterizations. We observe that the results from p2 and

p3 parameterizations are around 1 mEh per hydrogen away from the FCI energy

evaluated with all the integrals. Note also that we only applied a relatively naive

fitting where we do not use any sophisticated weighing scheme to differently weigh the

diagonal and off-diagonal elements of the self-energy or the low- and high frequency

behavior.

4.4.2.2 H6 chain in the DZ basis set

We investigated how the accuracy of different parameterizations behaves as the

number of orbitals in the basis set is increased. In Tab. 4.4, results of these studies for

the H6 chain in the DZ basis are listed. We observe that the GF2 energy evaluated

with all the integrals is recovered by parameterization p3 while parameterization p2

is differing only by ≈ 3 mEh. When Hamiltonian in parameterization p3 is used in

FCI, we observe that the result is approximately 1 mEh per hydrogen different than

the FCI result evaluated with all the integrals.

4.4.2.3 H2O in DZ basis set

Studying both the H6 chain and ring examples in two different basis sets allow

us to confirm that when the p3 parameterization in GF2 is very close to the original
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H6 chain; Basis: DZ

GF2(v) GF2(p1) GF2(p2) GF2(p3) FCI(v) FCI(p1) FCI(p2) FCI(p3)

Correlation energy -0.06677 -0.08606 -0.06958 -0.06623 -0.09584 -0.05678 -0.08102 -0.10139

Electronic energy(a.u.) -8.13663 -8.15592 -8.13944 -8.13609 -8.16570 -8.12664 -8.15088 -8.17125

Table 4.4: Energy values obtained using GF2, parameterized GF2, FCI, and parame-
terized FCI. Symbol p1 stands for a parameterization using ⟨ii|ii⟩ integrals. Symbol
p2 stands for a parameterization using ⟨ii|ii⟩, ⟨ij|ij⟩, ⟨ij|ji⟩ groups of the effective
integrals. Symbol p3 stands for a parameterization that uses all the integrals from
the p2 group as well as ⟨ij|jj⟩ effective integrals. All values of energy are listed in
a.u.

H2O; Basis: DZ

GF2(v) GF2(p1) GF2(p2) GF2(p3)

Correlation energy -0.13287 -0.19069 -0.13844 -0.13519

Electronic energy(a.u.) -85.47654 -85.53436 -85.48212 -85.47886

Table 4.5: Energy values obtained using GF2, and parameterized GF2. Symbol p1
stands for a parameterization using ⟨ii|ii⟩ integrals. Symbol p2 stands for a param-
eterization using ⟨ii|ii⟩, ⟨ij|ij⟩, ⟨ij|ji⟩ groups of the effective integrals. Symbol p3
stands for a parameterization that uses all the integrals from the p2 group as well as
⟨ij|jj⟩ effective integrals. All values of energy are listed in a.u.

GF2 energy evaluated with all the integrals then the FCI energies recovered from the

p3 parameterization is also very close to the original FCI energy. This observation

prompts us to analyze examples where calculating the Green’s function in the FCI

procedure will result in a significant computational time and memory use. For these

cases, we will only examine the systematic improvement present in the p1, p2, and

p3 GF2 parameterizations.

In Tab. 4.5, we list GF2 energies resulting from the different parameterizations of

the Hamiltonian. Note that both the p2 and p3 parameterizations are only 6 and 2

mEh away from the original GF2 energy, respectively.
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Be2; Basis: 6-31G

GF2(v) GF2(p1) GF2(p2) GF2(p3)

Correlation energy -0.04814 -0.02047 -0.04463 -0.04651

Electronic energy -29.18194 -29.15427 -29.17843 -29.18031

Table 4.6: Energy values obtained using GF2, and parameterized GF2. Symbol p1
stands for a parameterization using ⟨ii|ii⟩ integrals. Symbol p2 stands for a param-
eterization using ⟨ii|ii⟩, ⟨ij|ij⟩, ⟨ij|ji⟩ groups of the effective integrals. Symbol p3
stands for a parameterization that uses all the integrals from the p2 group as well as
⟨ij|jj⟩ effective integrals. All values of energy are listed in a.u.

4.4.2.4 Be2 in 6-31G basis set

Finally, in Tab. 4.6, we analyze a small diatomic molecule Be2 that when calcu-

lated in the 6-31G basis set is an ideal test case for calculations on small molecular

systems. For this case, similar to the previous cases the GF2 energy coming from

the p1 parametrization is not acceptable. However, the p2 parameterization results

in energies that are very close to the original GF2 energy. The p3 parameterization

yields the energy value with an error as small as 1 mEh.

4.4.3 Number of gates for different Hamiltonian parameterizations

H6 ring; Basis:STO-6G H6 chain; Basis: DZ H2O; Basis: DZ Be2; Basis: 6-31G

JW BK JW BK JW BK JW BK

2*H(v) SQG [3.25×103,1.30×104] [4.23×103,1.72×104] [1.21×105,2.15×105] [1.95×105,3.46×105] [2.34×105,2.79×105] [3.90×105,4.49×105] [2.81×105, 2.90×105] [4.93×105, 10.66×105]

CNOT [5.01×103,1.97×104] [4.66×103,1.93×104] [3.12×105,5.54×105] [2.43×105,5.11×105] [7.29×105,8.46×105] [4.98×105,5.91×105] [10.83×105,10.66×105] [6.58×105, 6.72×105]

2*H(p1) SQG 3.18×102 5.10×102 1.35×103 2.60×103 1.85×103 3.65×103 1.20×103 2.52×103

CNOT 5.72×102 5.12×102 4.59×103 2.96×103 7.30×103 4.23×103 6.39×103 2.96×103

2*H(p2) SQG 9.18×102 8.70×102 4.00×103 4.19×103 5.02×103 4.97×103 7.24×103 6.15×103

CNOT 1.05×103 1.14×103 6.71×103 5.92×103 8.56×103 7.18×103 1.12×104 9.91×103

2*H(p3) SQG 1.53×103 1.85×103 6.64×103 9.32×103 7.70×103 1.04×104 9.56×103 1.11×104

CNOT 2.17×103 2.07×103 1.59×104 1.14×104 1.98×104 1.31×104 2.40×104 1.54×104

Table 4.7: Number of single qubit (SQG) gates and CNOT gates required to expo-
nentiate the full and fictitious Hamiltonian under various parameterizations for both
Jordan-Wigner(JW) and Bravyi-Kitaev(BK) transformations. Symbol p1 stands for
a parameterization using ⟨ii|ii⟩ integrals. Symbol p2 stands for a parameterization
using ⟨ii|ii⟩, ⟨ij|ij⟩, ⟨ij|ji⟩ groups of the effective integrals. Symbol p3 stands for
a parameterization that uses all the integrals from the p2 group as well as ⟨ij|jj⟩
effective integrals.

The estimation of the cost of performing molecular calculations on quantum de-
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vices is critical to gain insight into the efficiency of such calculations. Such estima-

tions were done most notably for phase estimation in Ref. [178] and subsequently for

the VQE formalism [179]. These estimations point to the crucial dependence of the

circuit depth on the sparsity of the Hamiltonian. To illustrate that such DSEM sim-

plified Hamiltonian parameterizations will lead to low circuit depths, we calculated

the number of gates for the fictitious Hamiltonians constructed in the previous sec-

tion. Number of gates required for exponentiation of full and fictitious Hamiltonians

are listed in Tab. 4.7. We used Jordan-Wigner [180] and Bravyi-Kitaev [181] transfor-

mations for expressing the molecular Hamiltonian in terms of Pauli operators. These

transformations were obtained using OpenFermion’s [182] practical implementation

of these techniques. Number of gates required were calculated using these Pauli rep-

resentations as described in Ref. [183]. For the parameterized cases (H(p1), H(p2),

H(p3)), we have worked in SAO basis, while for the full Hamiltonian, we evaluated

the number of gates both in SAO and molecular orbitals (MO) representation list-

ing both cases. For the small molecular cases analyzed here, we observe a reduction

in the number of gates by about an order of magnitude when using the fictitious

Hamiltonian (even within p3 parameterization) in comparison to the full Hamilto-

nian. Note, however, that as the system size increases, we expect that the difference

in the number of gates necessary to perform a single Trotter step will increase for

the full Hamiltonian. Consequently, in the limit of a large molecular system, a pa-

rameterized Hamiltonian will result in even larger reduction of necessary gates when

compared to the full Hamiltonian.

4.5 Conclusions

We have presented a DSEM procedure which allows us to find a fictitious, sparse

Hamiltonian that recovers the self-energy evaluated with the full, original Hamiltonian

containing all 2-body integrals. DSEM procedure is a two step procedure which
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employs a polynomially scaling evaluation of the self-energy that is necessary for

finding a sparse, fictitious Hamiltonian that is then used to evaluate an exact self-

energy using a high level method. The high level solver deals only with the sparse

Hamiltonian containing at most n2 terms. We have compared the GF2 and FCI

energies obtained using the DSEM procedure to the original GF2 and FCI energies.

From these comparisons, we have demonstrated that the errors can be controlled and

are small.

DSEM has a potential to be used as a classical-quantum algorithm in quantum

computing. The first part of the DSEM algorithm can be executed on a classical

machine while the second part relying on an accurate, non-perturbative solver can

be executed on a quantum computer. Since the Hamiltonian present in quantum

computation is sparse, the resulting circuit is shallow with many fewer gates than

for the circuit necessary to represent the original Hamiltonian. We have shown that

the number of necessary gates in order to express the sparse Hamiltonian is at least

one order of magnitude smaller, even for small systems, when compared to the gates

necessary to express the original Hamiltonian.

There are various other quantum algorithms that leverage the sparsity of the

Hamiltonian for a reduced gate count in a quantum circuit. In Ref. [184], Babbush

et al. reduced the number of Hamiltonian terms to O(N2), where N is the number

of basis functions in a plane-wave basis-set . They diagonalize different components

of the Hamiltonian operator, namely kinetic operator and potential operator using

plane wave and dual plane wave basis respectively. Our method differs from this

approach as we perform all our calculations in a Gaussian orbital basis, which requires

fewer basis functions to obtain the same level of convergence with respect to the

basis set. For regular chemical systems the number of necessary plane waves are

thousands times larger than the number of Gaussian orbitals, N >> n. However,

at the same time, we make approximations to the self-energy in order to reduce the
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number of terms in the Hamiltonian which when not done carefully can lead to a

loss of accuracy. Further work to improve these approximations is in progress in our

lab. The results of Babbush et al. were further extended to Gaussian basis set by M.

Motta et al. [185] using two-step decomposition of 2-electron integrals introduced by

B. Peng et al. [186]. While this work leads to reduction of N , this is done at the cost

of introducing multiple Givens rotations which ultimately again result in complicated

circuits. Such complication does not arise in the DSEM scheme where the number of

2-body integrals is drastically reduced.

We believe that our work opens several new venues of molecular quantum com-

puting research that were not explored before. First, we propose that the quantum

machine performs an evaluation for the fictitious Hamiltonian that is used to recover

the molecular frequency dependent self-energy. From a mathematical view point,

this has several interesting implications. For the “true”, analytical, and exact self-

energy there is only one Hamiltonian capable of yielding this self-energy. However,

for a self-energy that is numerical and only agrees to a very good numerical accu-

racy with the “true” exact self-energy, there can be several Hamiltonians reproducing

it. These Hamiltonians can be much more suitable for quantum computing than

the original Hamiltonian. Additionally, the analytical properties of Green’s functions

and self-energies such as the high frequency expansion are well known, thus providing

an additional tool in the assessment of the errors arising in computation on NISQ

devices. Moreover, these errors can be partially corrected since the analytic limits

are known when algorithms such as DSEM are employed. Finally, we would like to

mention that DSEM can be naturally extended to work in conjunction with an em-

bedding framework such as dynamical mean field theory (DMFT) [32, 120, 172, 122]

or self-energy embedding theory (SEET) [187, 188, 189, 190].
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5.1 Abstract

Quantum chemistry has been viewed as one of the potential early applications

of quantum computing. Two techniques have been proposed for electronic structure

calculations: (i) the variational quantum eigensolver and (ii) the phase-estimation

algorithm. In both cases, the complexity of the problem increases for basis sets where

either the Hamiltonian is not sparse, or it is sparse, but many orbitals are required

to accurately describe the molecule of interest. In this work, we explore the possi-

bility of mapping the molecular problem onto a sparse Hubbard-like Hamiltonian,
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which allows a Green’s-function-based approach to electronic structure via a hybrid

quantum-classical algorithm. We illustrate the time-evolution aspect of this method-

ology with a simple four-site hydrogen ring.

5.2 Introduction

In the variational quantum eigensolver algorithm [191, 192], one prepares a trial

wavefunction and evaluates the expectation values needed to determine the expec-

tation value of the Hamiltonian with respect to that wavefunction. The number of

measurements scales with the number of nonzero terms in the Hamiltonian, which

typically grows like the fourth power of the number of spin orbitals used in the basis

set for the given calculation. The state is usually prepared with a simple strategy

like a unitary coupled cluster approach [193]. A self-consistent loop optimizes the pa-

rameters in the variational ansatz until the required accuracy is achieved. The phase

estimation algorithm [77] instead determines the phase of exp
(
−iλĤ

)
and requires

many operations of the exponential of the Hamiltonian onto the wavefunction, similar

to time evolution, to complete the calculation (λ is a scaling factor). If the initial

wavefunction has high overlap with the ground state, then the chance to project onto

the ground state with the measurement is high.

In both cases, the complexity of the algorithm grows with the number of nonzero

terms in the Hamiltonian matrix—for the variational quantum eigensolver, this is seen

in the number of measurements required, while in the phase estimation algorithm

it is in the number of independent Trotter steps required for each application of

the exponential of the Hamiltonian (multiplied by a constant). Given the fact that

current noisy intermediate scale quantum (NISQ) computers can only run low depth

circuits, this is problematic for running these algorithms on complex molecules. Even

when fault-tolerant quantum computers become available, they may still require low-

depth circuits due to drift of the tuning of the machine over extended periods of time
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(which is not normally corrected by error correction algorithms). This then implies

that methods focused on making the Hamiltonian matrix sparse are critical to the

success of quantum chemistry applications on quantum computers in the near term.

In this work, we describe the time-evolution piece of the algorithm to do this. It

is based on a simple premise that the electron correlations in the molecule can be

efficiently encoded in the self-energy of the molecule. Then, if we can construct a

sparse Hamiltonian that approximates the self-energy of the molecule well, we can

use it to determine the properties of the molecule. We describe just how such a

process can be carried out on a quantum computer with a simple example below. We

examine the accuracy of using an approximate unitary coupled cluster wavefunction

to estimate the zero-temperature Green’s function of the sparse Hamiltonian, which

is the Hubbard Hamiltonian here.

Of course, this algorithm can be carried out for small systems on conventional

computers (essentially those that can be solved with a full configuration interaction

approach). The need for quantum computer enters when the number of spin orbitals

used in describing the electronic structure of the molecule is more than about 20.

Then the mapping to the Hubbard model becomes difficult to employ to calculate the

Green’s function on a classical computer. But, if the Hamiltonian is sparse enough,

time evolution can still be carried out on a quantum computer. If one has a simple

(and accurate) ground-state preparation protocol, then this approach can successfully

describe molecules that could not be tackled by conventional computers to the same

level of accuracy, nor by conventional VQE or QPE, because those circuits would

be too deep. This situation is likely to continue to hold even when fault-tolerant

quantum computers become available in the future.

60



5.3 Formalism

The retarded Green’s function in position space is defined to be

Gijσ(t) = −iθ(t)Tr e−βĤ{ĉiσ(t), ĉ†jσ}
1

Z
, (5.1)

where Z = Tr exp
(
−βĤ

)
is the partition function, β is the inverse temperature

and θ(t) is the unit step function. Here we have that ĉiσ (ĉ†iσ) are the annihilation

(creation) operators for an electron at site i with spin σ. The braces denote the

anticommutator, and the time-evolution of the operators is given in the Heisenberg

representation. The trace is over all many body states with a fixed number of electrons

(that is, we are calculating a canonical, not a grand canonical Green’s function here).

In this work, we focus on T = 0, where the trace includes just one state, the ground

state. We also can work in momentum space (we assume the lattice is periodic),

where

ĉkσ =
1√
V

V−1∑

j=0

e−ikj ĉjσ, (5.2)

V is the number of lattice sites and we set the lattice constant a = 1. The allowed k

values are 0, π/2, π, and 3π/2 for a four-site lattice.

We will be mapping the hydrogen ring to a sparse Hamiltonian given by the

Hubbard model [194], which is

Ĥ =
∑

ijσ

tij ĉ
†
iσ ĉjσ + U

∑

i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓. (5.3)

Here, tij is the hopping matrix and U is the on-site Coulomb interaction. The first

term is the kinetic energy, and the second term is the potential energy. In this

mapping, the hopping matrix is a full matrix, with nonzero coefficients for all hopping

terms.
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The Hamiltonian can also be written in momentum space as

Ĥ =
∑

k,σ

ϵkĉ
†
kσ ĉkσ +

U

V

∑

kk′q

ĉ†k↑ĉk′↑ĉ
†
q↓ĉk−k′+q↓ (5.4)

and we will be primarily working with this form. Here we have the bandstructure

given by ϵk = 1
V

∑
jj′ tjj′ exp(ikj) , which is independent of j′ due to the translational

invariance of the lattice (hydrogen ring). If the molecule is not a translationally

invariant ring, a more complicated single-particle term to the Hamiltonian is needed,

but we do not discuss this further here. Note that the hopping matrix also includes

diagonal terms with j = j′.

The mapping of the molecular Hamiltonian to the Hubbard Hamiltonian is de-

signed to recover the dynamic part of the finite temperature self-energy of the parent

molecular problem with all two-body interactions present. We call such a mapping the

dynamical self-energy mapping (DSEM). Such a mapping was described in Ref. [163]

where the effective on-site two-body integrals were chosen to recover the first moment

of the frequency dependent self-energy. Here, as a proof of principle, the given sparse

Hamiltonian is created to recover the first moment of the exact self-energy obtained

in the exact-diagonalization procedure. In general, the following scheme of mapping

can be used to design quantum–classical hybrid algorithms where a classical computer

is used to calculate the sparse Hamiltonian that is then employed by the quantum

computer. Details of the preparation of such a mapping are described in Ref. [61].

5.4 Results

The fitting procedure produces a diagonal term t0, a nearest neighbor hopping t1

and a second neighbor hopping t2, along with the on-site repulsion U (see Table 5.1).

The exact ground state is found by diagonalizing the Hamiltonian with four elec-
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Table 5.1: Parameters for the sparse Hubbard Hamiltonian that represents the four-
site hydrogen ring. ll parameters are in Hartrees.

U t0 t1 t2

0.6830907036 -0.3025 -0.380776 0.03035031

trons. It yields

|Ψ0⟩ = α
(
ĉ†0↑ĉ

†
1↑ĉ

†
0↓ĉ

†
1↓ |0⟩ − ĉ†0↑ĉ

†
3↑ĉ

†
0↓ĉ

†
3↓ |0⟩

)
+ β

(
ĉ†0↑ĉ

†
1↑ĉ

†
2↓ĉ

†
3↓ |0⟩ + ĉ†0↑ĉ

†
3↑ĉ

†
1↓ĉ

†
2↓ |0⟩

+ ĉ†1↑ĉ
†
2↑ĉ

†
0↓ĉ

†
3↓ |0⟩ + ĉ†2↑ĉ

†
3↑ĉ

†
0↓ĉ

†
1↓ |0⟩ + 2ĉ†1↑ĉ

†
3↑ĉ

†
0↓ĉ

†
2↓ |0⟩ + 2ĉ†0↑ĉ

†
2↑ĉ

†
1↓ĉ

†
3↓ |0⟩

)

+ γ
(
ĉ†2↑ĉ

†
3↑ĉ

†
2↓ĉ

†
3↓ |0⟩ − ĉ†1↑ĉ

†
2↑ĉ

†
1↓ĉ

†
2↓ |0⟩

)
,

(5.5)

with α = 0.6895316741725, β = 0.059610737681519 and γ = 0.056792869544809.

While we could compute the Green’s function for the exact ground state, that would

not be representative of what a true quantum computation would be that is based on

the variational quantum eigensolver, so we instead use an approximate ground state

based on a factorized unitary coupled cluster ansatz that uses just doubles excitations

from the reference state where both the level with k = 0 and the level with k = 1

are filled. This state was described in Ref. [195], where the excitation operators for a

factorized unitary coupled cluster are given. That approach is generalized here and

summarized in Tables 5.2 and 5.3.

The factorized form of the unitary coupled cluster approximation applies each

doubles excitation (and de-excitation) operator in the order given in Table 5.2 to the

initial reference state, ĉ†0↑ĉ
†
1↑ĉ

†
0↓ĉ

†
1↓ |0⟩. The resulting, approximate ground state in

terms of the three angles θ1, θ3, and θ4 is summarized in Table 5.3. We use the same

notation as used in Ref. [195], which is why we have no θ2, since that was used for a

quad excitation that we do not include here.

Once the analytical coefficients of Table 5.3 are obtained, numerical values are
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Table 5.2: Doubles unitary coupled-cluster operators used in creating the approximate
ground state. The operators are applied in order according to the rows of the table.

Order Unitary coupled cluster factor

1 e−θ1ĉ
†
2↑ĉ

†
3↓ĉ0↓ĉ1↑+θ1ĉ

†
1↑ĉ

†
0↓ĉ3↓ĉ2↑

2 e−θ1ĉ
†
3↑ĉ

†
2↓ĉ1↓ĉ0↑+θ1ĉ

†
0↑ĉ

†
1↓ĉ2↓ĉ3↑

3 e−
π
4
ĉ†3↑ĉ

†
3↓ĉ1↓ĉ1↑+

π
4
ĉ†1↑ĉ

†
1↓ĉ3↓ĉ3↑

4 e+θ3ĉ
†
2↑ĉ

†
3↑ĉ1↑ĉ0↑−θ3ĉ

†
0↑ĉ

†
1↑ĉ3↑ĉ2↑

5 e+θ3ĉ
†
2↓ĉ

†
3↓ĉ1↓ĉ0↓−θ3ĉ

†
0↓ĉ

†
1↓ĉ3↓ĉ2↓

6 e−θ3ĉ
†
1↑ĉ

†
2↑ĉ3↑ĉ0↑+θ3ĉ

†
0↑ĉ

†
3↑ĉ2↑ĉ1↑

7 e−θ3ĉ
†
1↓ĉ

†
2↓ĉ3↓ĉ0↓+θ3ĉ

†
0↓ĉ

†
3↓ĉ2↓ĉ1↓

8 e−θ4ĉ
†
2↑ĉ

†
2↓ĉ0↓ĉ0↑+θ4ĉ

†
0↑ĉ

†
0↓ĉ2↓ĉ2↑

calculated from the analytical coefficients. To do this, equations for the angles θ1, θ3,

and θ4 are needed. These equations are given in Ref. [195] and the angles depend on

the values of α, β, and γ from the exact ground state. They are

θ1 =
1

2
sin−1(4β) (5.6)

θ3 =
1

2
sin−1

(
2
√

2β

c21

)
(5.7)

θ4 = tan−1
(γ
α

)
− tan−1

(
tan2 θ3

)
. (5.8)

After substituting the values for α, β, and γ into the equations for the angles, the

approximate ground state with numerical coefficients is obtained (see Table 5.3).

This wavefunction is representative of a generic state that one would obtain after

performing a variational quantum eigensolver calculation.

Using this approximate ground state, we compute the (approximate) time-dependent

Green’s function, where the ground-state wavefunction is replaced by the approximate

ground-state, and compare it to the exact Green’s function with the exact ground

state. Figure 5.1 shows these two results (real and imaginary part). One can see that
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Table 5.3: General form and final numerical values of the coefficients of the approx-
imate ground state after applying the doubles-only excitations, with ci ≡ cos θi and
si ≡ sin θi.

State Analytical Coefficient Numerical Coefficient

ĉ†0↑ĉ
†
1↑ĉ

†
0↓ĉ

†
1↓ |0⟩ c4√

2
(c21c

2
3 + s21s

2
3) + s4√

2
(s21c

2
3 − c21s

2
3) 0.6902877166375496

ĉ†0↑ĉ
†
3↑ĉ

†
0↓ĉ

†
3↓ |0⟩ c4√

2
(s21s

2
3 − c21c

2
3) + s4√

2
(s21c

2
3 + c21s

2
3) -0.6886258223794277

ĉ†0↑ĉ
†
1↑ĉ

†
2↓ĉ

†
3↓ |0⟩

c21√
2
s3c3 − s21√

2
s3c3 0.05873846703927717

ĉ†0↑ĉ
†
3↑ĉ

†
1↓ĉ

†
2↓ |0⟩ c3s3√

2
0.06048300832376081

ĉ†1↑ĉ
†
2↑ĉ

†
0↓ĉ

†
3↓ |0⟩ c3s3√

2
0.06048300832376081

ĉ†2↑ĉ
†
3↑ĉ

†
0↓ĉ

†
1↓ |0⟩

c21√
2
s3c3 − s21√

2
s3c3 0.05873846703927717

ĉ†1↑ĉ
†
3↑ĉ

†
0↓ĉ

†
2↓ |0⟩ c1s1 0.11922147536303802

ĉ†0↑ĉ
†
2↑ĉ

†
1↓ĉ

†
3↓ |0⟩ c1s1 0.11922147536303802

ĉ†2↑ĉ
†
3↑ĉ

†
2↓ĉ

†
3↓ |0⟩ c4√

2
(s21c

2
3 + c21s

2
3) + s4√

2
(c21c

2
3 − s21s

2
3) 0.06687536735226934

ĉ†1↑ĉ
†
2↑ĉ

†
1↓ĉ

†
2↓ |0⟩ c4√

2
(s21c

2
3 − c21s

2
3) − s4√

2
(c21c

2
3 + s21s

2
3) -0.04669803278042805

the two Green’s functions are nearly identical; their differences are on the order of

10−4. The reason why is that the square of the overlap of the approximate state with

the ground state is very high (the fidelity is 0.99979). This value is surprising given

that the approximate ground state differs from the exact one with coefficients that

are on the order of 0.01, but there is a cancellation leading to a higher fidelity.

Unfortunately, for such a small system, it does not make sense to use Dyson’s

equation to extract the frequency-dependent self-energy, because the data is truncated

to too short of a time. This leads to inaccuracies here, because the system is finite

and the Fourier transform of the Green’s function yields a sum over delta functions.

But if the Green’s function is cut-off too early in the time domain, the results of the

Fourier transform would be significantly distorted. This becomes less of a concern for

larger molecules because they have so many frequencies that they tend to dephase

and create a decaying Green’s function in the time domain, which can be cut off,
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resulting in just a small broadening of the delta functions, so the calculations can

proceed more normally for larger systems. Most molecules will fall into this category.

Figure 5.1: Exact (solid) and approximate (dashed) retarded Green’s function for the
sparse Hubbard Hamiltonian. The time is in units of ℏ/H.

5.5 Discussion

The algorithm on the quantum computer is now straightforward. After mapping

the problem from the molecule to the sparse Hubbard Hamiltonian, we use the factor-

ized form of the unitary coupled cluster ansatz to create an approximate ground state.

In general, such an approach will involve many different types of excitations, but in

this simple example, it involves only doubles excitations. The lower the order of the

excitation, the lower the depth of the circuit for the quantum computer, so it is likely

that many calculations will opt to only use singles and doubles, if possible. Then we

would invoke the algorithm from the Los Alamos group [196, 108] to calculate the

Green’s function by measuring the x or y Pauli spin operator on the ancilla qubit to

determine the real and imaginary parts of G. Both of these steps can be carried out

with relatively low-depth circuits due to the sparsity of the effective Hamiltonian, but

they do still require time evolution, which is still beyond the capability of currently
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available NISQ machines (see Ref. [110] for a discussion of strategies to determine

Green’s functions on NISQ machines). Once one has determined the Green’s func-

tion to far enough time on the quantum computer, then we would take the Fourier

transform, extract the self-energy from Dyson’s equation, and employ it to describe

the Green’s function of the molecule. This then allows the ground-state energy of

the molecule to be determined. Alternatively, one can extract the self-energy from

imaginary axis calculations at the Matsubara frequencies, which may be numerically

more stable.

5.6 Conclusions

In this work, we described an approach to use on near-term quantum computers

that will allow us to calculate the electronic structure of more complex molecules

sooner. The approach maps the molecule onto a sparse Hamiltonian that has a full

single-particle hopping matrix, but only local interactions. Due to the significant

reduction in the number of nonzero matrix elements, this sparse Hamiltonian be-

comes much easier to simulate on a quantum computer and one should be able to

determine it’s Green’s function once time evolution becomes possible; this may oc-

cur in near-term NISQ machines or may need to wait until fault-tolerant computers

are available. Once the Green’s function for the sparse Hamiltonian is found on the

quantum computer, we extract the self-energy and use it as the self-energy for the

molecule in the full molecular problem. We showed how using an approximate form

for the ground state leads to an accurate approximation to the exact result for a

relatively long period of time. Hence, this makes it promising that such an approach

can lead to accurate and efficient ways to perform electronic structure calculations

on quantum computers.

In terms of quantum computing complexity, a factorized form of UCC state prepa-

ration uses only doubles excitations here, and the time-evolution needed to compute
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the Green’s function requires only control operations for the application of the cre-

ation or annihilation operators, but not for the time evolution. This is contrary to

the quantum phase estimation algorithm, which requires controlled application of the

Hamiltonian. Hence, the approach described here has the potential to be quite effi-

cient for implementation on both near-term and fault-tolerant quantum computers.
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6.1 Introduction

The solution of the time-independent Schrodinger equation continues to be one

of the central challenges to non-relativistic quantum mechanics. This solution pro-

vides us access to multiple properties of the system such as optimized geometries,

excitation energies, ionization potentials, etc. One powerful tool to solve this type

of difficult differential equations is through Green’s functions. In quantum mechan-

ics, Green’s functions are defined as correlation functions, from which we can extract

information about the system, such as the density of states, relaxation times and
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response functions, etc. Moreover, Green’s function formalism provides us direct ac-

cess to thermodynamic quantities while naturally including temperature dependence.

Despite its versatility, it is computationally intensive to compute.

Calculation of exact one-particle Green’s function is computationally infeasible be-

cause of the exponential increase in cost as the system size increases. Over the years,

many approximate methods to compute Green’s functions have been proposed, for

example, GW [197, 198, 199], GF2 [25, 26, 27], GFCC [28, 200, 31, 30]. These ap-

proximations provide us with accurate results in the weakly and moderated correlated

regimes. However, many systems of interest fall outside the regime of validity of these

approximations. Embedding methods like DMFT [32, 33], DMET[201, 202, 203], and

SEET[34, 35, 36, 37], have also been proposed to overcome this challenge. Most of

these methods are based on using exact diagonalization(ED) as the impurity solver,

which again limits the size of impurity orbitals because of ED’s exponential scaling.

Recent developments in the field of quantum computing have shown that we can

overcome this limitation by using quantum machines. Several quantum algorithms

have been proposed for obtaining Green’s function from quantum machines. Bauer

et al [106] calculate the green’s function by time evolving the Hamiltonian in the

real time domain and Fourier transform it to obtain it in the frequency domain. De-

spite their accuracy and scalability, time evolution algorithms require longer coher-

ence times, thus making them a bad choice for noisy intermediate scaling quantum

(NISQ) machines. On the other hand, Variational quantum algorithms are noise

resilient and require only a moderate number of qubits. Nakagawa and cowork-

ers [110] propose the use of variational quantum eigensolver(VQE) to evaluate the

Green’s function. They also use Lehmann’s representation [24] of the Green’s func-

tion, for which they obtain the excited states using subspace-search variational quan-

tum eigensolver(SSVQE). In references [110, 204], green’s function was calculated

using McLachlan variational principle. In another recent work, the continued frac-
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tion representation of Green’s function was calculated in the Krylov subspace using

quantum subspace expansion(QSE) [113].

In this work, we propose the use of QSE to calculate green’s function in Lehmann’s

representation. We use a hybrid algorithm, where QSE is used to calculate the tran-

sition matrix elements on the quantum machine. Green’s function is then calculated

on the classical computer through post-processing.

6.2 Method

6.2.1 Green’s Function Formulation

The Hamiltonian for a fermionic system is given by

H =
∑

ij

hijc
†
icj +

1

2

∑

ijkl

vijklc
†
ic

†
jclck (6.1)

where hij are vijkl are one-body and two-body integrals, and c†i and ci are fermionic

creation and annihilation operators respectively. Green’s function of such a system

characterizes the propagation of a state containing an additional particle or hole. The

exact Green’s function is given by

ιGij(t, t
′
) = ⟨Ψ0|T [cHα(t)c†Hβ(t

′
)] |Ψ0⟩ (6.2)

where |Ψ0⟩ is the Heisenberg ground state of the system, cHα(t) is the field operator in

Heisenberg representation and T stands for the time-ordered product of operators. In

this equation, time ordering only makes a difference in the convergence factor which

doesn’t affect the Green’s function value at any finite value of time, therefore, we can

rewrite Eq 6.2 as

ιGij(t, t
′
) = ⟨Ψ0| {cHα(t), c†Hβ(t

′
)} |Ψ0⟩Θ(t− t

′
) (6.3)
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where Θ is the Heaviside step function. Matsubara Green’s function is then obtained

by taking the Fourier transform as

Gij(ιωn) = ⟨Ψ0| ci
1

ιωn + E0 −H
c†j |Ψ0⟩+

⟨Ψ0| c†j
1

ιωn +H − E0

ci |Ψ0⟩ (6.4)

where ωn are the Matsubara frequencies. Then, we introduce the resolution of iden-

tities in the N-1 and N+1 particle subspaces to obtain the Green’s function as

Gij(ιωn) =
∑

µ

⟨Ψ0| ci
∣∣Φ+

µ

〉 1

ιωn + E0 − E+
µ

〈
Φ+

µ

∣∣ c†j |Ψ0⟩

+
∑

µ

⟨Ψ0| c†j
∣∣Φ−

µ

〉 1

ιωn + E−
µ − E0

〈
Φ−

µ

∣∣ ci |Ψ0⟩ (6.5)

The first and second parts of G describe the attachment of an electron to the system

and the elimination of an electron from the system, respectively. The latter contains

all cationic states and exhibits explicitly as poles the ionization potentials (IP) of the

system. Analogously, the electron affinities (EA) appear as poles of the former which

is associated with anionic states. Now let us define the transition matrix elements as

X+
µj =

〈
Φ+

µ

∣∣ c†j |Ψ0⟩ ; (X+
µj)

∗ = ⟨Ψ0| cj
∣∣Φ+

µ

〉

X−
µi =

〈
Φ−

µ

∣∣ ci |Ψ0⟩ ; (X−
µi)

∗ = ⟨Ψ0| c†i
∣∣Φ−

µ

〉
(6.6)

Substituting these matrix elements into Eq 6.5 gives us

Gij(ιωn) =
∑

µ

(X+
µi)

∗X+
µj

ιωn + E0 − E+
µ

+
∑

µ

(X−
µj)

∗X−
µi

ιωn + E−
µ − E0

〈
Φ−

µ

∣∣ ci |Ψ0⟩ (6.7)
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After representing the Green’s function in this form, the major challenge that remains

is to calculate the transition matrix elements, for this purpose, we employ QSE.

6.2.2 Quantum Subspace Expansion

Quantum subspace expansion(QSE) based methods provide us with a new way

of solving the eigenvalue problem on a quantum computer. In these methods, the

wavefunction is represented as a linear combination of basis states instead of preparing

it directly on a quantum computer, thus avoiding the need to have an approximate

ansatz. The general idea of QSE is to obtain the entire eigenspectrum of a system in

a subspace defined from the reference state, |Ψ⟩. The ansatz for such a subspace can

be defined as

|Φi⟩ = R̂i |Ψ⟩ (6.8)

where Ψ is the VQE ground state and R̂i is an excitation operator with i specifying

different levels of excitation. Then the eigenspectrum can be computed by diagonal-

izing the Hamiltonian defined in the subspace spanned by {|Φi⟩}, essentially reducing

the problem to a generalized eigenvalue problem.

HsubC = SsubCE (6.9)

where Hsub is the Hamiltonian in truncated Hilbert space, C are eigenvectors, Ssub

gives overlap and E is the eigenvalues matrix. Hsub and Ssub matrices are defined as

Hsub
ij = ⟨Φi|H |Φj⟩ , Ssub

ij = ⟨Φi|Φj⟩ (6.10)

Here, H and S matrices are computed on a quantum machine and then Eq 6.9 is

solved to obtain eigenvectors and eigenenergies.
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6.2.3 Green’s Function Calculation Using QSE

As discussed in Section A, we can use QSE to calculate the transition matrix

elements and then Green’s function can be obtained from Eq 6.5. For the sake

of simplicity, here we give a detailed description for calculation of only one of the

transition matrix element, the procedure is similar for all the other terms. Our

implementation of QSE to calculate transition matrix elements is as follows:

• Prepare ground state of the system. We note that this step is independent of

rest of the algorithm. We can use QPE, QSE or any other quantum algorithm

for ground state preparation. For this paper, we use VQE.

• Choose an ansatz for N+1 subspace.

∣∣Φ+
mu

〉
=
∑

i

Viµc
†
i |Ψ0⟩ (6.11)

• Calculate H and S matrices in N+1 subspace on the quantum machine.

HN+1
ij = ⟨Ψ0| ciHc†j |Ψ0⟩ , SN+1

ij = ⟨Ψ0| cic†j |Ψ0⟩ (6.12)

• Solve the eigenvalue equation.

HN+1C = SN+1CE (6.13)

• Compute transition matrix elements as

X+
µj =

〈
Φ+

µ

∣∣ c†j |Ψ0⟩ =
∑

i

Viµ ⟨Ψ0| cic†j |Ψ0⟩

=
∑

i

ViµSij (6.14)
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• Substitute the value of transition matrix elements in Eq 6.7 to compute Green’s

function on classical computer.

6.2.4 Statistical Analysis

Green’s function calculated on a quantum computer includes some quantum noise

as well as statistical error. Statistical errors are intrinsic to the calculations performed

on quantum computers. Ideally, these errors can be reduced by increasing the number

of measurements as the magnitude of error is inversely proportional to the square of

number of measurements. However, when normally distributed data goes through

non-linear transformations, it loses its normality. In such cases, standard error prop-

agation techniques may not be of great help as there is a certain bias in this new

set of data. The best way to deal with such non-traditional datasets is using resam-

pling techniques like jackknife, bootstrap etc. For this paper, we use jackknife for the

error propagation. Jackknife method works by systematically redistributing the sam-

ples to form sub-samples, and estimating the statistics of each of these sub-samples

separately. The general procedure for jackknife is as follows:

• Distribute the samples into M bins.

• Form a sub-sample Mi of M-1 bins, where Mi contains all the bins except the

ith bin

• Evaluate the mean, Ui, in each of the M bins and obtain an error estimate from

the variance of these estimates.

• Jackknife mean of the complete set of data is then given by

U = U0 − (M − 1)(Ū − U0) (6.15)
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where U0 is the average of complete dataset, and Ū is given by taking an average

over all Ui.

• Error estimate is given by

∆U =
√
M − 1(

1

M

M∑

i=1

(Ui)
2 − Ū2)1/2 (6.16)

In section 6.3, we show how the use of jackknife analysis improves the statistics of

our results.

6.3 Results

In this section, we show some results from our experiments to examine the above-

described method. We test our method on H2 and H4 chains in STO-6G basis. We

have performed all our calculations using Qiskit[205]. We used Jordan-Wigner [73]

type mapping to map our Hamiltonian from fermionic to qubit Hamiltonian. We

systematically analyze our results by slowly adding different sources of error to our

calculations, thus helping us differentiate between the error from quantum hardware

and the method itself.

6.3.1 Green’s Function from QSE and FCI

At first, we compare the results from QSE calculation performed on statevector

simulator [205] to FCI results. The results from the simulator are deterministic, this

helps us track the errors arising because of approximations used in the QSE algorithm.

Fig. 6.1 shows the real and imaginary part of G00(ιω) element for H2 molecule com-

puted at equilibrium bond length using QSE and FCI. These values were computed

on a Matsubara frequency grid.
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Figure 6.1: The real(top) and imaginary(bottom) part of G00(ιω) element for H2

molecule in the STO-6G basis evaluated using FCI and QSE. Inset on respective
plots show the difference between Green’s function calculated using FCI and QSE.

Next, we performed the similar calculations on a H4 chain with each Hydrogen

separated by 1 Å. Fig. 6.2 and 6.3 show the G00(ιω) and G11(ιω) elements from both

QSE and FCI. Inset in the plot shows the actual difference between the elements at

different frequency points.

6.3.1.1 Statistical Errors

The results obtained from quantum machines are not deterministic but stochastic

in nature and therefore, some post-processing is required to propagate the numbers
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Figure 6.2: The real(top) and imaginary(bottom) part of G00(ιω) element for H4

chain with bond length 1.0 Å in the STO-6G basis evaluated using FCI and QSE.
Inset on respective plots shows the difference between Green’s function calculated
using FCI and QSE

through multiple calculations. Here, we describe these post-processing procedures

and how QSE will behave on a fault-tolerant error-corrected quantum machine. We

can do so by performing our calculations on the QASM simulator without any noise

model. The results obtained from the simulator are shown in Figure 6.4. The data

obtained from the simulator is expected to be normally distributed. However, as

mentioned in the earlier section, non-linear operations on those results renders the

distribution non-normal. This can be observed in Fig 6.6 and Fig 6.7, showing the

distribution of real and imaginary parts of G00(ιω) element for different sample sizes,

where the histograms are deviating slightly from the normal behavior. This is further
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Figure 6.3: The real(top) and imaginary(bottom) part of G11(ιω) element for H4

chain with bond length 1.0 Å in the STO-6G basis evaluated using FCI and QSE.
Inset on respective plots shows the difference between Green’s function calculated
using FCI and QSE

made clear by the behavior of standard deviation with respect to sample size as

shown in Fig. 6.8. The standard deviation is expected to be inversely proportional

to M2 where M is the sample size, however, we observe that the standard deviation

doesn’t change with the increasing number of samples. Therefore, we resample our

results using jackknife, leading to the expected decrease in the error as the sample size

increases, Fig. 6.9. In Fig. 6.5, we compare the QSE Green’s function calculated on

the statevector simulator to the Green’s function calculated on the QASM simulator

without any noise after the jackknife.
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Figure 6.4: The real(top) and imaginary(bottom) part of G11(ιω) element for H2

molecule with bond length 1.0 Å in the STO-6G basis evaluated using FCI and QSE
done on the QASM simulator.

6.4 Conclusions

In this work, we described a hybrid quantum-classical approach for calculating

Green’s functions on quantum computers. We start by preparing the ground state of

the system using VQE. We expand the subspace around this VQE ground state to

obtain transition matrix elements for n+1 and n-1 states, where n is the number of

spin orbitals. These transition matrix elements are then used on a classical machine

to calculate the Green’s function using Lehmann’s representation of the spectral func-

tion. We successfully demonstrated that our algorithm produces the Green’s function

within reasonable error limits of the FCI Green’s function. We further used the re-

sampling approach to propagate the statistical noise from the quantum simulator.

There are other algorithms that use quantum subspace expansion to study excited

state properties. In ref. [113], authors use QSE to calculate Green’s functions. Our
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Figure 6.5: The real(top) and imaginary(bottom) parts of G11(ιω) element for H2

molecule with bond length 1.0 Å in the STO-6G basis evaluated using FCI and QSE
done on the QASM simulator. QSE results have been post-processed using jackknife
for proper error propagation.

approach differs from this work as they calculate the continued fraction representa-

tion of Green’s function using the Lanczos scheme.

We believe that the ability to calculate Green’s functions on near-term quantum

computers is an opportunity to study chemical systems in more detail. With Green’s

function based approaches, we can calculate the thermodynamic properties and have

access to some of the excited state properties without the need to obtain excited

states. We can use this in embedding theories like DMFT, SEET, etc. We must

mention that this approach can also be used in conjunction with dynamic self-energy

mapping to calculate the Green’s functions on near-term quantum devices.
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Figure 6.6: Distribution of real component of the Green’s function element G00(ιω)
for the samples taken through the simulator. Top left: For 2000 Samples. Top right:
For 4000 Samples. Bottom left: For 8000 Samples. Bottom right: For 16000 Samples.

Author contributions

DD developed the code for calculating the Green’s functions and analyzed the

errors.
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Figure 6.7: Distribution of imaginary component of the Green’s function element
G00(ιω) for the samples taken through the simulator. Top left: For 2000 Samples.
Top right: For 4000 Samples. Bottom left: For 8000 Samples. Bottom right: For
16000 Samples.
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Figure 6.8: Error distribution obtained from the crude data(without using any re-
sampling technique) as the sample size increases with respect to 1/M2 where M is
the total number of samples
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Figure 6.9: Error distribution obtained after the jackknife analysis as the sample size
increases with respect to 1/M2 where M is the total number of samples
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CHAPTER VII

Conclusions

We would like to conclude this dissertation by summarizing our contribution to

the field of finite temperature electronic structure theory methods. In this work, we

have introduced two hybrid quantum-classical algorithms that are suitable for calcu-

lating Green’s functions using NISQ devices.

In Chapter 4, We have successfully devised an effective Hamiltonian approach called

DSEM. DSEM is a two-step procedure where we first sparsify the Hamiltonian using

a polynomially scaling low-level method. This sparsified Hamiltonian containing a

maximum of n2 terms compared to the n4 terms of full Hamiltonian (n = number

of orbitals) is then used for high-level calculations, we use ED here. We show that

the GF2 and ED energies obtained using the effective Hamiltonian are in good agree-

ment with the original GF2 and ED energies. We propose to use DSEM as a hybrid

classical-quantum algorithm. The first part of the algorithm can be executed on the

classical machine while the quantum machine can be used for more exact calculations.

The sparse nature of the Hamiltonian helps decrease the depth of the quantum cir-

cuit, thus making it suitable for NISQ machines. We have shown that we achieve an

order of magnitude reduction in the number of gates required for mapping of sparse

Hamiltonian when compared to the full Hamiltonian. We must note that in the pre-

sented work, we use a classical solver to show proof of principle. This suggests that
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DSEM can be used even if the quantum machines are inaccessible, effective Hamilto-

nian approaches have shown a lot of promise in the history of quantum simulations.

In Chapter 5, we use this sparse Hamiltonian approach to study the Hubbard model.

In this work, we show how an approximate form of ground state Hamiltonian can

lead us to more accurate results by using this approach.

Chapter 6 introduces a quantum algorithm based on quantum subspace expansion

for the calculation of Green’s functions. We use QSE to calculate the transition ma-

trix elements which are used to calculate Green’s function on the classical computer

through post-processing. QSE provides us with the option of making our calculations

parallel over multiple quantum machines and the structure of circuits makes it re-

silient against some of the quantum noise. We have demonstrated that the Green’s

function calculated using QSE is approximately equal to the one calculated using FCI

within reasonable error limits. We also calculate the Green’s function using a simula-

tor that mimics an ideal fault-tolerant quantum machine, which helps us understand

the statistical noise associated with a quantum machine. A proper way to treat this

statistical noise has also been discussed in this work. We also try to understand the

impact of quantum noise on QSE by running some calculations on quantum hard-

ware. Although we have demonstrated both the algorithms in a stand-alone fashion,

the goal of our work is to use them together, so that the sparse Hamiltonians from

DSEM can help decrease the circuit depth of QSE.

The current quantum computers cannot outperform the classical computers but this

thesis is a small effort to make the quantum algorithms practically useful in the near

future. We believe that through these hybrid algorithms, one can leverage the best

from both classical and quantum computers.
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CHAPTER VIII

Future Directions

In this thesis, we have introduced two novel algorithms for Green’s function based

methods on near term quantum machines. This work opens the path to a number of

promising directions. The most apparent one is to study how these two algorithms

will perform together. It would be interesting to see the difference in circuit depth of

the QSE algorithm as we use DSEM Hamiltonian instead of full Hamiltonian of the

system.

We would also like to explore different parameterization schemes for the DSEM proce-

dure such that we can find a systematically improvable way to generate the effective

Hamiltonians. This work can also be extended to the embedding theories such as

DMFT, SEET, DMET etc. We hypothesize that the use of DSEM procedure to gen-

erate the impurity Hamiltonian will provide us the option to study larger impurities

on near term quantum hardware.

We understand that quantum computers have limitations and there is still a long

way to go in understanding what quantum computers can and cannot do. We must

also acknowledge that it is possible that the actual applications of quantum machines

do not match the enthusiastic expectations. But we believe that the algorithms

we have developed contribute to the field of classical electronic structure theory as

well. For example, the DSEM algorithm can be used for generating effective sparse
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Hamiltonians which can decrease the scaling of existing classical methods, thus mak-

ing them tractable for classical machines. This comes from the long history of model

Hamiltonians in quantum physics and chemistry for studying systems of interest more

accurately while the environment is treated in an approximate fashion.

It is also interesting to see how the quest of building and using the quantum hardware

can help enhance our understanding of quantum physics and chemistry in general.

One example of such a realization is that different quantum phases of matter can be

distinguished according to the structure of their long-range quantum entanglement

[206].

Finally, we should realize that the quantum technology is still in its infancy and that

the NISQ devices do not aim to change the world on their own but they are a step

toward the quantum technology we hope to attain.
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circuitos cuánticos parametrizados. Quantum, 3(214):10–22331, 2019.

[98] Tyler Volkoff and Patrick J Coles. Large gradients via correlation in random pa-

rameterized quantum circuits. Quantum Science and Technology, 6(2):025008,

2021.

[99] Harper R Grimsley, Sophia E Economou, Edwin Barnes, and Nicholas J May-

hall. An adaptive variational algorithm for exact molecular simulations on a

quantum computer. Nature communications, 10(1):1–9, 2019.

[100] Nicholas H Stair and Francesco A Evangelista. Simulating many-body systems

with a projective quantum eigensolver. PRX Quantum, 2(3):030301, 2021.

[101] Oinam Romesh Meitei, Bryan T Gard, George S Barron, David P Pappas,

Sophia E Economou, Edwin Barnes, and Nicholas J Mayhall. Gate-free state

preparation for fast variational quantum eigensolver simulations: ctrl-vqe. arXiv

preprint arXiv:2008.04302, 2020.

[102] Radi A Jishi. Feynman diagram techniques in condensed matter physics. Cam-

bridge University Press, 2013.

101



[103] Gianluca Stefanucci and Robert Van Leeuwen. Nonequilibrium many-body the-

ory of quantum systems: a modern introduction. Cambridge University Press,

2013.
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117



Sistos, Iskandar Sitdikov, Seyon Sivarajah, Slavikmew, Magnus Berg Sletfjerd-

ing, John A. Smolin, Mathias Soeken, Igor Olegovich Sokolov, Igor Sokolov,

Vicente P. Soloviev, SooluThomas, Starfish, Dominik Steenken, Matt Sty-

pulkoski, Adrien Suau, Shaojun Sun, Kevin J. Sung, Makoto Suwama, Os-

kar S lowik, Rohit Taeja, Hitomi Takahashi, Tanvesh Takawale, Ivano Tav-

ernelli, Charles Taylor, Pete Taylour, Soolu Thomas, Kevin Tian, Mathieu

Tillet, Maddy Tod, Miroslav Tomasik, Caroline Tornow, Enrique de la Torre,

Juan Luis Sánchez Toural, Kenso Trabing, Matthew Treinish, Dimitar Trenev,

TrishaPe, Felix Truger, Georgios Tsilimigkounakis, Davindra Tulsi, Doğukan
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