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ABSTRACT

In this dissertation, a hybrid method combing both the analytical and the numerical solutions is

developed for full-wave simulations of vegetation. A realistic field setup is introduced to consider

the plant structures and gaps within the vegetation canopy. The scattering of the whole vegetation

field is then decomposed and solved in the following two steps. In the first step, the numerical

solver is utilized to perform full-wave simulations of one single plant, from which the correspond-

ing T-matrix is extracted based on the near-field using the Huygens principle and vector cylindrical

wave (VCW) expansions. The full-wave based T-matrix characterizes the scattering of one single

plant and captures the multiple scattering effects caused by the plant structure. In the second step,

the T-matrix is combined with Foldy-Lax (FL) multiple scattering equations to consider the in-

teractions among different plants within the vegetation field. The resulting closed-form equations

are solved analytically using the VCW expansions and the translational addition theorem. The

convergence and the accuracy of the hybrid method are verified with the High Frequency Structure

Simulator (HFSS) by comparing the solutions of scatterings from four wheat plants. After that, the

hybrid method is applied to investigate the frequency dependence of the vegetation effects by per-

forming full-wave simulations of wheat fields at L-, S-, and C-band. A physical-iterative approach

is implemented together with Message Passing Interface (MPI) parallel computing to facilitate the

Monte Carlo simulations. The results obtained from the hybrid method are compared with those

of the classical radiative transfer equation (RTE) model to illustrate the importance of full-wave

simulations.

In the second part, the full-wave simulation of forest is realized using the hybrid method after

two critical issues are successfully resolved. To overcome the challenge in calculating the tree T-

matrix, the general relation between the T-matrix and the scattered field coefficient is first revealed

x



and a far-field based T-matrix extraction method applicable for plants of arbitrary size and structure

is thus developed. Second, the memory challenge of hybrid method is eliminated by adopting the

iterative solutions for solving the FL equations. The proposed methods are validated with FEKO by

comparing the field solutions of scattering from three eight meters tall trees. The full-wave Monte

Carlo simulations of forest are performed to investigate the tree effects on microwave propagation

and the potential of using L-band signal to retrieve soil moisture over the forested area.
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CHAPTER 1

Introduction

1.1 Background and Motivation

The research of full-wave simulation of vegetation is motivated by the microwave remote sensing

of soil moisture. The soil moisture is the amount of the water stored in the soil, which makes up

only about 0.001% of total water found on Earth. Although the volume of the soil moisture is

small compared to the other components of the water cycle, it yet plays an important role in many

hydrological and biological process. It not only controls the heat and mass transfer between the

atmosphere and the Earth, but also determines the amount of water that contributes to the surface

runoff versus the amount that infiltrates into soil (Fig. 1.1). For instance, a wet soil can prevent

the Earth from being overheated through evaporation, and consequently affect the distribution of

cloud and generation of precipitation. In addition, the soil moisture is the direct water source of

the agriculture and natural vegetation, and thus monitoring of its variation can be very helpful

for irrigation scheduling and corp yield forecasting. Moreover, the continuous observation of soil

moisture in a large scale, over a long period of time, can provide a profound insight on the climate

change as well. Consequently, knowledge of soil moisture distribution in global scale is of great

importance in a variety of applications, including agricultural management, flood assessment, and

climate change prediction, etc.

As a consequence of all these needs and importance of soil moisture, many approaches have

been explored to measure the soil moisture, ranging from the in-situ measurement methods to

1



Figure 1.1: Water-cycle diagrams (copy from reference [1])

spaceborne satellite systems. The in-situ methods, including simple gravimetric technique and

complex electronic instrument, are low cost and excellent for small scale monitoring. However,

they are usually labor-intensive and has a very sparse spatial resolution in global scale and thus can

hardly be applied to the global circulation (< 50-100 km) and hydrologic models (< 10-20 km)

for climate prediction and weather forecast [2]. The alternative for obtaining soil moisture are the

remote sensing technology such as the aerial photography, thermal infrared, and the microwave

technique. Among them, the microwave is the only one that is transparent to cloud and rain, able

to penetrate through vegetation, and capable of operating at night. All these unique properties

make it possible to use microwave system to monitor the Earth independent of the time of day and

under all weather conditions. Consequently, the spaceborne microwave remote sensing system has

been the best option for obtaining global soil moisture distribution with the spatial and temporal

frequency that can satisfy the science and application needs for hydrology.

The microwave remote sensing instruments can be classified into two classes, which are the

active radar and the passive radiometer [3]. The radar, consisting of both transmitter and receiver,

2



retrieves the information by first sending out the microwave to land surface and then measuring

the corresponding reflected signal. While the radiometer detects the soil moisture by measuring

the emission form the earth, which only requires receiver and thus is cheaper than the radar sys-

tem (Fig. 1.2). The most poplar active approach is the synthetic aperture radar (SAR) system as

they can offer the best spatial resolution (˜1km). However, they are suffered with the low tempo-

ral frequency and is constrained by the coherent nature of signal which make it highly sensitive

to the geometrical distribution of the scatterers including the leaves, branches, and trunks as well

as the soil surface. The radiometers, on the other hand, provide an trade off between the spatial

and temporal resolution. While the spatial resolution is coarser at the scale of 10s kilometers,

it achieves a better temporal resolution (every 2-3 days) with a much wider swath. The passive

system is also less sensitive to the surface roughness as the brightness temperature is measured in-

coherently. Moreover, the brightness temperature has a better sensitivity to soil moisture compared

with backscattor measured from SAR. For example, the emissivity at L-band can vary form 0.5 for

a wet soil to almost 1 for a very dry one at L-band [4].

Table 1.1: Spaceborne microwave satellite system.

Satellites Agency
Passive/
Active

Frequency
(GHz)

Spatial
Resolution

Temporal
Resolution

Time

SMOS ESA Passive L:1.40 50 km 3-7 days 2009-2021

SMAP NASA
Passive/
Active

L:1.41/1.26 40/3 km 7 days
2015-
present

NISAR
NASA-
India

Active L:1.26, S:3.20 3-10 km 12 days 2023

CIMR ESA Passive L:1.41, C:6.90 5-15 km sub-daily 2028

Knowing the features of the microwave techniques, experimental systems and platforms for

detecting the soil moisture has been proposed and implemented since the 1980s including tower-

based, airborne, and spaceborne system (Table 1.1). In 2009, the first dedicated satellite mission

Soil Moisture and Ocean Salinity (SMOS) was launched by European Space Agency (ESA) to

provide high quality measurement of surface soil moisture based on a L-band radiometer with a

50km spatial resolution [5]. In 2015, the National Aeronautics and Space Administration (NASA)
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carried out the Soil Moisture Active and Passive (SMAP) mission which combined both the L-band

SAR and radiometer to achieve a better spatial resolution of 9 km [6]. The higher frequency data

obtained from other missions have also been used to enhance the spatial resolution of soil moisture,

such as the C-band observation of RADARSAT-2 satellite [7], and the C- and X-band channel of

AMSR-E [8]. In the future, the NASA-ISRO SAR (NISAR) will utilize the L- and S-bands [9] and

the Conical Imaging Microwave Radiometer (CIMR) satellite has multiple operating frequencies

including L-, C-, X-, Ku-, and Ka-bands [10]. The increasing availability of spaceborne microwave

system provides a great opportunity for further improving the L-band soil moisture retrieval by

combining frequencies at different bands.

Figure 1.2: Microwave remote sensing of soil moisture.

The underline physics of retrieving the soil moisture from the microwave is that the dielectric

permittivity of soil is predominately determined by its moisture content. An increase in the soil

moisture results in a larger soil permittivity such that it causes a greater reflection of the incident

wave in the active case. At the same time, it would reduce the emission due to the less transmission

of energy into the soil for the passive case. In both scenarios, the signal should penetrate through
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the vegetation layer before being received by the receiver, as most of the land surface are covered

by the vegetation canopy. The microwave would be scattered, absorbed and depolarized by the

vegetation when passing through the canopy. The absorption are mainly due to the water stored

in the vegetation layer which is characterized by the vegetation water content (VWC). The VWC

of crop are within 0.1 − 5kg/m2 and the VWC of forest range from 6.0kg/m2 to 18.0kg/m2

depending on the tree height and tree density. The vegetation effects on the microwave also depend

on the physical and electrical properties of the scatterer, including the size, shape and the spatial

distribution of the scatterer, as well as the attributes of the incident wave such as the frequency,

polarization and the incident angle. Due to the complex nature of the random scattering, the

successful soil moisture retrieval relies on an accurate modeling of the wave propagation in the

vegetation. The focus of the dissertation is to construct a method that can perform full-wave

simulation of vegetation to quantify the vegetation effects on the microwave.

1.2 Literature Review

A wide range of methods have been developed for modeling the vegetation effects on microwave

in the last few decades. They can be generally classified into measurement based empirical mod-

els [11] and physical based theoretical models. The empirical model is built based on the mea-

surement data obtained from a specific location, thus generally have a small domain of validity

compared with those of theoretical approaches. The theoretical model can be further categorized

into analytical and numerical models. The analytical approach can always be expressed in a simple

closed-form by introducing limiting assumptions and thus has a higher efficiency compared with

the numerical model. But their applications are constrained by the assumptions that have been

made. The numerical models which require direct solutions of Maxwell equations are the most

general and accurate methods but their capability is restricted by the tremendous computation cost.

The analytical approaches of random media that have been widely used for modelling wave

propagation in vegetation, includes the effective medium approximation [12], the radiative transfer
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Figure 1.3: Radiative transfer model.

equation (RTE) [13], the distorted Born approximation (DBA) [14]. These models treat the vege-

tation canopy as a random media and assumes that the vegetation is statistically homogeneous in

3-dimensional space, so that it can be represented by a layered medium (Fig. 1.3) with an effective

propagation constant or an effective permittivity leading to an effective attenuation rate and an

effective mean field [15–17]. The common approximations used for calculating the effective prop-

agation constant are the Maxwell Garnett mixing formula [15] or the Foldy’s approximation [16].

The result of the effective medium model is that the microwave transmission through the vegeta-

tion field is characterized by exp(−τ), where τ is the product of the effective attenuation rate and

the thickness of the vegetation layer. The scattering of vegetation is then subsequently calculated

by a single scattering of the mean field from the scatterer.

The RTE method, first proposed in [18] for describing light transmission through foggy atmo-

sphere, has became a classical approach for modeling wave propagation in vegetation since 1980s.

The RTE is derived heuristically based on the law of energy conservation without considering the

interaction among scatterers. It has been investigated for decades and several efforts have been

made to improve the accuracy of the RTE [19–23]. The phase matrix was used to consider the

multiple scattering of intensities and the effects of the plant structure were considered through the

coherent addition of branch scattering [19, 20]. Different solution methods, including the eigen-

expansions, iterative method with and without backscattering enhancement [23], have also been
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applied to improve the RTE. Despite these improvements made in the past, the RTE are still lim-

ited by several inherent approximations when applied to vegetation and forests: (i) The positions

of the scatterers are assumed to be uniformly random. However such description is not consistent

with the clustering of scatterers in a tree or plant and it also fails to model the gaps among plants

and trees. (ii) The scatterers such as branches are assumed to be independent so that the scattered

intensities are added incoherently. Thus the frequency dependence of scattering is that of the in-

dividual cylinder which leads to a strong frequency dependence for scattering by vegetation. The

collective scattering and attenuation effects within a plant are ignored. (iii) Far field assumptions

are made between the scatterers, and between the scatterers and the underlying soils. While the

typical separation distance of crops grown in a vegetation field is a few centimeters, the far field

distance requiring R > D2/λ is on the order of several meters, where D is the largest dimension

of the scatterer.

With the advancement in digital computers, the standard numerical methods including finite el-

ement method (FEM), method of moments (MOM), and the finite-difference time-domain (FDTD)

have been applied to perform full-wave simulations of vegetation [24–27]. However, the practi-

cal modelling capability of the numerical methods has been limited to several plants due to the

enormous demand on CPU and memory. The few plants cannot be used to represent a vegetation

field that consists of a large number of plants with scatterers randomly placed in clusters. Full-

wave simulations of scatterings from vegetation field have been used to more rigorously account

for the gap effects and the wave interactions among plants. In [28], the scatterings from a layer

of 500 small cylinders were solved based on the Foldy-Lax (FL) multiple scattering equations and

the body of revolution using MOM. The study shows that the transmission through a collection

of vertical cylinders are several times larger than that predicted by the classical RTE model. This

indicates the effective layered medium is inappropriate for representing a vegetation field with

clustered scatterers. The scatterings by a collection of tall cylinders at L-band was treated in [29].

The height of the cylinder was 20 meters corresponding to 94 wavelengths at 1.41 GHz, which is

used for microwave radiometry. [29] applied the infinite cylinder approximation to calculate the
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T-matrix of a single cylinder that can be used to compute both the near fields and the far fields.

Then, the T-matrix was applied to perform full-wave simulations of a forest represented by a layer

of 194 randomly distributed cylinders. The results show that the transmission computed from the

full-wave simulation is 1.9 times of that calculated from the analytical RTE model. However, the

simulation methods reported in these two articles are limited to predict scattering from cylinders

and not applicable for most vegetation types consisting of components with irregular shapes.

1.3 Thesis Objective and Overview

The objective of this dissertation is to develop a method that can perform full-wave simulations of

vegetation and accurately model vegetation effects on the microwave. The full-wave simulation

of a vegetation field is a large scale problem that can not be solved directly using the numerical

method such as MOM, finite difference method, and finite element method due to the unaffordable

computation cost and the tremendous memory demand. Neither can it be solved by the analytical

methods due to their limitations on handling the scattering of complex structures. To tackle these

challenges, a hybrid method combing both numerical and analytical solutions is developed by de-

comopsing the large scale problem in the following two steps. In the first step, the T-matrix of

one single plant is extracted based on the full-wave solutions obtained from the numerical solver.

This step leverages the modeling capability of the numerical method so that it is able to simu-

late plant with realistic structures of arbitrary shapes. The full-wave based T-matrix characterizes

the scattering of one single plant and captures the multiple scattering effects caused by the plant

structure. In the second step, the T-matrix is combined with the Foldy-Lax multiple scattering

equations to consider the interactions among different plants. The resulting closed-form equations

are solved analytically using the vector cylindrical wave (VCW) expansion and the translational

addition theorem. The adoption of the analytical solutions significantly reduce computation de-

mand for simulating a large vegetation field. By leveraging the advantages of both the numerical

and analytical solutions, the full-wave simulation of a large vegetation field have been realized for
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the first time using the proposed hybrid method.

In addition to the introduction and the conclusion chapters, the dissertation consists of three

main chapters which are summarized as follow.

Chapter 2: A detailed discussion of the hybrid method is presented in this chapter. First,

a near-field based T-matrix extraction method is developed based on the Huygens principle and

VCW expansion of the Dyadic Green’s function. Second, the formulation of the Foldy-Lax equa-

tions with T-matrix is presented together with the corresponding solutions obtained from VCW

expansion and translational addition theorem. Finally, the convergence tests on the T-matrix are

performed and the hybrid method is validated with HFSS by solving scattering from 4 wheat plants.

Chapter 3: The hybrid method is applied to perform full-wave simulations of wheat field at

multiple frequencies including L-, S-, and C-bands to investigate the frequency dependence of the

transmission. A physical-iterative method together with MPI parallel computing are implemented

to facilitate the Monte Carlo simulations of wave propagation in the vegetation. The impacts of

the plant structure and gaps on the microwave propagation are demonstrated by the comparing the

transmission at different regions. The results obtained from the hybrid method are also compared

with those of the classical RTE model to illustrate the importance of full-wave simulations.

Chapter 4: The hybrid method is applied to perform full-wave simulations of forest at L-band.

The new challenges encountered by the hybrid method in simulating the forest is first discussed.

To overcome the issue in calculating the tree T-matrix, the general relation between the T-matrix

elements and the scattered field coefficients is revealed and a far-field based T-matrix extraction

method is thus developed. The memory challenge in solving the Foldy-Lax equation is tackled by

adopting the physical iterative solution. The new approaches are validated with FEKO by solving

scattering from three 8 meters tall trees. Full-wave simulations of forest with different tree density

and height are carried out to investigate the potential of retrieving soil moisture in the forest area

using L-band microwave.
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CHAPTER 2

Two-step Hybrid Method

The detailed discussions of the hybrid method for full-wave simulations of vegetation are presented

in this chapter. First, we introduce a new geometry setup to account for the gap effects and the plant

structures within the vegetation canopy. Based on the new geometrical configuration, the numerical

solver of Ansys High Frequency Structure Simulator (HFSS) is used to simulate the scatterings of

a single wheat plant, from which the corresponding T-matrix is extracted based on the near-field

using the Huygens principle and the vector cylindrical waves (VCW) expansions of the Dyadic

Green’s function. The full-wave based T-matrix, capturing all the structural and clustering effects

on scatterings, characterizes the response of one single plant. The multiple scatterings between

different plants are considered through the Foldy-Lax (FL) equations using the extracted T-matrices

in the second step. The resulting closed-from equations are then solved analytically using the VCW

expansions and the translational addition theorem. The procedure of extracting the inner field

using the wave transformation will also be discussed as it is crucial for calculating the microwave

transmission. Finally, the proposed hybrid method is validated with HFSS by comparing the field

solutions of scatterings from four wheat plants.

2.1 Introduction

During the last few decades, a variety of methods have been developed for modelling the wave

propagation in the vegetation [13, 14, 19–23, 30, 31]. The most widely used model is the radiative

transfer equation (RTE) model and the model of distorted Born approximation (DBA) where the
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vegetation canopy is considered as a layer of randomly distributed scatterers. Specifically, the

branches and leaves are modelled respectively by cylinders and disks. The random positions of

the scatterer are assumed to be statistically homogeneous in space. Consequently, the vegetation

canopy is approximated as a layered medium with an effective attenuation rate calculated based

on the independent scattering approximation. While these approximations significantly reduce

the modelling complexity of the RTE, the validity of these approximations for vegetation and

forests have never been proven. A realistic examination shows that different vegetation types, in

particular tree, frequently have unique structure governing the distribution of its stems and leaves.

For example, a wheat plant is formed by a cluster of stems that are closely bound together, and

they are grown in rows in a field with substantial gaps between plants (see Fig. 2.1).

The RTE approach has been investigated for decades. Improvements have been made on the

solution methods and the calculation of the constituents such as absorption coefficients, phase

matrices, etc. The effects of the plant structure have been considered through the coherent addi-

tion of the branch scattering in [19–22], where the geometry were modelled using the stochastic

Lindenmayer system and the fractal tree. The results show that the coherent interactions play an

important role in collective scatterings by scatterers. The row structures in the vegetation field are

studied in [32–34]. A periodic slab is used to capture the row structure in a corn field and the

multiple scattering within the row was considered using the phase matrix based on the far-field

approximations [33]. However, the far-field assumption requiring that R ≥ 2D2/λ is not valid for

plants in a vegetation field, where R is the separation distance between scatterers, D is the largest

dimension of scatterers and λ is the wavelength. For example, the wavelength is λ = 25cm at

L-band, and if the height of a plant is D = 50cm, then the far-field assumption requires R ≥ 2m,

whereas the typical separation distance for crops grown in a field is a few centimeters. Another

improvement on the RTE is the dRET method [35], in which the vegetation layer are divided into

cubic cells of different parameters. This makes it possible to calculate scatterings of the isolated

vegetation structure by using ray tracing with RET. This approach works for scattering problem of

high frequency, such as in millimeter waves, which the wavelengths are much smaller than the gap
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size. In [36], a mean field solution for scattering from a collection of effective scatterers located

in disjoint regions are derived. It results a nonuniform transmission rate that varies with position

caused by the inhomogeneities of the vegetation. A numerical solution based on the method of

moments (MOM) for grassland was reported in [24], however the solution was confined to a single

grass plant due to the limitation on computation resources. None of these approaches treat the

coherent interactions among the plants.

Full-wave simulations of scatterings from vegetation have been used to more rigorously ac-

count for the gap effects and the wave interactions among plants. In [28], the scatterings from a

layer of 500 small cylinders were solved based on the Foldy-Lax (FL) multiple scattering equations

and the body of revolution using MOM. The study shows that the transmission through a collec-

tion of vertical cylinders are several times larger than that predicted by the classical RTE model.

This indicates the effective layered medium is inappropriate for representing a vegetation field with

clustered scatterers. The scatterings by a collection of tall cylinders at L-band was treated in [29].

The height of the cylinder was 20 meters corresponding to 94 wavelengths at 1.41 GHz, which is

used for microwave radiometry. [29] applied the infinite cylinder approximation to calculate the

T-matrix of a single cylinder that can be used to compute both the near-field and the far-field.

Then, the T-matrix was applied to perform full-wave simulations of a forest represented by a layer

of 194 randomly distributed cylinders. The results show that the transmission computed from the

full-wave simulation is 1.9 times of that calculated from the analytical RTE model. However, the

simulation methods reported in these two articles are limited to predict scattering from cylinders

and not applicable for most vegetation types consisting of components with irregular shapes.

In this chapter, a hybrid method combining both the numerical and analytical solutions is devel-

oped for full-wave simulations of the vegetation. A realistic geometrical setup is first introduced

to consider the structures of the plant and the gaps within the vegetation. Then the large scale

problem is decomposed and solved in two-step. First, the scattering of a single plant is charac-

terized by the T-matrix which captures all the structural and clustering effects on scatterings. The

T-matrix is extracted based on the full-wave solutions obtained from the HFSS using the Huygens
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principle and the VCW expansion of the Dyadic Green’s function. Second, the multiple scatterings

between different plants are considered through the FL equations using the extracted T-matrices.

The resulting closed-from equations are then solved analytically using the VCW expansion and the

translation addition theorem. The hybrid method makes the full-wave simulation of a large vege-

tation field be possible by leveraging the advantage of both the numerical and analytical solutions.

The detailed derivations are shown in the following section.

2.2 Vegetation Field Configuration

The hybrid method is based on a configuration that can model the plant structure and the gaps in

the vegetation canopy. Here, we choose wheat as an example to illustrate the field concept which

can be easily generalized to other vegetation types. As shown in Fig. 2.1, wheat plants are placed

in rows and columns with gaps in a field. The row and column spacing are both random variables

and are assumed to follow the Gaussian distribution with the mean value and standard deviation

be estimated from the ground truth. In this chapter, a uniform spacing is used in the testing case to

validate the accuracy of the method. The impacts of the variation of the gap spacing will be tested

in the next chapter. Each wheat plant has its own structure and could be enclosed by a cylinder. This

enable the hybrid method to decompose and solve the large scale problem in two steps, which each

single plant is treated as a single scatterer in the first step and the interactions between different

plants are considers in the second step. A realistic wheat plant that includes leaves, stems and

spikes could be used in the hybrid method, as the numerical solver is employed to perform full-

wave simulations of one single plant which allows us to model plant of arbitrary shapes. However,

a simplified wheat plant model is used in order to make the results comparable with the RTE

method, which will be presented in Chapter 3. Specifically, each wheat plant is modelled by a

cluster of cylinders with randomly generated orientation angles. Based on this geometry setup, a

two-step hybrid method for full-wave simulation of a vegetation field is developed.

13



Figure 2.1: Real wheat field (left) and vegetation field configuration including gaps and plant
structures for the hybrid method simulation (right).

2.3 Hybrid Method

2.3.1 Near-field Based T-matrix Extraction

The first step of the hybrid method is to extract the T-matrix of a single wheat plant. The purpose

of the T-matrix is to relate the exciting fields to the scattered fields of an arbitrary object based

on the analytic basis functions. To construct the T-matrix, an infinite cylindrical circumscribing

surface is used to enclose the object of interest as shown in Fig. 2.2. The reasons are (i) there are

no overlaps among plants (see Fig. 2.1), (ii) 3D VCW are used to represent the T-matrix, and (iii)

the multiple scatterings between different plants are treated through VCW. The scattered fields due

to a single plant outside the cylindrical surface can be characterized by using the T-matrix based

on the 3D VCW expansion, which are detailed as follows.

Let the exciting fields be a plane wave given as

Ēex(r̄) = (v̂iEvi + ĥiEhi) exp(ik̄i · r̄) (2.1)

where v̂i and ĥi, respectively, are the vertical and horizontal polarization vectors of the inci-

dent direction (θi, ϕi), Evi and Ehi are their corresponding amplitudes, k̄i = k(x̂ sin θi cosϕi +

ŷ sin θi sinϕi + ẑ cos θi) is the incident propagation vector, and r̄ is the position vector. From
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model expansion theory, we know any fields in a cylindrical coordinate can be expressed as a

linear combination of the VCW. With the VCW expansion, the exciting fields can be expressed

as [37]

Ēex(r̄) =
∑
n

∫ ∞

−∞
dkz

[
RgM̄n(kz, r̄)a

EM
n (kz) +RgN̄n(kz, r̄)a

EN
n (kz)

]
(2.2)

where RgM̄n (kz, r̄) and RgN̄n (kz, r̄) are the incoming VCW, aEM
n (kz) and aEN

n (kz) are the

corresponding expansion coefficients of the exciting fields. The expressions of the incoming VCW

are [37]

RgM̄n(kρ, kz, r̄) =
[
ρ̂
in

ρ
Jn(kρρ)− ϕ̂kρJ

′
n(kρρ)

]
exp(ikzz) exp(inϕ) (2.3)

RgN̄n(kρ, kz, r̄) =
[
ρ̂
ikρkz
k

J ′
n(kρρ)− ϕ̂

nkz
kρ

Jn(kρρ) + ẑ
k2ρ
k
Jn(kρρ)

]
exp(ikzz) exp(inϕ) (2.4)

where n is the order of harmonic in ϕ direction, kρ =
√
k2 − k2z is propagation constant in ρ

direction, r̄ = ρρ̂+ zẑ is the position vector in cylindrical coordinate, Jn is the bessel function and

J ′
n is the first order derivative of Jn. The VCW expansion coefficients of a plane wave are known

as [37]

aEM
n (kz) =

in+1 exp(−inϕi)

kiρ
Ehiδ(kz − kiz)

aEN
n (kz) = −i

n exp(−inϕi)

kiρ
Eviδ(kz − kiz)

(2.5)

where kiz is the z component of k̄i. Note that in a general multiple scattering situation, we use the

general expression of the exciting fields rather than that of an incident plane wave.

According to the Huygens principle [37], the scattered fields outside the circumscribing cylin-

drical surface can be calculated from

Ēs(r̄) =

∫
S′
dS ′
{
ikηG(r̄, r̄′) ·

[
n̂′ × H̄(r̄′)

]
+∇×G(r̄, r̄′) ·

[
n̂′ × Ē (r̄′)

] }
(2.6)

whereG(r̄, r̄′) is the Dyadic Green’s function, S ′ are the surfaces of a cylinder enclosing the whole

plant which include the side, top and bottom surfaces as shown in Fig. 2.2. H̄ and Ē, respectively,
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Figure 2.2: A single wheat plant is enclosed by an infinite cylindrical circumscribing surface, the
scattered fields outside the surfaces are related to the exciting fields through the T-matrix of the
wheat plant

are the magnetic and electric fields on S ′. The VCW expansion of the Dyadic Green’s function for

ρ > ρ′ are [37]

G(r̄, r̄′) =
i

8π

∑
n

(−1)n
∫ ∞

−∞
dkz

1

k2ρ

[
M̄n (kz, r̄)RgM̄−n (−kz, r̄′) + N̄n (kz, r̄)RgN̄−n (−kz, r̄′)

]
(2.7)

∇×G(r̄, r̄′) = ik

8π

∑
n

(−1)n
∫ ∞

−∞
dkz

1

k2ρ

[
N̄n(kz, r̄)RgM̄−n (−kz, r̄′)+M̄n (kz, r̄)RgN̄−n(−kz, r̄′)

]
(2.8)

where M̄n(kz, r̄) and N̄n(kz, r̄) are the outgoing VCW, and their expressions are obtained, respec-

tively, by replacing the bessel function Jn in (2.3) and (2.4) with the Hankel function of first kind

H
(1)
n . Substitution of (2.7), (2.8) into (2.6), the scattered fields outside the cylindrical surface can

be written in the model expansion form as

Ēs (r̄) =
∑
n

∫ ∞

−∞
dkz

[
M̄n(kz, r̄)a

SM
n (kz) + N̄n(kz, r̄)a

SN
n (kz)

]
(2.9)

where aSMn (kz) and aSNn (kz) are the expansion coefficients of the scattered fields, and their ex-
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pressions are in (2.12) and (2.13). Based on the VCW expansion coefficients of the exciting and

scattered fields given in (2.2) and (2.9), the T-matrix is defined as

aSβn (kz) =
∑
n′

∫ ∞

−∞
dk′z

[
T

(β,M)
nn′ (kz, k

′
z) a

EM
n′ (k′z) + T

(β,N)
nn′,p (kz, k

′
z) a

EN
n′ (k′z)

]
(2.10)

where β = M,N corresponds to the two polarizations of VCW. The same notations are used in

the rest of the dissertation. The T-matrix is a general description of the scattered fields outside the

enclosing cylindrical surface.

The VCW basis functions have two variables, n and kz, which both range form −∞ to +∞

in theory. In practise, they are truncated at a maximum value that makes the scattered fields

converged, which respectively are ±Nn and ±Kmax
z . The continuous integration over kz is re-

placed by a discrete summation of Nm samplings,
∫
dkz ≈

∑
m kzm∆kz. The double summation

over n ∈ [−Nn, Nn] and m ∈ [1, Nm] can be replaced by a combined index (n,m) = l, then

l = 1, 2, ..., L, with L = (2Nn+1)Nm. If we also count the two polarizations M̄n and N̄n, then the

combined index is α = 1, 2, ..., 2L with a total of 2L VCW basis functions. If we put the exciting

and the scattered field coefficients, respectively, into a column vector, the matrix form of (2.10) is

āS (ki) = T āE (ki) (2.11)

where āE(ki) and āS(ki) are, respectively, the exciting and the scattered field coefficient vector of

size 2L× 1, and

T =

 TMM TMN

TNM TNN


is of dimension 2L× 2L. To determine the (2L)2 elements in the T-matrix, we perform full-wave

simulations of a single plant using the HFSS with 2L different plane waves. For each incident

plane wave, we calculate one pair of āE(ki) and āS(ki). Then by matrix inversion, (2L)2 elements

of T-matrix are determined.

For one incident plane wave, the scattered fields on the enclosing cylinder surfaces S ′ (See
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Fig. 2.2) due to one single plant can be solved from HFSS. As described earlier, the scattered field

coefficients then can be calculated using the Huygens principle and the VCW expansion of Dyadic

Green’s function through

aSMn (kz) =
(−1)nik

8πk2ρ

∫
S′
dS ′
{
iηRgM̄−n(−kz, r̄′) · [n̂′×

H̄(r̄′)]HFSS +RgN̄−n(−kz, r̄′) · [n̂′ × Ē(r̄′)]HFSS

}
(2.12)

aSNn (kz) =
(−1)nik

8πk2ρ

∫
S′
dS ′
{
iηRgN̄−n (−kz, r̄′) · [n̂′×

H̄ (r̄′)]HFSS +RgM̄−n (−kz, r̄′) · [n̂′ × Ē (r̄′)]HFSS

}
(2.13)

where [·]HFSS means the surface fields that are computed from HFSS. This gives the VCW coeffi-

cient vector of the scattered fields

āS (ki) =
[
aSM1 , · · · , aSML , aSN1 , · · · , aSNL

]T
. (2.14)

With the VCW expansion of the incident plane wave given in (2.5), the VCW coefficient vector of

the exciting fields is

āE (ki) =
[
aEM
1 , · · · , aEM

L , aEN
1 , · · · , aEN

L

]T
. (2.15)

In the above, a pair of āE(ki) and āS(ki) are computed for a single incident plane wave. The

procedure is repeated 2L times for 2 different polarized plane waves from L different incident

angles. With the 2L pairs of the calculated scattered and exciting field coefficients, the scattering

and the exciting coefficient matrices are formed

Aγ =
[
āγ(k1), · · · , āγ (k2L)

]
(2.16)
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where γ = E, S corresponds to the exciting and the scattered field respectively. As each pair of

āE(ki) and āS(ki) satisfy (2.11), we have AS = T AE. Then the T-matrix is obtained by

T = ASA
−1

E . (2.17)

In the first step of the hybrid method, the T-matrix is calculated based on the numerical full-

wave solutions, which are applicable for a plant with arbitrary shape. The coherent multiple scat-

tering effects within a single plant are captured by the T-matrix. The multiple scatterings between

different plants are then considered in the second step using the calculated T-matrix and the FL

equations.

2.3.2 Foldy-Lax Multiple Scattering Equations

Figure 2.3: Illustration of Foldy-Lax multiple scattering equations.

For multiple scattering problem as shown in Fig. 2.3, the final exciting fields acting on one

scatterer are the sum of incident fields and the scattered fields from all other scatterers except

itself. This leads to the FL multiple scattering equations

Ēex
q (r̄) = Ēinc(r̄) +

N∑
p=1,p ̸=q

Ēs
qp(r̄) (2.18)
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where N is the number of scatterers, Ēinc is the incident fields, Ēex
q is the final exciting fields of

scatterer q, and Ēs
qp is the scattered fields from scatterer p to q. In (2.18), the summation of p is

over all scatterers except itself, where p = 1, 2, ..., N,with p ̸= q. In cylindrical coordinate system,

the center location of the qth scatterer is r̄q = ρ̄q + zqẑ, where zq is a convenient location of the

scatterer. It can be used when the plants are of different heights. In this paper, the plant are of

the same height. Let the qth scatterer be enclosed by a infinite cylinder centered at r̄q, then Ēex
q is

expanded using VCW as

Ēex
q (r̄) =

∑
m

∫
dkz

[
RgM̄m(kz, rrq)a

EM
m,q (kz) +RgN̄m(kz, rrq)a

EN
m,q(kz)

]
(2.19)

where aEβ
m,q(kz) are the unknown final exciting field coefficients, the VCW are centered at r̄q, and

rrq = r̄ − r̄q. To solve (2.18), we next expand Ēinc and Ēs
qp using VCW with center at r̄q. The

expansion of the incident fields is

Ēinc
q (r̄) = exp(ik̄i · r̄q)

∑
m

∫
dkzδ(kz − kiz)

exp(−imϕi)

kiρ
im×

[
iEhiRgM̄m (kiρ, kiz, rrq)− EviRgN̄m (kiρ, kiz, rrq)

]
(2.20)

where a phase shift term exp(ik̄i · r̄q) results when we put the center of the VCW to r̄q. The dirac

delta function δ(kz − kiz) indicates that the incident wave is with kz = kiz in the integration
∫
dkz.

Since the scattered fields from p to q originate from scatterer p, the outgoing VCW are initially

expressed with origin at r̄p as

Ēs
qp (r̄) =

∑
n

∫ ∞

−∞
dkz

[
M̄n (kz, rrp) a

SM
n,p (kz) + N̄n (kz, rrp) a

SN
n,p (kz)

]
(2.21)

where aSβn,p(kz) are the final scattered field coefficients of scatterer p. To balance the term in (2.18),

we need to transform the outgoing VCW in (2.21) into the the incoming VCW centered at r̄q by
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using the translational addition theorem [17]

β̄n(kz, rrp) =
∑
m

Rgβ̄m(kz, rrq)H
(1)
m−n (kρ |ρpρq|) exp(−i(m− n)ϕρpρq) exp(−ikzzpq) (2.22)

where ρpρq = ρ̄p − ρ̄q, ϕρpρq = tan−1[(yp − yq)/(xp − xq)] is the angle that ρpρq makes with the

x axis, and zpq = zp − zq. The detail derivation of (2.22) can be found in the Appendix 2.A. By

combining (2.21) and (2.22), we get

Ēs
qp (r̄) =

∑
β=M,N

∑
n

∫ ∞

−∞
dkz

∑
m

exp(−i(m− n)ϕρpρq)×

Rgβ̄m (kz, rrp)H
(1)
m−n(kρ |ρpρq|) exp(−ikzzpq)aSβn,p(kz). (2.23)

After substituting (2.19), (2.20), and (2.23) into (2.18), we have all the terms in the FL equa-

tions expanded with the incoming VCW center at r̄q. Then (2.18) is simplified by balancing the

coefficient of VCW to

aEβ
m,q(kz) = exp(ik̄i · r̄q)

im exp(−imϕi)

kiρ
Iβδ(kz − kiz)+∑

p=1,p ̸=q

∑
n

exp(−i(m− n)ϕρpρq)H
(1)
m−n(kρ |ρpρq|) exp (−ikzzpq) aSβn,p(kz) (2.24)

where Iβ = iEhi for β = M, and Iβ = −Evi for β = N. The multiple scattering equations (2.24)

relate the exciting field coefficients aEβ
m,q(kz) and the scattering field coefficients aSβn,p(kz) among the

scatterers, which can be further simplified using the T-matrix. By substituting (2.10) into (2.24),

the equations with aEβ
m (kz) as the only unknowns are obtained

aEβ
m,q(kz) = exp(ik̄i · r̄q)

im exp(−imϕi)

kiρ
Iβδ(kz − kiz) +

∑
p=1,p ̸=q

∑
n

exp(−i(m− n)ϕρpρq)×

H
(1)
m−n(kρ |ρpρq|) exp (−ikzzpq)

∑
n′

∑
β′

∫
dk′zT

(β,β′)
nn′,p (kz, k

′
z)a

Eβ′

n′,p (k
′
z) (2.25)
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where q = 1, 2, ..., N . This is the excitation field formulation of the FLE. The FLE can also be

formulated using the scattered field and the derivation can be found in Appendix 2.B. Equation

(2.25) can written in matrix form as āE = f̄ + KāE using the transformation described in the

Sec. 2.3.1. The final exciting field coefficients then can be solved from āE = (I − K)−1f̄ . The

final scattered field coefficients āS can be obtained by substituting āE into (2.10). After that the

scattered fields of the whole vegetation field can be obtained through the summation of scattering

from each individual plant

Ēs (r̄) =
N∑
p=1

∑
n

∫ ∞

−∞
dkz

[
M̄n (kz, rrp) a

SM
n,p (kz) + N̄n (kz, rrp) a

SN
n,p (kz)

]
. (2.26)

As mentioned before, the VCW expansion of Dyadic’s Green’s function is for ρ > ρ′, so (2.9)

is only valid when observation point r̄ is outside the enclosing cylindrical surface. If r̄ in (2.26)

is inside the circumscribing cylinder of plant p, then the scattered fields due to itself should be

extracted in the next step.

2.3.3 Inner-field Extraction

Let āplE be a column coefficient vector representing a linear combination of exciting plane waves

āplE(ki) =
[
aplE(k1), ... , a

pl
E(k2L)

]T
(2.27)

where aplE(ki) is the coefficient of the ith plane wave. We can obtain the corresponding VCW

expansion through

āE = AE ā
pl
E(ki) (2.28)

where
=

AE is the coefficient matrix defined in (2.16). In other words, (2.28) is the transformation

between plane wave and VCW. The final exciting field coefficients of plant q solved from the FL

multiple scattering equations is āqE , which is the VCW expansion of Ēex
q . Using (2.28) the plane
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wave expansion of Ēex
q can be calculated from

āq,plE = A
−1

E āqE. (2.29)

As the full-wave simulations of a single wheat plant illuminated by plane waves from different

incident angles have been done using the HFSS in step 1, the final scattered fields due to plant p

inside its enclosing cylinder can be obtained based on the superposition principle through

Ēs
q,in(r̄) =

∑
i=1

aq,plE (ki)Ē
s
q (ki) (2.30)

where Ēs
q (ki) is the inner region scattered fields of plant q excited by the ith plane wave. With

(2.26) and (2.30), the solutions of the fields for multiple scatterings in the vegetation layer including

both the outside and the inside of the enclosing cylinders are calculated.

2.4 Method Validation

For the simulations presented in this section, we consider vertically (V-pol) and horizontal (H-

pol) polarized plane wave from the direction, ϕi = 0o, θi = 40o, at L-band 1.41 GHz with

λ = 21.3cm, which is the operation frequency and incident angle of NASA Soil Moisture Active

Passive (SMAP) mission [6]. Most of the results, unless otherwise stated, are for V-pol incident

plane wave. Each wheat plant is modelled by 8 thin cylinders with randomly generated orientation

angles (θc, αc). The inclination angle θc follows a normal distribution within [0o, 6o] and the az-

imuthal angle αc is uniformly distributed within [0, 360o]. The radius of the cylinder is rc = 2mm

and its length lc is linearly proportional to the VWC of wheat. In the calculation of the T-matrix,

the enclosing cylinder has radius Cr = 6.5cm and height Ch = lc + 2cm, which is 2cm higher

than the thin cylinder. We validate the results for a single wheat plant and for 4 wheat plants by

comparing the results of the two-step hybrid method with direct field solutions of the HFSS.
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2.4.1 Convergence Test of T-matrix

Figure 2.4: Scattered Ē fields on a vertical line parallel to z axis calculated from T-matrix with
different number of modes are compared with those solved form the HFSS.

In the hybrid method, the scattered fields of a single plant are related to the exciting fields

through the T-matrix, whose accuracy is determined by the number of modes α = 2(2Nn + 1)Nm

used in the representation of T-matrix. In general, α is determined by the electrical size of the

enclosing cylinder and the enclosed target, and more modes are needed for a more complicated

target as it can produce more complicated scattered fields. The T-matrix of a single wheat plant

with lc = 70cm is calculated following the procedure described in Sec 2.3.1 with kz being truncated

at Kmax
z = k0. Only the propagation waves are considered outside the cylinder by the T-matrix, as

the evanescent waves decay exponentially away from the cylinder and are hence negligible. The

scattered fields calculated from the T-matrix with two different numbers of modes are plotted in

Fig. 2.4 along with fields directly solved from the HFSS. The observation points are in the near

field which is 0.5cm outside the circumscribing cylinder, and lie along a vertical line parallel to z

axis. The results show that the differences between the scattered fields calculated from the HFSS

and those from the T-matrix decrease as the number of modes increases. For the wheat plant of the

example, a T-matrix with Nm = 29, Nn = 1 is sufficient to characterize its scattered fields.
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Figure 2.5: Scattering from four wheat plants are solved using the hybrid method and the HFSS,
the radius of the circumscribing cylinder Cr = 6.5cm, distance between the centers of 2 circum-
scribing cylinders rd = 15cm, the closest distance between 2 circumscribing cylinders gd = 2cm.

2.4.2 Full-wave Simulation of Four Wheat Plants at L-band

Next, the two-step hybrid method is validated with HFSS by solving wave scattering among 4

wheat plants. As shown in Fig. 2.5(b), four identical wheat plants with lc = 14cm are placed in

a 2 × 2 array with the row and the gap spacing being rd = 15cm and gd = 2cm, respectively.

This problem can be solved directly using the HFSS and also the proposed hybrid method. By

combining the calculated T-matrix of an individual plant with the FL equations, the final scattered

field coefficients are obtained. Then the scattered fields are calculated using (2.26) and (2.30).

The scattered fields due to the V-pol and the H-pol incident plane wave are shown in Fig. 2.6. The

observation points, 1cm below the four wheat plants, are parallel to the x axis passing through both

the gap and the inner region as denoted by the dash line in Fig. 2.5. Since the cylinders are thin

and the orientations are close to the vertical direction, the scattered fields due to a H-pol excitation

is much weaker than that of the V-pol. Consequently, the relative error of the H-pol is larger than

that of the V-pol. Overall, the results of the hybrid method agree well with those directly solved

from the HFSS except the small jumps on the boundary between the inner and the gap regions.

The truncation of modes when extracting the T-matrix cause the discontinuity of the fields. The
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magnitude of the discontinuity could be reduced by including more modes in the T-matrix. In Fig.

2.7, the total Ē-fields on a plane, 1cm below the wheat field, obtained from the hybrid method are

compared with those directly solved from the HFSS. The results are in good agreement.

(a) (b)

Figure 2.6: Scattered fields vary with x at the bottom of the 4 wheat plants with z = −1cm and
y = 0cm, (a) excited by vertical polarized incident plane wave, and (b) excited by horizontal
polarized incident plane wave.

(a) (b)

Figure 2.7: Total Ē fields excited by a vertical polarized incident plane wave on a plane 1cm below
the four wheat plants solved from (a) HFSS and (b) the hybrid method.

26



2.5 Summary

The hybrid method for full-wave simulation of vegetation field are presented in this chapter. A

realistic geometry setup that can account for the gap effects and the plant structures is introduced.

Based on the geometrical configuration, the large scale scattering problem is decomposed and

solved in two steps. In the first step, the numerical solver is employed to simulate the scatterings

of a single wheat plant, capturing all the structural and clustering effects on scatterings. Then,

we use the near-field to calculate the T-matrix that relates the exciting fields to the scattered fields

of a single plant based on the Huygens principle and the VCW expansion. In the second step,

the multiple scatterings between different plants are considered through the FL equations using

the extracted T-matrices and the translation addition theorem of the VCW. The hybrid method are

validated with HFSS by comparing the field solutions of scatterings from 4 wheat plants.
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Appendix

In this appendix, the detailed derivation of the translational addition (TA) theorem including both

the scalar and vector case are provided. The physical and mathematical understanding of the TA

theorem together with its convergence are also discussed. The TA theorem is an important tool

for solving the FLE analytically as they can relate the responses of scatterers centered at different

locations. Specifically, the TA theorem expresses the outgoing cylindrical wave centered at ρ̄p

in terms of the incoming cylindrical wave centered at ρ̄q. The transformation enables the hybrid

method to obtain a set of closed-form equations for solving the FLE.

2.A Translational Addition Theorem

Scalar Translational Addition Theorem

Suppose there is a cylindrical wave is centered at ρ̄p, and we want to transform as cylindrical wave

centered at ρ̄q as shown in Fig. 2.A.1. Let ρpρq = ρ̄p − ρ̄q be the vector pointing from ρ̄q to ρ̄p

and ϕρpρq be the azimuthal angle it makes with x-axis. Following the same convention, we denote

the other two vectors, ρ̄− ρ̄p and ρ̄− ρ̄q, respectively, as ρρp, ϕρρp and ρρq, ϕρρq . From the vector

algebra, we know

ρ̄− ρ̄p = ρ̄− ρ̄q − (ρ̄p − ρ̄q) (2.31)

which decomposes ρ̄− ρ̄p into two parts. The TA theorem states that if |ρ̄− ρ̄q| < |ρ̄p − ρ̄q|, then

the H(1)
n (k|ρ̄ − ρ̄p|) representing the outgoing wave centered at ρ̄p can be expressed as the linear
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Figure 2.A.1: Translational addition theorem in the cylindrical coordinate system.

combination of Jm(k|ρ̄− ρ̄q|) which is the incoming wave centered at ρ̄q through

H(1)
n (k|ρ̄− ρ̄p|)einϕρρp =

∑
m

Jm(k|ρ̄− ρ̄q|)eimϕρρqHm−n(k|ρ̄p − ρ̄q|)e−i(m−n)ϕρpρq . (2.32)

If |ρ̄− ρ̄q| > |ρ̄p − ρ̄q|, thenH(1)
n (k |ρ̄− ρ̄p|) is expressed as outgoing wave centered at ρ̄q through

H(1)
n (k|ρ̄− ρ̄p|)e

inϕρρp =
∑
m

Hm(k|ρ̄− ρ̄q|)eimϕρρqJm−n(k|ρ̄p − ρ̄q|)e−i(m−n)ϕρpρq . (2.33)

For Bessel function of Jn (k |ρ̄− ρ̄p|), there is no inequality requirement in terms of the position.

The incoming wave centered at ρ̄p can always be expressed as the incoming wave centered at ρ̄q

through

Jn (k |ρ̄− ρ̄p|) e
inϕρρp =

∑
m

Jm(k|ρ̄− ρ̄q|)eimϕρρqJm−n (k |ρ̄p − ρ̄q|) e−i(m−n)ϕρpρq (2.34)

These are the scalar translational addition theorem which relate the outgoing (incoming) wave

centered at ρ̄p to the outgoing (incoming) wave centered at ρ̄q.
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Convergence of Translational Addition Theorem

We can observe that in (2.32) and (2.33) the Bessel function Jn(w) always has the smaller argu-

ment, while the Hankel function H(1)
n (w) has the larger one. The mathematical understanding is

follow. The left hand side (LHS) of the identity is a finite value of H(
n1)(k|ρ̄ − ρ̄p|) and the right

hand side (RHS) is the summation of Bessel and Hankel function overm. To make the transforma-

tion be valid, the RHS should converges as m increase. Given the distance ρ̄ − ρ̄q or with a fixed

argument w, the large order asymptotic expansion of the Bessel and Hankel function are known as

lim
n→∞

Jn (w) ≈ 1√
2πn

(ew
2n

)n
(2.35)

lim
n→∞

Yn (w) ≈ −
√

2

πn

(ew
2n

)−n

(2.36)

lim
n→∞

Hn (w) ≈ 1√
2πn

(ew
2n

)n
− i

√
2

πn

(ew
2n

)−n

(2.37)

It is noticed that the Jn(w) decreases with n, while Hn(w) increases with n. The convergence of

the summation requires that the term in the series should decrease with n. Thus the transformation

relies on the decrease of Jn to be faster than the increase of Hn in order to make the summation

converge. This is reason why the argument of Jn(w) is always larger than that of Hn(w).

In theory, the range of the transformation series is from −∞ to ∞. In practice, the summation

is truncated when the result is converged. Then the following question is what is the sufficient

order we should consider so that the transformation is valid. The number of term in the summation

or the maximum Nmax is determined by the argument

w = kρ |ρ̄− ρ̄q| = k sin θ |ρ̄− ρ̄q| (2.38)

The dominant factor in the large order approximation is

lim
n→∞

Jn(w) ∝
(ew
2n

)n
(2.39)
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The Bessel function Jn (w) starts to decrease when ew/2n < 1, then Nmax the maximum n should

satisfy

Nmax >
ew

2η
(2.40)

where η ∈ (0, 1). If η = 0.5, then Nmax = ew. This is the rule for truncating the transformation

series.

Vector Translational Addition Theorem

By applying the scalar wave transformation to the vector wave, we can obtain the 2D vector wave

transformation which is given in the page 477 of [17]

M̄m(kz, ρ̄− ρ̄p) =
∑
n

RgM̄n(kz, ρ̄− ρ̄q)H
(1)
n−m(kρ|ρ̄p − ρ̄q|) exp(−i(n−m)ϕρpρq),

if |ρ̄− ρ̄q| < |ρ̄p − ρ̄q|
(2.41)

M̄m(kz, ρ̄− ρ̄p) =
∑
n

RgM̄n(kz, ρ̄p − ρ̄q)H
(1)
n−m(kρ|ρ̄− ρ̄q|) exp(−i(n−m)ϕρρq),

if |ρ̄− ρ̄q| > |ρ̄p − ρ̄q|
(2.42)

where M̄m (kz, ρ̄− ρ̄p) is the outgoing cylindrical wave centered at ρ̄p and RgM̄m(kz, ρ̄ − ρ̄q) is

the incoming cylindrical wave centered at ρ̄q. The 3D vector cylindrical wave are related to the 2D

vector cylindrical wave through an exponential term considering the phase in z direction

M̄m (kz, r̄ − r̄p) = M̄m (kz, ρ̄− ρ̄p) exp(ikz(z − zp)) (2.43)

M̄m (kz, r̄ − r̄q) = M̄m(kz, ρ̄− ρ̄q) exp(ikz(z − zq)) (2.44)

which include the ρ̄ and z dependent. Substitution of M̄m (kz, ρ̄− ρ̄p) in (2.44), we get

M̄m(kz, r̄ − r̄p) =
∑
n

RgM̄n(kz, ρ̄− ρ̄q)H
(1)
n−m(kρ|ρ̄p − ρ̄q|) exp(−i(n−m)ϕρpρq)

× exp(ikz(z − zp))

(2.45)
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By adding the exponential term exp(ikz(z − zq)) to the RHS

M̄m (kz, r̄ − r̄p) =
∑
n

RgM̄n (kz, ρ̄− ρ̄q) exp (ikz (z − zq))H
(1)
n−m (kρ |ρ̄p − ρ̄q|)

× exp
(
−i (n−m)ϕρpρq

)
exp (ikz (z − zp)) exp(−ikz(z − zq))

(2.46)

we construct the RgM̄n (kz, r̄ − r̄q) and by simplifying the z dependent term, we get

M̄m (kz, r̄ − r̄p) =
∑
n

RgM̄n (kz, r̄ − r̄q)H
(1)
n−m (kρ |ρ̄p − ρ̄q|) exp

(
−i (n−m)ϕρpρq

)
× exp (−ikz (zp − zq))

(2.47)

Following the similar process, another 3D TA transformation can be obtained and they are sum-

merized as

M̄m (kz, r̄ − r̄p) =



∑
nRgM̄n (kz, r̄ − r̄q)H

(1)
n−m (kρ |ρ̄p − ρ̄q|) exp

(
−i (n−m)ϕρpρq

)
exp (−ikz (zp − zq)) , if |ρ̄− ρ̄q| < |ρ̄p − ρ̄q|∑

nRgM̄n (kz, r̄p − r̄q)H
(1)
n−m(kρ|ρ̄− ρ̄q|) exp(−i(n−m)ϕρρq)

× exp (−ikz(zp − zq)), if |ρ̄− ρ̄q| > |ρ̄p − ρ̄q|
(2.48)

In compact form, it can be written as

β̄m (kz, r̄ − r̄p) =
∑
n

Rgβ̄n (kz, r̄ − r̄q)H
(1)
n−m (kρ |ρ̄p − ρ̄q|) exp

(
−i (n−m)ϕrrp

)
× exp (−ikz (zp − zq))

(2.49)

where β =M,N . The 3D vector translational addition theorem can be used to consider interaction

of scatterer centered at different locations and thus the FLE can be solved analytically.
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2.B Foldy-Lax Multiple Scattering Equations

The FLE can be formulated either using the final exciting field or the final scattered field. The

final excitation field formulation has been presented in Sec. 2.3.2. The scattered field formulation

is given in this appendix. Using the VCW expansions, the final scattered field of particle q is

expressed in terms of VCW centered at r̄q

Ēs,q (r̄) =
∑
m

∫
dkz

[
M̄m (kz, rrq) a

SM
m,q (kz) + N̄m (kz, rrq) a

SN
m,q (kz)

]
(2.50)

where aSβm,q (kz) are the total final scattered field coefficient of particle q. The final scattered field

can be decomposed into two parts based on their excitation

Ēs,q (r̄) = Ēinc
s,q (r̄) + Ēother

s,q (r̄) (2.51)

The first part in is Ēinc
s,q (r̄) which is the scattered field caused by the direct incident field shining

on particle q

Ēinc
s,q (r̄) =

∑
m

∫
dkz

[
M̄m (kz, rrq) a

SM
m,q(inc) (kz) + N̄m (kz, rrq) a

SN
m,q(inc) (kz)

]
(2.52)

The second part is Ēother
s,q (r̄) which is the scattered field caused by all other scatterers

Ēother
s,q (r̄) =

∑
p,p ̸=q

∑
m

∫
dkz

[
M̄m (kz, rrq) a

SM
m,p (kz) + N̄m (kz, rrq) a

SN
m,p (kz)

]
(2.53)

Substitute (2.52) and (2.53) into the scattering field formulation (2.51), we get

∑
m

∑
β

∫
dkzβ̄m (kz, rrq) a

Sβ
m,q (kz) =

∑
m

∑
β

∫
dkzβ̄m (kz, rrq) a

SM
m,q(inc) (kz)

+
∑
p,p ̸=q

∑
m

∫
dkz

[
β̄m (kz, rrq) a

Sβ
m,p (kz)

] (2.54)
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Balancing the coefficient of the VCW by canceling
∑

m

∫
dkzβ̄m (kz, r̄ − r̄q) in both side of 2.54,

we obtain

aSβ(rq)m,q (kz) = a
Sβ(rq)

m,q(inc) (kz) +
∑
p,p ̸=q

aSβ(rq)m,p (kz) (2.55)

where the center of the corresponding VCW in (2.55) are denoted in the supper script. It should

be noticed that the T-matrix of qth scatterer is defined based on the VCW centered at r̄q. Thus

the aSβ(rq)m,q(inc) in (2.55) is consistent with those defined in the T-matrix of qth scatterer. How-

ever, the aSβ(rq)m,p (kz) in (2.55) are associated with the VCW centered at r̄q and thus different from

a
Sβ(rp)
m,p (kz) which are associated with the VCW centered at r̄p. The aSβ(rp)m,p (kz) and aSβ(rq)m,p (kz)

are different and can be related through the translational addition theorem.

The scattering field coefficients of aSβ(rq)m,q(inc) excited by the incident field are obtained from the

T-matrix of qth scatterer through

a
Sβ(rq)

m,q(inc) (kz) =
∑
m′

∫
dk′z

[
T̄ βM
mm′,q (kz, k

′
z) a

IM(rq)
m′,q (k′z) + T̄ βN

mm′,q (kz, k
′
z) a

IN(rq)
m′,q (k′z)

]
δ (k′z − kzi)

(2.56)

where aIβ(rq)m′,q (k′z) are the VCW expansion coefficient of the incident plane wave. The scattered

field coefficients aSβ(rq)m,p (kz) due to particle p is obtained from

aSβ(rq)m,p (kz) =
∑
m′

∫
dk′z

[
T̄ βM
mm′,q (kz, k

′
z) a

EM(rq)
m′,p (k′z) + T̄ βN

mm′,q (kz, k
′
z) a

EN(rq)
m′,p (k′z)

]
(2.57)

where aEβ(rq)
m′,p (k′z) are the exciting field caused by scattered p. The exciting field from particle p is

the scattered field of p propagate from r̄p to r̄q. Using the translational addition theorem (2.49), we

have

β̄m′ (k′z, rrp) a
Sβ(rp)
m′,p (k′z) =

∑
n

Rgβ̄n (k
′
z, rrq)H

(1)
n−m′

(
k′ρ |ρpρq|

)
× exp

(
−i (n−m′)ϕρpρq

)
exp (−ik′zzpq) a

Sβ(rp)
m′,p (k′z)

(2.58)
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Let m′ = m,n = m′, then

β̄m (k′z, rrp) a
Sβ(rp)
m,p (k′z) =

∑
m′

Rgβ̄m′ (k′z, rrq)H
(1)
m′−m

(
k′ρ |ρpρq|

)
× exp

(
−i (m′ −m)ϕρpρq

)
exp (−ik′zzpq) aSβ(rp)m,p (k′z)

(2.59)

This indicates that the order m scattered field from pth scatterer β̄m (k′z, rrp) contributes to the

order m′ excitating field centered at r̄q

a
Eβ(rq)

m′,p(m) (k
′
z) = H

(1)
m′−m

(
k′ρ |ρpρq|

)
exp

(
−i (m′ −m)ϕρpρq

)
exp (−ik′zzpq) aSβ(rp)m,p (k′z) (2.60)

Summation over m, we get the exciting field coefficient of order m′ incoming VCW centered at r̄q

a
Eβ(rq)
m′,p (k′z) =

∑
m

H
(1)
m′−m

(
k′ρ |ρpρq|

)
exp

(
−i (n−m)ϕρpρq

)
exp (−ik′zzpq) aSβ(rp)m,p (k′z) (2.61)

Then using the T-matrix of qth scatterer and 2.57, the aSβ(rq)m′′,p (kz) are related to aSβ
′(rp)

m,p (kz) through

a
Sβ(rq)
m′′,p (kz) =

∑
β′

∑
m′

∫
dk′z

∑
m

H
(1)
m′−m

(
k′ρ |ρpρq|

)
exp

(
−i (m′ −m)ϕρpρq

)
× exp (−ik′zzpq) T̄

ββ′

m′′m′,q (kz, k
′
z) a

Sβ′(rp)
m,p (k′z)

(2.62)

By substituting (2.56) and (2.62) into (2.55), we obtain the scattered field formulation of the FLE

a
Sβ(rq)
m′′,q (kz) =

∑
β′

∑
m′

∫
dk′zT̄

ββ′

m′m′,q (kz, k
′
z) a

Iβ′(rq)
m′,q(inc)(k

′
z)δ(k

′
z − kzi) +

∑
p,p ̸=q

∑
β′

∑
m′

∫
dk′z

∑
m

×H(1)
m′−m

(
k′ρ |ρpρq|

)
exp

(
−i (m′ −m)ϕρpρq

)
exp (−ik′zzpq) T̄MM

m′′m′,q (kz, k
′
z) a

Sβ′(rp)
m,p (k′z)

(2.63)

which can be used to solve for the unknown final scattered field coefficients.
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CHAPTER 3

Full-wave Simulation of Wheat Field

In this chapter, the hybrid method is applied to perform full-wave simulations of wheat field at

multiple frequencies including L-, S-, and C-bands to investigate the frequency dependence of

the microwave transmissivity. A physical-iterative method together with Message Passing Inter-

face (MPI) parallel computing are implemented to facilitate the Monte Carlo simulations of wave

propagation in the vegetation. The impacts of the plant structures and gaps on the microwave prop-

agation are demonstrated by the comparing the transmissivities of different regions. The results

obtained from the hybrid method are also compared with those of the classical radiative transfer

equation (RTE) model to illustrate the importance of full-wave simulations.

3.1 Introduction

The interest of using multi-channel microwave measurements for remote sensing of soil moisture

has been stimulated by the increasing availability of spaceborn radars and radiometers with dif-

ferent frequencies. In the past, the C- and X-bands of the AMSR-E instrument was used with a

dual-frequency method for retrieving soil moisture [38, 39]. In the future, the NASA-ISRO SAR

(NISAR) will utilize the L- and S-bands [9] and the Conical Imaging Microwave Radiometer

(CIMR) satellite has multiple operating frequencies including L-, C-, X-, Ku-, and Ka-bands [10].

This provides a great opportunity for further improving the L-band soil moisture retrieval by com-

bining frequencies at different bands. The accurate modeling of wave propagation at multiple
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frequencies in the vegetation above the soil is crucial for evaluating the feasibility of the multi-

frequency approach.

In this chapter, the two-step hybrid method [40] is employed to investigate the frequency de-

pendence of transmissivity by performing full-wave simulations of vegetation at the L-, S-, and

C-bands. In the first step, the full-wave solutions of a single plant are calculated using the High-

Frequency Structure Simulator (HFSS). The HFSS solutions are then used to obtain the T-matrix

of a single plant based on the Huygens principle and the vector cylindrical waves (VCW) expan-

sion of the Dyadic Green’s function. The number of modes used in the T-matrices at different

frequencies are determined through the convergence tests. The hybrid method treats the entire

plant as a single scatterer using the T-matrix which captures the multiple scattering within a single

plant caused by its structure. This is different from the RTE which the scatterer is a single cylinder

and the plant structure is not considered. In the second step, the multiple scattering among differ-

ent plants are considered analytically using the multiple scattering theory of Foldy-Lax equations

(FLE) and the calculated T-matrices based on the VCW expansion. The accuracy of the hybrid

method is validated with HFSS by solving scattering from night wheat plants for a single real-

ization. The hybrid method is implemented with parallel computing using MPI to meet the large

memory demand for full-wave simulations at S- and C-bands. Based on the averaging over area for

calculating the transmission and the inherent averaging of multiple realizations required for Monte

Carlo simulations of multiple scattering in random media, the FLE are solved using a physical

iterative method which makes the simulations at least 20 times faster. The scattered fields in the

plane below the wheat plants are calculated to illustrate the impact of the plant structure and gaps

on the microwave propagation. The transmission in the gap and the inner regions are calculated

to demonstrate the effects of coherent multiple scattering. Wheat fields with different row spacing

and randomly generated gaps are also simulated to investigate the gap effects on the transmission.

Finally, the transmission of microwave through a wheat field obtained from the hybrid method are

compared with those calculated from the classical RTE model.
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3.2 Parallel Computing of Hybrid Method

The full-wave simulation of vegetation field is a complex large scale problem. In order to include

the multiple scattering of plants in the Monte Carlo simulations of random media, a large number

of plants is required in a single realization. In the numerical results section, we calculate multiple

scattering among 169 plants. The large scale problem cannot be solved directly using the numerical

methods as the required computation demand is unaffordable. Neither can it be solved by the

analytical approaches due to their limitations on handling the scattering of complex structure.

To overcome these challenges, the scattering problem is partitioned into two steps in the hybrid

method where the scattering of a single plant with complicate structure are solved numerically

in the first step, and the large scale modelling challenges are handled analytically in the second

step by using the FLE and the T-matrix based on the VCW expansion. Despite the significant

reduction in the computation cost by utilizing the analytical method, the hybrid method still has a

high memory demand especially with increasing frequency (see Table 3.2.1).

Table 3.2.1: The number of modes used in T-matrix and the number of plants simulated at the L-,
S-, and C-bands.

Freq (GHz) λ (cm) Nϕ Nθ Nm Np Mem (GB)

L : 1.41 21.26 3 29 174 169 12
S : 3.20 9.37 5 59 590 169 150
C : 6.90 4.34 9 59 1062 81 101

3.2.1 Complexity Analysis

In general, the number of modes, equaling to the number of angular directions times the number

of polarizations, used in the representation of T-matrix increases with frequency as the multiple

scattering get stronger at the higher frequency. As shown in Table 3.2.1, the total number of modes

used in the C-band T-matrix is about 6 times of that used in the L-band one. Such increase in

number of modes will significantly increase the computation demand for solving the FLE, which

is explained by the following comparison between the RTE and the FLE. In the RTE, the wave
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propagation in the vegetation is governed by

− dI(ŝ)

dS
= κeI(ŝ) +

∫
dΩ′P (ŝ, ŝ′) (3.1)

where I is the intensity of the wave, κe is the effective attenuation rate, and P is the phase matrix

describing the incoherent multiple scattering. The computation complexity of the two methods is

the product of five factors

N = NϕNθNpolNpNc (3.2)

where N is the total number of unknowns, Nϕ and Nθ respectively are the number of angles

sampled in the ϕ and θ directions, Npol is the polarization factor, Np is the number of plants, and

Nc is the coherency factor. The first three factors usually are the same for the two methods, but

the last two are different. While the RTE is independent of Np based on the uniform distribution

assumption, the FLE is linearly proportional to Np as it considers each plant individually through

the T-matrix. The coherency factor of RTE is 1 because it only uses intensity to describe the wave.

However, the FLE includes both the phase and amplitude of the fields using the complex number,

which gives Nc = 2. The extra information covered in the FLE enable it to model the effect of

gaps between different plants. As a result, the memory demand for solving the FLE, on the order

of O(N2), will increase rapidly with the number of plants and frequency as shown in Fig. 3.2.1.

This requires a parallel implementation of the hybrid method to meet the huge memory demand

for solving the FLE especially at the S- and C-bands. In addition, the wave approach requires

Monte Carlo simulations of random media because of random phases due to random positions

of the scatterers. In Monte Carlo simulations, many realizations of the sample are generated to

represent the random positions of the scatterers and the FLE are solved for each realization. The

physical results of absorption, transmission and scattering are obtained by averaging over the so-

lutions of the realizations. In practice, the required number of realizations vary depending on the

final results of interest. Emissivity and transmission require fewer realizations, while backscatter-

ing requires more realizations. In the next section, the hybrid method is further accelerated using
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Figure 3.2.1: Memory demand of the hybrid method changes with the number of plants at L-, S-
and C-bands.

a physical iterative approach when calculating the transmission.

3.2.2 MPI Parallel Computing

The interaction among different plants are considered by using the Foldy-Lax equations in the

second step of the hybrid method. The resulting the matrix equations is solved using the general-

ized minimal residual method (GMRES) and is implemented with MPI to facilitate the full-wave

simulations of wave propagation in the vegetation.

Suppose the resulting linear system obtained from the FLE is

Ax = b (3.3)

where m is the number of unknowns, A ∈ Cm×m, and x, b ∈ Cm×1. The goal of iterative method

is to solve the matrix by O (m2) operations. The classical iterative method such as the conjugate

gradient was limited to either positive definite or diagonally dominant matrices. The GMRES

method can be applied to solve linear systems Ax = b with arbitrary square matrices. The iterative

method is built based on the idea of projecting anm-dimensional problem into a lower dimensional

Krylov subspace. In each step of the GMRES, we solve a least square problem to approximate the
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exact solution x∗ = A−1b by a vector xn ∈ Kn such that

min
xn

∥Axn − b∥2 (3.4)

The process is terminated when it achieves the desired accuracy or reach to a preset maximum

iteration.

Let A ∈ Cm×m be a square matrix and b ∈ Cm×1 be a vector and the Krylov subspace at step

n is known as

Kn =
{
b, Ab, ..., An−1b

}
∈ Cm×n (3.5)

The goal is to find an vector xn ∈ Kn that can minimize the norm of the residual as defined in

(3.4). The desired vector can be written as

xn = Knc (3.6)

where c ∈ Cm×1 is the unknown vector. Thus the residual minimization becomes

min
c

∥AKnc− b∥2 (3.7)

This can be done by means of a QR factorization of AKn such that

∥AKnc− b∥2 = ∥QRc− b∥2 =
∥∥Rc−QHb

∥∥
2
⇒ c = R−1QHb. (3.8)

However, it is unstable and expensive. Instead, we can use Arnoldi iteration to find the orthonormal

basis Qn of the Krylov subspace Kn. Suppose Qn = [q1, ..., qn] and

Qn ∈ Kn = span
{
b, Ab, ..., An−1b

}
(3.9)
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Then we rewrite

xn = Knc = Qny (3.10)

where y is projection vector of xn on Qn. Then the equivalent problem is

min
y

∥AQny − b∥2 (3.11)

Since the Arnoldi iteration is based on the partial similarity transform of

AQn = Qn+1H̃n (3.12)

where H̃n is the upper Hessenberg matrix which is a matrix with zeros below the first subdiagnoal.

Then

min
y

∥∥∥Qn+1H̃ny − b
∥∥∥
2

(3.13)

Note that the multiplication by a unitary matrix does not change the 2-norm, then we get

min
y

∥∥∥Qn+1H̃ny − b
∥∥∥
2
= min

y

∥∥∥H̃ny −QH
n+1b

∥∥∥
2

(3.14)

Note that the linear system in (3.11) is of size m × n, while the H̃n is an (n+ 1) × n matrix of

smaller size. Thus it is more efficient to solve (3.14).

The second term in (3.14) is

QH
n+1b =

[
qH1 b, q

H
2 b, ...q

H
n+1b

]T
(3.15)

Note that the Krylov subspaces are given as K1 = span{b}, K2 = span{b, Ab}, ... and the column

vector qj of Qn form an orthonormal basis for Kn. Then we have

q1 =
b

∥b∥
, qHj b = 0, for j > 1 (3.16)
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Therefore we have

QH
n+1b = ∥b∥ e1 (3.17)

Thus the least square minimization problem at step n is

min
y

∥∥∥H̃ny − ∥b∥2 e1
∥∥∥
2

(3.18)

and xn = Qny. The process of GMRES is described in Algorithm 1.

Algorithm 1 GMRES

q1 = b/||b||

for n = 1, 2, 3, ... do

Perform step n of Arnoldi iteration (see Alg.2 in Appendix 3.A)

Find y that mimimizes ||H̃ny − ||b||e1||2

Set xn = Qny

end for

The computational cost for the GMRES algorithm depends on the cost of solving the least

square problem and Arnoldi iteration. As we discussed before, the bottleneck of solving the linear

system is the memory required for storing the FLE matrix and is resolved by using the MPI parallel

computing technique. To validate the convergence performance of the GMRES method and the

parallel efficiency, a wheat field with 81 plants of height l = 42 cm is simulated at L-band. The

number of mode used in the T-matrix is Nm = 174 and the total number of unknowns is Nun =

14094. It requires 3GB for storing the FLE matrix. The linear system is solved using both the

Conjugate Gradient method and the GMRES method. Fig.3.2.2(a) plots the convergence of the

solution versus the iteration. The result shows that the GMRES has a much faster convergence

rate.

To test the parallel performance, the problem is solved using different number of CPUs and the

time of solving the problem is plotted in Fig.3.2.2(b). We can see the time request is significantly

reduced due to the employment of multi-CPUs. The speedup of the parallel computing is defined
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(a) (b)

Figure 3.2.2: (a) Convergence of GMRES method vs. iteration, (b) MPI parallel performance.

as

S =
Ts
Tp

(3.19)

where Ts and Tp respectively are the time of using 1 and multiple CPUs to solve the problem. The

parallel efficiency is defined as

E =
S

N
=

Ts
NTp

. (3.20)

The two parameters are calculated and shown in Table 7 to quantify the performance of the par-

allel computing. We can see due to the extra communication cost between different CPUs, both

the parallel efficiency and the speedup decrease with the number of CUP. Overall, it maintains a

efficiency greater than 80%.

Table 3.2.2: Efficiency and speedup as a function of number of processors for full-wave simulation
of vegetation.

# of CPU. Time (min) Efficiency Speedup

1 49.35 100% 1.00

2 24.93 98.98% 1.98

4 12.80 86.41% 3.86

8 6.69 82.22% 7.34
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3.3 Method Validation

Table 3.3.1: Length of cylinder for different VWC.

VWC (kg/m2) 0.58 1.72 2.87

lc (cm) 14 42 70

In this section, we validate the accuracy of the hybrid method by studying the results of one

plant and nine plants at the L-, S-, and C-bands. The results are compared with direct solutions of

HFSS. The excitation is a vertical polarized (V-pol) plane wave form the direction θi = 40o, ϕi =

0o and the frequencies used in the three different bands are listed in Table 3.2.1. The stem of the

wheat is represented by a dielectric cylinder with radius rc = 2 mm and its length lc is linearly

proportional to vegetation water content (VWC) as shown in Table 3.3.1. A single wheat plant is

modeled by a cluster of 8 cylinders with randomly generated orientation angles (θc, ϕc). While ϕc

has a uniform distribution over [0, 360o], θc follows a normal distribution over [0, 6o]. The hybrid

method is validated with HFSS at three frequencies by solving scattering from nine wheat plants as

shown in Fig. 3.3.2, where they are placed in a 3× 3 array with row and column spacing equaling

to 14 cm and the corresponding gap spacing is 1 cm.

3.3.1 Convergence Test C-band T-matrix

The T-matrix of one single wheat plant is calculated using the full-wave solutions obtained from

the HFSS based on the VCW expansion. The two variables in the VCW, kz and n, have a theo-

retical range, which is from −∞ to +∞. In practice, they are truncated at a maximum value that

ensures the convergence of the scattered fields. Specifically, the continuous integration over kz is

approximated by a discrete summation of Nθ samplings over [−kmax
z , kmax

z ]. When kz > k0, the

propagation constant in the ρ̂ direction become a imaginary The evanescent waves are excluded

in the T-matrix and the maximum propagation constant in z directions is chose to be kmax
z = k0.

The summation over n is truncated at Nmax
n making the total number of modes in ϕ direction be

Nϕ = 2(Nmax
n + 1). The Nϕ and Nθ are determined through the convergence tests. The accuracy
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Figure 3.3.1: Amplitude of scattered E-field on a vertical line parallel to z axis calculated from
T-matrix with different number of modes are compared with those solved form the HFSS.

of the truncation is validated in the following simulations. As shown in Fig. 3.3.1, the scattered

fields of a wheat plant at C-band calculated from T-matrix with different number of modes are

compared with the HFSS solutions. The observation points are on one vertical line of the circum-

scribing surface where ρ = 6.5 cm and ϕ = 180o. The T-matrix solutions of the fields are in good

agreement with the fields obtained from the HFSS as Nϕ increases form 5 to 9. A similar test is

also carried out to find the optimal Nθ and usually a higher wheat plant requires a larger Nθ. The

same procedures are repeated for the three frequencies to determine the optimal choices of Nθ and

Nϕ, and they are listed in table 3.3.1.

3.3.2 Full-wave Simulation of Night Wheat Plants at C-band

With the calculated T-matrices, we use the FLE to consider the scattering among different plants.

For the night wheat plants simulations at L- and S-bands, the wheat height is 44 cm and the

scattered fields on one line (Fig. 3.3.2) at the bottom of the wheat field solved from the HFSS and

the hybrid method are plotted in Fig. 3.3.3. We can see the scattered fields calculated from the

hybrid method, including both inside and outside of the enclosing cylinder, are in good agreement

with the HFSS solutions. The agreement validate the truncation of kz and n made in the T-matrix.

However, if the frequency is lower or the plant has a more complicated structure, a wider range of
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Figure 3.3.2: Scattering from nine wheat plants are solved using the hybrid method and the HFSS,
the radius of the circumscribing cylinder R = 6.5cm, distance between the centers of 2 circum-
scribing cylinders rd = 14cm, the closest distance between 2 circumscribing cylinders gd = 1cm.

kz should be covered in the T-matrix to include the evanescent waves. The wheat height is reduced

to 14 cm for the night wheat plants C-band simulation, because this is the maximum height that

the HFSS can simulate with the available computation resources. The amplitude of the scattered

fields on a plane, which is 1 cm below the wheat field, solved by the two methods are shown in

Fig. 3.3.4. We can see a strong field variation caused by the plant structure at the center of each

wheat plant. The good agreement of the field solutions verified the accuracy of the hybrid method.

Nine plants is the maximum number of plants that can be used in direct HFSS simulations. In the

next section, we will use the hybrid method alone to simulate results for the multiple scattering of

169 plants.

3.4 Multi-frequency Simulations of Wheat Field

In this section, the hybrid method is applied to perform full-wave simulations of wheat field at

multiple frequencies including L-, S-, and C-bands to investigate the frequency dependence of

the transmission. The excitation is a vertical polarized (V-pol) plane wave form the direction

θi = 40o, ϕi = 0o and the frequencies used in the three different bands are listed in Table 3.2.1.
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Figure 3.3.3: Amplitude of scattered E-field vary with x at the bottom of the 9 wheat plants with
z = −1cm and y = 0cm, L-band (top) and S-band (bottom).

(a) (b)

Figure 3.3.4: Amplitude of scattered E-field at C-band excited by a 40o incident V-pol plane wave
on a plane 1cm below the night wheat plants solved from (a) HFSS and (b) the hybrid method.

3.4.1 Simulation Setup

The hybrid method is built based on a realistic field configuration that includes both plant struc-

tures and gaps within the vegetation canopy. Despite the rapid improvement in the computing

technology, the size of the field that can be simulated is still limited by the computation resources.

Theoretically, the larger the field size is, the better the simulation result would have. However, a

too large vegetation field is actually not necessary, as the scattered fields decay as they propagate

outward based on the energy conservation. This indicates that the interaction between two plants
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Figure 3.4.1: Top view of the wheat field consisted of 169 plants with row and column spacing
rd = 14cm, gap spacing gd = 1cm and the radius of the circumscribing cylinder R = 6.5cm. The
square red dash line indicate the reception area of size lx.

is negligible when they are separated up to a certain distance and thus we can use a finite field to

investigate the vegetation effects on microwave. It should also be noted that the field size should

be large enough to avoid the edge effects caused by the field truncation. The suitable field size can

be determined through a convergence test of lx, which will be shown in the result section.

The top view of the simulated wheat field, consisting of 169 wheat plants, are shown in Fig.

3.4.1, where each blue circle represents a single wheat plant enclosed by a cylinder of radius

R = 6.5 cm. The row and column spacing are both random variables that are assumed to follow

Gaussian distribution. Their means values respectively are rd = 14 cm and cd = 14 cm, and the

corresponding gap spacing in row and column direction equal to gd = 1 cm. Different standard

deviation will be used to generate the wheat plant positions. The same wheat field of size 1.82m×

1.82 m is used in the L- and S-band simulations, and the corresponding electrical size are 8.6λ ×

8.6λ at L-band and 19.4λ × 19.4λ at S-band. A wheat field of 29λ × 29λ with 81 plants is

simulated at C-band. We first generate four wheat plants with different structure, and calculate and

store the corresponding T-matrices. The T-matrices only need to be calculated once and can be

repeatedly used in the following simulations. In each realization of the Monte Carlo simulations,

the 4 different wheat plants are randomly placed in the grid positions to form a new wheat field
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and the full-wave simulation is performed using the hybrid method. 42668921 After that, the

transmission of microwave is obtained through

T =
1

A

∫∫
A

S̄tot(r̄) · (−ẑ)
S̄inc(r̄) · (−ẑ)

dr̄ (3.21)

which is the normalized transmitted power over a reception area of size A at the bottom plane of

the wheat field and S̄ is the Poynting vector. The final transmission is calculated from an ensemble

average over the N realizations.

t =
1

N

N∑
n=1

Tn. (3.22)

The transmission calculated is the fraction of power transmitted by the plane wave that reaches be-

low the vegetation. The effects of the gaps and the plant structure on the microwave are illustrated

by comparing the scattered fields at the bottom plane with different plant heights. The transmission

at different regions are also calculated and compared to demonstrate the importance of coherent

multiple scattering.

3.4.2 Physical Iterative Method

The wave propagation in the vegetation is a random scattering problem where the scatterers are

randomly positioned. The random positioning creates random phases of the scattered fields and

causes fluctuations on the wave propagation. In the random scattering problem, only the statistical

behavior of the waves are of interest. In the traditional Monte Carlo simulations, as illustrated

in Fig. 3.4.2, the exact Maxwell solutions of each realization are solved first and then the final

solutions are obtained through the ensemble average over results of all realizations. Specifically,

the matrix equations resulting from the FLE is in the form of KĀ = b̄, which is solved iteratively

using the generalized minimal residual method (GMRES). The iteration stops when the relative

error is sufficiently small ∥KĀi − b̄∥/∥b̄∥ < ϵr, where Āi is the solution of the i-th GMRES iter-

ation. Physically, each iteration of GMRES can be understood as one order of multiple scattering

among different plants. As we will show in the result section, the exact final scattered fields have
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Figure 3.4.2: Diagram of physical iterative method for calculating the statistical average over
realizations.

strong variations due to the non-uniform distribution of the scatterers. However, the transmission

is obtained based on an averaging over a reception area as indicated in (3.21). We can expect that

the fluctuation of the scattered fields will be smoothed out by the averaging and consequently the

transmission will converge faster than the scattered fields.

To verify the concept of the physical iterative method, we simulate a wheat field at L-band

with 169 plants that are 70 cm long. The convergence of the model field coefficient Ā along

with the order of multiple scattering (GMRES iteration) is plotted in Fig. 3.4.3 using the blue

line. The red and the yellow curves, respectively, represent the relative error of the scattered fields

within the reception area and the relative error of the transmission calculated at each iteration.

The benchmark is the solution with an accuracy of ϵr = 1 × 10−8 which is computed from 900

iterations of multiple scattering. We can see that the coefficient Ā converges faster than the electric

fields as one model function represents fields on many points, and the transmission T has a larger

convergence rate than Ā due to the averaging over the reception area. Because we are interested in
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Figure 3.4.3: Convergence of the model field coefficient Ā, scattered fields, and transmission T
over the order of the multiple scattering.

the transmission accuracy of no more than 1 × 10−3, the GMRES algorithm can be terminated at

the 50-th iteration rather than continue to iterate until the exact field solutions are obtained at the

900-th iteration. This demonstrates that the exact field solutions are not necessary for the adequate

precision in the calculation of T in each realization and a faster convergence rate can be achieved

through the averaging of fields over area. The same idea can be applied to the averaging over

different realizations to further improve the convergence of t.

In the traditional method, the iterations to find the exact solution of Maxwell equations for each

realization are completed before performing averaging over realizations to obtain the final results.

In the physical iterative method , we can alternate between making iterations and averaging real-

izations by taking average over realizations after a certain number of iterations until the averaged

results converge. As shown in Fig. 3.4.2, in one iteration of the physical iterative method, we

first calculate one iteration of multiple scattering and takes averaging over area to obtain T n
1st for

all realizations, where the subscript denotes the order of multiple scattering and the superscript

n ∈ [1, N ] is the index of realization. Then we average over realizations to obtain t1 = ⟨T1st⟩.

The physical iteration iterates until the ti = ⟨Tith⟩ converge. Ten realizations of Monte Carlo

simulations are performed to test the physical iterative method and the relative errors of t over the

number of iterations are plotted in Fig. 3.4.4. The result shows that the physical iterative method
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Figure 3.4.4: Convergence of t over the physical iteration, the t is based on a 10 realization average.

only requires 40 iterations to obtain t with an accuracy of 1 × 10−3, which is 20 times faster than

the traditional approach.

The improvement made by the physical iterative method is based on two different averaging in

calculating the transmission. The first one is the averaging of fields over area, which is unique for

calculating the transmission. For example, the calculation of backscattering and forward scattering

do not require such a field averaging process. The second one is the inherent averaging over

multiple realizations required for Monte Carlo simulations of multiple scattering in random media.

The idea of averaging over realization is applicable for most of the Monte Carlo simulation that is

looking for the statistical behavior of certain parameter.

3.5 Result and Discussion

In this section, the full-wave based results calculated from the hybrid method, including the field

solutions and transmission of one single realization, are analyzed to demonstrate the vegetation

effects on the microwave. The final transmission obtained from the Monte Carlo simulation are

compared with those estimated from the RTE.

53



(a) (b)

Figure 3.5.1: Transmission of one realization at inner, gap, and total region vary with the size of
reception area: (a) L-band and (b) S-band.

3.5.1 Transmission at Different Regions

The reception area is a square region at the bottom of the wheat field denoted by the red dash

lines with size lx as shown in Fig. 3.4.1. The inner regions and the gap regions are indicated,

respectively, by the blue and yellow color. The transmissions at different regions of wheat with

lc = 42 cm at L- and S-bands are plotted as a function of lx in Fig. 3.5.1. The convergence of

transmissions along with lx shows that T is independent of the numerical parameter lx as expected.

The total transmission indicated by the red line decreases from around 0.88 to 0.34 as frequency

changes from L-band to S-band. It is interesting to note that the transmissivity at L-band in the

gap region is greater than 1, which is about 0.36 higher than that of the inner region. However,

an opposite trend is observed at S-band, where the inner region has a larger transmission than the

gap region. This is because the coherent addition of scattered fields can be either constructive or

destructive depending on their phases. This phenomenon cannot be captured using the RTE as it

ignores the phase information and assumes the addition of intensities. Consequently, the RTE pre-

dicts the same transmission in the inner regions and the gap regions. The distinct transmissions at

different regions based on the full-wave simulations demonstrate that the non-uniform distributions

of the scatterers have important effects on the transmission.
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(a) (b)

Figure 3.5.2: Amplitude of total Ē-field at S-band excited by a V-pol incident plane wave on a
plane 1cm below the wheat field: (a) wheat height h = 14cm and (b) wheat height h = 70cm.

Fig. 3.5.2 shows the scattered fields at the bottom plane of wheat with two different heights.

The excitation field is a vertical polarized plane wave at S-band. The height of the wheat in Fig.

3.5.2 (a) is 14 cm corresponding to a small VWC. In this case, the multiple scattering among

different plants are relatively weak compared with the cluster scattering caused by the plant struc-

ture. Consequently there are strong field fluctuations at the center of each wheat plant. Moreover,

a semi-periodic pattern is also observed in the scattered fields at the bottom plane as the wheat

plants are placed at the grid positions. The pattern will be made less visible by the stronger mul-

tiple scattering among different plants if the wheat height is increased to 70 cm as shown in Fig.

3.5.2(b). This indicates that multiple scattering among plants can make the scattered fields more

random and consequently lead to a decrease in the difference between the transmission at the inner

and outer region. The results illustrate the importance of using full-wave simulations to capture

different multiple scattering effects within the vegetation layer.

3.5.2 Gap Effects on Transmission

Wheat fields with different gap spacing are simulated to investigate how the gaps affect the trans-

mission. In the following simulations, the column spacing is fixed at 14 cm with a constant 1 cm
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Table 3.5.1: Statistics of random gap spacing gd.

Case Mean (cm) Std. (cm) Range (cm)

1 2.0 0.23 [1.0, 3.0]

2 3.0 0.35 [1.5, 4.5]

gap, while the row spacing rd is increased from 14 to 17 cm in a step size of 1 cm. The cor-

responding gap spacing in the row direction increases from 1 to 4 cm. The full-wave calculated

transmissions are listed in Table 3.5.2. The relations between the transmissions and the gap spacing

are different depending on the wheat height and frequency. While the L-band transmission for tall

wheat increases with gap spacing and the S-band transmission for medium height wheat decreases

with it, the transmissions of other cases vary with the gap spacing within 4.0%. The results also

show that the transmissions of all the tree different frequencies decrease with the wheat height. The

different trends of transmission in terms of gd demonstrate that the multiple scattering is a compli-

cate process that requires the full-wave simulation to fully capture the gap effects. Nevertheless,

the gap effects are less significant than those of the wheat height.

Table 3.5.2: Transmissions of wheat fields with different gap spacing gd.

Wheat
height

Band
Gap spacing gd (cm)

1 2 3 4

14 (cm)
L 0.942 0.942 0.948 0.946
S 0.777 0.777 0.740 0.749
C 0.742 0.764 0.754 0.769

42 (cm)
L 0.857 0.865 0.874 0.882
S 0.348 0.359 0.298 0.265
C 0.366 0.377 0.386 0.398

70 (cm)
L 0.771 0.810 0.849 0.864
S 0.155 0.161 0.183 0.192
C 0.169 0.160 0.155 0.147

The effects of randomized gap spacing on the transmission are also studied by two sets of

simulations, which the gaps in the row direction are randomly generated. The statistics of the gaps

are listed in Table 3.5.1, where the mean gap spacing are respectively 2 cm and 3 cm, the variation
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ranges are equal to their mean values, and they both follow a quasi-normal distribution within their

variation ranges. The results are shown in Table 3.5.3. The results show that the randomized gap

spacing do not change the transmission for all the three frequencies. This is because the spacing

between the cylinders within a single plant is much smaller than the gap spacing, so the plant

structure is the dominant factor of the multiple scattering effects. As a result, the variations in gaps

have almost no effects on the transmission.

Table 3.5.3: Transmissions of wheat fields with random gd.

Freq. (GHz) L: 1.41 S: 3.20 C: 6.90

⟨gd⟩ (cm) 2.0 3.0 2.0 3.0 2.0 3.0

14 (cm) 0.941 0.947 0.775 0.727 0.770 0.768
42 (cm) 0.864 0.872 0.357 0.303 0.377 0.390
70 (cm) 0.808 0.845 0.160 0.181 0.161 0.157

3.5.3 Comparison of Transmission

In this section, the transmissions calculated using the hybrid method are compared with those

estimated from the RTE. In the hybrid method, the vegetation canopy is modelled by a realistic

wheat field, where each wheat plant consists of 8 dielectric cylinders, the column spacing is 14

cm and the row spacing is rd = 16 cm. Thus the number of cylinder per unit area is na = 357.

However, in the RTE, the positions of the cylinders are assumed to be statistical homogeneous

within the vegetation layer and the wheat field is further approximated as a layered medium with

an effective propagation constant based on the independent scattering assumption. The effective

extinction coefficient is calculated from

κe = n0

(
⟨σa⟩+ ⟨σs⟩

)
(3.23)

where n0 is the number of scatterer per unit volume and is related to na through na = n0/d, in

which d is the thickness of the vegetation layer and is equal to the length of the cylinder; σs and σa

respectively are the scattering and absorption cross section of a single cylinder obtained from op-
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tical theorem based on ICA, and ⟨·⟩ indicates the ensemble average over the cylinder’s orientation

angle (θc, ϕc). Based on the same set of parameters, Fig. 3.5.3 shows the transmissivities of mi-

crowave through the wheat fields as a function VWC at three different frequencies calculated using

the RTE model and the hybrid method. The transmissivities calculated using the hybrid method

are much larger than those computed from the RTE at all the frequencies. For the cases with VWC

greater than 1.50 kg/m2, the transmission obtained from the RTE are almost zero at both the S-

and C- bands, while considerable transmissions are still observed using the hybrid method. The

approximations made in the RTE, including the homogeneous distribution assumption on the scat-

terers’ position, the incoherent addition of intensity and the ICA approximation in calculating the

κe, are all responsible for the overestimation of the attenuation. Moreover, the full-wave results

show that the attenuation caused by the vegetation layer has a weaker frequency dependence than

that of the RTE model. The similar transmissivities calculated using the hybrid method at the S-

and C-bands show that the attenuation caused by the vegetation layer will stop increasing as the

frequency increases. The considerable transmissions at the S- and C-bands indicate that it would be

possible to use the multi-channel signals to further improve the L-band surface parameter retrieval

algorithms, such as soil moisture.

Figure 3.5.3: Transmission of microwave through wheat field calculated using the hybrid method
and the RTE model vary with VWC.
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3.6 Summary

In this chapter, full-wave simulations of a vegetation field with many plants are performed using

the two-step hybrid method to investigate the vegetation effects on microwaves at L-, S- and C-

bands. The hybrid method is implemented with parallel computing to meet the large memory

demand required at the S- and C-band. The computation efficiency is significantly improved by the

physical iterative method. The impacts of the gaps and plant structure on microwave transmission

are illustrated by the comparison of transmission at different regions. The simulation results show

that the attenuation caused by the vegetation layer will saturate as the frequency increases and the

corresponding frequency dependence is much weaker than that predicted by the RTE model. The

results suggest that the S- and C-bands measurements could be used to support L-band surface

parameter retrieval algorithms, such as soil moisture.
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Appendix

In this appendix, we provide the detailed derivation and discussion about the Aroldi iteration used

in the GMRES iterative method. Arnoldi process is a Gram-Schmidt-style iteration for transform-

ing a matrix to Hessenberg form. If A is Hermitian, the Hessenberg matrix becomes tridiagonal,

the Arnoldi iteration become Lanczos iteration. The Arnoldi is the analogue of Gram-Schmidt for

similarity transformations to Hesseberg form rather than QR factorization.

3.A Arnoldi Iteration

A complete reduction of A to Hessenberg form by orthogonal similarity transformation might be

written as

A = QHQH (3.24)

where H is the complete Hesseberg matrix of size m ×m and Q = [q1, q2, ..., qn] ∈ Cm×m is an

orthonormal matrix. Let H̃n be the (n+ 1)×n upper-left section of H, which is also a Hessenberg

matrix

H̃n =



h11 h12 · · · h1n

h21 h22
...

. . . ...

hn,n−1 hn,n

hn+1,n


(3.25)
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Let Qn be the first n column of Qn

Qn = [q1, ..., qn] (3.26)

Then we have

AQn = Qn+1H̃n (3.27)

where A ∈ Cm×m, Qn ∈ Cm×n, Qn+1 ∈ Cm×(n+1), and H̃n ∈ C(n+1)×n. The resulting matrix

AQn is of size m× n. In detail, the nth column of the equation is

Aqn = h1nq1 + ...+ hnnqn + hn+1,nqn+1 (3.28)

which means qn+1 satisfies an n + 1 term recurrence relation involving itself and the previous

Krylov vectors. Then the qn+1 of Qn can be computed from

qn+1 =
1

hn+1,n

(
Aqn −

n∑
i=1

hi,nqi

)
(3.29)

which is known as Arnoldi iteration. The basis vector {qi} are generated by A and b

Kn =
{
b, Ab, ..., An−1b

}
∈ sapn {q1, q2, ..., qn} (3.30)

Since qi are orthonormal, the Arnoldi process is the systematic construction of orthonormal basis

for successive Krylov subspaces.

AQn = Qn+1H̃n (3.31)

Note that QH
n Qn+1 is a rectangular matrix of size n× (n+ 1) with the diagnoal component being

1, thus

QH
n Qn+1H̃n : n× n Hessenberg matrix (3.32)
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From AQn = Qn+1H̃n, we have the following identities

QH
n AQn = QH

n Qn+1H̃n = Hn (3.33)

which shows that Hn is a projection of A on to Kn based on Qn. It can be interpreted as the

representation in the basis {q1, ..., qn}of the orthogonal projection of A onto Kn.

Algorithm 2 Arnoldi Iteration

b = arbitrary, q1 = b/||b||

for n=1,2,3... do

v = Aqn

for j=1 to n do

hjn = qHj v

v = v − hjnqj

end for

hn+1,n = ||v||

qn+1 = v/hn+1,1

end for
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CHAPTER 4

Full-wave Simulation of Forest

The full-wave simulation of forest is realized by the first time using the two-step hybrid method

with two critical issues being successfully resolved in this chapter. First, the inherent restric-

tions set by the matrix inversion-based approach for calculating the T-matrix of one single plant is

removed by revealing the general relation among the T-matrix, the plane wave scattered field co-

efficient, and the far-field. The Fourier type of transformation enable us to calculate the T-matrix

element independently, and thus a far-field based method, applicable for plant of arbitrary size and

structure, is built. Second, the memory challenge of the hybrid method is eliminated by adopting

the iterative solutions for solving the Foldy-Lax equations (FLE). The proposed methods are vali-

dated with FEKO by comparing the field solutions of scattering from three eight meters tall trees.

After that, the full-wave Monte Carlo simulations of forest are performed to investigate the tree

effects on microwave propagation and the potential of using L-band signal to retrieve soil moisture

over the forested area.

4.1 Introduction

The recent studies [41–49] have shown that the L-band microwave signal is able to penetrate

through the forest canopy and is potentially used to retrieve the soil moisture in the forest area.

This requires an accurate modeling of wave propagation in the forest based on the full-wave sim-

ulation. In this chapter, the tree effects on microwave propagation in forest is investigated using

the newly developed two-step hybrid method. Although the method has been successfully apply
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to simulate wheat field, it can be not directly be used to simulate the forest as the size of tree is

much larger than that of crop. While the typical corp height is within 2 meters, the tree can grow

up to 20-meter tall with long branches extending out from the trunk. The increase in size creates

two challenges for the Hybrid method.

The first challenge is the matrix inversion-based approach for calculating the T-matrix of single

plant fails, when the plant has a large electrical size and a complicated structure. This method

requires a carefully selection of the incident angles such that all the sufficient information of the

scatterer are captured within the corresponding scattering coefficients. In addition, the number of

incident waves to be simulated is equal to the number of the modes used in the T-matrix. The

reason that the matrix inversion method works for wheat is because a simple stem only structure is

used to model the wheat and thus a uniform sampling of the incident angle is good enough for the

T-matrix extraction. To overcome this issue, a general relation is discovered in this paper which

shows that T-matrix is the coefficient of the Fourier series of the scattered field coefficient. Based

on that, a far-field based approach is developed for calculating the T-matrix of one single tree.

The second challenge is the memory demand for solving the closed-form FLE as it increases

dramatically with the number of modes used in the T-matrix. For example, the T-matrix of eight

meters tall tree contains 20,000 modes and the total unknown for modeling 15 trees is 300,000,

thus it requires 1341 GB for storing the resulting Foldy-Lax matrix, which is unaffordable even

implemented with parallel computing. This issue is resolved by adopting the physical iterative

solution for considering the multiple scattering among different plants, which eliminates the need

for direct solution of the FLE.

Due to the limitation of the computation resource, the branches only tree are simulated in this

chapter. To consider the tree structure, three different types of components, including the trunk,

the primary and secondary branches, are modelled using the dielectric cylinders of different sizes.

In the first step, the full-wave simulations of a single tree are performed using the Multilevel Fast

Multipole (MLFMM) solver provide by the commercial software of FEKO. The resulting far-field

solutions are used to calculate the T-matrix of a single tree. The multiple scattering between the
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trunk and branches within a tree are illustrated by comparing the scattered field to those of a

single trunk. In the second step, the calculated T-matrix is combined with the FL equations to

consider the interaction among different plants. Instead of solving the close-form FL equations

directly, a physical iterative solution is adopted to reduce the memory demand for considering the

multiple scattering effects. The hybrid method are validated with FEKO by comparing the solution

of scattering from three eight meters tall trees. Full-wave simulations of forest with different tree

density and height are carried out to investigate the potential of retrieving soil moisture in the forest

area using L-band microwave.

4.2 Tree Structure and Forest Configuration

Despite the dramatic advancement of computing power during the last few decades, the capability

of the numerical solver is still limited and the full-wave simulation of a single tree (see Fig.4.2.1(a))

including all the branches and leaves is still a very challenge issue, especially when the tree is tall.

It is known that the major cause of the absorption is the water contained in the vegetation. Given

the fact that most of the water are stored in the trunk and branches, so we do not consider the

leaves when modeling the tree. Specifically, three different types of components are included in

the tree structure, which are the trunk, the primary and secondary branches. Although a realistic

structure can be used in the hybrid method as the numerical solver is employed to perform the

single plant full-wave simulation, all the components are modelled using the dielectric cylinders

of different size to make the result comparable to the classical RTE model. A 5-meter tall tree is

plotted in Fig.4.2.1(b). In the future, the realistic plant structure can be used to further improve

the simulation. The full-wave simulation of the branch only tree can be done using the Multilevel

Fast Multipole (MLFMM) solver of FEKO. In the hybrid method, each individual plant is treated

as a single scatterer and can be enclosed by a cylindrical surface (see Fig. 4.2.1(b)) such that its

response can be characterized using VCW based T-matrix.

The hybrid method is built based on a realistic field configuration that can capture both the tree
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(a) (b)

Figure 4.2.1: (a) Real pine tree, (b) branch only tree model.

structures and the gaps among different trees. The top view of the forest to be simulated is shown

in Fig.4.2.2, which is a circular area of radius R. Each small circle denotes one single tree and

its radius Rc is the smallest circle that can fully enclose the corresponding tree. The positions of

the trees are randomly generated within the circular area and the number of trees is determined

by a density parameter. Since each tree is treated as one single scatterer in the hybrid method, we

should make sure they are not overlapped with each other when generating their positions. Based

on the field configuration, the full-wave simulation of the forest are performed using the hybrid

method in two steps.

Figure 4.2.2: Top view of forest.
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4.3 Hybrid Method for Forest Simulation

4.3.1 T-matrix and Scattered Field Coefficient

The T-matrix is a general approach for describing the response of one single scatterer and is first

proposed in [50] based on the spherical wave. The T-matrix concept is extended to cylindrical

coordinate in our research to characterize the response of one single plant based on the VCW

expansions using the full-wave solutions obtained from the numerical solver. To construct the

T-matrix, an infinite cylindrical surface is used to enclose a single plant such that the space is

divided into two regions. While the plant is in the inner region, the outer region is the empty space

as shown in Fig. 4.2.1(b). Based on the model expansion theory, all the field in the cylindrical

coordinate can be expanded in terms of VCW. Specifically, the scattered field in the outer region

can be expressed as

Ēs(r) =
∑
n

∫
dkz

[
aSMn (kz)M̄n(kz, r̄) + aSNn (kz)N̄n(kz, r̄)

]
(4.1)

where M̄n(kz, r̄) and N̄n(kz, r̄) are the outgoing VCW, and aSMn (kz) and aSNn (kz) are their corre-

sponding expansion coefficients. The outgoing VCW are defined as [37]

M̄n(kz, r̄) =
[
ρ̂
in

ρ
H(1)

n (kρρ)− ϕ̂kρH
(1)′

n (kρρ)
]
exp(ikzz) exp(inϕ) (4.2)

N̄n(kz, r̄) =
[
ρ̂
ikρkz
k

H(1)′

n (kρρ)− ϕ̂
nkz
kρ

H(1)
n (kρρ) + ẑ

k2ρ
k
H(1)

n (kρρ)
]
exp(ikzz) exp(inϕ). (4.3)

where r̄ = ρ̂ρ + ϕ̂ϕ + ẑz is the position vector in cylindrical coordinate, kρ =
√
k2 − k2z is the

propagation constant in the ρ̂ direction, n is the order of harmonic in ϕ̂ direction, the H(1)
n (kρρ)

is the Hankel function of first kind and H(1)′
n (kρρ) is the corresponding first order derivative. The

excitation field in both regions can be expanded as

Ēex(r̄) =
∑
n

∫
dkz

[
aEM
n (kz)RgM̄n(kz, r̄) + aEN

n (kz)RgN̄n(kz, r̄)
]

(4.4)
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where RgM̄n(kz, r̄) and RgN̄n(kz, r̄) are the incoming VCW and their expressions are obtained,

respectively, by replacing the H(1)
n (kρρ) in (4.2) and (4.3) with Bessel function Jn(kρρ). The

corresponding scattering and excitation coefficients are denoted respectively as aSMn (kz), aSNn (kz)

and aEM
n (kz), aEN

n (kz). They are related through the T-matrix as

aSMn (kz) =
∑
n′

∫
dk′z

[
TMM ′

nn′ (kz, k
′
z)a

EM
n′ (k′z) + TMN ′

nn′ (kz, k
′
z)a

EN
n′ (k′z)

]
(4.5)

aSNn (kz) =
∑
n′

∫
dk′z

[
TNM ′

nn′ (kz, k
′
z)a

EM
n′ (k′z) + TNN ′

nn′ (kz, k
′
z)a

EN
n′ (k′z)

]
(4.6)

This is the definition of the VCW based T-matrix. If the T-matrix of one scatterer is known and the

excitation is given, then the corresponding scattered field coefficients can be calculated from (4.5)

and (4.6). Then the resulting scattered field is obtained using (4.1).

Let the excitation be a plane wave given as

Ēex(r̄) = (v̂iEvi + ĥEhi) exp(ikk̂i · r̄) (4.7)

where r̄ is the position vector, k is the propagation constant, k̂i is the propagation vector, v̂i and

ĥi, respective, are the vertical and horizontal polarization vector of the incident direction (θi, ϕi),

Evi and Ehi are their corresponding amplitudes. The triplet (k̂i, v̂i, ĥi) forms an orthonormal unit

system and they are defined as

k̂i = sin θi cosϕix̂+ sin θi sinϕiŷ + cos θiẑ (4.8)

v̂i = cos θi cosϕix̂+ cos θi sinϕiŷ − sin θiẑ (4.9)

ĥi = − sinϕix̂+ cosϕiŷ. (4.10)
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The VCW coefficients of the plane wave are known as [37]

aEM
n′ (k′z) = Ehi

in
′+1 exp(−in′ϕi)

kiρ
δ(k′z − kiz)

aEN
n′ (k′z) = Evi

in
′+2 exp(−in′ϕi)

kiρ
δ(k′z − kiz)

(4.11)

where δ is the Dirac delta function. Substitutions of (4.11) into (4.5) and (4.6) and the cancelation

of integration over k′z with the delta function give

aSMn (kz, k
′
zi
) =

∑
n′

[
EhiT

MM ′

nn′ (kz, k
′
zi) + iEviT

MN ′

nn′ (kz, k
′
zi)
]in′+1

kiρ
exp(−in′ϕi) (4.12)

aSNn (kz, k
′
zi) =

∑
n′

[
EhiT

NM ′

nn′ (kz, k
′
zi) + iEviT

NN ′

nn′ (kz, k
′
zi)
]in′+1

kiρ
exp(−in′ϕi) (4.13)

By applying an H-pol (Evi = 0, Ehi = 1) and a V-pol (Evi = 1, Ehi = 0) plane wave, respectively,

to (4.12) and (4.13), we get 4 set of equations that relate the T-matrix element to the scattering field

coefficient

aSMn,h
(
kz, k

′
zi

)
=
∑
n′

EhiT
MM
nn′ (kz, k

′
zi)

in
′+1

kiρ
exp (−in′ϕi)

aSNn,h
(
kz, k

′
zi

)
=
∑
n′

EhiT
NM
nn′ (kz, k

′
zi)

in
′+1

kiρ
exp (−in′ϕi)

aSMn,v
(
kz, k

′
zi

)
=
∑
n′

iEviT
MN ′

nn′ (kz, k
′
zi)

in
′+1

kiρ
exp (−in′ϕi)

aSNn,v
(
kz, k

′
zi

)
=
∑
n′

iEviT
NN ′

nn′ (kz, k
′
zi)

in
′+1

kiρ
exp (−in′ϕi)

(4.14)

where the polarization of the excitation field is indicated by the subscript v and h. Note that the

two cylindrical waves M̄n(kz, r) and N̄n(kz, r) are actually corresponding to the H-pol and V-pol

respectively. By combining the notation together, (4.14) can be written in a compact form as

aSβn,β′(kz, k
′
zi
) =

∑
n′

Eβ′Cβ′T ββ′

nn′ (kz, k
′
zi)
in

′+1

kiρ
exp(−in′ϕi) (4.15)
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where β =M,N denotes the polarization, the prime superscript indicates the source, and Cβ′ = i,

when β′ = N (V-pol), Cβ′ = 1, when β′ = M (H-pol). Equation (4.15) reveals that the T-

matrix element of T ββ′

nn′ (kz, k
′
zi) is the coefficient of the Fourier series of plane wave scattered field

coefficient αSβ
n,β′(kz, k

′
zi) in terms of ϕi. Multiplying both sides with

∫
dϕi exp(in

′ϕi) and using the

orthogonality of the exponential function,

∫
dϕ exp(inϕi) exp(in

′ϕi) = 2πδnn′ (4.16)

the T-matrix can be calculated using the scattered field coefficient from

T ββ′

nn′ (kz, k
′
zi) =

kiρ
2π

i−(n′+1)

Eβ′Cβ′

∫ 2π

0

aSβn,β′(kz) exp(in
′ϕi)dϕi. (4.17)

The significance of (4.17) is that it enable us to compute the T-matrix element by element and

removes the inherent constrain set by the matrix inversion-based approach for calculating the T-

matrix.

4.3.2 Far-field Based T-matrix Extraction

It is important to notice that the expansion coefficients in (4.1) are independent of distance. Given

the aSβn (kz), the corresponding scattered field are known regardless of the distance. Conversely,

aSβn (kz) can be obtained either from the near-field or the far-field. The near-field based approach

for calculating the aSβn (kz) using the Huygens principle and the VCW expansions of the Dyadic

Green’s function has been presented in Chapter 2. The far-field based method for extracting the

T-matrix will be presented here.

In the far-field region, the Hankel function can be approximated as

lim
z→∞

H(1)
n (z) ≈

√
2

πz
exp(i(z − nπ

2
− π

4
))

lim
z→∞

H(1)
n (z) ≈ i

√
2

πz
exp(i(z − nπ

2
− π

4
))

(4.18)
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Substitute (4.18) into (4.2) and (4.3), we can get the far-field approximations of the VCW

lim
ρ→∞

M̄n(kz, r̄) = −ϕ̂ikρ

√
2

πkρρ
exp(i(kρρ−

nπ

2
− π

4
)) exp(ikzz) exp(inϕ) (4.19)

lim
ρ→∞

N̄n(kz, r̄) =
[
− ρ̂

kρkz
k

+ ẑ
k2ρ
k

]√ 2

πkρρ
exp(i(kρρ−

nπ

2
− π

4
)) exp(ikzz) exp(inϕ) (4.20)

where the M̄n(kz, r̄) only has ϕ̂ component and the N̄n (kz, r̄) has ρ̂ and ẑ component. With the

far-field approximations, the scattered field in the far-field region becomes

Ēs(r) =
∑
n

∫
dkz

[
aSMn (kz)(−ϕ̂kρi) + aSNn (kz)([−ρ̂kz + ẑkρ]

kρ
k
)
]

×

√
2

πkρρ
exp(i(kρρ−

nπ

2
− π

4
)) exp(ikzz) exp(inϕ).

(4.21)

By applying the stationary phase approximation to (4.21), the far-field can be simplified as

Ēs(r) =
∑
n

[
aSNn (k cos θ)([−ρ̂ cos θ + ẑ sin θ]k sin θ) + aSMn (k cos θ)(−iϕ̂k sin θ)

]
× exp(inϕ)i−n

∫
dkz

√
2

πkρρ
exp(i(kρρ−

π

4
)) exp(ikzz).

(4.22)

The detailed derivation of the stationary phase approximation can be found in the Appendix 4.A.

Note that ϕ̂ = ĥ and v̂ = ρ̂ cos θ − ẑ sin θ, the scattered far-field become

Ēs(r) = −k sin θ
∑
n

exp(inϕ)
[
(iĥ)aSMn (k cos θ) + (v̂)aSNn (k cos θ)

]
×i−n

∫
dkz

√
2

πkρρ
exp

(
i
(
kρρ−

π

4

))
exp(ikzz)

(4.23)

It is also notice that the last term in (4.23) is the far-field approximation of the free the space
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Green’s function which is known as

exp(ikr)

r
=
i

2
lim
ρ→∞

∫
dkz

√
2

πkρρ
exp(i(kρρ−

π

4
)) exp(ikzz). (4.24)

The detailed derivation of (4.24) can be found in the Appendix 4.B. Using (4.24), the far-field is

related to the VCW coefficient through

Ēs(r) =
exp(ikr)

r
2k sin θ

∑
n

i1−n exp(inϕ)
[
aSMn (k cos θ)(i)ĥ+ aSNn (k cos θ)v̂

]
(4.25)

In the far field, the scattered field is related to the incident field through the scattering amplitude

fββ′(ks, ki)  Evs

Ehs

 =
exp (ikr)

r

 fvv (ks, ki) fvh (ks, ki)

fhv (kz, ki) fhh (ks, ki)


 Evi

Ehi

 (4.26)

By equating (4.23) and (4.26), the scattered field coefficients are related to the far-field amplitude

2k sin θ
∑
n

i1−n exp (inϕ) aSNn (k cos θ) = fvv (ks, ki)Evi + fvh (ks, ki)Ehi

2k sin θ
∑
n

i1−n exp (inϕ) aSMn (k cos θ) (i) = fhv (ks, ki)Evi + fhh (ks, ki)Ehi

(4.27)

Applying an H-pol (Evi = 0, Ehi = 1) and a V-pol (Evi = 1, Ehi = 0) plane wave excitation to

(4.27), and integrating both side with exp(inϕ), we can obtain

aSNn,h(k cos θ) =
1

4πk sin θi1−n

∫
dϕ exp(−inϕ)fvh(ϕ, θ)

aSMn,h (k cos θ) =
1

4πk sin θi2−n

∫
dϕ exp(−inϕ)fhh(ϕ, θ)

aSNn,v (k cos θ) =
1

4πk sin θi1−n

∫
dϕ exp(−inϕ)fvv(ϕ, θ)

aSMn,v (k cos θ) =
1

4πk sin θi2−n

∫
dϕ exp(−inϕ)fhv(ϕ, θ)

(4.28)
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Similarly, (4.28) can be expressed in a compact form as

aSβn,β′(k cos θ) =
1

4πk sin θi1−nCβ

∫
dϕ exp(−inϕ)fββ′(ϕ, θ) (4.29)

where Cβ = 1, when β = N (V-pol), Cβ = i, when β = M (H-pol). This states that the scattered

field coefficient is the coefficient of Fourier series of the far-field in term of ϕ. Combination of

(4.15) and (4.29) gives

T ββ′

nn′ (kz, k
′
zi) =

1

in′−nCβCβ′

1

8π2

sin θi
sin θ

∫ 2π

0

dϕe−inϕ

∫ 2π

0

dϕie
in′ϕifββ′(ks, ki) (4.30)

It indicates that the T-matrix elements are the Fourier coefficients of the double Fourier series of

the far-field in terms of ϕ and ϕi. With (4.30), we can calculate the T-matrix element-wisely by

using the far-field amplitudes. Since the far-field are always directly available in the most of the

commercial solver and do not require the surface integration to obtain the scattered field coefficient,

thus the far-field approach is more efficient than the near-field based approach.

4.3.3 Iterative Solution of FL Equations

The second step of the hybrid method is to combine the T-matrix with the FLE to consider the

multiple scattering among different trees through

Ēex
q (r̄) = Ēinc

q (r̄) +
Nt∑

p=1,p ̸=q

ḠqpT pĒ
ex
p (r̄) (4.31)

where Nt is the number of trees, Ḡqp is the free space green function representing the propagation

from tree p to q, and the Ēex
q (r̄) denotes the final excitation acting on the qth tree. The FLE

states that the final excitation field Ēex
q (r̄) acting on the qth tree is the incident field plus the final

scattered field Ēsc
p (r̄) of all other trees except itself. In (4.31), the final scattered field is expressed

in terms of T-matrix as Ēsc
p (r̄) = T pE

ex
p (r̄) and thus a self-consistent equation is formed with the

Ēex
p (r̄) being the only unknown.
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By using the VCW expansions and the translational addition theorem, a set of linear equations

are obtained for solving the final unknown excitation coefficients. Previously, the closed-form

equations are solved directly using the numerical method of GMRES to obtain the final solution.

However, this becomes impractical for forest simulation as the number of unknowns is on the

order of O(N2
t N

2
T ), where NT is the number of modes used in the T-matrix. To avoid the memory

challenge, the FLE can be solved iteratively based on the physical scattering process such that we

do not need to store the FLE matrix. The iterative process starts from the first order scattered field

which is excited by the incident field only and can be obtained from

Ēs(1)
q (r̄) = T qĒ

inc(r̄) (4.32)

where the order in the superscript indicates the number of time that the field is scattered. The

higher order scattered field is then obtained from the lower order using the recurrent iteration

Ēs(n)
q (r̄) = T q

Nt∑
p=1,p ̸=q

GqpĒ
s(n−1)
p (r̄) (4.33)

which states that the total exciting field acting on qth scatterer is the sum of the (n−1)th scattered

field from all other scatterer. The scattered field will decay as the order increase and the iteration

can be terminated when the higher order scattered field is negligible. The total scattered field is

then calculated from

Ēs(r̄) =
Nt∑
q

Nit∑
n

Ēs(n)
q (r̄) (4.34)

where Nit is the total number of the physical iteration. The iterative solution is preferable when

the density of the scatterer is small and the solution will converge in a few iterations as we will

show in the result section.
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4.3.4 Inner Field Extraction

It is important to notice that the T-matrix is only valid for scattered field in the outer region and

thus can not be applied to compute the inner region scattered field. The scattered field of each

plant in its inner region can be obtained using the plane wave transformation and the superposition

principle. The solutions solved from the FLE express the final excitation field acting on each

scatterer in terms of VCW. Using the plane wave expansion of the VCW which are known as

RgM̄n(kz, r̄) =
kρ

2πin+1

∫
dϕk exp(ik̄ · r̄)ĥ(θk, ϕk) exp(inϕk) (4.35)

RgN̄n(kz, r̄) =
kρ

2πin+2

∫
dϕk exp(ik̄ · r̄)v̂(θk, ϕk) exp(inϕk) (4.36)

we can transform (4.1) into

Ēex(r̄) =

∫
dkz

∫
dϕk

[
Ch(θk, ϕk)ĥ(θk, ϕk) + Cv (θk, ϕk) v̂ (θk, ϕk)

]
exp(inϕk) exp(ik̄ · r̄)

(4.37)

which expresses the final excitation field as a linear combination of the plane wave from different

angle (θk, ϕk), Ch and Cv are the corresponding plane wave coefficients and they are related to the

VCW coefficients as

Ch (θk, ϕk) =
∑
n

aEM
n (kz)

(
kρ

2πin+1

)
(4.38)

Cv (θk, ϕk) =
∑
n

aEN
n (kz)

(
kρ

2πin+2

)
(4.39)

Using the linearlity of the electromagnetic field and the supperposition principle, the corresponding

inner region scattered field excited by (4.37) can be obtained from

Ēs
q,in(r̄) =

∫
dkz

∫
dϕkCβ(θk, ϕk)Ē

s,β
q,in(r̄) (4.40)
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where Ēs,β
q,in (r̄) is the scattered field of the tree excited by the β-pol plane wave from (θk, ϕk) and

are already computed in the first step when calculating the T-matrix. By using the T-matrix and

(4.40), the scattered field in both the inner and outer regions can be obtained which is important

for calculating the microwave transmission.

4.4 Method Validation

In this section, we validate the far-field based approach by calculating the T-matrix of a eight meters

tall tree and the accuracy of the hybrid method is tested with FEKO by solving the scattering from

three eight meters tall trees. The excitation field is a vertically (V-pol) or horizontally (H-pol)

polarized plane wave from the direction of ϕi = 0o, θi = 40o, at L-band 1.41 GHz, which is the

operation frequency and the incident angle of NASA Soil Moisture Active Passive (SMAP) mission

[6]. Three type of components, the trunk, the primary and secondary branches, are considered in

the tree model. Their sizes and numbers are listed in Table 4.4.1. While the trunk is a vertical

cylinder, the orientation angles (ϕB1 , θB1) of the primary branches are randomly generated with a

uniform distribution of ϕB1 ∈ [0o, 360o] and θB1 ∈ [0o, 90o]. Three eight meters tall trees generated

based on these parameters are shown in Fig.4.4.3.

Table 4.4.1: Size and number of tree components: trunk (Tr), primary branch (B1), and secondary
branch (B2)

Tree
2m 5m 8m

Tr B1 B2 Tr B1 B2 Tr B1 B2

Num. 1 12 72 1 15 90 1 18 108

Len. (m) 2 0.3 0.2 5 0.8 0.2 8 1.0 0.3

Dia. (cm) 10 4.0 1.0 16 4.0 1.0 25 4.0 1.0
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4.4.1 T-matrix of Single Tree

First, we perform full-wave simulations of a eight meters tall tree using the FEKO to obtain the

scattered far-field from which the corresponding T-matrix is calculated using (4.30). The VCW

based T-matrix has two free variables n and kz which range from −∞ to +∞ in theory. In practise,

they are truncated at a maximum value that ensures the convergence of the scattered field. The

maximum number of mode in the ϕ̂ direction is related to theRc asNmax
n = 2kRc. The continuous

integration over kz is truncated at kmax
z and is approximated using a Nθ uniform sampling within

[−kmax
z , kmax

z ]. In this paper, the T-matrix only consider propagating waves as the evanescent

waves are negligible so kmax
z = k0. The Nθ is chose based on the convergence test. Consequently,

the total number of mode used in the T-matrix is Nm = 2(2kRc + 1)Nθ. The far-field based

T-matrix (4.30) requires a continuous integration over ϕi which is very expensive as it needs the

full-wave simulation for each sampled ϕi. To improve the simulation efficiency, the Legendre

quadrature is applied to the ϕi integration and the resulting number of sampling is Nϕi
= 2n′

which is 5 time less than 10n′ which is the sampling number required by a uniform sampling.

To justify the truncation we made in the number of modes and validate the accuracy of the T-

matrix, the scattered field of an eight meters tall tree on a vertical z-line on the enclosing cylinder

is plotted in Fig. 4.4.1(a). We can see despite a small mismatch on one of the peak that caused by

the sharp scattering from branch, the scattered field obtained from the T-matrix agree very closely

with the FEKO solution. As the evanescent waves are largely caused by the tree trunk and decay

exponentially in the ρ̂ direction, so they are negligible on the enclosing cylindrical surface where

ρ = 1m and is about 4λ away from the trunk. That is the reason why we can exclude the evanescent

waves in the T-matrix. The scattered field over a horizontal x-line is also plotted in Fig. 4.4.1(b)

which shows that the scattered field decay as ρ increases. This imply that when the separate

distance between two trees is greater than a certain value ρmax, their interactions are negligible.

Consequently, the area of the forest stand to be simulated can be truncated at R = ρmax. That is

the reason for the simulated forest stand is circular area of radius R = 8m. The good agreements

of the field solutions validate the accuracy of the far-field based T-matrix.
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(a) (b)

Figure 4.4.1: Amplitudes of scattered E-field of a single eight meters tall tree at L-band excited
by a 40o incident V-pol plane wave on (a) a vertical z-line with x = 1m and y = 0m, and (b) a
horizontal x-line with z = −4.05m and y = 0m.

To demonstrate the multiple scattering effects caused by the tree structure, we also plot the

scattered field of the trunk only tree in Fig. 4.4.2 using both the FEKO and the ICA based T-

matrix. Since the tree is eight meters tall and much larger than the wave length at L-band which

is λ = 0.21m, the ICA approximation generally has a good agreement with the full-wave results

obtained from the FEKO. The difference between the ICA and FEKO are caused by the exclusion

of the top and bottom surface of the cylinder in the ICA. That is why the ICA works poorer at

the two end than in the middle of the trunk. In Fig. 4.4.2(a), the scattered field vary smoothly

along the vertical line as there is no multiple scattering of one single trunk. In contrast, the field in

Fig. 4.4.1(a) fluctuate rapidly as there are strong multiple scattering among the trunk and branches

within the same tree. By comparing the field plotted in Fig. 4.4.1(b) and 4.4.2(b), we can see

the multiple scattering due to the tree structure also change the scattered field at the bottom plane

which has a direct impact on calculating the microwave transmissivity. Moreover, the strong field

fluctuation will also affect the field distribution in the tree such that impact the absorption of the

tree. In the next section, forest of the trunk only tree will also be simulated to further investigate

the impact of the tree structure on the microwave transmissivity.
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(a) (b)

Figure 4.4.2: Amplitudes of scattered E-field of a single eight meters tall trunk at L-band excited
by a 40o incident V-pol plane wave on (a) a vertical z-line with x = 1m and y = 0m, and (b) a
horizontal x-line with z = −4.05m and y = 0m.

4.4.2 Full-wave Simulation of 3 Trees at L-band

Figure 4.4.3: Scattering from three eight meters tall trees are solved using the hybrid method and
the FEKO, the radius of the circumscribing cylinder Rc = 1.0m, distance between the centers of 2
circumscribing cylinders d = 3.0m.

Second, we validate the iterative solutions of the FLE by solving the scattering from three eight

meters tall trees as shown in Fig.4.4.3. The iterative solutions of the scattered E-field along the z-

axis from −4m to 4m are plotted in Fig. 4.4.4(a). The amplitude of the scattered field decreases

dramatically with the order of scattering and is on the order of 10−6 at the 10-th iteration. Thus the
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iterative process can be terminated at Nit = 10. The hybrid method solutions are obtained by sum-

ming up the 10 order of solutions and are compared with the FKEO solutions in Fig. 4.4.4(b). The

good agreements of the near-field solutions validate the accuracy of the physical iterative method.

The fast convergence is achieved because the density of the scatterer is small and more iterations

may require for a larger number of scatterer. Since the hybrid method treats each single tree com-

posed of many components, rather than a individual branch or trunk, as a individual scatterer and

the typical density of tree ρt in the forest is within [0.07, 0.15], so the number of scatterer is always

small. For example, the number of tree within a circular area of R = 8m with ρt = 0.15 is 30,

which is much smaller than that of the crop. Thus a fast convergence can always be achieved by

the physical iterative process when simulating the forest.

(a) (b)

Figure 4.4.4: (a) Iterative solutions of Foldy-Lax equations of scattering from three eight meters
tall trees and (b) Scattered field of three eight meters tall trees along the z-axis range from −4m to
4m.

The field on the plane 5 cm below the tree calculated from the two methods are also plotted

in Fig.4.4.5. Despite a small discontinuity between the fields in the inner and the outer regions,

the hybrid method results match well with those calculated from the FEKO which validates the

wave transformation approach for extracting the inner region field. Moreover, the coherent wave

approach enables the hybrid method to model the field variations caused by the multiple scattering

due to both the tree structures and spatial variations of the tree positions. Consequently, the non-
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uniform transmission within the forest can be captured and is much more accurate than the classical

incoherent RTE which can only uses a constant τ to characterize the wave propagation.

(a) (b)

Figure 4.4.5: Amplitude of scattered E-field at L-band excited by a 40o incident V-pol plane wave
on a plane 5cm below the 3 trees solved from (a) the FEKO and (b) the hybrid method.

4.5 Full-wave Simulation of Forest

In this section, we apply the hybrid method to investigate the microwave transmissivity at L-band

over the forested area by performing full-wave Monte Carlo simulations of a 200 m2 large forest

stand with different tree densities and tree heights. The top view of the forest is shown in Fig.

4.2.2 with a radius R = 8m. The T-matrix of a single tree is first calculated based on the full-wave

solutions obtained from the FKEO. The T-matrix is stored and can be repeatedly used in different

realizations of the Monte Carlo simulation. Te reusability of the T-matrix is an important advantage

of the hybrid method. For each realization, the positions of the trees are randomly generated within

the circular area to form a different forest. Based on that, the hybrid method is applied to perform

the full-wave simulation. Then the transmissivity of the microwave is obtained by calculating the

normalized transmitted power over a reception area through

T =
1

A

∫∫
A

S̄tot(r̄) · (−ẑ)
S̄inc(r̄) · (−ẑ)

dr̄ (4.41)
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where S̄ is the Poynting vector and A is a square reception area of size lx at the bottom of the

forest as shown in Fig.4.2.2. The final transmissivity is obtained by the ensemble average over T

computed from Nr realizations using

t =
1

Nr

Nr∑
i=1

Ti (4.42)

In the following, we first perform the convergence tests to determine the numerical parameters of

the size of reception area lx and the number of realization Nr. After that, we will apply the hybrid

method to study the effects of the tree height and the tree density on the microwave transmission

in the forested area.

4.5.1 Convergence Test

Wave propagation in the forest is a random scattering process and the microwave transmissivity

T is a random variable. In microwave remote sensing application, only the mean value of T is

of interest and is studied based on the Monte Carlo simulations. Generally, the randomness of T

is proportional to the tree height, thus the convergence tests are performed over the tallest forest

(H=8m) considered in this paper to determine the numerical parameters of lx and Nr.

We first test convergence of transmissivity over the size of the reception area A. The T as

defined in (3.21) is a normalized value that will converge to a value for a large enough area A.

Since a limited size of forest is simulated, the reception area is thus located at the center region as

shown in Fig. 4.2.2 to avoid the edge effects caused by the truncation of the forest. The L-band

transmissivitive of the eight meters tall forest vary with A are plotted in Fig. 4.5.1. We can see

the t of different tree densities converge as the area increases indicating that the simulated area is

large enough to obtain a converged transmisivity. Considering that we need to minimize the edge

effect, it is preferable to keep A as small as possible while maintaining the convergence of t. Thus

the size of the reception area is chose to be A = 4m2 and the corresponding size is lx = 2m.

Next we carry out the convergence tests of t over the number of realization Nr. The transmis-
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(a) (b)

Figure 4.5.1: Convergence tests of the L-band transmissivities t over the size of reception area A
for different tree densities (a) H-pol and (b) V-pol.

sivities of 3 different tree densities are plotted against with Nr in Fig. 4.5.2. While the t of the

two sparser case converge at Nr = 10, it takes 7 more realizations for the denser case to converge.

This make sense as a denser forest has stronger multiple scattering, thus result a larger fluctuation

on T between different realizations. Consequently, it requires more realizations for a denser forest

to obtain the converged t. To demonstrate the importance of selecting the reception area, we also

plot the t obtained from 3 different reception area vary with Nr in Fig. 4.5.3. We can see the t

based on a larger reception area has a smaller fluctuation. Because T as defined in (4.41) is nor-

malized value and will converge to a large enough reception area. In Monte Carlo simulations, the

T is obtained by averaging transmissivity over Nr realizations of area l2x. Then the total area used

in computing T is A = Nrl
2
x. Thus if a larger reception area l2x is used in each realization, then

fewer realizations are needed for obtaining the converged results which is demonstrated by results

shown in Fig. 4.5.3. Based on the testing results, the number of realization used in the following

simulations is Nr = 20.
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(a) (b)

Figure 4.5.2: Convergence tests of the L-band transmissivities t over the number of realization Nr

for different tree densities (a) H-pol and (b) V-pol.

(a) (b)

Figure 4.5.3: Convergence tests of the L-band transmissivities t over the number of realization Nr

for different size of reception area (a) H-pol and (b) V-pol.

4.5.2 Transmissivity vs. Tree Height

After determining the numerical parameters, we perform Monte Carlo simulations of forests with

three different heights to investigate its impact on the microwave transmissitivty. The positions

of the trees are generated based on the eight meters tall tree and the same positions are used for

forest of three different heights as listed in the Table 4.4.1. To demonstrate the importance of

full-wave simulation, the transmissivities are compared with those calculated from the RTE using
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Figure 4.5.4: The L-band microwave transmissivities at forested area with tree density of ρt = 0.10
vary with tree height.

the same parameters. In RTE, the positions of the scatterers within the forest are assumed to be

statistical homogeneous in space. Thus the forest canopy is approximated as a layered medium

and the transmissivity is estimated from

tR = exp(−κesec(θi)d) (4.43)

where d is the thickness of the vegetation layer, θi is the incident angle, and κe is the effective

extinction coefficient. The κe describes the power attenuation rate per unit distance in the forest.

The expression for extinction coefficient is

κe =
∑
j

n0
j

(
⟨σa

j ⟩+ ⟨σs
j ⟩
)

(4.44)

where n0
j is number of j-th component per m3, σs

j and σa
i are the corresponding scattering and

absorption cross sections, and ⟨·⟩ is the ensemble average on the orientation angle (θcj , ϕ
c
j). Since

all the components are modelled as dielectric cylinders, their σs
j and σa

j are calculated analytically

based on the ICA using the optical theorem [37]. The transmissivities of different tree height

calculated from the two methods including both the V-pol and H-pol results are plotted in Fig.4.5.4.

While a similar trend that t decreases with H is observed for both methods, the hybrid method

85



results are much larger than those of RTE. For instance, the full-wave based V-pol transmissivity

for eight meters tall forest is about 0.59 which is 55% higher than 0.38 predicted by the RTE.

As the approximations made in the RTE become more erroneous as the tree height increase, their

difference also becomes larger as tree becomes higher.

(a) (b)

Figure 4.5.5: The L-band microwave transmissivities of trunk only forest change with the (a) radius
of tree trunk and (b) height of tree trunk.

The absorption caused by the vegetation layer are mainly due to the water contained in the

vegetation and most of the water in a tree are stored in the tree trunk. Thus it is of interest to

study the impact of the size of the tree trunk. In the previous simulations, the radius of tree trunk

increases with tree height so we can not separate their impacts on the microwave transmissivity. In

the following, we simulate forest with trunk only tree to investigate how the radius and height of

tree trunk change the t. The T-matrix is obtained from the ICA approximation. Fig. 4.5.5(a) plots

transmissivity as a function of the radius including both the full-wave and RT based results. We can

see the hybrid method results are greater than those of the RT which is consistent with our previous

observation. The full-wave based t also show a higher sensitivity to the change of the radius as

there is 15 percents change in the full-wave calculated V-pol t when the radius increases from 8cm

to 12.5cm, while the change in RT based t is 10 percents. The transmissivity versus tree height

with ra = 12.5cm are plotted in Fig. 4.5.5(b). We can see the the difference between t calculated

86



from the two method for 8m tall case are much smaller than that of in Fig. 4.5.4. This indicates that

the exclusion of the branches in the RTE model significantly increase the transmissivity, while the

hybrid method gives the similar results. These results show that both the radius and height of tree

trunk has a significant impact on the t, which demonstrates that the absorption are closely related

to the volume or the size of the tree trunk. This is consistent with the fact that the microwave

transmissivity decreases with the vegetation water content.

4.5.3 Transmissivity vs. Tree Density

In this section, we simulate forests of different tree densities to investigate how the tree density ef-

fect the transmissivity. The simulations are performed for forest of 5m- and 8m-tall tree using both

the V-pol and H-pol plane wave. The tree density varies from 0.07 to 0.15 and the corresponding

number of tree ranges from 14 to 30. The microwave transmissivities obtained from the hybrid

method and the RTE model are plotted in Fig.4.5.6. The two methods both predict that the H-pol

transmission is greater that that of the V-pol. This makes sense as the attenuation is predominantly

caused by the vertical tree trunk. The full-wave based transmissivities is significantly greater than

those of RTE. This is because the homogenization approximation made in the RTE is only valid

for a dense vegetation canopy and is not applicable for forest whose scatterer has a great spatial

variation. The effective propagation constant used in RTE to characterize the wave propagation

imply that there is constant attenuation in all the space. However, this contradicts to the fact that

there is no attenuation in the free space and only the vegetation cause the absorption. The failure

of capturing the gap spacing result an underestimation of the microwave transmission. Only the

full-wave approach can model the free space propagation as it includes both the amplitude and

phase of the wave. The results are consistent with the observations reported in [41,51] which both

state that the L-band microwave is sensitive for the soil moisture over the forested area.

Next, we simulate the trunk only forest to investigate the impact of the branches on the trans-

missivity. The T-matrix of the trunk only tree are obtained from the ICA approximation. Fig. 4.5.7

plots the t as a function of density for both the trunk only case and the trunk with two type branches
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(a) (b)

Figure 4.5.6: The L-band microwave transmissivities change with tree density with tree height of
(a) H = 5m and (b) H = 8m.

case. We can see the V-pol transmissivities of the two cases are similar when the tree density is

small, they diverge when ρt = 0.14. At the same time, we can the difference between the H-pol

transmissivity is much higher that those of V-pol. This may be due to the fact that most of the

branches are horizontally oriented and thus they are less sensitivity to the V-pol plane wave. That

is also the reason why the H-pol transmissivity of the trunk only case is much larger than that of

the trunk with branches case. This implies that while the H-pol generally has higher transmissivity

that V-pol, but there are more sensitivity to the branch scattering.

Figure 4.5.7: The L-band microwave transmissivities of eight meters tall forest change with tree
density.
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4.6 Summary

In this chapter, the hybrid method is applied to perform full-wave simulations of forest at L-band.

To overcome the issue in calculating the T-matrix of one tree, the general relation between the

T-matrix elements and the plane wave scattered field coefficients is first revealed. Based on that,

a Fourier transform based approach is developed for extracting the T-matrix. The new method is

more general than the matrix inversion based approach, as the number of the plane wave used in

calculating the T-matrix is independent of its size. In addition, the Fourier type transformation

enable us to calculate the T-matrix element independently rather than simultaneously. Thus it is

applicable for plant of arbitrary size and shape. Following new discovery, a far-field based T-matrix

extraction method is developed using the large argument approximation of the Hankel function and

the far-field approximation of the free space green’s function. The far-field based method is more

efficient than the near-field based approach especially when the size of the plant is large, as it

does not require the surface integration to obtain the scattered field coefficient. It is also more

convenient as the far-field is available in most of the commercial software and can be directly used

to calculate the T-matrix. The memory challenge of the hybrid method is successfully resolved by

adopting the physical iterative solution for solving the FL equations. The proposed methods are

validated with FEKO by comparing the solution of scattering from three eight meters tall trees.

Full-wave simulations of forest with different tree density and height are carried out to investigate

the potential of retrieving soil moisture in the forest area using L-band microwave.
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Appendix

In the following appendices, we provide the key derivations that are critical for the far-field based

T-matrix extraction. They are the stationary phase approximation, the cylindrical wave expansion

of the free space scalar Green’s function, and the plane wave and cylindrical wave transformation

for the inner field calculation.

4.A Stationary Phase Approximation

The cylindrical wave form a complete basis and the scalar scattered field can be expressed as

Es (r) =
∑
n

∫
dkza

s
n (kz)H

(1)
n (kρρ) exp (ikzz) exp (inϕ) (4.45)

where H(1)
n (kρρ) are the Hankel function of first kind representing the outgoing wave and asn (kz)

are corresponding scattered field coefficients. The large argument approximation of H(1)
n (kρρ) is

lim
ρ→∞

H(1)
n (kρρ) =

√
2

πkρρ
exp(ikρρ) exp(−i

n

2
π) exp(−iπ

4
). (4.46)

In the far-field region, the scattered field (4.45) can be approximated as

lim
ρ→∞

Es (r) =
∑
n

einϕ
∫
dkza

s
n (kz)

√
2

πkρρ
exp (ikρρ) exp

(
−in

2
π
)
exp

(
−iπ

4

)
exp (ikzz)

(4.47)

90



The phase term of the integration in (4.46) is

f = kρρ+ kzz =
√
k2 − k2zρ+ kzz (4.48)

which varies rapidly with kz when r = (ρ, z) is large. Then the integration over kz can be cal-

culated using the stationary phase approximation. The stationary point can be found by taking

derivative of f over kz and set it to be 0

df

dkz
= − kz√

k2 − k2z
ρ+ z = 0 (4.49)

Note that ρ = r sin θ, z = r cos θ, and substitute them into (4.49), we get

− kz√
k2 − k2z

r sin θ + r cos θ = 0 (4.50)

Rearrange and solve for kz

cos θ
√
k2 − k2z = kz sin θ (4.51)

Then the stationary point is

kz = k cos θ (4.52)

With the stationary approximation, the scattered field in the far-field region is simplified as

lim
ρ→∞

Es(r, θ, ϕ) =
∑
n

einϕasn(k cos θ) exp(−i
n

2
π)

∫
dkz

√
2

πkρρ
exp(i(kρρ−

iπ

4
)) exp(ikzz)

(4.53)

The integration over kz in (4.53) can be related to plane wave using the cylindrical wave expansion

of green’s function as shown in the next section.
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4.B Cylindrical Wave Expansion of Green’s Function

The plane wave expansion of scalar green function is

exp (ikr)

4πr
=

1

(2π)3

∫∫∫
dkxdkydkz

exp
(
ik̄ · r̄

)
k2x + k2y + k2z − k2

(4.54)

Using the transformation of x = ρ cosϕ, y = ρ sinϕ and kx = kρ cosϕk, ky = kρ sinϕk, the phase

term becomes

k̄ · r̄ = kρ (cosϕkx+ sinϕky) + kzz = kρρ cos (ϕk − ϕ) + kzz (4.55)

Then the RHS of (4.54) can be written in a cylindrical form as

∫
dk̄

exp
(
ik̄ · r̄

)
k2x + k2y + k2z − k2

=

∫
dkz

∫ ∞

0

dkρkρ

∫ 2π

0

dϕk
exp (ikρρ cos (ϕk − ϕ))

k2ρ + k2z − k2
exp (ikzz)

(4.56)

When the order is integer and the Bessel function is

Jn (x) =
1

2π

∫ 2π

0

exp i (x sin τ − nτ) dτ (4.57)

If n = 0 and let τ = ϕk + π/2, then

sin (ϕk + π/2) = sinϕk cos (π/2) + cosϕk sin (π/2) = cosϕk (4.58)

which gives

J0 (x) =
1

2π

∫ 2π

0

exp i (x sin τ) dτ =
1

2π

∫ 2π

0

exp (ix cosϕk) dϕk (4.59)
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Then the integration over ϕk can be simplified as

∫ 2π

0

dϕk exp (ikρρ cos (ϕk − ϕ)) = 2πJ0 (kρρ) (4.60)

Using (4.60), the integration in (4.56) becomes

∫
dk̄

exp
(
ik̄ · r̄

)
k2x + k2y + k2z − k2

= 2π

∫
dkz exp (ikzz)

∫ ∞

0

dkρkρ
J0 (kρρ)

k2ρ + k2z − k2
(4.61)

Note that H(1)
n (x) = Jn (x) + iYn (x) and H(2)

n (x) = Jn (x)− iYn (x), then

J0 (kρρ) =
1

2

[
H

(1)
0 (kρρ) +H

(2)
0 (kρρ)

]
(4.62)

when n is integer, J−n (x) = (−1)n Jn (x) and Y−n (x) = (−1)n Yn (x). Then the integration over

kρ can be rewritten as

∫ ∞

0

dkρkρ
J0 (kρρ)

k2ρ + k2z − k2
=

1

2

∫ ∞

0

dkρkρ
H

(1)
0 (kρρ)

k2ρ + k2z − k2
+

1

2

∫ ∞

0

dkρkρ
H

(2)
0 (kρρ)

k2ρ + k2z − k2
(4.63)

From the reflection formulas of the Hankel function H(1)
n (−z) = (−1)nH

(2)
n (z), we have

H
(2)
0

(
−k′ρρ

)
= −H(1)

0

(
k′ρρ
)

(4.64)

In the second term of (4.63), let kρ = −k′ρ, dkρ = −dk′ρ, and using H(2)
0 (−k′ρρ) = −H(1)

0 (k′ρρ)

then

1

2

∫ ∞

0

dkρkρ
H

(2)
0 (kρρ)

k2ρ + k2z − k2

=
1

2

∫ −∞

0

dk′ρk
′
ρ

H
(2)
0

(
−k′ρρ

)
k′2
ρ + k2z − k2

# kρ = −k′ρ, dkρ = −dk′ρ

=
1

2

∫ −∞

0

dk′ρk
′
ρ

−H(1)
0

(
k′ρρ
)

k′2
ρ + k2z − k2

# H
(2)
0

(
−k′ρρ

)
= −H(1)

0

(
k′ρρ
)
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So the integration over kρ becomes

∫ ∞

0

dkρkρ
J0(kρρ)

k2ρ + k2z − k2
=

1

2

∫ ∞

0

dkρkρ
H

(1)
0 (kρρ)

k2ρ + k2z − k2
+

1

2

∫ 0

−∞
dkρkρ

H
(1)
0 (kρρ)

k2ρ + k2z − k2

=
1

2

∫ ∞

−∞
dkρkρ

H
(1)
0 (kρρ)

k2ρ + k2z − k2

Note that the denominator is k2ρ − (k2 − k2z) and the integration kernel is singular when kρ =

±
√
k2 − k2z . The singularity can be removed by applying the Cauchy’ theorem on the upper

plane, which gives

1

2

∫ ∞

−∞
dkρkρ

H
(1)
0 (kρρ)

k2ρ − (k2 + k2z)
= 2πiRes

(
kρ =

√
k2 − k2z

)
(4.65)

where Res is the residue of the integration and is given as Res (kρ0) = f (kρ) (kρ − kρ0)

Res
(
kρ =

√
k2 − k2z

)
= kρ

H
(1)
0 (kρρ)

k2ρ − (k2 − k2z)

(
kρ −

√
k2 − k2z

)
= kρ

H
(1)
0 (kρρ)(

kρ +
√
k2 − k2z

)(
kρ −

√
k2 − k2z

) (kρ −√k2 − k2z

)

=
H

(1)
0 (kρρ)

2

Then integration over kρ can be simplified as

1

2

∫ ∞

0

dkρkρ
J0 (kρρ)

k2ρ + k2z − k2
=
πi

2
H

(1)
0 (kρρ) (4.66)
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By applying all the transformation provided above, we can get the cylindrical wave expansion of

scalar green function

exp (ikr)

4πr
=

1

(2π)3

∫
dk̄

exp
(
ik̄ · r̄

)
k2x + k2y + k2z − k2

=
1

(2π)3

[
2π

∫
dkz exp (ikzz)

∫ ∞

0

dkρkρ
J0 (kρρ)

k2ρ + k2z − k2

]
=

1

(2π)3

[
2π

∫
dkz exp (ikzz)

πi

2
H

(1)
0 (kρρ)

]
=

i

8π

∫
dkz exp (ikzz)H

(1)
0 (kρρ) (4.67)

The above derivation gives the cylindrical wave expansion of the scalar green function

exp (ikr)

r
=
i

2

∫
dkz exp (ikzz)H

(1)
0 (kρρ) (4.68)

4.C Cylindrical Wave and Plane Wave Transformation

The solutions of Maxwell equations can be expressed differently in different coordinates. For

example, it is convenient to express field in terms of cylindrical wave in cylindrical coordinate.

In spherical coordinate, it is better to expressed them in spherical wave. The plane wave is the

most common or easiest way to express field in the Cartesian coordinate. A solution of Maxwell

equation is the solution that obey the partial differential equation and the corresponding boundary

condition. The solution is independent of coordinate, so the field solution in one coordinate can be

transformed to the other one, and vice versa. In this section, we derive the transformation of plane

wave to cylindrical wave and vice versa.

2D scalar plane wave and scalar cylindrical wave

The scalar wave equation is (
∇2 + k2

)
ψ (r̄) = 0 (4.69)
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where the ∇2 operator are defined differently in different coordinates. In 2D Cartesian coordinate,

it becomes (
∂2

∂x2
+

∂2

∂y2
+ k2

)
ψ (r̄) = 0 (4.70)

The plane wave solution is known as

ψ (x, y) = exp (ikxx+ ikyy) (4.71)

where kx = kρ cosϕk, ky = kρ sinϕk are the wave number in x and y direction, kρ = k sin θk is

the wave number in the ρ̂ direction, and ϕk is the incident direction. The 2D scalar plane wave is

defined using one variable ϕk. In 2D cylindrical coordinate, the scalar wave equation is

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
+ k2

]
ψ (r̄) = 0 (4.72)

The wave solution can be expressed in terms of cylindrical wave function

ψ (ρ, ϕ) = Jn (kρ) exp (inϕ) (4.73)

The basis function in different coordinates are inter changeable and can be done through the wave

transformation. With the transformation of x = ρ cosϕ, y = ρ sinϕ, we can express the phase term

in cylindrical coordinate

kxx+ kyy = kρρ [cosϕk cosϕ+ sinϕk sinϕ] = kρρ cos (ϕ− ϕk) (4.74)

The scalar 2D plane wave from ϕk can be expressed in cylindrical coordinate as

exp (ikxx+ ikyy) = exp (ikρρ cos (ϕ− ϕk)) (4.75)
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which is periodic in ϕ. It can be expressed in terms of Fourier series as

exp (ikρρ cos (ϕ− ϕk)) =
∑
n

cn exp (inϕ) (4.76)

where cn is the Fourier coefficient calculated from

cn =
1

2π

∫ 2π

0

f (x) exp (−inϕ) dϕ =
1

2π

∫ 2π

0

exp (ikρρ cos (ϕ− ϕk)) exp (−inϕ) dϕ (4.77)

Let ϕ′ = ϕ− ϕk, dϕ
′ = dϕ, ϕ = ϕ′ + ϕk, ϕ

′ ∈ [0, 2π]− ϕk, then

cn =
1

2π
exp (−inϕk)

∫ 2π

0

exp (ikρρ cosϕ
′) exp (−inϕ′) dϕ′ (4.78)

Note that Bessel function is defined as

Jn (x) =
1

2π

∫ 2π

0

exp [i (x sin τ − nτ)] dτ (4.79)

We can let ϕ′ = ϕ− π
2
, then cosϕ′ = cos

(
ϕ− π

2

)
= sinϕ and

∫ 2π

0

exp (ikρρ cosϕ
′) exp (−inϕ′) dϕ′ = exp

(
in
π

2

)∫ 2π

0

exp (ikρρ sinϕ) exp (−inϕ) dϕ

(4.80)

Using (4.79), we get

∫ 2π

0

exp (ikρρ cosϕ
′) exp (−inϕ′) dϕ′ = 2πinJn (kρρ) (4.81)

Then the coefficient of the Fourier series is related to the cylindrical wave as

cn =
1

2π
exp (−inϕk) 2πi

nJn (kρρ) = Jn (kρρ) exp (−inϕk) i
n (4.82)
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Using the above expression, the plane wave is related to cylindrical wave by using the Fourier

transform in ϕ̂ direction through

exp (ikxx+ ikyy) =
∑
n

Jn (kρρ) exp (−inϕk) i
n exp (inϕ) (4.83)

To transform the cylindrical wave to plane wave, we can multiply both sides by exp (in′ϕk) and

integrate over ϕk, which gives

∫ 2π

0

dϕk exp (in
′ϕk) exp (ikxx+ ikyy)

=

∫ 2π

0

dϕk exp (in
′ϕk)

[∑
n

Jn (kρρ) exp (−inϕk) i
n exp (inϕ)

]

=
∑
n

Jn (kρρ) exp (inϕ) i
n

∫ 2π

0

dϕk exp (in
′ϕk) exp (−inϕk)

= 2πJn′ (kρρ) exp (in
′ϕ) in

′
# delta function

Rearranging the other term in RHS to LHS, we get

Jn (kρρ) exp (inϕ) =
1

2π

∫ 2π

0

dϕk exp (inϕk) i
−n exp (ikxx+ ikyy) (4.84)

which is the 2D plane wave expansion of 2D cylindrical wave.

In summary, the transformation between 2D scalar cylindrical wave and plane wave is

exp (ikxx+ ikyy) =
∑
n

[Jn (kρρ) exp (−inϕk) i
n] exp (inϕ) (4.85)

Jn (kρρ) exp (inϕ) =
1

2π

∫ 2π

0

dϕk exp (inϕk)
[
i−n exp (ikxx+ ikyy)

]
(4.86)

Mathematically, the plane wave to cylindrical wave can be interpreted as: the cylindrical wave

is the coefficient of the Fourier transform of plane wave in ϕ̂ direction. On the other hand, the

transformation of cylindrical wave to plane wave could be understood as the inverse Fourier trans-

formation of plane wave ψ (ϕk) = exp (ikxx+ ikyy) in ϕk or the cylindrical wave is the sum of
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plane wave form different ϕk angle, the plane wave spectrum of the cylindrical wave is

F (ϕk) = i−n exp (inϕk) (4.87)

3D scalar plane wave and scalar cylindrical wave

In 3D cylindrical coordinate, the scalar wave equation is

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
+ k2

]
ψ (r̄) = 0 (4.88)

The 3D scalar incoming and outgoing cylindrical waves are defined as

Rgψn (kz, r̄) = Jn (kρρ) exp (inϕ) exp (ikzz) (4.89)

ψn(kz, r̄) = H(1)
n (kρρ) exp(inϕ) exp(ikzz) (4.90)

where Jn is the Bessel function andH(1)
n is the Hankel function of the first kind with the convention

of exp (ikr). Using the 2D transformation of cylindrical wave to plane wave (4.84), we have

Rgψn (kz, r̄) =
1

2π

∫ 2π

0

dϕk exp (inϕk) i
−n exp (ikxx+ ikyy + ikzz) (4.91)

Then the 3D plane wave is related to the 3D scalar cylindrical wave through

exp (ikxx+ ikyy + ikzz) =
∑
n

Jn (kρρ) exp (−inϕk) i
n exp (inϕ) exp (ikzz)

In summary, the plane wave can be expanded as a Fourier series of exp(inϕk) where ϕk is the

angle of k in ϕ̂ direction

exp
(
ik̄ · r̄

)
=
∑
n

Cn exp (−inϕk) (4.92)
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The corresponding coefficient is the 3D cylindrical wave function

Cn = Jn (kρρ) exp (inϕ) exp (ikzz) i
n = Rgψn (kz, r̄) i

n (4.93)

On the other hand, the cylindrical wave can be expanded in terms of plane wave

Rgψn (kz, r̄) =
1

2π

∫ 2π

0

dϕk exp (inϕk) i
−n exp

(
ik̄ · r̄

)
(4.94)

The plane wave spectrum of the cylindrical wave is

Fn (ϕk) = exp (inϕk) i
−n (4.95)

3D vector plane wave and vector cylindrical wave

The vector cylindrical wave (VCW) functions are defined as

RgL̄n (kz, r̄) = ∇Rgψn (kz, r̄) (4.96)

RgM̄n (kz, r̄) = ∇× [ẑRgψn (kz, r̄)] (4.97)

RgN̄n (kz, r̄) =
1

k
∇×RgM̄n (kz, r̄) (4.98)

With the transformation of scalar plane wave to cylindrical wave, we can get

∇×
[
ẑ exp

(
ik̄ · r̄

)]
= ∇×

[
ẑ
∑
n

Rgψn (kz, r̄) exp (−inϕk) i
n

]
(4.99)

=
∑
n

∇× [ẑRgψn (kz, r̄)] exp (−inϕk) i
n (4.100)

=
∑
n

RgM̄n (kz, r̄) exp (−inϕk) i
n (4.101)
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which relates the vector plane wave (VPW) to the VCW. Note that ∇× (āϕ) = ∇ϕ× ā+ϕ∇× ā,

then the LHS of (4.99) is

∇×
[
ẑ exp

(
ik̄ · r̄

)]
= ∇ exp

(
ik̄ · r̄

)
× ẑ = exp

(
ik̄ · r̄

)
ik̄ × ẑ (4.102)

The horizontal polarization is defined as

ĥ =
ẑ × k̂∣∣∣ẑ × k̂

∣∣∣ = 1

sin θk
ẑ × k̂

Then k̂ × ẑ = −ĥ sin θk, so the LHS is

∇×
[
ẑ exp

(
ik̄ · r̄

)]
= − exp

(
ik̄ · r̄

)
ik sin θkĥ (4.103)

Equaling the two equations of (4.99) and (4.103), we obtain

exp
(
ik̄ · r̄

)
ĥ (θk, ϕk) =

i

kρ

∑
n

RgM̄n (kz, r̄) exp (−inϕk) i
n (4.104)

which relates the H-pol plane wave to VCW. Take curl of both side of (4.104), we can get the V-pol

plane wave

LHS = ∇×
[
exp

(
ik̄ · r̄

)
ĥ
]
= exp

(
ik̄ · r̄

)
ik̄ × ĥ = −ikv̂ exp

(
ik̄ · r̄

)
(4.105)

where v̂ = ĥ× k̂ is used in the third step and the triplet
(
v̂, ĥ, k̂

)
form a orthonormal unit system.

The corresponding RHS is

RHS =
i

kρ

∑
n

∇×RgM̄n (kz, r̄) exp (−inϕk) i
n (4.106)

=
i

kρ

∑
n

kRgN̄n (kz, r̄) exp (−inϕk) i
n (4.107)
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Then VCW expansions of the V-pol plane wave is

exp
(
ik̄ · r̄

)
v̂ (θk, ϕk) = − 1

kρ

∑
n

RgN̄n (kz, r̄) exp (−inϕk) i
n (4.108)

The two equations (4.104) and (4.108) transform the VPW to VCW.

The transformation of VPW to VCW can be considered as taking the Fourier transformation of

plane wave in the ϕk direction.

exp
(
ik̄ · r̄

)
ĥ (θk, ϕk) =

∑
n

Ch
n exp (−inϕk) , C

h
n =

in+1

kρ
RgM̄n (kz, r̄) (4.109)

exp
(
ik̄ · r̄

)
v̂ (θk, ϕk) =

∑
n

Cv
n exp (−inϕk) , C

v
n =

in+2

kρ
RgN̄n (kz, r̄) (4.110)

The Fourier coefficients are the VCW which are the function of θk, n and r. and they are inde-

pendent of ϕk. To transform the VCW back to VPW, we can multiply both side exp (in′ϕk) and

integrate ϕk

∫
dϕk exp (in

′ϕk) exp
(
ik̄ · r̄

)
ĥ =

i

kρ

∑
n

RgM̄n (kz, r̄)

∫
dϕk exp (in

′ϕk) exp (−inϕk) i
n

(4.111)∫
dϕk exp (in

′ϕk) exp
(
ik̄ · r̄

)
v̂ = − 1

kρ

∑
n

RgN̄n (kz, r̄)

∫
dϕk exp (in

′ϕk) exp (−inϕk) i
n

(4.112)

With the orthogonality of the exp (inϕk)

∫
dϕk exp (in

′ϕk) exp (−inϕk) = 2πδnn′ (4.113)

The transformation of VCW to VPW is obatained as

RgM̄n (kz, r̄) =
kρ

2πin+1

∫
dϕk exp (inϕk) exp

(
ik̄ · r̄

)
ĥ (θk, ϕk) (4.114)

RgN̄n (kz, r̄) =
kρ

2πin+2

∫
dϕk exp (inϕk) exp

(
ik̄ · r̄

)
v̂ (θk, ϕk) (4.115)
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where kρ = k sin θk, kz = k cos θk and v̂ (θk, ϕk) and ĥ (θk, ϕk) are vertical and horizontal polar-

izations

k̂ (θk, ϕk) = sin θk cosϕkx̂+ sin θk sinϕkŷ + cos θkẑ (4.116)

v̂ (θk, ϕk) = cos θk cosϕkx̂+ cos θk sinϕkŷ − sin θkẑ (4.117)

ĥ (θk, ϕk) = − sinϕkx̂+ cosϕkŷ (4.118)

If the center of the cylindrical wave is at r̄q, then

RgMn (kz, rrq) =
k sin θk
2πin+1

∫ 2π

0

dϕk exp (inϕk) ĥ (θk, ϕk) exp
(
ik · (r − rq)

)
(4.119)

RgNn (kz, rrq) =
k sin θk
2πin+2

∫ 2π

0

dϕk exp (inϕk) v̂ (θk, ϕk) exp
(
ik · (r − rq)

)
(4.120)

Given θk, the VCW can be expressed as plant waves from many different ϕk.

In summary, the transfomation between the 3D VPW and the 3D VCW are

exp
(
ik̄ · r̄

)
v̂ (θk, ϕk) =

∑
n

in+1

kρ
RgM̄n (kz, r̄) exp (−inϕk) (4.121)

exp
(
ik̄ · r̄

)
ĥ (θk, ϕk) =

∑
n

in+2

kρ
RgN̄n (kz, r̄) exp (−inϕk) (4.122)

RgM̄n (kz, r̄) =
kρ

2πin+1

∫
dϕk exp (inϕk) exp

(
ik̄ · r̄

)
ĥ (θk, ϕk) (4.123)

RgN̄n (kz, r̄) =
kρ

2πin+2

∫
dϕk exp (inϕk) exp

(
ik̄ · r̄

)
v̂ (θk, ϕk) (4.124)
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CHAPTER 5

Conclusion

5.1 Summary

In this dissertation, a two-step hybrid method is developed for full-wave simulation of vegetation

driven by the need of microwave remote sensing of soil moisture. The full-wave based simulation

significantly improve the accuracy of modeling wave propagation in vegetation as it considers

both the phase and the amplitude of the electromagnetic field. Therefore, the hybrid method is

able to capture the multiple scattering caused by the plant structure and the gap spacing among

different plants. The microwave transmissivity predicted by the hybrid method is significantly

higher than those obtained from the classical radiative transfer model (RTE), which is consistent

with measurement data reported in [41, 42]. This indicates that (1) it is potential to use the L-band

signal to retrieve soil moisture over forested area or area with large vegetation water content, and

(2) the higher frequency channel such as S- and C-band can also be utilized to retrieve the Earth

information.

The hybrid method is built based on a realistic vegetation field that can model both the plant

structures and gap spacing among different plants within the vegetation layer. Based on that, the

full-wave simulation of a large vegetation field is performed using the hybrid method in two steps.

In the first step, the full-wave simulations of one single plant are performed using the numerical

solver from which the corresponding single plant T-matrix is calculated. The employment of the

numerical solver significantly expand the modeling capability as it enables the hybrid method
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to simulate plant of arbitrary shapes which is not feasible by the analytical method. The full-

wave based T-matrix characterize the scattering of one single plant using the vector cylindrical

wave (VCW) expansions and captures the multiple scattering due to the plant structures. In the

second step, the multiple scattering among different plants are considered analytically using the

T-matrix and the Foldy-Lax multiple equations. With the translational addition theorem and the

VCW expansions, a closed-from equation are obtained for solving the final scattered field. The

employment of the analytical solution enable the hybrid method to simulate a large vegetation

field which is otherwise impossible to be solved using the numerical method. The wave multiple

scattering approach includes both the phase and amplitude of the field and thus is able to capture

the gap spacing amount different plants. The combination of the numerical and analytical method

has made the full-wave simulation of a large vegetation field be possible for the first time. The

work presented in each chapter is summarized as follows.

In Chapter 2, the detailed derivation of the near-field based T-matrix extraction method and the

FLE multiple scattering equations are presented. The full-wave simulations of one single wheat

plant are performed using a FEM based numerical solver HFSS. The corresponding single wheat

T-matrix is then calculated based on the near-field using the Huygens principle and the VCW

expansions of the Dyadic Green’s function. The hybrid method is validated with HFSS by solving

scattering from 4 wheat plants.

In Chapter 3, the hybrid method is applied to perform full-wave simulation of wheat field at

L-, S-, and C-band. A physical iterative method for Monte Carlo simulations is developed and

implemented with MPI to meet the large memory demand required at the higher frequency. The

impact of the plant structure and the gap spacing on the microwave transmissivity are demonstrated

by comparing transmission at different regions. The simulation results show that the attenuation

caused by the vegetation layer will saturate as the frequency increases and the corresponding fre-

quency dependence is much weaker than that predicted by the RTE model. The results suggest

that the S- and C-bands measurements could be used to support L-band surface parameter retrieval

algorithms, such as soil moisture.
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In Chapter 4, the hybrid method is applied to perform full-wave simulation of forest at L-

band. A general relation is first discovered showing that T-matrix is the coefficient of the Fourier

series of the scattered field coefficient. Based on that, a far-field based approach applicable for

scatterer of arbitrary shape and size is developed for calculating the T-matrix of one single tree.

The dependencies of the solutions on tree heights and tree densities are illustrated. The results

show that the full-wave based transmissivities are much larger than those obtained from the RTE

model suggesting that it is possible to retrieve soil moisture over the forested area.

5.2 Future Works

Despite the advancements that have been made in this dissertation, we are still in the early stage

of performing the full-wave simulation of vegetation. There are addition works can be done to

further improve the hybrid method. First, we can include the evanescent waves in the T-matrix

so that it is also applicable for scenarios when the evanescent waves are dominant in the multiple

scattering process. In order to extract T-matrix with evanescent waves, the dipole source rather

than the plane wave excitation should be used in the full-wave simulations. Only the near-field

based approach can be applied to calculate the coefficient of the evanescent waves as they do not

exist in the far-field. Second, as limited by the capability of the numerical solver, we are currently

unable to simulate a whole realistic tree that including all the small branches and leaves. One

possible solution is to decompose the tree into many components. For instance, a tree can be

modeled as one component of trunk with primary branches pluses multiple components of small

branches with leaves. Then the total T-matrix of one single tree is approximated as the coherent

addition of the T-matrices of all the components. The advantage of this solution is that it considers

the scattering of the leaves and branches. The trade off is the multiple scattering between different

components are ignored. Third, the solution of the Foldy-Lax equations can be further speed up

using the Fast Fourier Transform (FFT). The idea is to use the indirect transformation to realize

the interaction between the scatterers based on the intermediate canonical grid point. For example,
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the interaction between plant p and q can be accomplished by first transforming the cylindrical

wave centered at rq to the nearest canonical grid point rqo. Then transform them to the grid point

rp0 that closest to the target plant rp. Finally, transform them from rpo to rp. The transformation

between the 2D canonical grids can be speed up using the 2D FFT. The transformation between the

cylindrical wave order can also speed up using 1D FFT. Fourth, the hybrid method can be applied

to study corn field, wheat fields, and soybean etc. with realistic structures and field setup. The

full-wave based results can be compared with the classical RTE model to investigate importance

of the phase information in the the multiple scattering process. The results can also be compared

with the SMAPVEX data to improve the accuracy of soil moisture retrieval.

5.3 Contributions

The worked presented in this dissertation has been published or submitted in the following journal

and conference papers.
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1. W. Gu, L. Tsang, A. Colliander, and S.H. Yueh, ”Hybrid Method for Full-wave Simulations
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2. L. Tsang, T.H. Liao, R. Gao, H. Xu, W. Gu, and J. Zhu, “Theory of Microwave Remote
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ing, vol. 14, no. 15, p. 3640, 2022.
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niques, vol. 70, no. 1, pp. 275–285, 2021.

4. W. Gu, L. Tsang, A. Colliander, and S.H. Yueh, “Wave Propagation in Vegetation Field

Using a Hybrid Method,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 10,

107



pp. 6752–6761, 2021.

5. W. Gu, H. Xu, and L. Tsang, “A Numerical Kirchhoff Simulator for GNSS-R Land Appli-

cations,” Progress in electromagnetics research, vol. 164, pp. 119–133, 2019.

5.3.2 Conference Papers

1. W. Gu and L. Tsang, “Multi-frequencies Full-wave Simulations of Wave Propagation in

Vegetation for Remote Sensing of Soil Moisture,” in 2021 IEEE International Symposium

on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE,

2021, pp. 1113–1114.

2. W. Gu, L. Tsang, A. Colliander, and S. Yueh, “Multi-frequency NMM3D Simulations of

Wave Propagation in Vegetation for Remote Sensing of Soil Moisture,” in 2021 IEEE Inter-

national Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021, pp. 3534–3536.

3. W. Gu and L. Tsang, “Vegetation Effects for Remote Sensing of Soil Moisture Using NMM3D

Full-wave Simulation,” in 2020 IEEE International Symposium on Antennas and Propaga-

tion and North American Radio Science Meeting. IEEE, 2020, pp. 1095–1096.

4. W. Gu, L. Tsang, A. Colliander, and S. Yueh, “Full-wave Simulations of Scattering in Veg-

etation for Microwave Remote Sensing of Soil Moisture,” in IGARSS 2020-2020 IEEE In-

ternational Geoscience and Remote Sensing Symposium. IEEE, 2020, pp. 4704–4706.

5. J. Zhu, L. Tsang, H. Xu, and W. Gu, “A Patch Model Based on Numerical Solutions of

Maxwell Equations for GNSS-R Land Applications,” in IGARSS 2019-2019 IEEE Interna-

tional Geoscience and Remote Sensing Symposium. IEEE, 2019, pp. 8719–8721.

108



Bibliography

[1] Water Science School, “A comprehensive study of the natural water cycle,”
https://www.usgs.gov/special-topics/water-science-school, 2019.

[2] Y. H. Kerr, P. Waldteufel, J.-P. Wigneron, J. Martinuzzi, J. Font, and M. Berger, “Soil moisture
retrieval from space: The soil moisture and ocean salinity (smos) mission,” IEEE transactions
on Geoscience and remote sensing, vol. 39, no. 8, pp. 1729–1735, 2001.

[3] F. T. Ulaby, D. G. Long, W. J. Blackwell, C. Elachi, A. K. Fung, C. Ruf, K. Sarabandi, H. A.
Zebker, and J. Van Zyl, Microwave radar and radiometric remote sensing. University of
Michigan Press Ann Arbor, MI, USA, 2014, vol. 4, no. 5.

[4] Y. H. Kerr, “Soil moisture from space: Where are we?” Hydrogeology journal, vol. 15, no. 1,
pp. 117–120, 2007.
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