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Abstract 

Leveraging recent advancements in distributed optimization and reinforcement learning, and the 
growing connectivity and computational capability of vehicles and infrastructure, we propose to ad-
vance real-time adaptive signal control via distributed control and optimization. This report consists 
of three parts. Part 1 develops distributed algorithms for solving a traffc signal timing optimization 
problem, which is formulated as a mixed-integer programming model. Specifcally, the alternating 
direction method of multipliers (ADMM) is employed, and a two-stage stochastic cell transmission 
model (CTM) that considers the uncertainty of traffc demand and vehicle turning ratios is considered. 
Part 2 proposes a framework that utilizes reinforcement learning to optimize a max pressure controller 
considering the phase switching loss. The max pressure control is modifed by introducing a switch-
ing curve, and the proposed control method is proved throughput-optimal in a store-and-forward 
network. Then the theoretical control policy is extended by using a distributed approximation and 
position-weighted pressure so that the policy-gradient reinforcement learning algorithms can be uti-
lized to optimize the parameters in the policy network including the switching curve and the weight 
curve. Part 3 applies reinforcement learning to traffc signal control in a multi-agent scheme, consider-
ing the data availability and implementability. The information extracted from traffc cameras is used 
to defne the state of the agents; the action design is aligned with the NEMA dual-ring convention and 
bounded by a safety constraint, and the coordination is achieved by a shared reward structure among 
agents. 
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Chapter 1 

Introduction 

Traffc congestion is a pressing issue globally and can be mitigated via effective traffc signal control. 
The overarching goal of the research project is to revolutionize real-time adaptive signal control via 
distributed optimization. Optimal timing of traffc signals across a traffc network has been extensively 
studied in the literature. The optimization models formulated typically contain discrete variables and 
nonconvex objectives or constraints, and solving them in a centralized fashion has been proved to be 
infeasible for real-time large-scale implementation. Consequently, the state-of-the-practice is to either 
coordinate signals at the corridor level via actuated control logic or adopt a hierarchical (decentralized) 
approach to decompose the original problem (network) into smaller problems (regions) for better 
computation effciency. None of these implementations achieves global or near-global optimality. We 
believe it is time to overcome this challenge that has puzzled traffc engineers for more than half 
a century. Our belief is based on the following three observations: (i) multi-core processors have 
become ubiquitous. It is thus natural to look to parallelism as a mechanism for solving large-scale 
optimization tasks. Recent developments in distributed optimization have demonstrated its great 
potential to be computationally superior to centralized algorithms in terms of effciency and scale 
(Boyd et al. (2004); Timotheou et al. (2014)); (ii) vehicles and transportation infrastructure are becoming 
"smarter" and connected. The new generation of automobiles and roadside devices are equipped with 
powerful on-board computing hardware and are capable of communicating with each other as well 
as performing complex computational tasks. The deployment of these vehicles and roadside devices 
provides opportunities to distribute the computation task to the vehicle and intersection level, in 
the same spirit as the notion of edge computing (Garcia Lopez et al. (2015)); (iii) recent advances 
in blockchain technology have made it an enabler for implementing distributed and secured traffc 
signal control. Blockchains allow us to establish a distributed peer-to-peer (i.e., vehicle-to-vehicle) 
network where non-trusting members can interact with each other without a trusted intermediary in 
a verifable manner. Smart contacts mechanism enable connected vehicles to act as fully independent 
economic agents that negotiate the right-of-way through intersections (Yuan and Wang (2016)). 

This report documents our preliminary attempts on leveraging these technology advances to achieve 
real-time large-scale distributed control of traffc signals. The report is organized as follows. Chapter 
2 proposes distributed optimization algorithms to design network-based traffc signal control under 
uncertain traffc demand and vehicle turning ratio. Chapter 3 proposes a framework that utilizes rein-
forcement learning algorithms to optimize a max pressure controller considering the phase switching 
loss. Chapter 4 uses pure reinforcement learning method to examine the traffc signal control problem 
in a multi-agent framework. 
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Chapter 2 

Optimization and Decentralized Algo-
rithms for Traffc Signal Control 

2.1 Introduction 

Traffc congestion can lead to signifcant travel delay, and occurs when the traffc volume exceeds road 
capacity (Isa et al., 2014). Over the past few decades, in many countries, city scales have increased 
signifcantly and more populations have migrated from countryside to urban areas. As a result, the 
number of vehicles and the total traveled miles increase signifcantly, resulting in rapidly growing 
congestion issues in cities of all sizes worldwide. According to Schrank et al. (2019), in 2017, traffc 
congestion caused urban Americans to travel extra 8.8 billion hours and to purchase extra 3.3 billion 
gallons of fuel. Taking the city of Detroit in the United States as an example, in 2019, each driver lost 
39 hours on the road on average due to traffc delay (Levin, 2020). 

Various approaches have been proposed for addressing traffc congestion issues on road networks, 
including congestion pricing, road expansion, traffc routing, and traffc signal control. Among them, 
traffc signal control can effectively mitigate congestion by changing the time length of traffc signals 
at road intersections (Isa et al., 2014). At present, in the United States, most traffc signals operate 
time-dependent signal plans determined by a central operator, requiring periodic manual updates due 
to time-varying traffc demand. The increase in traffc congestion raises the need for more effcient 
and effective traffc signal control plans. 

In this paper, we formulate mixed-integer programming models and develop distributed algo-
rithms for solving network-based traffc signal control problems, to maximize vehicle throughput on 
traffc networks. Different from most of the existing literature, we also take into account traffc de-
mand uncertainty and stochastic vehicle turning ratios. Our goal is to establish an optimization-based 
control paradigm to speed up solutions to large-scale traffc signal control in a distributed manner. We 
demonstrate the results by testing diverse instances, generated using synthetic data and also real-
world road networks and traffc data. Via out-of-sample tests of solutions given by different methods 
in a variety of scenarios, we show that the signal control plans produced by our methods perform 
consistently better than plans solved using off-the-shelf optimization solvers, or models that do not 
consider uncertainty. Furthermore, our decomposition and decentralized algorithms can signifcantly 
reduce the computational time and produce reliable traffc signal plans depending on distributions of 
uncertain traffc throughout a day for moderate-sized city networks. 

The remainder of this paper is organized as follows. In Section 2.2, we review the most relevant 
literature on traffc signal control and optimization methods we use in this paper. In Section 2.3, we 
frst formulate the deterministic traffc signal control problems as a mixed-integer program (MIP). 
Then, we take uncertain demand and turning ratios into account and extend the deterministic model 
to a two-stage stochastic integer program. In Section 2.4, we develop spatially distributed algorithms 
for solving the stochastic optimization model in a decentralized manner. In Section 2.5, we conduct 
numerical studies by testing a set of diverse instances. In Section 2.6, we conclude the paper and state 

4 
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future research directions. 

2.2 Literature review 

We frstly review the literature about traffc fow modeling in Section 2.2.1. In Section 2.2.2, we review 
the most relevant work on distributed traffc signal control, especially the ones using ADMM for 
distributed convex optimization. In Section 2.2.3, we review the literature on traffc signal control 
under uncertainties. 

2.2.1 Traffc Flow Modeling 

The traffc fow models can be mainly classifed as microscopic and macroscopic (see, e.g., Li and 
Ioannou, 2004; Hoogendoorn and Bovy, 2001). A microscopic model simulates the behavior of an in-
dividual vehicle by using dynamic variables to describe states such as location and velocity of vehicles 
(see e.g., Pipes, 1953; Wu and Brilon, 1999). On the other hand, a macroscopic model simulates the traf-
fc situation using variables to describe overall states of all vehicles, including traffc density, volume, 
and average speed (Hoogendoorn and Bovy, 2001). Daganzo (1992) frst develops a cell transmission 
model (CTM) to model traffc fows on highways. As a macroscopic model, the CTM divides roads 
into homogeneous sections and considers states of each section across discrete time steps. We refer the 
interested readers to Adacher and Tiriolo (2018) for a comprehensive review of different CTM variants 
and the appropriate environments for applying them. Compared to microscopic models, the compu-
tational cost of macroscopic models is signifcantly lower because of the aggregated traffc states and 
the resulting fewer number of variables and dynamic equations. Among them, the CTM can describe 
traffc fows more precisely, with an acceptable computational complexity and therefore, in this paper, 
our optimization framework for the traffc signal control is based on the CTM. 

2.2.2 Distributed Traffc Signal Control 

Lo (1999) builds an MIP based on the CTM to describe the traffc signal control problem but does 
not consider vehicle turning nor system uncertainty. The model is only tested on corridors instead of 
general road networks, mainly due to the exponentially increased number of variables and constraints 
in the latter case. With signifcantly increased urban network sizes, centralized MIP models become 
more diffcult to solve via a central controller and gathering of global information in the whole traffc 
network. On the other hand, each intersection is physically isolated, making it natural to consider 
decentralized traffc signal control. Advancements in parallel computing and information communi-
cation technology allow effcient implementations of decentralized methods at individual intersections 
or clusters of a few intersections in a large road network, leading to more research focusing on how to 
design parallel and distributed traffc signal control schemes. In a representative work, Al Islam and 
Hajbabaie (2017) present a distributed-coordinated approach for signal timing optimization in con-
nected urban street networks. The authors formulate the optimization problem of each intersection as 
an MIP based on the CTM and solve each model separately. Then, the intersections communicate to 
each other to obtain estimated traffc fows. However, the information is only used in the next time 
period and the signal plan of the current time period is not updated. Hence, the signal plan obtained 
by solving the problem for each intersection is sub-optimal. 

Alternating Direction Method of Multipliers (ADMM) is a widely used optimization-based dis-
tributed algorithm. It was initially developed to solve convex programs that can be decomposed into 
multiple sub-clusters and the objective function is the summation of functions related to each sub-
cluster. For convex programs, it is proved that both the objective value and solutions obtained from 
the ADMM converge to the optimum (Boyd et al., 2011). Timotheou et al. (2014) propose a determin-
istic MIP based on the CTM and solve them using a distributed algorithm that decomposes a traffc 
network into individual intersections. The authors apply ADMM to obtain the coordination between 
intersections as well as solving the problem for each intersection individually. However, vehicle turn-
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ing is not taken into consideration. Moreover, the paper does not consider stochastic traffc demand 
or random vehicle turning. 

2.2.3 Traffc Signal Control under Uncertainties 

Most traffc signal control systems in the United States use time-of-day control, which applies different 
fxed-time signal timing plans during a day (Tang et al., 2019). In practice, traffc conditions in road 
networks can vary even for the same period over different days. Moreover, the movements of vehicles, 
described by turning ratios in our traffc signal control problem, are often uncertain (Yu and Recker, 
2006). However, changing a signal timing plan in traffc networks is infrequent because it requires a 
complex series of work such as resetting controllers, tuning the parameters, and monitoring the traffc 
systems (Zhang et al., 2010). Therefore, a signal timing plan taking into account the uncertainties of 
traffc states is valuable. The main research in this area mainly takes a risk-neutral perspective or 
a robust view. Among them, Zhang et al. (2010) design a robust fxed-time signal timing plan for 
a corridor under the traffc demand uncertainty with known distribution based on the CTM. They 
ensure that the probability of the travel delay exceeding a given threshold is suffciently small and the 
resulting model is solved by a heuristic approach. 

In this paper, we aim to obtain a traffc signal plan with the best average performance using 
stochastic optimization. An important formulation of stochastic optimization models is the two-stage 
stochastic program (Shapiro, 1993) using the Sample Average Approximation (SAA) method (Shapiro 
and Homem-de Mello, 2000). Tong et al. (2015) propose a two-stage stochastic optimization model 
for an isolated intersection to minimize the mean of the traffc delay under the uncertainties of traffc 
demand. However, their model relaxes the integrality constraint and the authors neither extend to 
a general traffc network nor consider random vehicle turning. In our paper, we propose a two-
stage stochastic MIP under the uncertainties of traffc demand and turning ratios based on SAA. Our 
distributed algorithms are combined with Benders decomposition for solving two-stage stochastic 
MIPs (Shapiro et al., 2014). 

The main contributions of this paper are threefold. First, we consider a fxed-time traffc signal 
control problem and formulate it on general grid networks as a large-scale MIP based on the CTM, 
in which we not only consider movements along corridors but also turning movements of vehicles. 
Second, we extend the deterministic model to a stochastic counterpart by incorporating various types 
of input parameter uncertainties, such as random traffc demand and turning ratios. Third, we speed 
up the computation of the resultant problem in a decentralized way. Specifcally, we frstly ignore the 
traffc fow relationship between intersections and obtain a signal timing plan for each intersection. 
Then, we coordinate the information of neighboring intersections and update the parameters of each 
intersection. Such a distributed computational framework can best utilize the advanced technologies in 
smart transportation such as distributed micro-computers – they can be installed at traffc intersections 
to use sensing information and wireless communication. In Table 2.1, we compare our work with 
the most relevant papers that use CTM, in terms of modeling method, instance scale, decision type, 
parameter assumption and solution approach. 

Table 2.1: Comparison between our study and traffc signal control papers using CTM 

Paper Model Scale Decision Parameter Approach 

Our work 
MIP and two-stage SP∗ 

network fxed-time 
stochastic traffc demand 

decentralized 
based on the CTM and turning ratio 

Lo (1999) MIP based on the CTM corridor real-time deterministic centralized 

Zhang et al. (2010) robust MIP based on the CTM corridor fxed-time stochastic traffc demand centralized 

Tong et al. (2015) Two-stage SP∗ isolated 

intersection 
fxed-time stochastic traffc demand centralized 

Timotheou et al. (2014) MIP based on the CTM network 
real-time 

deterministic decentralized 

Al Islam and Hajbabaie (2017) MIP based on the CTM network real-time deterministic decentralized 

∗ SP: Stochastic program; 
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2.3 Optimization Models for Traffc Signal Control 

We frst defne the notation and introduce the CTM in Section 2.3.1. We formulate the fxed-time traffc 
signal control as a deterministic MIP based on the CTM in Section 2.3.2, in which we aim to maximize 
the total throughput (i.e., the number of vehicles going through the whole traffc network). Then in 
Section 2.3.3, we extend the deterministic optimization model to a two-stage stochastic optimization 
model using fnite samples of the uncertain traffc demand and turning ratios. The model takes the 
initial traffc state, distributions of traffc demand and vehicle turning ratios as input parameters and 
output a signal control plan for traffc lights at all intersections. 

2.3.1 Problem Description and Notation 

Structure of the CTM Consider a road network G(V, E) where V is the set of nodes and E is the set 
of arcs. Here, the nodes are signalized intersections and the arcs refer to road segments connecting 
pairs of the intersections. In this paper, we focus on road networks in which at most four arcs are 
connected to the same node, representing North, South, East and West directions and therefore the 
underlying network is a grid. Each arc is partitioned into homogeneous sections called cells, where 
the length of each cell is the distance traveled by a vehicle at normal speed without traffc congestion 
in a unit of time. Let C = E ∪ O ∪ D ∪ I ∪M∪ V be the set of cells where E is the set of ordinary 
cells, O is the set of origin cells, D is the set of destination cells, I is the set of intersection cells, 
M is the set of merge cells and V is the set of diverge cells. Ordinary cells have both infow and 
outfow of vehicles from other cells. Origin cells receive exogenous infow and destination cells send 
outfow traffc outside the network. Intersection cells are cells where vehicles can choose to turn left, 
go straight or turn right. Merge cells receive infow traffc from more than one cell, while diverge 
cells send outfow traffc to more than one cell. Let d(c) be the set of cells sending their outfow to 
a cell c ∈ C and p(c) be the set of cells receiving their infow from a cell c ∈ C. A signal phase of 
a signalized intersection is a set of all intersection cells that can be allowed to pass the intersection 
at the same time. Let F be the set of indices of all the phases of a signalized intersection. In our 
problem, the set of phases F is defned as {1, 2, 3, 4}, where j = 1 means turning left in East-West 
direction, j = 2 means going straight or turning right in East-West direction, j = 3 means turning left 
in North-South direction, and j = 4 means going straight or turning right in North-South direction. 
Let R = {1, 2, · · · , NI} be the set of intersections where NI is the total number of intersections. Let 
Iij be the set of the intersection cells of intersection i and phase j for all i ∈ R and j ∈ F . We divide 
the whole time horizon into T time steps, represented by {1, · · · , T}. Figure 2.1 depicts the way of 
dividing one intersection and its related arcs into cells in CTM. The arcs are divided into squares with 
different patterns, referring to different types of the aforementioned cells in a CTM. 

Input Parameters For each cell c ∈ C, let ninit be the number of initial vehicles inside a cell c. Forc 
each cell c ∈ V and each cell c ′ ∈ d(c), let βcc ′ be the turning ratio of a diverging cell c moving 
towards the direction of an intersection cell c ′ . Notice that ∑c ′∈d(c) βcc ′ = 1. For each cell c ∈ C and 
time step t ∈ {1, · · · , T}, let Qct and Nct represent the maximum number of vehicles that can fow 
through and reside into a cell c during time [t, t + 1). Let Wct be the ratio between the shock-wave 
propagation speed and the fow-free speed of a cell c during time [t, t + 1). For each cell c ∈ O and 
each time step t ∈ {1, · · · , T}, let Dct be the number of vehicles entering an origin cell c during time 
[t, t + 1), defned as the traffc demand. We will use ninit, β, Q, N, W, D to represent the vector forms 
of all the parameters introduced above, respectively. Moreover, let Gmin and Gmax be the minimum 
and maximum green time, indicating that any green signal set at time t cannot change during time 
[t, t + Gmin) and the green signal of the same direction cannot last for more than Gmax time (Zhang 
and Wang, 2010), respectively. Let Ncy be the maximum number of cycles in the whole time horizon 
where traffc signal plans are the same in each cycle. In addition, we introduce a suffciently large 
parameter U, a suffciently small parameter ϵ and a weight parameter α to formulate constraints and 
the objective function in our models described later. 
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Figure 2.1: Example of a network with one intersection in the CTM. Bland squares are ordinary 
cells, squares with vertical stripes are origin cells, squares with horizontal stripes are destination cells, 
dotted squares are intersection cells, squares with grids are merge cells and squares with diagonal 
stripes are diverge cells. Dashed arrows indicate the network fow passing the intersection and solid 
arrows indicate the fow entering and leaving the whole traffc network. 

Decision Variables For each cell c ∈ C and each time t ∈ {1, · · · , T}, we defne continuous variables 
yct, nct as the number of vehicles leaving cell c and inside cell c during time [t, t + 1), respectively. In 
our model, we describe the traffc signal control plan by determining the beginning time and ending 
time when the traffc signal is green for each phase and each cycle. We use offsets for intersections 
to describe the temporal difference between the start of the cycles of different intersections. For each 
intersection i ∈ R, defne continuous variables li to represent the cycle length and oi to represent the 
offset of an intersection i. For each intersection i ∈ R and each phase j ∈ F , continuous variables gij 
indicate the length of the time interval when the traffc signal of an intersection i and a phase j is green. 
For each intersection i ∈ R, each phase j ∈ F and each cycle j′ ∈ {1, · · · , Ncy}, continuous variables 
bijj′ and eijj′ indicate the beginning and ending green time at intersection i, phase j during cycle j′ . 
For each intersection i ∈ R, phase j ∈ F , cycle j′ ∈ {1, · · · , Ncy} and time t ∈ {1, · · · , T}, we defne 
binary variables z1ijj′ t and z2ijj′ t to describe the relationship between the time step t, the beginning 
green time bijj′ and the ending green time eijj′ of the intersection i, the phase j and the cycle j′ , detailed 
in constraints (2.1n)–(2.1p) later. We use y, n, w, l, o, b, e, g, z1, z2 to represent the vector forms of all the 
variables mentioned above, respectively. 

2.3.2 Deterministic Optimization Model 

We formulate the deterministic traffc signal control problem as an MIP based on CTM below. 

T T 
min − ∑ ∑ nct − α ∑∑ (T − t)yct (2.1a) 

c∈D t=1 c∈C t=1 

s.t. yct ≤ nct, ∀c ∈ C, t = 1, · · · , T (2.1b) 

yct ≤ Qct, ∀c ∈ E ∪ O ∪ M ∪ V , t = 1, · · · , T (2.1c) 
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Ncy 

yct ≤ ∑ (z1ijj′ t + z2ijj′ t − 1)Qct, ∀c ∈ Iij, ∀i ∈ R, ∀j ∈ F , t = 1, · · · , T (2.1d) 
j′ =1 

′ yct ≤ Qc ′ t, ∀c ∈ C/V , ∀c ∈ d(c), t = 1, · · · , T (2.1e) 
′βcc ′ yct ≤ Qc ′ t, ∀c ∈ V , ∀i ∈ R, ∀j ∈ F , ∀c ∈ d(c)kIij, t = 1, · · · , T (2.1f) 

′ yct ≤ Wc ′ t(Nc ′ t − nc ′ t), ∀c ∈ C/V , ∀c ∈ d(c), t = 1, · · · , T (2.1g) 
′βcc ′ yct ≤ Wc ′ t(Nc ′ t − nc ′ t), ∀c ∈ V , ∀c ∈ d(c), t = 1, · · · , T (2.1h) 

nct+1 = nct + ∑ yc ′ t − yct, ∀c ∈ C/O/I , t = 1, · · · , T (2.1i) 
c ′∈p(c) 

nct+1 = nct + Dct − yct, ∀c ∈ O, t = 1, · · · , T (2.1j) 

nct+1 = nct + ∑ βc ′ cyc ′ t − yct, ∀c ∈ I , t = 1, · · · , T (2.1k) 
c ′∈p(c) 

nc1 = ninit, ∀c ∈ C (2.1l)c 

yct ≥ 0, nct ≥ 0, ∀c ∈ C, t = 1, · · · , T (2.1m) 

− U · z1ijj′ t ≤ bijj′ − t ≤ U(1 − z1ijj′ t) − ϵ, ∀i ∈ R, ∀j ∈ F , j ′ = 1, · · · , Ncy, t = 1, · · · , T 
(2.1n) 

− U · z2ijj′ t + ϵ ≤ t − eijj′ ≤ U(1 − z2ijj′ t), ∀i ∈ R, ∀j ∈ F , j ′ = 1, · · · , Ncy, t = 1, · · · , T 
(2.1o) 

∑ (z1ijj′ t + z2ijj′ t) ≤ |F | + 1, ∀i ∈ R, j ′ = 1, · · · , Ncy, t = 1, · · · , T (2.1p) 
j∈F 

oi ≤ li, ∀i ∈ R (2.1q) 

bi1j′ = li · (j ′ − 1) − oi, ∀i ∈ R, j ′ = 1, · · · , Ncy (2.1r) 

eijj′ = bijj′ + gij, ∀i ∈ R, ∀j ∈ F , j ′ = 1, · · · , Ncy (2.1s) 

bijj′ = eij−1j′ , ∀i ∈ R, ∀j ∈ F /{1}, j ′ = 1, · · · , Ncy (2.1t) 

li = ∑ gij, ∀i ∈ R (2.1u) 
j∈F 

Gmin ≤ gij ≤ Gmax, ∀i ∈ R, ∀j ∈ F (2.1v) 

z1ijj′ t, z2ijj′ t ∈ {0, 1}, ∀i ∈ R, ∀j ∈ F , j ′ = 1, · · · , Ncy, t = 1, · · · , T (2.1w) 

The frst term of the objective function (2.1a) is to maximize the summation of the throughput of the 
network over all time steps. The second term of (2.1a), defned as the CTM objective term, is to force 
yct for each cell c ∈ C at each time step t ∈ {1, · · · , T} to obtain the minimum of the right-hand sides 
of constraints (2.1b)–(2.1h), so as to ensure all vehicles to travel forward as much as possible, where 
yct is weighted by the remaining T − t time steps. The parameter α is set to balance between these two 
objectives, where a larger α can eliminate the vehicle-holding problem to a certain extent. 

Constraints (2.1b)–(2.1m) establish the fundamental relationships in CTM. Specifcally, constraints 
(2.1b) indicate that the number of vehicles leaving a cell c is limited by the number of vehicles inside 
cell c. Constraints (2.1c)–(2.1d) indicate that the number of vehicles leaving a cell c is limited by the fow 
capacity of cell c. Notice that for an intersection cell, its capacity is determined by the related traffc 
signal, which means that if the related traffc signal is red, the capacity should be zero. Constraints 
(2.1e)–(2.1f) indicate that the number of vehicles leaving a cell c is also limited by the fow capacity of 
its processing cell c ′ . Notice that a diverging cell has more than one processing cell and the number 
of vehicles entering each processing cell is estimated by the turning ratio. Constraints (2.1g)–(2.1h) 
indicate that the number of vehicles leaving a cell c should be limited by the number of vehicles that 
can enter its processing cells d(c). Constraints (2.1i)–(2.1k) are fow conservation equations for cells, 
implying that the difference between the number of vehicles in a cell c between two consecutive time 
steps t and t + 1 equals to the number of vehicles coming from preceding cells minus the number of 
vehicles leaving cell c during time [t, t + 1). Notice that the number of vehicles entering each origin 
cell is the traffc demand. Constraints (2.1l) are the initial condition of the number of vehicles inside 
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each cell. Constraints (2.1m) indicate that the number of vehicles leaving and inside each cell should 
be non-negative. 

Constraints (2.1n)–(2.1w) are related to signal timing decisions. Constraints (2.1n)–(2.1o) describe 
the relationship between each time step t, the start time b and the end time e of the time interval when 
the traffc signal of each phase is green. For each intersection i ∈ R, each phase j ∈ F and each cycle 
j′ ∈ {1, · · · , Ncy} at each time step t, z1ijj′ = 1 if t ≥ bijj′ and z1jj′ = 0 otherwise. Similarly, z2ijj′ t = 1t t 
if t ≤ eijj′ t and z2ijj′ t = 0 otherwise. Constraints (2.1p) indicate that each time step, there is only one 
phase with green light. Constraints (2.1q) indicate that the offset should be less than the cycle length. 
Constraints (2.1r)–(2.1t) detail the steps for computing the start and the end of the time interval at 
each cycle when the traffc signal of each phase is green based on the cycle length and the length of 
the time interval. Constraints (2.1u) indicate that the sum of the green time over all phases should be 
equal to the cycle length. Constraints (2.1v) bound the green time from below and above. Constraints 
(2.1w) require z1 and z2 being binary variables. 

2.3.3 Stochastic Optimization Model 

In a real traffc network, due to unpredictable driving behavior and lack of detectors, the demand D 
and turning ratios β are often random. They also vary signifcantly even for the same time period 
during weekdays versus weekends. Considering the uncertainties of parameters D and β, we extend 
the deterministic optimization model (2.1) to a two-stage stochastic optimization model described as 
follows. We use parameter ξ to denote the overall vector of uncertain parameters (i.e., ξ = (D, β)) and 
let P be its probability distribution. In this paper, we consider discrete distribution P and a fnite set 
of realizations Ξ = {ξ1, . . . , ξK} of the random vector ξ such that each scenario ξk has a probability 

kpk and ∑K
k=1 p = 1. (Note that we assume a joint distribution of parameters D and β without loss of 

generality, while the two can be independently distributed but we can use the same sampling-based 
formulation.) The resulting problem with the constructed scenarios is called the Sample Average 
Approximation (SAA) problem (Shapiro and Homem-de Mello, 2000). In the frst stage, we optimize 
the traffc signal related decisions, such as the cycle length l, offset o, start and end of green time 
intervals b, e and binary variables z1, z2. For each realized sample of the uncertain parameters ξk , 
we can build a linear program to determine the number of vehicles leaving and inside cells y, n, and 

kdenote their values as Dk , βk , y , nk correspondingly. The overall stochastic MIP is presented as 
follows. 

K T T 
min − ∑ pk( ∑ ∑ nk 

ct + α ∑∑ (T − t)yk 
ct) (2.2a) 

k=1 c∈D t=1 c∈C t=1 

s.t. Constraints (2.1n)–(2.1w) 
k ky ct, ∀c ∈ C, t = 1, · · · , T, k = 1, · · · , Kct ≤ n (2.2b) 
kyct ≤ Qct, ∀c ∈ E ∪ O ∪ M ∪ V , t = 1, · · · , T, k = 1, · · · , K (2.2c) 

Ncy 

yk 
ct ≤ ∑ (z1ijj′ t + z2ijj′ t − 1)Qct, ∀c ∈ Iij, ∀i ∈ R, ∀j ∈ F , t = 1, · · · , T, k = 1, · · · , K 

j′ =1 

(2.2d) 

yct 
k ≤ Qc ′ t, ∀c ∈ C/V , ∀c ′ ∈ d(c), t = 1, · · · , T, k = 1, · · · , K (2.2e) 

k ′βk
cc ′ yct ≤ Qc ′ t, ∀c ∈ V , ∀i ∈ R, ∀j ∈ F , ∀c ∈ d(c)kIij, t = 1, · · · , T, k = 1, · · · , K (2.2f) 
k k ′ yct ≤ Wc ′ t(Nc ′ t − nc ′ t), ∀c ∈ C/V , ∀c ∈ d(c), t = 1, · · · , T, k = 1, · · · , K (2.2g) 

k k ′βcc ′ yct ≤ Wc ′ t(Nc ′ t − nc ′ t), ∀c ∈ V , ∀c ∈ d(c), t = 1, · · · , T, k = 1, · · · , K (2.2h) 
k k 

ct + ∑ yk − yk
ct, ∀c ∈ C/O/I , t = 1, · · · , T, k = 1, · · · , K (2.2i)c ′ tn = nct+1 

c ′∈p(c) 

k k knct+1 = nct + Dct 
k − yct, ∀c ∈ O, t = 1, · · · , T, k = 1, · · · , K (2.2j) 

k k 
ct + k kβk y − yct, ∀c ∈ I , t = 1, · · · , T, k = 1, · · · , K (2.2k)c ′ c c ′ t∑n = nct+1 

c ′∈p(c) 
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k initn = n , ∀c ∈ C, k = 1, · · · , K (2.2l)c1 c 

yct 
k ≥ 0, nct 

k ≥ 0, ∀c ∈ C, t = 1, · · · , T, k = 1, · · · , K (2.2m) 

The objective function is the expected second-stage cost. Constraints (2.1n)–(2.1w) do not involve 
uncertain parameters and only involve frst-stage planning decision variables. Constraints (2.2b)– 
(2.2m) are the copies of constraints (2.1b)–(2.1m) corresponding to each scenario ξk for k = 1, · · · , K, 
and involve both frst-stage planning variables and second-stage recourse variables. 

2.4 Decomposition Algorithms 

Both the deterministic and stochastic optimization models developed in Section 2.3.3 are large-scale 
MIPs with complex constraints, and are diffcult to solve directly using off-the-shelf solvers as we 
will demonstrate later in numerical studies. The scalability issue mainly comes from the number of 
intersections and time steps. In this section, we propose effcient algorithms for solving the stochastic 
program (2.2) using Benders decomposition algorithm combined with spatial and temporal decom-
position. We describe the Benders decomposition algorithm in Section 2.4.1, propose a spatially de-
centralized Benders algorithm in Section 2.4.2, and an ADMM-based spatially decentralized Benders 
algorithm in Section 2.4.3. Furthermore, we apply temporal decomposition to these algorithm variants 
in Section 2.4.4 to accelerate their computation. 

2.4.1 Benders Decomposition Algorithm 

We frst create new variables θk , k = 1, · · · , K and defne a relaxed master problem as the frst-stage 
problem as follows. 

K 
(RMP) min ∑ 

k 1= 
pkθk (2.3a) 

s.t. Constraints (2.1n)–(2.1w) 

(z1, z2, θ) ∈ Σ(z1, z2, θ) (2.3b) 

where Σ(z1, z2, θ) is the set of Benders cuts as linear functions of z1, z2 generated up to the current 
iteration. Given frst-stage integer solutions ẑ1, ẑ2, for k = 1, · · · , K, the second-stage problem for a 
scenario ξk is defned as 

T T 
min − ∑ ∑ nk 

ct − α ∑∑ (T − t)yk 
ct (2.4a) 

c∈D t=1 c∈C t=1 

s.t. Constraints (2.2b)–(2.2m) for the scenario ξk 

z1 = ẑ1, z2 = ẑ2 (2.4b) 

We frst show that the second-stage problem (2.4) is always feasible in the following theorem. 

Theorem 1. Given non-negative parameters Q, N, D, ninit , W and positive parameter ϵ, the feasibility set com-
posed by constraints (2.2b)–(2.2m) is always non-empty given any frst-stage solutions ẑ1, ẑ2. 

Proof. We frstly prove that ẑ1ijj′ t + ẑ2ijj′ t ≥ 1 for each i ∈ R, j ∈ F , j′ = 1, · · · , Ncy and t = 1, · · · , T. 
Assume that there exists ẑ1ijj′ t = ẑ2ijj′ t = 0, then from constraints (2.1n)–(2.1o), we have t ≤ bijj′ and 

k kt ≥ eijj′ + ϵ, which contradicts bijj′ ≤ eijj′ derived by constraints (2.1q)–(2.1v). Therefore, y = n = 0 
is always a feasible solution. 

From Theorem 1, we only need to add optimality cuts to the set Σ, which we will construct in the 
next theorem. 

Theorem 2. Associating dual variables ρk
ct, c ∈ C, t = 1, · · · , T, k = 1, · · · , K to constraints (2.2b), σct 

k , c ∈ 
C, t = 1, · · · , T, k = 1, · · · , K to constraints (2.2c)–(2.2d), πk ∈ d(c), t = 1, · · · , T, k = cc ′ t, c ∈ C, c ′ 
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1, · · · , K to constraints (2.2e)–(2.2f), γk
t, c ∈ C, c ′ ∈ d(c), t = 1, · · · , T, k = 1, · · · , K to constraints cc ′ 

(2.2g)–(2.2h), δct 
k , c ∈ C, t = 1, · · · , T, k = 1, · · · , K to constraints (2.2i)–(2.2k), and τc

k , c ∈ C, k = 
1, · · · , K to constraints (2.2l), for k = 1, · · · , K, the optimality cut for a scenario ξk is given by 

T Ncy T 
θk ≥ ∑∑ Qctσct 

k + ∑ ∑∑∑∑ (z1ijj′ t + z2ijj′ t − 1)Qctσct 
k 

c∈C/I t=1 i∈R j∈F c∈Iij j′ =1 t=1 

T T 

∑∑∑ Qc ′ tπ
k 
cc ′ t + ∑ ∑∑ Wc ′ tNc ′ tγ

k 
cc ′+ t 

c∈C c ′∈d(c) t=1 c∈C c ′∈d(c) t=1 

T 
+ ∑ ∑ Dk 

ctδct 
k + ∑ ninitτk 

c (2.5)c 
c∈O t=1 c∈C 

Proof. The proof follows directly the strong duality of the linear programming models with fxed 
binary-valued inputs ẑ1 and ẑ2. 

For every iteration, we solve (RMP) with current Benders’ cuts and obtain feasible solutions ẑ1, ẑ2. 
The optimal value of (RMP) provides a lower bound of the original stochastic program (2.2). Then we 
compute optimal dual solutions to the second-stage problems (2.4) for all scenarios, and the expecta-
tion of their optimal values provides an upper bound of the original stochastic program (2.2). When 
the gap between the upper bound and the lower bound is closed, the algorithm can be terminated. 

2.4.2 Spatially Decentralized Benders Algorithm 

Next, we consider reformulating the relaxed master problem (2.3) in a distributed way by spatial 
decomposition. We partition the network into NI areas where each area contains only one intersection. 
For each area with an intersection i for i ∈ R, let Ci, Ei, Oi, Di, Mi, Vi be the corresponding sets of all 
cells, ordinary cells, origin cells, destination cells, merge cells, and diverge cells, respectively. Our goal 
is to solve the relaxed master problem for each area separately which only contains an intersection i 
where i ∈ R. 

Observation 1. By defning variables θk for each scenario ξk , k = 1, · · · , K and each intersection i ∈ R,i 
the initial form of the frst-stage problem (RMP) can be reformulated as NI subproblems corresponding to each 
intersection i ∈ R where each subproblem admits the following formulation. 

K 
(RMPi) min ∑ pkθk 

i (2.6a) 
k=1 

s.t. Constraints (2.1n)–(2.1w) corresponding to the intersection i 

(z1i, z2i, θi) ∈ Σi(z1i, z2i, θi) (2.6b) 

where Σi(z1i, z2i, θi) is the set of cuts as linear functions of z1i, z2i generated up to the current iteration. 

This observation comes directly from the observation that signal constraints (2.1n)–(2.1w) can be 
written separately for each intersection. 

Observation 2. For k = 1, · · · , K, the objective function of the dual problem (SPk) of the second-stage problem 
can be written as the summation of functions corresponding to each intersection i ∈ R. 

To validate Observation 2, for each k = 1, · · · , K and intersection i ∈ R, defne function 

T Ncy T 
FD

k 
i(z1i, z2i, ρk , σk , πk , γk , δk , τk) = ∑∑ Qctσct 

k + ∑ ∑∑∑ (z1ijj′ t + z2ijj′ t − 1)Qctσct 
k 

c∈Ci/Ii t=1 j∈F c∈Iij j′ =1 t=1 

T T 
+ ∑ ∑∑ Qc ′ tπ

k 
cc ′ t + ∑ ∑∑ Wc ′ tNc ′ tγ

k 
cc ′ t 

c∈Ci c ′∈d(c) t=1 c∈Ci c ′∈d(c) t=1 
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T 
init+ ∑ ∑ Dct 

k δct 
k + ∑ nc τc

k . (2.7) 
c∈Oi t=1 c∈Ci 

Then it can be easily seen that 

FD
k (z1, z2, ρk , σk , πk , γk , δk , τk) = ∑ FD

k 
i(z1i, z2i, ρk , σk , πk , γk , δk , τk). (2.8) 

i∈R 

For each iteration, we still solve dual problems (SPk) for k = 1, · · · , K, but add cuts to the set Σi 
for each subproblem (RMPi), ∀i ∈ R separately. Based on Observation 2, we derive an optimality 
cut as θk ≥ FD

k 
i(z1i, z2i, ρ̂k , σ̂ k , π̂k , γ̂k , δ̂k , τ̂k) for the set Σi. The procedure of the spatially decentralized i 

algorithm is described as follows in Algorithm 1. 

Algorithm 1: Spatially Decentralized Benders Algorithm (Benders-D). 

for i ∈ R do 
Initialize (RMPi) with Σi = ∅ and θi = 0. 

while the termination criteria is not satisfed do 
for i ∈ R do 

Solve (RMPi) to obtain optimal solution (ẑ1i, ẑ2i, θ̂i). 

for k = 1, · · · , K do 
Solve (SPk) to obtain optimal solution (ρ̂k , σ̂ k , π̂ k , γ̂k , δ̂k , τ̂k). for i ∈ R do 

if θ̂k < FD
k 

i(ẑ1i, ẑ2i, ρ̂k , σ̂ k , π̂ k , γ̂k , δ̂k , τ̂k) theni 
Add an optimality cut θk ≥ FD

k 
i(z1i, z2i, ρ̂k , σ̂ k , π̂ k , γ̂k , δ̂k , τ̂k) to the set Σi.i 

Return the objective value as ∑K
k=1 p

k ∑i∈R θ̂ 
i
k and the solutions of (RMPi), i ∈ R. 

Theorem 3. Let ALGB be the objective value obtained from Benders decomposition algorithm, and ALGDB be 
the objective value obtained from the spatially decentralized Benders algorithm (Algorithm 1), then we have 
ALGB ≤ ALGDB. 

Proof. The Benders cut (2.5) is equivalent to 

∑ θk ≥ ∑ FD
k 

i(z1i, z2i, ρk , σk , πk , γk , δk , τk), k = 1, · · · , K. (2.9)i 
i∈R i∈R 

Thus, from the construction of Σ and Σi, i = 1, · · · , NI , we know that ∏i∈R Σi ⊆ Σ. Recall that ALGB 
is the optimal value of the (RMP) and ALGDB is the summation of the optimal values of all the (RMPi). 
It follows that ALGB ≤ ALGDB. 

2.4.3 ADMM-based Spatially Decentralized Benders Algorithm 

The CPU time of solving the second-stage problems in the stochastic program increases signifcantly 
as network sizes increase. We further propose a distributed algorithm that solves frst-stage problems 
as well as second-stage problems separately for each intersection based on the partition of the network 
in Section 2.4.2. We frstly propose a distributed formulation of second-stage problems in Section 2.4.3. 
Then we solve the second-stage problems for each intersection individually by applying ADMM (Boyd 
et al., 2011), which is described in Section 2.4.3. Furthermore, we generate optimality cuts based on 
the optimal value and solutions obtained by ADMM and prove that the objective value obtained by 
our proposed algorithm converges to the optimal value in Section 2.4.3. 

Distributed Formulation 

For each intersection i ∈ R, we partition the set of cells Ci into two parts – one consists of all the cells 
where the constraints of these cells are related to cells in other intersections, called boundary cells and 
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the other consists of all the remaining cells, called internal cells (Timotheou et al., 2014). For each area 
containing an intersection i ∈ R, let Bi

I be the set of input boundary cells receiving infow traffc from 
a cell of a neighboring area, and BO be the set of output boundary cells sending outfow traffc to ai 
cell of a neighboring area. In a centralized stochastic programming model, constraints (2.2g) and (2.2i) 
are related to boundary cells. We rewrite these constraints separately for boundary cells and internal 
cells. Notice that in our grid network setting, for each boundary cell c ∈ BO ∪ Bi

I , there is only onei 
cell receiving the infow traffc from c and one cell sending the outfow traffc to c, denoted as dc and 
pc, indicating that d(c) = {dc} and p(c) = {pc}. 

For each intersection i ∈ R, the constraints related to boundary cells include variables correspond-
k ∈ R|B

I
ing to other intersections. For each k = 1, · · · , K and i ∈ R, we introduce vectors ỹ i |×T andi 

i ∈ R|B
Okñ i |×T to estimate the corresponding yk and nk of cells of neighboring intersections. Constraints 

(2.1g)–(2.1h) are rewritten as equality constraints by defning auxiliary variables sct 
k ≥ 0 for each cell 

c ∈ C, each time step t = 1, · · · , T and each k = 1, · · · , K. Let sk be the vector form of the auxiliary 
variables. The second-stage problem for scenario ξk can be written as a distributed formulation as 
follows. 

T T 
(SP-Dk) min − ∑∑ nk 

ct − α ∑∑ (T − t)yk 
ct (2.10a) 

c∈D t=1 c∈C t=1 

s.t. Constraints (2.2b)–(2.2f), (2.2i)–(2.2m) for the scenario ξk , ∀c ∈ Ci/Bi
I/BO 

i 
(2.10b) 

sct 
k ≥ 0, ∀c ∈ C, ∀c ′ ∈ d(c), t = 1, · · · , T (2.10c) 
k k k ′ yct + sct = Wc ′ t(Nc ′ t − nc ′ t), ∀c ∈ C/V/Bi

O , ∀c ∈ d(c), t = 1, · · · , T (2.10d) 
k k k ′βcc ′ yct + sct = Wc ′ t(Nc ′ t − nc ′ t), ∀c ∈ V , ∀c ∈ d(c), t = 1, · · · , T (2.10e) 

k k kyct + sct = Wdct(Ndct − ñict), ∀i ∈ R, ∀c ∈ Bi
O , t = 1, · · · , T (2.10f) 

k k k knct+1 = nct + ỹict − yct, ∀i ∈ R, ∀c ∈ Bi
I , t = 1, · · · , T (2.10g) 

k kỹ = ypct, ∀i ∈ R, ∀c ∈ Bi
I , t = 1, · · · , T (2.10h)ict 

k kñ = ndct, ∀i ∈ R, ∀c ∈ Bi
O , t = 1, · · · , T (2.10i)ict 

Constraints (2.10b) correspond to constraints (2.2b)–(2.2f), (2.2i)–(2.2m) for the internal cells under 
scenario ξk . Constraints (2.10c) indicate that sk should be non-negative. Constraints (2.10d)–(2.10e) 
refer to the equality form of constraints (2.2g)–(2.2h) under scenario ξk . Constraints (2.10f) and (2.10g) 
refer to the equality form of constraints (2.2g) and (2.2i) related to boundary cells under scenario ξk . 

k kConstraints (2.10h) and (2.10i) indicate that for each intersection i ∈ R, ỹi and ñi should be equal 
to the value of yk and nk of cells of neighboring intersections receiving fow from or sending fow to 
boundary cells. 

ADMM for Second-stage Problems 

In the distributed formulation, each intersection is considered as a block and the model contains 
several additional coupled (linear) constraints between pairs of intersection blocks. Then we can apply 
ADMM to solve each second-stage problem (SP-Dk), ∀k = 1, · · · , K. 

Theorem 4. For each k = 1, · · · , K, the distributed second-stage problem (SP-Dk) can be reformulated as a 
series of subproblems for each intersection i ∈ R. 

k k kProof. We defne Xi as the convex feasible region of [yi , ni , si ] defned by constraints (2.10b)–(2.10e) for 
each intersection i ∈ R. Introducing dual variables κk

i , t = 1, · · · , T for constraints ict, i ∈ R, c ∈ BO 

(2.10f), dual variables λk
i , t = 1, · · · , T for constraints (2.10g), dual variables µk 

ict, i ∈ R, c ∈ B I 
ict, i ∈ 

R, c ∈ Bi
I , t = 1, · · · , T for constraints (2.10h), and dual variables νk

i , t = 1, · · · , Tict, i ∈ R, c ∈ BO 

for constraints (2.10i), we use κi
k , λi

k , µk
i , ν

k to represent vector forms of these dual variables and defne i 
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an augmented dual Lagrangian function with a feasible set Xi for each intersection i ∈ R as follows. 

T T 
k k k k k kLk

i (yi , ni , si , ỹi , ñi , κi
k , λk

i , µi , νi
k) = − ∑ ∑ nk 

ct − α ∑ ∑(T − t)yk 
ct 

c∈Di t=1 c∈Ci t=1 

T 
k k kκk nict(yct + sct − Wdct(Ndct − ˜ ict)) ∑∑+ 

c∈BO t=1 
i 

T 
λk k k k k 

ict(nct+1 − nct − ỹict + yct)∑∑+ 
c∈B I t=1 

i 

T 
µk k k 

ict(ỹict − ypct) + ∑ 
T 

∑ νk k knict( ̃ ict − ndct)∑∑+ 
c∈B I t=1 c∈BO t=1 

i i 

TL k k k∥yct + sct − Wdct(Ndct − ñict)∥2∑∑+ 
2 

L 

c∈BO t=1 
i 

T 
k k k k∥nct+1 − nct − ỹict + yct∥2∑ ∑ 

1t=

T 

∑ 

+ 
2 

c∈Bi
I 

TL k k 
ict − ypct∥2 + 

L k k ∥2 
ict − n∑ ∑∑∥ỹ ∥ñ , (2.11)+ dct2 2 

c∈B I t=1 
i c∈BO t=1 

i 

where L is the Lagrangian penalty parameter. The problem (SP-Dk) can be rewritten as the mini-
mization problem of the augmented Lagrangian function with a feasible set composed by constraints 
(2.10b)–(2.10g). Following the defnitions of dual variables, the augmented Lagrangian function is the 
summation of functions Lk

i for all intersections i ∈ R, i.e., 

k k k k k kLk(y , n , s , ỹ , ñ , κk , λk , µ , νk) = ∑ k k k k k kLk
i (yi , ni , si , ỹi , ñi , κi

k , λk
i , µi , νi

k) (2.12) 
i∈R 

The minimization problem of Lk is equivalent to a series of problems that minimize Lk for eachi 
intersection i ∈ R. 

k k kFor each intersection i ∈ R, ADMM consists of three main steps: (i) updating variables yi , ni , si , 
k k(ii) updating variables ỹi , ñi , and (iii) updating dual variables κi

k , λi
k , µi

k , νi
k . Specifcally, in iteration 

kl kl kl kl kl ,κkl ,λkl l + 1, we update variables based on current values y , n , s ,ỹ , ñ , 
µkl , νkl as follows. 

kl+1 kl+1 kl+1 Lk k k k kl kl , κi
kl , λkl kl 

i , νkl [y , n , s ] = arg min i (yi , ni , si , ỹ , ñ i µ ), ∀i ∈ R (2.13a)i i i i 
k k k[yi ,ni ,si ]∈Xi 

kl+1 kl+1 kl+1 kl+1 kl+1 k 
i
k , κi

kl , λkl 
i
kl , νkl [ỹ , ñ ] = arg min Li

k(y , n , s , ỹi , ñ i , µ i ), ∀i ∈ R (2.13b)i i i i i 

κkl+1 = κkl kl+1 kl+1 kl+1+ s − Wdct(Ndct − ñ )), ∀i ∈ R, ∀c ∈ Bi
O , t = 1, · · · , T (2.13c)ict ict + L(yct ct ict 

λkl+1 = λkl kl+1 kl+1 kl+1 kl+1 
ict ict + L(nct+1 − nct − ỹict + yct ), ∀i ∈ R, ∀c ∈ Bi

I , t = 1, · · · , T (2.13d) 
kl+1 kl kl+1 kl+1µict = µict + L(ỹct − ypct ), ∀i ∈ R, ∀c ∈ Bi

I , t = 1, · · · , T (2.13e) 

νkl+1 = νkl kl+1 kl+1n − n ), ∀i ∈ R, ∀c ∈ Bi
O , t = 1, · · · , T (2.13f)ict ict + L( ̃ ct dct 

Since the procedure of updating variables is separable for each intersection, the computation can be 
conducted in parallel for different intersections at each iteration, which can speed up the computation 
drastically. In practice, each subproblem can be solved by local computers installed at each intersection 
and then communicate with each other to update the duals, to fully utilize connected transportation 
technologies. 
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ADMM-based Spatially Decentralized Benders Algorithm 

We use the same formulation of (RMPi) in Section 2.4.2 as frst-stage problems for all the intersections 
k , ŷki ∈ R. For second-stage problems, we solve them by ADMM and obtain the optimal solutions n̂ 

and the optimal value Lk∗ (z1i, z2i) for each intersection i ∈ R and each k = 1, · · · , K.i 

Theorem 5. For each intersection i ∈ R, Given frst-stage optimal solutions ẑ1i, ẑ2i, the optimal value of the 
second-stage problem corresponding to a scenario ξk , k = 1, · · · , K is linear in ẑ1i, ẑ2i. 

k k κk λ̂ k µk νkProof. For each k = 1, · · · , K and i ∈ R, let ỹ̂i , ñ̂i , ˆi , i , ˆ i , ˆ be the optimal solutions of variables i 
k k k k k ỹ̂k ˆ̃ k κk λ̂ k µkỹi , ñi , κi

k , λk
i , µi

k , νi
k . We consider the minimization problem of Lk

i (yi , ni , si , i , ni , ˆi , i , ˆ i , 
ν̂i

k) with constraints (2.10b)–(2.10c). The dual Lagrangian function of this minimization problem is in 
the form of 

k k kL̃k
i , ρ

k , σk , πk , γk , δk , τk)i (ẑ1i, ẑ2i, yi , ni , s 
T 

k k k k k k =Lk
i (yi , ni , si , ỹ̂i , ñ̂i , κ̂i

k , λ̂ 
i
k , µ̂i , ν̂i

k) + ∑∑ (Qct − yk 
ct)σct 

k 

c∈Ci/Ii t=1 

Ncy T T 
+ ∑ ∑∑∑ ((ẑ1ijj′ t + ẑ2ijj′ t − 1)Qct − yk 

ct)σct 
k + ∑ ∑∑ (Qc ′ t − yk 

ct)πcc 
k 
′ t 

j∈F c∈Iij j′ =1 t=1 c∈Ci c ′∈d(c) t=1 

T 
k k k(Wc ′ tNc ′ t − yct − sct − Wc ′ tnct)γcc 

k 
′ t∑∑∑+ 

c∈Ci/BO c ′∈d(c) t=1 
i 

T 

∑∑ k k k init k(Dct 
k − yct + nct − nct+1)δct 

k + ∑ (nc − nc1)τc
k (2.14)+ 

c∈Oi t=1 c∈Ci 

L̃k k k kThe only term in corresponding to ẑ1i, ẑ2i is a linear term that is not related to yi , ni , si . Hence,i 
the optimal value of the problem maxρk≥0,σk≥0,πk≥0,γk ,τk min k k k L̃k only includes the linear term ,δk yi ,ni ,s ii 

corresponding to ẑ1i, ẑ2i. Since the minimization problem of Lk is a semi-defnite quadratic program, i 
strong duality holds. From the convergence property of ADMM, we have, 

Lk∗ k k k(ẑ1i, ẑ2i) = max min L̃i
k(ẑ1i, ẑ2i, [yi , ni , si ] ∈ Xi, ρk , σk , πk , γk , δk , τk) (2.15)

k k ki 
ρk≥0,σk≥0,πk≥0,γk ,δk ,τk yi ,ni ,si 

Therefore, the optimal value of the second-stage problem Lk∗ is linear in ẑ1i, ẑ2i.i 

Proposition 1. The feasibility set of ρk , σk , πk , γk , δk , τk generated by the program min k k k L̃k does notyi ,ni ,s ii 
depend on frst-stage decision variables. 

Proof. The proof follows directly from the form of L̃ 
i
k in the proof of Theorem 5. 

For each k = 1, · · · , K and i ∈ R, given the optimal value Lk∗ and dual optimal solutions σk 
i ct, c ∈ 

Iij, j ∈ F , t = 1, · · · , T corresponding to constraints (2.1d) for scenario ξk and intersection i, we can 
generate an optimality cut as: 

Ncy T 
θk 

i ≥ Li
k∗ σk 

t − 1)Qct ˆct − ∑ ∑∑∑ (ẑ1ijj′ t + ẑ2ijj′ 
j∈F c∈Iij j′ =1 t=1 

Ncy T 
σk 

t − 1)Qct ˆct (2.16)+ ∑ ∑∑∑ (z1ijj′ t + z2ijj′ 
j∈F c∈Iij j′ =1 t=1 

For simplicity, we rewrite the right-hand side of (2.16) as F̃ 
D
k 

i 
(z1i, z2i, ẑ1i, ẑ2i, Lk

i 
∗ , σ̂ ). The procedure of 

ADMM-based spatially decentralized Benders algorithm is described in Algorithm 2. 

Theorem 6. The objective value obtained by the ADMM-based spatially decentralized Benders algorithm (i.e., 
Algorithm 2) equals to the optimal objective value of the stochastic programming model (2.2). 
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Algorithm 2: ADMM-based Spatially Decentralized Benders Algorithm (Benders-ADMM). 

for i ∈ R do 
Initialize (RMPi) with Σi = ∅ and θi = 0. 

while the termination criteria is not satisfed do 
for i ∈ R do 

Solve (RMPi) to obtain optimal solution (ẑ1i, ẑ2i, θ̂i). 

for k = 1, · · · , K do 
Solve (SP-Dk) by ADMM in parallel according to Section 2.4.3 and obtain the optimal 

value Lk∗ and optimal dual variables σ̂. for i ∈ R doi 
if θ̂ 

i
k < Li

k∗ then 
Add optimality cut θk ≥ F̃k (z1i, z2i, ẑ1i, ẑ2i, Lk∗ , σ̂ ) to Σi.i Di i 

Return the objective value as ∑K
k=1 p

k ∑i∈R θ̂ 
i
k and the solutions of (RMPi), i ∈ R. 

Proof. Based on Theorem 4 and Theorem 5, the original stochastic programming model (2.2) can be 
reformulated as: 

K 
min k ∑∑ p θk 

i (2.17a) 
k=1 i∈R 

s.t. Constraints (2.1n)–(2.1w) 

θk 
i ≥ ˜ k k kmax min Lk , σk , πk , γk , δk 

i (z1i, z2i, yi , ni , si , ρ
k , τk), 

k k kρk≥0,σk≥0,πk≥0,γk ,δk ,τk yi ,ni ,si 

∀i ∈ R, k = 1, · · · , K (2.17b) 

From Proposition 1, we know that the feasibility set composed by constraint (2.17b) is a subset of 
the feasibility set composed by the added optimality cuts in the ADMM-based spatially decentralized 
Benders algorithm. Hence the summation of the objective values of (RMPi) for all i ∈ R provides 
a lower bound of the original stochastic programming model. Furthermore, the summation of Lk∗ 

i 
provides an upper bound of the original stochastic programming model since it is the objective value 
of a feasible solution. The algorithm terminates at the optimal objective value when the gap between 
the lower bound and the upper bound is closed. 

Remark 1. Spatially decentralized Benders algorithm (Algorithm 1) and ADMM-based spatially decentralized 
Benders algorithm (Algorithm 2) can also be employed when the partitioned areas contain multiple intersections. 

2.4.4 Temporal Decomposition 

For the frst-stage problems of each intersection i ∈ R, the computational complexity mainly depends 
on the number of time steps, T. 

Lemma 1. For each i ∈ R, the number of variables and constraints in (RMPi) grows as O(T2) with the 
number T of time steps. 

Proof. The number of variables in (RMPi) is 2|F |NcyT + 2|F |Ncy. As |F | does not depend on T 
and Ncy grows linearly with T, the number of variables grows as O(T2). Similarly, the number of 
constraints is O(|F |NcyT), which also grows as O(T2). This completes the proof. 

To reduce the size of the frst-stage problem, we pre-determine the cycle lengths li as l̂i for each 
i ∈ R based on the traffc demand volume according to Koonce and Rodegerdts (2008). Since the 
traffc signal control plan is the same for each cycle, we consider (RMPi) where the number of time 
steps is l̂i for each intersection i ∈ R. We defne t ′ = t mod l̂i and reformulate constraints (2.2d) as: 

Ncy 
kyct ≤ ∑ (z1ijj′ t ′ + z2ijj′ t ′ − 1)Qct, ∀c ∈ Iij, ∀i ∈ R, ∀j ∈ F , t = 1, · · · , T, k = 1, · · · , K. (2.18) 

j′ =1 
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Lemma 2. For each intersection i ∈ R and the corresponding frst-stage problem (RMPi), by setting t ∈ 
{1, · · · , l̃i}, the maximum number of cycles Ncy = 2. 

Proof. From constraints (2.1q)–(2.1u), given li = l̂i, we have 

−l̂i ≤ bi11 ≤ 0, ∀i ∈ R (2.19a) 

ei|F |2 ≥ l̂i, ∀i ∈ R (2.19b) 

The time horizon we consider is {1, · · · , l̂i}, which is a subset of [bi11, ei|F |2], and thus Ncy = 2. 

Theorem 7. By pre-determining the cycle length, the problem size of (RMPi) for each i ∈ R only grows 
linearly with the cycle length. 

Proof. Combining Lemma 1 and Lemma 2, it is clear that the number of variables and the number of 
constraints are both O(l̂i). 

Because the number of variables and constraints in (RMP) is the summation of the number of 
variables and constraints in (RMPi) for all i ∈ R, Theorem 7 holds if we pre-determine the cycle 
lengths in (RMP). 

Remark 2. In this paper, the pre-determined cycle length for all the intersections are the same (Koonce and 
Rodegerdts, 2008). The cycle length lfx is set as the mean value of li, i ∈ R computed by the following formula 
(Webster, 1958). & ' 

|F | ∗ 7.5 + 5
li = (2.20)

1 − ∑4 
j=1 Dj/Qj 

where Dj and Qj are the traffc demand and maximum fow capacity of the direction corresponding to a phase j. 

2.5 Numerical Studies 

We apply algorithms proposed in Section 2.4 to solve the traffc signal control problem on instances 
of randomly generated grid networks and real-world traffc networks. In Section 2.5.1, we introduce 
the experimental design, including the warm-up initialization in Section 2.5.1, the network design of 
instances in Sections 2.5.1–2.5.1 and the out-of-sample evaluation in Section 2.5.1. In Section 2.5.2 and 
Section 2.5.3, we present the computational results to demonstrate the effcacy of our approaches. 

2.5.1 Experimental Design 

We frstly introduce the warm start technique for the initialization of our model. Then we introduce 
the network design of our instances. Lastly, we describe the evaluation metrics and computational 
procedures for out-of-sample tests. 

Warm-up Initialization 

To initialize the number of vehicles inside each cell c ∈ C, we use a warm start technique according to 
Webster (1958). We defne a fxed traffc signal time plan and compute the number of vehicles in each 
cell c ∈ C by solving the model with an objective function as the second term of (2.1a) and constraints 
(2.1b)–(2.1m). For each each phase j ∈ F , the green time of a phase j is defned as 

Djfx lfxg = , (2.21)j
j=1 Dj∑4 

where Dj is the traffc demand of the direction corresponding to a phase j and lfx is the cycle length. 
For each cell c ∈ C, we set ninit as the number of vehicles inside c at the last time step. c 
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Random Grid Networks 

We conduct numerical studies on randomly generated grid networks with the size Nrow × Ncol where 
Nrow is the number of rows and Ncol is the number of intersections in each row that has the same 
structure of intersections and road segments. We set the parameter values of the model described in 
Section 2.3 as follows. Let “veh” denote the number of vehicles. For each intersection cell c ∈ I and 
time step t = 1, · · · , T, we set Qct = 1.5 veh and Nct = 6 veh, meaning that at most 1.5 and 6 vehicles 
can fow through and reside in a cell at each time step, respectively. For the other cells c ∈ C/I and 
time step t = 1, · · · , T, Qct = 3 veh and Nct = 12 veh, meaning that at most 3 and 12 vehicles can fow 
through and reside in a cell at each time step. The ratio of shock-wave speed over free-fow speed 
is the same for all the cells in C and all the time steps in {1, · · · , T}, which is set as W = 1/3 . The 
initialized number of vehicles ninit is generated by the warm-start technique described in Section 2.5.1. 
The minimum green time Gmin = 6 seconds and the maximum green time Gmax = 75 seconds. The 
whole time horizon is half an hour and has 600 time steps. We set the weight parameter α = 0.001 in 
the objective function. 

We generate random samples of traffc demand and turning ratios as follows. We assume uniform 
arrivals of vehicles during the half-an-hour time horizon, and therefore values of Dct are the same 
for all time steps t = 1, · · · , T for any origin cell c ∈ O. The traffc demand for each cell c ∈ O 
has a truncated Normal distribution defned on [0, ∞) shown in Table 2.2 where column “SD/Mean” 
represents the ratio between standard deviation and the mean value. The unit of traffc demand is the 
number of vehicles per hour (veh/h). 

Table 2.2: Distribution of randomly generated traffc demand 

Distribution Instance Mean Value (veh/h) SD/Mean 
1 200 (E-W∗), 50 (S-N∗∗) 2 
2 200 (E-W), 50 (S-N) 3 
3 200 (E-W), 50 (S-N) 4 
4 400 (E-W), 100 (S-N) 2 
5 400 (E-W), 100 (S-N) 3 
6 400 (E-W), 100 (S-N) 4 
∗E-W: direction of east and west; 
∗∗S-N: direction of south and north; 

The turning ratios of all the diverge cells c ∈ D follow truncated Normal distribution defned on 
[0, 1] with mean values [0.15, 0.72, 0.13] where the three elements represent the ratio of turning left, 
going straight and turning right, respectively. The ratio between the standard deviation and the mean 
value is set to 0.3. We test our approaches on randomly generated grid networks having sizes 4 × 4, 
2 × 8, 6 × 6 and 10 × 10 and the distribution instance #4 of traffc demand given in Table 2.2. We test 
the other distribution instances in Table 2.2 only for the 4 × 4 grid network. 

We generate 10 in-sample scenarios to formulate the stochastic optimization model. As a bench-
mark, we frstly use Gurobi to solve the stochastic programming model (2.2) directly. Then we employ 
Benders decomposition algorithm with and without temporal decomposition described in Section 
2.4.4 to solve the model. Furthermore, based on the temporal decomposition, we apply Benders de-
composition algorithm, spatially decentralized Benders algorithm, and the ADMM-based spatially 
decentralized Benders algorithm. For the 4 × 4 grid network, we build a deterministic optimization 
model by setting the traffc demand and turning ratios as the expectation and solve the model by 
applying ADMM-based spatially decentralized Benders algorithm with K = 1. 

Real-world Traffc Networks 

We also test all the proposed algorithms on a real traffc network based on the roads of Downtown 
in Ann Arbor (in Michigan, United States) where the network layout is shown in Figure 2.2. In the 
fgure, the lines indicate the roads, and the bullets indicate the signalized intersections. This traffc 
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network contains 14 corridors, 37 signalized intersections, and 27 unsignalized intersections with road 
structures such as stop signs and one-way roads. All the parameters, including mean values of traffc 
demand and turning ratios, are computed based on collected real-world traffc data. We test an 
instance with high average traffc demand during peak hours where we set the SD/Mean ratio to 2 
and an instance with low average traffc demand during off-peak hours where we set the SD/Mean 
ratio to 3. We set the ratio between standard deviation and mean of turning ratios as 0.3. 

Figure 2.2: Real-world traffc network of Ann Arbor downtown with 64 intersections and 14 corridors 

We generate 10 scenarios to formulate the stochastic optimization model and apply ADMM-based 
spatially decentralized Benders algorithm to solve the model. We also set the traffc demand and 
turning ratios as the mean value to build a deterministic model and apply ADMM-based spatially 
decentralized Benders algorithm with K = 1 to solve it. 

Remark 3. We set a heuristic lower bound of the green time that the green length of each phase j should be 
no less than 60% of gfx and apply early termination to make the solutions more practically. Notice that ourj 
algorithm still works without these settings. 

Out-of-sample Evaluation 

Metrics for Evaluation After obtaining a traffc signal control plan, we evaluate its performance by 
conducting CTM simulation according to Daganzo (1992). Let y ∗ be the obtained solution of thect 
number of vehicles leaving a cell c ∈ C at a time step t = 1, · · · , T. We defne a link as a set of cells that 
belong to the same road segment connecting two neighboring intersections. For each link starting from 
a cell c1 and ending at a cell c2, we defne the cumulative number of vehicles at time step t = 1, · · · , T 
of the infow and outfow as CNin(t) and CNout(t). The computation of these two metrics follows: 

t 
∗CNin(t) = ∑ y (2.22a)proc(c1)t 

t ′ =1 
t 

∗CNout(t) = ∑ yc2t (2.22b) 
t ′ =1 
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We defne the cumulative number of vehicles of outfow at time step t as CN∗(t) by assuming free-fow 
speed, and compute the value as 

CN∗ (t) = CNin(t − Nc), (2.23) 

where Nc is the number of cells contained in the link. The performance of a traffc signal control plan 
is evaluated for every link during the T time steps by the total travel time ∑t

T 
=1(CNin(t) − CNout(t)) 

and the total delay ∑t
T 
=1(CN∗(t) − CNout(t)). We also compute the average travel time and the av-

erage delay of each vehicle. In addition, the total number of vehicles traveling through the traffc 
network during the time horizon is computed by the summation of CNout(T) for all the links ending 
at destination cells. 

Out-of-sample Evaluation Procedures For both randomly generated grid networks and the real-
world traffc network, we generate 5 replications of instances with the same parameter settings, each 
having 100 independently identically distributed scenarios with the same distribution as the one used 
in in-sample computation. We conduct the out-of-sample tests based on CTM simulation for different 
traffc signal control plans on these replications. We present the averages of the in-sample and out-
of-sample objective values, the average travel delay, and the total throughput across the 500 scenarios. 
For the real-world traffc network, we also compare the performance with our baseline solution that 
sets the green time of each phase as gfx.j 

All the numerical experiments of randomly generated grid networks are conducted on Windows 
Server 2012 R2 Standard with 128 GB RAM and 2.20 GHz processor. All the numerical experiments 
of real-world traffc networks are conducted on a Windows computer with 32 GB RAM and 3.60 GHz 
processor. 

2.5.2 Results of Randomly Generated Grid Networks 

We present the computational time results in Section 2.5.2 and solution performance in Section 2.5.2. 

Computational Time Comparison 

We set the time limit for Gurobi to 7200 seconds. If we do not apply any decomposition schemes and 
directly solve the problem, Gurobi is not able to provide a feasible solution or even an upper bound 
of the objective value within the time limit, indicating the importance of applying decomposition 
algorithms to solve the model. For Benders decomposition algorithm without temporal decomposition, 
Gurobi is not able to solve the frst-stage problem within the time limit, and thus it cannot give a 
feasible solution. Based on these results, the temporal decomposition is necessary. 

We present the computational time results of the three algorithms with the temporal decomposi-
tion in Table 2.3, where we vary the network size extensively. In the table, Nrow and Ncol represent 
the number of intersections of each row and column in the grid networks and “Benders”, “Benders-
Spatial”, “Benders-ADMM” represent Benders decomposition algorithm, spatially decentralized Ben-
ders algorithm and ADMM-based spatially decentralized Benders algorithm, respectively. In the table, 
“MP-min”, “MP-max”, “MP-A”, “SP-min”, “SP-max”, “SP-A” stand for the minimum, maximum and 
average computational time in seconds of solving frst-stage master problems and second-stage sub-
problems during all the iterations, respectively. If an algorithm is not able to return a feasible solution 
due to the time limit, we mark the related results as “-” in the table. 

The results show that the computational time varies greatly among different iterations. With added 
cuts, the computational time of the frst-stage problem increases drastically. The computational time 
of second-stage problems varies depending on frst-stage solutions. The results also indicate that for 
every instance, Benders-Spatial and Benders-ADMM perform signifcantly better than Benders when 
solving frst-stage problems since the size of frst-stage problems is reduced by the spatial decomposi-
tion. For second-stage problems, Benders-ADMM outperforms Benders and Benders-Spatial since the 
parallel computing is able to be applied so that each intersection can solve the second-stage problem 
at the same time. Moreover, for all the algorithms, the computational time increases when the network 
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Table 2.3: Computational time of different algorithms for solving grid networks with various sizes 

Nrow Ncol MP-min (s) MP-max (s) 
Benders 

MP-A(s) SP-min (s) SP-max(s) SP-A(s) 
4 4 1.18 123.99 54.98 2005.10 6905.05 4632.75 
2 8 0.96 76.20 33.78 1687.63 4834.43 3252.43 
6 6 1.78 685.31 132.60 17810.42 43607.42 34603.78 
10 10 - - - - - -

Nrow Ncol MP-min (s) MP-max (s) 
Benders-Spatial 

MP-A(s) SP-min (s) SP-max(s) SP-A(s) 
4 4 2.17 16.79 8.00 3437.82 3826.72 3637.06 
2 8 1.78 13.31 6.92 2800.51 3579.05 3236.11 
6 6 4.65 35.64 17.10 20624.07 27505.60 23339.3 
10 10 - - - - - -

Nrow Ncol MP-min (s) MP-max (s) 
Benders-ADMM 
MP-A(s) SP-min (s) SP-max(s) SP-A(s) 

4 4 1.73 46.22 18.81 539.44 594.26 571.98 
2 8 1.68 33.96 14.71 295.12 519.81 426.21 
6 6 4.26 101.51 42.43 1060.78 1685.95 1404.67 
10 10 13.73 77.55 45.64 2780.25 3682.51 3231.38 

size is larger. For networks with the same number of intersections, the algorithms take less time to 
solve the model of an asymmetric network than a symmetric one. 

Evaluation Results 

Objective Values We use Benders-ADMM (Algorithm 2) to solve the deterministic (Deter) and 
stochastic (SP) models and present the objective values of both models in Table 2.4. Column “Mean” 
presents mean values of traffc demand and Column “SD/Mean” presents the ratios between standard 
deviations and demand mean values. Columns “In-sample Obj” and “Out-of-sample Obj” present the 
in-sample and out-of-sample objective values. Column “Gap” presents the gaps between in-sample 
and out-of-sample objectives. In all cases, gaps of the stochastic model are smaller than gaps of the 
deterministic model, indicating that the stochastic model describes the real traffc under uncertain-
ties better. When we increase demand mean values, all the objective values increase since there are 
more vehicles entering the network. When the deviations increase, objective gaps of the deterministic 
model increase while the stochastic model can still maintain relatively low gaps, showing its solution 
robustness against parameter uncertainty. 

Table 2.4: In-sample and out-of-sample objective values of randomly generated grid networks 

Mean (veh/h) 
SD/ 
Mean 

In-sample Obj (veh·s) 
Deter SP 

Out-of-sample Obj (veh·s) 
Deter SP 

Gap 
Deter SP 

200 (E-W), 50 (S-N) 2 −420597.37 −556225.39 −597997.23 −596944.23 29.65% 6.81% 
200 (E-W), 50 (S-N) 3 −420597.37 −649147.73 −715975.68 −727529.79 41.25% 10.76% 
200 (E-W), 50 (S-N) 4 −420597.37 −751408.39 −794377.55 −818953.97 47.05% 8.23% 
400 (E-W), 100 (S-N) 2 −687354.94 −865289.83 −981940.02 −994091.40 30.00% 12.96% 
400 (E-W), 100 (S-N) 3 −687354.94 −986676.06 −978864.21 −1092679.91 29.77% 9.69% 
400 (E-W), 100 (S-N) 4 −687354.94 −1044571.92 −1122114.76 −1179086.03 38.74% 9.87% 

Figure 2.3 shows the histograms of out-of-sample objective values and the gaps for the instance 
with 400 veh/h in East-West direction and SD/Mean ratio = 3. Here the rectangles flled with slashes 
are associated with the stochastic model and the ones with dots are associated with the deterministic 
model. In most cases, the objective value and the gap of the stochastic model are smaller than the 
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ones of the deterministic model. The deviation of the gap of the stochastic model is also less than the 
deterministic model, showing the solution robustness of the former. 

(a) Histogram of out-of-sample objective value (b) Histogram of objective gap 

Figure 2.3: Out-of-sample performance and gap results of the instance with demand mean as 400 
(E-W), 100 (S-N) and SD/Mean ratio as 3 

Evaluation Metrics We select travel delay and throughput as metrics to evaluate signal timing plans. 
In Table 2.5, we present their values in out-of-sample tests of signal timing plans obtained from the 
stochastic and deterministic models. Column “Gap” presents the gaps of the corresponding metrics 
between the deterministic and stochastic model. In most cases, the travel delay of the stochastic 
model is less than the one of deterministic counterpart and the throughput of the stochastic model is 
larger than the deterministic counterpart. Therefore, the signal timing plans obtained by the stochastic 
model outperform the ones of the deterministic model, demonstrating the importance and benefts of 
considering the uncertainties in traffc networks. When demand mean increases, more improvements 
are brought by the stochastic model in most cases. For the same mean value, the largest improvement 
of the stochastic model is often attained when the traffc network is not too idle or too congested (i.e., 
SD/Mean = 3). 

Table 2.5: Out-of-sample evaluation of solutions for randomly generated grid networks with varying 
demand mean values and SD/Mean ratios 

Mean (veh/h) 
SD/ 
Mean 

Average Travel Delay (s) 
Deter SP Gap 

Total 
Arrival (veh) 

Total Throughput (veh) 
Deter SP Gap 

200 (E-W), 50 (S-N) 2 29.36 30.00 −2.14% 2105.61 1869.71 1880.02 0.55% 
200 (E-W), 50 (S-N) 3 60.20 54.76 9.04% 2872.96 2280.55 2346.54 2.89% 
200 (E-W), 50 (S-N) 4 96.81 87.24 8.24% 3658.03 2536.44 2583.79 1.87% 
400 (E-W), 100 (S-N) 2 96.67 92.31 4.70% 4195.30 2966.80 3030.21 1.80% 
400 (E-W), 100 (S-N) 3 179.12 149.07 16.57% 5825.33 3191.74 3351.85 4.68% 
400 (E-W), 100 (S-N) 4 207.95 197.14 5.20% 7300.13 3364.67 3535.66 5.08% 

We show the distribution of out-of-sample results in Table 2.6, where we present the standard 
deviation (SD) and ratio between standard deviation and mean (SD/Mean) of travel delay (D) and 
throughput (T), indicated by “SD-D”, “SD-T”, “SD/Mean-D”, “SD/Mean-T”, respectively. The ratio 
between standard deviation and mean of travel delay is less than the ratio of the throughput, illustrat-
ing that travel delay is more sensitive during the out-of-sample tests. In most cases, when the mean 
value and deviation of the demand increase, there exist more samples where the traffc network is 
fully congested, leading to less deviation of traffc delay and throughput. Figure 2.4 shows the his-
tograms of out-of-sample tests on the instance with 400 vehicles per hour in East-West direction and 
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SD/Mean ratio being 3. In most cases, the stochastic model outperforms the deterministic model in 
out-of-sample tests. 

Table 2.6: Standard deviation of out-of-sample evaluation of solutions for randomly generated grid 
networks with varying demand mean values and SD/Mean ratios 

Mean of Demand (veh/h) 
SD/Mean of 
Demand 

SD-D (s) 
Deter SP 

SD-T (veh) 
Deter SP 

SD/Mean-D 
Deter SP 

SD/Mean-T 
Deter SP 

200 (E-W), 50 (S-N) 2 15.03 14.28 312.95 325.95 0.51 0.48 0.17 0.17 
200 (E-W), 50 (S-N) 3 29.75 27.52 334.76 366.29 0.49 0.50 0.15 0.16 
200 (E-W), 50 (S-N) 4 37.64 36.83 328.85 308.30 0.39 0.42 0.13 0.12 
400 (E-W), 100 (S-N) 2 35.09 34.17 336.78 362.72 0.36 0.37 0.11 0.12 
400 (E-W), 100 (S-N) 3 42.18 44.82 318.49 346.43 0.24 0.30 0.10 0.10 
400 (E-W), 100 (S-N) 4 48.63 48.11 277.71 325.89 0.23 0.24 0.08 0.09 

(a) Histogram of traffc delay (b) Histogram of throughput 

Figure 2.4: Out-of-sample delay and throughput results of the instance with demand mean as 400 
(E-W), 100 (S-N) and SD/Mean ratio as 3 

2.5.3 Results of Real-world Traffc Networks 

In Sections 2.5.3 and 2.5.3, we present the computational time and evaluation results of real-world 
traffc networks under peak hours and off-peak hours, respectively. 

Results of Peak Hours 

We present the computational time of the deterministic and stochastic models in seconds in Table 2.7. 
In the table, “MP-min”, “MP-max”, “MP-A”, “SP-min”, “SP-max”, “SP-A” are defned the same as 
before. The table shows that our ADMM-based spatially decentralized Benders algorithm is able to 
solve both models in acceptable time limit. 

Table 2.7: Computational time results of the traffc network of Ann Arbor downtown during peak 
hours 

MP-min (s) MP-max (s) MP-A (s) SP-min(s) SP-max (s) SP-A (s) 
Deterministic 0.24 0.79 0.48 41.35 41.66 41.54 
Stochastic 1.55 2.67 1.94 447.30 474.69 464.51 

We present the in-sample objective values, out-of-sample objective values, and gaps between the 
deterministic and stochastic models in Table 2.8. To evaluate the traffc timing plans, we also present 
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the average travel delay, total arrival and total throughput in the second half of the table. In Columns 
“Average Delay” and “Total Throughput”, the percentages in Row “Deterministic” show the improve-
ments of relative metrics compared to the baseline, and the percentages on the row “Stochastic” show 
the improvements of relative metrics compared to the deterministic model, respectively. 

Table 2.8: Out-of-sample evaluation results of Ann Arbor downtown during peak hours 

In-sample Obj (veh·s) Out-of-sample Obj (veh·s) Gap 
Deterministic −1498923.97 −1939263.92 22.70% 
Stochastic −1540021.95 −2023592.97 23.88% 

Average Delay (s) Total Arrival (veh) Total Throughput (veh) 
Baseline 352.76 7956.79 3295.30 
Deterministic 297.40 (15.69%) 7956.79 3789.91 (15.01%) 
Stochastic 276.33 (7.62%) 7956.79 4009.33 (5.47%) 

The results in Table 2.8 show that although the gaps between in-sample and out-of-sample objective 
values of deterministic and stochastic models are similar, the stochastic model outperforms the deter-
ministic counterpart in terms of the average delay and total throughput. This demonstrates that it is 
valuable to take into account uncertainties in real-world traffc networks. Comparing the performance 
of the baseline and deterministic models, the out-of-sample evaluation results of the deterministic 
model are signifcantly improved, illustrating the advantages of considering the coordination between 
different intersections. We visualize the average number of vehicles in the network across all the 
scenarios over time in Figure 2.5. The line represents the baseline, the line marked by plus signs 
represents the deterministic model and the line marked by stars represents the stochastic model. We 
fnd that the number of vehicles in the traffc network increases fastest in the baseline setting, while 
it increases slowest in the stochastic model, which also suggests the benefts of stochastic models in 
preventing congestion. We also provide the visualizations of the number of vehicles under the best 
and worst scenarios with respect to arrival and delay in Appendix 2.7. 

Figure 2.5: Number of vehicles in the traffc network during peak hours with the parameters as mean 
values 

Figure 2.6 provides the snapshots of the spatial distribution of the number of vehicles of deter-
ministic and stochastic models under scenarios with the minimum and maximum delay (i.e., the best 
scenario and worst scenario) at time step t = 800. In the fgure, we visualize the occupancy ratio, 
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which stands for the ratio between the number of vehicles and the maximum allowed number of ve-
hicles of the cell. The road segments are darker if the occupancy ratio is higher, meaning worse traffc 
congestion. Figures 2.6a and 2.6b show less congestion given by the stochastic model under the best 
scenario. Comparing Figures 2.6c and 2.6d, although both models have congestion, there are fewer 
number of congested roads given by the signal plan produced by the stochastic model. The fgures 
also show that for the deterministic model, the congestion in East-West direction is worse while for 
the stochastic model, the congestion in North-South direction is worse. 

(a) Deterministic model under best scenario (b) Stochastic model under best scenario 

(c) Deterministic model under worst scenario (d) Stochastic model under worst scenario 

Figure 2.6: Spatial distribution of vehicles at time step 800 during peak hours 

Results of Off-peak Hours 

The computational time of the deterministic and stochastic models under off-peak hours are presented 
in Table 2.9. Both models can be solved within acceptable computational time. Compared to the results 
under peak hours, it takes less time to solve the models with lower demand. 

We compare the performance of the baseline, the deterministic model, and the stochastic model 
in Table 2.10. We also show the solution improvement of the deterministic model compared to the 
baseline solution, and the solution improvement of the stochastic model compared to the deterministic 
one both by percentages. For all the signal timing plans, the average delay of off-peak hours is less 
than the one of peak hours. 
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Table 2.9: Computational time results of the traffc network of Ann Arbor downtown during off-peak 
hours 

MP-min (s) MP-max (s) MP-A (s) SP-min(s) SP-max (s) SP-A (s) 
Deterministic 0.13 0.40 0.23 40.70 42.36 41.28 
Stochastic 0.89 2.72 1.79 424.50 450.26 439.44 

Table 2.10: Out-of-sample evaluation results of Ann Arbor downtown during off-peak hours 

In-sample Obj (veh·s) Out-of-sample Obj (veh·s) Gap 
Deterministic −580971.48 −1121107.27 48.17% 
Stochastic −592697.54 −1140783.78 48.04% 

Average Delay (s) Total Arrival (veh) Total Throughput (veh) 
Baseline 117.99 2905.69 2040.82 
Deterministic 59.36 (49.69%) 2905.69 2419.07 (18.53%) 
Stochastic 51.19 (13.77%) 2905.69 2466.60 (1.96%) 

Comparing Table 2.10 with Table 2.8, the gaps between in-sample and out-of-sample objective val-
ues of the two models are larger than the gaps during peak hours since the deviation of the traffc 
demand is higher. The improvements of the deterministic and stochastic models are both more sig-
nifcant in terms of average delay while the improvement of throughput are similar compared to the 
results of peak hours. We visualize the average number of vehicles in the network across all the sce-
narios over time in Figure 2.7. The increase rates of the number of vehicles of all models are slower 
than the results of peak hours since the mean traffc demand of off-peak hours is smaller. In Figure 

Figure 2.7: Number of vehicles in the traffc network during off-peak hours with the parameters as 
mean values 

2.8, we visualize the number of vehicles in the network of the scenarios with the minimum delay and 
maximum delay of the deterministic model, stochastic model and baseline setting. Figure 2.8a shows 
that under the scenario with minimum delay, the number of vehicles in the traffc network keep stable 
for both deterministic and stochastic models, and there are fewer vehicles of the stochastic model. Fig-
ure 2.8b shows that under the scenario with maximum delay, the number of vehicles of all the settings 
increase and the increase rates of the stochastic model is slower than the other two settings. We also 
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provide the visualizations of the number of vehicles under the best and worst scenarios with respect 
to arrival in Appendix 2.7. 

(a) Scenario with minimum delay (b) Scenario with maximum delay 

Figure 2.8: Number of vehicles in the traffc network during off-peak hours 

Figure 2.9 provides the snapshots of the spatial distribution of the number of vehicles of the deter-
ministic and stochastic models under the best and worst scenario at time step t = 800. There are fewer 
congested intersections in the results of the stochastic model under both scenarios, compared to the 
peak hours. While the solutions returned by stochastic model can lead to almost fully empty roads, 
deterministic counterpart still leaves several roads congested. 

Based on all the above results, we show the benefts of taking into account the uncertainties as 
well as the coordination in real-world traffc networks. Our models work well for real-world instances 
during both peak hours and off-peak hours and our stochastic model is more appropriate for the 
instances with high standard deviations of travel demand. 

2.6 Conclusion 

In this paper, we built an MIP for the traffc signal control problem in urban traffc networks based 
on the CTM. We extended the deterministic model to a two-stage stochastic model considering the 
uncertainties of traffc demand and turning ratios. We proposed effcient algorithms for solving the 
models and overcoming the scalability diffculties. Our algorithm not only reduced the computational 
time but also ensured the optimality for the non-convex model with mixed-integer variables. 

With the numerical results obtained from randomly generate grid networks and real-world traf-
fc networks, we frstly showed the reduction of the computational time of our algorithm. Then we 
demonstrated the benefts of considering the uncertainties in traffc networks. Furthermore, we illus-
trated the advantages of our model to consider the coordination of all the intersections in a real-world 
traffc network. We noticed that the parameters in the model need fne-tuning in practice, and this can 
be achieved since the experiment is offine. 

There are several possible directions for future research. Improvements to the distributed algo-
rithms could be applied in the traffc signal control problem to accelerate the computational process. 
Since our algorithm also works for areas with multiple intersections, it is a valuable topic to group in-
tersections in one area based on the traffc fow data. In addition, with the development of connected 
and autonomous vehicles (CAV), the distribution of traffc demand and turning ratios can be esti-
mated from real-world data. The combination of data collected from CAV and our proposed approach 
provides a complete framework for traffc signal optimization in practice. 
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(a) Deterministic model under best scenario (b) Stochastic model under best scenario 

(c) Deterministic model under worst scenario (d) Stochastic model under worst scenario 

Figure 2.9: Spatial distribution of vehicles at time step 800 during off-peak hours 

2.7 Appendix 

2.7.1 Number of Vehicles in Real-world Traffc Networks 

Results of Peak Hours To evaluate the traffc signal plans, in fgure 2.10, we visualize the number 
of vehicles in the network of the scenarios with least and most arrivals. The fgure shows that in both 
scenarios, the stochastic model outperforms than the deterministic model and the baseline, and it is 
more signifcant when the arrival is lower. 

In Figure 2.11, we visualize the number of vehicles in the traffc network under the scenarios with 
minimum delay and maximum delay. For both the scenarios, the number of vehicles keep increasing. 
The increase rates of the stochastic model is lower under the scenario with minimum delay while 
the increase rate of the deterministic model is lower under the scenario with maximum delay. The 
increase rate of the stochastic model is higher than the deterministic model because the total arrival of 
the stochastic model is larger. 

Results of Off-peak Hours In fgure 2.12, we visualize the number of vehicles in the network of the 
scenarios with least and most arrivals. Figure 2.12a shows that when the arrival is low, the number 
of vehicles in the traffc work keep stable for both deterministic and stochastic models. Figure 2.12b 
shows that when the arrival is high, the increase rates of the number of vehicles of the stochastic model 
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(a) Scenario with lowest arrival (b) Scenario with highest arrival 

Figure 2.10: Number of vehicles in the traffc network during peak hours 

(a) Scenario with minimum delay (b) Scenario with maximum delay 

Figure 2.11: Number of vehicles in the traffc network during peak hours 

is slower than the other two settings. 

(a) Scenario with lowest arrival (b) Scenario with highest arrival 

Figure 2.12: Number of vehicles in the traffc network during off-peak hours 



Chapter 3 

Learning the Max Pressure Control for 
Urban Traffc Networks 

3.1 Introduction 

Traffc signal control and optimization methods have been an active research topic for the past decades 
and recent literature can be roughly divided into three different categories: 1) optimization or optimal 
control methods based on different traffc models and formulations, 2) artifcial intelligence algorithms 
such as the reinforcement learning (RL), and 3) max pressure control for a general signalized network. 
Although optimization-based methods have been extensively studied in the past, in recent years, RL-
based methods and max pressure control have received signifcant attention. 

Reinforcement learning (RL) algorithms have also been extensively used for traffc signal control 
optimization during the past decade (Arel et al., 2010; Khamis and Gomaa, 2014; Yau et al., 2017; Chu 
et al., 2019; Wei et al., 2019c). By training offine, RL can directly learn an end-to-end control policy 
from the observation by interacting with the simulation environment. Most of the existing literature 
using RL for traffc signal control focused on the design of the input state space and reward (Wei et al., 
2019c), while utilizing different RL techniques such as the multi-agent algorithms (Chu et al., 2019). 
However, the control policy obtained by RL is usually expressed by a neural network. Due to the issue 
of the generalization ability of the neural networks, it would not be preferable to directly apply RL 
policy learned offine in a simulation environment to the real world without additional adjustments. 

The max pressure control, which is also known as the back pressure or max weight control, is 
originally studied in the communication network domain with respect to routing and scheduling 
(Tassiulas and Ephremides, 1990; Neely, 2010; Srikant and Ying, 2013). It was frstly introduced to 
traffc network signal control by Varaiya (2013), and followed by various extensions and evaluations 
(Lioris et al., 2014; Xiao et al., 2014; Le et al., 2015; Zaidi et al., 2016; Sun and Yin, 2018; Manolis 
et al., 2018; Li and Jabari, 2019; Chen et al., 2020). The max pressure control for urban traffc networks 
has drawn tremendous attention in recent years since it can provide appealing theoretical guarantee 
of stabilizing the store-and-forward network as long as the demand is within the network capacity. 
Besides, it is a decentralized control policy in which each intersection makes its own decision based 
on the upstream and downstream queue lengths. 

However, the max pressure control introduced in most literature (Varaiya, 2013; Le et al., 2015; Xiao 
et al., 2014; Zaidi et al., 2016) is derived based on a store-and-forward network model, which contains 
some strong assumptions such as infnite link capacity, no link travel time, and no switching loss. In 
particular, it is well known that for most of the intersections, due to the phase switching loss, the phase 
switching frequency should decrease (i.e., cycle length should increase) with the increase of the traffc 
demand so that the network queue lengths can be stabilized under higher traffc volume without 
suffering much phase switching loss (Koonce and Rodegerdts, 2008; HCM, 2010). Nonetheless, the 
conventional max pressure control fails to adjust its phase switching frequency dynamically according 
to the varying traffc demand; and hence it is no longer throughput-optimal over a network model 
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with phase switching loss (Celik et al., 2016). 
In this work, we propose to utilize the policy-gradient reinforcement learning methods to learn a 

max pressure control policy that considers the phase switching loss. We frst propose an extended max 
pressure control policy named SCMP, short for Switching-Curve-based Max Pressure control. It can 
be proved that, under the network model with the phase switching loss, SCMP is throughput-optimal, 
meaning that it can stabilize the network queue lengths as long as the traffc demand is (strictly) within 
the network capacity. SCMP extends the original max pressure control by introducing a switching 
curve that could help the controller dynamically adjust the phase switching frequency according to the 
current traffc loads. To adapt to the real-world traffc which is much more complicated than the store-
and-forward point-queue model, we further modify SCMP by using a distributed approximation and 
the position-weighted pressure scheme. This modifed max pressure control, which will be referred as 
ESCMP (Extended-SCMP), is a more practical and general version of SCMP with the variant weight 
curves and the switching curves. While the switching curve determines the switching behavior of 
the controller, the weight curve enables the controller to consider the vehicles at different locations 
differently, so that it could implicitly improve the coordination among intersections. 

Furthermore, we utilize the policy-gradient RL algorithms to optimize the two parametric curves 
in ESCMP including the switching curve and the weight curve. ESCMP where the parametric curves 
are optimized by policy-gradient RL algorithms is named as LESCMP (Learned-ESCMP). Compared 
with other RL-based methods utilizing deep neural networks to represent the actor, LESCMP uses the 
max pressure control policy network, which is interpretable and derived based on a control policy 
that has certain theoretical guarantee over a simplifed network model. One seemingly similar method 
to LESCMP that combines the RL and max pressure control comes from Wei et al. (2019a), which 
integrated the “pressure” into the reward function. However, the difference is quite obvious: we 
directly utilize the max pressure controller as the actor instead of setting the pressure as the reward. 

This paper assumes that the real-time traffc density of each cell on every movement is available 
as the input of the controller. Therefore, real-time estimation of traffc density is required before the 
implementation of the proposed control method. As a distributed control policy in which each inter-
section makes its own decision solely based on its upstream and downstream observation, LESCMP 
would be also of great signifcance for the real-world implementation, especially in dealing with large-
scale traffc networks. 

To sum up, the contributions of this paper are twofold: 

• We extend the original max pressure control by adding the phase switching loss and propose a 
Switching-Curve based Max Pressure (SCMP) control with a stability proof. 

• We propose a novel framework utilizing the policy gradient RL algorithms to improve the max 
pressure control by using a max pressure control policy network. 

The rest of this paper is organized as follows. Section 3.2 describes the network model that adds 
the phase switching loss to the original store-and-forward model. Sections 3.3 introduces the proposed 
SCMP controller and proves that it is throughput-optimal under the network model with the phase 
switching loss. Section 3.4 introduces the practical implementation of the SCMP (Extended-SCMP) and 
then shows how to utilize the policy-gradient reinforcement learning method to optimize the ESCMP 
controller (Learned-ESCMP). Section 3.5 shows the simulation results while Section 3.6 concludes this 
paper. 

3.2 Network model with switching loss 

The original max pressure control (Varaiya, 2013) is established based on the store-and-forward model 
(Aboudolas et al., 2009), which is essentially a point-queue model and does not consider the phase 
switching loss. In this section, we modify the store-and-forward model to further capture the phase 
switching loss. Besides the description in the paper, the notations are also summarized in Appendix 
3.7. 
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Figure 3.1: Store-and-forward model, reproduced from Varaiya (2013) 

Figure 3.1 is an illustration of the store-and-forward network model reproduced from Varaiya 
(2013). Let G = (N , L) represent a general traffc network where N is the set of the nodes (intersec-
tions) and L represents all the links. A movement can be defned as a tuple composed of the origin 
link and the destination link M = L×L. Usually, a link contains three movements: through, left-turn, 
and right-turn. It is assumed that different movements of the same link are separate and do not block 
each other. We further divide the movements into two categories: ordinary movements Mo and exit 
movements Me. The exit movements will not be considered in the analysis since the vehicle of the exit 
movements can be freely discharged without additional downstream constraints. For each movement 
ij ∈ Mo, let xij(t) be the queue lengths at time t and cij be the saturation fow rate, which is treated as 
a constant. 

For the traffc demand and signal constraints, let aij(t) be the exogenous demand of movement 
ij ∈ M, which is assumed to be i.i.d. with the expectation Eaij(t) = aij and the maximum value amax 

(0 ≤ aij(t) ≤ amax, ∀t). Let rij(t) be the turning ratio from link i to link j, which is also i.i.d. with 
the expectation Erij(t) = rij. For the traffc signal timing plan, we defne sij(t) ∈ {0, 1} as the traffc 
signal state for the movement ij where 0 corresponds to the red light and 1 represents the green light. 
Generally, the signal constraints can be formulated as a linear constraint: 

s(t) ∈ {s | K · s ≤ h} = S , (3.1) 

where s is the column vector that represents the traffc signal state for each movement. K is a matrix 
and h is a column vector with proper dimensions. For example, if there is only an isolated intersection 
with two confict through movements, the signal constraint can be written as s1 + s2 ≤ 1, which can 
be expressed by Equation (3.1) with s = [s1, s2]

T , K = [1, 1], and h = 1. It is easy to verify that the set 
S is a polyhedron with integer-valued vertices. With this traffc signal constraint, a phase is defned 
as the set of the movements that are allowed to pass the intersection at the same time. 

The key intuition of the phase switching loss model is that, for each time when the intersection 
switches the green time between movements, all the movements in this intersection will have a fxed 
loss time during which the vehicle is not allowed to pass the intersection. To achieve this, we divide 
the temporal axis into two different intervals: the discharge interval and the switching interval; each 
time step of a given movement either belongs to the discharge interval or the switching interval. In the 
discharge interval, the vehicle in the movement ij is controlled by the traffc signal state sij and can go 
to the downstream movement if sij(t) = 1. The switching interval is defned as the period when the 
intersection is undergoing the phase switching loss, the vehicle cannot pass the intersection no matter 
what the traffc signal state is. In the real world, the switching interval is composed of part of the 
yellow time, all the all-red clearance time, and part of the green start. 

With the discharge interval and the switching interval, Figure 3.2 is the fowchart shows how 
we model the phase switching loss and how the movement changes between the switching interval 
and the discharge interval. For each time step in the discharge interval, the intersection can decide 
whether to switch the green time. Once it decides to switch the green time, the movement will enter 
the switching interval; after a fxed loss time Tr , it will recover to the discharge interval. χij(t) is 
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Figure 3.2: Flowchart of the phase switching loss modeling. 

the countdown timer that stores the remaining duration of the switching interval and Tr is the total 
number of time steps of the switching loss. 

Let λij(t) ∈ {0, 1} be the indicator of the intersection interval; λij(t) = 1 means that the movement 
ij is in the discharge interval while λij(t) = 0 corresponds to the switching interval. χij(t) is the 
countdown timer of the switching interval, which is 0 in the switching interval while greater than 0 in 
the discharge interval. To write this with mathematics, we have: 

1 χij(t) = 0
λij(t) = ∀t, ∀ij ∈ Mo. (3.2)

0 χij(t) > 0 

In the discharge interval, the countdown timer is updated as: 

Tr sn(t + 1) ̸= sn(t)
χij(t + 1) = ∀t, λij(t) = 1 ∀ij ∈ Min 

n , ∀n ∈ N (3.3)
0 sn(t + 1) = sn(t) 

where the superscript n is for the node n; Min 
n represents the set of the ordinary movements that enter 

the node n and sn is the associated signal state vector. Equation (3.3) means that, for every intersection 
node n, if the traffc signal state sn changes from t to t + 1, the countdown timer of all the movements 
that enter this intersection will be set as Tr; they will enter the switching interval. 

When the movement is in the switching interval, the countdown timer is simply updated as: 

χij(t + 1) = χij(t) − 1 ∀t, ∀ij ∈ Mo, λij(t) = 0. (3.4) 

To better understand the phase switching loss model given by Equation (3.2-3.4), Figure 3.3 is an 
example of the signal phase timeline showing how the indicator λ and countdown timer χ are updated. 
Assuming that we have an isolated intersection with only two conficted phases (movements) Phase 
1 and Phase 2; the traffc signal constraint would be s1(t) + s2(t) ≤ 1 for each time step t. The green 
and red blocks represent the signal states in the discharge interval while the grey blocks represent 
the switching interval. The blue dashed lines are the time when the intersection switches green time 
between the two phases. τk is the time step when the kth switching decision is made; after that, both 
phases enter the switching interval with duration Tr by resetting the countdown timer χ = Tr . As 
stated before, no matter what the signal state is during the switching interval, vehicles are not allowed 
to pass the intersection. Therefore, the vehicle can only pass the intersection during the green blocks 
as shown in the fgure. After Tr steps, the countdown timer goes back to 0; the phases recover to the 
discharge interval and vehicles can pass the intersection during the green time again. 
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Figure 3.3: Example of the signal phases with switching loss time. 

With this phase switching loss model, the signal state sij alone cannot determine whether the 
vehicle can pass the intersection, instead, it is determined by the production of the indicator λij and 
the signal state sij. That is, the vehicle can only pass the intersection when the signal state sij = 1 
and the movement is in the discharge interval λij = 1. Therefore, by replacing the signal state sij(t) 
with sij(t)λij(t) in the original store-and-forward model (Aboudolas et al., 2009; Varaiya, 2013), we 
will have the dynamics of the queue lengths considering the phase switching loss: 

xij(t + 1) = xij(t) + aij(t)+ ∑ rij(t) min {xki(t), ckiski(t)λki(t)}
k (3.5) 
− min{xij(t), cijsij(t)λij(t)} ∀(i, j) ∈ Mo 

which is equivalent to the matrix form: 

x(t + 1) = x (t) + a(t) − (I − R(t)) min{x (t) , Λ(t)Cs(t)}, (3.6) 

where x (t) is the queue lengths of all the ordinary movements. min{·, ·} is the entry-wise mini-
mization of the two vectors. C is a diagonal matrix with Cmm = cm, ∀m = (i, j) ∈ Mo. R(t) is 
the matrix containing all the turning ratio; I is the identical matrix; Λ(t) is a diagonal matrix with 
{Λ(t)}mm = λmm(t), ∀m = (i, j) ∈ Mo. Compared with the dynamics in Varaiya (2013), Equations 
(3.5-3.6) have an extra λ or Λ term so that the vehicle is not allowed to pass the intersection in the 
switching interval. 

To sum up, the modifed store-and-forward network model that additionally considers the phase 
switching loss are given by Equation (3.2-3.5). Equation (3.5) is the dynamics of the network queue 
lengths while Equation (3.2-3.4) shows how indicators that are related to the switching loss model are 
updated over time. 

When there is no switching loss, the whole system is a controlled Markov chain or Markov decision 
process (MDP) with the system state x (t) and the control policy s(t) for each time step. However, 
the system is more complicated with the switching loss; the signal state s(t) and the countdown 
timer χ(t) need to be augmented to the system state to maintain the Markovian property. Let S(t) = 
(x(t), s(t − 1), χ(t)) be the augmented system state with the dynamics given by Equation (3.2-3.5); it 
is easy to verify that augmented system state is a controlled Markov chain with system state S(t) and 
the control policy s(t). The change of the Markovian property will lead to different control policies 
as well as the stability analysis. Under the store-and-forward network without the switching loss, 
the control policy (e.g., the max pressure control in Varaiya (2013)) is usually only dependent on the 
network state x (t). Now with the phase switching loss, intuitively, not only should the control policy 
be determined by the traffc network state x (t), but also the current signal state s(t). 
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3.3 Switching-Curved based Max Pressure control and stability analysis 

It is easy to verify that, the original max pressure control (Varaiya, 2013) is no longer a throughput-
optimal policy based on the modifed store-and-forward model with extra consideration of the phase 
switching loss. In this section, we will introduce the Switching-Curve-based Max Pressure control 
(SCMP) and proves it as a throughput-optimal policy, which is defned as the control policy that 
can stabilize the network queue lengths as long as the traffc demand is strictly within the network 
capacity. 

All the analysis in this section is based on the traffc model introduced in Section 3.2; we will 
also assume that the traffc signal controller have the complete observation and measurement of the 
network state, i.e., the queue lengths for all the movements before it decides the traffc signal state. 

3.3.1 Switching-Curve-based Max Pressure control (SCMP) 

The original max pressure control proposed by Varaiya (2013) does not impose any constraints on the 
switching behavior or the switching frequency; and hence it is not a throughput-optimal policy based 
on the modifed store-and-forward network with the phase switching loss. To address this problem, 
one of the methods is to design a hysteresis switching control (Liberzon, 2003; Lioris et al., 2014), which 
will tend to keep the signal state unchanged instead of changing the signal state frequently without 
additional constraints. Specifcally, instead of setting the traffc signal state that maximizes the network 
pressure for each time step, the controller should tend to use the previous traffc signal state unless 
some additional conditions are satisfed. 

The proposed SCMP is inspired by the switching-curve-based (SCB) method introduced in Celik 
et al. (2016) but is further extended in the two following aspects: 1) from one intersection (single-hop) 
to a general network (multi-hop); 2) the weight/pressure will be a more general function of queue 
lengths. Based on the hysteresis switching intuition introduced before, SCMP includes two parts: 1) 
when to change the traffc signal state, and 2) how to decide the new signal state. For the second part, 
whenever the switching is activated, the new signal timing plan is chosen as: 

s ∗ = arg max pr (x (t) , s) = arg max w (x (t))T C(I − R)s (3.7a) 
s∈S s∈S 

where pr(x, s) represents the network pressure function under the queue lengths vector x and control 
policy s. Min 

n is the set of upstream movements that enter the node n while Mn is the set ofout 
downstream movements that start from the node n. w(·) is to apply function wij(·) to each entry of 
the column vector; wij(t), ∀ij ∈ Mo is a weight function that satisfes the following conditions: 

1. Function wij(x) is increasing and continuous for x ≥ 0, and wij(0) = 0; 

2. wij(x) → ∞ when x → ∞; 

3. For any x and ∆x, there exists bounded constants 0 < B0 ≤ B1 < ∞, such that: 

wij(x) + B0∆x ≤ wij(x + ∆x) ≤ wij(x) + B1∆x (3.8) 

For example, wij(x) can be any sublinear or piece-wise linear functions (with a bounded slope) 
that monotonically increase with the queue lengths. Noted that Equation (3.7a) is essentially a linear 
program (LP) that will reach the global optimum at an integer-valued vertex. This naturally leads to 
a binary signal states for each time slot, which suits the case in practice. Another discussion in terms 
of Equation (3.7) is that it is a distributed algorithm since both the network pressure function and the 
signal constraints (s ∈ S) are separable among intersections. Therefore, fnding the control policy of 
the network according to Equation (3.7) is equivalent to fnd the max pressure control policy for each 
intersection: 

n∗ s = arg max ∑ sijcij · (wij(xij) − ∑ rjkwjk(xjk) ∀n ∈ N (3.9) 
sn∗∈Sn 

ij∈Mn jk∈Mn 
in out 
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where each intersection n can determine its control policy sn∗ solely based on its upstream observation 

in} and downstream observation {xjk | ∀jk ∈ Mn Therefore, the max pressure {xij | ∀ij ∈ Mn 
out}. 

control policy given by Equation (3.7) or Equation (3.9) has two advantages: i) it is a distributed 
control policy among intersections; ii) it is an end-to-end control policy that directly generates the 
control policy given the upstream and downstream observation (Varaiya, 2013). The max pressure 
policy given by Equation (3.9) is similar to the max pressure control given by Varaiya (2013). The only 
difference is that we generalize the queue lengths in the pressure to a more general function. 

With the max pressure signal state given by Equation (3.7) or Equation (3.9). The following is the 
defnition of the pressure-based control: 

Defnition 1. A control policy is called pressure-based control if it always chooses the max pressure signal 
state according to Equation (3.7) or Equation (3.9) whenever it decides to change its signal state, otherwise it 
keeps the signal state unchanged. 

The pressure-based control essentially refers to the controller that always chooses the max pressure 
phases whenever the controller decides to change the signal phases. Usually, a complete pressure-
based control also needs another part about when to switch the signal states. For the original max 
pressure control in Varaiya (2013), which belongs to the pressure-based control obviously, uses the max 
pressure signal phases for every time step. Our proposed SCMP also belongs to this pressure-based 

∗control; however, instead of setting the signal state as s that maximizes the network pressure for 
every time step, SCMP will keep the signal state s(t) unchanged until a certain switching condition is 
satisfed. For the switching condition of SCMP, we refer to Celik et al. (2016) and defne the switching 
function as: 

ψ(t) = max pr (x (t) , s) − pr (x (t) , s(t − 1)) − F (∥x (t)∥) 
s∈S 

T (3.10) 
= max w (x (t)) C(I − R) (s − s(t − 1)) − F (∥x (t)∥) , 

s∈S 

where ∥·∥ is 1-norm of the column vector that equals the summation of all the queue lengths. F(·), 
which is defned as the switching curve in this paper, is a monotonically increasing sublinear function 
satisfying: 

F(x)
lim F(x) = ∞ lim = 0. (3.11)

x→∞ x→∞ x 

Based on this switching curve function, the switching is activated if and only if when ψ(t) ≥ 0, 
that is, 

s(t − 1) ψ(t) < 0 
s(t) = . (3.12)∗ s ψ(t) ≥ 0 

To sum up, Figure 3.4 shows the fowchart of the overall SCMP controller given by Equation (3.7-
3.12). For each time step, the controller frst observes the current system state x (t) and then fnds the 

∗timing plan s that maximizes the network pressure function. Instead of switching to the new timing 
plan s ∗ for every time step, it is only activated whenever the maximized pressure pr(x (t) , s ∗) exceeds 
the pressure of the original signal timing plan pr(x (t) , s(t − 1)) by a certain value F (∥x (t)∥), which 
is a sublinear function of the total queue lengths. With the switching rule given by Equation (3.10-
3.12), the switching frequency will decrease with the increase of the traffc demand, since a higher 
traffc demand usually leads to larger network queue lengths, making the switching condition harder 
to be satisfed. 

Remark 4. Notice that the switching rule given by Equation (3.10-3.12) is centralized that requires the global 
queue lengths of the network. This is for the convenience of the stability proof. Although the switching decision is 
made in a centralized fashion, this does not mean that we require all the intersections to switch at the same time. 
Whenever the switching is activated, each intersection decides their own traffc signal state according to Equation 
(3.9); some of the intersections might not change their signal state if the original signal state still maximizes the 
pressure. But at least one of the intersections will change the signal state otherwise the switching condition 
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Figure 3.4: Flowchart of the Switching-Curve based Max Pressure control (SCMP). 

will not be activated. In Section 3.4, we will use a distributed approximation to make this switching rule also 
distributed; the approximation is mainly designed for implementation and we will not provide the rigorous proof 
of the stability. 

In the following subsections, we will prove that SCMP is throughput-optimal as long as the weight 
function and the switching curve satisfy the corresponding conditions. 

3.3.2 Network queue lengths stability 

Before we go to the detailed proof, we will introduce some preliminary concepts of the network queue 
length stability. The strong stability of the network queue lengths is defned as (Neely, 2010): 

Defnition 2. The network queue lengths are strongly stable if: 

T1
lim sup E ∑∥x (t)∥ < ∞ (3.13)

T→∞ T t=1 

By defnition, the strong stability means that average total queue lengths are bounded in the infnite 
horizon, which indicates that all the demand will be served in the long run. 

In Section 3.2, we have defned the signal constraints given by Equation (3.1). The feasible polyhe-
dron of the signal state S determines the admissible demand region defned below: 

Defnition 3. The admissible demand region D is defned as: 

D = {(a, R) | a ⪯ (I − R)Cs, ∃s ∈ S} . (3.14) 

The admissible demand region defnes the feasible average exogenous demand and turning ratio 
pair (a, R) that can be served by the network. Based on this defnition of the admissible demand 
region, a control policy is called throughput-optimal if it can stabilize the network queue lengths as long 
as the demand belongs to the interior of the admissible demand region (a, R) ∈ intD. The following 
theorem shows that, with the phase switching loss, only if the demand is strictly within the admissible 
demand region, the network queue lengths can be stabilized. 

Theorem 8. Under the network model in Section 3.2 with the switching loss, the network queue lengths can be 
stabilized only if (a, R) ∈ intD. 

The proof of Theorem 8 can be seen in Appendix Wang et al. (2022). This theorem shows the 
necessary condition for the network stability: the demand and turning ratio pair has to be strictly 
within the admissible demand region. This means that no controller can stabilize the network queue 
lengths if (a, R) ∈/ intD. 
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3.3.3 Suffcient condition for the queue lengths stability with switching loss 

With the preliminary concepts introduced in the previous subsection, we will frst provide a suffcient 
condition for the network queue length stability under the network model in Section 3.2. This suffcient 
condition is modifed from Celik et al. (2016), which is extended in two aspects: 1) from a single-hop to 
a multi-hop network; 2) from the quadratic Lyapunov function to a more general Lyapunov function 
(Srikant and Ying, 2013). 

Let τk be the time step when the kth switching is activated and sk be the signal timing plan chosen 
after kth switching. In this section, we redefne the augmented system state as S̃(t) = (k, t, τk, sk, x(t)), 
which indicates that, by time t, the traffc signal has switched k times and the kth switching changed 
the traffc signal state to sk at time τk. According to this defnition, (t − τk) is the elapsed time of the 
latest traffc signal sk; the countdown timer χij(t) defned in Section 3.2 is determined by: 

n nmax (t − τk − Tr) , 0} ij ∈ Mn ̸= sin, sk−1 kχij(t) = ∀t, ∀n ∈ N (3.15)n n0 ij ∈ Mn = sin, sk−1 k 

It is easy to verify that, under this new augment system state S̃(t) and the dynamics given by Equations 
(3.2-3.5,3.15), the system is still a controlled Markov chain. 

Under the weight function w(·), the Lyapunov function of a given network queue length state x (t) 
is defned as: Z xij(t) 

L(x (t)) = ∑ wij(ζ)dζ, (3.16)
ζ=0ij∈Mo 

which becomes the quadratic Lyapunov function used in Varaiya (2013) when the weight function 
wij(ζ) = ζ. The following theorem provides a suffcient condition for the network queue length 
stability under the switching loss. 

Theorem 9. Given a pressure-based control policy defned in Defnition 1, for each k, τk is the kth switching 
time. There exists a τk 

′ 
+1, which is a random stopping time conditional on system state S̃(τk) and always between 

τk and τk+1 for all sample paths. If the following conditions are satisfed for each k: 

τk+1 ≥ τk 
′ 
+1, for all sample paths; (3.17a) 

E[(τk 
′ 
+1 − τk)|S̃(τk)]. ≥ c1(1 − δ′ (∥x(τk)∥))F(∥x(τk)∥); (3.17b) 

E[(τk 
′ 
+1 − τk)

2|S̃(τk)]. ≤ T2 + c2(F(∥x(τk)∥))2; (3.17c)r 

E[L(x(t + 1)) − L(x(t))|S̃(t)]. ≤ c3 − ϵ∥w(x(t))∥, ∀t ∈ {τk 
′ 
+1, τk 

′ 
+1 + 1, ..., τk+1}; (3.17d) 

the network queue lengths will be strongly stable when the demand belongs to the interior of the admissible 
demand region (a, R) ∈ intD. In these equations, F(·) is a sublinear function satisfying Equation (3.11); δ′ (·) 
is a non-negative function with limxarrow∞ δ

′ (x) = 0; ϵ, c1, c2, c3 are bounded positive constants. 

Theorem 9 provides a suffcient condition for the network queue lengths stability for the pressure-
based control in Defnition 1. Recap that the pressure-based control will always choose the max pres-
sure control whenever the switching is activated; Equation (3.17a-3.17d) in Theorem 9 are essentially 
some additional requirements for the switching condition. 

The temporal axis illustration given by Figure 3.5 could help to understand this theorem. τk 
′ 
+1 is 

an intermediate time between the kth switching and the (k + 1)th switching. The second and the third 
condition given by (3.17b-3.17c) restrict the expectation of the frst and second order of the temporal 
difference τk 

′ 
+1 − τk. For the frst condition given by (3.17a), if this condition holds as equality, then 

the last condition will be redundant. If it holds as inequality instead, which means that the (k + 1)th 
switching is activated after τk 

′ 
+1, then we need an extra condition given by Equation (3.17d), requiring 

an upper bound for the step-by-step Lyapunov drift from τk 
′ 
+1 to τk+1. 

With Jensen’s inequality, from Equation (3.17c) we have: 

√ 
E[τk 

′ 
+1 − τk|S̃(τk)]. ≤ Tr + c2F(∥x(τk)∥) (3.18) 
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and thus we have the double-sided bound for expectation of the temporal difference between the τk 
and the random stopping time τk 

′ 
+1 given by Equation (3.18) and Equation (3.17b). 

The proof of this theorem is based on a lemma that bounds the Lyapunov drift from the switching 
time τk and the random stopping time τk 

′ 
+1 for each k. Let ∆′ be the conditional Lyapunov drift from τk 

τk to the random stopping time τk 
′ 
+1: 

∆ ′ = E[L(x(τk 
′ 
+1)) − L(x(τk))|S̃(τk)], (3.19)τk 

then the lemma can be written as: 

Lemma 3. If the pressure-based control satisfes the conditions given in Theorem 9, then given the demand 
within the admissible demand region, there exists η > 0, c4 < ∞, such that: 

∆ ′ ≤ c4 − ηF (∥x (τk)∥) ∥w (x (τk))∥ (3.20)τk 

The proof of Lemma 3 is in Wang et al. (2022). Lemma 3 essentially provides an upper bound for 
the Lyapunov drift from the time τk to τk 

′ 
+1. With Lemma 3, here we give a sketch of the proof of 

Theorem 9. 

Proof of Theorem 9 As shown on the green axis in Figure 3.5, let τ ∗ be a new time series that skips 
the time slots when τ ∈ (τk, τk 

′ 
+1), ∀k, that is, �T �T

τ ∗ = [τ1 
∗ , τ2 

∗ , τ3 
∗ , ...] = τ0, τ1 

′ , τ1 
′ + 1, ..., τ1, τ2 

′ , τ2 
′ + 1, ..., τ2, ... . (3.21) 

We will frst show that the global queue lengths are strongly stable in this new time series τ ∗ and 
then complete the proof by extending the results to the whole time series. It is easy to verify that 
under the new time series, the augmented system state S̃(τi 

∗) is still a Markov chain. Combining the 
Lemma 3 and the last condition in Theorem 9, we have: 

E[L(x(τi 
∗ 
+1)) − L(x(τi 

∗ ))|S̃(τi 
∗ ).] ≤ c ′ − ϵ∥w(x(τi 

∗ ))∥, ∀i. (3.22) 

where c ′ , ϵ > 0. This equation comes from Lemma 3 when τi 
∗ 
+1 − τ∗ > 1 and from Equation (3.17d) i 

when τi 
∗ 
+1 − τ∗ = 1. Taking the expectation for both sides of this equation and summing up all the i 

equations for all i from 0 to T, we will have: 

T 
E (L (x (τT 

∗ ))) − E(L(x(0))) ≤ Tc ′ − ϵ ∑ E (∥w (x (τi 
∗ ))∥) 

i=1 (3.23)
1 T c ′ + E(L(x(0))) 

=⇒ ∑ E (∥w (x (τi 
∗ ))∥) < < ∞, ∀T.

T ϵi=1 
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Since the network queue lengths ∥x (t)∥ can be bounded by B · ∥w(x (t))∥ with a bounded positive 
constant B according to the properties of the weight function given by Equation (3.8); we have: 

T T T1 1 ⇒ lim·E (∥x (τi 
∗ )∥) < B E (∥w (x (τi 

∗ ))∥) < ∞, ∀T = E (∥x (τi 
∗ )∥) < ∞, (3.24)∑ ∑ ∑sup

T T TT→∞i=1 i=1 i=1 

which means that the network queue lengths under the new time series τ ∗ is strongly stable according 
to Defnition 2. To prove that the queue lengths are strongly stable of the whole time series, the 
remaining issue is to prove the queue lengths are also bounded for every time steps in the skipped 
period (τk, τk 

′ 
+1), ∀k. Here we choose to omit the detailed proof for this part, which turns out to 

be easy but tedious. The intuition is that the queue lengths within the skipped time steps can be 
easily bounded by Equation (3.18) and the bounded arrival assumption (0 ≤ aij(t) ≤ amax, ∀ij, t). This 
omitted part would be similar to the proof of Theorem 1 in Celik et al. (2016), although it focused on 
a single-hop network (isolated intersection). □ 

3.3.4 Stability of SCMP 

With the suffcient condition of the queue lengths stability given in the previous subsection, this 
subsection will show that SCMP given by Equation (3.7-3.12) is throughput-optimal which means 
that it could stabilize the network queue lengths as long as the traffc demand is strictly within the 
network capacity. Before we prove the stability of the proposed control policy, we will frst introduce 
a lemma which defnes a biased-based policy (Celik et al., 2016; Hsieh et al., 2017) that can stabilize the 
network queue lengths by satisfying the suffcient conditions in Theorem 9 with the frst condition as 
an equality. 

Lemma 4. Given a control policy that chooses the max pressure policy according to Equation (3.7) whenever the 
switching is activated, for each k (pressure-based control), if the switching is activated when the the following 
ψ′ (·) function 

ψ′ (t) = ∥x (t) − x (τk)∥ − θF (∥x (τk)∥) , θ > 0 (3.25) 

is greater than zero, the control policy satisfes the conditions in Theorem 9 with the frst condition as equality. 
Such pressure-based control based on a new switching function ψ′ (·) is called biased-based control. 

Biased-based policy also belongs to the pressure-based policy in Defnition 1. It is similar to SCMP 
but uses a different switching function ψ′ (·). For each switching k, the frst term in the ψ′ (·) function 
is the total variation between the current network queue lengths x(t) and the queue lengths at τk 
when the latest switching happens. Therefore, the biased-based control chooses to switch to the max 
poressure signal state whenever the total variation of the network queue lengths is larger than a certain 
value. We choose not to go through the details of the proof of this Lemma since it is similar to the 
proof in Celik et al. (2016). Basically, it can be easily derived by using some relaxations to bound the 
frst- and second-order moments of the temporal difference between the previous switching time τk 
and the frst time when the ψ′ (·) function given by Equation (3.25) is greater than 0. With Lemma 4, 
the following theorem shows that, when the demand is strictly within the admissible demand region, 
SCMP given by Equation (3.7-3.12) satisfes the condition in Theorem 9, and hence can stabilize the 
network queue lengths. 

Theorem 10. When the demand is strictly within the admissible demand region, SCMP given by Equation 
(3.7-3.12) satisfes the condition in Theorem 9 with the frst condition as inequality, and hence could stabilize 
the network queue lengths. 

The proof of Theorem 10 is provided in Appendix Wang et al. (2022). The basic idea of the proof is 
to frst show that before the switching is activated according to the switching rule given by Equation 
(3.10), there is always a corresponding biased-based policy given by Equation (3.25) that is activated 
in advance. This means that the second and the third condition of Theorem 9 are satisfed by Lemma 
4. After that, we can get an upper bound for the Lyapunov drift step-by-step by using the fact that 
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the condition given by Equation (3.10) is not satisfed yet. This upper bound for the step-by-step Lya-
punov drift guarantee the Equation (3.17d) in the suffcient condition is true. With all these together, 
Theorem 10 eventually shows that SCMP is throughput-optimal under the store-and-forward network 
model with the phase switching loss by satisfying all the conditions given by Equation (3.17a-3.17d) 
in Theorem 9. 

3.4 Optimizing the max pressure controller using policy-gradient reinforcement 
learning 

In Section 3.2 and 3.3, we add the phase switching loss to the network model and propose a SCMP 
controller that is proved to be throughput-optimal. Although the theoretical analysis in Section 3.2 and 
3.3 additionally considers the phase switching loss which is not included in the original max pressure 
control, the theoretic SCMP controller might still not suit the real-world traffc very well since the 
store-and-forward model has some other strong assumptions such as the point-queue assumption. 

To further adapt the theoretic SCMP controller to the real world implementation, in this section, 
we propose a practical version called Extended-SCMP (ESCMP) by using a distributed approximation 
and also combining some insights from another work from Li and Jabari (2019), which allows us to 
calculate the movement pressure according to the different location of the vehicle. ESCMP is a practical 
and heuristic controller based on our previous theoretical analysis; and hence we will not provide the 
rigorous stability proof as the previous sections. In fact, it would be much more complicated and 
intractable to provide a theoretical analysis based on a more realistic traffc model. With this, we also 
propose a novel framework utilizing the policy-gradient RL algorithms to optimize the parameters in 
the ESCMP controller including the weight curve and the switching curve. 

3.4.1 Practical implementation: ESCMP 

As an extension for more implementation consideration, ESCMP modifes and extends SCMP in two 
aspects: 1) from a centralized switching to an approximated distributed switching; 2) from the weight 
or pressure defned by the function of the queue lengths to a more general position weighted pressure. 

∗Distributed switching As aforementioned in Remark 4, although the selection of s given by Equa-
tion (3.7) is distributed among intersections, Equations (3.10-3.12) require the switching time to be 
determined in a centralized fashion. The main reason for choosing a centralized switching rule is to 
simplify the proof of the global stability. If each intersection decides its own switching time, it would 
be diffcult to analyze the Lyapunov drift of intersections with different switching times. To overcome 
the similar diffculties, in Hsieh et al. (2017), a superframe is pre-determined by collecting the queue 
lengths of all the intersections and then individual intersections are allowed to switch more frequently 
within the superframe. However, it would be better if the switching rule is decentralized which means 
that each intersection can decide to switch or not only using the local information, making it easier for 
the real-world implementation. Besides, although the centralized switching is proved to be a stable 
policy, it has the effect of forcing the intersections with lower traffc volumes to switch less frequently 
to be synchronized with those congested intersections. This might increase the delay of the low volume 
intersections. 

Therefore, ESCMP uses an approximated distributed switching to replace the centralized switching 
rule; each signalized node decides to switch whenever the function ψn(·) defned below is greater than 
zero: 

ψn(t) = max pr (x n(t), s n) − pr (x n(t), s n(t − 1)) − F (∥x n(t)∥) ∀n ∈ N , (3.26) 
sn∈Sn 

where the superscript n refers to the corresponding value of the node n. Specifcally, xn and sn repre-
sent the queue lengths and traffc signal states of all the movements that enter the node n accordingly. 
Compared with the switching curve given by Equation (3.10), the switching curve given by Equation 
(3.26) only requires the number of vehicle in local intersection instead of the number of vehicle in the 
entire network. 
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Figure 3.6: Position-weighted curve to calculate the pressure. Original MP: original max pressure 
proposed by Varaiya (2013), PWBP: position-weighted back pressure proposed by Li and Jabari (2019). 
As shown by the dashed lines, this paper regards the position-weighted curves as the parameters to 
be optimized. 

Position weighted pressure Similar to other max pressure controllers proposed before (Varaiya, 2013; 
Le et al., 2015; Zaidi et al., 2016), SCMP is derived based on a store-and-forward point-queue network 
model. One of the major limitations of the store-and-forward model is that it does not consider the 
vehicle distribution along the link, nor the spatial propagation. To address this problem, Li and Jabari 
(2019) proposed a position weighted back pressure (PWBP) control, which used a position weighted 
method (a linear weight) to calculate the pressure for each movement. We will use the similar idea 
to get the pressure for each movement. Figure 3.6 illustrates the position-weighted pressure as well 
as different weight curves. The moving vehicle and stopped vehicle might be considered separately, 
the red lines are weight curves for the stopped vehicle while the blue lines correspond to the moving 
vehicle. The key idea of the position weighted pressure proposed by Li and Jabari (2019) is that 
vehicles at different locations of the movement might contribute differently to the movement pressure. 
Let {lij,p, ∀p} be the set of the locations (represented by the traveled distance from the start of the 
movement) where there is a vehicle p along the movement ij; wij 

∗ (·) is the position-based weight 
function as shown by the different curves in Figure 3.6. For the position weighted pressure, the 
wij(xij) in Equation (3.9) is replaced by: 

∗ wij(xij) → w̃ij({lij,p, ∀p}) = ∑ wij(lij,p) (3.27) 
p 

To differentiate the wij(·) function in Section 3.3, we use w̃ij(·) to represent the weight calculated by 
the position-weighted method. The weight function wij(·) in Section 3.3 is a general function of the 
movement queue lengths xij while the weight function w̃ij(·) here is calculated by the weighted sum 
given the different specifc location of the vehicle along the movement {lij,p, ∀p}. 

Under this position weighted pressure scheme, Li and Jabari (2019) used a linear curve to calculate 
the movement pressure as shown in Figure 3.6, which means that the closer a vehicle to the intersec-
tion, the more it contributes to the movement pressure. As a comparison, the original max pressure 
control proposed by Varaiya (2013) directly used the queue lengths as the pressure for each movement. 
Under the store-and-forward model, the queue length is essentially the number of vehicles within the 
movement. Therefore, the vehicles of the same movement exert equal pressure to the whole movement 
as shown in the horizontal lines in Figure 3.6. Both the original MP and PWBP do not distinguish the 
moving vehicle and the stopped vehicle; and hence the blue line and the red line are overlapped. 
In this paper, as shown by the dashed line, we will treat the weight curve as the parameter to be 
optimized and split the vehicles to moving vehicles and stopped vehicles. Intuitively, an increasing 
function would be preferable for moving vehicles. On the contrary, a decreasing function might be 
better for the stopped vehicles since it can penalize the long queues. Although we do not provide the 
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theoretical analysis of the stability of this position weighted pressure scheme based on a frst-order 
traffc fow model like Li and Jabari (2019), we do use a general weight function of the queue lengths 
to get the pressure under the store-and-forward model, trying to mimic the similar effect. 
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Figure 3.7: The max pressure control policy network (ESCMP). 

With these two adaptations, Figure 3.7 is an illustration to the overall ESCMP controller. As a 
distributed controller, each intersection has a controller of the same structure as shown in the fgure 
but they would have different parameters due to the different geometry and demand patterns. The 
road segment is discretized into cells with equal length so that the observation is the number of 
vehicles within each cell. Therefore, ESCMP controller essentially takes the real-time density of each 
cell on every movement as the input, which would require a real-time traffc state estimation before 
applying the controller. 

With the observation as the number of vehicles in each cell, the weight curve is represented by a 
vector that has the same dimension as the observation. In other words, instead of using a continuous 
weight curve as shown in Figure 3.6 and Equation (3.27), we use the same weight for the vehicle in 
the same cell as a discrete simplifcation. The movement (corresponds to a controlled lane) pressure 
is obtained by performing an inner product over the observation and the weight curve. A phase is 
defned as the set of movements that are allowed to pass at the same time, corresponding to a feasible 
control policy vector sn ∈ Sn of the node n. Then the phase pressure is the summation of the pressure 
of the movements that are allowed to pass during this phase. Before getting the phase weight layer, the 
phase pressure should add another switching cost layer, which determines the switching frequency of 
the controller. At last, the phase with the maximum weight will be chosen as the action of the current 
time slot. 

3.4.2 Parameter optimization using policy-gradient methods: LESCMP 

With the policy network of ESCMP given by Figure 3.7, we are able to leverage the policy-gradient 
methods to optimize the parameters including the weight curve and the switching curve. Unlike most 
the literature that used the deep neural networks as the actor in the RL algorithms (Chu et al., 2019; 
Yau et al., 2017; Khamis and Gomaa, 2014; Arel et al., 2010), we use RL to optimize a policy network 
that has a pre-determined max pressure structure. In this paper, ESCMP controller that is further 
optimized by RL is named as Learned-ESCMP (LESCMP). 

RL algorithms and the LESCMP controller can further improve the theoretic SCMP controller in 
two aspects. Firstly, it can take the coordination among intersections into consideration by adjusting 
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the location-based weight curve when trying to maximize the system total reward. Secondly, the 
theoretical analysis with regard to the max pressure controller only concerns the stability of the system, 
which means that the total queue lengths are bounded or the traffc demand can be served in the long 
run. According to Little’s law (Little and Graves, 2008), the bounded total queue lengths guarantee 
a bounded total delay but not the optimal total delay. Therefore, RL algorithms can be utilized to 
further optimize the delay performance of the system, which turns out to be hard to deal with in the 
theoretical analysis. 

With the switching loss, the system is still a Markov chain by augmenting the traffc signal state 
and the countdown timer to the traffc state representation. Let St be the augmented system state at 
time slot t. The weight curves and switching curve in Figure 3.7 can be parameterized by θ ∈ Θ. Since 
RL requires a stochastic control policy to perform the exploration, the deterministic max pressure 
control policy can be easily converted to a stochastic version by changing the maximization operator 
to a softmax (logit model) when selecting the fnal action as shown in Figure 3.7. Let πθ(· | St) 
be the probability distribution of the action at ∼ πθ (· | St) that will be taken given state St. Let 
ξ = [S0, a0, S1, a1, ...] be a realization or a trajectory of the Markov process. To further improve the 
performance of the system, we can choose the parameter θ as: 

θ∗ = arg max Eξ∼πθ 
R(ξ) = arg max J(θ), (3.28)

θ∈Θ θ∈Θ 

where R(ξ) is defned as the reward of the trajectory ξ, which can be any evaluation function of the 
system state such as the delay or the number of vehicle. J(θ) is the expected reward by taking the 
expectation with regard to the trajectory ξ: J(θ) = Eξ∼πθ 

R(ξ). To optimize the parametric control 
policy θ ∈ Θ, which is the weight curve and the switching curve in this paper, we adopt the policy-
gradient methods (Sutton and Barto, 2018) that update the parameter by using its gradient: 

θk+1 = θk + α∇θ J(θ) θ=θk (3.29) 

where α is the learning rate while the gradient is given by: 

∇θ J(θ) = Eξ∼πθ 
[∑ ∇θ log πθ (at|St).R(ξ)], (3.30) 

t 

With the main idea of the policy gradient RL given by Equation (3.28-3.30), there have been dif-
ferent extensions based on it. For example, trust region policy optimization (TRPO) (Schulman et al., 
2015) updates the policy by taking the largest step satisfying a special constraint on the distance be-
tween the new and old policies quantifed by the KL divergence. To simplify the TRPO which solves 
a constrained optimization problem for each iteration, the proximal policy optimization (PPO) (Schul-
man et al., 2017) solves a proximal unconstrained optimization problem for each update. This paper 
will use the PPO to optimize the parameters in the max pressure policy network shown by Figure 3.7; 
more technical details will be discussed in Section 3.5. 

3.5 Simulation Experiments 

We use a simulation model built on SUMO (Krajzewicz et al., 2012) to compare the proposed max 
pressure control methods including ESCMP and LESCMP with the original max pressure control as 
the benchmark. Figure 3.8 shows the network used in the simulation, which is a corridor with six 
intersections on Plymouth Road, Ann Arbor, Michigan. The network topology is directly extracted 
from the OpenStreetMap data set (Haklay and Weber, 2008) while the traffc demand is calibrated 
from the historical data collected by videos during the evening peak hours. Figure 3.9 shows the traffc 
demand pattern used for the training of LESCMP. The duration of each episode is 60 min, which is 
divided into 5 different periods with variant demand levels or arrival rates. The vehicle arrival follows 
the Poisson process with a stationary arrival rate within each period. The relative demand level refers 
to the ratio of the realized demand to the calibrated peak-hour demand value. For the signal controller, 
each movement (controlled lane) will has an enforced 3-second yellow time when it is switched from 
green light to red light and a 2-second all-red clearance time. 



46 Chapter 3. Learning the Max Pressure Control for Urban Traffc Networks 

Figure 3.8: Network topology of Plymouth Rd., Ann Arbor, Michigan. 

Figure 3.9: Input demand profle of the simulation environment for the training of the LESCMP. 

There are totally three different controllers tested in the simulation study: PWBP, ESCMP, and 
LESCMP, where the position weighted back pressure control (PWBP) proposed by Li and Jabari (2019) 
is regarded as the benchmark. For the implementation of PWBP, we slightly change the position-based 
weight curve in the PWBP by using different curves for the running vehicles and the stopped vehicles 
as shown in Section 3.4.1. The weight curve for the running vehicles is chosen as the same as the PWBP 
while a uniform fat curve is used for the stopped vehicles. To avoid the unrealistic over-switching that 
will cause too much phase switching loss, we also set a 12-second minimum green for each phase for 
the implementation of PWBP. The proposed ESCMP tested in this section has the same weight curves 
with the PWBP but with an extra switching curve F(x) = x0.4, where the parameter 0.4 is selected by 
a heuristic line search program. 

Based on ESCMP, LESCMP is further optimized using the policy-gradient reinforcement learning 
algorithm (PPO). Essentially, ESCMP and LESCMP have the same controller structure given by Figure 
3.7 while the parameters of LESCMP are well-tuned using RL algorithms with those of ESCMP as the 
initial point. For the implementation of the PPO that is used to train LESCMP, we use an open-source 
reinforcement learning library (i.e., Ray rllib, Liang et al., 2017) and Pytorch (Paszke et al., 2019) for 
automatic differentiation. The input state includes the traffc state as well as the current signal state. 
The real-time traffc state is represented by the number of the stopped and running vehicles within 
each cell of each lane while each lane is divided into cells for every 50 meters. The reward of the 
environment is chosen as the negative value of the total stop delay while a vehicle is regarded as 
stopped when its speed is less than a given threshold (2m/s). The policy network of the PPO is 
described in Section 3.4.1 while the switching curve is chosen as 

F(x) = α · xβ , (3.31) 
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Figure 3.10: Training curve of the RL using the max pressure policy network. 

where α and β are the parameters. Besides the policy network, the PPO also learns a value network at 
the same time, which is used as the critic to guide the update of the policy network. The value network 
is simply chosen as a two-layer fully-connected neural network with 256 neurons for each layer. The 
demand profle of the simulation is given by Figure 3.9 as aforementioned. Figure 3.10 shows the 
training curve of the PPO with the proposed max pressure policy network. The horizontal axis is the 
total time steps of the simulation environment while the vertical axis is the average scaled reward for 
each episode. As shown in the fgure, the average reward increases along the training process, which 
means that the PPO keeps improving the LESCMP by adjusting the related parameters starting from 
the ESCMP. 

We use the stop delay and the throughput to evaluate the traffc signal controllers. Since the 
temporal resolution of the simulation is 1 second, the stop delay for each time step is the total number 
of the stopped vehicles at the moment, which is also the total queue length of the network. By 
summing up the stop delay for each second, we can get the network total delay. The throughput refers 
to the vehicle that exit the network while the total throughput is the total number of vehicles that exit 
the network during the whole simulation horizon. 

0.4 0.6 1.0 0.6 0.2

Relative demand

Figure 3.11: System stop delay under the different traffc signal controllers. 

Under the demand profle given by Figure 3.9, Figure 3.11 and Table 3.1 show the comparison of 
the proposed max pressure methods with the benchmark controller. The evaluation for each controller 
is repeated for 10 times. For each evaluation, the input demand for all the controllers is generated 
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using the same random seed which means that the input demand is exactly the same for all the 
controllers. Figure 3.11 shows the mean and standard derivation of the system total delay of the 
three controllers while the Table 3.1 lists the average total delay and throughput associated with the 
standard deviation. As shown in Figure 3.11, under the low traffc demand, LESCMP and PWBP 
perform better than the ESCMP. In this situation, the switching loss will not infuence the stability 
of the network queue lengths too much; and hence PWBP can perform well. However, when the 
traffc demand is high, PWBP cannot reduce the switching frequency accordingly; as a result, the 
network stability will be undermined, and queues will be built up quickly. Compared with the PWBP, 
ESCMP and LESCMP can dynamically adjust the phase switching frequency, so that they both have 
better performance than PWBP under higher traffc demand. Table 3.1 lists the mean and standard 
derivation of the system total delay and throughput of the three controllers. ESCMP performs slightly 
better than PWBP with regard to the total delay since it has better performance under the high traffc 
demand. As the well-tuned version of ESCMP, LESCMP further reduces the total delay by more than 
35%. The total throughput of the three controllers is similar. 

Table 3.1: Comparison of the system total delay of different controllers. Input demand is given by 
Figure 3.9. 

Control policy Total delay (h) Delay std (h) Total throughput (veh) Throughput std (veh) 
PWBP 129.15 8.8 3664.5 25.02 

ESCMP 115.79 17.44 3659.9 10.74 
LESCMP 72.15 2.63 3714.7 9.2 

The evaluation results given by Figure 3.11 and Table 3.1 use the same input demand distribution 
with the training process of LESCMP, which might lead to an overestimation of the performance of 
LESCMP. Therefore, we design another “out-of-sample” experiment to test the three controllers under 
the different levels of stationary arrival rates. The evaluation is still repeated for 10 times for each 
controller under each demand. Figure 3.12 shows the average total delay and total throughput of 
the three controllers under different levels of traffc demand. Similar to the previous results, PWBP 
has the best low-demand performance but the worst high demand performance. The total delay of 
PWBP increases signifcantly when the traffc demand increases and the the total throughput starts to 
drop when the relative demand is higher than 0.8 due to the congestion. ESCMP has the worst low-
demand performance but a much better high-demand performance than PWBP since the introduction 
of the switching curve can automatically reduce the switching frequency when the traffc volumes 
increase. Utilizing the same controller structure but with the further optimized parameters with regard 
to system delay, LESCMP performs well in all levels of traffc demand. 

(a) Average total delay (b) Average total throughput 

Figure 3.12: Average total delay and throughput of the three controllers under different levels of 
(stationary) traffc demand. 



49 Chapter 3. Learning the Max Pressure Control for Urban Traffc Networks 

3.6 Discussions and conclusions 

This paper presents a noval framework that utilizes the policy-gradient reinforcement learning meth-
ods to learn a modifed max pressure control policy considering the switching loss. The proposed max 
pressure control (SCMP) uses a switching rule that dynamically adjusts the switching frequency ac-
cording to the congestion level. It is proved that SCMP is a throughput-optimal policy under the store-
and-forward model with the phase switching loss. We also extend the theoretically derived SCMP to 
a more practical and fexible ESCMP with the weight curve and the switching curve. These two 
parametric curves are further optimized in LESCMP using the policy-gradient reinforcement learn-
ing algorithms. While the switching curve is used to address the switching loss caused by phase 
switching, the position weighted pressure can implicitly take the coordination between intersections 
into account. The simulation study established on a calibrated network showed that both ESCMP and 
LESCMP outperform the original max pressure control under the high traffc demand signifcantly 
and LESCMP performs well under all levels of traffc demand. 

The proposed max pressure control methods shows many advantages in the real-world implemen-
tation. The control policy is decentralized so that each intersection makes its own decision based on 
the upstream and downstream traffc state without requiring communication between intersections. 
The switching rule enables the control policy to dynamically adjust the switching frequency (equiva-
lent to cycle lengths) according to the congestion level so that we do not have to split the whole day 
into different time of days (TOD) and perform different signal timing plans or adjust the parameters. 
Besides, the max pressure control is an end-to-end control policy, which directly generates the control 
policy from the observation; hence it can be effciently implemented in the real world. 

This paper assumes that the real-time traffc density of each cell on every link is available. There-
fore, real-time estimation of traffc density is required before implementing the proposed control 
method. There have been different methods proposed to estimate the real-time traffc state using 
different data resources (Nantes et al., 2016; Shahrbabaki et al., 2018). 

From the reinforcement learning perspective, this paper mainly shows that our proposed max 
pressure control policy network can be used as the policy network in the policy-gradient reinforcement 
learning. The focus of this paper is the proposed policy network instead of the RL algorithms itself; and 
hence we use a baseline RL algorithm (PPO) and a centralized training method. There are certainly 
other more advanced RL algorithms and machine learning techniques that can be utilized such as 
multi-agent RL and transfer learning. Multi-agent RL can be naturally applied since the max pressure 
policy network is distributed among intersections. Besides, in this paper, we train different controllers 
for different intersections independently; essentially, it might be benefcial to design certain shared 
layer among different intersections since all the signal controllers have the same structure. We leave 
these more advanced RL algorithms based on the max pressure policy network for future study. 

3.7 Appendix: table of notations 
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Notation Meaning 
Network model 
G = (N , L) Traffc network G with the set of nodes N and the set of links L 

i, j, k ∈ L i, j, k are frequently-used indices for links 
M = L×L A movement is defned as a pair of links 
Mo, Me The set of the ordinary/exit movements 
Mn The set of upstream/downstream movements of node nout 

xij, x Queue lengths of movement ij and the associated column vector 
sij ∈ {0, 1}, s Signal state of movement ij and the associated column vector 

S Feasible space of the signal state s 
λij ∈ {0, 1} Indicator whether the movement ij is in the discharge interval 

Λ Diagonal matrix including all the λij 
Tr Switching loss time 

aij, a Exogenous arrival of movement ij and associated column vector 
cij Saturation fow rate of movement ij 
C Diagonal matrix including all the cij 
rij Turning ratio from link i to link j 
R Turning ratio matrix composed of rij 

S(t) Augmented system state at time t 

in, Mn 

SCMP controller and stability analysis 
ψ(·) : R → R Switching function of SCMP determines the switching behavior 
ψ′ (·) : R → R Switching function of the biased-based policy in Lemma 4 
F(·) : R → R A general monotonically increasing sublinear function 

w(·) The weight function of the queue lengths, wij(·) : R → R, ∀ij ∈ M 
pr(·, ·) Pressure function given network and traffc signal state 
∥·∥ 1-norm of the column vector (summation of the absolute values) 
D Admissible demand region of the (a, R) pair 

L(·) Lyapunov function 
∆ Lyapunov drift 

S̃(t) Augmented system state at time t 
τk Time when the kth switching (change of the vector s) is activated 

Heuristic controller and RL 
w̃ (·) The weight function given the vehicle locations along the movement, w̃ij(·) : Rn → R, ∀ij ∈ M 
w ∗(·) Position weighted curve, wij 

∗ (·) : R → R, ∀ij ∈ M 

lij,p Distance to the start of the movement ij of the pth vehicle in the movement 
at Action at the time t 
St System state at time t (the same as the augmented system state) 

θ ∈ Θ Parameters in the max pressure controller (the switching curve and the weight curve) 
ξ A realization or a trajectory of the system states and actions: ξ = [S0, a0, S1, a1, ...] 

R(ξ) Reward of a given trajectory ξ 

Table 3.2: Notations and the corresponding meanings. 



Chapter 4 

An Implementable Traffc Signal Con-
trol Design using Reinforcement Learn-
ing Method 

4.1 Introduction 

Traffc signal control plays an important role in reducing travel time, mitigating traffc congestion, 
and decreasing greenhouse gas emissions. In the last few decades, the application of reinforcement 
learning (RL) in traffc signal control has attracted increasing attention due to its powerful learning 
ability and simple setting. Compared to the traditional optimization methods, it does not require a 
model of the system, and learns the policy directly by interacting with the environment. 

Together with the convenience brought by using the RL methods, some research questions are 
also raised. Firstly, the design of state/reward/action structure plays a vital role in RL. (El-Tantawy 
and Abdulhai, 2010; Gao et al., 2017; Vidali et al., 2019; Zheng et al., 2019b) discuss the infuences of 
state/reward design on single intersections, while for multiple intersections considered as individual 
agents, the situation becomes more complicated due to the non-stationary characteristic of the envi-
ronment (Abdoos et al., 2011). Each agent is affected by other agents’ policies, and it challenges not 
only the convergence but also the optimality of the algorithm. (Wei et al., 2019a; Lin et al., 2018) 
attempt to answer this question by investigating the trade-off between local reward of a single inter-
section and global reward of the traffc system. The second question is the coordination and scalability 
of the algorithms, especially for large networks, when centralized solutions are not feasible any more. 
As to the coordination, (Kuyer et al., 2008; El-Tantawy et al., 2013; Wei et al., 2019a; Balaji et al., 2010) 
develop different methodologies for the target intersection to communicate with other intersections. 
The graph attentional network ((Wei et al., 2019b)) and game theory such as the mean-feld game 
((Wang et al., 2020)) are utilized to deal with the scalability for large networks. Other directions such 
as vehicle connectivity ((Wiering, 2000; Xu et al., 2020; Huo et al., 2020)), disturbances ((Rasheed et al., 
2020)), the geometry of the intersection ((Joo et al., 2020)), etc., are also explored in the literature. 

While many aspects have been covered, there are still several problems need to be further discussed 
in the traffc signal control with RL. The frst one is the lack of benchmarks. The results are typically 
compared with basic signal controllers such as fxed-time and Longest-queue-frst (LQF) controllers 
(Thorpe, 1997; Abdulhai et al., 2003; El-Tantawy and Abdulhai, 2010; Abdoos et al., 2011; Gao et al., 
2017), or controllers derived from other learning methods (Genders and Razavi, 2016; Wang et al., 2020; 
Li et al., 2016), or both (Joo et al., 2020; Rasheed et al., 2020; Xu et al., 2020). Some advanced controllers 
such as actuated controllers are used, but only in single intersections (Wang et al., 2019; Cabrejas-Egea 
et al., 2020; Mannion et al., 2015), or with simplifed setting (Lin et al., 2018) (only the offset of the 
actuated controller is optimized and the action space is limited). A mixed control system including 
fxed-time controllers, semi-actuated controllers, and actuated controllers used by (El-Tantawy et al., 
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2013) in a large network is one of the most realistic baselines, but it is not clear whether a direct 
comparison between the proposed RL controllers and the actuated controllers can still give the same 
level of improvement. (Balaji et al., 2010) uses GLIDE ((Keong, 1993), a modifed version of SCATS) and 
two other multi-agent controllers as benchmarks, however, the algorithm requires online information 
sharing among agents, making it diffcult to implement. Even though the learning performances show 
signifcant improvements, the conclusions are not convincing with those baseline controllers. The 
second problem is the implementation of the control algorithms. The assumption of global knowledge 
(such as the information from other agents (Balaji et al., 2010; Wang et al., 2020)), the limited choices of 
actions (Balaji et al., 2010; Wang et al., 2020; Gao et al., 2017; Li et al., 2016; Mannion et al., 2015), and 
the missing of yellow time (Abdoos et al., 2011) make the learning algorithms diffcult to implement. 
Last but not the least, the accessibility of the data is rarely discussed. The data (e.g., waiting time or 
delay, travel time, velocity, and information from other intersections, etc.) used in training may not be 
easy to obtain in real life with the fxed location sensors. Detailed lists of data usage in different RL 
methods can be found in (Wei et al., 2019c). 

In order to address these problems, this paper investigates an implementable deep multi-agent RL 
algorithm in a corridor level. The state of the RL agents can be obtained from the traffc cameras and 
loop detectors, and the action is designed with high fexibility based on the National Electrical Man-
ufacturers Association (NEMA) dual-ring controllers, so that the algorithm is able to be implemented 
directly without changing the hardware of the current controllers. Note that although (Arel et al., 
2010; Zang et al., 2020; Ma et al., 2021) consider the scheme on a single intersection environment, the 
NEMA convention is rarely followed in the design of the action space, especially in the multi-agent 
scheme. A safety constraint is constructed to guide the learning process and also to ensure vehicles 
from the non-arterial roads do not wait too long. The training episodes are generated from the ground 
truth collected from the peak traffc demand. The algorithm is tested in the Plymouth corridor from 
the City of Ann Arbor. The NEMA dual-ring actuated controllers which are implemented in the Ply-
mouth corridor are built in SUMO (Simulation of Urban MObility) (Lopez et al., 2018) environment as 
the baseline, with the parameters optimized for the peak traffc demand. The simulation is conducted 
in SUMO, and the interaction between the observations and the traffc lights control is performed by 
TraCI (Traffc Control Interface). 

The rest of the paper is organized as follows. A literature review is given in Sec. 2. Sec. 3 explains 
the methodology to be used and its settings. Sec. 4 introduces the Plymouth corridor from the City 
of Ann Arbor as the test environment, and establishes the actuated traffc signal controllers used in 
the corridor as the baseline. The training results and testing results are given and compared with the 
actuated controller in Sec. 5, followed by a conclusion in Sec. 6. 

4.2 Literature Review 

Based on the size of the transportation network, the study of RL in traffc signal control can be cat-
egorized into single-intersection and multi-intersection problems. Early research mainly applies the 
algorithms on single intersections (Thorpe, 1997; Abdulhai et al., 2003). With the development of the 
learning methods and computational power, more effort has been put on RL in multi-intersection set-
ting (Wiering, 2000; Kuyer et al., 2008; El-Tantawy et al., 2013; Lin et al., 2018; Wei et al., 2019a; Chu 
et al., 2019; Wei et al., 2019b; Rasheed et al., 2020; Xu et al., 2020; Balaji et al., 2010). The challenges 
of multi-intersection problem lie on the coordination and scalability. When the size of the network 
increases, it seems to be more natural to used the distributed (or multi-agent) methods, since the large 
state space in the centralized fashion makes it computationally expensive. Much effort has been made 
to capture the cooperative-competitive relationship among agents, and balance the local-global opti-
mum. (Kuyer et al., 2008) proposes a max-plus algorithm, it assumes the agents can broadcast the 
locally optimal information to the neighbours and optimize the joint reward with the neighbours. The 
contributions of the target agent and its neighbours are not distinguished, but the idea of achieving 
a global (sub-)optimal solution with local optimization is of great value. Similarly, (Balaji et al., 2010) 
coordinates by sharing traffc information (such as vehicle occupancy and count) of the outgoing links 
and the Q value with neighbouring agents in a network of 29 intersections. (Wei et al., 2019a) designs 
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the state and reward based on the theory of max pressure (Varaiya, 2013), which aims to maximize 
the throughput by minimizing the "pressure" (for example, the difference of vehicle numbers between 
incoming lanes and outgoing lanes). Some other studies use a weighted sum as the reward function: 
(Lin et al., 2018) forms the problem in a centralized fashion, and used a weighted sum of global re-
ward and local reward as the reward function. (Chu et al., 2019) uses the advantage actor-critic (A2C) 
method, with the coordination obtained by using a weighted sum of queue lengths of the target inter-
section and the neighbouring intersections as the reward. (Huang et al., 2019) considers the outfow 
of the target intersection in the state representation to address the coordination issue. In terms of 
the scalability problem in large-scale network, (Wei et al., 2019b) uses the graph attentional network, 
distinguishes the contribution of different neighbouring agents, and creates an index-free model for 
agents to share their observations.(El-Tantawy et al., 2013) develops a controller with the tabular Q-
learning method, the coordination is achieved by choosing the optimal action with the estimation the 
neighbours’ behaviours (the probability of taking an action) at a joint state. The tabular methods suffer 
from the curse of dimensionality, that is, the size of the tables increases exponentially with the increase 
of number of agents. To address this problem, each agent plays a game with the neighbouring agents 
and avoids the direct interaction with them. A shared state representation and a mean-feld game 
based reward structure are used in (Wang et al., 2020) to interact with other agents. 

Recent development of technology on Dedicated Short-Range Communications (DSRC) and Cel-
lular V2X (C-V2X) makes the vehicle connectivity particularly interesting in traffc signal control. In 
fact, as early as 2000, the idea of using connectivity in RL to improve the traffc signal control was 
proposed by (Wiering, 2000). It defnes the value function on the vehicles, which enables a co-learning 
algorithm where the vehicles can also learn the path planning in the meanwhile. Different levels of 
communication are investigated, and the highest level requires the global knowledge of the system to 
compute the waiting times for all cars. Although 100% penetration rate of connected vehicles is still 
far from implementation, the vehicle trajectory data collected offine can still be advantageous. (Xu 
et al., 2020) utilizes the vehicle trajectory data to identify the critical nodes of a large-scale network, 
and develop a deep RL controller for each node independently while other nodes are controlled by 
fxed time controllers. Under the V2X communication assumption, (Huo et al., 2020) makes use of the 
trajectory data to pre-train the agents with imitation learning, and then fne-tunes the model with RL. 

Traffc signal control on single intersections is of great importance to test the learning structures 
and understand the infuence of a particular factor. Much work from recent years focuses on the 
state/reward design. (El-Tantawy and Abdulhai, 2010) discusses different state representations in the 
learning performance. (Gao et al., 2017) trains the convolutional neural network (CNN) with raw data 
(vehicle position and speed) instead of human-crafted data (such as queue length) being the state, 
and it extends the work of (Genders and Razavi, 2016) by considering a target network to improve 
the stability of the algorithm. (Vidali et al., 2019) investigates that the reward function can have a big 
impact on the training procedure. (Zheng et al., 2019b) discusses the state and reward design and 
interprets it with the transportation theory. With the state represented by the number of vehicles in 
the incoming lanes and the current traffc signal phase, and reward by queue length, the proposed 
design outperforms other state-action combinations under a binary action choice (to change the signal 
or not). By utilizing the similarity of different vehicle movements (left, through and right), (Zheng 
et al., 2019a) is able to capture the competitive relationship among different phases, and reduces the 
phase space, thus achieve fast convergence. (Joo et al., 2020) designs a state-action structure which 
can be extended to different geometries of intersections. Another related topic is the data used in 
state/reward representations. (Wang et al., 2019) represents the state by the green signal phase and 
the data purely extracted from the loop detectors. The training results show that the event-based 
data achieve a better performance than the aggregated data. (Cabrejas-Egea et al., 2020) discusses 
the different reward functions under accessible sensor data input. The average speed, queue length 
and stopped time based reward structures perform the best in various demands, and out of those the 
average speed based one has a smaller variation in waiting times. (Du et al., 2019) uses a trust region 
obtain the state, and defnes a standardized reward function considering baseline queue lengths and 
average speed (corresponding to vehicle arrival rate). 

Of course, the research on single intersections goes beyond the state/reward design. Both tech-
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nology and methodology sides are investigated, such as the vehicle connectivity (Zhang et al., 2020), 
safety (Gong et al., 2020), emissions (Jie et al., 2021), and the use of deep neural network (NN) (Genders 
and Razavi, 2016; Li et al., 2016), etc. (Zhang et al., 2020) studies the infuence of different penetration 
rate (or detection rate) of connected vehicles on the system performance. The simulation results sug-
gest that even with a small portion of the connected vehicles, a shorter average waiting time can be 
achieved. (Gong et al., 2020) defnes a risk score to evaluate the safety, and develops a multi-objective 
RL algorithm to incorporate the effciency and safety concerns together. The effciency and safety 
reward functions are calculated separately, and a weighted sum of the rewards is used to take actions. 
(Genders and Razavi, 2016) and (Li et al., 2016) utilize deep NNs, and compare the results with the 
controllers trained with shallow neural network (Genders and Razavi, 2016) or tabular method (Li 
et al., 2016). (Jie et al., 2021) considers vehicle emissions in the state and reward. 

To summarize, RL on the multi-intersection problems mainly lies on the coordination and scalabil-
ity, and the single-intersection problems tend to discuss more on the design of the learning algorithms. 
The vehicle connectivity is particularly interesting, and attracts increasing attention. Recently, some 
parallel learning and meta learning methods are proposed to increase learning speed by sharing and 
transferring knowledge. For example, (Mannion et al., 2015) uses a parallel learning method when 
several agents learn the same problem simultaneously with different instances, and they share the 
experience through an experience pool. The master agent can solve the problem on its own, while the 
slave agents infuence the master agent by contributing to the experience pool. Meta learning aims 
at transferring knowledge learned from previous experiences so that the learning can be speeded up 
when it is applied to a new environment. In the work of (Zang et al., 2020), a value-based meta learn-
ing algorithm is introduced. The parameterized meta-learner is trained in different scenarios, and it is 
considered to be well-generalized with some initialized parameters. The performance is evaluated by 
applying the initialization to a new intersection. 

In this study, we mainly focus on the coordination of the multi-intersection traffc signal control 
problem using a discounted shared reward. The NEMA phase scheme is kept in the action design and 
the local accessible information is used as state to ensure the implementation of the algorithm. 

4.3 Methodology 

Reinforcement learning (Sutton and Barto, 2018) refers to a type of machine learning methods that the 
agent learns to act by interacting with the environment iteratively. The traffc signal control problem 
is considered as an Markov Decision Process (MDP) (Sutton and Barto, 2018). The agent interacts with 
the environment at discrete time steps. At time step t, the agent observes the state st, and based on 
which an action at is taken. At the next time step t + 1, a reward rt+1 is received. In an MDP, the 
state st and reward rt only depend on the state st−1 and action at−1 of the previous time step, but not 
earlier. The probability p(st, rt|st−1, at−1) describes the dynamics of the MDP. 

A discount factor γ ∈ [0, 1] is multiplied with the reward, and the goal of the agent is to maximize 
the cumulative discounted reward from all the steps. If γ = 0, the agent is myopic and only takes 
the immediate reward into account. If γ = 1, every step has the equal contribution to the cumulative 
result. The value of state st and action at is represented by Q(st, at), and updated by: � � 

Q(st, at) ← Q(st, at) + α · rt+1 + γ max Q(st+1, a) − Q(st, at) , (4.1)
a 

where α is the learning rate. 
The problem is described as a multi-agent learning procedure. Each agent (traffc signal controller 

of one intersection) interacts with other agents, and the coordination is achieved by exchanging infor-
mation. In the rest of this section, the state, action, and reward representations of the traffc signal 
control problem are designed, and after that, a deep neural network used by each agent is explained. 
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4.3.1 Design of System State, Reward, and Action 

State 

Considering the observation range of the traffc cameras, 150 m of the incoming lanes from the inter-
section is divided by 5 cells equally, and each cell is 30 m long. Regardless of the number of lanes 
corresponding to one through/right-turn or left-turn movement, the 30 m long distance is considered 
to be one cell. For example, the eastbound of a four-arm intersection in Fig. 4.1 has 10 cells, including 
5 for the left-turn lane, and 5 for the through/right-turn lanes. The vector containing numbers of the 
vehicles in all the cells is used to represent the state. 

Figure 4.1: State representation for the eastbound of a four-arm intersection. 

Only the traffc condition of the target intersection is observed in state, and the information can be 
obtained by the traffc surveillance cameras, which does not require extra knowledge from connectivity 
and is compatible with the current control arrangement. 

Action 

The action sets are designed based on the NEMA dual-ring structure of an actuated controller for a 
four-arm intersection. The agent can choose any non-confict phase combination from the action sets 
(as shown in Fig. 4.2), and give them green time for the coming 3s. If the new action is the same with 
the current action, then the phase combination remains the same. If they are different, but on the same 
side of the barrier, the agent will switch to a transition action of 4s yellow time for the changing phase 
once the current action fnishes, and then take the new action. If the new action is on the different side 
of the barrier, the agent will switch to transition actions of a 4s yellow time followed by a 2s all-red 
clearance time for both phases before taking the new action. If the current action is green time for 
phase 1 and phase 5, as shown in Fig. 4.3, different transition actions will be taken based on the next 
action. Note that no new action will be made until the next action has been executed, and this ensures 
the agent does not experience a strategy change during the transition action time. 

Compared to the actuated controller, the action choices remain the same, and the 3s action time is 
the same with the extension time, but the fexibility is increased for the following reasons: a) the phase 
sequence is not fxed, and b) there is no minimum/maximum green time or cycle length. With this 
setting, the current action setting can be implemented to the corridor easily, and the performances of 
the different controllers become comparable. 

Reward 

The reward consists of three parts: the negative sum of queue lengths from all incoming lanes of the 
target intersection, a discounted sum of downstream lanes of the other intersections, and a waiting 
penalty. 
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Figure 4.2: NEMA dual-ring phase combinations. 

Figure 4.3: An example to illustrate the transition actions: if the current action is phase 1 and phase 5 
green, the transition action(s) differs based on the next action. No new action will be made during the 
transition action time. 

r = −qi − ∑ βd · q̃j − pi, (4.2) 
j ̸=i,j∈N 

where qi is the sum of queue length of all the incoming lanes for agent i, q̃j is the sum of queue lengths 
for agent i’s downstream lanes in all the other intersections j ∈ N and N is the set of all intersections, 
β is the discount factor in space, d ∈ {1, 2, 3, ...} is the distance between agent i and j, and pi is the 
penalty for agent i if there is a vehicle standing in front of the traffc lights for more than 100s. 

The reward structure is similar to that in (Chu et al., 2019), where the neighboring agents’ rewards 
are discounted in space and added to the total reward. The discount factor is related to the spacial 
distance between two agents, the further the neighboring agent is, the smaller it contributes to the 
total reward. The item ∑j ̸=i,j∈N β

d · q̃j in equation (4.2) keeps the above-mentioned property, but 
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differently, q̃j only takes into account the downstream queue lengths, since the only downstream is 
directly infuenced by the action from agent i and is the most related component. In highly congested 
scenarios, when the queuing vehicles occupy the whole link and block other vehicles from crossing 
the intersection, the upstream queue lengths are also effected by the action of the target intersection. 

The penalty pi is set to guide the agent from the "unsafe" actions so that the training can converge 
faster. For the actuated controller, any phase is guaranteed with a minimum green time in every cycle, 
which ensures the traffc from the low demand roads can also pass the intersection. Similarly with 
(Gong et al., 2020), even without the concept of cycle length, this safety constraint can play such a role. 
If a vehicle waits in front of the traffc light for more than 100s, regardless of the "optimal" action by 
then, the agent will choose the next action which enables the corresponding phase to be green, and 
give a penalty to the reward function. 

4.3.2 Deep Learning 

Figure 4.4: Neural network with two hidden layers. 

A fully connected neural network (NN) with two hidden layers is constructed, and each layer has 
100 neurons, see Fig. 4.4. The Rectifed Linear Unit (ReLU) is used as the activation function. The 
number of input elements depends of the geometry of the intersection, specifcally, the number of 
phases. For example, it is 40 for four-arm intersections, and 25 for three-arm intersections. The output 
is to set some non-confict phases green, and the sizes of the action space differ in correspondence 
to the actuated controllers. The model is built with the help of Tensorfow (Abadi et al., 2015), using 
Adam as the optimizer. 

4.4 Simulation Environment and Baseline Controller 

The Plymouth corridor from the City of Ann Arbor, Michigan is built in SUMO. The length of the 
corridor is about 4100 meters, and the loop detectors are placed in front of the intersections (see the 
yellow rectangles in Fig. 4.5). There are four four-arm intersections including Murfn, Nixon, Huron, 
and Green, and two three-arm intersections including Barton and Traverwood. 

A NEMA dual-ring actuated control scheme is used in the Plymouth corridor, and built in SUMO, 
with the parameters optimized for the peak traffc demand. It is called "actuated" since the control 
parameters are preset and actuated by the detectors, such as loop detectors. Through TraCI, the 
signals from the loop detectors are extracted, and used to set the traffc lights. There are three types of 
controllers based on the geometry and the traffc demand of the intersections. Murfn and Huron have 
all eight phases, Nixon and Green have six phases, and Barton and Traverwood have three phases, as 
shown in Fig. 4.6. Each phase has its minimum green time, and maximum green time. Once an active 
phase reaches the minimum green time, if the loop detectors detect the presence of more vehicles, 
the green time will be extended for a fxed amount of time (3s in this case) until the maximum green 
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Figure 4.5: Plymouth corridor built in SUMO. 

time. Each ring is actuated separately, and two rings are stopped together by a barrier. If a phase (for 
example, phase 2 of panel (a) in Fig. 4.6) of any ring reaches the maximum green time, both rings 
will be stopped regardless of the phase (in this case, phase 6) status of the other ring. If phase 2 has 
no vehicles waiting in the corresponding lanes before the maximum green time, and phase 6 is still 
actuated, then phase 2 will extend the green time until either of the phases reach the maximum green 
time. The six intersections are coordinated to ensure the green wave, with a cycle length of 100s, and 
the reference point starts from the end of phase 2. The yellow time is 4s for all the phases, and all-red 
clearance time is 2s. 

Note that SUMO also has its built-in actuated traffc signal controller, but it does not follow the 
dual-ring structure, thus cannot be utilized in this study. 

To accommodate the geometry and the actuated controllers of the intersections, the states and 
actions are adjusted accordingly. For Murfn, Nixon, Huron, and Green, there are 40 elements in the 
state vector, and for Barton and Traverwood, the number would be 25. The numbers of actions are 
8, 6, and 2, for Murfn and Huron, Nixon and Green, and Barton and Traverwood, respectively. The 
action sets can be found in Table. 4.1. 

Table 4.1: Action sets for different agents. 

Intersections Actions 
Murfn, Huron {1&5, 1&6, 2&5, 2&6, 3&7, 3&8, 4&7, 4&8} 
Nixon, Green {1&5, 1&6, 2&5, 2&6, 3, 4} 
Barton, Traverwood {2&6, 8} 

4.5 Simulation Results 

4.5.1 Training 

The NN is trained for 200 episodes. During the simulation, all the samples are stored in a memory 
bank in the form of (st, at, rt+1, st+1). When it reaches the memory capacity, the oldest samples will 
be deleted. Every simulation has 3600 seconds. The training is done with the experience replay after 
each simulation, for 400 epochs, with batch size of 64. The discount factor γ is 0.90, and the learning 
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(a) 

(b) 

(c) 

Figure 4.6: NEMA dual-ring structure of the actuated controllers in Plymouth corridor: (a) Murfn 
and Huron; (b) Nixon and Green; (c) Barton and Traverwood, where the left turn from eastbound is 
permitted. 

rate is set to 0.001. ϵ-greedy is used in the training to ensure exploration, meaning that with ϵ ∈ (0, 1) 
probability, the agent will choose a random action instead of the "best" action. The value is defned 
by: 

t
ϵ = max{0.01, 1 − } (4.3)

T 

where t is the number of episode, and T is the total number of episodes (200 in this case). ϵ decreases 
linearly from 1 to 0.01 in the frst half episodes of the training, and keeps constant as 0.01 in the second 
half episodes. The pseudo code of the algorithm is shown in Algorithm 1. 

A peak traffc demand collected from the Plymouth corridor is used to generate the route fles 
in SUMO with different seeds. The actuated controllers run with same traffc demand are used as 
a baseline, and the average waiting time (or stop delay) caused by stops is plotted with mean and 
standard derivation in panel (a) of Fig. 4.7. The average waiting time is calculated by the total waiting 
time of vehicles arrived divided by number of vehicles arrived. 

After about 110 episodes of training, the stop delay goes below that of the coordinated actuated 
controllers, see the green solid line in panel (a) of Fig. 4.7. The rewards of all six agents are plotted 
in panel (b) of Fig. 4.7. It is shown that the rewards for Barton, Traverwood, and Murfn converge to 
a higher level, followed by Nixon, and Green and Huron converge to the lowest values. That can be 
explained by the high demands in Green and Huron, which could lead to larger queue lengths. In 
addition to that, the distances with neighboring intersections are relatively long for Barton, Murfn, 
and even Traverwood, while Nixon is close to the busy intersection Huron, as depicted in Fig. 4.5. 

https://max{0.01
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Figure 4.7: Learning curves. 

Algorithm 3: Deep Q-learning with safety constraint 

episode = 0; 
while episode < 200 do 

generate a route fle for the simulation with a certain traffc demand; 
ϵ = max(1− episode/200, 0.01); 
initialize st−1, at−1; 
while t < 3600 do 

for all the agents (intersections): do 
if the previous action at (after the transition action ãt) has fnished: then 

get current state: st; 
get the waiting times for vehicles standing in front of the ego agent: tw

k , for all 
the incoming lanes k; 

if tw == 100 thenk 
take the action at which gives green to lane k; 
give a penalty pi to the agent: pi = 100; 

else 
pi = 0. 

take action according to the exploration rate ϵ: at(st, ϵ); 
get the sum of queue lengths of all the incoming lanes for the ego agent: qi; 
get the sum of queue lengths from the downstream lanes in the other 

intersections: q̃j(j ̸= i, j ∈ N); 
calculate reward: rt = −qi − ∑j=i,j∈N β

d · q̃j − pi;̸ 
add sample (st−1, at−1, rt, st) to the memory bank; 
st−1 ← st, at−1 ← at; 

else 
when at−1 ̸= at, take/execute the transition action ãt (4s yellow, or 4s yellow + 2s 

all red) until it fnishes, then take the new action at. 

t += 1; 

train the agents with experience replay, using samples from the memory banks; 
episode += 1 
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Figure 4.8: Traffc demands. 

4.5.2 Testing 

Two traffc demand patterns are created to validate the controller: a peak traffc demand and a varying 
traffc demand, see Fig. 4.8. The peak traffc demand in panel (a) has the same pattern with the training 
episodes but with different seeds, with the number of vehicles enter the corridor during the hour being 
about 6100. The varying demand in panel (b) shows the formation and dissipation of traffc, starting 
from about 1000 veh/h, reaching to the peak of about 6100 veh/h, and ending with about 700 veh/h. 
The same traffc demand patterns with the same seeds are tested with actuated controllers as baselines. 

Table 4.2: Comparison of the performance measures between the actuated controller and the reinforce-
ment learning controller. 

Actuated RL Improvement 
Peak Traffc Demand Stop Delay (s) 56.6 ± 3.5 39.0 ± 4.1 −31.1% 

Total Delay (s) 93.8 ± 4.2 76.9 ± 5.6 −18.0% 
Travel Time (s) 199.4 ± 4.7 182.7 ± 6.0 −8.3% 

Varying Traffc Demand Stop Delay (s) 43.8 ± 2.5 25.5 ± 2.4 −46.4% 
Total Delay (s) 74.4 ± 3.2 53.7 ± 3.1 −27.9% 
Travel Time (s) 182.5 ± 3.5 161.8 ± 3.5 −11.4% 

The comparison between the RL agents and the actuated controllers is shown in Tab. 4.2 with 
mean and standard derivation. Stop delay is the average delay caused by stops, total delay is the 
average delay caused by driving slower than free fow speed, and travel time is the average travel time 
from entering to leaving the corridor. All values are calculated based on vehicles which have left the 
corridor at the end of the simulation, and the running vehicles are not taken into account. 

Under peak traffc demand, the mean value of stop delay is improved by 31.1% compared to the 
actuated controller, the total delay is reduced by 18.0%, and the travel time is decreased by 8.3%. For 
the varying traffc demand, the stop delay, total delay, and travel time are improved by 46.4%, 27.9%, 
and 11.4%, respectively. 

The trajectories for vehicles running through the corridor from east to west under peak traffc 
demand are compared in Fig. 4.9. They are generated from the same route fle, thus the vehicle 
departure times are the same. As shown in panel (b) of Fig. 4.7, there are three intersections: Green, 
Huron and Nixon, that are busier, and that is why the number of stops is higher in these intersections. 
In panel (a) of Fig. 4.9, vehicles are clustered by the red lights with actuated controllers, especially 
after Green intersection; while in panel (b) with RL agents, the trajectories are more distributed. The 
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Figure 4.9: Trajectories of vehicles running through the Plymouth corridor from east to west controlled 
by: (a) Actuated controllers, and (b) Reinforcement learning controllers. 

traffc lights could accommodate the vehicles easily with the more fexible action settings in RL, and 
reduce the delay and travel time. 

4.6 Conclusion 

An implementable multi-agent reinforcement learning algorithm in the corridor level traffc signal 
control is proposed in this paper. Each intersection is an agent, and makes decision based on its own 
observations. The number of vehicles from 150 meters of the incoming lanes is used as the state, which 
can be extracted from the traffc surveillance cameras, and does not require the assumption of global 
information or information sharing (from connectivity). The coordination is achieved by the reward 
sharing structure. It consists of the sum of queue lengths from the target intersections, and a spatially 
discounted downstream queue lengths from other intersections, and a waiting penalty. The waiting 
penalty comes from the safety constraint, which gives a penalty when the vehicles are waiting in front 
of the traffc signals for more than 100 seconds. This can be obtained from the loop detectors, and 
ensures the vehicles from the minor roads do not have to wait too long. 

Many learning methods suffer from the missing of a fair baseline. The RL controllers are typically 
compared with basic controllers (such as fxed time controller or longest-queue-frst controller) or 
other learning methods. A NEMA dual-ring actuated control scheme from Plymouth corridor in city 
of Ann Arbor is built in SUMO as a benchmark. The action design is based on the dual-ring structure, 
any phase combinations from the dual-ring structure can be chosen as the next action. The agent gives 
a three-second green time to non-confict phases, corresponding to the three-second extension time 
from the loop detectors. Compared to the actuated controllers, the RL action sets are more fexible 
since there is no fxed phase sequence, maximum/minimum green time, or cycle length. Furthermore, 
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it can be implemented to the current control scheme without modifying the frmware. 
The peak traffc demand collected from the Plymouth corridor is used to generate simulations for 

training and testing. Compared to the benchmark, the proposed RL algorithm achieves a 31.1% reduc-
tion in stop delay under peak traffc demand, and the travel time is improved by 8.3%. Checking the 
trajectories of vehicles running through the corridor, the RL control has a more distributed trajectory 
pattern, which means that the vehicles can be released faster with shorter delay. 

In a word, this paper addresses the data availability and implementation problem for traffc signal 
control with reinforcement learning, and establishes a benchmark based on the actuated controllers 
which are actually used in the Plymouth corridor. 

The proposed algorithm assumes that the data from the cameras and loop detectors are fawless, 
and no V2I connectivity is available. Future work may focus on the infuence of data uncertainty, 
and traffc signal control in the mixed traffc with connected automated vehicles (CAVs). The data 
from CAV trajectories can be utilized to further improve the performance, and the collaboration (or 
communication) between the CAVs and infrastructure will bring the problem to a new stage. 



Chapter 5 

Outcomes, Outputs and Impacts 

Two journal papers have been formed from the project: 
1. Wang, Xingmin, Yafeng Yin, Yiheng Feng, and Henry X. Liu. "Learning the max pressure control for 
urban traffic networks considering the phase switching loss." Transportation Research Part C: Emerg-
ing Technologies 140 (2022): 103670. 
2. Xinyu Fei, Xingmin Wang, Xian Yu, Yiheng Feng, Henry Liu, Siqian Shen, Yafeng Yin, “Optimization 
and Decentralized Algorithms for Traffic Signal Control under Uncertain Traffic Demand and Vehicle 
Turning Ratio”, under revision, 2021. 

This project has the potential to improve the transportation network by optimizing traffic signal 
control, increasing throughput and reducing travel delay. 

This report documents the findings from our preliminary investigations on real-time large-scale 
distributed control of traffic signals. Our investigations consist of three parts. Part 1 formulates a 
network traffic signal control problem while solving it via a distributed solution algorithm. Part 2 
examines max pressure, a distributed control, and enhances it via reinforcement learning. In contrast, 
Part 3 directly applies multi-agent reinforcement learning to achieve distributed control. 

More specifically, in Part 1, an mixed-integer program for the traffic signal control problem in urban 
traffic networks is built based on the cell transmission model. The deterministic model is extended 
to a two-stage stochastic model considering the uncertainties of traffic demand and turning ratios. 
Efficient algorithms are proposed for solving the models and overcoming the scalability difficulties. 
The proposed algorithm not only reduces the computational time but also ensures the optimality for 
the non-convex model with mixed-integer variables. 

In Part 2, a noval framework that utilizes the policy-gradient reinforcement learning methods to 
learn a modified max pressure control policy considering the switching loss. The proposed max 
pressure control methods shows many advantages in the real-world implementation. The control 
policy is decentralized so that each intersection makes its own decision based on the upstream and 
downstream traffic state without requiring communication between intersections. The switching rule 
enables the control policy to dynamically adjust the switching frequency (equivalent to cycle lengths) 
according to the congestion level so that we do not have to split the whole day into different time 
of days (TOD) and perform different signal timing plans or adjust the parameters. Besides, the max 
pressure control is an end-to-end control policy, which directly generates the control policy from the 
observation; hence it can be efficiently implemented in the real world. 

In Part 3, an implementable multi-agent reinforcement learning algorithm in traffic signal control 
is proposed. Each intersection is considered as an agent, and makes decision based on its own ob-
servations, while the coordination among agents are achieved by a shared reward structure. The data 
availability and implementation issues are addressed in the designing of state, action and reward. 
The safety is ensured by a fixed length of yellow time before taking the new action. Furthermore, a 
benchmark based on the actuated controllers is established, since many learning methods suffer from 
the missing of a fair baseline. 
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