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Abstract

INTRODUCTION: As the number of biomarkers used to study Alzheimer’s disease

(AD) continues to increase, it is important to understand the utility of any given

biomarker, as well as what additional information a biomarker provides when com-

pared to others.

METHODS: We used hierarchical clustering to group 19 cross-sectional biomark-

ers in autosomal dominant AD. Feature selection identified biomarkers that were

the strongest predictors of mutation status and estimated years from symptom

onset (EYO). Biomarkers identified included clinical assessments, neuroimaging, cere-

brospinal fluid amyloid, and tau, and emerging biomarkers of neuronal integrity and

inflammation.

RESULTS: Three primary clusters were identified: neurodegeneration, amyloid/tau,

and emerging biomarkers. Feature selection identified amyloid and tau measures as

the primary predictors of mutation status and EYO. Emerging biomarkers of neuronal

integrity and inflammation were relatively weak predictors.

DISCUSSION: These results provide novel insight into our understanding of the rela-

tionships among biomarkers and the staging of biomarkers based on disease progres-

sion.
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1 INTRODUCTION

Alzheimer’s disease (AD) is defined pathologically by the accumula-

tion of amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs), neu-
roinflammation, and neuronal/synaptic loss that leads to brain atrophy

and decreased glucose metabolism.1 These changes manifest clinically

with cognitive decline and functional impairment. Autosomal dominant

Alzheimer’s disease (ADAD) accounts for less than 1% of all AD cases

and is caused by pathogenic mutations in the amyloid precursor pro-

tein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes that lead

to early increases in Aβ deposition in the brain.2,3 The mean age at

onset of cognitive impairment in ADADmutation carriers (MCs) is ear-

lier than in sporadicADand remains consistentwithin a family, allowing

for calculation of the estimated number of years from symptom onset

(EYO).4,5

Multiple neuroimaging methods have been used to evaluate in vivo

changes in the brain due to ADAD. [11C]Pittsburgh Compound-B (PiB)

has high affinity for Aβ plaques, with distributions similar to those seen

at autopsy.6 In ADAD, PiB PET has identified Aβ deposition occur-

ring more than 20 years prior to estimated age at symptom onset

in MCs.5,7–9 [18F]Fluorodeoxyglucose (FDG) uptake reflects glucose

metabolism and has shown the ability to discriminate symptomatic

MCs from non-carriers (NCs).6,8,9 Decreases in glucose metabolism

occur ≈5 to 10 years before symptom onset in MCs.9,10 Finally, struc-

tural magnetic resonance imaging (MRI) provides a method to evalu-

ate volumetric and cortical thickness changes associated with disease

progression.11,12 ADAD is characterized by progressive atrophy that

affects temporal and subcortical regions ≈5 years from the estimated

age at symptom onset.9

Apart from neuroimaging, changes in cerebrospinal fluid (CSF) Aβ
and tau biomarkers have been identified. CSF markers of Aβ, includ-
ing Aβ42 and CSF Aβ42/40 ratio, decrease during the early stages of

the disease and correlate with amyloid deposition in the brain.13,14

Tau is an abundant microtubule-associated protein that is regulated

by phosphorylation. Tau that is in a hyperphosphorylated state can

form aggregates that lead to NFTs. Levels of CSF total tau are ele-

vated in MCs ≈10 years from the estimated age at symptom onset.15

More recently, mass spectrometry studies showed that phosphory-

lated/unphosphorylated ratios of tau isoforms are associatedwith spe-

cific stages of the disease.16

Additional CSF and plasma biomarkers, generally referred to as

"emerging" biomarkers, have recently been studied in AD. Neuro-

granin is a postsynaptic protein expressed in dendritic spines, and

it correlates with elevated levels of tau.17 Synaptosomal-associated

protein 25 (SNAP-25) is involved in the fusion of synaptic vesicles to

the pre-synaptic membrane. Increases in CSF neurogranin and SNAP-

25 are thought to reflect synaptic damage.18 Visinin-like protein 1

(VILIP-1) is a calcium sensor protein and is also a marker of neuronal

mailto:luckett.patrick@wustl.edu
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injury.18 Chitinase-3-like protein 1 (YKL-40) is a secreted glycoprotein

expressed primarily by astrocytes and has been associated with

neuroinflammation.19,20 Finally, neurofilament light chain (NfL) is

found within axonal cytoskeleton and is elevated in symptomatic

AD.21,22

Although the number of biomarkers used to study AD continues to

increase, the utility of a givenmeasure in providing additional informa-

tion when compared to other biomarkers remains unclear. Data driven

methods capable of identifying which biomarkers are most reflective

of AD progression and staging would be beneficial to clinical trials and

patient care. Machine learning (ML) is a method for generating mod-

els that learn from existing data rather than being constrained by a pri-

ori rules.23 ML methods do not rely on heuristics, are robust to fea-

ture interactions, and are sensitive to complex association patterns.

The ability to identify MCs and accurately determine an individual’s

position relative to symptomatic impairment provides a unique oppor-

tunity for ML to evaluate similarities among biomarkers and identify

which biomarkers aremost reflective of mutation status and EYO.

The goal of this study was to identify natural groupings of biomark-

ers based on disease progression, as well as identify what biomarkers

are most reflective of disease status and EYO within a cross-sectional

cohort ofMCs (n=130) andNCs (n=79).Weusedhierarchical cluster-

ing to group biomarkers based on similarity, and decision tree–based

feature selection to identify biomarkers that were the strongest pre-

dictors of mutation status and EYO. This data-driven approach pro-

vides insight into both the behavior and utility of existing biomarkers

for ADAD and could be important for clinical trials evaluating thera-

pies. In addition, these results could provide a better understanding of

other forms of AD.

2 METHODS

2.1 Participants

MCs (n = 130) with pathogenic mutations in PSEN1, PSEN2, or APP

and healthy, mutation-negative sibling NCs (n = 79) were recruited

from sites participating in the Dominantly Inherited Alzheimer Net-

work (DIAN). Participants from the 14th data freezewith genetic, clini-

cal, and neuroimaging data, who passed quality control procedures and

had a complete set of biomarkers were included. A single time point

from each participant was used for analysis. The Washington Univer-

sity in Saint Louis (WUSTL) Institutional ReviewBoard provided super-

visory review and human subject approval. Participants provided writ-

ten, informed consent or assent with proxy consent. All study pro-

cedures were approved by the WUSTL Human Research Protection

Office and the institutional review boards of the participating sites.

2.2 Clinical classification

The clinical dementia rating (CDR) Dementia Staging Instrument,

which includes its sum of boxes (CDR-SB), and the Folstein Mini-

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using traditional (eg, PubMed) sources and meet-

ing abstracts and presentations. Relevant citations are

includedwhere appropriate.

2. Interpretation: Our findings suggest that biomarkers of

autosomal dominant Alzheimer’s disease (ADAD) can

be grouped into three primary clusters: neurodegenera-

tion, amyloid/tau, and emerging biomarkers of neuronal

integrity and inflammation. Furthermore, the primary

predictors of ADAD status consist of amyloid and tau

measures, whereas the emerging biomarkers of neuronal

integrity and inflammation are relativelyweakpredictors.

3. Future directions: Future work will focus on (1) perform-

ing similar analysis in other forms of Alzheimer’s disease

(eg, Down syndrome and sporadic Alzheimer’s disease) to

ensure correspondence of the biomarker groupings and

behavior, and (2) performing the analysis on longitudinal

data.

Mental State Examination (MMSE) were performed at each clini-

cal assessment.24,25 Depression was measured using the Geriatric

Depression Scale (GDS).26 Aparticipant’s EYOwas calculated based on

the participant’s current age relative to the family mutation–specific

expected age at onset of dementia symptoms.4 Parental age at first

progressive cognitive decline was used if the mutation-specific age

of onset was unknown. EYO was calculated identically for both MCs

and NCs. In the context of NCs, increasing EYO essentially serves

as a proxy measure for increased aging. Mutation status was deter-

minedusing polymerase chain reaction (PCR) amplification followedby

Sanger sequencing.5

2.3 MRI acquisition and processing

MRI was performed using the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) protocol.27 Sites used a 3T scanner that passed qual-

ity control assessments. The ADNI Imaging Core screened images

for compliance. T1 weighted images at 1.1 × 1.1 × 1.2 mm voxel

resolution were acquired for participants. FreeSurfer 5.328,29 was

used to perform volumetric segmentation and cortical surface recon-

struction, and to define cortical and subcortical regions of inter-

est (ROIs). A regression approach was used to correct subcorti-

cal volumes for intracranial volumes. FreeSurfer-defined ROIs were

used for regional processing of positron emission tomography (PET)

data. Cortical signature (CorSig) was calculated for subsequent

analyses.30
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2.4 PET acquisition and processing

Amyloid PET was performed using a bolus injection of 8 to 18 mCi

PiB. Data from the 40 to70minute post-injection timeframewere con-

verted to regional standardized uptake value ratios (SUVRs) relative

to the cerebellar gray matter.31 PET glucose metabolism imaging was

performed with a single bolus injection of 5 mCi FDG. A 30-minute

dynamic acquisition beginning 30minutes post-injectionwas acquired.

The last 20 minutes of each FDG scan were converted to SUVRs using

the cerebellar gray matter as a reference region. All PET data were

partial volume corrected and aligned to the T1 image.32,33 Scanner-

specific filters were applied to achieve a common resolution (8 mm).34

A summary measure representing the arithmetic mean of SUVRs from

the precuneus, superior and rostral middle frontal, lateral and medial

orbitofrontal, and superior and middle temporal was used for PET

analyses.31

2.5 CSF acquisition and processing

CSF was collected using methods previously described.13 CSF (10

to 20 mL) was collected during a fasting state via standard lumbar

puncture (LP) at 08:00 hours under gravity flow. Samples were col-

lected, flash frozen on dry ice, and shipped to the DIAN Biomarker

Core at WUSTL, at which point they were thawed on wet ice,

aliquoted (0.5 mL), flash frozen, and stored at −80◦C. Concentrations

of CSF Aβ40, Aβ42, total tau, and total p-tau (181) were measured

by chemiluminescent enzyme immunoassay using an automated plat-

form (LUMIPULSE G1200, Fujirebio) according to the manufacturer’s

specifications. CSF Neurogranin, SNAP-25, and VILIP-1 were mea-

sured with microparticle-based immunoassays using Single Molecule

Counting technology.17,35,36 CSF YKL-40 (Quidel) was measured via

commercial enzyme-linked immunosorbent assays (ELISAs) according

to manufacturer’s recommendations. CSF p-tau extracts were ana-

lyzed by nanoLC-MS/HRMS using Parallel Reaction Monitoring using

higher energy collisional dissociation (HCD) fragmentation. NanoLC-

MS/MS experiments were performed using a nanoAcquity UPLC sys-

tem (Waters) coupled to a Fusion Tribrid mass spectrometer (Thermo

Scientific). CSF tau phosphorylation levels were calculated using ratios

betweenMS/HRMS transitions of endogenous unphosphorylated pep-

tides and 15N labeled peptides from protein internal standard. Ratios

of phosphorylation on T181, S202, T205, and T217 were measured

using the ratio of the MS/HRMS transitions from phosphorylated

peptides and corresponding unphosphorylated peptides (pT217/T217,

pT205/T205, and pT181/T181).16

2.6 Blood acquisition and processing

Serum NfL was acquired and processed using methods described

previously.22 In short, blood was collected in the morning under fast-

ing conditions by venipuncture using red top plain Vacutainer tubes

(Becton, Dickinson and Company). Tubes were centrifuged at 2000

× g at room temperature for 15 minutes after clotting. Serum was

taken into a single transfer tube (SARSTEDT AG & Co.) and frozen on

dry ice. Measurements were performed using a single-molecule array

assay using the capturemonoclonal antibody 47:3 and the biotinylated

detection antibody 2:1 (UmanDiagnostics AB).37 The samples were

measured in duplicate on a Simoa HD-1 platform (Quanterix) using

a two-step neat assay. Serum samples were measured at 1:4 dilution

(Tris-buffered saline, 0.1% Tween 20, 1% non-fat milk powder, Heter-

oBlock [300ugml−1;OmegaBiologicals]). The amount of timebetween

biomarker collections (imaging, CSF, plasma) per visit was 1 day± 12.4

days (median, interquartile range [IQR]).

2.7 Machine learning and statistical analyses

Analyseswereperformed inMATLABR2021a.Allmeasureswere stan-

dardized to zero mean and unit variance. Predictive features of muta-

tion status and EYO were ranked according to importance using deci-

sion tree-based feature selection.38 This method utilizes a curvature

test that identifies the strongest predictors by minimizing the P-value

of chi-square tests of independence between each predictor and the

response, as well as each pair of predictors and response.When evalu-

ating the strongest features of mutation status, classes were weighted

such that each class accounted for 50% of the accuracy. All decision

trees were validatedwith 10-fold cross-validation. Clusteringwas per-

formed with agglomerative hierarchical clustering. We chose hierar-

chical clustering because (1) ease of interpretability of results, (2) the

hierarchical nature of the algorithm does not require a predetermined

number of clusters, and (3) the results can be viewed at different scales

based on the needs of a given study. Agglomerative hierarchical clus-

tering is a bottom-up approach, where each observation starts in its

own cluster, and clusters are merged as they move up the cluster tree.

The distance metric utilized was the absolute value of the biomarker

correlations. The linkage criterion, which determines the distance

between sets as a function of the pairwise correlations between

biomarkers, used Weighted Pair Group Method with Arithmetic

Mean.39 (Supplemental material provides further details on the cluster

analysis.)

3 RESULTS

3.1 Demographics

Detailed demographics are presented in Table 1. NC and MC partici-

pants were similar with regards to age, sex, race, and education.

3.2 Clustering

The clustering results can be seen in Figure 1, and the similarity matrix

used for clustering in Figure S1. At the highest level, the data were

grouped into three categories: neurodegeneration, Aβ/tau, and emerg-

ing biomarkers of neuronal integrity and inflammation. The Aβ/tau
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TABLE 1 Demographics

Mutation carriers (MCs) Mutation-negative non-carriers (NCs) P-value

N 130 79

Age (years)± SD 39.9± 10.7 41.7± 11.3 .24

Sex (%Male) 45% 39% .39

Race (% Caucasian) 92% 92% .98

Education (years)± SD 14.6± 3.1 14.8± 2.3 .62

EYO (years)± SD −6.6± 9.8 −5.5± 11.5 .48

Abbreviations: EYO, estimated years until symptom onset; SD, standard deviation.

F IGURE 1 At the highest level, biomarkers grouped by neurodegeneration (yellow), amyloid and tau (blue), and emerging biomarkers of
neuronal integrity and inflammation (green). The amyloid/tau cluster encompassed amyloid PET (PiB), CSF Aβ40, and Aβ42/40, and all CSF tau
measures, including taumass spectrometry ratios (pT217, pT181, pT205) and Lumipulse total tau and total pTau (C tTau, C pTau). The
neurodegeneration cluster includedmeasures of metabolism (FDG), atrophy (CorSig), serumNfL, and cognitive assessment measures. The final
cluster consisted of the emerging biomarkers of neuronal integrity and inflammation as well as CSF Aβ40. Of note, depression (GDS) was separate
from the other measures

cluster consisted of all CSF tau-related variables, PiB, and CSF Aβ42
andAβ42/40 ratio.Within the amyloid/tau cluster, PiB showed greater

similarity with CSF tau variables compared to Aβ variables. The neu-

rodegeneration cluster consisted of clinical (CDR-SB), neuropsycho-

logical (MMSE), and measures of neuronal dysfunction/damage (FDG,

cortical signature, and serum NfL). Finally, except for CSF Aβ40, the
emerging biomarkers of neuronal integrity and inflammation clustered

together and consisted of CSF neurogranin, SNAP-25, VILIP-1, and

YKL-40. GDSwas the least similar to any other biomarker. Supplemen-

tal material and Figure S6 provide further details on cluster-validation

results.

3.3 Mutation status feature selection

The decision tree was able to classify mutation status with an average

accuracyof 92.4%. Figure2 shows the strongest predictors ofmutation

status by EYO calculated over a 15-year sliding window. The strongest

predictors were markers of Aβ and mass spectrometry tau ratios (CSF

Aβ42/40,PiB, andCSFpTau217, pT181).CSFAβ42/40andPiB showed
an inverse trajectory, with Aβ42/40 being the strongest predictor dur-
ing the early phase of the disease (EYO <−15) and decreasing in pre-

dictive strength later in the disease process (EYO >0), whereas PiB

showed the opposite pattern and was a stronger predictor at a later
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F IGURE 2 The strongest predictors of mutation status with regard to estimated years to symptom onset (EYO). Features were calculated for a
sliding 15-year window that incremented 1 year at a time that encompassed EYOs between−25 and+10. Red line indicates 15-year window that
was centered at EYO of 0 (±1 year). The strongest predictors of mutation status were amyloidmarkers (CSF Aβ42/40, PiB, and pTau 217 ratio).
CSF Aβ42/40 and PiB showed an inverse trajectory. CSF Aβ42/40was the strongest predictor early in the disease process followed by a relative
decrease later in the disease course. In contrast, PiB was a slightly weaker predictor earlier in the disease process but gradually increased in
predictive strength later in the disease course. Results coincide with the predictive strengths of each of themeasures when not using a sliding
window and all EYOswere combined into a single analysis (see Figure S2)

EYO. The CDR-SB was the strongest clinical predictor of progression

but not until EYO ≥0. The emerging biomarkers of neuronal integrity

and inflammation, FDG, and cortical signature were not identified as

strong predictors.

3.4 EYO feature selection

The utility of each biomarker for predicting EYO is shown in Figure 3

for MC (red) and NC (blue). The decision tree was able to predict

EYO with a mean squared error of 6.4 years. Feature selection iden-

tified phosphorylated tau measures (pT205, pT217, pT181 ratios) as

the strongest predictors of EYO. Of interest, YKL-40, ptau181 mea-

sured with immunoassay, and serum NfL were strong predictors for

both MCs and NCs. Within NC, YKL-40, serum NfL, and ptau181

by immunoassay were the strongest predictors, indicating a potential

aging component regardless of disease pathology (Figure 4 and Figure

S4). When accounting for age, the strongest predictors of EYO were

CSF pT217, pT205, and pT181 ratios by mass spectrometry, as well as

CDR-SB.

4 DISCUSSION

We used hierarchical clustering to identify groupings of biomarkers

reflective of ADAD pathology. Neurodegeneration, amyloid/tau, and

emerging biomarkers of neuronal integrity and inflammation were the

three primary clusters. Decision tree–based feature selection recog-

nizedmeasures ofAβ and tauas theprimarypredictors ofmutation sta-

tus throughout disease progression, whereas neurodegenerative and

clinical measures were moderate predictors in the later stages of the

disease (EYO ≥0). The emerging biomarkers of neuronal integrity and

inflammation were not identified as strong predictors. When evaluat-

ing time from symptom onset, CSF phosphorylated tau measures and

clinical metrics were the strongest predictors for MCs. Finally, serum

NfL and CSF YKL-40 were strong predictors of aging regardless of

mutation status.

Clustering revealed three primary groupings for biomarkers. The

amyloid/tau cluster encompassed all CSF and PETmeasures except for

CSF Aβ40. Because Aβ40 did not start to deviate for MCs compared

to NCs until −10 to −5 EYO (Figure S5), it was likely grouped into

a different cluster because other amyloid and tau measures showed
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F IGURE 3 Strongest predictors of EYO formutation carrier (MC) and non-carrier (NC) participants. Overall, the strongest predictors forMC
participants were phosphorylated taumass spectrometry ratios (pT205, pT217, pT181). YKL-40 and serum neurofilament light (NfL) were strong
predictors for bothMC andNC participants, suggesting a strong aging component regardless of disease pathology (see Figures 4 and S4 bottom
right for trajectories)

differences at earlier stages of the disease. The CSF Aβ42 and CSF

Aβ42/40 ratio grouped together, whiles phosphorylated tau measures

also grouped together. This indicates that although specific phospho-

rylation sites may bemore correlated withmeasures of amyloid or tau,

the overall progression is similar for each of the tau phosphorylation

measures. PiB’s position in the dendrogram indicated it was more like

CSF tau than Aβ. PiB also showed a higher correlation (absolute value)

with tau measures (Aβ42 = .49, Aβ42/40 = .54, pT181 = .54, pT205

= .67, pT217 = .66, all P < .001). This is likely due to the plateau that

occurs in Aβ42/40 around EYO = 0, which does not occur in PiB and

CSF tau species (Figures 4 and 5).

The neurodegeneration cluster consisted of clinical and psycholog-

ical measures (CDR-SB and MMSE), neuroimaging measures of neu-

rodegeneration (CortSig and FDG), and serum NfL. Consistent with

the amyloid-tau-neurodegeneration (AT(N)) framework,40 differences

in neurodegenerative measures between MCs and NCs deviated at

roughly −5 EYO (Figure 4 and Figure S5). Serum NfL showed the ear-

liest changes and was highly correlated with CDR-SB and MMSE (.67

and .62, P < .001). All biomarkers in the neurodegeneration cluster

were highly correlated (>.5) with CSF pT205, which is consistent with

previous findings.16

The last cluster consisted primarily of the emerging biomarkers

of neuronal integrity and inflammation. The trajectories for these

biomarkers can be seen in Figure S4. Among these measures, SNAP-

25 and neurogranin, both presumed to be measures of synaptic dam-

age, showed the greatest consistent ability to distinguish betweenMCs

and NCs (Figure 2). SNAP-25 showed a slight elevation in MCs that

remained relatively consistent regardless of EYO. VILIP, SNAP-25, and

YKL-40 all showed increases with age regardless of mutation status.

This suggest many of these biomarkers are more likely measures of

aging and not specific to AD.

Both Figure 2 and Figure S2 illustrate that CSF Aβ42/40 and

PiB were the strongest predictors of mutation status. This could be

explained by a dramatic increase in amyloid deposition within MC

brains ≈15 years before EYO; alternatively, it could be explained by

more MCs beginning to accumulate amyloid plaques during this phase

of the disease. CSF Aβ42/40 was the strongest predictor earlier in the

disease process but lost predictive strength in later stages. This result

agreeswith a previous study5 that has shown that changes inCSFAβ42
occur early in the disease and begin to plateau as they approach EYO=

0. In contrast, PiB became a stronger predictor with time. This is likely

due to the trajectory exhibited by amyloid accumulation in the brain,

where early in the disease the rate of accumulation is moderate, but

around EYO=−15 deposition begins to drastically increase.41 Overall,

these results are consistent with other studies, which have shown that

CSF amyloid markers are the earliest to diverge in MCs compared to
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F IGURE 4 Trajectories for biomarkers of amyloid, tau, and neurodegeneration (AT(N)) for NC (blue) andMC (red) from−20 to+10 EYO.
Trajectories for amyloid biomarkers (PiB, CSF Aβ42/40), tau (Lumipulse CSF total tau and CSF total pTau [181]), and neurodegeneration (cortical
signature and serumNfL) were fit using a two-degree polynomial with shaded regions representing standard error. Differences betweenMC and
NCwere observed early for amyloid and tau (−20 to−15 EYO). Differences were also observed betweenMC andNC for neurodegeneration
markers but were closer to EYO (−10 to−5 EYO). Of note, changes in cortical signature and serumNfL were seenwith aging regardless of
mutation status

F IGURE 5 Trajectories for CSFmass spectrometry phosphorylated tau ratios pT217, pT181, and pT205 for NC (blue) andMC (red) from−20
to+10 EYO. Trajectories were fit using a two-degree polynomial with shaded regions representing standard error. For both CSF pT217 and CSF
pT181 changes were seen very early (20 EYO), whereas changes in CSF pT205 occurred slightly later
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NCs, followed by PiB.5 The third strongest predictor was CSF pT217.

Like PiB, CSF pT217was a moderate predictor early in the disease and

became stronger with time, surpassing CSF Aβ42/40 as the second-

strongest predictor of mutation status. Although not as strong as CSF

pT217, both CSF pT181 and pT205 were good predictors of muta-

tion status, which has been observed.42 Because measures of amyloid

are believed to be the earliest to change in AD, it has been hypothe-

sized that amyloid pathology may lead to an increase in the phospho-

rylation of tau.43 It is, therefore, not surprising that these biomarkers

were the strongest predictors of mutation status. Finally, neurodegen-

erative measures and clinical/cognitive metrics, known to change only

in the later stages of the disease, gained predictive strength at EYO

≥0 (Figure S5). The weakest predictors of mutation status were GDS,

MMSE, FDG, CSF Aβ40, serum NFL, and the emerging biomarkers of

neuronal integrity and inflammation. Except for GDS and CSF Aβ40,
these measures generally group within the neurodegeneration cate-

gory of the AT(N) framework.

Figure S3 shows the trained decision tree and optimal cutoffs used

to classify participants by mutation status. PiB, CSF Aβ42/40, pT217
ratio, and pT181 ratio gave the optimal results. At the top level, the

optimal cutoff for PiB was 1.23. This corresponds to an EYO of −22.2

based on the fitted line shown in Figure 4. If the PiB valuewas less than

this cutoff, CSF Aβ42/40 was then evaluated. Of interest, a participant

was classified asmutationpositive if theCSFAβ42/40was greater than
.11 (EYO≤−28). This corresponds to early EYOswhere PiB is relatively

low (EYO ≤−22) and CSF Aβ42/40 is elevated compared to NCs (see

Figure 4). Finally, if CSF Aβ42/40 and PiB did not meet their cutoffs

(EYOs between −28 and −22), a pT217 ratio greater than 1.24 (EYO

−24) and a pT181 ratio greater than 23.7 (EYO−20, Figure 5) resulted

in a participant being classified asmutation positive.

The relative strength of a biomarker’s ability to predict EYO in MC

and NC participants is shown in Figure 3. Phosphorylated tau ratios

(pT205, pT217, and pT181; Figure 5), CDR-SB, cortical signature, CSF

pTau, serum NFL, and CSF YKL-40 were the strongest predictors of

EYO in MC participants. In NC participants, CSF pTau, serum NFL, and

YKL-40were the strongest predictors of EYO. This equates to changes

that occurs with normal aging regardless of disease status. Figure 4

and Figure S4 show the trajectories for these biomarkers. For each

of these biomarkers there was a consistent increase with age in NCs.

When compensating for the aging component, the strongest predictors

of EYOwere pT217, pT205, CDR-SB, and pT181.

These findings have clinical importance for people with ADAD. As

the number of biomarkers used to study AD pathology continues to

increase, it is important to understand which biomarkers are most

reflective of disease pathology. This study is the first to use ML-based

methods to directly identify how biomarkers cluster, as well as identify

the strongest combination of biomarkers that predict mutation status

and EYO within each cluster. We have demonstrated that the optimal

set of biomarkers can be reduced to a small set of Aβ and tau mea-

sures, and also show that numerous biomarkers that have gained pop-

ularity offer little to no additional information about ADAD pathol-

ogywhen compared to others. This is significantwhen considering that

these biomarkers may be used in clinical trials to evaluate the effec-

tiveness of therapies. Furthermore, using our trained decision tree, we

can identify biomarker cutoffs, as well as map the cutoffs to specific

disease stages, and therefore identify what biomarker is best to use at

a specific point in time. This demonstrates the utility of ML in under-

standing the complex disease progression associated with ADAD that

goes beyond group-level statistics. Finally, although identifying muta-

tion status in ADAD can easily be achieved with blood test and EYO

calculated based on familial information, the fact that we are able to

use this information to identify the optimal set of biomarkers reflective

of disease state and pathology is of great importance. Specifically, we

believe that these results are directly applicable to other forms of AD,

such as sporadic AD, where this information is not available.

The main limitation of our study is the use of a cross-sectional

research design. Research using prospective designs is needed to fur-

ther delineate the staging and progression of various biomarkers in

relation to EYO. Furthermore, additional variables, such as the specific

mutation type shouldbe considered if sufficient numbers arepresent in

future analysis. Alternative formsof feature selection and/or clustering

should also be considered to evaluate the relationship among biomark-

ers and ensure concordance of results. Becausemany Aβ and tau inter-
vention trials involve participants with ADAD, similar research should

be conducted in other genetic forms of AD (eg, Down syndrome) and

late-onset AD to ensure correspondence of the biomarker groupings

and behavior. Finally, with the increasing adoption of blood-based test-

ing, it is important to evaluate the similarities and differences between

blood and CSF biomarkers.

4.1 Conclusion

Understanding the similarities and differences among AD biomark-

ers, and which biomarkers best represent disease processes, is vital

for maximizing the efficiency of clinical trials and patient care. In this

study, we have identified three primary cluster of AD biomarkers (neu-

rodegeneration, amyloid/tau, and emerging). Feature selection identi-

fied measures of amyloid and tau as the strongest predictors of muta-

tion status, and measures of tau and atrophy as the strongest pre-

dictors of EYO. Our analyses also suggest that a model for diagnos-

ing ADAD (classifying mutation status) independent of disease stage

requires only four AD biomarkers (PiB PET, CSF Aβ42/40, pT217, and
pT181 ratios).
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