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Abstract14

This study uses observations from a ground-based instrument suite to investigate the rain-15

snow level in stratiform rainfall from January 2014 to April 2020 in the Upper Great Lakes16

Region. The height above the surface where ice melts to rain, the rain-snow level (RSL),17

influences microphysical assumptions in remote sensing precipitation retrievals and the18

ability of space-based radar to discriminate surface precipitation phase because of ground19

clutter. The instrument suite is installed at the Marquette, MI (MQT) National Weather20

Service station adjacent to Lake Superior. Rain events and the RSL are studied through21

a ground-based vertically profiling radar (Micro Rain Radar), a custom NASA-developed22

video disdrometer (Precipitation Imaging Package), and reanalyses products from ECMWF23

ERA5 and NASA MERRA-2. Distinct macro and micro physical characteristics are ob-24

served in precipitation events with shallow RSL (< 1.8 km above ground level [AGL])25

and intermediate RSL (> 1.8 km AGL). Intermediate RSL correspond to rain events with26

relatively higher rain rates and a higher concentration of small drops in the drop size dis-27

tributions (DSDs). Shallow RSL DSDs contain relatively higher concentrations of large28

drops with lower fall speeds suggesting that partially melted snowflakes may be reach-29

ing the surface. Reflectivity-rain-rate relationships are also impacted by microphysical30

differences associated with RSL regimes. Radar-detected RSL agree with reanalysis-derived31

melt levels- especially at wet-bulb isotherms of 0.5°C and 1°C. Seasonal differences such32

as shallow rain-snow levels in winter, fall, and spring have subsequent implications for33

satellite detectability.34

Plain Language Summary35

The height above the surface where falling snow melts to rain, the rain-snow level,36

can be detected by both ground-based and space-based radars. However, space-based37

radars are limited in their ability to capture precipitation near the surface due to inter-38

ference. This work investigates rain-snow levels between January 2014 and April 202039

from ground-based observations at the Marquette, MI National Weather Service office.40

This work includes observations from ground-based profiling radar and a custom NASA-41

developed instrument that records high resolution videos of precipitation at the surface.42

In addition, profile temperature and moisture data are used. These products are com-43

monly used with satellite observations to determine the surface precipitation phase. The44

results show different characteristics for rain events with shallow and intermediate rain-45

snow levels. The radar-detected rain-snow levels illustrate good agreement with melt lev-46

els derived from reanalysis profile data, which is useful for satellite retrievals of precip-47

itation. Seasonal differences such as shallow rain-snow levels in winter, fall, and spring48

have subsequent implications for satellite detectability.49

1 Introduction50

Precipitation is changing as the climate warms. In northern mid and high latitudes,51

warming is resulting in a shift from snow to rain (Bintanja & Andry, 2017; Tamang et52

al., 2020). In the Upper Great Lakes region, the mean annual wet-bulb temperature is53

increasing, and snowfall and snowfall-precipitation ratio is decreasing (Tamang et al.,54

2020). Rainfall in the place of snowfall impacts water resources (Knowles et al., 2006),55

and glacier mass balance (Perry et al., 2017; Schauwecker et al., 2017), and potentially56

the global energy balance (Screen & Simmonds, 2012). Observed changes in precipita-57

tion including a reduction in heavy snow cover and the shift from snow to rain impacts58

soil moisture, watershed hydrology, and streamflow in the Midwest and Great Lakes re-59

gion (Byun et al., 2019). From a societal standpoint, precipitation processes also impact60

transportation safety. Hazardous wintertime events such as freezing rain result in espe-61

cially dangerous conditions that affect vehicle crash risks (Tobin et al., 2021). The height62

of the melting level in the atmosphere influences the precipitation phase at the surface63
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(White et al., 2002; Harpold et al., 2017; Cui et al., 2020), and trends show increases in64

melt level heights are linked to increasing rainfall and rainfall intensity as a result of sur-65

face warming (Prein & Heymsfield, 2020).66

Satellites provide near-global observations and provide essential quantitative pre-67

cipitation estimates for hydrometeoroloical applications on instantaneous/nowcasting to68

climate time scales. Accurate portrayals of surface precipitation phase from satellite re-69

trievals are incredibly important, yet sometimes difficult to determine. Methods for sep-70

arating rain and snow include radar profiles, surface measurements, and vertical profiles71

of temperature and relative humidity. Studies show that snowfall can occur at temper-72

atures warmer than 4°C (Auer Jr, 1974; Heymsfield et al., 2021), and freezing rain and73

mixed precipitation can exist at temperatures well below 0°C (Stewart et al., 2015; Har-74

pold et al., 2017). In addition, surface type influences the temperature thresholds for rain75

and snow (Dai, 2008), and rain-snow temperature thresholds vary spatially (Jennings76

et al., 2018). Snowflakes falling through temperatures above 0°C may not melt depend-77

ing on the relative humidity (Matsuo & Sasyo, 1981; Heymsfield et al., 2021). Moisture78

and pressure influence precipitation phase, and using wet bulb temperature (also referred79

to as ice-bulb temperature below 0°C) improves rainfall/snowfall discrimination (Ding80

et al., 2014; Behrangi et al., 2018) because the variable depends on temperature, pres-81

sure, and relative humidity. Atmospheric data in reanalysis products including temper-82

ature, relative humidity, wet bulb temperature, and near surface lapse rates can be used83

with other observations including radar to determine precipitation phase at the surface.84

In addition to measured or model-derived meteorological variables, radar profile85

observations provide valuable information about precipitation phase. As snowflakes melt,86

relatively large ice hydrometeors become coated by liquid water and thus can produce87

a higher return in the reflectivity enhanced by a larger dielectric factor for liquid water88

(Austin & Bemis, 1950). This enhanced reflectivity is referred to as the radar bright band.89

Williams et al. (1995) classified precipitation from stratiform, mixed stratiform/convective,90

deep convective, and shallow convective clouds using Doppler radar variables from wind91

profilers in the tropics. White et al. (2002) developed an operational method using Doppler92

spectra from a network of vertically profiling radars in California to identify the radar93

bright band. Studies have explored implications for local hydrology (White et al., 2002;94

Lundquist et al., 2008; Henn et al., 2020), glaciology (Perry et al., 2017; Schauwecker et95

al., 2017), and microphysical differences between rain with and without a bright band96

(Martner et al., 2008; Lin et al., 2020). Methods for identifying melting through verti-97

cally profiling radar observations use variables including reflectivity (Cha et al., 2009),98

Doppler velocity (Perry et al., 2017), Doppler spectra skewness (Garcia-Benadi et al.,99

2020), and neural networks (Brast & Markmann, 2020). Weather radars employ other100

methods using dual polarization capabilities to identify melting (Giangrande et al., 2008;101

Matrosov et al., 2017; Ryzhkov & Zrnic, 2019).102

Current satellite missions that provide valuable precipitation datasets include the103

Global Precipitation Measurement (GPM) Observatory (Hou et al., 2014; Skofronick-104

Jackson et al., 2017) and CloudSat (Stephens et al., 2008). GPM observes precip from105

68°S to 68°N, while CloudSat observes from 82°S to 82°N. Different satellite products em-106

ploy unique radar retrieval phase discrimination methods combining cloud/precipitation107

profile characteristics and reanalysis products. For Cloudsat, an inflection in reflectiv-108

ity and attenuation can indicate the bright band in stratiform rainfall (Matrosov, 2010;109

Lebsock et al., 2020), while Liu (2008) employ a +2°C temperature threshold for snow-110

fall/rainfall discrimination. For GPM Dual-Frequency Precipitation Radar (DPR), en-111

hancements in the profile dual frequency ratios of reflectivity indicate bright bands (Le112

et al., 2016; Chandrasekar & Le, 2020). However, it remains challenging to get reliable113

precipitation measurements near the surface due to ground clutter. The satellite radar114

blind zone – radar observations directly above the surface that are affected by ground115

clutter - ranges from ∼700 m to over 2 km above the surface depending on surface type116
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(e.g., ocean versus land) and topography (Casella et al., 2017; Bennartz et al., 2019; Val-117

divia et al., 2022). In the case of shallow snowfall, satellite radars underestimate precip-118

itation rate and occurrence (Maahn et al., 2014; McIlhattan et al., 2020). Satellite in-119

cidence angle has also been shown to affect observations resulting in underestimation of120

shallow precipitation (Hirose et al., 2021). In the case of rain falling at the surface, the121

satellite radar blind zone also poses an obstacle, masking vertical gradients in drop size122

and potentially obscuring liquid precipitation entirely when the melting level is shallow.123

Watters et al. (2018) showed that shallow bright bands were misidentified as surface clut-124

ter in GPM DPR resulting in retrievals above the melt layer. For passive sensors, such125

as the GPM Microwave Imager (GMI), surface type and snow cover contribute further126

to challenges in phase discrimination at the surface (Skofronick-Jackson et al., 2015). Skofronick-127

Jackson et al. (2019) showed that using the Sims and Liu (2015) method with wet-bulb128

temperature and near surface lapse rates reduced differences between GPM DPR and129

Cloudsat surface precipitation retrievals. GPM DPR overestimates snowfall, but using130

2 m wet bulb temperature from reanalyses improves phase discrimination (You et al.,131

2021). Also, there are ongoing updates and improvements to the GPM DPR phase dis-132

crimination and retrievals of precipitation rate (Hirose et al., 2021; Meneghini et al., 2021).133

New and upcoming satellite observing systems will enhance observations of clouds and134

precipitation and capture precipitation closer to the surface. In addition, planned satel-135

lite missions such as the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE136

Illingworth et al., 2015) and the Atmospheric Observing System (AOS; https://aos.gsfc.nasa.gov/)137

are being designed with Doppler radar capabilities.138

Ground-based radars - especially vertically pointing profiling radars - provide in-139

sights to near surface precipitation processes that may be obscured in the satellite radar140

blind zone. This work analyzes precipitation phase from the radar Doppler velocity by141

identifying and analyzing the height where ice melts to rain defined as the rain-snow level.142

The analysis provides insights to rain-snow levels in the context of observing near sur-143

face precipitation within the satellite radar blind zone using Doppler radar capabilities.144

The following questions are addressed with the ultimate goal of providing robust datasets145

that can be used to evaluate satellite-derived surface precipitation phase and improve146

the accuracy of such retrievals: How do rain-snow levels vary throughout the year? Do147

the macro and microphysical characteristics of rainfall events differ as a function of rain-148

snow level? How can these observations be coupled with ancillary measurements such149

as reanalyses to better address uncertainties in remote sensing retrievals of surface pre-150

cipitation type? A continuous, multi-year, multi-instrument site installed at the National151

Weather Service (NWS) Weather Forecast Office (WFO) in Marquette, Michigan pro-152

vides a unique set of observations to examine precipitation phase and these questions153

in the Midwest region of the United States. Section 2 describes the instrumentation and154

data used in this work. Section 3 outlines the methodology used to identify rain-snow155

levels from radar profile observations. Section 4 presents the radar rain-snow level re-156

sults and the macro and microphysical characteristics of the rainfall events. Section 5157

expands upon results to address applications related to satellite-based rain rate retrievals158

and surface phase discrimination. Section 6 concludes and summarizes key points from159

the analysis.160

2 Instrumentation and Data161

This study uses observations from a continuous, multi-year suite of instruments at162

Marquette, MI (MQT; Pettersen, Kulie, et al., 2020; Kulie et al., 2021; Shates et al., 2022).163

The MQT instrument suite is located at the MQT NWS WFO, 13 km inland of Lake164

Superior and 426 m above sea level. The MQT NWS provides surface meteorological mea-165

surements including air and dew point temperature (2 m) and wind speed and direction166

(10 m) with 5-minute resolution. In 2014, an enhanced snowfall instrument suite was in-167

stalled, which includes a Micro Rain Radar and Precipitation Imaging Package. MQT168
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observations have been used to explore cold season precipitation characteristics at MQT.169

Pettersen, Kulie, et al. (2020) examined snowfall regimes: shallow lake effect snow and170

deep synoptically forced snow. Kulie et al. (2021) further characterized MQT snowfall171

regimes, including enhancements of shallow and deep snowfall from the effects of orog-172

raphy and Lake Superior. The Great Lakes Region also experiences precipitation from173

atmospheric rivers (Slinskey et al., 2020; Mateling et al., 2021), and Mateling et al. (2021)174

illustrated that atmospheric river events impact the MQT site and often lead to enhanced175

precipitation rates and cold-season rain events.176

2.1 Micro Rain Radar177

The METEK MicroRain Radar 2 (MRR) is a 24 GHz (K band) vertically profil-178

ing frequency-modulated, continuous wave Doppler radar (Klugmann et al., 1996). The179

MRR is portable and relatively inexpensive, and uses relatively low power, which make180

it useful for observing precipitation across remote regions including mountainous sites181

and Antarctica (Kneifel et al., 2011; Schirle et al., 2019; Shates et al., 2021; Cooper et182

al., 2022; Gorodetskaya et al., 2014). The MRR was originally deployed and evaluated183

for measuring rainfall in remote regions (Peters et al., 2002; Maahn & Kollias, 2012). In184

addition, MRR observations have been used in identifying melting in stratiform rain (Cha185

et al., 2009; Brast & Markmann, 2020; Garcia-Benadi et al., 2020). The MRR observa-186

tions were processed using the Maahn and Kollias (2012) method providing 1-minute res-187

olution of equivalent radar reflectivity (Ze; dBZ), Doppler velocity (Vd; ms-1) and spec-188

tral width (ms-1). The processing also improves the sensitivity of the radar reflectivity189

to -10 dBZ. The operating range height of the radar is 3 km above ground level (AGL)190

and the range resolution is 100 m. Observations below 400 m AGL are removed due to191

ground clutter contamination, and 400 m AGL is defined as the near surface height bin.192

The stability of the MRR was assessed by comparing the 400 m AGL MRR reflectivi-193

ties to NEXRAD radar reflectivities at approximately 400 m AGL (See Appendix A).194

The assessment supports that the MRR is stable in time.195

2.2 Precipitation Imaging Package196

The Precipitation Imaging Package (PIP) is a custom NASA video imager that uses197

a coupled bright light source and high speed camera to capture videos of shadows of falling198

hydrometeors (Newman et al., 2009; Pettersen, Bliven, et al., 2020; Pettersen et al., 2021).199

Image processing of these videos produce tables of hydrometeor microphysical charac-200

teristics at 1-minute resolution, including drop size distributions (DSDs) and particle ve-201

locity distributions (VVDs). The PIP can resolve hydrometeors ranging from 0.4 to 26202

mm with a 0.2 mm resolution. Additional processing provides an effective particle den-203

sity and precipitation rates in liquid water equivalent (Pettersen, Bliven, et al., 2020).204

Additionally, the PIP can effectively discriminate precipitation phase (Pettersen et al.,205

2021).206

2.3 Reanalyses207

This study incorporates reanalysis products from European Centre for Medium-208

Range Weather Forecasts (ECMWF) ERA 5 (Hersbach et al., 2020; C3S, 2021) and the209

NASA Modern-Era Retrospective analysis for Research and Applications MERRA-2 (Gelaro210

et al., 2017). ERA5 has hourly temporal resolution, a spatial resolution of 0.25°x 0.25°,211

and a vertical resolution of 37 pressure levels. MERRA-2 has a three-hourly temporal212

resolution, a spatial resolution of 0.5°x 0.625°, and 42 vertical pressure levels. We use ver-213

tical profiles of temperature and relative humidity at the nearest latitude and longitude214

coordinates to the MQT site: 46.5°N, 87.5°W.215

Vertical profiles in reanalysis products are along pressure coordinates, but must be216

converted to height coordinates for radar profile comparisons. For MERRA-2, the edge217
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height variable (edgeH) in units of m is used. The site elevation (426 m) was subtracted218

from the edge heights under the assumption that layer thicknesses (Bosilovich et al., 2016)219

are originally calculated from sea level. The ERA5 height coordinates are calculated us-220

ing hydrostatic balance and the hypsometric equation (Petty, 2008) using 975 hPa as221

the surface level.222

Profiles of wet bulb temperature are calculated iteratively from the profiles of tem-223

perature and relative humidity (Tamang et al., 2020) with the Brent (1973) optimiza-224

tion method. Vertical profiles of wet bulb temperature are linearly interpolated to in-225

crease temperature resolution to 0.01°C also improving the height resolution. The wet226

bulb temperature can be used to define the melt level in the profile (Stewart et al., 2015;227

Sankaré & Thériault, 2016; Harpold et al., 2017; Cui et al., 2020; Prein & Heymsfield,228

2020; Heymsfield et al., 2021).229

3 Methods230

As snowflakes melt to raindrops, they fall faster towards the surface (Atlas et al.,231

1973). This is apparent in the Doppler velocity (Vd) of a vertically profiling radar where232

the Vd is greater for rainfall than snowfall. In the column above the radar, the transi-233

tion from snow to rain is associated with a distinct Vd increase and is evident in the gra-234

dient of the Vd with respect to height (Williams et al., 1995; White et al., 2002; Pfaff235

et al., 2014; Lin et al., 2020). In this work, we define the rain-snow level (RSL) based236

on a peak inflection in the Vd gradient, which is where the melting is the strongest (Lin237

et al., 2020). The RSL generally appears below the radar reflectivity indicated bright238

band. In addition, the bright band height determined by the dual-frequency reflectiv-239

ity ratio from the GPM DPR has also been shown to agree well with melt level heights240

derived from Vd (Lebsock et al., 2020).241

The rain and RSL identification starts with a threshold for precipitation occurrence242

of radar reflectivity greater than –10 dBZ at the 400 m AGL (Pettersen, Kulie, et al.,243

2020; Mateling et al., 2021; Kulie et al., 2021; Shates et al., 2021). Next, rain and snow244

are separated using a Vd threshold (White et al., 2002) where rain is conservatively cat-245

egorized as having Vd greater than 3 ms-1. This surface phase identification was tested246

and verified with multiple snow-rain transition events using the PIP particle effective den-247

sity product, which accurately discriminates rain versus snow (Pettersen et al., 2021).248

Figure 1a shows observations from the MRR and PIP during a rain to snow transition249

event. Surface precipitation phase from the effective density shows a shift from rain to250

mixed precipitation to snow. The detection of the RSL corresponds to raining periods251

detected by the PIP. Additionally, Pettersen et al. (2021) show that the PIP effective252

density product compares well with methods described by Sims and Liu (2015) that use253

surface wet bulb temperature and near surface lapse rates to determine surface snow-254

fall probability.255

Figure 1b contains an example of a Vd profile and corresponding Vd gradients with256

respect to height (the derivative of Vd with respect to height is designated as dVd) from257

an April rain event. Using the peak change in the gradient of the Vd profile to detect258

melting has been shown effective in stratiform precipitation (Williams et al., 1995; White259

et al., 2002; Pfaff et al., 2014; Lin et al., 2020). White et al. (2002) defined a threshold260

of -7.14 x103 s-1 (-1.5 ms-1/210 m) to flag melting in the Vd profile. For this study, the261

threshold value to identify the height of the RSL is -7.5×10-3 s-1 (-0.75 ms-1/100 m). The262

threshold was determined empirically to effectively separate profiles with and without263

melting in the MRR range, and accounts for the MRR range resolution (100 m). Ad-264

ditionally, the RSL is calculated for downward moving velocities only (toward the radar);265

any upward motions are ignored. For flagged rain associated with melting in the range266

of the radar, more than 90% of the peak dVd magnitudes exceed the threshold. The RSL267

were also evaluated against NEXRAD-identified rain-snow levels for 550+ coincident min-268
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Figure 1. Methods summary and example of rain-snow level identification. (a) Radar reflec-

tivity and Doppler velocity time series are shown for a rain to snow transition event at MQT on

10 April 2015. The rain-snow levels are plotted on the radar reflectivity and Doppler velocity as

white + symbols. The PIP phase observed at the surface is superimposed on to the radar time

series. The black, dashed vertical line in the Doppler velocity time series indicates the time of

the profile explored in the plot to the right. (b) The Vd and dVd are shown. The dVd threshold

is plotted as a blue, dashed vertical line. The blue, solid horizontal line shows the height of the

identified rain-snow level for that minute.

utes of rainfall during 19 different days. The cross correlation coefficient (ρHV) from scan-269

ning radars can be used to identify melting (Giangrande et al., 2008; Matrosov et al.,270

2017; Gatlin et al., 2018; Ryzhkov & Zrnic, 2019). We used scans between 6° and 10° in271

order to avoid ground clutter contamination. The NEXRAD ρHV and MRR RSL are in272

good agreement with differences in values within the range resolution of the MRR (fig-273

ure not shown).274

Rain events without a melting signature within the operating range height of the275

radar (3 km AGL) were flagged as undetected when the following criteria were met: the276

minimum Vd was greater than 3 ms-1 throughout the profile and continuous radar re-277

flectivity values were greater than -10 dBZ throughout the profile up to 3 km AGL. These278

rain events are likely associated with melting above 3 km AGL. The undetected cate-279

gory may also include instances of rainfall without a discernible rain-snow level. Warm280

rain or shallow convective rainfall, which are rare at this site, would not be flagged at281

all, as the dVd threshold would not be met and precipitation echo tops would be too shal-282

low for the continuous radar reflectivity criteria.283

In section 5, we use MRR RSL to evaluate the reanalysis derived melt levels from284

ERA5 and MERRA-2. The temporal resolution for ERA5 is hourly and MERRA-2 is285

3-hourly, while the MRR observations are one-minute resolution. To compare the ob-286

servations to reanalyses with different temporal resolutions, we use a 25-minute thresh-287

old to flag hours. For flagged RSL hours, we compute the mean RSL to represent the288

full hour. We then match the hours of the flagged MRR-determined RSL with the cor-289

responding 3-hourly MERRA-2 time resolution. The 3-hourly resolution is used to com-290

pare the mean MRR RSL, ERA5 and MERRA-2 hours.291
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Figure 2. Distribution of rain-snow levels. The boxes include the 25th to 75th percentile of

the data and the whiskers span from the 5th to the 95th percentile. The solid lines show the

mean values and the black dotted line/point shows the median. To the left of each box, there are

half violin plot showing the empirical distribution of the data for that month.

Table 1. Rain-snow level Summary

Height Category
AGL [km]

0.6 - 1.2 1.2 - 1.8 1.8 - 2.4 2.4 - 3 undetected

Percent Occurrence 9.44% 15.6% 17.59% 22.3% 26.5%

Event hours 31 53 61 85 X

4 Results292

4.1 Analysis of MRR rain-snow levels293

The RSL at MQT vary throughout the year. Figure 2 shows the annual distribu-294

tion of RSL as a box and whisker plot and half violin plots (empirical distributions of295

the data) for all precipitation events when a RSL is observed below 3 km AGL. The sum-296

mer months (JJA) have consistently higher RSL (> 2 km AGL), with the values in July297

and August primarily above 2.5 km AGL. Rain-snow levels during winter months (NDJF)298

occur closer to the surface (RSL < 2 km AGL). The mean RSL is the lowest in January299

at 0.9 km AGL, while the distribution for December is the highest out of the winter months.300

The transition season months (MAM and SON) exhibit substantial spread in the RSL301

ranging from 0.5 km to 3 km AGL. May and October are the two rainiest months in MQT302

(See appendix table B2) and both have the largest RSL range between the 25th and 75th303

percentile (0.7 km to 2.4 km AGL). However, the half violin plots show that October dis-304
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tribution is concentrated below 1 km AGL, whereas the May distribution has a higher305

distribution above 2 km AGL.306

Loosely guided by the vertical resolutions of spaceborne radars (250 – 500 m), the307

RSL are separated into four height ranges to assess whether macro and microphysical308

characteristics depend on RSL: 0.6-1.2 km, 1.2-1.8 km, 1.8-2.4 km, 2.4-3 km AGL. Ta-309

ble 1 summarizes the frequency of occurrence during the full observation period (Jan-310

uary 2014-April 2020) for the observed height categories. During the observational pe-311

riod, 72,290 surface rain minutes were detected by the MRR, with 53,139 flagged as con-312

taining a rain-snow transition. For the 26.5% of occurrences without a detected tran-313

sition, RSLs above 3 km AGL are likely. In June-September, approximately 40-65% of314

the rainfall events did not have a discernible transition in the range of the radar (Table315

A1). The high instance of non-detection in the summer supports that the melting oc-316

curred above the operating range height of the radar. The 2.4-3 km height category has317

the highest percentage of rainfall with a RSL (22.3%). The 0.6-1.2 km height category318

has the lowest frequency of occurrence at 9.44%. The event hours listed in the summary319

table (Table 1) show the number of hours that are represented in each category for re-320

analysis comparisons. The order of increasing number of hours with increasing RSL matches321

with the increasing percent occurrence for the entire observation period.322

4.2 Macro and microphysical characteristics of rainfall323

As snow falls and melts to rain, the radar reflectivity and Doppler velocity observed324

by the radar changes with height. Figure 3 contains two-dimensional histograms that325

composites all rain events observed with flagged RSL in the MRR for the separate height326

categories. The presence of a bright band is apparent with an increase followed by a de-327

crease in reflectivity with decreasing height for height categories (Fig. 3a-d). For RSL328

above 1.8 km AGL, the range of snowfall reflectivities are narrower (10-20 dBZ at heights329

above 1.8 km AGL) than for the near-surface rainfall reflectivities. Near the surface, re-330

flectivities range from 15 dBZ to greater than 30 dBZ (Fig. 3a,b). Reflectivity gradu-331

ally increases toward the RSL (above bright band for the reflectivity) for height cate-332

gory 1.2-1.8 km AGL and 0.6-1.2. For height category 0.6-1.2 km AGL, the reflectivi-333

ties of snowfall above the melting layer have a broader range from 5-18 dBz compared334

to the other height categories. The reflectivities near the surface occur between 10 and335

25 dBZ for the lowest height category (Fig. 3d). Near the surface, the mean reflectiv-336

ity values are 17.8 dBZ, 18.55 dBZ, 21.9 dBZ, and 21.79 dBZ for the four height cate-337

gories 0.6-1.2 km, 1.2-1.8 km, 1.8-2.4 km, 2.4-3 km AGL respectively.338

The snowfall above the RSL has a relatively narrow range of Vd values ranging from339

0 to ∼2.4 ms-1 for all height categories. Below the RSL, the Vds increase and the range340

in Vd broadens (Fig. 3e-h), which also corresponds to a broadening and increase in spec-341

tral width right below the RSL (not shown). The Vd does not continue to broaden to-342

ward the surface after the initial broadening associated with the RSL. The near surface343

Vds for RSL 0.6-1.2 and 1.2-1.8 km AGL range from 3-6 ms-1. (Fig. 3g,h) with mean val-344

ues of 5.2 ms-1 and 5.4 ms-1. The near surface Vd for transitions above 1.8 km AGL have345

the highest occurrence of values exceeding 5 ms-1. The mean Vds are 5.8 ms-1 and 5.8346

ms-1 for the height categories 1.8-2.4 and 2.4-3 km AGL. The highest RSL category (2.4-347

3 km AGL) has Vds exceeding 7 ms-1.348

Figure 4 contains observations of the PIP microphysical characteristics for each RSL349

height category. In the mean drop size distributions (DSDs), there are differences in the350

concentrations of small drops and large drops for RSL height categories (Fig. 4a). For351

the two RSL height categories above than 1.8 km AGL, there is a larger concentration352

of drops with diameters between 1-2 mm than for RSL above 1.8 km AGL. The DSDs353

for RSL below 1.8 km AGL have higher concentrations of drops greater than 2 mm. The354
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Figure 3. Two dimensional histograms of radar profiles of reflectivity and Doppler velocity

from all rain events from observational period. Radar profiles are shown in subplots separated

by RSL height categories: 0.6-1.2 km (a, e), 1.2 -1.8 km (b, f), 1.8-2.4 km (c, g), 2.4-3 km (d, h).

The histograms are normalized by total number of observations for each height category.

shallowest RSL category (0.6-1.2 km AGL) has the highest concentration of drops larger355

than 2.5 mm compared to the other height categories.356

The mean PIP-derived fall speeds for the RSL categories are similar for drop di-357

ameters smaller than 2 mm (Fig. 4b), and they follow the expected curve for the termi-358

nal velocity of raindrops increasing drop size with increasing fall speed (Atlas et al., 1973;359

Atlas & Ulbrich, 1977; Uplinger, 1981). For drops larger than 2 mm, a separation in fall360

speeds emerges between the RSL height categories. Shallower RSL events have lower fall361
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Figure 4. PIP results for RSL height categories (1.2 -1.8 km 1.8-2.4 km, 2.4-3 km AGL) in-

cluding (a): mean drop size distributions, (b) mean fall speeds, (c) one dimensional histogram of

rain rates. In (b), the terminal velocity as a function of drop size are included as a black, dotted

line for Atlas and Ulbrich (1977), and red, dashed line for Uplinger (1981) as described by Serio

et al. (2019).

speeds for the same equivalent diameter drops. Hydrometeors in the lowest RSL height362

category (0.6-1.2 km AGL) do not exceed fall speeds of 7 ms-1, and fall speeds continue363

to decrease for particles larger than 3 mm. The PIP may be observing frozen or partially364

melted particles, or large deformed drops, and this is further discussed in Section 5.1.2.365

The highest RSL category (2.4-3 km AGL) contains drops with fall speeds greater than366

8 ms-1.367

Higher RSL height categories are observed to have higher rain rates (Fig. 4c). All368

RSL categories contain a distribution with a high concentration of low rain rates. The369
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one-dimensional histogram shows that for the lowest detected RSL (0.6-1.2 km AGL),370

the PIP observes rain rates up to 5 mmh-1. The next height category has a higher num-371

ber of observations of low rain rates, and the PIP measures rates up to 6 mmh-1. Rain372

rates reach up to 8 mmh-1 for precipitation transitions between 1.8 and 2.4 km AGL,373

and RSL values between 2.4-3 km AGL have the highest rain rates, reaching 10 mmh-1.374

Figure 5. Two dimensional histograms of PIP rain rates in relation to MRR near surface

reflectivity for separate RSL height categories AGL: (a), 1.2 -1.8 km (b), 1.8-2.4 km (c), 2.4-3

km (d). The MRR near surface reflectivity is defined at 400 m AGL because ground clutter can

impact MRR observations below 400 m AGL.

The near-surface MRR reflectivity values and corresponding PIP rain rates are com-375

pared for the RSL height categories in the two-dimensional histograms shown in Fig. 5.376

For RSL above 1.8 km AGL, there are a larger number of rain rates exceeding 1 mmh-1
377

and near surface reflectivity is dominated by values greater than 20 dBZ (Fig. 5c,d). Rain378

events with RSL below 1.8 km AGL are dominated by rain rates less than 1 mmh-1 (Fig. 5a,b).379

The RSL between 0.6 and 1.2 km AGL have the highest concentration of near-surface380

reflectivities between 10 and 25 dBZ (Fig. 5a).381

5 Discussion382

5.1 Seasonality and the satellite radar blind zone383

Rain-snow levels vary seasonally at MQT from January 2014-April 2020. The re-384

sults show that the winter months have lower RSL, occurring below 2 km AGL. Dur-385

ing shoulder-season months, we see the largest spread in RSL (Fig. 2). We found that386

for approximately 40% of the raining events with a detected RSL (27% for all rain events387

detected) the RSL was below 2 km AGL. Rain-snow levels respond to the seasonal change388

in temperature. During the cold season, most precipitation falls as snow at MQT, but389

Mateling et al. (2021) showed that atmospheric river events reaching the site increase390

the likelihood of rainfall. Surface air temperatures associated with many shallow RSL391

rainfall events were also near 0°C (not shown), which further underlines the challenge392

in using a temperature threshold to separate snow, rain-snow transitions, and freezing393

rain (Stewart et al., 2015) within the satellite radar blind zone.394
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Depending on surface type and the signal of the precipitation, the satellite radar395

blind zone ranges 720 m to 2 km (Casella et al., 2017; Bennartz et al., 2019), and over396

land in non-mountainous regions, measurements may be difficult to observe below 1.25397

km. For CloudSat, attenuation from melting contributes to uncertainties with DSDs and398

precipitation retrievals (Matrosov, 2010). In GPM DPR, shallow melt layers result in399

poor phase classification in the winter (Pejcic et al., 2020), and the shallow bright band400

can be misidentified as ground clutter (Watters et al., 2018). In addition, scanning weather401

radars may also be affected by shallow melting layers, as radar beams intersecting the402

melting layer are affected by attenuation (von Lerber et al., 2014). Weather radars may403

also overshoot the melting layer due to range and beam curvature effects (Norin et al.,404

2015, 2017; Watters et al., 2018; Pettersen, Kulie, et al., 2020), Also, ground clutter ob-405

scures detection of shallow melting layers in weather radar (Giangrande et al., 2008).406

Figure 6. Monthly cumulative distribution functions (CDFs) for all detected RSL from Jan.

2014- Apr. 2020. The distributions are expressed as percents.

Figure 6 contains a two-dimensional composite of monthly cumulative distribution407

functions (CDFs) for the RSL. The monthly CDFs show the percentages of the RSL ob-408

served below each 100 m bin resolution for each month of the year (resolution of the MRR).409

The 2D CDF summary provides insights into the fraction of scenes for which the RSL410

may be difficult to observe through a space-based radar as a function of blind zone depth.411

In January, effectively 100% of the melting layers occur below 1.5 km AGL. More than412

60% of the RSL in February are observed below 1.5 km AGL. In December, approximately413

40% of the RSL are below 1.5 km AGL. As spring months progress towards summer months,414

the CDFs decrease with increasing height, indicating that there are higher RSL in the415

distribution even though there are some shallow transitions (Fig. 2). Beginning with Septem-416
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ber, the CDFs show that the melt levels are closer to the surface for a higher percent-417

age of the observations, although the spread is still large (Fig. 2).418

The results of the RSL height categories show a separation in the macro and mi-419

crophysical characteristics of rainfall with RSL above and below 1.8 km AGL. The fol-420

lowing discussion will describe the RSL as shallow for height categories below 1.8 km AGL421

(RSL: 0.6-1.2 km and 1.2-1.8 km AGL) and intermediate for RSL above 1.8 km AGL422

(RSL: 1.8-2.4 km and 2.4-3.0 km AGL). The term intermediate reflects the fact these423

RSL are not shallow, but are also within the range of the radar, which is limited to be-424

low 3 km AGL.425

5.1.1 Intermediate rain-snow levels426

Rain-snow levels above ∼2 km AGL are likely to be correctly identified by space-427

borne radars, as they are generally occurring above the blind zone, depending on sur-428

face type and presence of orography (Casella et al., 2017; Bennartz et al., 2019). Watters429

et al. (2018) showed that phase detection in GPM DPR was better in summer months430

than winter months because of the relatively higher bright bands. The MRR reflectiv-431

ity profiles show that there is a notable increase in reflectivity associated with the RSL432

(Fig.3a,b), and retrievals using reflectivity gradients would capture the RSL. The PIP433

rain rates corresponding to the near-surface MRR reflectivities are concentrated greater434

than 1 mmh-1 for the intermediate height categories (Fig.5c,d). PIP observations show435

that these rain events also tend to have higher rain rates that exceed 6 mmh-1 (Fig. 4c).436

Correspondingly, higher melting levels have been shown to be associated with higher rain437

rates (Henn et al., 2020; Prein & Heymsfield, 2020).438

The microphysical characteristics of intermediate height categories suggest precip-439

itation processes occurring below the RSL. The surface-based observations of DSDs for440

intermediate height categories contain a higher concentration of small drops (effective441

diameters between 1 and 2 mm). The high concentration of small drops suggests the oc-442

currence of drop breakup as the rain drops fall below the melt level. As the raindrops443

fall, they collide and break up resulting in more and smaller drops (List & Gillespie, 1976).444

Prein and Heymsfield (2020) describe that increasing melt levels results in an increase445

in warm rain processes including collision and coalescence. The high number concentra-446

tion of small drops is consistent with heavier rainfall associated with a higher melt level.447

Other in-situ or remote sensing measurements would be needed to further explore the448

processes occurring as the drops fall.449

5.1.2 Shallow rain-snow levels450

Rain-snow levels below 1.8 km AGL may pose a challenge for spaceborne remote451

sensing retrievals of rain rate, due the likelihood of occurring within the satellite radar452

blind zone (Casella et al., 2017; Watters et al., 2018; Bennartz et al., 2019; Pejcic et al.,453

2020). The occurrence of RSL is also valuable to assess in a warming climate with a shift454

from snow to rain in northern latitudes (Tamang et al., 2020) due to increasing melt level455

heights (Prein & Heymsfield, 2020). In addition, melting heights decrease with increas-456

ing latitude (Lundquist et al., 2008; Cannon et al., 2017), which suggests that changes457

from snowfall to rainfall in high latitudes may be challenging to observe within the satel-458

lite radar blind zone.459

During the shallow RSL events, the MRR reflectivities near the surface range from460

10 to greater than 20 dBZ. The reflectivity of the snowfall above the melt level remains461

below 20 dBZ (Fig. 3c,d). Above the RSL, the MRR reflectivity two-dimensional his-462

tograms show that the reflectivities associated with snowfall steadily increase with de-463

creasing height. While the radar reflectivity magnitude is likely affected by attenuation464

above the melting level, the steady increase with decreasing height may suggest aggre-465
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gation processes (Field, 2000; Shates et al., 2021) prior to melting. Dolan et al. (2022)466

explored microphysical processes of precipitation cases through dual-polarized scanning467

radar observations; in regions where the snowflake habit above the bright band was iden-468

tified as aggregates there was a steady increase in reflectivity above the bright band. Also,469

snowfall characteristics such as snow density are useful for melting layer models in quan-470

titative precipitation estimation with weather radars (von Lerber et al., 2014). The range471

of near-surface reflectivities for these RSL rain events have lower values compared to the472

intermediate RSL height categories, and the PIP observed rain rates are concentrated473

below 1 mmh-1 (Fig. 5a,b).474

Proximity of the RSL to the surface impacts the DSDs and fall speeds of hydrom-475

eteors. The DSDs for the shallow RSL height categories contain a larger concentration476

of drops with diameters greater than 3 mm compared to the intermediate RSL height477

categories, and even drops as large as 6 mm are observed (Fig. 4a). The occurrence of478

these larger hydrometeors is consistent with there being less time and distance for the479

drops to break up into smaller drops, as the melt level is much closer to the ground (List480

& Gillespie, 1976; Yuter et al., 2006; Stewart et al., 2015). Gatlin et al. (2018) showed481

that lower and thicker melting layers resulted in larger rain drops in observed DSDs. The482

PIP also observed that fall speeds start to decrease for drops larger than 3 mm (decreas-483

ing from 6 ms-1 to less than 4 ms-1). One possibility is that the PIP is observing large484

deformed droplets where the droplet deformation is affecting fall speeds (Wang & Prup-485

pacher, 1977). Yuter et al. (2006) showed the occurrence of large rain drops (effective486

diameters > 6 mm) in mixed precipitation events using PARSIVEL disdrometer mea-487

surements. These large drops were formed from aggregates that had melted, but did not488

have time or distance to break up. Also, larger hydrometeors with the lower fall speeds489

may suggest that some of these shallow RSL events contain mixed precipitation that is490

reaching the surface. The habit of the ice crystals above the melting layer can also in-491

fluence the distance required to fully melt ice particles (Sankaré & Thériault, 2016; Stew-492

art et al., 2015), and the mass of the snowflakes impacts the DSDs of the raindrops (Fujiyoshi493

& Muramoto, 1996; Dolan et al., 2022). Lee et al. (2020) also found that the microphys-494

ical characteristics of snowfall above the bright band influenced the size and concentra-495

tions of raindrops at the surface. Above the melt level, the increasing reflectivity with496

decreasing height suggests that many of these rain events may have snow aggregation497

occurring aloft (Field, 2000; Shates et al., 2021; Dolan et al., 2022) particularly as the498

temperature increases towards melting (Lamb & Verlinde, 2011) leading to potentially499

large, partially melted aggregates/wet snow reaching the surface.500

5.2 Remote Sensing Applications501

5.2.1 Z-R Relationships502

In order to obtain a precipitation rate from a radar reflectivity value, it is neces-503

sary to use a reflectivity (Z) to rain rate (R) relationship. A Z-R power law relationship504

and coefficients are influenced by the microphysical characteristics of rainfall including505

the number density, size and fall speeds of rain drops (Atlas et al., 1973; Steiner et al.,506

2004). Satellite radar precipitation retrievals used with GPM DPR depend on precip-507

itation phase discrimination to assume a DSD for rain or particle size distribution for508

snowfall including stratiform versus convective assumptions (Skofronick-Jackson et al.,509

2019). There are differences in stratiform and convective rainfall microphysical charac-510

teristics that affect precipitation retrievals (Bringi et al., 2003; Steiner et al., 2004). In511

addition, Martner et al. (2008) and Lin et al. (2020) report differences in the Z-R rela-512

tionships between bright band and non bright band stratiform rainfall due to microphys-513

ical processes (collision and coalescence only versus melting snowflakes grown through514

ice processes).515
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From the near-surface MRR reflectivity values and PIP rain rates, we are able to516

obtain empirically-derived Z-R relationships. Figure 7 shows operational Z-R relation-517

ships, empirical RSL Z-R relationships, and mean PIP rain rates for MRR reflectivity518

bins. The operational Z-R include: Z = 130R2 Cool Season (east) Stratiform, Z = 200R1.6
519

Marshall Palmer Stratiform, Z = 300R1.4 Summer Deep Convective (NWS, 2015). These520

specific Z-R relations are applied to NEXRAD observations, which are S-band (∼10 cm521

wavelength). The empirical MRR-PIP Z-R are Z = 133R2.1, Z = 83R2.5, Z = 50R2.7,522

Z = 101R2.2 for RSL height categories 0.6-1.2, 1.2-1.8, 1.8-2.4, 2.4-3 km AGL respectively.523

While the MRR and NEXRAD do not operate at the same frequency, both mostly ob-524

serve liquid precipitation in the Rayleigh scattering regime. Possible non-Rayleigh ef-525

fects for the K-band radar observations are likely limited to very intense precipitation526

events that are rarely observed at MQT, especially for stratiform rainfall with relatively527

low melting levels. The mean rain rates from the PIP and the corresponding Z-R curves528

for the shallow RSL height categories (RSL <1.8 km AGL) are distinct from the Mar-529

shall Palmer Z-R relationship for stratiform rain, but match well with the Z-R relation-530

ship used by the NWS at MQT, the cool season (east) stratiform Z-R (Fig. 7a,b). The531

fall speeds and the DSDs suggest the presence of some wet snow (Fig. 4a,b), but the Z-532

R is still effective for these shallow RSL (e.g., Licznar and Krajewski (2016) showed that533

rain and rain with wet snow Z-R resemble each other).534

Figure 7c,d shows that the PIP mean rain rates and the Z-R relationships for the535

intermediate RSL height categories (RSL >1.8 km AGL) do not match the existing Z-536

R relationships used for cool season stratiform rain, nor the Marshall Palmer stratiform537

rain, nor deep convective rain used at the Chicago, Illinois NWS NEXRAD radar (KLOT).538

The two intermediate RSL height categories (1.8-2.4 km and 2.4-3 km) also have differ-539

ent Z-R relationships. The rain rates for RSL 2.4-3.0 km AGL have higher rain rates than540

those between 1.8-2.4 km for a reflectivity range of 15 and 25 dBZ. However, rain rates541

for reflectivities greater than 25 dBZ are higher RSL between 1.8-2.4 km. The unique542

Z-R relationships are likely a result of the distinct microphysical characteristics (e.g., drop543

size distributions; Fig. 4a). The DSDs and Z-R relationships suggest that accounting for544

the height of the melting level may be important for radar retrievals of precipitation.545

5.2.2 Evaluation of profile wet bulb temperature546

Reanalysis products are commonly used with satellite radar observations to deter-547

mine surface precipitation phase and retrieve snow or rain rates (e.g., Liu, 2008; Skofronick-548

Jackson et al., 2019; Lebsock et al., 2020; You et al., 2021). The CloudSat precipitation549

products use reflectivity attenuation to separate convective and stratiform precipitation,550

and the melting (freezing) level to separate solid and liquid precipitation (Lebsock et al.,551

2020). The ECMWF temperature and humidity profiles are used for the melt layer model552

in CloudSat products (Haynes et al., 2009). Vertical profiles of temperature and rela-553

tive humidity from reanalysis products provide these ancillary data. Here, we define re-554

analysis melt levels (ML) at the 0°C, 0.5°C and 1°C isotherms using profiles of wet-bulb555

temperature (Tw) calculated from ERA5 and MERRA-2 temperature and relative hu-556

midity profiles. The number of hours included from each RSL height category in this anal-557

ysis are outlined in Table 1. The MRR RSL and ERA5 ML are matched up with the 3-558

hourly resolution of MERRA-2 ML.559

The vertical structure of temperature during a precipitation event largely controls560

the surface phase (Stewart et al., 2015; Sims & Liu, 2015; Harpold et al., 2017). The Tw561

profile (i.e. ML) provides additional information for phase discrimination by identify-562

ing the onset of melting (Fig. 8). Figure 8(a-c) contains scatter plots comparing the MRR563

RSL and the ML at Tw of 0°C, 0.5°C and 1°C. There is high correlation between the MRR564

RSL and ML for all three of the Tw. Generally, the RSL occur below the ML, which is565

consistent with the fact that the snow particles gradually melt through the melt layer,566

and the distance to fully melt depends on the microphysical characteristics of the snow-567
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Figure 7. Z-R curves calculated from near surface MRR reflectivity and PIP rain rates for

each height category 0.6-1.2 km (a), 1.2 -1.8 km (b), 1.8-2.4 km (c), 2.4-3 km (d). The mean

rain rates are calculated for 21 reflectivity bins ranging from 10 to 30 dBZ. The Z-R curves were

obtained from the the mean rain rates between 10 and 30 dBZ. In this reflectivity range, there

were a minimum of 100 rain rates (minutes) per reflectivity bin. The mean rain rates and corre-

sponding Z-R relations are compared to Z-R relations used with NWS Doppler weather radars

(WSR-88D): Marshall Palmer Stratiform, Cool Season Stratiform at Marquette, MI (KMQT),

and Summer Deep Convective at Chicago, IL (KLOT).

fall (White et al., 2002; Stewart et al., 2015). The mode differences between the reanal-568

ysis ML and MRR RSL (reanalysis ML - MRR RSL) at the 1°C ML are 0 m for MERRA2569

and 100 m for ERA5, respectively. For the 0.5°C and 1°C MLs, there are an increasing570

number of points above the one-to-one line indicating that some of the reanalysis ML571

are flagged below the RSL (Fig.8b,c). At the 0.5°C ML, both ERA5 and MERRA-2 have572

mode differences of 200 m. Compared to the 0°C ML, the points for the 0.5°C and 1°C573

ML are closer to the one-to-one line for both reanalysis ML. The mode differences for574

MERRA-2 0°C range between 200-400 m, while the mode for the ERA5 0°C difference575

is 300 m. ERA5 has a higher Pearson correlation coefficient than MERRA-2 between576
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Figure 8. Scatter plots of melt levels from ERA5 and MERRA-2 reanalyses against MRR

rain-snow levels. The one-to-one line is shown in blue. The subplots compare MRR RSL and the

height in the profile where the wet bulb temperature is 0°C (a), 0.5°C (b) and 1°C (c). When

there is a temperature inversion in the profile resulting in multiple instances of 0°C, 0.5°C and

1°C, then the highest occurrence represents the melt level. Pearson correlation coefficients be-

tween the RSL and ML from ERA5 and MERRA-2 are shown in each plot.

the MRR RSL and the ML (≥0.88), but the correlation is still high for MERRA-2 for577

all of the ML (≥0.85). In general, the RSL and ML appear to agree the most at Tw of578

1°C for ERA5 and MERRA-2.579

Knowing how the RSL (or reflectivity bright band height) compare to the melt-580

ing level is valuable for forecasting models (Henn et al., 2020) and for satellite precip-581

itation retrievals (Sims & Liu, 2015; Lebsock et al., 2020). For nineteen vertically pro-582

filing radars on the west coast of the US, there was a ±250 m bias between the modeled583

melt level (temperature of 0°C) and the radar detected bright band (Henn et al., 2020).584

Cui et al. (2020) showed that surface Tw = 0.5°C was the best threshold for separating585

rain and snow along mountain-sides. Lundquist et al. (2008) showed that there was a586

difference of -400 to 200 m between the radar snow level and the surface rain-snow tran-587

sition, but the difference varied between locations. At a mountainous site and coastal588

site in South Korea, Cha et al. (2009) found the error between the bright band height589

and radiosonde freezing level height was 329 m and 367 m, respectively. On average, White590

et al. (2002) showed the rawinsonde melting level was 192 m above the radar bright band.591

Cannon et al. (2017) investigated space-based bright band heights from GPM DPR with592

MERRA-2 freezing levels over the west coast of the US and over the eastern Pacific for593

atmospheric river events, and found that there was good agreement with a mean differ-594

ence of 356 m. In the same study, Cannon et al. (2017) found that the mean absolute595

error between GPM-DPR bright band heights and the ground-radar network was 284596

m. Schauwecker et al. (2017) compared reanalysis freezing levels to MRR snow level heights597

in the tropical Andes, and that MRR-derived levels were 240 m (220 m) below MERRA-598

2 (ERA-Interim) reanalysis levels. While these numerous studies use different methods599

in identifying melting in the radar and defining melting levels (dry bulb vs wet bulb tem-600

perature), our results are consistent with the difference between the RSL and ML from601

previous studies.602
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6 Conclusions603

This study illustrates the annual distribution of rain-snow levels over Marquette,604

Michigan from January 2014 to April 2020, and the associated micro and macro phys-605

ical characteristics of rainfall at the surface. Additionally, applications of RSL height cat-606

egories are assessed against Z-R relationships and retrieval assumptions using reanaly-607

sis data products. The work combines ground-based vertically profiling radar, surface608

video disdrometer measurements, and reanalysis products for analyses of the rainfall char-609

acteristics as a function of RSL.610

Vertically profiling Doppler radar observations were used to identify RSL through-611

out the year. The results illustrate a seasonal cycle in the height of the RSL with shal-612

low RSL (below 1.8 km AGL) occurring in winter months and intermediate RSL (above613

1.8 km AGL) in summer months. Seasonal transition months, for example May and Oc-614

tober, showed substantial spread in RSL, ranging from below 1 km AGL and up to 3 km615

AGL. The shallow RSL in winter, spring and fall (particularly below 1 and 1.5 km AGL)616

may be challenging to detect using current space-based radar observations, while future617

missions should consider optimizing radar capabilities to more effectively identify shal-618

low melt layers. These results highlight a need to investigate satellite bright band height619

and thickness in winter and seasonal transition months over mid-latitude ground-based620

sites. In addition, the shallow RSL could potentially be missed or impact observations621

by ground-based scanning weather radars. Understanding the signature of melting in Doppler622

radar profiles is relevant for future satellite observing systems including EarthCARE and623

AOS, which will be able to detect vertical motions in clouds and precipitation with Doppler624

capabilities. Future studies could continue to explore rain-snow levels in the Great Lakes625

Region with the MRR, NEXRAD weather radar at MQT, GPM DPR bright band heights,626

CloudSat rain products, and upcoming missions.627

Near-surface radar observations and microphysical characteristics show differences628

for rain with shallow versus intermediate RSL. Intermediate RSL rainfall have higher near-629

surface reflectivity and Doppler velocity values. Microphysical characteristics show that630

DSDs have larger concentrations of small drops (effective diameter < 2 mm ) and higher631

rain rates for intermediate RSL. For the shallow RSL, there are relatively more large hy-632

drometeors (effective diameter >3 mm) in the DSDs, but slower fall speeds indicating633

that these rain events may also include partially melted snowflakes (mixed-phase pre-634

cipitation) or large deformed drops.635

From the PIP and MRR observations, we empirically derived and compared the636

reflectivity to rain rate (Z-R) relations for rainfall from different RSL height categories.637

For both shallow RSL categories (< 1.8 km AGL), the Z-R curves are similar to the Z-638

R relation used for the NWS S-Band weather radar (KMQT) in cool season stratiform639

rain. The empirically derived Z-R curves for the intermediate height categories (RSL >640

1.8 km AGL) were distinct from cool season stratiform rain, the Marshall Palmer strat-641

iform rain, and also deep convective Z-R relations used for multiple NWS radars. The642

operational Z-R curves indicate that the relations are underestimating rainfall from the643

intermediate RSL.644

This study explored reanalysis-derived melt levels associated with rainfall at MQT.645

Profiles of wet-bulb temperature were derived from MERRA-2 and ERA5 profiles of tem-646

perature and relative humidity to obtain melt levels at 0°C, 0.5°C and 1°C isotherms.647

We compare rain-snow levels to reanalysis melt levels, and show especially high agree-648

ment heights at 0.5°C and 1°C.649

Rain-snow levels were investigated at a site in the Upper Great Lakes Region with650

implications for satellite detectability of rainfall near the surface. Shallow RSL are likely651

to be particularly challenging for satellite radars to detect and may be an increasing area652

of interest with the warming climate and a shift from snow to rain in the mid and high653
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latitudes. In addition, impactful precipitation events such as atmospheric rivers are re-654

sponsible for warm, intense precipitation in the Midwest and may be further linked to655

rain in the cold seasons. The insights presented in this work are valuable for the plan-656

ning and designing any future satellite radars in consideration of the satellite radar blind657

zone.658

Appendix A Micro Rain Radar and NEXRAD659

The radar reflectivity values from the MRR and NEXRAD are compared for 7 rain660

events (1 per year) from Jan. 2014 - Apr. 2020. The MRR is frequently used in remote661

locations for studying precipitation without ways to assess how the radar performs over662

time, and this comparison allows us to assess the stability of the MRR over time. Re-663

flectivities from the 400 m AGL height bin are used from the MRR. To obtain NEXRAD664

observations at a similar height bin, we use reflectivities in the 2.4° elevation scan at a665

range of 10 km from the radar. The horizontal scans from the NEXRAD do not include666

observations directly above the MRR because the MRR is adjacent (50 m) to the weather667

radar and is in the radar cone of silence. It is also important to note that the NEXRAD668

observations are from a horizontal volume scan and will include spatial differences in pre-669

cipitation (which is why the distributions are not a one-to-one match). To work with the670

NEXRAD observations, we used the Python Atmospheric Radiation Measurement (ARM)671

Radar Toolkit Py-ART (Helmus & Collis, 2016). Importantly, the distributions from the672

respective radars indicate that the MRR calibration is stable over the 7 year period and673

the reflectivity values do not drift (Fig. A1) In addition, the reflectivities from the two674

radars are comparable suggesting that the MRR reflectivities are largely unbiased. Ta-675

ble A1 shows that the median reflectivities for the events are similar for the MRR and676

NEXRAD. For most events, the difference between the radar medians are within 2 dB677

of each other.678

Table A1. Median reflectivity values for each event for MRR and NEXRAD

event MRR NEXRAD

7 June 201422-24 UTC 18.75 16.5

30 May 20151-6 UTC 19.36 17.5

4 June 201613-18 UTC 26.37 24.5

29 June 20170-2 UTC 19.82 19.0

8 October 201814-22 UTC 18.73 18.5

10 June 20197-10 UTC 17.98 17.0

4 April 20204-9 UTC 20.37 19.0

Appendix B Rain summary679

This section contains tables for occurrence and minutes for each month during the680

study period. Table B1 shows percent of rain per month where melting was not detected681

and melting likely occurred above 3 km AGL. Table B2 summarizes the total number682

of minutes for rain per month observed Jan. 2014-Apr. 2022 for RSL and rain with un-683

detected RSL. These total minutes do not include shallow convective rainfall.684
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Figure A1. Normalized distributions of radar reflectivities from the NEXRAD and MRR at

MQT. MRR reflectivites are at 400 m AGL, and the NEXRAD reflectivities are from the 2.4° el-

evation scan at 10 km range from the radar. Each distribution is from a different example event

per year during within the observation period: (a) 7 June 2014, 22-24 UTC; (b) 30 May 2015, 1-6

UTC; (c) 4 June 2016, 13-18 UTC; (d) 29 June 2017, 0-2 UTC; (e) 8 October 2018, 0-5 UTC; (f)

10 June 2019, 7-10 UTC; (g) 4 April 2020, 4-9 UTC.

Appendix C Open Research685

Ground-based remote-sensing observations from the Micro Rain Radar and Pre-686

cipitation Imaging Package hosted at the Marquette, MI National Weather Service Of-687
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Table B1. Rain occurrence with undetected RSL

JAN 0.00 %

FEB 0.00 %

MAR 2.26 %

APR 1.99 %

MAY 12.18 %

JUN 47.23 %

JUL 66.89 %

AUG 55.72 %

SEP 43.61 %

OCT 17.26 %

NOV 7.75 %

DEC 0.09 %

a Undetected RSL January 2014-April 2020.

Table B2. Total rain minutes per month

JAN 887

FEB 1238

MAR 2789

APR 6898

MAY 11099

JUN 9298

JUL 5008

AUG 6989

SEP 8476

OCT 11617

NOV 3343

DEC 4648

a Includes rain with and without a detected RSL.

fice have been uploaded to an online data repository (doi: 10.5281/zenodo.7325232). NEXRAD688

data for Marquette were accessed August 2022 and were downloaded from the NOAA689

National Centers for Environmental Information. The Python Atmospheric Radiation690

Measurement (ARM) Radar Toolkit Py-ART was used to work with NEXRAD obser-691

vations (doi: 10.5334/jors.119). ERA5 data were downloaded from the Copernicus Cli-692

mate Data Store (CDS) and were accessed in February 2022. MERRA-2 data were down-693

loaded from the NASA Goddard Earth Sciences Data and Information Services Center694

and were accessed in February 2022.695
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