
1. Introduction
Coronal mass ejections (CMEs) are large-scale eruptions of the solar coronal plasma and magnetic fields expelled 
into the solar wind. CMEs can create magnetic storms in the Earth's magnetosphere that are responsible for severe 
geomagnetic effects ranging from breakdown in radio communications to damage of sensitive electronics on 
satellites and even disrupting the power grid. Therefore it is imperative to obtain reliable long-term predictions 
of space weather events driven by CMEs.

Current state-of-the-art modeling capabilities involve numerical simulations using coupled first-principles and/
or empirical models. A prominent example is the Space Weather Modeling Framework (SWMF) (Gombosi 
et  al.,  2021; Tóth et  al.,  2005, 2012) that models domains from the upper solar chromosphere to the Earth's 
atmosphere and/or the outer heliosphere using efficient coupling between multiple models and is capable of full 
Sun-to-Earth simulations. Typically, as shown in Figure 1, the model chain consists of obtaining the background 
solar wind in Stage 1, generating and propagating a CME through the heliosphere to Earth in Stage 2, and finally 
calculating the magnetospheric impact via geospace models in Stage 3. Along the way, various observational 
data (in the blue boxes) are also available to calibrate or validate the model. The SWMF offers predictions for 
several macroscopic plasma quantities, including those that critically impact the magnetosphere and the resulting 
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that offers full Sun-to-Earth simulations by computing the background solar wind, CME propagation, 
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of solar wind speed and density at 1 au, both crucial quantities for CME propagation and strength. Sobol' 
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Plain Language Summary Space weather events such as those driven by coronal mass ejections 
(CMEs) can result in severe geomagnetic storms that impact critical infrastructure. Accurate long-term 
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geomagnetic perturbations, such as the north-south component of the magnetic field, proton density, and solar 
wind velocity.

These models have seen continued improvements and their predictions have been validated for various phases 
of the solar cycle against a suite of observations, for instance by Jin et al. (2012), Sachdeva et al. (2019, 2021), 
Huang et al. (2022), and van der Holst et al. (2022). However, reliable long-term predictions of impact as well 
as the uncertainty surrounding the predictions are crucially needed for informed decision-making in oper-
ational settings. Producing a probabilistic forecast in such settings is challenging. The uncertainty space is 
high-dimensional and the dimensions grow as the simulation is propagated through the model chain (Figure 1). 
Coupled with the high computational cost of simulations, it becomes costly, even prohibitive, to produce an 
ensemble of runs that accurately portrays the uncertainty of the overall system. Updating the uncertainty over 
the course of a simulation with newly acquired remote and in situ observations of space weather events is also 
non-trivial but highly important. Consequently, systematic uncertainty quantification (UQ) and data assimilation 
(DA) are needed to address these challenges.

UQ involves characterizing the uncertainty for a system. Uncertainty may arise due to unknown model parame-
ters (e.g., the Poynting flux emanating from the photosphere and driving and heating the solar wind), incomplete 
initial and boundary conditions (e.g., the solar magnetograms that greatly impact solar wind solutions and have 
major uncertainty in estimating the magnetic field near the polar regions), missing or simplified physics (e.g., 
magnetic reconnection, auroral arcs), etc. We focus on parametric uncertainty in this work. UQ tasks may be 
broadly divided into two types: forward UQ and inverse UQ (e.g., see Debusschere et al. (2017)). Forward UQ 
entails the propagation of uncertainty from inputs to outputs of a model; inverse UQ deals with updating (reduc-
ing) the uncertainty of model parameters (and subsequent model predictions and their uncertainty) given new 
observational data. The key difference is that the former is data-free while the latter incorporates data; the latter 
is thus also referred to as DA especially in the context of state-space models from geophysical research. Our main 
goal is to develop the Michigan Sun-to-Earth model with Quantified Uncertainties and Data Assimilation that 
is capable of forward and inverse UQ (i.e., UQ and DA) for each of the main stages for simulating a CME event 
from the Sun to Earth. As shown in Figure 1, we will propagate uncertainty from a stage's parameters, update the 
uncertainty with relevant observational data and generate a more confident ensemble of simulations, before pass-
ing them onto the next stage. For this paper, we will focus on the forward UQ part of Stage 1: background solar 
wind, using simulations produced by the Alfvén Wave Solar atmosphere Model (AWSoM) within the SWMF.

Forward UQ is typically carried out using Monte Carlo (MC) sampling (i.e., ensemble techniques): first gener-
ating samples of input parameters from their uncertainty distribution, then running the model at each sample 
and lastly analyzing the distribution of the resulting outputs. The number of samples (i.e., simulations) needed 
to fully explore the parameter space using high-fidelity physical models such as those in the SWMF would be 
computationally impractical. Strategies for dimension reduction and surrogate modeling are thus highly valuable 
to mitigate this computational burden. In particular, we will employ techniques of sensitivity analysis to help 

Figure 1. Flow outline of the Michigan Sun-to-Earth model with Quantified Uncertainties and Data Assimilation. This paper 
focuses on forward uncertainty quantification for the highlighted Stage 1: background solar wind.



Space Weather

JIVANI ET AL.

10.1029/2022SW003262

3 of 21

identify a smaller subset of the most important uncertain parameters, thereby achieving dimension reduction 
to the parameter space. Since subsequent UQ and DA tasks will be performed jointly on solar wind parameters 
from Stage 1 together with new parameters associated with the CME and geospace models in Stages 2 and 3, it is 
crucial to keep the parameter space dimension low.

Sensitivity analysis methods (e.g., (Borgonovo & Plischke, 2016) and various articles under Part IV of Ghanem 
et al. (2017)) are concerned with the behavior of a model output quantity of interest (QoI) with respect to changes 
of model inputs, and can be broadly classified as local sensitivity analysis and global sensitivity analysis (GSA). 
Local sensitivity analysis studies the impact of output from perturbations of input around a reference point (e.g., 
local gradient), thus only capture behavior in the neighborhood local to that reference point. In contrast, GSA 
seeks to quantify the impact on the outputs across the entire domain of all possible values the input parameters 
can take. Variance-based GSA (Saltelli et al., 2004, 2008) further takes into account the current state of uncer-
tainty of the model input parameters. These effects are formally quantified through the Sobol' sensitivity indices, 
which decompose the total variance of an output quantity into contributions from the variance of each input 
parameter. Once the most prominent contributors are identified, the other low-impact parameters may be fixed at 
nominal values with only small approximation error in representing the overall uncertainty of the system, thereby 
achieving effective dimension reduction of the parameter space. In addition to dimension reduction, GSA may 
reveal insights about the physical significance of the parameters, and guide future data acquisition that inform the 
most important parameters. Being a part of the forward UQ analysis, GSA is performed in an a priori fashion—
using only model simulations, and not requiring any observational data.

Past efforts related to UQ and sensitivity analysis in solar wind models are summarized here. Poduval et al. (2020) 
focuses on propagating uncertainties in photospheric flux density synoptic magnetograms to the solar wind speed 
predictions at 1 au for three different phases of the solar cycle; however uncertainty from other sources (e.g., 
parametric sources) have yet to be incorporated. Riley et al. (2013) use different combinations of coronal models, 
the base coronal temperature and the spatial resolution of the numerical grid to generate an ensemble of solar 
wind speed predictions. In contrast to the data-free nature and uncertainty perspective of GSA, this work focuses 
on assessing the sensitivity of the model performance (i.e., error measure) when compared to in situ observa-
tions under different input settings. While offering insights on physical significance of the parameters for model 
performance, only two discrete values for the base coronal temperature are considered in the combinations, and 
for a single quiescent time period of the solar cycle. Reiss et al. (2020) propose a prediction system that uses an 
ensemble of solar wind solutions. The ensemble is created by varying the four most important coefficients in the 
near-sun solar wind speed relation from the Wang-Sheeley-Arge (WSA) model that are identified from sensitiv-
ity analysis. Their sensitivities are estimated based on the Elementary Effects Approach (Morris, 1991), which 
computes a global summary of local estimates extracted at multiple points in the input space. The ensemble, 
however, is generated using new points specified on a tensor grid of perturbations from the baseline values of the 
coefficients, which grows exponentially with dimensionality and is not easily scalable.

Our study differs from existing work by employing variance-based GSA for AWSoM that offers sensitivity meas-
ure in the context of model parameters' uncertainty contributions. We also assess the sensitivity results for both 
solar minimum and solar maximum conditions, which correspond respectively to periods of low and high solar 
magnetic activity. We take an approach to perform GSA by building polynomial chaos expansion (PCE) (Ernst 
et al., 2012; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002) surrogate models that are particularly suited for 
extracting the Sobol' indices. PCE represents a random variable in terms of orthogonal polynomial expansions of 
other latent variables. This allows us to explicitly associate the randomness in the QoIs to each physical source 
of uncertainty. In addition to GSA, the PCEs will also allow inexpensive sampling and uncertainty propagation.

The downselect of key parameters from GSA in this work will help mitigate the computational burden of future 
UQ and DA tasks, where new parameters, features and QoIs will enter in the subsequent stages of the CME model 
chain. For example, we can vary flux rope parameters while initializing the CME and consider influence of back-
ground and flux rope parameters jointly. Inverse UQ on the downselected parameters can help constrain them in 
order to obtain accurate background conditions of solar wind velocity and density. This is crucial for estimating 
the propagation speed and strength of the shock wave produced by CMEs launched into the background.

We summarize the key contributions and novelty of our paper as follows.

•  We perform GSA for background solar wind simulations of the AWSoM to identify and downselect the most 
important uncertain parameters.
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•  We construct PCE surrogate models for time-dependent solar wind QoIs and use them to compute the Sobol' 
indices and perform uncertainty propagation.

•  We assess the uncertainty of sensitivity estimates through a bootstrapping procedure.
•  We carry out the analysis for examples of both solar maximum and solar minimum conditions.

The remainder of this paper is organized as follows. Section  2 describes features of AWSoM used for solar 
wind simulations and discusses the model inputs and outputs as part of the simulation setup. Section 3 provides 
details on the formulation and computation of Sobol' indices leveraging PCE surrogates and space filling designs. 
Results and discussions for the overall workflow are presented in Section 4 followed by conclusions and future 
work in Section 5.

2. The Space Weather Modeling Framework
2.1. SWMF and AWSoM

The Space Weather Modeling Framework (SWMF, Gombosi et al., 2021; Tóth et al., 2012) developed at the 
University of Michigan couples together different model components that cover various physical domains provid-
ing a computational capability of modeling the space-weather environment from the Sun to the Earth and/or outer 
heliosphere. With over a million lines of code, the SWMF is a fully functional, well documented software for high 
performance computing. Recently, a major portion of the SWMF source code has been released on Github under 
a non-commercial open source license (https://github.com/MSTEM-QUDA). The full SWMF suite has also been 
publicly available via registration under a user license (http://csem.engin.umich.edu/tools/swmf). The SWMF is 
also available for runs on request through the Community Coordinated Modeling Center at the NASA Goddard 
Space Flight Center (https://ccmc.gsfc.nasa.gov/index.php).

The Alfvén Wave Solar atmosphere Model (AWSoM, Sokolov et al., 2013, 2021; van der Holst et al., 2014, 2022) 
within the SWMF couples the solar corona (SC) and inner heliosphere (IH) components extending from the 
upper chromosphere, through the transition region into the corona up to 1 au and beyond. AWSoM is a global 
three-dimensional (3D) extended magnetohydrodynamic (MHD) model based on the Block-Adaptive-Tree Solar 
wind Roe-type Upwind Scheme (BATSRUS, Powell et al., 1999). It incorporates coronal heating and solar wind 
acceleration due to low-frequency Alfvén wave turbulence (see van der Holst et al. (2014) for detailed description 
of the model equations). The coronal heating is distributed over the isotropic electron temperature and the perpen-
dicular and parallel (with respect to the magnetic field) proton temperatures. AWSoM includes stochastic heating 
and linear wave damping to heat the electrons and protons (Chandran et al., 2011). The model also incorporates 
electron heat conduction and radiative losses based on the Chianti model (Dere et al., 1997) for both collisional 
and collisionless regimes. Recently, the energy partitioning scheme within AWSoM has been improved and been 
validated with Parker Solar Probe observations (van der Holst et al., 2022).

AWSoM is also a data-driven model that uses the radial component of the observed photospheric magnetic field 
at the inner boundary. We can use either spherical harmonics or the finite difference iterative potential solver 
(FDIPS, Tóth et al. (2011)) to extrapolate the observational data to a 3D potential field source surface (PFSS) 
solution. At the inner boundary, the isotropic electron temperature and anisotropic proton temperature are set to 
50,000 K. The density at the inner boundary is set to 2 × 10 17 m −3. The Poynting flux (SA) of the outward prop-
agating Alfvén waves at the inner boundary determines the energy flux entering the domain and is proportional 
to the inner boundary magnetic field strength B⊙ (Fisk, 1996; Fisk & Schwadron, 2001; Sokolov et al., 2013). 
The coefficient 𝐴𝐴 (𝑆𝑆𝐴𝐴∕𝐵𝐵)⊙  is an adjustable parameter with a typical value being 10 6 Wm −2 T −1. The Alfvén wave 
correlation length L⊥ is another parameter of the equation set solved by AWSoM and is proportional to B −1/2 
(Hollweg,  1986). The quantity 𝐴𝐴 L⟂

√

𝐵𝐵  is an adjustable parameter with a typical value of 1.5  ×  10 5  m𝐴𝐴

√

𝑇𝑇  . 
The stochastic heating amplitude and exponents (Chandran et al., 2011) that determine the energy partitioning 
between electrons and protons are typically set to 0.18 and 0.21, respectively.

In this work, we use AWSoM to simulate the solar wind in the SC and IH components of SWMF, which use 3D 
spherical and Cartesian block-adaptive grids, respectively. The steady-state solution is obtained by solving the 
MHD equations in co-rotating frames in both SC and IH domains. The spherical buffer grid that couples the 
SC solution with IH extends from 18 to 20 R⊙. The SC grid covers 1–24 R⊙  and the IH component grid covers 
−250 to 250 R⊙  with the inner boundary at 20 R⊙. The grid block size in the SC domain is 6 × 8 × 8 grid cells 
and 8 × 8 × 8 grid cells in the IH component. We use adaptive mesh refinement to refine the grid where needed, 
including the heliospheric current sheet and a conical region connecting the Sun and Earth.

https://github.com/MSTEM-QUDA
http://csem.engin.umich.edu/tools/swmf
https://ccmc.gsfc.nasa.gov/index.php
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In this region the angular resolution as low as 0.35° so that the CME propagating toward the Earth is well 
resolved. The angular resolution is 2.8° everywhere else in the domain. In the IH component, the domain has 
a smallest cell size of 0.24 R⊙  in the −x direction and 7.8 R⊙  at the outer boundary. The simulation uses local 
time-stepping for 80,000 iterations in SC to relax the solution to a steady state. This is followed by coupling with 
IH for one step. Since the solar wind is super fast magnetosonic in the IH component, it only takes 5,000 iterations 
to obtain a steady-state solution in IH.

All simulations are run on Frontera, a petascale computing system (Stanzione et al., 2020). Thirty two nodes 
equipped with 56 cores per node are used for each simulation, resulting in about 7,000 total CPU hours per 
run/4 hr of wall time.

Over the years, AWSoM has been extensively validated against remote and in situ observations during various 
phases of the solar cycle. AWSoM produces synthetic extreme ultra-violet (EUV) images that have been compared 
to EUV observations from STEREO/EUVI, SDO/AIA, and SOHO/LASCO instruments (Jin et al., 2017; Meng 
et al., 2015; Sachdeva et al., 2019, 2021; van der Holst et al., 2010). The AWSoM predicted structure of the SC 
also compares well with the tomographic reconstructions of the density and temperature of electrons near the 
Sun determined using the Differential Emission Measure Tomography during the quiescent phase (Lloveras 
et al., 2017, 2020, 2022). In addition, comparisons with Interplanetary Scintillation data at various heliospheric 
distances as well as solar wind plasma observations at 1  au have successfully validated the capability of the 
AWSoM model to reproduce the solar wind structure near the Sun as well as in the IH (Sachdeva et al., 2019).

In this work, we will explore simulations of the background solar wind that are conducted for different values in 
the parameter space using AWSoM. In particular, we will perform a priori sensitivity analysis. This assessment 
is a priori in the sense that it is performed without any observation data that would otherwise be needed for DA 
or model calibration. Hence, the procedure is by design an initial probing on the properties of the model itself. 
Through this sensitivity analysis, we aim to identify a small subset of only the most impactful uncertain parame-
ters that contribute the most to the overall prediction uncertainty. We can then focus only on these parameters for 
subsequent compute-intensive tasks, thus achieving a dimension reduction of the uncertainty space.

2.2. Solar Wind Model Input Parameters

We begin by cataloging the uncertain input parameters (i.e., parametric sources of uncertainty) considered in this 
study for simulating the background solar wind using AWSoM. We focus on simulating the background solar 
wind for two Carrington rotation (CR) periods representative of solar maximum (CR2152) and solar minimum 
(CR2208), using exclusively ADAPT-GONG magnetograms. Shown in Table 1, the parameter list includes vari-
ables concerning boundary conditions, sub-model settings, and fitting parameters. Some parameters are categori-
cal, while others are continuous and real-valued. In either case, we specify also the value range each parameter may 
take in this investigation, which are physically meaningful ranges determined based on assessment from subject 
matter experts of the study team and prior studies and literature. The range of stochastic exponent is based on the 
works of Chandran et al. (2011) and Xia et al. (2013). The bounds for PoyntingFluxPerBSi are set to cover 
the most optimal values determined in previous AWSoM validation studies like Sachdeva et al. (2019, 2021). The 
values for LperpTimesSqrtBSi are based on Hollweg (1986). In addition to the lower and upper bounds, 
a constraint is incorporated to restrict the feasible region of FactorB0 and PoyntingFluxPerBSi such 
that their product is less than 9 × 10 5 for solar maximum and less than 1.2 × 10 6 Wm −2 T −1 for solar minimum 
(see Figure 2). This constraint is motivated by the underlying physics where the product term is known to be 
proportional to the total energy injected into the system. Capping the total energy below a reasonable threshold 
eliminates simulations that are not physically meaningful due to excessive kinetic energy density in the simulated 
solar wind.

While the parameter list may be expanded more exhaustively, our selection here are based on the prioritization 
from subject matter experts of the study team. Amongst continuous parameters, only stochastic amplitude is fixed 
at a nominal value of 0.18 based on Chandran et al. (2011) while the remaining free parameters of AWSoM are all 
varied and included in Table 1. Some choices, such as what type of magnetogram should be used or what version 
of the model to use, have been decided from prior studies (Meng et al., 2015; Sachdeva et al., 2019, 2021). Using 
ADAPT-GONG maps with the three-temperature AWSoM code provided better matching with observational 
features at 1 au and smaller value of the curved distance metric defined in those studies that accounts for both 
temporal shift and amplitude errors. Therefore, they are used in this work. The effect of grid resolution was also 
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examined and the choice of grid is based on several exploratory simulations. The grid is fine enough along the 
Sun-Earth line to capture the essential features impacting Earth, but coarse enough to make hundreds of simula-
tions computationally feasible.

To properly convey the state of uncertainty in these parameters, we endow uniform distributions for all parameters 
over their feasible region to represent a flat, non-informative state of uncertainty that does not favor any particular 
area. The choice of uniform distributions appeals to the principle of maximum entropy (Jaynes, 1957), where 
one can show that given a boundary perimeter, the uniform distribution is formed with the fewest additional 
assumptions. We will investigate the effects of uncertainty from these input parameters on the model output QoIs.

2.3. Solar Wind Model Output Quantities of Interest

The primary prediction output of AWSoM are the macroscopic plasma quantities, such as solar wind veloc-
ity, density, ion and electron temperatures, the Alfvén wave turbulence energy densities and the magnetic field 
vector in the 3D computational domain. These primary output variables can be processed into various QoIs, for 
example, synthetic extreme ultraviolet (EUV) images in the low corona, synthetic Thomson-scattered white light 
images, or in situ solar wind and magnetic field values along the Earth orbit. These QoIs can be compared with a 
comprehensive suite of observations including EUV images from STEREO-A EUVI and the SDO AIA, LASCO 
observations of electron density, as well as in situ OMNI data obtained at the first Lagrange point (L1) between 
the Sun and Earth.

Future work on UQ associated with CME events will require accurate predictions of the background solar wind, 
particularly for the radial velocity Ur and proton number density Np as these have a major impact on the propa-
gation speed of the CME and the strength of the shock wave produced by fast CMEs. For this reason, we select 
Ur and Np as the QoIs. In addition to affecting the CME propagation, Ur and Np are most important for space 
weather forecasts while other quantities like plasma temperature or the Bx and By components of the magnetic 
field are less geo-effective. The Bz component is, of course, extremely important, but it typically originates from 
the flux rope driving the CME. Predicting Bz of the background solar wind is very difficult, as it is dominated by 
turbulent fluctuations.

To carry out the sensitivity analysis, we will systematically vary the input parameters described in the previ-
ous section over their distribution, conduct simulations at the different parameter settings for both CR2152 and 
CR2208, and extract the QoIs and assess and attribute their variability (detailed in the next section). Representa-
tive plots of these QoIs from solar wind simulations can be found in Figure 3.

Table 1 
Uncertain Parameters Considered for the Alfvén Wave Solar Atmosphere Model Solar Wind Model

Parameter Value range Description

Categorical parameters

 ADAPT_realization {1, 2, …, 12} Realization index number from ADAPT

 PFSS_method {HARMONICS, FDIPS} Method for obtaining the potential field source 
surface solution

 UseSurfaceWaveRefl {True, False} Extra reflection for high enough transverse 
density gradient

Continuous parameters

 FactorB0 (–) [0.54, 2.7] Multiplicative factor for input magnetogram field

 PoyntingFluxPerBSI (W m −2 T −1) [0.3, 1.1] × 10 6 Inner boundary Poynting flux per magnetic field 
constant of Alfvén waves

 LperpTimesSqrtBSI (m T 1/2) [0.3, 3.0] × 10 5 Stochastic heating profile perpendicular 
correlation length coefficient

 StochasticExponent (–) [0.10, 0.34] Ion stochastic heating profile exponent

 nChromoSiAWSoM (m −3) [2.0, 50.0] × 10 17 Inner boundary density

 rMinWaveReflection (Rs) [1.0, 1.2] Wave reflection switched off below this radius

Note. An additional constraint is imposed to limit the feasible space of FactorB0 and PoyntingFluxPerBSi such that 
their product is less than 0.9 MW m −2 T −1 for solar maximum and less than 1.2 MW m −2 T −1 for solar minimum.
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Figure 2. Scatter plots of MaxPro design samples to perform Alfvén Wave Solar atmosphere Model (AWSoM) simulations for select pairs of input parameters for 
CR2152 (solar maximum, left column) and CR2208 (solar minimum, right column). Each AWSoM run is initiated at each point for a total of 200 runs.
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3. Methodology
3.1. Variance-Based Global Sensitivity Analysis

We focus on variance-based GSA (Saltelli et al., 2004, 2008). Variance of a QoI can be decomposed into contribu-
tions from the uncertainty of each input parameter. Formally, let λ = [λ1, λ2, … , λd] denote the vector of all input 
parameters with an associated uncertainty distribution, ft denote the model, and ft(λ) denote a (time-dependent) 
model output QoI at time t. The Sobol' indices (Sobol, 2003) (defined below) provide a quantitative measure of 
all the inputs λi in terms of their variance contributions to the total variance of the output QoI ft(λ). The key task 

Figure 3. Ensemble of Alfvén Wave Solar atmosphere Model simulation results for CR2152 (solar maximum, left column) and CR2208 (solar minimum, right 
column). Each line is from a different simulation.
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in GSA is therefore to compute these Sobol' indices. Once computed, these indices can be used for dimension 
reduction, where low-sensitivity parameters may be fixed at their nominal values without significantly underrep-
resenting the QoI's variance. The reduced dimension can bring computational savings for downstream tasks such 
as UQ and DA for subsequent CME and geospace simulations.

The main effect (first-order) Sobol' index measures variance contribution solely due to the ith parameter:

𝑆𝑆
𝑡𝑡

𝑖𝑖
=

Var𝜆𝜆𝑖𝑖
(

𝔼𝔼𝜆𝜆∼𝑖𝑖
[𝑓𝑓𝑡𝑡(𝜆𝜆)|𝜆𝜆𝑖𝑖]

)

Var(𝑓𝑓𝑡𝑡(𝜆𝜆))
 (1)

where λ∼i refers to all components of λ except the ith component, 𝐴𝐴 𝔼𝔼𝜆𝜆∼𝑖𝑖
 then denotes the expectation with respect to 

all λ components except for the ith, and 𝐴𝐴 Var𝜆𝜆𝑖𝑖  denotes the variance with respect to only the λi component; 𝐴𝐴 𝔼𝔼 and 
Var without any subscript indicates expectation and variance involving all components. The main effect index is 
always between 0 and 1, and a high value indicates that the ith parameter is an important variance (uncertainty) 
contributor to the QoI. However, a small main effect index by itself does not automatically imply low importance 
for λi, since additional variability may be induced from the interaction of λi with other parameters.

The joint effect (second-order) Sobol' index measures variance contribution due to the interaction of ith and jth 
parameters:

𝑆𝑆
𝑡𝑡

𝑖𝑖𝑖𝑖
=

Var𝜆𝜆𝑖𝑖,𝜆𝜆𝑖𝑖
(

𝔼𝔼𝜆𝜆∼𝑖𝑖𝑖𝑖

[

𝑓𝑓𝑡𝑡(𝜆𝜆)|𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖

])

Var(𝑓𝑓𝑡𝑡(𝜆𝜆))
− 𝑆𝑆

𝑡𝑡

𝑖𝑖
− 𝑆𝑆

𝑡𝑡

𝑖𝑖
. (2)

In a similar manner, sensitivity indices for even higher order interactions (e.g., from simultaneous interactions 
among multiple parameters) can be defined, and the total variance of a QoI can be decomposed into fractional 
contributions through the relation:

1 =

∑

𝑖𝑖

𝑆𝑆
𝑡𝑡

𝑖𝑖
+

∑

𝑖𝑖

∑

𝑗𝑗𝑗𝑖𝑖

𝑆𝑆
𝑡𝑡

𝑖𝑖𝑗𝑗
+

∑

𝑖𝑖

∑

𝑗𝑗𝑗𝑖𝑖

∑

𝑘𝑘𝑗𝑖𝑖

𝑆𝑆
𝑡𝑡

𝑖𝑖𝑗𝑗𝑘𝑘
+⋯ + 𝑆𝑆

𝑡𝑡

123. . .𝑑𝑑
. (3)

Furthermore, the effect hierarchy principle (Section 4.6 of Wu and Hamada (2009)) states that only the lower 
order effects are the most significant. If the main effect and joint effect sensitivity indices sum close to 1, then we 
can conclude that the higher order interactions among parameters are negligible.

A key assumption behind the above definitions of Sobol' indices is that the input parameters are mutually inde-
pendent, that is, their joint distribution can be factored into the products of individual marginal distributions 
p(λi, λj) = p(λi)p(λj). While this is satisfied for a uniform distribution over a rectangular domain formed from 
the various parameter ranges described in Table 1, it is violated when imposing the constraint on the product of 
FactorB0 and PoyntingFluxPerBSi: for example, knowing the value of one parameter provides informa-
tion about what the other parameter could be owing to the constraint, hence they are not independent. There are 
efforts to formulate a generalized GSA for dependent inputs (Chastaing et al., 2012; Da Veiga et al., 2009), but 
they are generally difficult to exercise or requires parameter transformations that are not interpretable compared 
to their original forms. Therefore, we retain the definition derived for the independent setting, but acknowledg-
ing  that some approximation errors are incurred.

The Sobol' indices cannot be computed in closed-form except for very simple models, and generally they need to 
be approximated numerically. While different flavors of efficient MC methods have been developed to estimate 
these indices (Jansen, 1999; Saltelli, 2002; Saltelli et al., 1999, 2010; Sobol, 1990, 2001), the MC nature means 
they still require a large number of model evaluations and can become impractical when each model simulation 
is already expensive: a single AWSoM simulation takes about 7,000 CPU core hours. An alternative strategy is 
then to trade off model fidelity and accuracy for speed, by first building a surrogate model and then using this 
approximate but fast surrogate model to estimate the sensitivity indices. We introduce next a surrogate model 
form that is particularly well suited for estimating the Sobol' indices.

3.2. Polynomial Chaos Expansions

A common surrogate model used for UQ is the PCE. A PCE is a spectral expansion of a random variable, and is 
particularly attractive for GSA as it has a form that allows convenient estimates of the Sobol' sensitivity indices. 
We provide a brief introduction of PCE below, and refer readers to several books and review papers for detailed 
discussions (Ghanem & Spanos, 1991; Le Maître & Knio, 2010; Najm, 2009; Xiu, 2009).
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A real-valued random variable u with finite variance (such as an input parameter or an output QoI) can be repre-
sented by the following expansion (Ernst et al., 2012):

𝑢𝑢(𝜉𝜉1, 𝜉𝜉2, . . . , 𝜉𝜉𝑑𝑑) =

∞
∑

‖ 𝛽𝛽 ‖1=0

𝑏𝑏𝛽𝛽Ψ𝛽𝛽(𝜉𝜉1, . . . , 𝜉𝜉𝑑𝑑), (4)

where ξj are independent reference (latent) variables; d is the number of stochastic degrees of freedom in the system 
(typically the number of uncertain input parameters); bβ are the expansion coefficients; 𝐴𝐴 𝐴𝐴 = (𝐴𝐴1, . . . , 𝐴𝐴𝑑𝑑), ∀𝐴𝐴𝑗𝑗 ∈ ℕ0  , 
is a multi-index; and Ψβ are (normalized) multivariate orthogonal polynomials (basis functions) that are products 
of univariate orthonormal polynomials:

Ψ𝛽𝛽(𝜉𝜉1, . . . , 𝜉𝜉𝑑𝑑) =

𝑑𝑑
∏

𝑗𝑗=1

𝜓𝜓𝛽𝛽𝑗𝑗
(𝜉𝜉𝑗𝑗). (5)

The univariate functions 𝐴𝐴 𝐴𝐴𝛽𝛽𝑗𝑗
 are polynomials of degree βj in ξj, and orthonormal with respect to the probability 

density of ξ (i.e., p(ξ)):

𝔼𝔼[𝜓𝜓𝑘𝑘(𝜉𝜉)𝜓𝜓𝑛𝑛(𝜉𝜉)] =
∫

𝜓𝜓𝑘𝑘(𝜉𝜉)𝜓𝜓𝑛𝑛(𝜉𝜉)𝑝𝑝(𝜉𝜉) 𝑑𝑑𝜉𝜉 = 𝛿𝛿𝑘𝑘𝑘𝑛𝑛𝑘 (6)

where δk,n is the Kronecker delta. While different choices of ξ and ψβ are available under the generalized Askey 
family (Xiu & Karniadakis, 2002), we employ uniformly distributed ξ and Legendre polynomials in this study to 
conveniently mirror the uniform distributions of the input parameters from Table 1. Finally, the infinite sum in 
Equation 4 is truncated in practice:

𝑢𝑢(𝜉𝜉1, . . . , 𝜉𝜉𝑑𝑑) ≈
∑

𝛽𝛽∈

𝑏𝑏𝛽𝛽Ψ𝛽𝛽(𝜉𝜉1, . . . , 𝜉𝜉𝑑𝑑), (7)

where 𝐴𝐴   is some finite index set. For example, one popular choice for 𝐴𝐴   is the “total-order” expansion of degree 
p, where 𝐴𝐴  = {𝛽𝛽 ∶ ‖ 𝛽𝛽 ‖1 ≤ 𝑝𝑝} .

Under this formulation, we can write the PCE for input parameter and output QoI at a time t as

𝜆𝜆𝑖𝑖(𝜉𝜉1, . . . , 𝜉𝜉𝑑𝑑) ≈
∑

𝛽𝛽∈

𝑐𝑐𝛽𝛽Ψ𝛽𝛽(𝜉𝜉1, . . . , 𝜉𝜉𝑑𝑑) (8)

𝑓𝑓𝑡𝑡(𝜉𝜉1, . . . , 𝜉𝜉𝑑𝑑) ≈
∑

𝛽𝛽∈

𝑏𝑏𝑡𝑡,𝛽𝛽Ψ𝛽𝛽(𝜉𝜉1, . . . , 𝜉𝜉𝑑𝑑). (9)

Since the distribution of ξ is strategically chosen to match the type as our input parameters (i.e., uniform distribu-
tions in our case), the PCE for λi can be determined easily as a linear expansion (i.e., cβ are simply the scale and 
shift terms acting on ξi).

We note that PCE does not require independence for λi unlike the Sobol' sensitivity indices. A full dependent 
treatment is possible but difficult in practice. We provide more details on this in the remark at the end of the 
subsection. In our work, since the majority of our inputs are independent and uniform except for FactorB0 
and PoyntingFluxPerBSi as explained in Section 3.1, we elect to use the simple linear mapping setup from 
uniform ξ to λ described above but acknowledge that this entails some approximation to the PCE.

The main task is then to compute the PCE coefficients bt,β for the output QoI. We take a regression approach to 
estimate these coefficients, by solving the following linear system:

⎡

⎢

⎢

⎢

⎢

⎣

Ψ𝛽𝛽1

(

𝜉𝜉(1)
)

⋯ Ψ
𝛽𝛽(𝑛𝑛𝑡𝑡)

(

𝜉𝜉(1)
)

⋮ ⋮

Ψ𝛽𝛽1

(

𝜉𝜉(𝑁𝑁)
)

⋯ Ψ
𝛽𝛽(𝑛𝑛𝑡𝑡)

(

𝜉𝜉(𝑁𝑁)
)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑏𝑏𝑡𝑡𝑡𝛽𝛽1

⋮

𝑏𝑏𝑡𝑡𝑡𝛽𝛽𝑛𝑛𝑡𝑡

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑓𝑓
(

𝑡𝑡𝑡 𝑡𝑡
(

𝜉𝜉(1)
))

⋮

𝑓𝑓
(

𝑡𝑡𝑡 𝑡𝑡
(

𝜉𝜉(𝑁𝑁)
))

⎤

⎥

⎥

⎥

⎥

⎦

𝑡 (10)

where 𝐴𝐴 Ψ𝛽𝛽𝑛𝑛  refers to the nth polynomial basis function, 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑛𝑛  is the coefficient corresponding to that term, and ξ (m) 
is the mth regression (training) point. Ψ is thus the regression matrix where each column corresponds to a basis 
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function and each row corresponds to a regression point. To prevent overfitting, we can include an ℓ2 (ridge 
regression) or an ℓ1 (LASSO) regularization.

Once the PCE for the QoIs is constructed, we can extract the Sobol' indices analytically from their expansion 
coefficients via the formulas:

��
� =

1
Var(��(�))

∑

�∈�
�2�,� , where � = {� ∈  ∶ �� > 0, �� = 0, � ≠ �}

��
�� =

1
Var(��(�))

∑

�∈��
�2�,� where �� = {� ∈  ∶ �� > 0, �� > 0, �� = 0, � ≠ �, � ≠ �}

 (11)

The QoI total variance can be calculated as

Var(𝑓𝑓 (𝜆𝜆)) =
∑

0≠𝛽𝛽∈

𝑏𝑏
2
𝑡𝑡𝑡𝛽𝛽
. (12)

We note that while model error is introduced by using PCE surrogate instead of the original AWSoM model, 
PCE also eliminates any MC error that would arise from estimating the Sobol' indices (e.g., Saltelli (2002)) using 
simulations of the original AWSoM model, since the Sobol' indices can now be calculated analytically from the 
PCE coefficients. Hence, PCE makes a tradeoff from MC error (approximate sensitivity for the original AWSoM 
model) to model error (exact sensitivity for the approximate PCE model). We mitigate PCE model error by means 
of cross-validation to optimize the model hyperparameters (e.g., polynomial degree, regularization parameters).

Remark: The theory for Sobol' sensitivity analysis only requires the input random variables to be independent, 
and does not need them to be identically distributed nor follow uniform distributions (see bottom of page 2424 
of Chastaing et al. (2012), which only requires the joint probability measure to be factorizable into product of 
marginal measures—i.e. independence). Computing Sobol' indices for dependent variables is non-trivial and 
remains an active area of research. For example, Chastaing et al. (2012) proposed procedures but they are diffi-
cult and expensive to use. These advanced algorithms are outside our paper scope, we reserve them for future 
explorations.

On the other hand, PCE does not require independence in model input variables, but a full dependent treatment is 
difficult in practice. In Equations 8 and 9 we write PCEs for both the input parameter λi and the output QoI ft at a 
time t. When λi's are independent and ξi is selected from the same distribution family as λi, then Equation 8 simpli-
fies to a linear function only in ξi. If λi's are dependent, then one can build a full, nonlinear PCE that depends 
on all ξ’s. However, this needs to be done with care, since we need the PCE for λi to be invertible in order to use 
Equation 9 as a surrogate model: starting from a desired input λ, invert for the corresponding ξ using inverse of 
Equation 8, then plug this ξ into Equation 9 to obtain a prediction of ft.

To more easily impose this invertibility, works such as Jakeman et al. (2019) suggested strategies to transform 
dependent variables into independent ones (e.g., via the Rosenblatt transformation) and Gram Schmidt Orthog-
onalization methods to build basis functions for arbitrary probability measures. Here, since the majority of our 
inputs are independent and uniform except for FactorB0 and PoyntingFluxPerBSi, we elect to use a linear trans-
formation from uniform ξ to λ but we acknowledge this entails some approximation to this PCE.

3.3. Design of Computer Experiments

We briefly describe how to select the training points ξ (m) to form the regression system for constructing the PCEs 
in the previous section. Since each AWSoM simulation is computationally expensive, as described in Section 2.1, 
a judicious selection of the simulation input values can be quite beneficial. While one may approach this task 
by defining and optimizing some criteria that reflects the quality of estimated Sobol' sensitivity indices, such a 
goal-oriented approach is non-trivial to formulate. Instead, we take an explorative strategy and seek space-filling 
designs (Joseph, 2016) that can “cover” the parameter space well.

One popular space-filling approach is the Latin Hypercube design (LHD) (McKay et al., 1979), which can be 
constructed using a maximin design criterion that maximizes the minimum distance between all pairs of points 
(Morris & Mitchell, 1995). The maximin LHD for a multi-dimensional space can retain good space-filling prop-
erties when projected onto any single dimension, but not when projecting onto multi-dimensional subspaces 
(i.e., when focusing on a subset of multiple parameters) (Joseph, 2016). We thus adopt an improved Maximum 
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Projection (MaxPro) design (Joseph et al., 2015, 2020) that uses a weighted distance measure to account for 
projections to all possible subspaces.

Another notable advantage of using MaxPro designs is that new samples can be added in a sequential manner 
where the importance for different factor levels based on sensitivity results can be incorporated into the objective 
function (Wang et al., 2018).

MaxPro design is typically defined for a box domain. With the only non-rectangular domain in our study being 
the constraint on the product of FactorB0 and PoyntingFluxPerBSi (see Figure 2), we simply generate 
MaxPro sample in the bounding rectangle and then reject the points that lay outside the constraint.

4. Results and Discussion
4.1. AWSoM Solar Wind Simulations

We perform solar wind simulations using the AWSoM model for CR2152 (solar maximum) and CR2208 (solar 
minimum). The model input parameter values are generated from their feasible ranges summarized in Table 1 
using the MaxPro design described in Section 3.3. Scatter plots of these samples for select pairs of input param-
eters are shown in Figure 2, with the left-most panel showing the constraint on the product of FactorB0 and 
PoyntingFluxPerBSi. Given our computational budget, 200 runs are conducted for each of the two CR 
periods.

From the 200 simulations for each CR, 5 of CR2152 and 1 of CR2208 did not converge while all others succeeded. 
The results of all successful runs are analyzed to filter out those that are not physically meaningful. We extract 
the plasma state along Earth's orbit and a simulation is discarded if both of the following exclusion criteria are 
triggered:

•  the radial velocity exceeds 900 km/s or falls below 200 km/s, and
•  the number density exceeds 100 cm −3.

In the end, 174 runs are retained for CR2152 and 199 for CR2208. The final ensemble of select predicted QoIs 
at 1 au are shown in Figure 3. The parameter combinations for which the simulations either did not converge or 
resulted in a non-physical result are listed in Supporting Information S1 document accompanying this paper, and 
plotted for select parameters.

4.2. UQ and GSA Using PCE Surrogate

We use the set of AWSoM simulations to construct PCE surrogates following Section  3.2. In particular, we 
construct a separate PCE at 577 time points of each QoIs: radial velocity (Ur) and number density (Np), for both 
CR2152 and CR2208. The input space of each PCE is 6 dimensional, encompassing all the continuous input 
parameters from the second half of Table 1.

The parameters in the top half of Table 1 are categorical (i.e., not ordinal), and they do not have any intrin-
sic ordering of their values or a notion of distance. They are not true random variables and quantities such as 
mean and variance are undefined. Therefore, the concept of sensitivity for categorical variables is ill-posed 
altogether. Calculating the mean, variance, and subsequently sensitivities would require encoding these variables 
to numerical values directly or learning a transformation to a latent space of random variables, as done in Zhang 
et al. (2020) and Häse et al. (2021) for Gaussian processes. Sensitivities calculated in this fashion would strongly 
depend on the chosen encoding.

As a result, we consider sensitivity only for the six continuous parameters. Note that uncertainty contributions 
from the three categorical parameters are still captured since they are varied in generating the AWSoM simu-
lation set. Our PCEs are thus built by marginalizing out (averaged over) the three categorical parameters, that 
is, 𝐴𝐴 𝐴𝐴PCE(𝜆𝜆cont) = 𝔼𝔼𝜆𝜆catg

[

𝐴𝐴PCE

(

𝜆𝜆cont, 𝜆𝜆catg

)]

 and trained to predict the QoI values based on the six continuous input 
parameters. One may also build the PCEs and study sensitivities by conditioning at a nominal value of the cate-
gorical parameters, that is, 𝐴𝐴 𝐴𝐴PCE

(

𝜆𝜆cont, 𝜆𝜆
∗
catg

)

 , however fixing 𝐴𝐴 𝐴𝐴∗
catg  would be ignoring the uncertainty from these 

categorical variables.



Space Weather

JIVANI ET AL.

10.1029/2022SW003262

13 of 21

Ridge regression is adopted for computing the PCE coefficients in the regression system Equation 10, with regu-
larization parameter selected through cross-validation. We employ PCEs with total order expansions of degree 2. 
While higher degree polynomials may be attempted, the increased number of unknown coefficients is more prone 
to overfitting (greater model complexity) given our small sample size (around 200). We also verified that increas-
ing to degree 3 does not lead to substantial differences of the surrogate predictions. We present the time-averaged 
cross-validation (CV) error corresponding to optimal choices of regularization parameter for QoIs in CR2152 
(solar maximum) varying with PCE degrees of 1, 2, 3, and 4 in Figure 4. Ten-fold CV is used to find the optimal 
regularization parameter from a range [10 −2, 10 2]. The CV errors between degree 2 and degree 3 PCEs are very 
similar, while degree 1 and degree 4 PCEs result in noticeably higher errors. Since degree 2 PCE has a simpler 
model form with fewer unknown coefficients than degree 3 (28 vs. 84 coefficients) while achieving similar error 
performance, we thus elect to use PCEs with a total order expansion of degree 2.

All PCE constructions are carried out using PolyChaos.jl (Mühlpfordt et al., 2020), an open source package 
available in the Julia programming language (Bezanson et al., 2017). Once the PCE surrogates are available, 
we can use them to inexpensively perform MC-based uncertainty propagation by first drawing samples from 
the uncertainty distribution of the input and then using the PCEs to evaluate the output QOIs. Figure 5 presents 
the  predictive uncertainty on the QoIs highlighting their mean (solid red line) ±2 standard deviations (red shaded 
area), and overlaid with boxplots to illustrate more details of the distribution at different time-slices. The sample 
mean (blue dashed line) is identical to the surrogate mean (red solid line).

Using Equations 11 and 12, we can calculate the Sobol' sensitivity indices directly from the PCE coefficients. In 
particular, we focus on the sensitivity for radial velocity Ur and number density Np with respect to all the continu-
ous input parameters from Table 1. The main effect indices 𝐴𝐴 𝐴𝐴𝑡𝑡

𝑖𝑖
 for Ur and Np are plotted over time during CR2152 

and CR2208 in Figure 6. At any particular time instant, 𝐴𝐴 𝐴𝐴𝑡𝑡

𝑖𝑖
 represents the relative variance contribution from the 

ith parameter. For CR2152 (solar maximum), overall FactorB0 and LperpTimesSqrtBSI appear to be 
most dominating followed by PoyntingFluxPerBSi, while rMinWaveReflection, StochasticEx-
ponent, and nChromoSi_AWSoM have much smaller contributions. For CR2208 (solar minimum), Lperp-
TimesSqrtBSi has a much smaller contribution than it is in CR2152 (solar maximum). This agrees with 
our expectations: the LperpTimesSqrtBSi parameter has the most impact along open magnetic field lines 
coming from coronal holes, which are more likely to be at low latitude during solar maximum and therefore have 
an impact at Earth orbit. FactorB0 and PoyntingFluxPerBSi appear to be the most influential, especially 
for the number density Np. For Ur, StochasticExponent also has significant contributions particularly for 
solar minimum. The sum of main effect indices from all parameters at a time instant can also provide an indica-
tion regarding the interaction effects among parameters. If the sum is much less than 1, the interactions between 
parameters is non-negligible. For example, the sum of Np's sensitivity indices for CR2152 is close to 0.5 around 
3 July 2014, suggesting there is significant parameter interactions at that time.

Figure 4. Cross-validation (CV) error plots with polynomial chaos expansion degree for QoIs in CR2152. The CV error corresponding to optimal choice of 
regularization parameter (minimum error at each time point), time-averaged, and plotted for polynomial chaos expansions (PCEs) of degree 1, 2, 3, and 4. The CV 
errors between degree 2 and degree 3 PCEs are very similar, while degree 1 and degree 4 PCEs result in noticeably higher error.
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Finally, we summarize the time-dependent Sobol' sensitivity indices by computing the time-averaged main 
effect and joint effect indices in Figure 7, where the (i, j)th element indicates the time-averaged value of Si,j 
and the diagonal elements represent Si. The time-averaged sensitivity indices confirm the observations from the 
time-dependent results that the most important variance contributors for QoIs Ur and Np in CR2152 (with a thresh-
old chosen as Si > 0.2 for either QoI) are FactorB0, PoyntingFluxPerBSi and LperpTimesSqrtBSi, 
and for CR2208 are FactorB0 and PoyntingFluxPerBSi. The remaining parameters' contributions, when 
time-averaged, are very small. As a sanity check, we can also see that the averaged main and joint sensitivities 
approximately sum to 1, as suggested by Equation 3.

We note that PCE in general cannot constrain its output value to be positive only, whereas the number density 
Np can only be positive. As a result, we have occasionally encountered negative Np predictions from the PCE 
surrogates. One possible technique to guarantee positivity is to build PCEs for predicting logarithm of the QoIs 
(i.e., log  Np), and then extract the non-logarithm values by taking the exponent. However, subsequently computed 
Sobol' sensitivity indices then indicate the parameter contributions on the variance of log  Np and not of Np, which 
may alter the ranking of parameters (Borgonovo et al., 2014). In our testing with the log-QoIs setup, we see 
example from Figure 8 that indeed Np (CR2152) is now guaranteed to be always positive and its corresponding 
Sobol' indices support the same conclusion of the most sensitive parameters, but with different rankings (similar 
results for CR2208 are omitted for brevity).

4.3. Uncertainty of the Sobol' Index Estimates

Given that our Sobol' indices are estimated from PCEs built using small sample size (around 200), it is impor-
tant to assess the uncertainty of these estimates. Ideally, one can repeat the GSA procedure with new batches 
of samples and compute the variance of the repeated trials, but such a process would be prohibitively expen-
sive. Therefore, we use a bootstrapping technique that only uses existing and available samples, summarized in 
Algorithm 1.

Figure 5. Predictive mean (red line) ±2 standard deviation (shaded area) for QoIs Ur and Np using polynomial chaos expansion surrogates for CR2152 (solar 
maximum, left column) and CR2208 (solar minimum, right column). The boxplots at selected locations give additional information about the distributions, showing the 
median and interquartile range (IQR); whiskers extend to 1.5 IQR on either side. The sample mean (dashed blue line) is essentially equal to the predictive mean.
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We vary the sample size n, using values from {20, 40, 60, … , 140}. For example, when n = 20, 20 samples are 
drawn with replacement from the existing set of 174 simulations for CR2152 (solar maximum). Then we build the 
PCE using only the 20 samples and compute the time varying Sobol' indices from PCE coefficients as described 
in Section 3.2. The 𝐴𝐴 𝐴𝐴𝑡𝑡

𝑖𝑖
 are computed for both radial velocity Ur and number density Np and are summarized by 

averaging over time (denoted by Si here).

We then repeat the process of sampling, building the PCE and computing the time averaged Sobol' indices 1,000 
times (number of replications K) for each of the input factors. These results are presented with the mean and 
standard deviation of the Sobol' indices in Figure 9 for different n, to characterize the variability of estimated 
values of Si.

Observing the trend in the Sobol' indices, we see that the Si obtained for each of the QoIs approach the values 
obtained with the full sample set (i.e., the diagonal values in heatmaps of Figure 7) as n is increased. But if n is 
round 20 or 40 samples, the sensitivity computations would carry significant errors, and given how close all the 
values are, it would be very difficult to distinguish which parameters are actually important. As we increase n, the 
mean values and the smaller spread indicates that the rankings of the most influential parameters do not shuffle 
when samples are drawn multiple times, making it less likely to rank a non-influential parameter as influential 
by mistake. The mean Si values at n = 120 and n = 140 are quite close to the values we obtained with the full 
sample set, and the rankings of the most influential parameters are reasonably robust over multiple replications.

Our bootstrapping analysis carries several limitations. First, as n approaches the full data set size, the samples 
would have considerable overlap between repetitions. Therefore, the true variability of the Sobol' indices would 
be underestimated in our procedure. Second, in order to reduce the computational burden of the repeated PCE 
and GSA calculations needed, ordinary least squares without regularization is used for the new PCE regression 

Figure 6. Time-varying main effect 𝐴𝐴 𝐴𝐴𝑡𝑡

𝑖𝑖
 for CR2152 (solar maximum, left column) and CR2208 (solar minimum, right column), for QoIs Ur and Np.
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problems in the bootstrapping study. Finally, the above results use the time-averaged Sobol' indices for brevity, 
and the uncertainty for each time point (i.e., for sensitivity results shown in Figure 6) is not presented, though this 
can be computed as well.

5. Conclusions and Future Work
We conducted variance-based GSA for background solar wind during CR2152 (a solar maximum period) and 
CR2208 (a solar minimum period) simulated using the AWSoM from the SWMF. We computed the main and 
joint effect Sobol' sensitivity indices for output QoIs of radial velocity and proton number density at 1 au, with 
respect to the uncertainty of a number of input parameters including FactorB0, nChromoSi_AWSoM, Poyn-
tingFluxPerBSi, LperpTimesSqrtBSI, StochasticExponent, and rMinWaveReflection. 
The Sobol' indices quantify the fractional contribution of and individual input parameter's uncertainty toward the 
total variance of the QoIs, and therefore provide sensitivity information that reflects the current state of parameter 
uncertainty. Furthermore, this GSA can be performed in a data-free manner, without needing any observation 
data at 1 au.

We presented an efficient computational procedure for estimating the Sobol' indices by creating PCE surrogate 
models from a data set of AWSoM simulations selected through space-filling designs of the model parameters. 
Once these PCEs became available, the Sobol' indices were calculated analytically from the expansion coeffi-
cients. At the same time, forward UQ was also achieved by sampling the PCEs to obtain predictive uncertainty for 
the QoIs. The uncertainty of the estimated Sobol' indices were also estimated through a bootstrapping procedure. 
Overall, we found the most impactful parameters to be FactorB0, PoyntingFluxPerBSi, and Lperp-
TimesSqrtBSI for CR2152 (solar maximum); and FactorB0 and PoyntingFluxPerBSi for CR2208 
(solar minimum). For future tasks, only these parameters need to be kept as uncertain while the other low-impact 
parameters may be fixed at nominal values, thereby achieving dimension reduction of the parameter space.

Figure 7. Time-averaged main effect Si and joint effect Sij for CR2208 (solar maximum, left column) and CR2208 (solar minimum, right column) for QoIs Ur and Np.



Space Weather

JIVANI ET AL.

10.1029/2022SW003262

17 of 21

There are several limitations of our current work that warrant interesting future studies. Our results are obtained 
from two specific CR periods, and the generalizability of the high-sensitive parameters to other solar maxi-
mum and solar minimum periods needs to be tested. On a more technical side, the Sobol' indices definitions 
employed are for input parameters with independent uncertainty distributions. However our constraint between 

Figure 8. Comparison of results as an illustration when building surrogate on the original Np (left column) and log(Np) (right column). Predictions of Np at 400 test 
points from trained polynomial chaos expansion surrogates are shown on the top row, while the bottom row shows the time-averaged sensitivity heatmaps.

Algorithm 1. Procedure for Bootstrapped GSA
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FactorB0  and PoyntingFluxPerBSi, while justified from a physical understanding of the system, violates 
the independent assumption. As a result, our computed Sobol' indices incur additional error due to this effect, 
and generalized GSA techniques that may accommodate dependent parameter distributions may be explored 
(Chastaing et al., 2012).

Finally, while we have taken the first step toward an overall probabilistic forecast framework of space weather 
events by focusing on UQ of the background solar wind, the next parts of our work will involve DA and the CME 
and geospace stages in completing the Sun-to-Earth model. Computations for these future tasks will benefit from 
the reduced dimension of the solar wind parameter space from this paper.

Acronyms
QoI Quantity of Interest
UQ Uncertainty Quantification
DA Data Assimilation
PCE Polynomial Chaos Expansion
GSA Global Sensitivity Analysis

Figure 9. Mean ± standard deviation (over K = 1,000 replications) time-averaged Si for Ur and Np under different bootstrap set size n in CR2152 (solar maximum, 
left column) and CR2208 (solar minimum, right column). For sample size n = 20, we see that the standard deviation is high and the influential input parameters are 
not separable, however as n increases, the sensitivities converge to the values calculated using all the samples and we can easily and correctly rank the three influential 
parameters.
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CME Coronal Mass Ejection
SWMF Space Weather Modeling Framework
AWSoM Alfvén Wave Solar atmosphere Model
SC Solar Corona
IH Inner Heliosphere

Data Availability Statement
The scripts and routines used to produce the results in this manuscript are available at the University of Michigan 
(UM) Library Deep Blue Data Repository here: Results for “Global Sensitivity Analysis and Uncertainty Quan-
tification for Background Solar Wind in the Alfvén Wave Solar Atmosphere Model”: https://doi.org/10.7302/
g151-gg58. To cite the data, please use: Jivani et al. (2022). A major portion of the SWMF source code has been 
released on Github under a non-commercial open source license (https://github.com/MSTEM-QUDA). The full 
SWMF suite is publicly available via registration under a user license (http://csem.engin.umich.edu/tools/swmf).
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