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Abstract17

Modeling the impact of space weather events such as coronal mass ejections (CMEs) is18

crucial to protecting critical infrastructure. The Space Weather Modeling Framework19

(SWMF) is a state-of-the-art framework that offers full Sun-to-Earth simulations by com-20

puting the background solar wind, CME propagation and magnetospheric impact. How-21

ever, reliable long-term predictions of CME events require uncertainty quantification (UQ)22

and data assimilation (DA). We take the first steps by performing global sensitivity anal-23

ysis (GSA) and UQ for background solar wind simulations produced by the Alfvén Wave24

Solar atmosphere Model (AWSoM) for two Carrington rotations: CR2152 (solar max-25

imum) and CR2208 (solar minimum). We conduct GSA by computing Sobol’ indices that26

quantify contributions from model parameter uncertainty to the variance of solar wind27

speed and density at 1 au, both crucial quantities for CME propagation and strength.28

Sobol’ indices also allow us to rank and retain only the most important parameters, which29

aids in the construction of smaller ensembles for the reduced-dimension parameter space.30

We present an efficient procedure for computing the Sobol’ indices using polynomial chaos31

expansion (PCE) surrogates and space-filling designs. The PCEs further enable inex-32

pensive forward UQ. Overall, we identify three important model parameters: the mul-33

tiplicative factor applied to the magnetogram, Poynting flux per magnetic field strength34

constant used at the inner boundary, and the coefficient of the perpendicular correlation35

length in the turbulent cascade model in AWSoM.36

Plain Language Summary37

Space weather events such as those driven by coronal mass ejections (CMEs) can38

result in severe geomagnetic storms that impact critical infrastructure. Accurate long-39

term forecasts are therefore needed together with uncertainty quantification. In this work,40

we calculate uncertainty and perform sensitivity analysis for the background solar wind41

that has a major impact on the accuracy of the overall CME simulation. Since these mod-42

els have many parameters that carry uncertainty, sensitivity analysis allows us to iden-43

tify the most important ones.44

1 Introduction45

Coronal mass ejections (CMEs) are large-scale eruptions of the solar coronal plasma46

and magnetic fields expelled into the solar wind. CMEs can create magnetic storms in47

the Earth’s magnetosphere that are responsible for severe geomagnetic effects ranging48

from breakdown in radio communications to damage of sensitive electronics on satellites49

and even disrupting the power grid. Therefore it is imperative to obtain reliable long-50

term predictions of space weather events driven by CMEs.51

Current state-of-the-art modeling capabilities involve numerical simulations using52

coupled first-principles and/or empirical models. A prominent example is the Space Weather53

Modeling Framework (SWMF) (Tóth et al. (2005, 2012); Gombosi et al. (2021)) that54

models domains from the upper solar chromosphere to the Earth’s atmosphere and/or55

the outer heliosphere using efficient coupling between multiple models and is capable of56

full Sun-to-Earth simulations. Typically, as shown in Figure 1, the model chain consists57

of obtaining the background solar wind in Stage 1, generating and propagating a CME58

through the heliosphere to Earth in Stage 2, and finally calculating the magnetospheric59

impact via geospace models in Stage 3. Along the way, various observational data (in60

the blue boxes) are also available to calibrate or validate the model. The SWMF offers61

predictions for several macroscopic plasma quantities, including those that critically im-62

pact the magnetosphere and the resulting geomagnetic perturbations, such as the north-63

south component of the magnetic field, proton density, and solar wind velocity.64
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These models have seen continued improvements and their predictions have been65

validated for various phases of the solar cycle against a suite of observations, for instance66

by Jin et al. (2012); Sachdeva et al. (2019, 2021); Huang et al. (2022) and van der Holst67

et al. (2022). However, reliable long-term predictions of impact as well as the uncertainty68

surrounding the predictions are crucially needed for informed decision-making in oper-69

ational settings. Producing a probabilistic forecast in such settings is challenging. The70

uncertainty space is high-dimensional and the dimensions grow as the simulation is prop-71

agated through the model chain (Figure 1). Coupled with the high computational cost72

of simulations, it becomes costly, even prohibitive, to produce an ensemble of runs that73

accurately portrays the uncertainty of the overall system. Updating the uncertainty over74

the course of a simulation with newly acquired remote and in-situ observations of space75

weather events is also non-trivial but highly important. Consequently, systematic un-76

certainty quantification (UQ) and data assimilation (DA) are needed to address these77

challenges.78

UQ involves characterizing the uncertainty for a system. Uncertainty may arise due79

to unknown model parameters (e.g., the Poynting flux emanating from the photosphere80

and driving and heating the solar wind), incomplete initial and boundary conditions (e.g.,81

the solar magnetograms that greatly impact solar wind solutions and have major uncer-82

tainty in estimating the magnetic field near the polar regions), missing or simplified physics83

(e.g., magnetic reconnection, auroral arcs), etc. We focus on parametric uncertainty in84

this work. UQ tasks may be broadly divided into two types: forward UQ and inverse UQ85

(e.g., see (Debusschere et al., 2017)). Forward UQ entails the propagation of uncertainty86

from inputs to outputs of a model; inverse UQ deals with updating (reducing) the un-87

certainty of model parameters (and subsequent model predictions and their uncertainty)88

given new observational data. The key difference is that the former is data-free while the89

latter incorporates data; the latter is thus also referred to as DA especially in the con-90

text of state-space models from geophysical research. Our main goal is to develop the91

Michigan Sun-to-Earth model with Quantified Uncertainties and Data Assimilation (MSTEM-92

QUDA) that is capable of forward and inverse UQ (i.e. UQ and DA) for each of the main93

stages for simulating a CME event from the Sun to Earth. As shown in Figure 1, we will94

propagate uncertainty from a stage’s parameters, update the uncertainty with relevant95

observational data and generate a more confident ensemble of simulations, before pass-96

ing them onto the next stage. For this paper, we will focus on the forward UQ part of97

Stage 1: background solar wind, using simulations produced by the Alfvén Wave Solar98

atmosphere Model (AWSoM) within the SWMF.99

Forward UQ is typically carried out using Monte Carlo sampling (i.e. ensemble tech-100

niques): first generating samples of input parameters from their uncertainty distribution,101

then running the model at each sample and lastly analyzing the distribution of the re-102

sulting outputs. The number of samples (i.e. simulations) needed to fully explore the103

parameter space using high-fidelity physical models such as those in the SWMF would104

be computationally impractical. Strategies for dimension reduction and surrogate mod-105

eling are thus highly valuable to mitigate this computational burden. In particular, we106

will employ techniques of sensitivity analysis to help identify a smaller subset of the most107

important uncertain parameters, thereby achieving dimension reduction to the param-108

eter space. Since subsequent UQ and DA tasks will be performed jointly on solar wind109

parameters from Stage 1 together with new parameters associated with the CME and110

geospace models in Stages 2 and 3, it is crucial to keep the parameter space dimension111

low.112

Sensitivity analysis methods (e.g., (Borgonovo & Plischke, 2016) and various ar-113

ticles under Part IV of (Ghanem et al., 2017)) are concerned with the behavior of a model114

output quantity of interest (QoI) with respect to changes of model inputs, and can be115

broadly classified as local sensitivity analysis and global sensitivity analysis (GSA). Lo-116

cal sensitivity analysis studies the impact of output from perturbations of input around117
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Figure 1. Flow outline of the Michigan Sun-to-Earth model with Quantified Uncertainties

and Data Assimilation (MSTEM-QUDA). This paper focuses on forward UQ for the highlighted

Stage 1: background solar wind.

a reference point (e.g., local gradient), thus only capture behavior in the neighborhood118

local to that reference point. In contrast, GSA seeks to quantify the impact on the out-119

puts across the entire domain of all possible values the input parameters can take. Variance-120

based GSA (Saltelli et al., 2004, 2008) further takes into account the current state of un-121

certainty of the model input parameters. These effects are formally quantified through122

the Sobol’ sensitivity indices, which decompose the total variance of an output quantity123

into contributions from the variance of each input parameter. Once the most prominent124

contributors are identified, the other low-impact parameters may be fixed at nominal val-125

ues with only small approximation error in representing the overall uncertainty of the126

system, thereby achieving effective dimension reduction of the parameter space. In ad-127

dition to dimension reduction, GSA may reveal insight about the physical significance128

of the parameters, and guide future data acquisition that inform the most important pa-129

rameters. Being a part of the forward UQ analysis, GSA is performed in an a priori fashion—130

using only model simulations, and not requiring any observational data.131

Past efforts related to UQ and sensitivity analysis in solar wind models are sum-132

marized here. Poduval et al. (2020) focuses on propagating uncertainties in photospheric133

flux density synoptic magnetograms to the solar wind speed predictions at 1 au for three134

different phases of the solar cycle; however uncertainty from other sources (e.g., para-135

metric sources) have yet to be incorporated. Riley et al. (2013) use different combina-136

tions of coronal models, the base coronal temperature and the spatial resolution of the137

numerical grid to generate an ensemble of solar wind speed predictions. In contrast to138

the data-free nature and uncertainty perspective of GSA, this work focuses on assess-139

ing the sensitivity of the model performance (i.e. error measure) when compared to in-140

situ observations under different input settings. While offering insights on physical sig-141

nificance of the parameters for model performance, only two discrete values for the base142

coronal temperature are considered in the combinations, and for a single quiescent time143

period of the solar cycle. Reiss et al. (2020) propose a prediction system that uses an144

ensemble of solar wind solutions. The ensemble is created by varying the four most im-145

portant coefficients in the near-sun solar wind speed relation from the Wang-Sheeley-146

Arge (WSA) model that are identified from sensitivity analysis. Their sensitivities are147

estimated based on the Elementary Effects Approach (Morris, 1991), which computes148

a global summary of local estimates extracted at multiple points in the input space. The149
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ensemble, however, is generated using new points specified on a tensor grid of pertur-150

bations from the baseline values of the coefficients, which grows exponentially with di-151

mensionality and is not easily scalable.152

Our study differs from existing work by employing variance-based GSA for AW-153

SoM that offers sensitivity measure in the context of model parameters’ uncertainty con-154

tributions. We also assess the sensitivity results for both solar minimum and solar max-155

imum conditions, which correspond respectively to periods of low and high solar mag-156

netic activity. We take an approach to perform GSA by building polynomial chaos ex-157

pansion (PCE) (Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Ernst et al., 2012)158

surrogate models that are particularly suited for extracting the Sobol’ indices. PCE rep-159

resents a random variable in terms of orthogonal polynomial expansions of other latent160

variables. This allows us to explicitly associate the randomness in the QoIs to each phys-161

ical source of uncertainty. In addition to GSA, the PCEs will also allow inexpensive sam-162

pling and uncertainty propagation.163

The downselect of key parameters from GSA in this work will help mitigate the164

computational burden of future UQ and DA tasks, where new parameters, features and165

QoIs will enter in the subsequent stages of the CME model chain. For example, we can166

vary flux rope parameters while initializing the CME and consider influence of background167

and flux rope parameters jointly. Inverse UQ on the downselected parameters can help168

constrain them in order to obtain accurate background conditions of solar wind veloc-169

ity and density. This is crucial for estimating the propagation speed and strength of the170

shock wave produced by CMEs launched into the background.171

We summarize the key contributions and novelty of our paper as follows.172

• We perform GSA for background solar wind simulations of the AWSoM to iden-173

tify and downselect the most important uncertain parameters.174

• We construct PCE surrogate models for time-dependent solar wind QoIs and use175

them to compute the Sobol’ indices and perform uncertainty propagation.176

• We assess the uncertainty of sensitivity estimates through a bootstrapping pro-177

cedure.178

• We carry out the analysis for examples of both solar maximum and solar mini-179

mum conditions.180

The remainder of this paper is organized as follows. Section 2 describes features181

of AWSoM used for solar wind simulations and discusses the model inputs and outputs182

as part of the simulation setup. Section 3 provides details on the formulation and com-183

putation of Sobol’ indices leveraging PCE surrogates and space filling designs. Results184

and discussions for the overall workflow are presented in Section 4 followed by conclu-185

sions and future work in Section 5.186

2 The Space Weather Modeling Framework187

2.1 SWMF and AWSoM188

The Space Weather Modeling Framework (SWMF; Tóth et al. 2012; Gombosi et189

al. 2021) developed at the University of Michigan couples together different model com-190

ponents that cover various physical domains providing a computational capability of mod-191

eling the space-weather environment from the Sun to the Earth and/or outer heliosphere.192

With over a million lines of code, the SWMF is a fully functional, well documented soft-193

ware for high performance computing. Recently, a major portion of the SWMF source194

code has been released on Github under a non-commerical open source license (https://195

github.com/MSTEM-QUDA). The full SWMF suite has also been publicly available via reg-196

istration under a user license (http://csem.engin.umich.edu/tools/swmf). The SWMF197
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is also available for runs on request through the Community Coordinated Modeling Cen-198

ter (CCMC) at the NASA Goddard Space Flight Center (GSFC) (https://ccmc.gsfc199

.nasa.gov/index.php).200

The Alfvén Wave Solar atmosphere Model (AWSoM; van der Holst et al. 2014; Sokolov201

et al. 2013; Sokolov et al. 2021; van der Holst et al. 2022) within the SWMF couples the202

solar corona (SC) and inner heliosphere (IH) components extending from the upper chro-203

mosphere, through the transition region into the corona up to 1 au and beyond. AW-204

SoM is a global three-dimensional (3D) extended magnetohydrodynamic (MHD) model205

based on the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme (BATSRUS; Pow-206

ell et al. (1999)). It incorporates coronal heating and solar wind acceleration due to low-207

frequency Alfvén wave turbulence (see van der Holst et al. (2014) for detailed descrip-208

tion of the model equations). The coronal heating is distributed over the isotropic elec-209

tron temperature and the perpendicular and parallel (with respect to the magnetic field)210

proton temperatures. AWSoM includes stochastic heating and linear wave damping to211

heat the electrons and protons (Chandran et al., 2011). The model also incorporates elec-212

tron heat conduction and radiative losses based on the Chianti model (Dere et al., 1997)213

for both collisional and collisionless regimes. Recently, the energy partitioning scheme214

within AWSoM has been improved and been validated with Parker Solar Probe obser-215

vations (van der Holst et al., 2022).216

AWSoM is also a data-driven model that uses the radial component of the observed217

photospheric magnetic field at the inner boundary. We can use either spherical harmon-218

ics or the finite difference iterative potential solver (FDIPS, Tóth et al. (2011)) to ex-219

trapolate the observational data to a 3D potential field source surface (PFSS) solution.220

At the inner boundary, the isotropic electron temperature and anisotropic proton tem-221

perature are set to 50,000 K. The density at the inner boundary is set to 2×1017 m−3.222

The Poynting flux (SA) of the outward propagating Alfvén waves at the inner bound-223

ary determines the energy flux entering the domain and is proportional to the inner bound-224

ary magnetic field strength B� (Fisk, 1996; Fisk & Schwadron, 2001; Sokolov et al., 2013).225

The coefficient (SA/B)� is an adjustable parameter with a typical value being 106 Wm−2T−1.226

The Alfvén wave correlation length L⊥ is another parameter of the equation set solved227

by AWSoM and is proportional to B−1/2 (Hollweg, 1986). The quantity L⊥
√
B is an ad-228

justable parameter with a typical value of 1.5×105 m
√
T . The stochastic heating am-229

plitude and exponents (Chandran et al., 2011) that determine the energy partitioning230

between electrons and protons are typically set to 0.18 and 0.21, respectively.231

In this work, we use AWSoM to simulate the solar wind in the SC and IH compo-232

nents of SWMF, which use 3D spherical and Cartesian block-adaptive grids, respectively.233

The steady-state solution is obtained by solving the MHD equations in co-rotating frames234

in both SC and IH domains. The spherical buffer grid that couples the SC solution with235

IH extends from 18 to 20 R�. The SC grid covers 1–24 R� and the IH component grid236

covers −250 to 250 R� with the inner boundary at 20 R�. The grid block size in the SC237

domain is 6 × 8 × 8 grid cells and 8 × 8 × 8 grid cells in the IH component. We use238

adaptive mesh refinement (AMR) to refine the grid where needed, including the helio-239

spheric current sheet and a conical region connecting the Sun and Earth.240

In this region the angular resolution as low as 0.35◦ so that the CME propagat-241

ing towards the Earth is well resolved. The angular resolution is 2.8◦ everywhere else242

in the domain. In the IH component, the domain has a smallest cell size of 0.24 R� in243

the −x direction and 7.8 R� at the outer boundary. The simulation uses local time-stepping244

for 80,000 iterations in SC to relax the solution to a steady state. This is followed by cou-245

pling with IH for 1 step. Since the solar wind is super fast magnetosonic in the IH com-246

ponent, it only takes 5,000 iterations to obtain a steady-state solution in IH.247
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All simulations are run on Frontera, a petascale computing system (Stanzione et248

al., 2020). 32 nodes equipped with 56 cores per node are used for each simulation, re-249

sulting in about 7000 total CPU hours per run / 4 hours of wall time.250

Over the years, AWSoM has been extensively validated against remote and in-situ251

observations during various phases of the solar cycle. AWSoM produces synthetic ex-252

treme ultra-violet (EUV) images that have been compared to EUV observations from253

STEREO/EUVI, SDO/AIA and SOHO/LASCO instruments. (van der Holst et al., 2010;254

Meng et al., 2015; Jin et al., 2017; Sachdeva et al., 2019, 2021). The AWSoM predicted255

structure of the solar corona also compares well with the tomographic reconstructions256

of the density and temperature of electrons near the Sun determined using the Differ-257

ential Emission Measure Tomography (DEMT) during the quiescent phase (Lloveras et258

al., 2017, 2020, 2022). In addition, comparisons with Interplanetary Scintillation (IPS)259

data at various heliospheric distances as well as solar wind plasma observations at 1 au260

have successfully validated the capability of the AWSoM model to reproduce the solar261

wind structure near the Sun as well as in the inner heliosphere (Sachdeva et al., 2019).262

In this work, we will explore simulations of the background solar wind that are con-263

ducted for different values in the parameter space using AWSoM. In particular, we will264

perform a priori sensitivity analysis. This assessment is a priori in the sense that it is265

performed without any observation data that would otherwise be needed for DA or model266

calibration. Hence, the procedure is by design an initial probing on the properties of the267

model itself. Through this sensitivity analysis, we aim to identify a small subset of only268

the most impactful uncertain parameters that contribute the most to the overall predic-269

tion uncertainty. We can then focus only on these parameters for subsequent compute-270

intensive tasks, thus achieving a dimension reduction of the uncertainty space.271

2.2 Solar Wind Model Input Parameters272

We begin by cataloguing the uncertain input parameters (i.e. parametric sources273

of uncertainty) considered in this study for simulating the background solar wind using274

AWSoM. We focus on simulating the background solar wind for two Carrington rota-275

tion (CR) periods representative of solar maximum (CR2152) and solar minimum (CR2208),276

using exclusively ADAPT-GONG magnetograms. Shown in Table 1, the parameter list277

includes variables concerning boundary conditions, sub-model settings, and fitting pa-278

rameters. Some parameters are categorical, while others are continuous and real-valued.279

In either case, we specify also the value range each parameter may take in this investi-280

gation, which are physically meaningful ranges determined based on assessment from sub-281

ject matter experts of the study team and prior studies and literature. The range of stochas-282

tic exponent is based on the works of Chandran et al. (2011); Xia et al. (2013). The bounds283

for PoyntingFluxPerBSi are set to cover the most optimal values determined in previ-284

ous AWSoM validation studies like Sachdeva et al. (2019, 2021). The values for LperpTimesSqrtBSi285

are based on Hollweg (1986). In addition to the lower and upper bounds, a constraint286

is incorporated to restrict the feasible region of FactorB0 and PoyntingFluxPerBSi such287

that their product is less than 9×105 Wm−2T−1 for solar maximum and less than 1.2×288

106 Wm−2T−1 for solar minimum (see Figure 2). This constraint is motivated by the289

underlying physics where the product term is known to be proportional to the total en-290

ergy injected into the system. Capping the total energy below a reasonable threshold elim-291

inates simulations that are not physically meaningful due to excessive kinetic energy den-292

sity in the simulated solar wind.293

While the parameter list may be expanded more exhaustively, our selection here294

are based on the prioritization from subject matter experts of the study team. Amongst295

continuous parameters, only stochastic amplitude is fixed at a nominal value of 0.18 based296

on Chandran et al. (2011) while the remaining free parameters of AWSoM are all var-297

ied and included in Table 1. Some choices, such as what type of magnetogram should298
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Parameter Value Range Description

Categorical Parameters

ADAPT realization {1,2,. . . ,12} Realization index number
from ADAPT

PFSS method {HARMONICS, FDIPS} Method for obtaining the potential
field source surface solution

UseSurfaceWaveRefl {True, False} Extra reflection for high enough
transverse density gradient

Continuous Parameters

FactorB0 [0.54, 2.7] Multiplicative factor for input
[–] magnetogram field

PoyntingFluxPerBSI [0.3, 1.1]× 106 Inner boundary Poynting Flux per magnetic field
[W m−2T−1] constant of Alfvén waves

LperpTimesSqrtBSI [0.3, 3.0]× 105 Stochastic Heating Profile
[m T1/2] Perpendicular Correlation Length Coefficient

StochasticExponent [0.10, 0.34] Ion Stochastic Heating
[–] Profile Exponent

nChromoSiAWSoM [2.0, 50.0]× 1017 Inner Boundary Density
[m−3]

rMinWaveReflection [1.0, 1.2] Wave Reflection switched off
[Rs] below this radius

Table 1. Uncertain parameters considered for the AWSoM solar wind model. An additional

constraint is imposed to limit the feasible space of FactorB0 and PoyntingFluxPerBSi such that

their product is less than 0.9 MWm−2T−1 for solar maximum and less than 1.2 MWm−2T−1 for

solar minimum.

be used or what version of the model to use, have been decided from prior studies (Meng299

et al., 2015; Sachdeva et al., 2019, 2021). Using ADAPT-GONG maps with the three-300

temperature AWSoM code provided better matching with observational features at 1 au301

and smaller value of the curved distance metric defined in those studies that accounts302

for both temporal shift and amplitude errors. Therefore, they are used in this work. The303

effect of grid resolution was also examined and the choice of grid is based on several ex-304

ploratory simulations. The grid is fine enough along the Sun-Earth line to capture the305

essential features impacting Earth, but coarse enough to make hundreds of simulations306

computationally feasible.307

To properly convey the state of uncertainty in these parameters, we endow uniform308

distributions for all parameters over their feasible region to represent a flat, non-informative309

state of uncertainty that does not favor any particular area. The choice of uniform dis-310

tributions appeals to the principle of maximum entropy (Jaynes, 1957), where one can311

show that given a boundary perimeter, the uniform distribution is formed with the fewest312

additional assumptions. We will investigate the effects of uncertainty from these input313

parameters on the model output QoIs.314
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2.3 Solar Wind Model Output Quantities of Interest315

The primary prediction output of AWSoM are the macroscopic plasma quantities,316

such as solar wind velocity, density, ion and electron temperatures, the Alfvén wave tur-317

bulence energy densities and the magnetic field vector in the 3D computational domain.318

These primary output variables can be processed into various QoIs, for example synthetic319

extreme ultraviolet (EUV) images in the low corona, synthetic Thomson-scattered white320

light images, or in-situ solar wind and magnetic field values along the Earth orbit. These321

QoIs can be compared with a comprehensive suite of observations including EUV im-322

ages from STEREO-A EUVI and the SDO AIA, LASCO observations of electron den-323

sity, as well as in situ OMNI data obtained at the first Lagrange point (L1) between the324

Sun and Earth.325

Future work on UQ associated with CME events will require accurate predictions326

of the background solar wind, particularly for the radial velocity Ur and proton num-327

ber density Np as these have a major impact on the propagation speed of the CME and328

the strength of the shock wave produced by fast CMEs. For this reason, we select Ur and329

Np as the QoIs. In addition to affecting the CME propagation, Ur and Np are most im-330

portant for space weather forecasts while other quantities like plasma temperature or the331

Bx and By components of the magnetic field are less geo-effective. The Bz component332

is, of course, extremely important, but it typically originates from the flux rope driving333

the CME. Predicting Bz of the background solar wind is very difficult, as it is dominated334

by turbulent fluctuations.335

To carry out the sensitivity analysis, we will systematically vary the input param-336

eters described in the previous section over their distribution, conduct simulations at the337

different parameter settings for both CR2152 and CR2208, and extract the QoIs and as-338

sess and attribute their variability (detailed in the next section). Representative plots339

of these QoIs from solar wind simulations can be found in Figure 3.340

3 Methodology341

3.1 Variance-based Global Sensitivity Analysis342

We focus on variance-based GSA (Saltelli et al., 2004, 2008). Variance of a QoI can343

be decomposed into contributions from the uncertainty of each input parameter. For-344

mally, let λ = [λ1, λ2, · · · , λd] denote the vector of all input parameters with an asso-345

ciated uncertainty distribution, ft denote the model, and ft(λ) denote a (time-dependent)346

model output QoI at time t. The Sobol’ indices (Sobol, 2003) (defined below) provide347

a quantitative measure of all the inputs λi in terms of their variance contributions to the348

total variance of the output QoI ft(λ). The key task in GSA is therefore to compute these349

Sobol’ indices. Once computed, these indices can be used for dimension reduction, where350

low-sensitivity parameters may be fixed at their nominal values without significantly un-351

derrepresenting the QoI’s variance. The reduced dimension can bring computational sav-352

ings for downstream tasks such as UQ and DA for subsequent CME and geospace sim-353

ulations.354

The main effect (first-order) Sobol’ index measures variance contribution solely due355

to the ith parameter:356

Sti =
Varλi (Eλ∼i [ft(λ)|λi])

Var (ft(λ))
(1)357

where λ∼i refers to all components of λ except the ith component, Eλ∼i then denotes358

the expectation with respect to all λ compnents except for the ith, and Varλi
denotes359

the variance with respect to only the λi component; E and Var without any subscript360

indicates expectation and variance involving all components. The main effect index is361

always between 0 and 1, and a high value indicates that the ith parameter is an impor-362

tant variance (uncertainty) contributor to the QoI. However, a small main effect index363
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by itself does not automatically imply low importance for λi, since additional variabil-364

ity may be induced from the interaction of λi with other parameters.365

The joint effect (second-order) Sobol’ index measures variance contribution due to366

the interaction of ith and jth parameters:367

Stij =
Varλi,λj

(Eλ∼ij
[ft(λ)|λi, λj ])

Var(ft(λ))
− Sti − Stj . (2)368

In a similar manner, sensitivity indices for even higher order interactions (e.g., from si-369

multaneous interactions among multiple parameters) can be defined, and the total vari-370

ance of a QoI can be decomposed into fractional contributions through the relation:371

1 =
∑
i

Sti +
∑
i

∑
j>i

Stij +
∑
i

∑
j>i

∑
k>i

Stijk + . . .+ St123...d. (3)372

Furthermore, the effect hierarchy principle (Sec. 4.6 of (Wu & Hamada, 2009)) states373

that only the lower order effects are the most significant. If the main effect and joint ef-374

fect sensitivity indices sum close to 1, then we can conclude that the higher order inter-375

actions among parameters are negligible.376

A key assumption behind the above definitions of Sobol’ indices is that the input377

parameters are mutually independent, i.e. their joint distribution can be factored into378

the products of individual marginal distributions p(λi, λj) = p(λi)p(λj). While this is379

satisfied for a uniform distribution over a rectangular domain formed from the various380

parameter ranges described in Table 1, it is violated when imposing the constraint on381

the product of FactorB0 and PoyntingFluxPerBSi: e.g., knowing the value of one pa-382

rameter provides information about what the other parameter could be owing to the con-383

straint, hence they are not independent. There are efforts to formulate a generalized GSA384

for dependent inputs (Da Veiga et al., 2009; Chastaing et al., 2012), but they are gen-385

erally difficult to exercise or requires parameter transformations that are not interpretable386

compared to their original forms. Therefore, we retain the definition derived for the in-387

dependent setting, but acknowledging that some approximation errors are incurred.388

The Sobol’ indices cannot be computed in closed-form except for very simple mod-389

els, and generally they need to be approximated numerically. While different flavors of390

efficient Monte Carlo (MC) methods have been developed to estimate these indices (Sobol,391

1990; Jansen, 1999; Saltelli et al., 1999; Sobol, 2001; Saltelli, 2002; Saltelli et al., 2010),392

the MC nature means they still require a large number of model evaluations and can be-393

come impractical when each model simulation is already expensive: a single AWSoM sim-394

ulation takes about 7,000 CPU core hours. An alternative strategy is then to trade off395

model fidelity and accuracy for speed, by first building a surrogate model and then us-396

ing this approximate but fast surrogate model to estimate the sensitivity indices. We in-397

troduce next a surrogate model form that is particularly well suited for estimating the398

Sobol’ indices.399

3.2 Polynomial Chaos Expansions400

A common surrogate model used for UQ is the PCE. A PCE is a spectral expan-401

sion of a random variable, and is particularly attractive for GSA as it has a form that402

allows convenient estimates of the Sobol’ sensitivity indices. We provide a brief intro-403

duction of PCE below, and refer readers to several books and review papers for detailed404

discussions (Ghanem & Spanos, 1991; Najm, 2009; Xiu, 2009; Le Mâıtre & Knio, 2010).405
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A real-valued random variable u with finite variance (such as an input parameter406

or an output QoI) can be represented by the following expansion (Ernst et al., 2012):407

u(ξ1, ξ2, . . . , ξd) =

∞∑
‖ β ‖1=0

bβΨβ(ξ1, . . . , ξd), (4)408

where ξj are independent reference (latent) variables; d is the number of stochastic de-409

grees of freedom in the system (typically the number of uncertain input parameters); bβ410

are the expansion coefficients; β = (β1, . . . , βd), ∀βj ∈ N0, is a multi-index; and Ψβ411

are (normalized) multivariate orthogonal polynomials (basis functions) that are prod-412

ucts of univariate orthonormal polynomials:413

Ψβ(ξ1, . . . , ξd) =

d∏
j=1

ψβj
(ξj). (5)414

The univariate functions ψβj
are polynomials of degree βj in ξj , and orthonormal with415

respect to the probability density of ξ (i.e., p(ξ)):416

E[ψk(ξ)ψn(ξ)] =

∫
ψk(ξ)ψn(ξ)p(ξ) dξ = δk,n, (6)417

where δk,n is the Kronecker delta. While different choices of ξ and ψβ are available un-418

der the generalized Askey family (Xiu & Karniadakis, 2002), we employ uniformly dis-419

tributed ξ and Legendre polynomials in this study to conveniently mirror the uniform420

distributions of the input parameters from Table 1. Lastly, the infinite sum in Equation (4)421

is truncated in practice:422

u(ξ1, . . . , ξd) ≈
∑
β∈J

bβΨβ(ξ1, . . . , ξd), (7)423

where J is some finite index set. For example, one popular choice for J is the “total-424

order” expansion of degree p, where J = {β : ‖β ‖1 ≤ p}.425

Under this formulation, we can write the PCE for input parameter and output QoI426

at a time t as427

λi(ξ1, . . . , ξd) ≈
∑
β∈J

cβΨβ(ξ1, . . . , ξd) (8)428

ft(ξ1, . . . , ξd) ≈
∑
β∈J

bt,βΨβ(ξ1, . . . , ξd). (9)429

Since the distribution of ξ is strategically chosen to match the type as our input430

parameters (i.e. uniform distributions in our case), the PCE for λi can be determined431

easily as a linear expansion (i.e. cβ are simply the scale and shift terms acting on ξi).432

We note that PCE does not require independence for λi unlike the Sobol’ sensi-433

tivity indices. A full dependent treatment is possible but difficult in practice. We pro-434

vide more details on this in the remark at the end of the subsection. In our work, since435

the majority of our inputs are independent and uniform except for FactorB0 and PoyntingFluxPerBSi436

as explained in Section 3.1, we elect to use the simple linear mapping setup from uni-437

form ξ to λ described above but acknowledge that this entails some approximation to438

the PCE.439

The main task is then to compute the PCE coefficients bt,β for the output QoI. We440

take a regression approach to estimate these coefficients, by solving the following linear441
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system:442 Ψβ1(ξ(1)) · · · Ψβ(nt)(ξ
(1))

...
...

Ψβ1(ξ(N)) · · · Ψβ(nt)(ξ
(N))


 bt,β1

...
bt,βnt

 =

 f(t, λ(ξ(1)))
...

f(t, λ(ξ(N)))

 , (10)443

where Ψβn refers to the nth polynomial basis function, bt,βn is the coefficient correspond-444

ing to that term, and ξ(m) is the mth regression (training) point. Ψ is thus the regres-445

sion matrix where each column corresponds to a basis function and each row corresponds446

to a regression point. To prevent overfitting, we can include an `2 (ridge regression) or447

an `1 (LASSO) regularization.448

Once the PCE for the QoIs is constructed, we can extract the Sobol’ indices an-449

alytically from their expansion coefficients via the formulae:450

Sti =
1

Var(ft(λ))

∑
β∈Ji

b2t,β , where Ji = {β ∈ J : βi > 0, βk = 0, k 6= i} (11)451

Stij =
1

Var(ft(λ))

∑
β∈Jij

b2t,β where Jij = {β ∈ J : βi > 0, βj > 0, βk = 0, k 6= i, k 6= j}452

The QoI total variance can be calculated as453

Var(f(λ)) =
∑

06=β∈J

b2t,β . (12)454

We note that while model error is introduced by using PCE surrogate instead of455

the original AWSoM model, PCE also eliminates any Monte Carlo error that would arise456

from estimating the Sobol’ indices (e.g., Saltelli (2002)) using simulations of the orig-457

inal AWSoM model, since the Sobol’ indices can now be calculated analytically from the458

PCE coefficients. Hence, PCE makes a tradeoff from Monte Carlo error (approximate459

sensitivity for the original AWSoM model) to model error (exact sensitivity for the ap-460

proximate PCE model). We mitigate PCE model error by means of cross-validation to461

optimize the model hyperparameters (e.g., polynomial degree, regularization parame-462

ters).463

Remark: The theory for Sobol’ sensitivity analysis only requires the input random464

variables to be independent, and does not need them to be identically distributed nor465

follow uniform distributions (see bottom of page 2424 of Chastaing et al. (2012), which466

only requires the joint probability measure to be factorizable into product of marginal467

measures—i.e. independence). Computing Sobol’ indices for dependent variables is non-468

trivial and remains an active area of research. For example, Chastaing et al. (2012) pro-469

posed procedures but they are difficult and expensive to use. These advanced algorithms470

are outside our paper scope, we reserve them for future explorations.471

On the other hand, PCE does not require independence in model input variables,472

but a full dependent treatment is difficult in practice. In Equations (8)−(9) we write PCEs473

for both the input parameter λi and the output QoI ft at a time t. When λi’s are in-474

dependent and ξi is selected from the same distribution family as λi, then Equation (8)475

simplifies to a linear function only in ξi. If λi’s are dependent, then one can build a full,476

nonlinear PCE that depends on all ξ’s. However, this needs to be done with care, since477

we need the PCE for λi to be invertible in order to use Equation (9) as a surrogate model:478

starting from a desired input λ, invert for the corresponding ξ using inverse of Equation479

(8), then plug this ξ into Equation (9) to obtain a prediction of ft.480

To more easily impose this invertibility, works such as Jakeman et al. (2019) sug-481

gested strategies to transform dependent variables into independent ones (e.g., via the482

Rosenblatt transformation) and Gram Schmidt Orthogonalization methods to build ba-483

sis functions for arbitrary probability measures. Here, since the majority of our inputs484
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are independent and uniform except for FactorB0 and PoyntingFluxPerBSi, we elect485

to use a linear transformation from uniform ξ to λ but we acknowledge this entails some486

approximation to this PCE.487

3.3 Design of Computer Experiments488

We briefly describe how to select the training points ξ(m) to form the regression489

system for constructing the PCEs in the previous section. Since each AWSoM simula-490

tion is computationally expensive, as described in Section 2.1, a judicious selection of491

the simulation input values can be quite beneficial. While one may approach this task492

by defining and optimizing some criteria that reflects the quality of estimated Sobol’ sen-493

sitivity indices, such a goal-oriented approach is non-trivial to formulate. Instead, we take494

an explorative strategy and seek space-filling designs (Joseph, 2016) that can “cover” the495

parameter space well.496

One popular space-filling approach is the Latin Hypercube design (LHD) (McKay497

et al., 1979), which can be constructed using a maximin design criterion that maximizes498

the minimum distance between all pairs of points (Morris & Mitchell, 1995). The max-499

imin LHD for a multi-dimensional space can retain good space-filling properties when500

projected onto any single dimension, but not when projecting onto multi-dimensional501

subspaces (i.e. when focusing on a subset of multiple parameters) (Joseph, 2016). We502

thus adopt an improved Maximum Projection (MaxPro) design (Joseph et al., 2015, 2020)503

that uses a weighted distance measure to account for projections to all possible subspaces.504

Another notable advantage of using MaxPro designs is that new samples can be505

added in a sequential manner where the importance for different factor levels based on506

sensitivity results can be incorporated into the objective function (Wang et al., 2018).507

MaxPro design is typically defined for a box domain. With the only non-rectangular508

domain in our study being the constraint on the product of FactorB0 and PoyntingFluxPerBSi509

(see Figure 2), we simply generate MaxPro sample in the bounding rectangle and then510

reject the points that lay outside the constraint.511

4 Results and Discussion512

4.1 AWSoM Solar Wind Simulations513

We perform solar wind simulations using the AWSoM model for CR2152 (solar max-514

imum) and CR2208 (solar minimum). The model input parameter values are generated515

from their feasible ranges summarized in Table 1 using the MaxPro design described in516

Section 3.3. Scatter plots of these samples for select pairs of input parameters are shown517

in Figure 2, with the left-most panel showing the constraint on the product of FactorB0518

and PoyntingFluxPerBSi. Given our computational budget, 200 runs are conducted for519

each of the two CR periods.520
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Figure 2. Scatter plots of MaxPro design samples to perform AWSoM simulations for select

pairs of input parameters for CR2152 (solar maximum, left column) and CR2208 (solar mini-

mum, right column). Each AWSoM run is initiated at each point for a total of 200 runs.

From the 200 simulations for each CR, 5 of CR2152 and 1 of CR2208 did not con-521

verge while all others succeeded. The results of all successful runs are analyzed to fil-522

ter out those that are not physically meaningful. We extract the plasma state along Earth’s523

orbit and a simulation is discarded if both of the following exclusion criteria are triggered:524

• the radial velocity exceeds 900 km/s or falls below 200 km/s, and525

• the number density exceeds 100 cm−3.526

In the end, 174 runs are retained for CR2152 and 199 for CR2208. The final ensemble527

of select predicted QoIs at 1 au are shown in Figure 3. The parameter combinations for528

which the simulations either did not converge or resulted in a non-physical result are listed529
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in the Supporting Information document accompanying this paper, and plotted for se-530

lect parameters.531

Figure 3. Ensemble of AWSoM simulation results for CR2152 (solar maximum, left column)

and CR2208 (solar minimum, right column). Each line is from a different simulation.

4.2 UQ and GSA using PCE Surrogate532

We use the set of AWSoM simulations to construct PCE surrogates following Sec-533

tion 3.2. In particular, we construct a separate PCE at 577 time points of each QoIs: ra-534

dial velocity (Ur) and number density (Np), for both CR2152 and CR2208. The input535

space of each PCE is 6 dimensional, encompassing all the continuous input parameters536

from the second half of Table 1.537

The parameters in the top half of Table 1 are categorical (i.e. not ordinal), and they538

do not have any intrinsic ordering of their values or a notion of distance. They are not539

true random variables and quantities such as mean and variance are undefined. There-540

fore, the concept of sensitivity for categorical variables is ill-posed altogether. Calculat-541

ing the mean, variance and subsequently sensitivities would require encoding these vari-542
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ables to numerical values directly or learning a transformation to a latent space of ran-543

dom variables, as done in Zhang et al. (2020); Hse et al. (2021) for Gaussian processes.544

Sensitivities calculated in this fashion would strongly depend on the chosen encoding.545

As a result, we consider sensitivity only for the six continuous parameters. Note546

that uncertainty contributions from the three categorical parameters are still captured547

since they are varied in generating the AWSoM simulation set. Our PCEs are thus built548

by marginalizing out (averaged over) the three categorical parameters, i.e. fPCE(λcont) =549

Eλcatg [fPCE(λcont, λcatg)] and trained to predict the QoI values based on the six contin-550

uous input parameters. One may also build the PCEs and study sensitivities by condi-551

tioning at a nominal value of the categorical parameters, i.e. fPCE(λcont, λ
∗
catg), however552

fixing λ∗catg would be ignoring the uncertainty from these categorical variables.553

Ridge regression is adopted for computing the PCE coefficients in the regression554

system Equation (10), with regularization parameter selected through cross-validation.555

We employ PCEs with total order expansions of degree 2. While higher degree polyno-556

mials may be attempted, the increased number of unknown coefficients is more prone557

to overfitting (greater model complexity) given our small sample size (around 200). We558

also verified that increasing to degree 3 does not lead to substantial differences of the559

surrogate predictions. We present the time-averaged cross-validation (CV) error corre-560

sponding to optimal choices of regularization parameter for QoIs in CR2152 (solar max-561

imum) varying with PCE degrees of 1, 2, 3 and 4 in Figure 4. Ten-fold CV is used to562

find the optimal regularization parameter from a range [10−2, 102]. The CV errors be-563

tween degree 2 and degree 3 PCEs are very similar, while degree 1 and degree 4 PCEs564

result in noticeably higher errors. Since degree 2 PCE has a simpler model form with565

fewer unknown coefficients than degree 3 (28 versus 84 coefficients) while achieving sim-566

ilar error performance, we thus elect to use PCEs with a total order expansion of degree567

2.568

Figure 4. CV error plots with PCE degree for QoIs in CR2152. The CV error corresponding

to optimal choice of regularization parameter (minimum error at each time point), time-averaged,

and plotted for PCEs of degree 1, 2, 3 and 4. The CV errors between degree 2 and degree 3

PCEs are very similar, while degree 1 and degree 4 PCEs result in noticeably higher error.

All PCE constructions are carried out using PolyChaos.jl (Mühlpfordt et al., 2020),569

an open source package available in the Julia programming language (Bezanson et al.,570

2017). Once the PCE surrogates are available, we can use them to inexpensively per-571

form MC-based uncertainty propagation by first drawing samples from the uncertainty572

distribution of the input and then using the PCEs to evaluate the output QOIs. Figure 5573

presents the predictive uncertainty on the QoIs highlighting their mean (solid red line)574

± 2 standard deviations (red shaded area), and overlaid with boxplots to illustrate more575
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details of the distribution at different time-slices. The sample mean (blue dashed line)576

is identical to the surrogate mean (red solid line).577

Figure 5. Predictive mean (red line) ±2 standard deviation (shaded area) for QoIs Ur and Np

using PCE surrogates for CR2152 (solar maximum, left column) and CR2208 (solar minimum,

right column). The boxplots at selected locations give additional information about the distribu-

tions, showing the median and interquartile range (IQR); whiskers extend to 1.5 IQR on either

side. The sample mean (dashed blue line) is essentially equal to the predictive mean.

Using Equations (11)−(12), we can calculate the Sobol’ sensitivity indices directly578

from the PCE coefficients. In particular, we focus on the sensitivity for radial velocity579

Ur and number density Np with respect to all the continuous input parameters from Ta-580

ble 1. The main effect indices Sti for Ur and Np are plotted over time during CR2152581

and CR2208 in Figure 6. At any particular time instant, Sti represents the relative vari-582

ance contribution from the ith parameter. For CR2152 (solar maximum), overall FactorB0583

and LperpTimesSqrtBSI appear to be most dominating followed by PoyntingFluxPerBSi,584

while rMinWaveReflection, StochasticExponent, and nChromoSi AWSoM have much585

smaller contributions. For CR2208 (solar minimum), LperpTimesSqrtBSi has a much586

smaller contribution than it is in CR2152 (solar maximum). This agrees with our expec-587

tations: the LperpTimesSqrtBSi parameter has the most impact along open magnetic588

field lines coming from coronal holes, which are more likely to be at low latitude dur-589

ing solar maximum and therefore have an impact at Earth orbit. FactorB0 and PoyntingFluxPerBSi590

appear to be the most influential, especially for the number density Np. For Ur, StochasticExponent591

also has significant contributions particularly for solar minimum. The sum of main ef-592

fect indices from all parameters at a time instant can also provide an indication regard-593

ing the interaction effects among parameters. If the sum is much less than 1, the inter-594

actions between parameters is non-negligible. For example the sum of Np’s sensitivity595

indices for CR2152 is close to 0.5 around July 3, 2014, suggesting there is significant pa-596

rameter interactions at that time.597
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Figure 6. Time-varying main effect St
i for CR2152 (solar maximum, left column) and CR2208

(solar minimum, right column), for QoIs Ur and Np.
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Figure 7. Time-averaged main effect Si and joint effect Sij for CR2208 (solar maximum, left

column) and CR2208 (solar minimum, right column) for QoIs Ur and Np.

Lastly, we summarize the time-dependent Sobol’ sensitivity indices by computing598

the time-averaged main effect and joint effect indices in Figure 7, where the (i, j)th el-599

ement indicates the time-averaged value of Si,j and the diagonal elements represent Si.600

The time-averaged sensitivity indices confirm the observations from the time-dependent601

results that the most important variance contributors for QoIs Ur and Np in CR2152 (with602

a threshold chosen as Si > 0.2 for either QoI) are FactorB0, PoyntingFluxPerBSi and603

LperpTimesSqrtBSi, and for CR2208 are FactorB0 and PoyntingFluxPerBSi. The re-604

maining parameters’ contributions, when time-averaged, are very small. As a sanity check,605

we can also see that the averaged main and joint sensitivities approximately sum to 1,606

as suggested by Equation (3).607

We note that PCE in general cannot constrain its output value to be positive only,608

whereas the number density Np can only be positive. As a result, we have occasionally609

encountered negative Np predictions from the the PCE surrogates. One possible tech-610

nique to guarantee positivity is to build PCEs for predicting logarithm of the QoIs (i.e.611

logNp), and then extract the non-logarithm values by taking the exponent. However,612

subsequently computed Sobol’ sensitivity indices then indicate the parameter contribu-613

tions on the variance of logNp and not of Np, which may alter the ranking of param-614

eters (Borgonovo et al., 2014). In our testing with the log-QoIs setup, we see example615

from Figure 8 that indeed Np (CR2152) is now guaranteed to be always positive and its616

corresponding Sobol’ indices support the same conclusion of the most sensitive param-617

eters, but with different rankings (similar results for CR2208 are omitted for brevity).618

4.3 Uncertainty of the Sobol’ Index Estimates619

Given that our Sobol’ indices are estimated from PCEs built using small sample620

size (around 200), it is important to assess the uncertainty of these estimates. Ideally,621
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Figure 8. Comparison of results as an illustration when building surrogate on the original Np

(left column) and log(Np) (right column). Predictions of Np at 400 test points from trained PCE

surrogates are shown on the top row, while the bottom row shows the time-averaged sensitivity

heatmaps.

one can repeat the GSA procedure with new batches of samples and compute the vari-622

ance of the repeated trials, but such a process would be prohibitively expensive. There-623

fore, we use a bootstrapping technique that only uses existing and available samples, sum-624

marized in Algorithm 1.625

Algorithm 1: Procedure for Bootstrapped GSA

Input: Input parameters λ at N design points, N QoI simulations f(λ),
bootstrap sample sizes nstart, nend, step size ∆, number of replications K
for each sample size

1 n = [nstart, nstart + ∆, · · · , nend];
/* The outer loop runs through different sample sizes */

2 for i = 1 : length(n) do
3 nSamples = n[i];

/* The inner loop runs K replications per sample size */

4 for k = 1, 2, · · ·K do
5 Sample indices ik ∈ {1, · · · , N} with replacement (nSamples in all);
6 Build PCEs with input parameters λ and outputs f indexed by ik;
7 Calculate and store time-averaged main effects Si[:, k, i];

8 end

9 end
10 return Si ;
11 Calculate mean and standard deviations over K replications

626
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Figure 9. Mean ± standard deviation (over K=1000 replications) time-averaged Si for

Ur and Np under different bootstrap set size n in CR2152 (solar maximum, left column) and

CR2208 (solar minimum, right column). For sample size n = 20, we see that the standard de-

viation is high and the influential input parameters are not separable, however as n increases,

the sensitivities converge to the values calculated using all the samples and we can easily and

correctly rank the three influential parameters

.

We vary the sample size n, using values from {20, 40, 60, . . . , 140}. For example,627

when n = 20, 20 samples are drawn with replacement from the existing set of 174 sim-628

ulations for CR2152 (solar maximum). Then we build the PCE using only the 20 sam-629

ples and compute the time varying Sobol’ indices from PCE coefficients as described in630

Section 3.2. The Sti are computed for both radial velocity Ur and number density Np631

and are summarized by averaging over time (denoted by Si here).632

We then repeat the process of sampling, building the PCE and computing the time633

averaged Sobol’ indices 1000 times (number of replications K) for each of the input fac-634

tors. These results are presented with the mean and standard deviation of the Sobol’ in-635

dices in Figure 9 for different n, to characterize the variability of estimated values of Si.636

Observing the trend in the Sobol’ indices, we see that the Si obtained for each of637

the QoIs approach the values obtained with the full sample set (i.e. the diagonal values638

in heatmaps of Figure 7) as n is increased. But if n is round 20 or 40 samples, the sen-639

sitivity computations would carry significant errors, and given how close all the values640

are, it would be very difficult to distinguish which parameters are actually important.641

As we increase n, the mean values and the smaller spread indicates that the rankings642

of the most influential parameters do not shuffle when samples are drawn multiple times,643

making it less likely to rank a non-influential parameter as influential by mistake. The644
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mean Si values at n = 120 and n = 140 are quite close to the values we obtained with645

the full sample set, and the rankings of the most influential parameters are reasonably646

robust over multiple replications.647

Our bootstrapping analysis carries several limitations. First, as n approaches the648

full dataset size, the samples would have considerable overlap between repetitions. There-649

fore, the true variability of the Sobol’ indices would be underestimated in our procedure.650

Second, in order to reduce the computational burden of the repeated PCE and GSA cal-651

culations needed, ordinary least squares without regularization is used for the new PCE652

regression problems in the bootstrapping study. Lastly, the above results use the time-653

averaged Sobol’ indices for brevity, and the uncertainty for each time point (i.e. for sen-654

sitivity results shown in Figure 6) is not presented, though this can be computed as well.655

5 Conclusions and Future Work656

We conducted variance-based GSA for background solar wind during CR2152 (a657

solar maximum period) and CR2208 (a solar minimum period) simulated using the AW-658

SoM from the SWMF. We computed the main and joint effect Sobol’ sensitivity indices659

for output QoIs of radial velocity and proton number density at 1 au, with respect to660

the uncertainty of a number of input parameters including FactorB0, nChromoSi AWSoM,661

PoyntingFluxPerBSi, LperpTimesSqrtBSI, StochasticExponent, and rMinWaveReflection.662

The Sobol’ indices quantify the fractional contribution of and individual input param-663

eter’s uncertainty towards the total variance of the QoIs, and therefore provide sensi-664

tivity information that reflects the current state of parameter uncertainty. Furthermore,665

this GSA can be performed in a data-free manner, without needing any observation data666

at 1 au.667

We presented an efficient computational procedure for estimating the Sobol’ indices668

by creating PCE surrogate models from a dataset of AWSoM simulations selected through669

space-filling designs of the model parameters. Once these PCEs became available, the670

Sobol’ indices were calculated analytically from the expansion coefficients. At the same671

time, forward UQ was also achieved by sampling the PCEs to obtain predictive uncer-672

tainty for the QoIs. The uncertainty of the estimated Sobol’ indices were also estimated673

through a bootstrapping procedure. Overall, we found the most impactful parameters674

to be FactorB0, PoyntingFluxPerBSi, and LperpTimesSqrtBSI for CR2152 (solar max-675

imum); and FactorB0 and PoyntingFluxPerBSi for CR2208 (solar minimum). For fu-676

ture tasks, only these parameters need to be kept as uncertain while the other low-impact677

parameters may be fixed at nominal values, thereby achieving dimension reduction of678

the parameter space.679

There are several limitations of our current work that warrant interesting future680

studies. Our results are obtained from two specific CR periods, and the generalizabil-681

ity of the high-sensitive parameters to other solar maximum and solar minimum peri-682

ods needs to be tested. On a more technical side, the Sobol’ indices definitions employed683

are for input parameters with independent uncertainty distributions. However our con-684

straint between FactorB0 and PoyntingFluxPerBSi, while justified from a physical un-685

derstanding of the system, violates the independent assumption. As a result, our com-686

puted Sobol’ indices incur additional error due to this effect, and generalized GSA tech-687

niques that may accommodate dependent parameter distributions may be explored (Chas-688

taing et al., 2012).689

Lastly, while we have taken the first step towards an overall probabilistic forecast690

framework of space weather events by focusing on UQ of the background solar wind, the691

next parts of our work will involve DA and the CME and geospace stages in complet-692

ing the Sun-to-Earth model. Computations for these future tasks will benefit from the693

reduced dimension of the solar wind parameter space from this paper.694
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Acronyms695

QoI Quantity of Interest696

UQ Uncertainty Quantification697

DA Data Assimilation698

PCE Polynomial Chaos Expansion699

GSA Global Sensitivity Analysis700

CME Coronal Mass Ejection701

SWMF Space Weather Modeling Framework702

AWSoM Alfvén Wave Solar atmosphere Model703

SC Solar Corona704

IH Inner Heliosphere705

6 Open Research706

The scripts and routines used to produce the results in this manuscript are avail-707

able at the University of Michigan (UM) Library Deep Blue Data Repository here: Re-708

sults for “Global Sensitivity Analysis and Uncertainty Quantification for Background So-709

lar Wind in the Alfvén Wave Solar Atmosphere Model”:710

https://deepblue.lib.umich.edu/data/anonymous link/show/711

64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d712

?locale=en713

To cite the data, please use: Jivani, A., Sachdeva, N., Huang, Z., Chen, Y., van714

der Holst, B., Manchester, W., Iong, D., Chen, H., Zou, S., Huan, X., Toth, G. Re-715

sults for “Global Sensitivity Analysis and Uncertainty Quantification for Background716

Solar Wind using the Alfvén Wave Solar Atmosphere Model” [Data set], University717

of Michigan - Deep Blue Data. https://doi.org/10.7302/g151-gg58718

A major portion of the SWMF source code has been released on Github un-719

der a non-commerical open source license (https://github.com/MSTEM-QUDA).720

The full SWMF suite is publicly available via registration under a user license721

(http://csem.engin.umich.edu/tools/swmf).722

Acknowledgments723

This work is supported by the National Science Foundation (NSF) under grant724

number PHY-2027555: “SWQU: NextGen Space Weather Modeling Framework Us-725

ing Data, Physics and Uncertainty Quantification”. The authors acknowledge the726

Texas Advanced Computing Center (TACC) at The University of Texas at Austin727

for providing HPC resources under the “LRAC: NextGen Space Weather Modeling728

Framework Using Data, Physics and Uncertainty Quantification” allocation on the729

Frontera supercomputer. W. Manchester was also partially supported by NASA730

grant 80NSSC21K1685.731

References732

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh733

approach to numerical computing. SIAM Review , 59 (1), 65–98. doi: 10.1137/734

141000671735

Borgonovo, E., & Plischke, E. (2016). Sensitivity analysis: A review of recent ad-736

vances. European Journal of Operational Research, 248 (3), 869–887. doi: 10.1016/737

j.ejor.2015.06.032738

Borgonovo, E., Tarantola, S., Plischke, E., & Morris, M. D. (2014). Transformations739

–23–

https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://deepblue.lib.umich.edu/data/anonymous_link/show/64b25fd7c18b1ffde36f6998d1683faa890524e355814909839e2caf61b2b61d?locale=en
https://doi.org/10.7302/g151-gg58
https://github.com/MSTEM-QUDA
http://csem.engin.umich.edu/tools/swmf


A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

and invariance in the sensitivity analysis of computer experiments. Journal of the740

Royal Statistical Society: Series B (Statistical Methodology), 76 (5), 925–947. doi:741

10.1111/rssb.12052742

Chandran, B. D. G., Dennis, T. J., Quataert, E., & Bale, S. D. (2011). Incor-743

porating kinetic physics into a two-fluid solar-wind model with temperature744

anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J., 743 . doi:745

10.1088/0004-637X/743/2/197746

Chastaing, G., Gamboa, F., & Prieur, C. (2012). Generalized Hoeffding-Sobol de-747

composition for dependent variables - application to sensitivity analysis. Electronic748

Journal of Statistics, 6 (none). doi: 10.1214/12-EJS749749

Da Veiga, S., Wahl, F., & Gamboa, F. (2009). Local Polynomial Estimation for Sen-750

sitivity Analysis on Models With Correlated Inputs. Technometrics, 51 (4), 452–751

463. doi: 10.1198/TECH.2009.08124752

Debusschere, B., Sargsyan, K., Safta, C., & Chowdhary, K. (2017). Uncertainty753

Quantification Toolkit (UQTk). In Handbook of Uncertainty Quantification (pp.754

1807–1827). Cham: Springer International Publishing.755

Dere, K. P., Landi, E., Mason, H. E., Fossi, B. C. M., & Young, P. R. (1997). CHI-756

ANTI - an atomic database for emission lines. Astron. Astrophys. Suppl. Ser.,757

125 , 149–173.758

Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2012). On the convergence759

of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and760

Numerical Analysis, 46 (2), 317–339. doi: 10.1051/m2an/2011045761

Fisk, L. A. (1996). Motion of the footpoints of heliospheric magnetic field lines at762

the Sun: Implications for recurrent energetic particle events at high heliographic763

lattitudes. J. Geophys. Res., 101 (A7), 15,547–15,553.764

Fisk, L. A., & Schwadron, N. A. (2001). The behavior of the open magnetic field of765

the Sun. Astrophys. J., 560 , 425–438.766

Ghanem, R., Higdon, D., & Owhadi, H. (Eds.). (2017). Handbook of uncertainty767

quantification. Cham: Springer International Publishing. doi: 10.1007/978-3-319768

-12385-1769

Ghanem, R., & Spanos, P. D. (1991). Stochastic Finite Elements: A Spectral Ap-770

proach (1st ed.). New York, NY: Springer New York. doi: 10.1007/978-1-4612771

-3094-6772

Gombosi, T. I., Chen, Y., Glocer, A., Huang, Z., Jia, X., Liemohn, M. W., . . . Gom-773

bosi, T. I. (2021). What sustained multi-disciplinary research can achieve: The774

space weather modeling framework. Journal of Space Weather and Space Climate,775

11 . doi: 10.1051/swsc/2021020776

Hollweg, J. V. (1986). Transition region, corona, and solar wind in coronal holes. J.777

Geophys. Res., 91 (A4), 4111-4125. doi: 10.1029/JA091iA04p04111778

Huang, Z., Toth, G., Sachdeva, N., Zhao, L., van der Holst, B., Sokolov, I., . . . Gom-779

bosi, T. (2022). Modeling the solar wind during different phases of the last solar780

cycle. Astrophys. J. Lett.. (submitted) doi: 10.1002/essoar.10512539.1781

Hse, F., Aldeghi, M., Hickman, R. J., Roch, L. M., & Aspuru-Guzik, A. (2021,782

September). Gryffin: An algorithm for Bayesian optimization of categorical vari-783

ables informed by expert knowledge. Applied Physics Reviews, 8 (3), 031406.784

http://arxiv.org/abs/2003.12127 (arXiv:2003.12127 [physics, stat]) doi:785

10.1063/5.0048164786

Jakeman, J. D., Franzelin, F., Narayan, A., Eldred, M., & Plfger, D. (2019). Polyno-787

mial chaos expansions for dependent random variables. Computer Methods in Ap-788

plied Mechanics and Engineering , 351 , 643–666. doi: 10.1016/j.cma.2019.03.049789

Jansen, M. J. W. (1999). Analysis of variance designs for model output. Computer790

Physics Communications, 117 (1), 35–43. doi: 10.1016/S0010-4655(98)00154-4791

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review ,792

106 (4), 620–630. doi: 10.1103/PhysRev.106.620793

–24–

http://arxiv.org/abs/2003.12127


A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

Jin, M., Manchester, W. B., van der Holst, B., Gruesbeck, J. R., Frazin, R. A.,794

Landi, E., . . . Gombosi, T. (2012). A global two-temperature corona and inner795

heliosphere model: A comprehensive validation study. Astrophys. J., 7745 , 6. doi:796

10.1088/0004-637X/745/1/6797

Jin, M., Manchester, W. B., van der Holst, B., Sokolov, I., Tóth, G., Mullinix, R. E.,798

. . . Gombosi, T. I. (2017). Data-Constrained Coronal Mass Ejections in a Global799

Magnetohydrodynamics Model. The Astrophysical Journal , 834 (2), 173. doi:800

10.3847/1538-4357/834/2/173801

Joseph, V. R. (2016). Space-filling designs for computer experiments: A review.802

Quality Engineering , 28 (1), 28–35. doi: 10.1080/08982112.2015.1100447803

Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for computer804

experiments. Biometrika, 102 (2), 371–380. doi: 10.1093/biomet/asv002805

Joseph, V. R., Gul, E., & Ba, S. (2020). Designing computer experiments with806

multiple types of factors: The MaxPro approach. Journal of Quality Technology ,807

52 (4), 343–354. doi: 10.1080/00224065.2019.1611351808
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