

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.202203325

Weak Electron–Phonon Coupling and Enhanced Thermoelectric Performance in n-type PbTe–Cu₂Se via Dynamic Phase Conversion

Ming Wu, Hong-Hua Cui, Songting Cai, Shiqiang Hao, Yukun Liu, Trevor P. Bailey, Yinying Zhang, Zixuan Chen, Yubo Luo, Ctirad Uher, Christopher Wolverton, Vinayak P. Dravid, Yan Yu, Zhong-Zhen Luo,* Zhigang Zou, Qingyu Yan,* and Mercouri G. Kanatzidis*

Supporting Information

Weak electron-phonon coupling and enhanced thermoelectric performance in n-type PbTe-Cu₂Se via dynamic phase conversion

Ming Wu,^{1,10} Hong-Hua Cui,^{2,10} Songting Cai,^{3,4} Shiqiang Hao,⁴ Yukun Liu,⁴ Trevor P. Bailey,⁵ Yinying Zhang,⁵ Zixuan Chen,¹ Yubo Luo,⁶ Ctirad Uher,⁵ Christopher Wolverton,⁴ Vinayak P. Dravid,⁴ Yan Yu,^{1,7,9} Zhong-Zhen Luo,^{1,3,7,8,*} Zhigang Zou,^{1,7,9} Qingyu Yan,^{8,*} Mercouri G. Kanatzidis^{3,*}

¹Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China

²Mechanical and Electrical Engineering Practice Center, Fuzhou University, Fuzhou, 350108, China

³Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States

⁴Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States

⁵Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States ⁶State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

⁷Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China

⁸School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore

⁹Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China

¹⁰These authors contributed equally: Ming Wu, Hong-Hua Cui

Spark Plasma Sintering (SPS). The obtained ingots of $Pb_{0.975}Ga_{0.025}Te-x\%Cu_2Se$ were hand-ground into fine powders and subsequently densified using the SPS technique (SPS-211LX, Fuji Electronic Industrial Co. Ltd.) in a 12.7 mm diameter graphite die. The sintering temperature and uniaxial pressures are 823 K and 40 MPa, respectively. The disk-shaped pellets showed 96% or higher relative mass densities with a thickness of ~10 mm (Table S1, Supporting Information).

Powder X-ray Diffraction (PXRD) Characterization. The room temperature PXRD patterns measurement (Rigaku Miniflex powder X-ray diffractometer with Cu $K_{\alpha}\lambda = 1.5418$ Å) were collected in the range of 2θ from 20–80° with the scan increment of 0.02°.

In-situ PXRD Characterization. The In-situ PXRD patterns of $Pb_{0.975}Ga_{0.025}Te-3\%Cu_2Se$ from 303 K to 823 K were performed on D8 ADVANCE (Bruker) with a voltage of 40 kV and current of 40 mA. The divergence and scattering slits are 3 and 5 mm, respectively.

Electronic Transport Properties. The rectangular shape bars (~11 mm \times 4 mm \times 4 mm), cut and polished from SPSed pellets, were used for the simultaneous electrical conductivity and Seebeck coefficient measurements. The test was performed on a commercial Ulvac Riko ZEM-3 system under a low-pressure helium atmosphere from 300 K to 873 K. The uncertainty of the measure is estimated to be ~5%.

X-ray photoelectron spectroscopy (XPS) measurements. XPS spectra were tested on a Thermo Scientific ESCALAB 250 Xi spectrometer with a monochromatic Al K α X-ray source (1486.6 eV) under an ultrahigh vacuum (< 10⁻⁸ mbar). The pass energies for the survey and high-resolution scans are 150 eV and 25 eV, respectively. The spectra were calibrated with the C 1s peak binding energy at 284.7 eV (carbon tape).

Figure S1. The zoomed-in view of PXRD patterns of $Pb_{0.975}Ga_{0.025}Te-x\%Cu_2Se$ (x = 0, 1, 2, 3, 4, and 5) at room temperature, revealing that a trace amount of CuGa(Te,Se)₂ phase can be detected.

Figure S2. The phase diagram of the PbTe-Cu₂Te system. Below 650 °C the solid solubility of Cu in PbTe is very low. (Grytsiv V.I., and Vengel' P.F., PbTe-Cu and PbTe-Cu2Te polythermal cross sections of the Pb-Te-Cu ternary system, *Inorg. Mater.*, 20, **1984**, 1713-1716)

Figure S3. The PXRD patterns of $CuGaTe_{1-x}Se_x$ phase (x = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, and 2.0).

Figure S4. Refined lattice parameters of $Pb_{0.975}Ga_{0.025}Te-x\%Cu_2Se$ (x = 0, 1, 2, 3, 4, and 5). The red dashed line is a guide to the eye.

Figure S5. In-situ PXRD patterns of $Pb_{0.975}Ga_{0.025}Te-3\%Cu_2Se$ sample from 303 K to 873 K and 873 K to 303 K. The XRD patterns at the heating and cooling processes indicated the stability of the sample and the dynamic phase conversion.

Figure S6. The PXRD patterns of $Pb_{0.975}Ga_{0.025}Te-3\%Cu_2Se$ before (SPSed) and after thermoelectrical measurements (after LFA and ZEM) reveal the excellent stability of the compound.

Figure S7. HAADF image of $Pb_{0.975}Ga_{0.025}Te-3\%Cu_2Se$ with quantitative EDS results in three typical regions (PbTe matrix, CuGa(Te/Se)₂, and Cu₂Te).

Figure S8. HAADF, BF image of the $Pb_{0.975}Ga_{0.025}Te-3\%Cu_2Se$ sample after thermoelectrical measurements and its corresponding EDS mappings.

Figure S9. Temperature-dependent $R_{\rm H}$ for Pb_{0.975}Ga_{0.025}Te-x%Cu₂Se (x = 0, 1, and 5).

Figure S10. The X-ray photoelectron spectra (XPS) of Ga $2p^{1/2}$ and $2p^{3/2}$ core states for Ga³⁺ and Ga⁺ states in Pb_{0.975}Ga_{0.025}Te-5%Cu₂Se.

Figure S12. The electrical conductivity and Seebeck coefficient for $Pb_{0.975}Ga_{0.025}Te-x\%Cu_2Se$ (x = 3 and 5) are stable under thermal cycling with heating-cooling-repeated measurements, showing good repeatability.

Figure S12. Temperature-dependent (a) thermal diffusivity, *D* and (d) Lorenz numbers, *L* of $Pb_{0.975}Ga_{0.025}Te-x\%Cu_2Se$ (x = 0, 1, 2, 3, 4, and 5).

Figure S13. (a) Illustration of the Ga-doped and Cu₂Se alloyed PbTe structure model with the Cu-Ga-Se complex and (b) Comparison of the calculated κ_{lat} from the DFT phonon dispersion for pure PbTe, Ga-doped PbTe, and Ga-doped and Cu₂Se alloyed PbTe as a function of temperature.

Composition	Measured density, gcm^{-3}	Theoretical density, %
Pb _{0.975} Ga _{0.025} Te	7.94	97.4
$Pb_{0.975}Ga_{0.025}Te\text{-}1\%Cu_2Se$	7.85	96.5
$Pb_{0.975}Ga_{0.025}Te-2\%Cu_2Se$	7.88	97.0
$Pb_{0.975}Ga_{0.025}Te3\%Cu_2Se$	7.83	96.5
$Pb_{0.975}Ga_{0.025}Te\text{-}4\%Cu_2Se$	7.80	96.4
$Pb_{0.975}Ga_{0.025}Te\text{-}5\%Cu_2Se$	7.85	97.1

Table S1. Mass densities for $Pb_{0.975}Ga_{0.025}Te-x\%Cu_2Se$ (x = 0, 1, 2, 3, 4, and 5) at room temperature.