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Spark Plasma Sintering (SPS). The obtained ingots of Pb0.975Ga0.025Te-x%Cu2Se 

were hand-ground into fine powders and subsequently densified using the SPS 

technique (SPS-211LX, Fuji Electronic Industrial Co. Ltd.) in a 12.7 mm diameter 

graphite die. The sintering temperature and uniaxial pressures are 823 K and 40 MPa, 

respectively. The disk-shaped pellets showed 96% or higher relative mass densities 

with a thickness of ~10 mm (Table S1, Supporting Information). 

Powder X-ray Diffraction (PXRD) Characterization. The room temperature PXRD 

patterns measurement (Rigaku Miniflex powder X-ray diffractometer with Cu Kα λ = 

1.5418 Å) were collected in the range of 2θ from 20−80° with the scan increment of 

0.02°. 

In-situ PXRD Characterization. The In-situ PXRD patterns of 

Pb0.975Ga0.025Te-3%Cu2Se from 303 K to 823 K were performed on D8 ADVANCE 

(Bruker) with a voltage of 40 kV and current of 40 mA. The divergence and scattering 

slits are 3 and 5 mm, respectively. 

Electronic Transport Properties. The rectangular shape bars (~11 mm × 4 mm × 4 

mm), cut and polished from SPSed pellets, were used for the simultaneous electrical 

conductivity and Seebeck coefficient measurements. The test was performed on a 

commercial Ulvac Riko ZEM-3 system under a low-pressure helium atmosphere from 

300 K to 873 K. The uncertainty of the measure is estimated to be ~5%.  

X-ray photoelectron spectroscopy (XPS) measurements. XPS spectra were tested 

on a Thermo Scientific ESCALAB 250 Xi spectrometer with a monochromatic Al Kα 

X-ray source (1486.6 eV) under an ultrahigh vacuum (< 10
−8

 mbar). The pass 

energies for the survey and high-resolution scans are 150 eV and 25 eV, respectively. 

The spectra were calibrated with the C 1s peak binding energy at 284.7 eV (carbon 

tape). 
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Figure S1. The zoomed-in view of PXRD patterns of Pb0.975Ga0.025Te-x%Cu2Se (x = 

0, 1, 2, 3, 4, and 5) at room temperature, revealing that a trace amount of 

CuGa(Te,Se)2 phase can be detected. 

 

 

Figure S2. The phase diagram of the PbTe-Cu2Te system. Below 650 °C the solid 

solubility of Cu in PbTe is very low. (Grytsiv V.I., and Vengel’ P.F., PbTe-Cu and 

PbTe-Cu2Te polythermal cross sections of the Pb-Te-Cu ternary system, Inorg. Mater., 

20, 1984, 1713-1716) 
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Figure S3. The PXRD patterns of CuGaTe1−xSex phase (x = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 

1.3, 1.5, 1.7, and 2.0). 
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Figure S4. Refined lattice parameters of Pb0.975Ga0.025Te-x%Cu2Se (x = 0, 1, 2, 3, 4, 

and 5). The red dashed line is a guide to the eye. 
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Figure S5. In-situ PXRD patterns of Pb0.975Ga0.025Te-3%Cu2Se sample from 303 K to 

873 K and 873 K to 303 K. The XRD patterns at the heating and cooling processes 

indicated the stability of the sample and the dynamic phase conversion. 
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Figure S6. The PXRD patterns of Pb0.975Ga0.025Te-3%Cu2Se before (SPSed) and after 

thermoelectrical measurements (after LFA and ZEM) reveal the excellent stability of 

the compound. 
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Figure S7. HAADF image of Pb0.975Ga0.025Te-3%Cu2Se with quantitative EDS results 

in three typical regions (PbTe matrix, CuGa(Te/Se)2, and Cu2Te). 

 

 

Figure S8. HAADF, BF image of the Pb0.975Ga0.025Te-3%Cu2Se sample after 

thermoelectrical measurements and its corresponding EDS mappings. 
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Figure S9. Temperature-dependent RH for Pb0.975Ga0.025Te-x%Cu2Se (x = 0, 1, and 5). 
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Figure S10. The X-ray photoelectron spectra (XPS) of Ga 2p
1/2

 and 2p
3/2

 core states 

for Ga
3+

 and Ga
+
 states in Pb0.975Ga0.025Te-5%Cu2Se. 
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Figure S12. The electrical conductivity and Seebeck coefficient for 

Pb0.975Ga0.025Te-x%Cu2Se (x = 3 and 5) are stable under thermal cycling with 

heating-cooling-repeated measurements, showing good repeatability. 

 

 

Figure S12. Temperature-dependent (a) thermal diffusivity, D and (d) Lorenz 

numbers, L of Pb0.975Ga0.025Te-x%Cu2Se (x = 0, 1, 2, 3, 4, and 5). 

  



9 

 

 

 

Figure S13. (a) Illustration of the Ga-doped and Cu2Se alloyed PbTe structure model 

with the Cu-Ga-Se complex and (b) Comparison of the calculated κlat from the DFT 

phonon dispersion for pure PbTe, Ga-doped PbTe, and Ga-doped and Cu2Se alloyed 

PbTe as a function of temperature. 
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Table S1. Mass densities for Pb0.975Ga0.025Te-x%Cu2Se (x = 0, 1, 2, 3, 4, and 5) at 

room temperature. 

 

Composition Measured density, gcm
−3

 Theoretical density, % 

Pb0.975Ga0.025Te 7.94 97.4 

Pb0.975Ga0.025Te-1%Cu2Se 7.85 96.5 

Pb0.975Ga0.025Te-2%Cu2Se 7.88 97.0 

Pb0.975Ga0.025Te-3%Cu2Se 7.83 96.5 

Pb0.975Ga0.025Te-4%Cu2Se 7.80 96.4 

Pb0.975Ga0.025Te-5%Cu2Se 7.85 97.1 


