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Spark Plasma Sintering (SPS). The obtained ingots of Pbgg75Gag o5 Te-x%Cu,Se
were hand-ground into fine powders and subsequently densified using the SPS
technique (SPS-211LX, Fuji Electronic Industrial Co. Ltd.) in a 12.7 mm diameter
graphite die. The sintering temperature and uniaxial pressures are 823 K and 40 MPa,
respectively. The disk-shaped pellets showed 96% or higher relative mass densities
with a thickness of ~10 mm (Table S1, Supporting Information).

Powder X-ray Diffraction (PXRD) Characterization. The room temperature PXRD
patterns measurement (Rigaku Miniflex powder X-ray diffractometer with Cu K, 1 =
1.5418 A) were collected in the range of 26 from 20—80° with the scan increment of
0.02°.

In-situ PXRD Characterization. The In-situ PXRD  patterns  of
Pbo.g75Gap 025 Te-3%Cu,Se from 303 K to 823 K were performed on D8 ADVANCE
(Bruker) with a voltage of 40 kV and current of 40 mA. The divergence and scattering
slits are 3 and 5 mm, respectively.

Electronic Transport Properties. The rectangular shape bars (~11 mm x 4 mm x 4
mm), cut and polished from SPSed pellets, were used for the simultaneous electrical
conductivity and Seebeck coefficient measurements. The test was performed on a
commercial Ulvac Riko ZEM-3 system under a low-pressure helium atmosphere from
300 K to 873 K. The uncertainty of the measure is estimated to be ~5%.

X-ray photoelectron spectroscopy (XPS) measurements. XPS spectra were tested
on a Thermo Scientific ESCALAB 250 Xi spectrometer with a monochromatic Al Ka
X-ray source (1486.6 eV) under an ultrahigh vacuum (< 10 mbar). The pass
energies for the survey and high-resolution scans are 150 eV and 25 eV, respectively.
The spectra were calibrated with the C 1s peak binding energy at 284.7 eV (carbon
tape).
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Figure S1. The zoomed-in view of PXRD patterns of Pbg g75Gag 025 Te-x%Cu,Se (X =
0, 1, 2, 3, 4, and 5) at room temperature, revealing that a trace amount of
CuGa(Te,Se), phase can be detected.
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Figure S2. The phase diagram of the PbTe-Cu,Te system. Below 650 °C the solid
solubility of Cu in PbTe is very low. (Grytsiv V.I., and Vengel’ P.F., PbTe-Cu and

PbTe-Cu2Te polythermal cross sections of the Pb-Te-Cu ternary system, Inorg. Mater.,
20, 1984, 1713-1716)
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Figure S3. The PXRD patterns of CuGaTe;—Sex phase (x = 0.1, 0.3,0.5,0.7, 0.9, 1.1,
1.3,1.5,1.7,and 2.0).
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Figure S4. Refined lattice parameters of Pbgg75Gag g25 Te-x%Cu,Se (x = 0, 1, 2, 3, 4,
and 5). The red dashed line is a guide to the eye.
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Figure S5. In-situ PXRD patterns of Pbg g75Gag 025 Te-3%Cu,Se sample from 303 K to
873 K and 873 K to 303 K. The XRD patterns at the heating and cooling processes
indicated the stability of the sample and the dynamic phase conversion.
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Figure S6. The PXRD patterns of Pbg g75Gag 025 Te-3%Cu,Se before (SPSed) and after

thermoelectrical measurements (after LFA and ZEM) reveal the excellent stability of
the compound.
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Figure S7. HAADF image of Pbg g75Gap 025 Te-3%Cu,Se with quantitative EDS results
in three typical regions (PbTe matrix, CuGa(Te/Se),, and Cu,Te).
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Figure S8. HAADF, BF image of the Pbgg75GagosTe-3%Cu,Se sample after
thermoelectrical measurements and its corresponding EDS mappings.
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Figure S9. Temperature-dependent Ry for Pbg g75Gag 025 Te-x%Cu,Se (x = 0, 1, and 5).
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Figure S10. The X-ray photoelectron spectra (XPS) of Ga 2p
for Ga®* and Ga" states in Pbg.g75Gag o25 Te-5%CusSe.

1/2 3/2

and 2p“ core states



(a) Pbg o75Gag gps Te-3%Cu,Se (b)  Pby 675G 05T€-3%Cu,S
~3000¢ 0.975250.025 oL Uxo8 ] 100l 0975G80 0251 €-37CU, €
‘TE o Coning N
) 2000 —&— Reheating ] x
(3 3_200 —ll— Heating

01000 » o,
oL . , , , -300L . . \ \
300 450 600 750 900 300 450 600 750 900
T (K) T (K)
(c) (d) -50p : : : :
3000 Pb0.975GaO_025Te—5%Cu28e Pb0.975Gao_025Te-5%Cu28e
‘:—‘ —M— Heating-1*  —— Cooling-1*! ] — —l—Heating-1" —l— Cooling-1¥
! —&— Heating-2"® —&— Cooling-2" Ay 100 | —— Heating-2"" —#— Cooling-2" |
E2000 —@—Heating-3" —@— Cooling-3" ] ! - —Q—Heating-SI: —— Cooling-3"
(% —@—Heating-4" > —@—Heating-4'
.
= Z_150}
1000 P
oL . , , , -200L \ \ \ \
300 450 600 750 900 300 450 600 750 900
T (K) T (K)

Figure S12. The electrical conductivity and Seebeck coefficient for
Pbo.g75Gag 025 Te-x%Cu,Se (x = 3 and 5) are stable under thermal cycling with
heating-cooling-repeated measurements, showing good repeatability.
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Figure S12. Temperature-dependent (a) thermal diffusivity, D and (d) Lorenz
numbers, L of Pbgg75Gag o5 Te-x%Cu,Se (x =0, 1, 2, 3, 4, and 5).



—m—PbTe
—&— Ga-doped PbTe
Ga-doped and Cu,Se-alloyed PbTe

00 450 600 750 900
T (K)

Figure S13. (a) Illustration of the Ga-doped and Cu,Se alloyed PbTe structure model

with the Cu-Ga-Se complex and (b) Comparison of the calculated «j,; from the DFT

phonon dispersion for pure PbTe, Ga-doped PbTe, and Ga-doped and Cu,Se alloyed

PbTe as a function of temperature.




Table S1. Mass densities for Pbgg75Gag 025 Te-x%Cu,Se (x = 0, 1, 2, 3, 4, and 5) at
room temperature.

Composition Measured density, gcm > Theoretical density, %
Pbo.975Gag.025 T€ 7.94 97.4
Pbo.975Ga0.025 Te-1%Cu,Se 7.85 96.5
Pbg.g75Gag 025 Te-2%Cu,Se 7.88 97.0
Pbg.g75Gag 025 Te-3%Cu,Se 7.83 96.5
Pbg.g75Gag 025 Te-4%Cu,Se 7.80 96.4
Pbo.975Ga0.025 Te-5%Cu,Se 7.85 97.1
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