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Abstract
Purpose: Synthetic digital mammogram (SDM) is a 2D image generated from
digital breast tomosynthesis (DBT) and used as a substitute for a full-field digital
mammogram (FFDM) to reduce the radiation dose for breast cancer screening.
The previous deep learning-based method used FFDM images as the ground
truth, and trained a single neural network to directly generate SDM images with
similar appearances (e.g., intensity distribution, textures) to the FFDM images.
However, the FFDM image has a different texture pattern from DBT. The differ-
ence in texture pattern might make the training of the neural network unstable
and result in high-intensity distortion, which makes it hard to decrease inten-
sity distortion and increase perceptual similarity (e.g., generate similar textures)
at the same time. Clinically, radiologists want to have a 2D synthesized image
that feels like an FFDM image in vision and preserves local structures such
as both mass and microcalcifications (MCs) in DBT because radiologists have
been trained on reading FFDM images for a long time,while local structures are
important for diagnosis. In this study, we proposed to use a deep convolutional
neural network to learn the transformation to generate SDM from DBT.
Method: To decrease intensity distortion and increase perceptual similarity, a
multi-scale cascaded network (MSCN) is proposed to generate low-frequency
structures (e.g., intensity distribution) and high-frequency structures (e.g., tex-
tures) separately. The MSCN consist of two cascaded sub-networks: the first
sub-network is used to predict the low-frequency part of the FFDM image; the
second sub-network is used to generate a full SDM image with textures similar
to the FFDM image based on the prediction of the first sub-network. The mean-
squared error (MSE) objective function is used to train the first sub-network,
termed low-frequency network, to generate a low-frequency SDM image. The
gradient-guided generative adversarial network’s objective function is to train
the second sub-network, termed high-frequency network, to generate a full SDM
image with textures similar to the FFDM image.
Results: 1646 cases with FFDM and DBT were retrospectively collected from
the Hologic Selenia system for training and validation dataset, and 145 cases
with masses or MC clusters were independently collected from the Hologic
Selenia system for testing dataset. For comparison, the baseline network has
the same architecture as the high-frequency network and directly generates
a full SDM image. Compared to the baseline method, the proposed MSCN
improves the peak-to-noise ratio from 25.3 to 27.9 dB and improves the
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structural similarity from 0.703 to 0.724, and significantly increases the
perceptual similarity.
Conclusions: The proposed method can stabilize the training and generate
SDM images with lower intensity distortion and higher perceptual similarity.

KEYWORDS
breast cancer, deep learning, generative adversarial networks (GAN), digital breast tomosynthesis
(DBT), synthetic mammogram

1 INTRODUCTION

A full-field digital mammogram (FFDM) is a widely
used technique for breast cancer screening. However,
FFDM suffers from overlapping tissue problems. Digi-
tal breast tomosynthesis (DBT), which is a 3D volume
reconstructed from a series of low-dose projection
images in a limited angle range, is used to address the
overlapping tissue issue in FFDM. Large-scale studies
have shown that using an additional DBT volume has
higher accuracy in breast cancer detection.1 However,
using both DBT and FFDM for screening approxi-
mately doubles the radiation dose compared to FFDM
alone.2 However, to reduce the radiation dose, generat-
ing a synthetic digital mammogram (SDM) image from
DBT and replacing FFDM with SDM is one possible
solution.

Most of the previous studies on SDM solution
development focused on using handcrafted features
extracted from the DBT volume. Some of these studies
used an edge-detection filter, gradient information, or a
computer-aided detection (CAD) system to detect con-
spicuous points in DBT volume and combine them into
a 2D image as the SDM.3–5 These methods only used a
part of the information in DBT to generate SDM images
and might miss textural abnormalities. Another study
required additional projection data to construct an SDM
with enhanced microcalcifications (MCs), while the con-
spicuity of masses on the SDM was degraded.6 There
are several FDA-approved commercial SDM systems,
such as the Hologic C-view, GE V-Preview, Siemens
Insight, and Fujifilm S-View. The C-view image is cre-
ated by re-projecting and filtering the central projection
data and/or the stack of reconstructed DBT slices.7 The
image has an intrinsically different appearance and low
overall resolution and noise properties compared to the
FFDM image.8,9 Clinical studies have shown that C-view
+ DBT have a performance similar to that of standard
FFDM + DBT.27,28,39 Intelligent 2D was newly devel-
oped by Hologic to further improve the performance of
C-view. However, the enhancement may result in false
positives due to pseudo-calcifications.29,35,36 Besides,
the C-view image provides poor overall resolution and
noise properties compared to the FFDM image.30,31,40,41

More importantly, large-scale clinical studies reported

that more breasts’ density is categorized as non-dense
than dense when using C-view + DBT compared to
using FFDM + DBT,32,33,37,38 probably due to inher-
ently different visual appearance between the C-view
image and FFDM image. Since breast density has both
imaging and risk implications34 and is an important
component of mammography reports and BI-RADS cat-
egory classification, the C-view image may result in an
inconsistent mammography report to FFDM image and
unreliable risk assessment,which increases the recall of
patients.

Deep learning has become a widely used solution
for image-to-image translation.10–12 Recent studies13,14

proposed using gradient-guided generative adversar-
ial networks (GGGAN) as the objective function for
training a single deep convolutional neural network
(DCNN) to directly generate an SDM image from the
DBT volume. In GGGAN, a discriminator network using
gradient maps as additional inputs is trained to distin-
guish between the generated images and ground-truth
images. The generator network is trained to minimize
the objective function based on the discriminator net-
work to generate images with similar appearances and
textures to the ground-truth FFDM image. The GGGAN
was designed to maintain high-frequency structures,
such as MCs in FFDM images. Other image-to-image
regression objective functions, which are based on full-
reference distortion measures,15 such as mean-squared
error (MSE) and perceptual loss,16 can decrease the
intensity distortion between the generated images and
the ground truth. It has been shown in low-dose CT
denoising tasks17 that combining MSE with genera-
tive adversarial networks (GAN)18 has a lower inten-
sity distortion compared to using GAN only. Thus, by
combining GGGAN with MSE and perceptual loss,
we might generate SDM images with high-frequency
structures (such as textures) and low-frequency struc-
tures (such as intensity distribution) similar to FFDM
images.

However, FFDM has a different texture pattern from
DBT because of the different radiation doses and
detectors used in FFDM and DBT acquisition, and dif-
ferent post-processing techniques applied on acquired
FFDM images and DBT volumes.19 While using the
FFDM image as the target, the difference in texture
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pattern might make the training of the DCNN unsta-
ble and result in high-intensity distortion, which makes
it difficult to decrease intensity distortion and increase
perceptual similarity (e.g., generate similar textures)
simultaneously.

For FFDM, images contain low-frequency compo-
nents such as mass and tissue background and high-
frequency components such as calcifications and edges.
Low-frequency components preserve intensity distribu-
tion and high-frequency components represent texture
patterns. To overcome the above high-intensity dis-
tortion, we propose to apply two neural networks to
generate low-frequency components and full images
individually.Low-frequency component is generated first
and then when a full image is generated to reproduce
the texture pattern, a specific penalty is applied to force
the previously generated low-frequency component to
be preserved.

In this study, we proposed a multi-scale cascaded
network (MSCN) that comprises two subnetworks to
decrease intensity distortion and increase perceptual
similarity. The first sub-network is trained to predict the
low-frequency part (i.e., intensity distribution) of the
FFDM image. Thus, the first subnetwork is called the
low-frequency network. U-net10 is used for the network
architecture, and MSE is used as the objective function
to decrease intensity distortion. U-net is widely used in
the image-to-image translation task.11 The second sub-
network is trained to generate a full SDM image with
high-frequency structures (e.g., textures) similar to the
FFDM image based on the prediction of the first sub-
network, and it is called the high-frequency network.
A state-of -the-art network architecture in the image
super-resolution task called residual-in-residual dense
block (RRDB)12 network is used for network architec-
ture. The residual connections and dense connections
in the RRDB network lead to the effective fusion of
global and local features which can recover sharper
edges and finer details. GGGAN is used as the objec-
tive function to preserve high-frequency structures and
textures.

In the experiments, a single RRDB network that
directly generated full SDM images was used as the
baseline to show the performance gain of the pro-
posed MSCN. The baseline network used the same
network architecture and objective function as the high-
frequency network in the MSCN.The peak-to-noise ratio
(PSNR) and structural similarity (SSIM) were used to
measure the intensity distortion between the generated
SDM images and the ground-truth FFDM images. The
learned perceptual image patch similarity (LPIPS),20

which correlates well with human perceptual similarity
judgments, was used to measure the perceptual similar-
ity of the generated SDM images. In addition, a mass
segmentation task was used to measure the ability of
the proposed method to preserve the mass.

TABLE 1 The distribution of the 627 tumorous cases’ features

Features
Number
of cases

Mass 219

Micro-calcification 146

Architectural distortion 56

Asymmetry 58

Multiple types 148

Total 627

2 MATERIALS AND METHODS

2.1 Data

We retrospectively collected 1646 cases (1019 cases
were normal and 627 cases were tumorous) with FFDM
and DBT for the training and validation datasets. The
distribution of the tumorous cases is shown in Table 1.
Fifty normal cases and 31 tumorous cases were ran-
domly selected for validation, and the validation dataset
was only used for hyperparameter selection.We set nor-
mal cases as the blank group and cancer cases as the
control group.The blank group has 42 cases in BI-RADS
breast density type A, 114 cases in type B, 756 cases in
type C, and 107 cases in type D. The control group has
24 cases in BI-RADS breast density type A, 98 cases in
type B,448 cases in type C,and 57 cases in type D.Over-
all, the dense type of breasts for the largest proportion
(84.69%) in the blank group,and the same as in the con-
trol group is 80.54%.The average age of the blank group
is 46.9 ± 9.67 years old. The control group is 51.1 ±
9.06 years old. We independently collected 145 cases
with masses or MC clusters for testing. The masks of
239 masses in the 145 cases were manually annotated
by a radiologist and used for mass quality evaluation.All
the data were collected from the Hologic Selenia Sys-
tem. The slices of DBT volumes were resized to have
the same pixel spacing as the FFDM image, and DBT
volumes were padded with all zero slices on one side
until each DBT had 96 slices. The gray level of the DBT
volume is 10-bit, that is, ranging from 0 to 1023, and the
gray level of the FFDM image is 12-bit, that is, ranging
from 0 to 4095. The gray level of both DBT and FFDM
images was rescaled to between -1 and 1 using a linear
transformation.

2.2 Multi-scale cascaded networks

In the proposed MSCN, we first trained the first subnet-
work, which is denoted by the low-frequency network
GL, to generate low-frequency SDM. The low-frequency
part of the FFDM images was extracted from the
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F IGURE 1 (a) FFDM image, which has a size of 256 × 256. (b) Low-frequency FFDM image (resized to have a size of 256 × 256). (c) The
line profile of the FFDM image and low-frequency FFDM image of the left red line in (a). (d) The line profile of the FFDM image and
low-frequency FFDM image of the right red line in (a). Best viewed in color

FFDM images and used as the ground truth to train the
network GL. We proposed an image processing oper-
ator, denoted by 𝜑, to extract the low-frequency part
of the FFDM image. A low-frequency FFDM image,
denoted byILD, is extracted by

ILD = 𝜑 (ID) = 𝜙 (𝜙 (ID)) , (1)

where ID is the original FFDM image, 𝜙 is a Gaussian
smoothing operator (Gaussian kernel with a mean of
0 and a standard deviation of 1) followed by a bilinear
down-sample with a factor of 2. An example of a low-
frequency FFDM image is shown in Figure 1. Given a
trained low-frequency network GL, the low-frequency
SDM is generated by

ILS = GL (IT ) , (2)

where IT is the DBT volume. We generated low-
frequency SDM for all cases in the training, validation,
and testing datasets. Subsequently, we trained an
RRDB network, which is denoted by the high-frequency
network GH, to generate the high-frequency part of the
FFDM image. In this study, we used residual learning21

to train networkGH. In residual learning, given a DBT
volume IT and a low-frequency SDM ILS, the output of

the network GH is added to the low-frequency SDM to
derive a full SDM image, that is

IS = GH
(

IT , ILS

)
+ u

(
ILS

)
, (3)

where u is bilinear up-sampling with a factor of 4.
Thereafter, the original FFDM images were used as the
ground truth to train the network GH.

2.3 Network architecture

The network architecture of the low-frequency network
GL is shown in Figure 2. To extract 3D information in
the input DBT volume, we used shared weight group
convolution (SWGC)13,14 in the encoder path of U-net.
To increase the network’s capacity, we used 16 RRDB
blocks12 in the U-net’s lowest level. We used layer
normalization22 instead of batch normalization.

The network architecture of the high-frequency
network GH is shown in Figure 3. We used a similar
architecture network as the state-of -the-art RRDB
network in the image super-resolution task.12 The input
DBT was fed into a feature extraction truck to extract
high-frequency features. High-frequency features
were concatenated with low-frequency features in the
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F IGURE 2 The diagram of the low-frequency network for low-frequency SDM generation. All the convolution layers in the feature extraction
part (outlined with a blue dashed line) are shared weight group convolution (SWGC) layer. All the convolution layers have a kernel size of 3 × 3
and 64 output channels. There are 16 RRDB blocks in the RRDB trunk. Best viewed in color

F IGURE 3 The diagram of the high-frequency network for full SDM generation. The first convolution layer in the feature extraction part
(outlined with a blue dashed line) is the SWGC layer and has 256 output channels. All the other convolution layers have 64 output channels. All
the convolution layers have a kernel size of 3 × 3. Low-frequency SDM is bilinear up-sampled with a factor of 4 and added to the output of the
RRDB network to derive the full SDM. There are 16 RRDB blocks in the RRDB trunk. Best viewed in color

proposed MSCN. The features were then fed into the
RRDB Trunk whose architecture was shown in Figure 3
to generate a high-frequency image.The high-frequency
image was added to the low-frequency image and out-
put the final SDM. To show the performance gain of the
proposed MSCN,we used an RRDB network,which has
the same network architecture as the high-frequency
network, to directly generate full SDM images and used
the RRDB network as the baseline model. The baseline
network has no additional low-frequency SDM input or
residual learning.

2.4 Objective function

To train the low-frequency network GL,we used the MSE
objective function. The MSE loss is given by

LMSE
(
GL

)
=

1|S|
∑

(
ILD,IT

)
∈S

‖‖‖ILD − GL (IT )‖‖‖2

2
, (4)

where S is the training dataset, |S| is the size of the
training dataset, and ‖ ⋅ ‖2is l2-norm.

To train the high-frequency networkGH, we used
GGGAN13 with perceptual loss14,16 and multi-frequency
MSE loss as the regularization terms. In GGGAN, a dis-
criminator network, which is denoted by D, is trained
to distinguish between generated SDM image IS and
the ground truth imageID. The loss function for the
discriminator D is given by

LGGGAN (D) =
1|S|

∑
(

ILD,IT
)
∈S,IS(‖‖‖1⃗ − D

(
IT ,

[
ID, I′D

])‖‖‖2

2
+
‖‖‖0⃗ − D

(
IT ,

[
IS, I′S

])‖‖‖2

2

)
,

(5)

where 1⃗ = [1, 1,… , 1]T and 0⃗ = [0, 0,… , 0]T , both have
the same size as D(⋅), and I′D/I′S are the gradient maps
of ID/IS.Sobel operators are used to extract the gradient
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F IGURE 4 (a) The diagram of the discriminator network. In the first layer, the features with a channel size of 32 are extracted from
SDM/FFDM and DBT separately and then concatenated. The output features of the next four convolution layers have a channel size of 128,
256, 512, and 1, respectively. (b) The diagram of the first seven convolution layers of the VGG-16 network. The output features of the first seven
convolution layers have a channel size of 64, 64, 128, 128, 256, 256, and 256, respectively. Max-pooling layers with a stride of two are used to
down-sample the features with a factor of 2. Best viewed in color

maps13. The architecture of the discriminator network
is shown in Figure 4. Given a trained discriminator D,
the adversarial loss and feature matching loss for the
network GH is given by

LAdv
(
GH

)
=

1|S|
∑

IT∈S,IS

(‖‖‖1⃗ − D
(
IT ,

[
IS, I′S

])‖‖‖2

2

)
, (6)

LFM
(
GH

)
=

1|S|
∑

(
ILD,IT

)
∈S,IS

TD∑
j=1

1

Nj
D

‖‖‖Dj
(
IT ,

[
ID, I′D

])
− Dj

(
IT ,

[
IS, I′S

])‖‖‖1
, (7)

where Dj(⋅) is the feature of jth layer of D(⋅), TD is the
total number of layers, Nj

D is the number of elements
of the feature in the jth layer, and ‖ ⋅ ‖1 is l1-norm. The
GGGAN objective function used to train the generator
GH is given by

LGGGAN
(
GH

)
= LAdv

(
GH

)
+ 𝜆FMLFM

(
GH

)
(8)

where 𝜆FM is a weighting factor for balancing the adver-
sarial loss and feature matching loss. We empirically
set 𝜆FM= 10, which is the same as that in previous

work14.The discriminator and generator were trained by
minimizing Equations (5) and (8) in an alternative way.

In the perceptual loss, a pre-trained network is used
to extract features from the generated SDM images and
the ground-truth FFDM images; the distance between
the features is then minimized. We used the VGG-16
network23 pre-trained on ImageNet.24 Given the pre-
trained VGG-16 network, which is denoted by V , the
perceptual loss is given by

LPercep
(
GH

)
=

1|S|TV

∑
ID∈S,IS

TV∑
j=1

1

Nj
V

‖‖‖Vj (ID) − Vj (IS)‖‖‖1
,

(9)
where Vj(⋅) is the feature of jth layers of V(⋅), TV is
the total number of layers, and Nj

V is the number of
elements of the feature in the jth layer. Due to the
assumption that natural images only share low-level fea-
ture space with medical imaging, we only used the 2nd,
4th, and 7th convolution layers of the VGG-16 network
(which has 13 convolution layers in total), which are the
three lower layers of the VGG-16 network, to extract
features. Thus, we set the number of layers TV = 3.
The diagram of the first seven convolution layers of the
VGG-16 network is shown in Figure 4.

For multi-frequency MSE loss, we used the MSE
loss of full SDM images and the MSE loss of the
low-frequency part of the full SDM images. Assuming
that the residual learning cannot significantly change
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the intensity of the low-frequency SDM, we also used
the MSE loss between the low-frequency part of the
full SDM images and low-frequency SDM images. The
multi-frequency MSE loss is

LMFMSE
(
GH

)
=

1|S|
∑

ID∈S,ILS,IS(‖ID − IS‖2
2 + ‖𝜑 (ID) − 𝜑 (IS)‖2

2 +
‖‖‖ILS − 𝜑 (IS)‖‖‖2

2

)
.

(10)

Then the objective function for the high-frequency
network GH is

L
(
GH

)
= LGGGAN

(
GH

)
+ 𝜆percepLPrecp

(
GH

)
+ LMFMSE

(
GH

)
(11)

where 𝜆percep is a weighting factor that balances the
GGGAN loss and perceptual loss. We empirically set
𝜆percep to 10, which is the same as that in previous
work.14 We used the same objective function for the
training of the baseline model, except that the third term
of the multi-frequency MSE loss (Equation 10) was not
included.

2.5 Training details

The low-frequency network (U-net) was trained on
full-sized images, whereas the high-frequency network
(RRDB network) was trained on patches. For the RRDB
network training, the DBT volumes and FFDM images
in the training and validation datasets were cut into
patches at a resolution of 512 × 512 without overlap-
ping.Patches with over 50% background were discarded
for better training convergence. Note that the RRDB
network is a fully convolutional network. Thus, the
RRDB network can use full-sized DBT as the input and
generate a full-sized SDM in the testing phase.

For the training of the U-net, we used the Adam25

solver with a learning rate of 1 × 10−4, 𝛽1 = 0.9, and
𝛽2 = 0.999.The batch size was set to 1 owing to the limi-
tations of the GPU memory.Horizontal flip augmentation
was used for all images, and vertical flip augmentation
was used for images from the CC-view mammogram.
The U-net was trained for 400 000 iterations, and the
learning rate was set to 1 × 10−5 after 300 000 itera-
tions. The training takes about 10 days on an NVIDIA
RTX 8000 GPU.

For the training of the RRDB network, we used the
Adam solver with a learning rate of 1 × 10−4, 𝛽1 = 0.5,
and 𝛽2 = 0.9. The batch size was set to four owing
to the limitations of the GPU memory. Horizontal flip
augmentation was used for all patches, and vertical

flip augmentation was used for patches from the CC-
view mammogram. The RRDB network was trained
for 100 000 iterations, and the learning rate was set
to 1 × 10−5 after 50 000 iterations. The training took
approximately two days on an NVIDIA TitanX GPU.

3 RESULTS

3.1 Evaluation

To show the performance gain of the proposed MSCN,
we trained an RRDB network to directly generate full
SDM images and used the RRDB network as the base-
line model (denoted by RRDB below). For the baseline
model, we used the same network architecture and
the same objective function (Equation 11) as the high-
frequency network in the proposed MSCN (shown in
Figure 3),except that the baseline model has no residual
learning and additional low-frequency SDM input. Thus,
the third term of the multi-frequency MSE loss for the
baseline model was not included. The main difference
between the proposed MSCN and the baseline model is
that the proposed MSCN uses the low-frequency SDM
generated by the low-frequency network.

In the experiment, we measured the intensity distor-
tion, perceptual similarity, and mass quality of the SDM
images derived using the proposed and baseline meth-
ods.To measure the intensity distortion of the generated
SDM images,we used the PSNR and SSIM.To measure
the perceptual similarity of the generated SDM images,
we used the LPIPS,20 which correlates well with human
perceptual similarity judgments. To measure the mass
quality of the generated SDM images, we trained a U-
net to predict the mask of masses in the generated SDM
images, and then measured the dice similarity coeffi-
cient between the mask of the generated SDM images
and the mask of FFDM images.

3.2 MSE loss

The MSE loss curves of training and validation on the
full SDM images and low-frequency parts of the full
SDM images are shown in Figure 5. As can be seen,
the proposed MSCN has more stable training and a
lower MSE loss than the RRDB in both full SDM images
and low-frequency parts of the full SDM images. Using
the low-frequency SDM generated by the low-frequency
network can stabilize the training and might result in a
better local minimum.

3.3 Intensity distortion

We used PSNR and SSIM to measure the intensity
distortion of the generated SDM images. The average
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F IGURE 5 (a) MSE loss curves of training and validation on full SDM images. (b) MSE loss curves of training and validation on the
low-frequency part of the full SDM images. Best viewed in color

values of PSNR and SSIM of the SDM images gen-
erated by the proposed MSCN and RRDB are shown
in Table 1. The line profiles of the two representative
cases are shown in Figure 6. As can be seen, the pro-
posed MSCN significantly (p < 1 × 10−6) outperforms
the RRDB in terms of PSNR and SSIM and has a lower
intensity distortion than the RRDB.The proposed MSCN
can decrease intensity distortion and make the SDM
images more similar to those of the FFDM images.

3.4 Perceptual similarity

We used the LPIPS,20 which correlates well with human
perceptual similarity judgments, to measure the percep-
tual similarity of the generated SDM images. In LPIPS,
a neural network was trained on a dataset of human
perceptual similarity judgments, and the neural network
was used to extract features to measure the dissimilar-
ity between the generated images and the ground-truth
images. Lower LPIPS values were related to higher per-
ceptual similarity. The results are listed in Table 2. We
used paired t-test to compare the perceptual similarity
between MSCN and RRDB. As can be seen, the pro-
posed MSCN has a significantly (p < 1 × 10−6) higher
perceptual similarity than the RRDB.

3.5 Mass quality

To measure the mass quality of the generated SDM
images, we trained the same U-net as in the previous
work14 for the mass segmentation task. We used an
independently collected in-house dataset including 673
masses and manually annotated the masks of masses
as the training dataset, which did not overlap with the
dataset described before. For each mass, a patch with
the size of 1024 × 1024 and a mass in the center was
cropped out from the FFDM image and used as the input
image.During the training,smoothed dice loss was used

as the objective function. The Adam solver with a learn-
ing rate of2 × 10−4,𝛽1 = 0.5,and𝛽2 = 0.9 was used.The
batch size was set to eight. Horizontal flip, vertical flip,
random rotation of 90◦,180◦,270◦, and random resizing
were used for training augmentation. The network was
trained for 150 epochs (approximately 12 500 iterations).
We used an ensemble of five trained U-net26 to derive
a more robust segmentation result.

We used the mean dice scores of the predicted
masks of the SDM and FFDM images, using the man-
ually annotated mask as the ground truth. In addition,
we used a semantic similarity score14 to take the pre-
dicted mask of FFDM images as the ground truth for
the calculation of a dice score, to directly evaluate the
similarity of masses between SDM and FFDM images.
The results are presented in Table 3. As can be seen,
the SDM images derived from the proposed MSCN and
the RRDB have the same segmentation results as the
FFDM images. However, the SDM image derived from
the proposed MSCN has significantly (p < 1 × 10−4)
more similar to the FFDM image than that derived from
the RRDB (see Table 4).

A representative result is shown in Figure 7. As can
be seen, the mass of the SDM image derived from the
RRDB has a higher intensity than the mass of the FFDM
image, which results in over-segmentation and a mask
inconsistent with the mask of the FFDM image. How-
ever, the proposed MSCN can derive an SDM image with
an intensity more similar to the FFDM image than the
RRDB, resulting in a mask that is more consistent with
the mask of the FFDM image (see Figure 8).

3.6 FFDM versus SDM reader study

In order to demonstrate the improved performance of
the proposed reading by radiologists,a reader study was
provided as an additional experiment. To reflect the dif-
ferences between the two imaging methods, FFDM and
SDM were reviewed by six radiologists with different
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F IGURE 6 (a,e) FFDM image of the two representative cases. (b,f) SDM image derived by the RRDB network. (c,g) SDM image derived by
the proposed MSCN. (d,h) Line profiles (FFDM (red), RRDB network (green), proposed MSCN (yellow)) of the three red dashed lines in (c) and
(g). Best viewed in color
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TABLE 2 PSNR and SSIM (mean±standard deviation) of the
RRDB network and the proposed MSCN

PSNR SSIM

RRDB 25.333±2.15 0.7028±0.069

MSCN 27.892±1.99 0.7238±0.072

TABLE 3 LPIPS (mean±standard deviation) of the RRDB
network and the proposed MSCN

LPIPS

RRDB 0.1160±0.033

MSCN 0.1077±0.033

TABLE 4 Dice score (mean±standard deviation) of FFDM
images, the RRDB network, and the proposed MSCN on the mass
segmentation task. Significance (p-value) of the difference between
the results of FFDM and SDM is listed. Semantic similarity is the dice
score (mean±standard deviation) between the predicted mask of
SDM and the predicted mask of FFDM images

Dice score p-Value Semantic similarity

FFDM 0.7939±0.147 - -

RRDB 0.7938±0.141 0.977 0.9312±0.093

MSCN 0.7981±0.145 0.0594 0.9546±0.043

years of experience, and also analyzed the differences
between the detection effect and diagnostic efficiency
of lesions in the images in this study.

Readers consisted of six breast diagnostic radiolo-
gists, including three groups, the junior group: reader
1 and reader 2 had 2 years of breast image diagno-
sis experience; the middle-seniority group: reader 3 and
reader 4 had 4 years of breast image diagnosis expe-
rience; the senior group: reader 5 and reader 6 had 6
years of breast image diagnosis experience.

Data are collected according to the requirements of
the reading experiment of multiple readers. In order
to ensure sufficient diagnostic power, 120 cases are
required when the diagnostic power is set to 1 and the
readers are set to six. Therefore, 145 cases with unilat-
eral lesions were randomly selected between 1 January
2014 to 31 December 2020, from Nanfang Hospital,
Southern Medical University, Guangdong, Guangzhou,
China. This retrospective study was approved by the
Institutional Review Board (IRB) approved protocol
(code number NFEC-2018-037), and informed consent
was waived. Also, FFDM images, radiologists’ reports
and pathological gold standard results were collected.
All images were numbered and desensitized after col-
lection. The inclusion criteria are that the case must
have unilateral breast lesions.The exclusion criteria are:
(1). unilateral multiple lesions; (2). no pathological gold
standard results or surgical puncture results were found.

In the first session, all cases were desensitized and
numbered after collection.The image is put into the deep

learning model for processing, and the corresponding
SDM image is the output, which is divided into two
groups, one group is the FFDM image, and the other
is the SDM image. After merging the two groups of
images, they were randomized and numbered to obtain
the experimental data set.

In the second session,preparation for the reading test:
(1) train the readers before film reading, and extract
an image of another case for trial; (2) description of
diagnostic rules: diagnosis is carried out on a case-
by-case basis, and the main lesions are located and
evaluated by BI-RADS (benign below 4a and malignant
above 4a).

If the following conditions are met, it is the correct
label: (1) the lesion is located correctly (left and right,
quadrant and depth of the lesion); (2) the main lesions
were diagnosed correctly, corresponding to pathological
results. If the following conditions occur, it will be judged
as wrong marking: (1) the localization of the lesion is
wrong marking; (2) the diagnosis of main lesions is
wrong.

In the third session, the reading experiment: images
of 290 cases were reviewed by six readers. All cases
are interpreted using a three-monitor Hologic diagnos-
tic workstation (SecurViewDx, Hologic MA), which was
calibrated to the DICOMGSDF and enabled zooming in
or out. As the database was randomized and merged,
each reader would have a different case order.

For each case, the location (left and right), quadrant,
depth (front,middle and rear), type of lesion (mass,calci-
fication, architecture distortion, asymmetry), image type
(FFDM,SDM),benign and malignant,BI-RADS category
(0–5), and probability of malignancy (%) were recorded
by the readers. The reading time was not limiting.

ROC curves, sensitivity, specificity, accuracy, PPV, and
NPV of six readers were calculated and analyzed, as
well as the consistency of lesion detection in two image
types of each reader.All statistical analyses were based
on the R language and SPSS 25.00.

The age distribution, BI-RADS breast density and
benign and malignant distribution of lesions of 145
patients are shown in Table 5.

The specific location, depth of distribution, and quad-
rant of the lesions in the 145 cases and the assessment
of the BI-RADS category in the radiologists’ report are
shown in Table 6.

All 145 cases underwent pathological biopsy, includ-
ing 142 malignant lesions and 3 benign lesions. Most
of the malignant lesions were invasive ductal carci-
noma. The specific pathological types were distributed
as shown in Table 7.

The detection by six readers in FFDM and SDM is
shown in Table 8. It can be found that readers 1, 3, and
5 all performed well in FFDM and SDM, while reader 2’s
detection ability was relatively low in six readers, and 15
cases of errors were detected in FFDM and SDM (see
Table 9–10).
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F IGURE 7 (a)FFDM image. (b) SDM image derived from the RRDB network. (c) SDM image derived from the proposed MSCN. (d)
Contours of the masks: ground truth (red), FFDM image (green), RRDB network (blue), and proposed MSCN (yellow). Best viewed in color

F IGURE 8 ROC curves for six readers in three groups diagnosed with FFDM and SDM. (a) Six readers’ ROC curves in two image types; (b)
six readers’ ROC curves in FFDM; (c) six readers’ ROC curves in SDM. We can observe that ROCs have similar upward trends in the two image
types.

In the group of six readers in FFDM and SDM, there
was statistical significance for the detection of lesions,
which indicated that there was a correlation between
the readers and the detection of the lesion and also
indicated no clear influence between the detection of
lesions and the image type.

Comparing the diagnostic efficacy of FFDM and SDM
of six viewers, we found that the sensitivity and PPV of
the two image types of readers 1, 2, 3, 5, and 6 were
consistent. The specificity and NPV could not be calcu-
lated due to the large difference between benign and
malignant proportions.The AUC values of the two image
types of the same reader were roughly the same. The
senior group had higher diagnostic efficiency, with an
average of 0.760, the average AUC value of the mid-
dle seniority group was 0.639, and the average AUC

value of the junior group was 0.750. The junior group
performed better than the middle-seniority group.

Two image types of FFDM and SDM in different read-
ers, different image types have no influence on the
detection of lesions.The consistency of the same reader
in different image types was high, and the kappa values
of readers 1, 2, 4, 5, and 6 were all greater than 0.7, indi-
cating that the coincidence degree of the two images in
the detection of lesions was statistically significant and
had a strong consistency. However, the kappa value of
reader 3 was only 0.5, indicating that its ability to detect
lesions in two different images was slightly weaker than
that of other readers.On the other hand,different image
modes have no significant influence on the detection of
lesions in the viewers, and the detection of lesions in
FFDM and SDM is roughly the same.
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TABLE 5 Characteristics of the population for this study

Variable
Test set
(n = 145)

Patient age (y)

Mean 48.89

Median 48

Range 24–73

Interquartile range 48–73

BI-RADS breast density

a 4

b 24

c 107

d 10

Number of each class

Benign 3

Malignant 142

TABLE 6 The characteristics of mass and associated features in
three group

Main features
Test set
(n = 145)

Laterality Left 75

Right 70

Quadrant Outer upper 78

Inner upper 12

Outer lower 7

Inner lower 20

Axillary region 2

Central area 2

Subareolar region 5

Other 19

Depth Front 15

Middle 59

Rear 71

BI-RADS category 5 92

4c 31

4b 13

4a 9

3 0

2 0

1 0

0 0

When chi-square analysis was performed between
groups with different image modes, it was found that
there was a significant correlation between image types’
lesions detection and the readers,suggesting that image
modes did not affect the lesion detection ability of the
readers.

TABLE 7 Histopathology results

Variable
Test set
(n = 145)

Histopathology

Adenosis of breast 1

Basal-like breast carcinoma 5

Chronic suppurative inflammation 0

Cyst of galactostasia 0

Ductal carcinoma in situ (DICS) 8

Epidermal cyst 0

Fibroadenoma 0

Fibroadenosis 2

Fibrous adipose tissue and breast ducts 0

Granulomatous mastitis 0

Interstitial fibers proliferate 0

Intraductal papilloma 0

Paget disease 1

Invasive ductal carcinoma 120

Invasive lobular carcinoma 3

Leukemia 0

Mammary neuroendocrine carcinoma 0

Mixed invasive carcinoma (ILC+IDC) 1

Metaplastic breast carcinoma 3

Mucinous carcinoma 1

Papilloma 0

Phyllodes tumors 0

Pure cyst 0

Sclerosing adenosis 0

Suppurative mastitis 0

Tubular carcinoma 0

TABLE 8 The detection and each reader’s kappa valve in FFDM
versus SDM

FFDM SDM
Y N Y N

reader 1 140 5 140 5

reader 2 130 15 130 15

reader 3 144 1 142 3

reader 4 138 7 135 10

reader 5 140 5 142 3

reader 6 141 4 139 6

Kappa value Approximate significance

reader 1 1.000 0.000

reader 2 0.930 0.000

reader 3 0.500 0.000

reader 4 0.812 0.000

reader 5 0.743 0.000

reader 6 0.793 0.000



CASCADED NETWORKS FOR SYNTHESIS OF MANNOGRAM 849

TABLE 9 The group’s chi-square Test in FFDM versus SDM

FFDM
reader 1 reader 2 reader 3 reader 4 reader 5 reader 6

Y 140 130 144 138 140 141

N 5 15 1 7 5 4

Total 145 145 145 145 145 145

SDM
reader 1 reader 2 reader 3 reader 4 reader 5 reader 6

Y 140 130 142 135 142 139

N 5 15 3 10 3 6

Total 145 145 145 145 145 145

Chi-square tests
FFDM SDM

Pearson chi-square 19.11 16.511

Likelihood ratio 17.968 15.42

Asymptotic significance (2-sided) 0.002 0.006

TABLE 10 The diagnostic efficacy parameters in the observer study of each reader

Sensitivity Specificity AUC Accuracy PPV NPV

Read 1_1 0.991 0.000 0.713 0.983 0.991 0.000

Read 1_2 0.991 0.000 0.713 0.983 0.991 0.000

Read 2_1 0.974 0.000 0.770 0.965 0.991 0.000

Read 2_2 0.974 0.000 0.813 0.966 0.991 0.000

Read 3_1 0.991 0.000 0.674 0.983 0.991 0.000

Read 3_2 0.991 0.000 0.665 0.983 0.991 0.000

Read 4_1 0.965 0.000 0.548 0.957 0.991 0.000

Read 4_2 0.974 0.000 0.670 0.966 0.991 0.000

Read 5_1 0.965 0.000 0.765 0.957 0.991 0.000

Read 5_2 0.965 0.000 0.787 0.957 0.991 0.000

Read 6_1 0.991 0.000 0.722 0.983 0.991 0.000

Read 6_2 0.991 0.000 0.765 0.983 0.991 0.000

Analyzing the diagnostic results of each reader under
FFDM and SDM image type,we found that the sensitivity
PPV of viewers 1,2,3,5,and 6 were consistent.The AUC
values of the two image types are roughly the same for
the same viewer.

In conclusion,under FFDM and SDM image types, the
detection and diagnosis abilities of the six readers were
roughly the same, indicating that FFDM and SDM had
roughly the same screening and diagnosis effects on
breast lesions.

3.7 Observer study about
pseudo-calcifications in SDM

In order to reflect the influence of pseudo-calcifications,
we make an observer study about pseudo-calcifications

in SDM. A total of 20 normal cases were reviewed by
two radiologists with the same experience (3 years),and
also analyzed the consistency in this study.

Readers consist of two breast diagnostic radiologists
who had 3 years of breast image diagnosis experience.
Data are collected according to the requirements of the
reading experiment. In order to ensure sufficient diag-
nostic power,20 cases are required when the diagnostic
power is set to 1 and the readers are set to six.Therefore,
20 normal cases, which were confirmed by follow-up 1
year,were randomly selected between 1 January 1 2022
to 31 March 31 2022, from Nanfang Hospital, South-
ern Medical University, Guangdong, Guangzhou, China.
This retrospective study was approved by the Insti-
tutional Review Board (IRB) approved protocol (code
number NFEC-2018-037), and informed consent was
waived. Also, FFDM images, radiologists’ reports and



850 CASCADED NETWORKS FOR SYNTHESIS OF MANNOGRAM

TABLE 11 The group’s McNemar test in SDM of detection of
pseudo-calcifications

SDM
reader 1 reader 2

Y 2 1

N 18 19

Total 20 20

McNemar tests
SDM

Pearson chi-square 0.36

Likelihood ratio 0.37

Asymptotic significance (2-sided) 0.55

Kappa 0.05

Approximate significance 0.55

pathological gold standard results were collected. All
images were numbered and desensitized after collec-
tion. The inclusion criteria are: (1) BI-RADS 1 and
follow-up at least 2 years. The exclusion criteria are: (1)
multiple lesions; (2) BI-RADS equal to or greater than 2.

In the first session, all cases were desensitized and
numbered after collection. The image is put into the
deep learning model for processing, and the corre-
sponding SDM image is output. They were randomized
and numbered to obtain the experimental data set.

In the second session, preparation for reading test:
(1) train the readers before film reading and extract an
image of another case for trial; (2) description of diag-
nostic rules: diagnosis is carried out on a case-by-case
basis, and find out pseudo-calcifications (Y/N).

In the third session, the reading experiment: images
of 20 cases were reviewed by two readers. All cases
are interpreted using a three-monitor Hologic diagnostic
workstation (SecurViewDx, Hologic MA). For each case,
yes (have pseudo-calcifications) or no (do not have)
were recorded by the readers.

The consistency and kappa value of the two readers
were calculated and analyzed, as well as the consis-
tency of pseudo-calcifications detection in the SDM of
each reader. All statistical analyses were based on the
R language and SPSS 25.00. The results are shown in
Table 11.

In the group of two readers in SDM, there was
no statistical significance for the detection of pseudo-
calcifications, which indicates that there was no cor-
relation between the readers and the detection of
pseudo-calcifications and also indicates indirect proof
that the proposed model might overcome this tissue.

4 DISCUSSION

In this work, we proposed an MSCN to make the
training more stable, decrease intensity distortion, and

increase perceptual similarity. In the proposed method,
low-frequency structures (e.g., intensity distribution) and
high-frequency structures (e.g., textures) were gener-
ated separately.A single network that directly generated
the full SDM images was used as the baseline model.
The experiment results show that the training curve of
the proposed MSCN is more stable than that of the
baseline model.The baseline model has a PSNR of 25.3
dB, SSIM of 0.703, and LPIPS of 0.116, while the pro-
posed MSCN has a PSNR of 27.9 dB, SSIM of 0.724,
and LPIPS of 0.1077. An additional reader study was
performed to compare the difference between FFDM
and SDM. Six radiologists with different years of expe-
rience reviewed and analyzed the differences between
the detection effect and diagnostic efficiency of lesions
in the images.Radiologists found these two images were
roughly the same. The proposed MSCN decreases the
intensity distortion and increases the perceptual simi-
larity. It can also generate SDM images with masses
that are more similar to FFDM images than the baseline
model. The proposed MSCN can stabilize the training
process and improve the image quality of SDM images.

The low-frequency network was proposed to gener-
ate low-frequency structures (e.g., intensity distribution).
The output target of the low-frequency network was
the low-frequency FFDM which was smoothed by a
Gaussian smoothing operator (Gaussian kernel with a
mean of 0 and a standard deviation of 1) followed by
a bilinear down-sample with a factor of 2. We called
the generated image low-frequency SDM. Since high-
frequency structures were removed from the target, it is
easier for the low-frequency network to learn important
low-frequency structures. Experimental results showed
using the low-frequency SDM generated by the low-
frequency network can stabilize the training and might
result in a better local minimum.

We found that disentangling FFDM images into low-
frequency images and high-frequency images is bene-
ficial to learning multi-scale structures more efficiently.
We use two DNNs to generate the low-frequency SDM
images and high-frequency SDM images successively,
which allows the two DNNs to learn structures under
different scales independently. More importantly, disen-
tangling low-frequency structures and high-frequency
structures and using two different networks to learn
the structures allow us to use low-frequency specific
loss function and high-frequency specific loss function
for different networks respectively. With the cascaded
networks design, the low-frequency structures are com-
bined with the high-frequency structures, which fusion
into the target SDM images.

In order to reflect the differences between the
two imaging methods, a reader study of FFDM and
SDM was reviewed by six radiologists with different
years of experience, and also analyzed the differences
between the detection effect and diagnostic efficiency
of lesions in the images in this study. By analyzing the
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diagnostic results of each reader under FFDM and SDM
image type, we found that the sensitivity PPV of view-
ers 1, 2, 3, 5, and 6 were consistent. The AUC values of
the two image types are roughly the same for the same
viewer, which means the detection and diagnosis abili-
ties of the six readers were roughly the same, indicating
that FFDM and SDM had roughly the same screening
and diagnosis effects on breast lesions.

The major limitation of this work is that statistical
results of comparisons between the proposed method
and C-view/Intelligent 2D,such as a comparison in terms
of breast density consistency, were not provided. Since
both C-view and Intelligent 2D were not approved by the
FDA of China, we could only collect a limited number
of images from one hospital which conducted a clini-
cal trial for Hologic C-view. The findings in the visual
comparison are preliminary and the conclusions lack
significance due to insufficient available cases.However,
we do think it is valuable to provide this result in order to
make audiences have enough confidence and interest to
try our method if they have enough data. We will further
quantify the performance of the proposed method com-
pared with commercial SDM solutions when we collect
sufficient C-view data in the future.

Another major limitation is that the trained genera-
tor DCNN can only be used for data acquired from
the Hologic system since it only learned the trans-
formation from DBT volume to FFDM image of the
Hologic system. To investigate the potential capacity of
the proposed method to transfer to an unseen machine
system, more work is needed in the future to further
quantify the cross-vendor potential of the proposed
method.

In future work,we will provide a human observer study,
reader detection test, comparison with C-View image
and further analysis of the low-frequency SDM image
to provide more insight into the proposed method’s pros
and cons. Cross-vendor data will also be collected to
evaluate the potential of our method on different vendor
systems.

There are several possible directions for improving
the performance of the proposed method. In this study,
we used two state-of -the-art network architectures in
image generation tasks for low-frequency SDM image
generation and high-frequency SDM image genera-
tion. There might be other network architectures that
have a higher performance in image-to-image regres-
sion or texture generation. Using these networks in the
proposed method might further improve the quality of
SDM images. In addition, the vertical projection image
acquired in DBT acquisition has the same geometry as
the FFDM.Replacing the generated low-frequency SDM
image with the vertical projection image might reduce
the error introduced by the low-frequency network in
the proposed MSCN and obtain a better image qual-
ity.Similar to progressive reconstruction in the Gaussian
pyramid, progressively generating SDM images from
low frequency to high frequency might make the train-

ing more stable and derive an SDM image with lower
intensity distortion.

The proposed method might be beneficial for other
image-synthesis tasks in medical imaging. For exam-
ple, in the low-dose CT denoising task, low-dose CT,
and full-dose CT have different noise patterns and tex-
ture patterns because of the different radiation doses
used in the acquisition, although they might have equal
intensity (tissue) distribution. In the MRI-to-CT transla-
tion task, the ground-truth CT images derived by image
registration might introduce regression errors owing to
the mismatching of subtle details. In these tasks, the
proposed MSCN might decrease the regression error
introduced by the texture pattern difference or image
registration and make the training more stable.

5 CONCLUSIONS

In this study, we proposed an MSCN for SDM genera-
tion.The experiments showed that the proposed method
could decrease intensity distortion, increase perceptual
similarity, and improve mass quality, resulting in SDM
images with higher image quality. In future work, we will
conduct a human observer study and further analysis
to provide more insight into the proposed method’s pros
and cons.
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