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Abstract

Objective: This study examined the validity of a novel metric of circadian health, the

Entrainment Signal Regularity Index (ESRI), and its relationship to changes in BMI

during the school year and summer.

Methods: In a longitudinal observational data set, this study examined the relation-

ship between ESRI score and children’s (n = 119, 5- to 8-year-olds) sleep and physi-

cal activity levels during the school year and summer, differences in ESRI score

during the school year and summer, and the association of ESRI score during the

school year and summer with changes in BMI across those time periods.

Results: The ESRI score was higher during the school year (0.70 � 0.10) compared

with summer (0.63 � 0.11); t(111) = 5.484, p < 0.001. Whereas the ESRI score at

the beginning of the school year did not significantly predict BMI change during the

school year (β = 0.05 � 0.09 SE, p = 0.57), having a higher ESRI score during summer

predicted smaller increases in BMI during summer (β = �0.22 � 0.10 SE, p = 0.03).

Conclusions: Overall, children demonstrated higher entrainment regularity during the

school year compared with the summer. During summer, having a higher entrainment

signal was associated with smaller changes in summertime BMI. This effect was inde-

pendent of the effects of children’s sleep midpoint, sleep regularity, and physical

activity on children’s BMI.

INTRODUCTION

One contributing factor to the prevalence of overweight and obesity

among elementary school students is significant weight gain during

the summer [1, 2]. A recent study of 119 children aged between

5 years and 8 years found that children shifted their sleep timing later

by 1.5 hours during summer compared with the school year, and later

sleep timing during summer was associated with greater increases in
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summertime body mass index (BMI) [3]. Given that the sun sets later

during summer, it is not entirely unexpected that children’s sleep tim-

ing was shifted later, but it is curious that a potentially natural shift in

sleep would be related to accelerated weight gain. The Circadian and

Circannual Rhythm Model (CCRM) is a conceptual model that posits

that children’s accelerated summer weight gain may be explained by

differences in children’s circadian timing and the robustness of their

circadian rhythms during the school year and summer [4, 5].

Human circadian rhythms are synchronized or entrained primarily

through exposure to light via the light–dark cycle [6]. Whereas the

length of children’s circadian rhythm is unknown, adults have daily

cycles of about 24.18 hours on average in the absence of this entrain-

ing signal [7]. Because this intrinsic period is slightly longer than

24 hours, consistent input from the light–dark cycle is needed to

maintain a 24-hour day. Without consistent entraining input, circadian

timing may shift or vary [8]. Circadian rhythms are regulated primarily

by the central or master clock known as the suprachiasmatic nucleus

(SCN) [9]. The SCN is entrained by inputs from the light–dark cycle

through light signals received by the eyes [10]. The SCN uses the

inputs from the light–dark cycle to determine the time of day and

communicates timekeeping signals to the body’s peripheral clocks

located throughout the central nervous system and the body, such as

the liver, pancreas, muscle, and adipose tissue (i.e., fat) [9, 11]. Sleep,

physical activity (PA), and eating patterns are behavioral outputs of

the circadian clock. The CCRM proposes that the social demands of

the school year and summer environments result in differences in chil-

dren’s sleep and behavioral patterns during these periods of time,

leading to differential exposure to the light–dark cycle [4, 5]. Changes

in one’s exposure to the light–dark cycle can result in circadian misa-

lignment (e.g., jet lag, social jet lag, shift work disorder) or blunting of

circadian rhythmicity, both of which have been linked with adverse

health effects such as obesity [12–16].

Most studies examining the association between variability of

behavior and BMI have focused on outputs of the clock such as the

day-to-day timing of sleep, children’s rest/activity patterns, or the

likelihood of being awake or asleep at the same time each day [17].

Variability in these behavioral outputs is assumed to be associated

with variability in exposure to the light–dark cycle, resulting in poten-

tial circadian misalignment or blunting of circadian rhythms. A recent

test of the CCRM found that average variability in the midpoint

between sleep onset and wake time across 7 days did not differ dur-

ing the school year and summer, and it was not related to change in

BMI during the school year or the summer [3]. This study added to a

body of literature that has failed to find associations between day-to-

day variability in children’s sleep and weight status [18–20], whereas

other studies have found day-to-day variability in sleep duration

[21–25] and timing [26–30] to be associated with adiposity. However,

by assessing variability using an output of the clock (sleep patterns),

we may be overlooking important influences affecting circadian

entrainment, for example, the strength of the entraining signal over

the course of the day, as well as effects of the temporal distribution

of different light/dark patterns that accumulate over successive

days. As a result, our group sought to develop a novel measure of

entrainment regularity based on the physiological interpretation and

usage of inputs to the clock, such as light exposure and activity.

The Hannay Model is one of several mathematical models of the

human circadian system. Unlike other models that use a van der Pol

oscillator, the oscillators in the Hannay Model are based on network-

level physiology of the SCN and thus they may behave more like the

human circadian system. As with other models, estimates of circadian

phase are based on inputs to the clock such as light exposure or activ-

ity as measured by a wearable wrist-worn device [31]. Using children’s

activity patterns, the Hannay Model was shown to predict children’s

circadian phase as assessed by dim-light melatonin onset with a mean

absolute error of 31 minutes among a sample of 29 children aged 5 to

8 years [32]. The Hannay Model also has been used to accurately

Study Importance

What is already known?

• During summer, children gain weight at an accelerated

rate compared with the school year. Having a later sleep

midpoint during summer has been shown to predict

greater increases in body mass index (BMI) during

summer.

• The Hannay Model of circadian entrainment has been

shown to predict children’s circadian phase within

�31 minutes of the gold standard assessment of circa-

dian phase (dim-light melatonin onset).

What does this study add?

• The Entrainment Signal Regularity Index (ESRI) is a novel

metric of circadian health. Entering wearable activity data

into the Hannay Model, the ESRI quantifies the change in

model amplitude over time. Stronger, more regular, and

more appropriately timed activity patterns produce

greater increases in amplitude, resulting in a higher ESRI

score.

• After controlling for sleep midpoint, sleep regularity, and

activity levels, having a lower ESRI score during summer

predicted greater changes in BMI during summer.

How might these results change the direction of

research or the focus of clinical practice?

• These findings suggest that the timing of physical activity

relative to one’s circadian phase might have a stronger

impact on change in BMI than the total amount of physi-

cal activity that children engage in.

• Further research is needed to understand how the ESRI is

related to changes in children’s BMI.
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predict circadian phase in shift workers [33]. In circadian biology, an

entrainment signal is called a zeitgeber, which is German for “time-

giver.” The strength of zeitgebers cannot be measured without know-

ing the phase of the oscillator they are entraining, because the impact

of the signal is time dependent based on the oscillator state. The intui-

tion behind the Entrainment Signal Regularity Index (ESRI) measure

resides in the following thought experiment: For each subject, imagine

we fix the light exposure pattern for a period of D days and then we

run a series of experiments in which the subject begins the light expo-

sure schedule from a sampling of circadian phases uniformly spread

around the clock. Now measure the circadian phase at the end of

those D days. For schedules with strong zeitgeber signals, the samples

will be highly clustered together at the end of the experiment, and

for weak, irregular, or poorly timed schedules, the samples will be

spread out in phase (Figure 1). The spread-in phase of a collection

in oscillators can be quantified as the collective amplitude. Greater

spread will result in lower collective amplitude. We can leverage

this idea by simulating the Hannay Model with a low initial ampli-

tude and observing amplitude changes in response to a given zeit-

geber history. In doing so, we gain a composite score (ESRI) of the

zeitgeber’s strength as measured by its effect on a model of the

system that it is entraining.

The aims of this article were to establish preliminary support for

the validity of the ESRI by (1) examining whether the ESRI was able to

detect differences in children’s entrainment stimuli that might occur

when children are living under school year conditions, versus out-of-

school summer vacation conditions; (2) examining its association with

other characteristics of children’s objectively measured sleep and

activity patterns, such as sleep duration, sleep timing, the Sleep Regu-

larity Index (SRI), and PA levels; and (3) testing the association of the

ESRI with children’s change in BMI during the school year and sum-

mer. It was hypothesized that in this cohort, the ESRI, derived from

actigraphy data, would differ during the school year and summer

because of differences in the social demands between these condi-

tions that result in differences in children’s exposure to the light/dark

cycle and activity patterns. Finally, we hypothesized that the ESRI

would be associated with changes in children’s BMI during the school

year and summer.

METHODS

As has been previously described in detail [3], a prospective, observa-

tional cohort study of 119 children in Houston, Texas, was conducted.

Eligible children were between the ages of 5 and 8 years and in kin-

dergarten through second grade (the first 3 years of primary or ele-

mentary school). The child had to be enrolled in a school with a 10- to

12-week summer holiday and had to have the ability to participate in

physical education. Exclusion criteria were as follows: the child having

a medical condition affecting diet, PA, sleep, or weight (e.g., celiac dis-

ease, diabetes, attention-deficit/hyperactivity disorder, sleep apnea,

sleep disorders); being a homeschooled student; attending a year-

round school; having been held back two or more grade levels; and

planning to move from the Houston area. Participants were recruited

through flyers distributed at elementary schools and from a volunteer

database. The Institutional Review Board at Baylor College of Medi-

cine approved the study protocol (H-39431).

Demographic information such as child age, sex, and race and eth-

nicity were obtained via a parent-report questionnaire at the initial

school year assessment. BMI data were collected at the beginning of

the school year (range: September 7, 2016–December 3, 2016; mean:

October 19, 2016), at the end of the school year (range: April

1, 2017–June 7, 2017; mean: April 20, 2017), and at the beginning of

the following school year (range: August 18, 2017–October 16, 2017;

mean: September 11, 2017). Children’s heights were measured with-

out footwear using a Holtain stadiometer. Weights were assessed in

light clothing without footwear using a Healthometer digital scale.

Because BMI is the preferred proxy measure for change in fat mass

over intervals of less than 1 year, BMI (weight in kilograms divided by

height in meters squared) was computed [34].

Children wore activity monitors (ActiGraph GT3X-BT) on the

wrist of their nondominant hand to assess their sleep and activity pat-

terns for 7 days and 8 nights during the school year and again during

the summer break from school. Dates of the school year actigraphy

assessment ranged from September 16, 2016, through December 12,

2016, although nine children completed their accelerometer assess-

ment in May 2017 (also during the school year). School holidays and

Daylight Saving Time changes were avoided. The dates of the summer

F I GU R E 1 Conceptual illustration of the Entrainment Signal Regularity Index [Color figure can be viewed at wileyonlinelibrary.com]
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accelerometer assessment ranged from June 2, 2017, through August

16, 2017. Weeks when families reported being on vacation were

avoided. A parent-report daily sleep diary was used to facilitate the

accurate identification of sleep periods in the actigraphy data [35].

The Sadeh algorithm in ActiLife was used to code 60-second epochs

as wake versus sleep [36]. The scoring criteria used to determine sleep

duration and sleep midpoint in this data set have previously been

described in detail [3]. Python code developed by Avery-Lunsford

et al. [37] was used to calculate the SRI, which quantifies the probabil-

ity of being awake or asleep at the same clock time on consecutive

days with scores ranging from 0 to 100 [38]. Higher scores on this

measure reflect greater day-to-day consistency in sleep–wake. Activ-

ity levels were quantified as total daily activity counts.

Computing the ESRI using the Hannay Model

The Hannay Model simulations were conducted using an explicit

Runge–Kutta method of order 5 (4) numerical integration written in

Python (https://github.com/khannay/Circadian-DLMO-Prediction).

Because the Hannay Model was previously validated to predict dim-

light melatonin onset among children using activity [32], activity data

were used to compute the ESRI. Prior research has also indicated that,

when using wrist-worn devices, activity data provide a more robust

estimate of input to the circadian signal than light data [39, 40], likely

because of various limitations of measuring light from the wrist

(e.g., obstruction by apparel, a light sensor from the wrist may not cor-

respond to retinal light input, accelerometer performance is typically

more stable than light sensors).

Actigraph activity data were binned into 6-minute intervals.

Activity counts were summed across the 6-minute bins, and total lux

exposure was estimated using these activity levels. Linear interpola-

tion was used to convert these counts to the light input in the Hannay

Model. The Hannay Model was systematically derived from a model

describing the phase of each circadian neuron in the SCN. It describes

the collective phase (radians) and amplitude of the population of oscil-

lators. The amplitude describes the phase coherence of the individual

cellular oscillators and ranges between 0 (when oscillators are spread

uniformly around the phase circle) and 1 (when all oscillators are in

the identical phase). The amplitude initial condition was set to 0.10 to

enforce an approximately uniform distribution at the start of the simu-

lation. The exact value chosen for the initial amplitude does not signif-

icantly affect the conclusions as long as the value is set to a low initial

value (0.0–0.20). The initial conditions for the mean phase were cho-

sen to match a diurnal schedule with a bedtime of midnight and wake

of 8 am. However, the analysis and conclusions are not sensitive to

the initial phase conditions chosen, because the low amplitude initial

condition implies high variance around this value. This insensitivity to

the initial phase condition/assumption is a design feature of the ESRI

algorithm. Additionally, the coupling between the individual oscillators

was set to 0 along with the frequency heterogeneity. These changes

are a matter of convenience to endow the system with the property

that, in the absence of any light input, the amplitude will remain

constant. If the coupling parameter is positive, this will have the effect

of allowing the amplitude to increase steadily over time, even in the

absence of zeitgeber inputs. For the heterogeneity parameter, non-

zero values will cause the amplitude to decay. Zeroing these parame-

ters allows the values to be compared against the null case of no

zeitgeber input. The ESRI was calculated by quantifying the change in

model amplitude after 4 days of entrainment under the lighting condi-

tions estimated using activity data (Figure 1). The ESRI is a circular

metric bounded by 0 and 1. An ESRI of 0 describes no organization of

entrainment signals (e.g., zeitgebers occurring at random intervals and

strengths leading to random disbursement of circadian phases; low

collective amplitude), and an ESRI of 1 describes perfect synchrony

and organization of entrainment signals that lead to stable entrain-

ment of circadian phase (high collective amplitude).

Data analyses

A t test was used to examine school–summer differences in the ESRI.

Bivariate correlations were used to test the relationship between the

ESRI and other characteristics of children’s objectively measured sleep

and activity patterns. The association of the ESRI during the school

year and summer with changes in BMI across those time periods was

examined using mixed effects linear regression with change in BMI

across the school year and summer as the outcome variable. The inde-

pendent variables of interest included time (school year, summer) and

T AB L E 1 Sample characteristics (N = 118)

Variable Mean � SD or % (n)

Child age at baseline (y) 6.9 � 0.85

Child sex, % female 48% (57)

Ethnicity, % Latino 31% (36)

Race

Asian/Asian American 20% (23)

Black/African American 26% (31)

Caucasian/White 43% (51)

Multiracial 8% (10)

Other 3% (3)

Household income

<$69,000 41% (49)

$70,000 or more 49% (57)

Decline 10% (12)

Parent education

Some college or less 31% (37)

College degree 43% (50)

Graduate school 26% (31)

Weight classification

Healthy weight 69% (81)

Overweight 16% (19)

Obesity 15% (18)
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ESRI at each time point. Participants were entered as random effects

in the model to account for individual differences in BMI. During

model building, sex, age, total sleep time, sleep midpoint, SRI score,

and total activity counts during the school year and summer were

used as covariates.

RESULTS

A total of 119 children between the ages of 5 and 8 were recruited to

participate in the study. One participant was excluded from analyses

due to missing actigraphy data during both the school year and sum-

mer. A total of 117 children provided accelerometry data at baseline,

and 113 completed the summertime assessment. A total of 112 chil-

dren provided data at both time points. Demographics of the sample

with an ESRI score during either the school year or summer (n = 118)

are displayed in Table 1.

ESRI scores ranged from 0.17 to 0.87 (0.70 � 0.10) in the school

year and from 0.36 to 0.83 (0.63 � 0.11) in the summer. Whereas

school year and summer ESRI scores were weakly correlated

(r = 0.19, p < 0.05), ESRI scores were significantly lower in summer

(0.63 � 0.11) compared with the school year (0.70 � 0.10), t

(111) = 5.484, p < 0.001 (Figure 2).

During the school year, the ESRI was independent of sleep timing,

duration, and sleep regularity. However, during summer, having a greaterF I GU R E 2 ESRI differences between school year and summer.
ESRI, Entrainment Signal Regularity Index

F I GU R E 3 Association between the ESRI and SRI during summer. A total of 22 children were classified as being in the lower quintile based
on summer ESRI score (low ESRI) with ESRI score ranging from 0.36 to 0.53, and 22 were classified as being in the upper quintile (high ESRI) with
a summertime ESRI score ranging from 0.72 to 0.83. Going counterclockwise, starting at the upper right, the actograms reflect activity data from
children classified as having a high ESRI and high SRI score, a high ESRI and low SRI score, a low ESRI and low SRI score, and a low ESRI and high
SRI score. ESRI, Entrainment Signal Regularity Index; SRI, Sleep Regularity Index
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ESRI score was associated with having a longer sleep duration (r = 0.25,

p < 0.01) and a higher SRI score (r = 0.20, p < 0.01; Figure 3).

The school year and summer ESRI scores were positively associated

with total activity counts during the school year (r = 0.35, p < 0.01) and

summer (r = 0.30, p < 0.01), time spent in light PA during both the

school year (r = 0.51, p < 0.01) and summer (r = 0.37, p < 0.01), and time

spent in moderate to vigorous activity during both the school year

(r = 0.41, p < 0.01) and summer (r = 0.39, p < 0.01). The school year and

summer ESRI score was negatively associated with time spent in seden-

tary activity during the school year (r = �0.28, p < 0.01) and summer

(r = �0.32, p < 0.01), respectively. Time spent exposed to outdoor ambi-

ent light during the school year and summer was positively associated

with the ESRI score in the school year (r = 0.31, p < 0.01) and summer

(r = 0.27, p < 0.01; Tables 2 and 3).

Next, we examined the association of the ESRI score during the

school year and summer with changes in BMI across those time

periods, controlling for age, sex, sleep midpoint, SRI scores, and total

activity counts (Table 4). Whereas the ESRI score at the beginning of

the school year did not significantly predict BMI change during the

school year (β = 0.05 � 0.09 SE, p = 0.57), the ESRI score during sum-

mer was significantly predictive of BMI change across summer. Specif-

ically, each SD increase in ESRI score during summer predicted a 0.22

SD decrease in BMI during summer (β = �0.22 � 0.10 SE, p = 0.03;

Figure 4).

DISCUSSION

The ESRI represents a novel metric of circadian health derived from

the Hannay Model of human circadian entrainment. The Hannay

Model models the entrainment of the SCN by light down to the cellu-

lar level and it can also model the seasonal encoding of day length

T AB L E 2 Correlations between the ESRI and sleep–wake behaviors during the school year

Variable 1 2 3 4 5 6 7 8 9 10

1. ESRI 1

2. SRI 0.03 1

3. Sleep midpoint �0.14 �0.07 1

4. Sleep onset �0.15 0.00 0.94** 1

5. Sleep offset �0.10 �0.16 0.91** 0.72** 1

6. Total sleep time �0.04 0.27** �0.11 �0.35** 0.20* 1

7. Sedentary behavior �0.28** 0.25** 0.03 0.15 �0.12 �0.14 1

8. Light PA 0.51** �0.06 0.00 0.01 �0.01 �0.15 �0.67** 1

9. Moderate to vigorous PA 0.41** 0.03 0.02 0.01 0.03 �0.09 �0.46** 0.40** 1

10. Outdoor light exposure 0.31** 0.12 �0.31** �0.31** �0.26** 0.06 �0.24* 0.28** 0.32** 1

Abbreviation: ESRI, Entrainment Signal Regularity Index; PA, physical activity; SRI, Sleep Regularity Index.

*p < 0.05.

**p < 0.01.

T AB L E 3 Correlations between the ESRI and sleep–wake behaviors during the summer

Variable 11 12 13 14 15 16 17 18 19 20

1. ESRI 1

2. SRI 0.20* 1

3. Sleep midpoint �0.01 �0.47** 1

4. Sleep onset �0.06 �0.48** 0.95** 1

5. Sleep offset 0.07 �0.44** 0.94** 0.86** 1

6. Total sleep time 0.25** 0.37** �0.11 �0.31** 0.13 1

7. Sedentary behavior �0.32** 0.02 0.13 0.13 0.05 �0.04 1

8. Light PA 0.37** 0.05 0.04 0.12 0.02 �0.18 �0.57** 1

9. Moderate to vigorous PA 0.39** 0.18 �0.05 0.01 �0.07 �0.15 �0.48** 0.44** 1

10. Outdoor light exposure 0.27** 0.05 �0.13 �0.07 �0.16 �0.11 �0.17 0.19 0.26** 1

Abbreviation: ESRI, Entrainment Signal Regularity Index; PA, physical activity; SRI, Sleep Regularity Index.

*p < 0.05.

**p < 0.01.
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[33, 41]. Previous studies have shown that activity data can be used

instead of light data and can even offer more accurate predictions of

circadian phase [39, 40]. Using wrist-worn activity data, the Hannay

Model has demonstrated accuracy to predict children’s dim-light mel-

atonin onset with a mean absolute error of 31 minutes, which is smal-

ler than errors obtained in similar studies with adults [38–40, 42].

Using activity data collected from wrist-worn devices across multiple

days, the ESRI quantifies the strength and regularity of the circadian

signal received by the SCN by computing the change in the model’s

amplitude in its prediction of circadian phase over time. The more

robust and regular activity patterns result in increased model ampli-

tude, resulting in a higher ESRI score, whereas weaker, more irregular

signals result in smaller increases in model amplitude.

As expected, children demonstrated higher entrainment signal

regularity during the school year compared with the summer, because

the school year has higher social demands that support greater regu-

larity in behavioral rhythms (e.g., school start times). We previously

demonstrated in this sample that there were no significant differences

in night-to-night variability of children’s sleep midpoint during the

school year and summer [3], underscoring the novel contribution of

the ESRI to understanding circadian regularity. Additionally, our find-

ings indicate that during the school year, the ESRI score was not asso-

ciated with other sleep outcomes such as sleep duration, sleep

midpoint, and the SRI score; however, during the summer, we

observed that a higher ESRI score was weakly associated with having

a longer sleep duration and greater sleep regularity. An examination

of individuals in the upper and lower quintiles of the ESRI and SRI dur-

ing summer (Figure 3) suggests that, although there was conceptual

overlap in these metrics, there was also conceptual divergence. For

example, it is possible to score high on the SRI and low on the ESRI

and vice versa, suggesting that these metrics assess distinct aspects of

regularity. Further differentiating these constructs, the ESRI was posi-

tively associated with PA and exposure to outdoor ambient light dur-

ing the school year and summer, whereas the SRI was unrelated to PA

and outdoor light exposure. Moreover, the ESRI was negatively asso-

ciated with sedentary behavior during the school year and summer,

whereas there was a positive correlation between the SRI and seden-

tary behavior during the school year but not summer. As such, the

ESRI differs from the SRI in that the SRI assesses the regularity of

sleep–wake patterns by quantifying the probability of being awake or

asleep at the same time each day, whereas the ESRI considers the

strength and regularity of light exposure and PA patterns as they

relate to circadian entrainment.

In a previous study, we demonstrated that greater increases in

BMI during summer were associated with having a later sleep mid-

point, whereas more traditional energy-balance–related behaviors

(such as time spent in sedentary behavior and light PA and moderate

to vigorous PA) appeared to be unrelated to change in BMI [3]. The

lack of association between PA and change in BMI during summer has

been observed by others as well [43]. In the current study, after con-

trolling for the significant effects of sleep midpoint on change in BMI,

we observed that having a lower ESRI during summer predicted larger

increases in BMI during summer, suggesting that weaker, less regular

circadian signals during summer were associated with greater

increases in BMI. The SRI and PA were not associated with changes in

children’s BMI during summer. These results are intriguing because

T AB L E 4 Factors associated with change in BMI during the school year and summer

Variable

School year Summer

Standardized β SE Standardized β SE

Intercept �0.37 0.27 �0.50 0.30

Sex 0.28 0.18 0.33 0.19

ESRI 0.05 0.09 �0.22* 0.10

Sleep midpoint 0.14 0.10 0.25* 0.11

Activity counts (vector magnitude) 0.01 0.09 �0.07 0.10

SRI �0.06 0.10 0.15 0.11

Abbreviation: ESRI, Entrainment Signal Regularity Index; SRI, Sleep Regularity Index.

*p < 0.05.

F I GU R E 4 Association between change in BMI during summer
and ESRI. ESRI, Entrainment Signal Regularity Index
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visual inspection of the actograms depicting high and low ESRI scores

suggests that activity was highly correlated with the ESRI. The associ-

ation of the ESRI with change in BMI during summer, when we have

previously found that activity levels were unrelated to change in BMI,

suggests that it may not be the total time spent in various levels of PA

or sedentary behavior that is important for explaining weight gain but

rather the timing of the activity relative to an individual’s circadian

phase.

A previous study examined the relationship between parametric

and nonparametric models of circadian rhythm (interdaily stability,

intradaily variability, etc.) [44] and BMI and inflammatory markers in

children aged 8 to 12 years in Spain [12]. Whereas parametric

methods such as the cosinor method assume rest–activity patterns

can be fit to a cosine curve, nonparametric models do not require this

assumption and therefore have been proposed as more adequate

measures of biological rhythms [44]. This study by Qian and col-

leagues found that after adjusting for sleep duration and activity level,

relative amplitude (i.e., the ratio of amplitude and mesor as calculated

after fitting the rest-activity data to a cosine curve) was associated

with having a higher standardized BMI and increased levels of

C-reactive protein [12]. However, interdaily stability and intradaily

variability were not associated with BMI but were negatively associ-

ated with MCP1 [12]. In the current study, we computed the SRI as a

measure of day-to-day regularity in children’s rest-activity patterns.

Similar to the previous study, which found no cross-sectional associa-

tion between nonparametric measures of children’s circadian rhythms

(interdaily stability and intradaily variability) [12], we found that day-

to-day regularity (i.e., SRI) was not related to change in BMI during

the school year or summer. The ESRI adds additional value to para-

metric and nonparametric models of circadian rhythms by quantifying

the effects of inputs to the clock on the circadian pacemaker, taking

into account that light and activity have different effects on the circa-

dian system depending on the body’s circadian timing and previous

zeitgeber exposure.

Strengths of the study include the prospective nature of the study

design and the multiple assessments of BMI and actigraphy data dur-

ing the school year and summer allowing us to examine how behavior

under various environmental conditions relates to change in BMI dur-

ing these time periods. Although our data demonstrate associations

between sleep midpoint and the ESRI during summer and change in

BMI, we are not able to determine causation. Additional limitations

include this being a secondary analysis of existing data and our lim-

ited sample size. Although we avoided the transitions to standard

time and daylight savings time in our data collection, future studies

should consider how the ESRI responds to these transitions and

whether the seasonal differences in ESRI scores observed in this

study are reflective of the robust evidence that the human circa-

dian clock is disrupted by daylight savings time. However, it will be

important to also control for the significant differences in children’s

social demands during the school year and summer that may also

affect ESRI score [45]. Finally, data collection was limited to

Houston, Texas, so the generalizability of these findings to other

climates and communities is unclear.

CONCLUSION

The ESRI represents a novel metric of circadian health that quan-

tifies the strength, compactness, and regularity of the circadian

entrainment signal using either light input or activity as a proxy

for light as measured by wrist-worn wearable devices while also

accounting for the differential impact of light and activity on the

circadian pacemaker, depending on its current phase and previous

zeitgeber history. Additional translational work is needed to

determine factors underlying or mediating the association

between ESRI score and children’s change in BMI during summer

and how behavioral changes can impact ESRI score. Such work is

necessary to identify modifiable behaviors that can be targeted

to support stronger entrainment regularity. Acquiring this knowl-

edge may lead to novel behavioral interventions for the preven-

tion of child obesity.O
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