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Abstract 

 

The introduction of wireless connectivity to a world of automobiles brought many 

challenges which was transformed to many innovations. Researchers worldwide continuously 

strive hard to develop new technologies to improve the connectivity problems and enhance the 

user’s comfort and enhance the safety of the users.  Vehicle connectivity feature such as cellular 

connectivity for Wi-Fi connection provides better user convenience and Cellular-Vehicle to 

Everything connectivity provides safety features. Cellular Vehicle to Everything (C-V2X) has 

been an interesting technology which includes various connectivity methods such as Vehicle to 

Vehicle (V2V) connectivity, Vehicle to Network (V2N), Vehicle to Pedestrians (V2P), Vehicle to 

Infrastructure (V2I) and many more. The main goal of C-V2X system is to improve the safety of 

the vehicle and its surroundings. 3rd Generation Partnership Project (3GPP) has been working on 

standardizing the C-V2X which is referred as PC5. 

Department of Transportation (DOT) and National Highway Traffic Safety Administration 

(NHTSA) governs the C-V2X system which issued Notice of proposed Rulemaking (NPRM) for 

the V2V communication which is based on the Dedicated Short-Range Communication (DSRC) 

defined in SAE J2735. A 360 degree “awareness” is expected from the V2V communication which 

provides the complete coverage for the vehicle with a range of 300 meters which leads to the 

adoption of omnidirectional antenna.  

Omnidirectional radiational antenna provides the 360 degree “awareness” and provides us 

the 300-meter coverage, but it also increases the congestion factor, which has been regulated in 

SAE J2945/1. In a highly congested location where there are multiple vehicles present the 
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congestion factor is high i.e., there are high loads of data present everywhere and to reduce the 

congestion factor, the radiation power will be reduced. But, if the radiation power is reduced, it 

reduces the coverage requirement. To communicate for longer range without the requirement of 

reducing the power and increasing the congestion would be through beam i.e., beamforming.  

The method to steer an array of antenna in an intended direction is called Beamforming. 

The radiated energy is concentrated into a narrow beam by adding the radio frequency (RF) signal 

either constructively or destructively based on the phase of the input RF signal. In various 

standards such as Wi-Fi and 5G, all the beams of the antenna perform scanning for each beacon 

interval (BI) and based on the various received signal, the optimum beam is chosen and adopted 

during the whole BI. If we implement the same methodology for our beam, we will get a medium 

or significant non-optimum selection of beam mainly due to the variation of Direction of Arrival 

(DoA) of multipath signals.    

To avoid the non-optimal selection of beam, in this dissertation, a novel beam selection, 

“Intelligent Beam Selection” (IBS), was proposed, based on sequence-to-sequence machine 

learning prediction which enhances the selection of beam in real time with better accuracy 

compared to the traditional machine learning model.  

In this research, IBS predicts the optimal beam to choose from various beams integrated to 

the vehicle as part of the C-V2X system. Deep learning (DL) models are developed by mapping 

the signal strength of the various antennas which are collected over the simulation and real drive 

scenario. The trained functional were utilized to predict the future beam of the vehicle, reflecting 

better signal reception without increasing the congestion factor. The IBS model is developed for 

the beam selection, but the model shall also be used for other time series feature prediction in real 

world scenarios. 
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Chapter 1 Introduction 

1.1 Background 

C-V2X solutions are designed to connect vehicles to nearly everything—including vehicle-

to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), and vehicle-to-

cloud (V2C) communication. In the device-to-device mode (V2V, V2I, V2P) operation, C-V2X 

does not necessarily require any network infrastructure. It can operate without a SIM, without 

network assistance and uses GNSS as its primary source of time synchronization. 

 

Figure 1Various Vehicle connectivity based on C-V2X System 

The present standard dictates the bandwidth is 10MHz with just the Basic Safety message 

which is categorized into BSM Part 1 (vehicle size, position, speed, heading acceleration, brake 

system status) and BSM Part 2 (Varies upon event such as ABS activated and weather condition). 

The next generation which is the Advanced safety (Rel 14,15+) will have 70MHz bandwidth which 
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can support advanced safety services (e.g., higher bandwidth sensor sharing and wideband 

ranging/positioning) along with Basic safety message. 

 

Figure 2 Basic Safety Message Information 

The main goal of C-V2X system is to improve the safety of the vehicle and its surroundings 

[1] [2]. 3rd Generation Partnership Project (3GPP) has been working on standardizing the C-V2X 

which is referred as PC5. A more detailed explanation of C-V2X communication is provided in 

[3] [4] . Department of Transportation (DOT) and National Highway Traffic Safety Administration 

(NHTSA) governs the C-V2X system which issued Notice of proposed Rulemaking (NPRM) [5]  

for the V2V communication which is based on the Dedicated Short-Range Communication 

(DSRC) defined in SAE J2735 [6]. A 360 degree “awareness” is expected from the V2V 

communication which provides the complete coverage for the vehicle with a range of 300 meters 

1.2 OEM’s View 

Many Automotive Original Equipment Manufacturer (OEM) has dedicated to implement 

C-V2X system and working on various sensor fusion techniques which shall be used for Advanced 
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Safety. OEM’s want to use the C-V2X system for Do Not Pass Warning (DNPW) at 300-meter 

range and Lane Tracing Assist (LTA), Emergency Electronic Brake Light (EEBL), Lane Change 

Warning (LCW) at 150 meters.  

To attain the 300-meter range without increasing the congestion factor one of the sensor 

fusion techniques is the usage of beamforming which are explored by various OEM’s. By 

performing the beamforming, we would be able to achieve the longer range without increasing the 

congestion factor. The Beamforming will focus the radiation on certain angle based on the angle 

of the beam and the power is radiated towards that particular angle which increases the range and 

also reduces the Electromagnetic (EM) fields around the vehicle.  

Figure 3 OEM’s View of C-V2X coverage 
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1.3 Machine Learning/Artificial Intelligence 

Prediction of Wireless Channel has been a well-researched area and the usage of machine 

learning for predicting the wireless channel has been focused more due to bandwidth requirement 

and to reduce the noise factor. There has been various research such as Channel prediction on 

mmWave to reduce the RF chain, Denoising based on Vector AMP to reduce the noise in the 

channel. There has been research where the channel is converted to image as 2D image and 

predicting using Convolution Neural Network (CNN). Apart from the Neural network, there has 

been research in Markov Chain, Autoregressive Integrated Moving Average (ARIMA), Random 

Forest which are statistical prediction method. The best method to do a time series prediction is 

using Long Short-Term Memory (LSTM) Neural network which has produced consistent result 

for time series prediction. As the wireless channel is considered as time series model, LSTM has 

been the predominant focus in recent years.  

 

Figure 4 Prediction Methods on Various Domains by M. Chen et.al 
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Time series prediction using Neural network has been long studied in many fields [7], such 

as stock forecasting [8], Weather forecasting [9], traffic flow forecasting [10], Global positioning 

prediction [11], Wireless Channel prediction [12] [13] , scenario identification [14] [15] [16]and 

most of the time series prediction follows the existing Neural network methodology such as 

ARIMA [17], Support Vector Regression (SVR) [18], traditional Artificial Neural Network (ANN) 

[19] and hybrid neural networks [20] [21]. Traditionally statistical methods such as ARIMA, 

exponential smoothing was often used for time series forecasting. Armstrong et.al [22] proposed 

28 golden rules for time series prediction where ARMA and ARIMA is judged as the best time 

series prediction method. With the growth of Deep Neural network, there has been only a few time 

series classification algorithms have been proposed [23]. Wang et. al. [24] proposes a combination 

of Markov-LSTM where the multi-step Markov transition matrix is defined and then the LSTM is 

introduced to combine multiple first-order Markov chain.  

Recently the Neural Machine Translation (NMT) has achieved state of the art performance 

using various methods such as Encoder Decoder [25], Encoder Decoder with Attention [26] [27] 

and Transformation [28]. These methods have been used by various researcher for language 

translation and these methods has been researched for time series prediction [29]. In the Encoder 

Decoder with Attention, the encoder and decoder are designed using various Neural Network such 

as Recurrent Neural Network (RNN), LSTM, Gated Recurrent Unit (GRU). The Attention is the 

key mechanism which provides improvement from Encoder Decoder model. The Attention 

mechanism provides information to which input sequence are relevant to each word in the output. 

Attention is proposed as a method to both align and translate. 

Xu et. al. [30] proposed hard attention where it attends to exactly one input state for an 

output, [31] [32] shows a sequence-to-sequence prediction with the hybrid of hard and soft 
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attention. Elsayed et.al. [33] provides a modified hard attention called Saccader for vision by 

requiring only class labels for initial attention, whereas Papadopoulos et.al. [34] provides a multi-

scaled hard-attention architecture for image classification. Sorokin et.al. [35] presents the “soft” 

and “hard” attention on Q learning which is based on feature extracted by CNN at different image 

regions, Deng et.al. [36] presents variational attention which is considered as an alternate to both 

“soft” and “hard” attention where the attention is set with tighter approximation bounds based on 

amortized variational interference, Malinowski et.al. [37] shows the use of hard attention by 

exploring various image attention mechanism to locate regions that are relevant to the question, 

Harvey et.al. [38] presents “hard” attention for image classification but based on the Bayesian 

optimal experimental design which helps in the speed up of the training process. The various 

presented methods are focused on vision, image and text-based classification and prediction. And 

these methods have proposed either a hybrid of “soft” and “hard” attention or focus on a single 

feature based on “hard” attention. There has not been much focus on the time series prediction and 

understanding the relationship between the time variables. 

1.4 Problem Statement and Motivation 

With the arrival of big data era, every industry would like to utilize the advantage of neural 

network for better prediction. Automotive industry has been focused on using advanced neural 

network for various reasons such as path prediction [39], language recognition [40] and many more 

in automated driving. C-V2X has been emerging technology within Automotive world which 

encompasses V2V connectivity, V2I, V2P and V2N. C-V2X communication is envisioned to 

enhance the safety of drivers, passengers, and pedestrians. C-V2X system is governed by the 

National Highway Traffic Safety Administration (NHTSA) and Department of Transportation 

(DOT). In 2017, the NHTSA and DOT issues Notice of Proposed Rulemaking (NPRM) for the 
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V2V communication by then V2V communication is like to be based on the DSRC defined in SAE 

J2735. The technology behind V2V communication expects an implementation of 360 degree 

“awareness” and a range of 300 meters where omnidirectional antennas are adopted.  

Omnidirectional antenna gives a complete coverage of 300 meters but increases congestion 

factor, which is regulated in SAE J2945/1. In a highly congested vehicular location, a network 

experiences high data loads which requires reduced radiation powers. On the other hand, reducing 

power reduces the coverage. An effective way to communicate in longer range without increasing 

the congestion is implementing beam i.e., beamforming.  

Beamforming is a technique in which an antenna array can be steered in a desired direction. 

The input RF signal is fed to the antenna array in parallel and signals are added constructively and 

destructively, depending on the phases, in such a way that they concentrate the energy into a 

narrow beam. In both Wi-Fi and 5G standards, during the antenna training phase of each beacon 

interval (BI) scanning is performed across all the beams and the optimum one is chosen and 

adopted during the whole BI. If the same method is performed in the C-V2X system, it will lead 

to medium or significant non-optimum selection of beam due to rapid variation of direction of 

arrival (DoA) of multipath signals.  

There has been various research going on using Machine learning in Vehicular network 

[41], most of them focused on channel estimation [42], distance estimation [43], Vehicle trajectory 

[44] but very minimal in beam prediction [45] and only using traditional methods and nothing on 

beam prediction using deep neural network. Our research is focused on real-time beam prediction 

model.
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Chapter 2 System Model 

C-V2X system is yet to be implemented in real world by many OEM’s as it is still in the 

early phase of specifications. There are constraints to get the data for the research aspect and due 

to the constraints of the available data, we decided to perform the data collection on our own. We 

also performed the simulation initially to understand the data pattern and build a beam forming 

antenna and collected the data for the research purpose.  

2.1 Modelling for C-V2X Simulation  

The simulations of wireless channels for C-V2X systems in the University Campus were 

built through the Altair WinProp software. The simulation modelled by WinProp either as 

empirical or semi-empirical models includes the main buildings, roads, and green fields of the 

campus which is close to 200 models. 

Figure 5 shows the 3D view of the campus where the heights of the buildings are all set as 

20 meters for simplicity with wall materials as concrete. The roads and parking lots was considered 

as concrete with thickness of 1cm. The vegetation areas were set to the heights of 1 meter for 

bushes and 3 meters for trees. Figure 5 also shows the simulation environment projected on top of 

the Google maps with drive paths. The simulation result includes RSSI, DoA, latency and gain for 

each multipath, all along the drive paths. 
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Figure 5 University Campus simulation Layout in 3D View and the drive Path 

The simulation is at first pre-processed using FEKO WallMan program, which is a 

preliminary processing to perform 3D Intelligent Ray Tracing (IRT) in Altair WinProp simulation 

where complicated 3D propagation path including reflections, diffractions and scattering around 

building wedges, both horizontally and vertically [46]. The pre-processed program is used in 

FEKO ProMan program where the Ray tracing simulation is performed. 

The transmitter antennas are placed at the heights of 15 meters above the ground 

transmitting at a frequency of 5.9GHz, the nominal channel for C-V2X systems. Omnidirectional 

antennas are adopted at transmitter as per system requirement and beamforming antenna arrays are 

only applied to vehicles (receiver), at heights of 1.5 meters above the grounds. At this time, the 

impact of vehicle to antenna array has not been considered since it is out of the scope of this effort. 

Simulation provided us the flexibility to place the Roadside Unit (RSU) at different 

location and evaluate the power radiation pattern and how it impacts the signal strength across 
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various locations within the campus. Figure 6 shows the results of various RSU’s placed at various 

location along the drive path and shows the power level across the campus.  

 

Figure 6 Simulation Result of Various RSU's location 

From the simulation we can also under the multipath which the signal take. Each point on 

the desired receive location will have multipaths from the RSU. Based on the various paths, the 

angle of the signal to the desired received location is calculated i.e., the vehicle is moving from 

North to South and the angle of the signal is received at that location is calculated based on the 

vehicle direction. Figure 7shows an example of the various path the signal took between the RSU, 

and one receive location.  
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Figure 7Multipath of the Signal between RSU and the receive location 

The simulation data were stored as .str files by WinProp for each transmitting antenna with 

a resolution of 1 meter. The str data is pre-processed through a Python program, of which the 

processing is shown in Figure 8. Finally, all the multipath signal data were stored in another file 

in JSON format. 

 

Figure 8 Data Extraction Flow Chart 
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2.2 Real time Data Collection  

The real time data collection is performed by designing a 4-element uniform linear array 

(ULA) receiver antenna array built upon a 4x4 Butler matrix which will be used to collect the data 

for the machine learning algorithm so that we can achieve a real time beamforming selection for 

C-V2X system. Shown in Figure 9 is the system design of the 4x4 beamformer designed for the 

C-V2X system where we have four 5.9 GHz whip antennas, separated by quarter of wavelength 

(𝛌/4) which are connected to a 4x4 Butler to form a ULA. A switch box containing SPDT 

(ZFSWA2R-63DR+) and SP4T (ZSWA4-63DR) is used to select one of the outputs of the Butler 

switch. the signal between two adjacent antennas within the array creates a phase difference of = 

kdcosθ, where wave number (k) and Array Factor (AF) is given by Equation 1 and 2 respectively. 

N is the total number of antennas  

𝛼𝑛 is additional phase shift  

 

For a broad side antenna array, the AF can be further written as Equation 3. 

 

Finally, the beamforming radiation pattern is given by Equation 4. 

𝑘 =
2𝜋

𝜆
 

1 

𝐴𝐹(𝜃) = |
1

𝑁
∑ 𝑒𝑗(𝑛𝑘𝑑𝑐𝑜𝑠𝜃+ 𝛼𝑛)

𝑁−1

𝑛=0

|

2

 

2 

𝐴𝐹(𝜃, ) =  [
𝑠𝑖𝑛(

1
2 𝑁(𝑘𝑑𝑠𝑖𝑛𝜃𝑐𝑜𝑠 +  )

𝑁 𝑠𝑖𝑛(
1
2 𝑁(𝑘𝑑𝑠𝑖𝑛𝜃𝑐𝑜𝑠 +  )

]

2

 

3 

𝐵𝐹(𝜃, ) = 𝐴𝐹(𝜃, )𝑃(𝜃) 4 
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Figure 9 System Design of 4x4 Beamforming for C-V2X 

The radiation pattern of the ULA is shown in Figure 10 where the radiation pattern for all 

the 4 ports is shown.  
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Figure 10 Radiation Pattern of 4 Beam Antennas 

The receiver antenna is connected to the C-V2X onboard unit, and the receiver module also 

has a Raspberry Pi which is used to command the radio. Both the C-V2X onboard unit and the 

Raspberry Pi is powered using a portable battery (XTPower MP-10000). The receiver unit is 

placed on top of the car and the entire unit is shown in Figure 11. The transmitter which is placed 
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on a fixed location has a single antenna which is omni directional and connected to a C-V2X 

onboard unit and powered by a portable battery as shown in Figure 11. 

 

Figure 11 Receiver and Transmitter Antenna Unit 

The test is performed at the university campus shown in Figure 11Figure 12, where the 

transmitter is placed on one of the parking decks (2nd floor) as shown in figure and the vehicle 

with the receiver module is driven around the campus and the data is collected throughout the 

campus which is used for the machine learning validation.  

 

Figure 12 Google Maps of Campus with Tx Location  
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Chapter 3 Machine Learning Models 

Ranging from Markov Chain to Machine learning [47] [48] [49] [50], there has been 

various methods being well-researched for Wireless Channel prediction. In particular, there has 

been more focus on Neural network research in wireless communication. Huang et al. presented 

deep learning models for DoA estimation based on multiple input multiple output (MIMO) antenna 

system using hybrid precoding. [51] speaks about interference alignment in a congested time 

varying network.  Tuzi et al. presents how CNN has been used for estimating the distance in a 

DSRC system [52].  Sheng et al. studied an intelligent heterogenous 5G wireless network 

architecture by adopting a reinforcement learning (RL) for V2V, V2I system [53]. The research 

presented in [54] provides new sensing technique in V2V network for improved road safety. The 

authors of [55] show the method of using RL for vehicle detection. [56] shows an effective 

sequence to sequence time series prediction using hard attention. [57] presents a survey on the 

various use of deep learning in wireless network and [58] presents a tutorial on Neural networks-

based machine learning for wireless networks. The research focused on [59] [60] [61] presents 

Vehicle to Vehicle communication model for varying channels. 

Prior works are in wireless channel prediction and C-V2X links using single variate 

machine learning. There has been no work trying to reduce the congestion factor using machine 

learning or using new sensing technology based on multivariate system. 

In this section, we discuss the implementation details of various machine learning and the 

training methodology including conventional and unconventional methodology and how we train 

and test our dataset using these various methods. We split the dataset into three sets such as: 
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• Training sets: 80% of data set  

• Validation sets: 10% of data set  

• Prediction sets: 10% of data set 

In our implementation, for the given data set, we use a sliding window input so that we 

achieve maximum overlap of sequences and in our training method we use the guided training 

methodology. In the guided training we feed the actual data as the next input which aims to achieve 

faster convergence by guiding the model towards the local minima. Whereas during the validation 

and prediction we use the unguided methodology where we feed the predicted data as the next 

input as we don’t have access to the actual data set during these stages. 

3.1 Why Machine Learning Model? 

The straightforward implementation for choosing the beam would be adaptive antenna 

selection i.e., scanning for the strongest signal on all the beams and sticking to a beam which has 

the strongest signal until the next Beam Interval. The adaptive antenna selection is implemented 

in Wi-Fi routers and is being used to extend the range of the signal and for better coverage. In the 

CV2-X system, the adaptive antenna selection implementation chooses to select a beam every 

100msec i.e., every 4λ where λ is the wavelength of 5.9GHz (Change of beam interval is every 

100 msec which translates to the length of 4λ). Considering a vehicle speed of 60 mile/hour, the 

distance moved in every 4λ i.e., 100 msec, approximately 3 meters. In the simulation, 3 meters 

reflects to 3 data points and a beam was chosen based on the next 3 consecutive data points. For 

example, if beam 1 is selected during the initial scan, the next three packets will be using beam 1 

to receive the signal. Observed from simulation data, implementing adaptive antenna selection has 

an evident data loss resulting in only 29.41% accuracy. This motivates the effort to use the machine 

learning in predicting the beam, which aims to achieve an enhanced efficiency of data reception. 
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3.2 Conventional Models 

There are many models which are being used for time series prediction such as ARIMA, 

VAR, LSTM, Encoder Decoder and so on. In this section, we will investigate the details of how 

these methods are being implemented and how we have approached to analyze the dataset using 

these models.  

3.2.1 Persistence Prediction 

The most “naïve” forecast which is the persistence algorithm or Walk-Forward validation. 

The persistence algorithm uses the value at the previous time step (t-1) to predict the expected 

outcome at the next time step (t+1). 

3.2.2 ARIMA 

In Autoregressive Integrated Moving Average (ARIMA) (p,d,q) model, AR(p) is used to 

forecast data through best fitting past p values in the sense of least mean square errors. Moving 

Average (MA) (q) uses q forecast errors instead of past values. The integrated processing in 

ARIMA is to eliminate non-stationarity of original time series data set through the dth order of 

integration. 

A time series is said to be stationary when its first and secondary moments, mean and 

variance do not dependent upon the time. In another words, there should not be any trends or 

seasonality shown in data series. If a data series is not stationary, it can be differentiated to be 

stationary. Differentiation helps to stabilize the mean of the time series by changing the levels of 

the time series and therefore eliminating their trends or seasonality.  
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The ARIMA system (p, d, q) is determined by using Partial Autocorrelation (PACF) and 

auto-correlation (ACF) of the data series. The general characteristics of theoretical ACF are shown 

in Table 1: 

Table 1 Determination of ARMA system based on ACF's and PACF's 

Model ACF PACF 

AR(p) Plot decays gradually toward 

zero 

Plot cutoff at zero 

MA(q) plot cutoff at zero Plot decays gradually towards 

zero 

ARMA (p, q) Plot decays gradually towards 

zero 

Plot decays gradually towards 

zero 

 

In our AR implementation we have a single variable input and single variable output i.e., 

the signal strength at time t is provided as input while as the signal strength at time t+1 is predicted. 

Guided training methodology is used during the training phase where the measured signal strength 

is provided as the next input. The order of the implementation is based on the best Akaike 

Information Criterion (AIC) which is an estimator of out-of-sample prediction error. Figure 13 

Figure 13 AIC Index Variation with Lags 
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shows such a result of a site antenna simulation where the best order is chosen from 25 lags. The 

lower AIC is generally “better” and in our dataset the AIC index is 2 which quantifies the goodness 

of fit and the simplicity of the model. 

Based on our dataset, the q value is set to be zero, which translates to be an AR model. Our 

AR model is a univariate system i.e., signal strength from each individual beam is predicted 

individually by providing RSSI at t as input and predicting RSSI at t+1. The output from each 

model at their time sequence is thereafter filtered to select the strongest signal.  Figure 14 illustrates 

the implementation method of AR with various univariate system with selection output. 

AR

AR

AR

AR

Beam 1

Beam 2

Beam 3

Beam 4

Beam 1 Prediction

Beam 2 Prediction

Beam 3 Prediction

Beam 4 Prediction

Filtering Final Prediction

 

Figure 14 The implementation of AR Beam Prediction 

3.2.3 VAR 

A finite order Vector Autoregression (VAR) process with a finite order of MA error term 

is called as Vector Autoregressive Moving Average (VARMA) process. VAR model is a 

multivariate time series model containing a system of n equations of n distinct, stationary response 

variables as linear functions of lagged responses and other terms [62]. A VAR model is useful for 

the prediction of multiple variables i.e., multivariate using a single model. 
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For example, if there are two variables  𝑋𝑡 and 𝑌𝑡 then the VAR equation is shown in 

Equation 5 and 6. 

The signals consist of line-of-sight (LOS) and multipath component (MPC) due to different 

reflection, diffraction and scattering with diverse DoA, which are received by one or more of the 

four beams. Such propagation is represented by the cross terms, θ in Equation 5 and 6, which offers 

the rationale to adopt VAR. 

Both α and θ can be estimated using ordinary least squares. In VAR Model all the RSSI 

received by the four beams are provided as an input at an instant and the RSSI of individual beams 

are predicted, followed by a filtering module to select the strongest one. The diagram of the VAR 

model is shown in Figure 15, the order of which is the same as that of AR module. 

VAR

Beam 1

Beam 2

Beam 3

Beam 4

Beam 1 Prediction

Beam 2 Prediction

Beam 3 Prediction

Beam 4 Prediction

Filtering Final Prediction

 

Figure 15 Implementation of VAR Beam Prediction 

3.2.4 LSTM 

LSTM is a popular model for processing sequential data based on the Recurrent Neural 

Network (RNN), where neurons are replaced by memory cells, each having:  

• A Forget Gate – used to shape what information to be discard from the cell.  

• An Input Gate – used to determine which values from the input to update the memory 

state.  

• An Output Gate – used to decides what to output based on input and the memory of the 

cell. 

The LSTM architecture is shown in Figure 16. 

𝑌𝑡 =  𝛼10 + 𝛼11𝑌𝑡−1 + 𝛼12𝑌𝑡−2 … + 𝛼1𝑝𝑌𝑡−𝑝 + 𝜃11𝑋𝑡−1 + 𝜃12𝑋𝑡−2 + ⋯ + 𝜃1𝑝𝑋𝑡−𝑝 + 𝜀1𝑡 5 

𝑋𝑡 =  𝛼20 + 𝛼21𝑌𝑡−1 + 𝛼22𝑌𝑡−2 … + 𝛼2𝑝𝑌𝑡−𝑝 + 𝜃21𝑋𝑡−1 + 𝜃22𝑋𝑡−2 + ⋯ + 𝜃2𝑝𝑋𝑡−𝑝 + 𝜀2𝑡 6 
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Figure 16 The illustration of LSTM Architecture 

These gates Equation 7,8,9,10,11 and 12 offer RNN the capacity of learning long-term 

dependencies. By regulating the flow of information in and out of the cells, it helps RNN to 

remember only valuable information for long periods of time, hence enhance prediction capacity 

[63]. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡]𝑇 +  𝑏𝑓) 7 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡]𝑇 + 𝑏𝑖) 8 

Ċ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡]𝑇 + 𝑏𝐶 9 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡]𝑇 + 𝑏𝑜) 10 

𝐶𝑡 = 𝑓𝑡 ∗  𝐶𝑡−1 +  𝑖𝑡 ∗  Ċ𝑡 11 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 12 

Where, 

𝑓𝑡 is the forget gate. 

𝑖𝑡 is the input gate. 

𝑜𝑡 is the output gate. 

𝐶𝑡 is the cell state. 

 Ċ𝑡 is the candidate for cell state. 

ℎ𝑡 is the output of the cell and 𝑥𝑡 is the input. 

ℎ𝑡−1 is the output of the previous cell. 
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𝑊𝑓 , 𝑊𝑖, 𝑊𝐶 , 𝑊𝑜 are weights of forget gate, input gate, cell state and output gate, 

respectively. 

𝑏𝑓 , 𝑏𝑖, 𝑏𝐶 , 𝑏𝑜  are biases of forget gate, input gate, cell state and output gate, respectively. 

There are several variants of LSTM, but all have similar performance [64] and this paper 

adopted Vanilla LSTM. The LSTM implementation is a multivariate input and multivariate output 

system with the input sequence length of 10 and the output length of 4. The LSTM implementation 

adopted a time series generator from Keras module having 64 layers followed by a Dense layer of 

32 using rectifier linear unit (ReLU) as activation function and a dense layer of 4 as output, as 

shown in Figure 17. The loss function used is mean squared error (MSE). 

LSTM (64) Dense (32) Dense (4)Input Output
 

Figure 17 LSTM Multivariate System 

The model is trained by using training data set and then validated by validation data set in 

an epoch of 1000, which trades off between the loss curve and overfitting. The signal strength of 

sequence from the 1st to t time slot are provided as input and the signal strength at the t+1 time 

slot is predicted, for the four beams and the strongest signal is chosen after passing the filtering 

module. 
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Table 2 Parameters of LSTM Model 

Parameter Name Parameter Value 

API Module Keras 

LSTM Layer 64 layers 

Dense Layer 32 layers 

Activation Function ReLU 

Epoch 1000 

Loss Function MSE 

 

3.2.5 Encoder Decoder with Attention 

Encoder Decoder was developed to address the sequence-to-sequence machine translation 

with a set of input sequence and a set of output sequence. Attention is a mechanism that was 

developed to improve the performance of the Encoder Decoder RNN on machine translation. From 

a high-level, the Encoder Decoder model is comprised of two sub models.  

• Encoder – The encoder will perform the act of stepping through the input series and encoding 

the entire sequence into a fixed length vector called context vector  

• Decoder - The decoder will perform the act of stepping through the output series while reading 

from the context vector. 

This approach has issues while decoding longer sequence and hence Attention is 

introduced.  

• Attention - Instead of encoding the input sequence into a single fixed context vector, the 

attention model develops a context vector that is filtered specifically for each output time step.  
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Figure 18 Model of Encoder Decoder with Attention 

With the introduction of Attention as shown in Figure 18, the decoder output is more 

specifically focused which provides better prediction. The score is calculated in the Attention 

model which helps to relate the encoder’s all hidden states and the previous decoder’s output. The 

two important scores are proposed by Bahdanau 13 and Luong 14. 

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ̅𝑠 ) =  𝜗𝑎
𝑇 𝑡𝑎𝑛ℎ(𝑊1ℎ𝑡 + 𝑊2ℎ̅𝑠 ) 13 

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ̅𝑠 ) =  ℎ𝑡𝑊ℎ̅𝑠 14 

 

where ht is the Encoder all hidden states and hs is the decoder output 

The weights are learned during the backpropagation i.e., during the training. The weights 

are normalized and then the context vector is calculated in Equation 15. 

𝑐𝑡 =  ∑ 𝛼𝑡𝑠 ℎ𝑡

𝑠

 
15 
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After calculating the context vector, we will concatenate the context vector with the 

previous decoder hidden state which will be the input for the next decoder output.  

It shall be noted that during the score calculation, the weights are learned during the training 

i.e., the weights are set as random and then trained during the backpropagation. This method 

doesn’t provide us any insight on how the weights are calculated and in the time series calculation 

this creates a randomness on the focus in the attention sub model. 

3.3 Unconventional Models 

This section will discuss the unconventional models such as combination system and using 

one model to train another model.  

3.3.1 Long Short-Term Memory – Multivariate Input Univariate Output (LSTM MIUO) 

The LSTM implementation of MIUO considers the correlation among various input and 

perform a better prediction on a single output variable. The model is the same as the LSTM system 

detailed in Table 2 where the output layer is 1, instead of 4 as shown in Figure 19.  

LSTM (64) Dense (32) Dense (1)Input Output
 

Figure 19 LSTM MIUO Beam Prediction 

The LSTM MIUO model uses the same epoch as the LSTM model. It predicts the RSSI of 

each beam, and the strongest signal is filtered out. Figure 20 illustrates the implementation method 

of LSTM MIUO with a filtering module. 



 27 

LSTM (64) Dense (32) Dense (1)
Multivariate

 Input

LSTM (64) Dense (32) Dense (1)
Multivariate

Input

LSTM (64) Dense (32) Dense (1)
Multivariate

Input

LSTM (64) Dense (32) Dense (1)
Multivariate

Input

Filtering

Beam 1 Predict

Beam 2 Predict

Beam 3 Predict

Beam 4 Predict

Final Prediction

 

Figure 20 Implementation of LSTM MIUO Beam Prediction 

3.3.2 Long Short-Term Memory with Vector Autoregressive (LSTM VAR) 

The hybrid approach of LSTM with VAR improves the training process by extracting what 

VAR has learned during the VAR analysis and improves the prediction in multivariate LSTM 

System. The VAR model design is explained in section III where the model is trained and validated 

which leads to a well fitted VAR. In the implementation, VAR is used to improve the training of 

the LSTM multivariate system. 

In the hybrid method, the two-step training procedure i.e., the fitter value from the VAR is 

adopted as an input to the LSTM model followed by data source. The training is based on different 

data set but from the same data source to anti overfitting. Moreover, dropout is adopted to avoid 

the catastrophic forgetting. 

3.3.3 Long Short-Term Memory with Autoregressive (LSTM AR) 

The hybrid approach of LSTM with AR improves the training process by using the AR 

prediction method. In the LSTM AR implementation, two step training procedure is adopted. The 

first step is based on the AR values and the next by the original data source. Same approach is 

adopted to avoid catastrophic forgetting. As the AR is a univariate system, the LSTM input in the 

first step is the combination of the 4 AR’s forming a Multivariate system. 
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Chapter 4 Intelligent Beam Selection Model 

Initially the combination of various machine learning model i.e., an ensemble approach is 

being tried to predict the signal strength of the beam.  

4.1 Ensemble Approach 

In our ensemble approach we categorized our algorithm to four different steps such as 

Training Block, Validation Block, Classification Block and finally Prediction Block as shown in 

Figure 21.  

ARIMA Training LSTM Training

Training Dataset

ARIMA 
Validation

LSTM Validation

Validation 
Dataset

Random Forest Classification Training

ARIMA Predict LSTM Predict

Test Dataset

Random Forest Classification Predict

Final Result

Random Forest 
Trained  Model

ARIMA Trained 
Model

LSTM Trained 
Model Training Block

Validation Block

Classification Block

Prediction Block

Dataset

 

Figure 21 High level block diagram of ensemble time series prediction 
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4.1.1 Training Block 

The training block is where the time series algorithm is trained. In our ensemble approach 

we train our data set using ARIMA and LSTM. And in our approach, we perform multi step 

prediction and not a single step prediction as it is shown previously that a single step prediction is 

like persistence prediction i.e., the prediction is more following the actual result rather than 

predicting. During the multi-step prediction, we use a window size of 10 and two hidden layers 

and each layer includes 50 artificial neurons. 

From the dataset we use 80% of the value as the training set and input the entire training 

set to both ARIMA and LSTM prediction and train the model. We calculate the p, d and q value 

for the ARIMA during the training block and train the ARIMA based on the p, d and q values. The 

trained model is the base model for all the validation and prediction for future algorithm. 

4.1.2 Validation Block 

The validation block is where the trained model is validated with the validation data set 

which was another subset of the entire dataset. During the validation block if the validation result 

doesn’t correspond to the actual dataset, the model needs to be retrained i.e., back to the training 

block where the parameters are tuned so that we can achieve better result in the validation block.  

4.1.3 Classification Block 

The classification block is where both the time series prediction from the validation block 

is trained, and the best prediction algorithm is chosen for each data. During the classification block, 

the predicted value from the validation block is sent to the classification algorithm along with the 

expected result i.e., if the ARIMA prediction is better than the LSTM prediction which is identified 

using standard error between the predicted output and the actual output and taking the absolute 
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value of the error. Based on the error i.e., minimal error, the output is classified as LSTM or 

ARIMA for each data.  

For a given validation data 𝑥𝑖, the error is calculated for both the LSTM prediction, 𝑥𝑖𝐿𝑆𝑇𝑀 

and ARIMA prediction, 𝑥𝑖𝐴𝑅𝐼𝑀𝐴. If the error of 𝑎𝑏𝑠(𝑥𝑖𝐿𝑆𝑇𝑀 −  𝑥𝑖) is lesser than the error of  

𝑎𝑏𝑠(𝑥𝑖𝐴𝑅𝐼𝑀𝐴 −  𝑥𝑖), then LSTM data is considered as valid output or if the error of ARIMA is 

lesser than the LSTM then the ARIMA data is considered as valid output. Table 3 shows the input 

format to the Classification block where the ARIMA validation result and the LSTM Validation 

result is fed as input to the classification algorithm and the expected output based on the error is 

fed as input for training the classification algorithm.  

Table 3 Classification Block Input and Output 

Input OUTPUT 

ARIMA  LSTM  Minimal Error 

𝑥𝑖𝐴𝑅𝐼𝑀𝐴 𝑥𝑖𝐿𝑆𝑇𝑀 𝐿𝑜𝑤𝑒𝑠𝑡 𝑜𝑓 [𝑎𝑏𝑠(𝑥𝑖𝐿𝑆𝑇𝑀 −  𝑥𝑖) 𝑜𝑟 [𝑎𝑏𝑠(𝑥𝑖𝐴𝑅𝐼𝑀𝐴 −  𝑥𝑖) 

 

4.1.4 Prediction Block 

The prediction block is where the final prediction of our ensemble approach i.e. the test 

data is provided as an input to our model which was trained during our training block and the 

classification block. The predicted data from the ARIMA model and the LSTM model is fed to the 

classification model which provides us the result of our predicted data.  
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4.2 Attention with Transition States 

In our model, we represent a transition matrix TM, which helps the model where to focus 

the attention when generating the next time sequence data. The transition matrix is probability of 

transition from one state to another state which shall be generated from the given data set i.e., 

given certain state what is the probability of moving to another state or staying in the same state. 

A method of representing the Transition states is shown through the matrix in Table 4. This 

transition probability values shall be used in the scores during the attention sub model which shall 

provide the information of where the focus needs to be for the decoder during the prediction of the 

tth time series.  

Table 4 State Transition Matrix 

State ai ai+1 ai+2 ……. ai+t 

ai P(ai | ai) P(ai | ai+1) P(ai | ai+2) ……. P(ai | ai+t) 

ai+1 P(ai+1 | ai) P(ai+1 | ai+1) P(ai+1 | ai+2) ……. P(ai+1 | ai+t) 

ai+2 P(ai+2 | ai) P(ai+2 | ai+1) P(ai+2 | ai+2) ……. P(ai+2 | ai+t) 

….. ……. ……. ……. ……. ……. 

ai+t P(ai+t | ai) P(ai+t | ai+1) P(ai+t | ai+2) ……. P(ai+t | ai+t) 

 

When the score is calculated based on Equation 16, the weights are determined based on 

the transition matrix TM. 

where W is the Transition Matrix 

The weights are determined based on the encoder input time series (𝑎𝑖, 𝑎𝑖+1, 𝑎𝑖+2 … 𝑎𝑖+𝑡)  

data and the last predicted time series data  𝑏𝑡−1, where 𝑏𝑡−1  ⊂  (𝑎𝑖, 𝑎𝑖+1, 𝑎𝑖+2 … 𝑎𝑖+𝑡) .  It would 

be the probability of (𝑎𝑖, 𝑎𝑖+1, 𝑎𝑖+2 … 𝑎𝑖+𝑡)|(𝑏𝑡−1)i.e., 𝑃(𝑎𝑖, 𝑎𝑖+1, 𝑎𝑖+2 … 𝑎𝑖+𝑡|𝑏𝑡−1) 

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ̅𝑠 ) =  ℎ𝑡𝑊ℎ̅𝑠 16 
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𝑊 = [𝑃(𝑎𝑖|𝑏𝑡−1), 𝑃(𝑎𝑖+1|𝑏𝑡−1), 𝑃(𝑎𝑖+2|𝑏𝑡−1) … , 𝑃(𝑎𝑖+𝑡|𝑏𝑡−1) 17 

 

The weight matrix is determined based on Equation 17. This provides us the insights on 

what is the highest probability of time series decoder output which is provided by the previous 

output and is known to the next decoder state. This also ensures that the conversion is not the 

traditional language prediction method which is a one-to-one translation. The Weight matrix 

provides us the time series prediction. 

An example is shown in Figure 22 how the Weights W is chosen in the score calculation 

of the attention sub model. Considering the encoder input time series data with 4 sets of data as ai, 

ai+2, ai+1, ai and the first decoder loop output as bt-1 and as the decoder output is a subset of the 

input, we consider bt-1 as ai+3. Considering the input and output, the weights of the score would 

be P (ai | ai+3) = P4, P (ai+2 | ai+3) = P12, P (ai+1 | ai+3) = P8 and P (ai | ai+3) = P4 i.e., it would 

be P4 P12 P8 P4. 
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In our model, the encoder part will act like traditional encoder, where it receives the input 

data and process it. It outputs its last hidden state along with the last cell state to the decoder as 

input. It also stores all its hidden state of every encoder block which shall be used in the context 

vector. The decoder initial input is sent by the encoder and the decoder runs in loops. At each time 

step, the decoder consumes its inputs and states and outputs its last hidden state and last cell state. 

Decoder uses its last hidden state as the next input to the attention sub model which shall process 

the data as an input to the next decoder time step. It also uses the last hidden state for the prediction 

for the current time step. 

In the attention sub model, the encoder hidden state is used as one of the inputs for the 

score along with the weights from the transition matrix TM, and the decoder output. Using the 

score, the context vector is calculated which shall be concatenated with the decoder output and 

provided as an input to the next decoder state. 

Figure 22 Encoder Decoder - Attention with Transitionl Matrix 
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The transition matrix illustration is similar to the state space model, as both are time varying 

system. But the state space model has the ability to change the number of states, observation, 

disturbance i.e., a state space model is a dimension varying model and also the state space model 

can handle the system with nonzero initial condition. On the other hand, transition matrix proposed 

in this paper is not a dimension varying model incapable of handling the nonzero initial condition 

because the matrix will be skewed. 

The adaptation of transitional matrix in principle is to add statistics information over long 

term data to attenuation and thus change attenuation from blind unsupervised learning to 

supervised or semi supervised learning. The transitional matrix and attenuation are added with 

tunable and time-varying weights during the training to achieve better performance. 

4.2.1 Why Attention with Transition States  

The attention mechanism has been developed to improve the performance on long input 

sequence and especially for image recognition and Natural Language Prediction. The idea behind 

the attention mechanism is its ability to access encoder selectively during the decoding process 

achieved by the context vector. The context vector defined by Equation 15 is calculated based on 

the score given by Equation 16 using the probability distribution as shown in Equation 18. 

𝛼𝑡𝑠 =  
𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ𝑡,ℎ̅𝑠))

∑ 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ𝑡,ℎ̅𝑠′))𝑆
𝑠′=1

 
18 

 

In image classification and Natural Language Prediction, the weights in Equation 16 are 

calculated throughout back propagation during the training. In a time-variant system, the back 

propagation suffers from vanishing gradient problem. The LSTM uses the concept of 

Backpropagation Through Time (BPTT) to avoid the vanishing gradient problem, but the context 
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and attention block is not part of the LSTM structure and suffers from the vanishing gradient 

problem. To this end, the transition matrix is formulated to provide the statistical information over 

long term data for the score and thereafter context vector calculation.  

4.3 LSTM Model Switching using Random Forest 

When there is multivariable input, the input to the model can be multivariable and the 

prediction accuracy can be improved. The dependency between input variables will enhance the 

prediction accuracy. But in most scenarios, the LSTM model is kind of black box where the 

relationship between variables is not clearly defined. When we investigated the correlation 

between beams, we are not able to get a correlation factor which provides us the evidence that a 

certain combination of input would provide a better result.  

In our model, we use the Random Forest based LSTM model choosing which enables us 

to choose which LSTM model to use for the prediction which leads to better results. During the 

training phase we train all the possible variations using LSTM as shown in Figure 23 and feed the 

error into Random Forest along with the multivariable as input to the Random Forest. 

With the trained model, now we predict initially using the Random Forest. The input of the 

multivariable is fed to the Random Forest, which will predict which LST model to use for better 

accuracy.     



 36 

The model is designed as Training Model and Prediction Model where the training model 

can live in cloud which would be trained continuously as we collect data which would enhance the 

performance during prediction. And the prediction model can live in the vehicle and can be updated 

periodically by the cloud with its weights for the LSTM and the Random Forest prediction model.  

Shown in Figure 24 and Figure 25 is the training model and the prediction model of the RF 

Based LSTM Model.  
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Figure 24 RF Based LSTM Training Model 

 

Figure 25 RF Based LSTM Prediction Model 

During the training phase, a matrix is created with various combination of prediction 

output 1, 2, 3 and 4 with various inputs and this matrix is used for calculating the lowest error 

which would be fed as an input to the Random Forest.  

Input 1 Input 2 Input 3 Input 4Input 1 Input 2 Input 3 Input 4

Beam 1 Prediction via LSTM Beam 2 Prediction via LSTM Beam 3 Prediction via LSTM Beam 4 Prediction via LSTM

1 1&2 1&3
1,2,3
&4  2 1&2 2&3

1,2,3

&4
  3 1&3 2&3

1,2,3

&4
  4 1&4 2&4

1,2,3

&4
  

Error Calculation (Actual – 
Prediction)

Error Calculation (Actual – 
Prediction)

Error Calculation (Actual – 
Prediction)

Error Calculation (Actual – 
Prediction)

Lowest Error of All input Lowest Error of All input Lowest Error of All input Lowest Error of All input

Random Forest

Random Forest

Input 1 Input 2 Input 3 Input 4

Beam 1 Prediction via LSTM

1 1&2 1&3
1,2,3
&4  

Beam 2 Prediction via LSTM

2 1&2 2&3
1,2,3

&4
  

Beam 3 Prediction via LSTM Beam 4 Prediction via LSTM

3 1&3 2&3
1,2,3

&4
  4 1&4 2&4

1,2,3

&4
  

Best Model to use for 
Beam 1 Prediction

Best Model to use for 
Beam 2 Prediction

Best Model to use for 
Beam 3 Prediction

Best Model to use for 
Beam 4 Prediction

Beam 1 Predicted Result Beam 2 Predicted Result Beam 3 Predicted Result Beam 4 Predicted Result
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Shown in Table 5 is the example of error matrix created based on various input and the 

various combinations.  

Table 5 Error Matrix For Output 1 

Input Output Error 

  [1,2…10] [2,3…11] [3,4….12] [4,5….13] …

… 

[N-10, N-9…N] 

1 

1 

Actual - 

Predicted 

Actual - 

Predicted 

Actual - 

Predicted 

Actual - 

Predicted 

 Actual - 

Predicted 

1&2 … … … …  … 

1&3 … … … …  … 

1&4 … … … …  … 

1,2,3 … … … …  … 

1,2,4 … … … …  … 

1,3,4 … … … …  … 

1,2,3,4 … … … …  … 

 

Like Table 5, an Error matrix would be created for all the Outputs which would create a 

huge matrix with various combinations of inputs and output for the various models which is shown 

in Figure 26. 
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Figure 26 Error Matrix for all combinations 

With the error matrix being created, we choose the lowest error from the input 

combinations and create another table which provides the lowest error from various combinations 

as shown in  Figure 27. This error matrix creation with lowest error is performed for every output 

possible which leads to the final error matrix which would be the input to the Random Forest 

Model as shown in Table 6. 

 

 

Figure 27 Errror Matrix creation with Lowest Error 
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Table 6 Final Error Matrix input for Random Forest 

Output Error 

 [1,2…10] [2, 3…11] ….. [N-10, N-9…N] 

1 1,2,3 1 ….. 2,3,4 

2 1&2 1,2,3,4 ….. 2,3,4 

3 ….. …. …. …. 

4 ….. …. …. …. 

 

During the prediction, the input of various beams is fed as input to the random forest which 

looks at the various combinations of the beams and produces which combination is the best to 

predict which beam and provides that as the output. With the provided output, we can choose the 

right LSTM model and predict the signal strength which provides a better accuracy than feeding 

all the beam at all the time.  
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Chapter 5 Results and Validation 

In this section we present the numerical results and analysis of the conventional, 

unconventional and our Intelligent Beam Selection Model. This section is split into Simulation 

analysis and the real-world data analysis where the simulation analysis investigates the comparison 

of the convention and the unconventional model and its effectiveness in time series prediction. In 

the real-world analysis, we will look at the performance results of some of the conventional model 

and our Intelligent Beam Selection Model. 

5.1 Simulation Results and Analysis 

 In this section, we present experimental results that validate the applicability and 

robustness of the predication modules based on our simulation data. The metric used for the 

evaluation is the percentage of accuracy Equation 20 based on a 3dB margin. If the predicted result 

is within the 3dB threshold of the actual result Equation 19, the predicted result is considered as 

an accurate prediction, otherwise inaccurate. 

 

Another metric is the mean absolute error (MAE), defined in Equation 21. 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛 − 𝐴𝑐𝑡𝑢𝑎𝑙| ≤ 3𝑑𝐵 19 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 

20 

𝑀𝐴𝐸𝑗 =  
∑ (𝑥𝑖𝑗 −  𝑥𝑖𝑗)𝑛

𝑖=1

𝑛
 

21 
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5.1.1  Qualitative Analysis of Conventional and Unconventional Model 

Figure 28 shows the performances of RSSI prediction generated by above predicators. 

Figure 28 (1) to (d) shows beam by beam prediction and Figure 28 (e) shows the strongest beam 

prediction. To test the robustness of the predication modules, Table 7 compares the variance of the 

prediction accuracy for Site 1. 

Table 7 The Repetition test of Site 1 

MODEL Site 1 Accuracy (%) 

Test 1 Test 2 Test 3 Test 4 Test 5 

Adaptive Antenna Scanning 29.41 29.41 29.41 29.41 29.41 

VAR 57.14 57.14 57.14 57.14 57.14 

AR 58.49 58.49 58.49 58.49 58.49 

LSTM  55.81 60.46 62.76 60.46 62.79 

LSTM MIUO 72.09 81.39 69.76 72.09 69.77 

LSTM VAR 53.48 58.13 62.79 60.46 58.13 

LSTM AR 41.86 51.16 39.53 44.18 41.86 

 

Seen from the Table 7, LSTM MIUO prediction achieves 72% efficiency compared to the 

29%, 57%, 58%, 55%, 53% and 41% of adaptive antenna scanning, VAR, AR, LSTM, LSTM 

VAR, and LSTM AR respectively. Approximately ¾ of the packet will be received when adopting 

LSTM MIUO, whereas only 
1

3
 of the packets would be received while using antenna scan method 

and only ½ of the packets would be received for VAR, AR, LSTM, LSTM VAR and LSTM AR 

method. The LSTM MIUO is proven to offer 24% improvement compared to any other method 

discussed here.  

The MAE for a prediction across various beams is shown in Figure 29 where the LSTM 

MIUO has the lowest MAE compared to other methods. 
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Figure 28 The Signal Strength Prediction for each beam and corresponding output 
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Figure 29 Comparison of MAE for Site 1 across various Methods 

The performance of the LSTM MIUO starts during the training process where the loss 

function is calculated based on the prediction compared with the actual result and there by updating 

the weights accordingly. The final prediction is based on the weights assigned during the training 

set. As in the case of the LSTM MIUO, the weights are tuned to the individual signal strength of 

each beam i.e., a different set of weights is assigned to predict the signal strength of beam. Whereas 

in the LSTM system, the loss of the system is calculated based on all the signal strength across all 

the 4 beams combined and hence the weights are tuned based on all the signal strength at the same 

time which compromises on finding the best weights for all beams rather than individual in LSTM 

MIUO. Figure 30 shows the loss curves of the LSTM MIUO and the LSTM. 
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It can be noticed that the loss plots of Figure 30 shows the variation in the loss. A small 

variation in the loss leads to better prediction efficiency since it tunes the weights significantly. 

The better fitted loss curve is expected to result in weights generating optimum output, which is 

the reason behind the performance gap between the LSTM MIUO and others. Table 8 shows the 

difference in the loss across various LSTM models i.e., the change of loss from the initial epoch 

to the final epoch calculated based on Equation 22. 

𝐿𝑜𝑠𝑠 = |𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐿𝑜𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 − 𝐿𝑜𝑤𝑒𝑠𝑡 𝐿𝑜𝑠𝑠 𝑉𝑎𝑙𝑢𝑒| 22 

 

 

 

 

 

 

Figure 30 Loss of LSTM System between individual beam and the multibeam  
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Table 8 Loss Variation across all Models 

MODEL Beam SITE 1 LOSS 

LSTM  All Beam Combined 0.806 

LSTM MIUO Beam 1 0.853 

Beam 2 0.895 

Beam 3 0.859 

Beam 4 0.850 

LSTM VAR All Beam Combined 0.456 

LSTM AR All Beam Combined 0.118 

 

Table 8 shows the variation in the loss for all the models.  The loss is more in the LSTM 

MIUO as it is tailored more towards each individual beam as well as the correlation among them, 

and thus resulting in superior to others during prediction. 

5.1.2 Quantitative Analysis of Conventional and Unconventional Model 

We also present the prediction results across various sites showing the performance of the 

LSTM MIUO. Figure 31 shows the highest signal strength prediction across the beams among 

varies sites located all around the campus. Table 9 list the percentage of accuracy across various 

models for various sites. 
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Table 9 Prediction Accuracy from Site 1 to Site 15 

 

  

MODEL Simulation Sites (Accuracy %) 

Site 

1 

Site 

2 

Site 

3 

Site 

4 

Site 

5 

Site 

6 

Site 

7 

Site 

8 

Site 

9 

Site 

10 

Site 

11 

Site 

12 

Site 

13 

Site 

14 

Site 

15 

Adaptive 

Antenna 

scanning 

29.41 35.29 41.17 23.52 29.41 26.47 38.23 38.23 38.23 17.64 32.35 41.17 20.58 50.0 32.35 

VAR 57.14 95.83 64.1 55.31 63.0 76 65.30 80.95 69.56 71.42 63.04 60.78 66.0 76.47 66.66 

AR 58.49 94.33 69.5 45.28 60.37 30.18 5.66 5.66 69.81 64.15 64.15 60.37 56.60 77.35 67.92 

LSTM  60.46 97.67 55.81 41.86 51.16 58.13 6.97 74.41 79.06 69.76 67.44 55.81 53.48 72.09 60.46 

LSTM 

MIUO 

74.41 100 69.76 72.09 64.8 81.39 97.67 100 93.02 86.04 83.72 79.06 69.76 90.69 69.76 

LSTM 

VAR 

60.46 97.67 58.13 34.88 62.8 55.81 16.27 58.13 60.46 65.11 51.16 51.16 62.79 60.46 53.48 

LSTM 

AR 

51.16 95.34 53.48 44.18 53.5 51.16 25.58 46.51 62.79 60.46 41.86 48.83 69.66 74.41 51.16 
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Figure 31 Display of Signal Strength across 15 sites 

Seen from the Table 9 and the Figure 31, the LSTM MIUO outperform others across 15 

sites. Antenna scanning method has the highest percentage error compared to any machine learning 

predicator resulting in two third packet loss as the beams are chosen once every 100ms. 

The accuracy improvement of LSTM MIUO when compared with others is shown in Table 

10 which is calculated from Equation 23. The comparison is between LSTM MIUO and the best 

prediction one of others. i.e., in Site 1 the LSTM MIUO is compared to AR. The results support 

our conclusion about performance of the LSTM MIUO. 

where 

𝑃1 is the accuracy percentage of LSTM MV  

𝑃2is the accuracy percentage of best one of others. 

 

 

 

 

 

 

|𝑃1 − 𝑃2|

[
(𝑃1 + 𝑃2)

2 ]
 𝑋 100 

23 
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Table 10 Enhancement of prediction accuracy when adopting LSTM MIUO 

SITE Accuracy SITE Accuracy SITE Accuracy 

1 23.9% 6 6.8% 11 21.5% 

2 2.3% 7 39.7% 12 26.1% 

3 0.4% 8 21% 13 0.2% 

4 26.3% 9 16.2% 14 19.7% 

5 1.7% 10 18.5% 15 2.7% 

5.1.3 Time Series Ensemble Analysis 

In this section, we present experimental results that demonstrates the improved accuracy 

of the Time Series Ensemble (TSE) algorithm. The main metrics used for evaluation are the Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE) and Absolute Precision Error (APE). RMSE and MAE captures the absolute error, MAPE 

captures the percentage error and APE is the standard deviation of the set of measurements.  

The power level (RSSI) recorded during the simulation is used as the dataset and the 

prediction is performed. The prediction is performed on three different models. 

• ARIMA 

• LSTM 

• Time Series Ensemble (TSE) 

The results of all the three models are compared to show the performance of the TSE 

method. 
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Figure 32 RSSI Prediction of TSE 

Figure 32 shows the prediction result of the RSSI data over three different models and the 

actual result. It can be clearly noted that ARIMA prediction is better in a near short term and as 

the timesteps increases the ARIMA prediction error increases. Similarly, in the LSTM it is 

identified that the near short-term prediction error is higher than the ARIMA, but as the timestep 

increases the prediction gets better than ARIMA. In our TSE algorithm, the prediction is best in 

both near short term and in long term as the timestep increases, thus increasing the accuracy of the 

prediction and reducing the error from the actual value. 

The analysis is also performed on the Angle of arrival (AoA) i.e., the angle which the signal 

is received by the vehicle. The Angle of arrival data is collected during the simulation and the 

prediction is performed. Evaluation has been performed previously for Angular information by 

[65]. Figure 33 shows the same performance as power level prediction where TSE method 

performs better than standard ARIMA and LSTM in both short term and long term. 
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Figure 33 Angle of Arrival TSE Prediction 

Table 11 shows the error calculation and the comparison between the ARIMA, LSTM and 

the TSE Algorithm. From the various error calculation, it can be proven that the TSE algorithm 

outperforms both ARIMA and the LSTM in time series prediction. 

Table 11 TSE Error Comparison 

Algorithm / 

Error 

Angle Prediction Power Level Prediction 

ARIMA LSTM TSE ARIMA LSTM TSE 

RMSE 9.99 19.28 9.71 8.08 6.08 6.05 

MAPE 25.15 35.22 25.48 9.83 7.82 7.79 

APE 8.85 18.30 8.53 6.53 3.69 3.64 

MAE 9.58 14.13 8.40 5.12 1.91 1.82 

5.2 Theoretical Analysis 

To validate the proposed model, we generated a theoretical data set of Antenna Beam 1 to 

4 with a total data set length of 1500 with the following probability conditions. 
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Table 12 Theoretical Data Set Condition 

Beam Beam 1 i Beam 2 i Beam 3 i Beam 4 i 

Beam 1 i-1 0.1 0.2 0.3 0.4 

Beam 2 i-1 0.4 0.1 0.2 0.3 

Beam 3 i-1 0.3 0.4 0.1 0.2 

Beam 4 i-1 0.2 0.3 0.4 0.1 

 

 

Table 12 shows the condition of how the data set has been generated to validate this model. 

For example, if Beam 1 is present beam, the probability of next data to be Beam 1 to Beam 4 are 

0.1, 0.2, 0.3 and 0.4 respectively. 

The generated dataset is uniformly distributed i.e., if a random number is chosen as a 

prediction, there is a 0.25 probability that the random number is correct i.e., the accuracy is 25% 

If the transitional matrix is known and is still applicable to future dataset, maximum likelihood 

estimate can be adopted to achieve the best estimate. Based on the generated dataset the theoretical 

maximum likelihood is 0.4 i.e., 40% accuracy. This estimate is based on the factor that the previous 

estimation Beami is correct, or we provide the actual data (Beami) for every Beami+1 prediction. 

Whereas in the prediction method we always feed the predicted value to predict the next Beam 

i.e., Beami is predicted and the predicted Beami is fed as an input to predict Beami+1. 

Simulation is performed to see the performance of the maximum likelihood where the input 

Beami is also predicted value which is considered as a known value to predict Beami+1 i.e., 

unguided methodology. The total dataset is 1500 and we considered the last 200 as the test data. 

The last known value i.e., dataset 1300 is Beam 3 which is considered as Beami to predict 

Beami+1. Based on the table Beami+1 would be Beam 2 due to 0.4 probability. For the next 
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prediction we used Beam 2 as the input and predicted Beam 1 based on 0.4 probability. This has 

been simulated and the accuracy is calculated as 26.5%. Figure 34 shows an example for the 

difference between guided and unguided methodology based on the Table 12 prediction. It’s 

shown that in the guided methodology, the probability of next Beam is always based on the true 

data (Example Data) whereas in the unguided methodology, the probability of next Beam is based 

on previous estimate. 

 

Based on the generated dataset, the analysis is performed on the most “naïve” forecast 

which is the persistence algorithm or Walk-Forward validation. The persistence algorithm uses the 

value at the previous time step (t-1) to predict the expected outcome at the next time step (t+1). 

We have also performed analysis on our proposed Attention with Transition model and compared 

with Encoder Decoder with Attention model, both Dot product and Luong’s method of 

implementation. In the decoder model, during the prediction of the test data, the input provided to 

the attention sub model is the actual predicted values i.e., unguided methodology. Based on this 

method, the percentage of accuracy is calculated to show the improvement of results. 

• Theoretical Random selection: 25% 

• Maximum likelihood  

• Theoretical Guided: 40% 

Figure 34 Guided Vs Unguided likelihood estimation 
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• Unguided: 26.5% 

• Walk-Forward Validation (Persistence Prediction): 8.82% 

• Encoder Decoder with Attention (Dot product): 23.65 % 

• Encoder Decoder with Attention (Luong’s Method): 24.85 % 

• Encoder Decoder with Attention (Attention with Transition): 28.35 % 

It can be noted that in the theoretical maximum likelihood has 40% prediction accuracy, 

but it’s a theoretical analysis and there are other factors which contribute to this method. We need 

to know the input to have the better prediction. When we compare the actual prediction model, the 

analysis showed significant improvement in the accuracy of prediction, where we see close to 12% 

(28.35 / 23.65) improvement than Encoder decoder with Attention method. 

Along with the percentage of accuracy, we also performed Mean Squared Error, Mean 

Absolute Error (MAE) (Equation 24) and Mean Absolute Percentage Error (MAPE) (Equation 25) 

metric to see the performance of the proposed model. MSE captures the difference between the 

original the predicted value whereas MAPE captures the absolute error of the prediction and 

MAPE captures the percentage error. 
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Table 13 Performance Comparison of Theoretical Data Set 

Error MSE MAE MAPE 

Walk-Forward Validation 

(Persistence Prediction) 

1.30 0.90 0.47 

Dot product 1.42 0.95 0.65 

Luong’s Method 1.41 0.93 0.62 

Attention with Transition  0.99 0.74 0.38 

 

Table 13 it can be noted that MSE, MAE and MAPE is lowest in our proposed method. 

The improved performance of the system is because the weights are determined by the transitional 

state matrix. During the attention part, the transitional state value provides input to the attention 

where the focus of the decoder should be. In the traditional encoder decoder with attention, the 

training part determines which encoder part the decoder should focus on, so that the decoder 

decodes the data based on the attention value. Whereas in our method, the transitional state 

provides input to the attention state which provides the focus to the decoder and providing the 

information of which encoder the attention or focus needs to be for the decoder so that the predicted 

value is similar to the actual value. By providing the attention weights the prediction results are 

much better than the traditional method. 

The main motivation of the attention is at different steps, the decoder needs to focus on 

different source which are relevant at that step. The attention score is the “relevance” of the 

encoder state to the decoder state. The attention score transforms to attention output which is the 

weighted sum of the attention weights. The variability in attention score adds up for the attention 

output. The lesser in variability provides clear definition of which transition encoder to focus on. 
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When the attention score is taken closer look as shown in Figure 35, it can be noted that the 

variability of the attention score is very small in our Attention with transition method compared to 

the Luong’s method. The variability of the attention score for the Luong’s method is 237.4 with 

the lowest value to be -217.01 and the highest value to be -20.42 whereas in Attention with 

Transition the variability of the attention score is 30.9 with the lowest value to be -20.01 and the 

highest value to be 10.89. The reason for the variability is the weights being assigned randomly in 

the Luong’s method whereas in our Attention with Transition method, the weights are determined 

based on the known data of transition which provides better relevance of the encoder to the decoder 

state. The attention score provides better capability for the decoder to focus on the right source and 

leading to better predictability. 

 

 

Figure 35 Attenuation Score Variability between Luong and Attention 
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5.3 Experimental Analysis 

5.3.1 Qualitative Analysis 

The experiment is performed over the collected data sample. The algorithm is compared 

with the Encoder decoder with Attention model, both Luong’s and Dot product to show the 

improvement of our system compared to the Luong’s method of implementation. The analysis is 

performed like the theoretical analysis and shows a consistent performance i.e., improved results 

in the Attention with Transition model on both theoretical and measured data. 

• Walk-Forward Validation (Persistence Prediction): 25.76% 

• Encoder Decoder with Attention (Dot product): 36.91 % 

• Encoder Decoder with Attention (Luong’s Method): 39.82 % 

• Encoder Decoder with Attention (Attention with Transition): 42.44 %  

Figure 36 shows the prediction results of various models. It can be noted that our proposed 

method has significantly better performance of predicting the beam compared to the traditional 

Figure 36 Comparison of Prediction results from Dot, Luong and Attention  
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Dot product method and the Luong’s method. We show an improvement of 11.5% from the 

traditional dot product and 10.5% for the Luong’s method. 

The loss curve shown in Figure 37 indicates that the training is better and attains better 

stabilization quicker using our proposed model. 

 

The Attention vector is the score of the corresponding value within the source sequence 

which tell the decoder what to focus on at each time step. A huge variability in the Attention score 

provides lower confidence in the decoder which results in choosing the wrong encoder to focus 

the prediction on. In our test data analysis, the variability of the attention score is considerably 

lower when compared with the Luong method as shown in Figure 38. The variability in attention 

score for Luong’s prediction is 128.5 whereas the variability in attention score value for Attention 

with Transition prediction is 35.8, which provides us the better confidence of predicting the value 

by focusing on the right encoder during the prediction. 

Figure 37 Comparison of Loss Curve 
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The accuracy plots show in Figure 39 indicate the accuracies from the dot product, Luong’s 

method, and attention with transition as 35.5%, 40.3% and 42.1% respectively. This is during the 

training phase over 50 epochs where the losses have achieved its lowest levels and the accuracies 

are at their peaks.  

 

Figure 38 Attention Score Variability 

Figure 39 Comparison of Accuracy Curves 
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Along with the percentage of accuracy, we also performed MSE, MAE and MAPE metric 

to see the performance of the proposed model. 

Table 14 Performance Comparison of Measured Data 

Error MSE MAE MAPE 

Walk-Forward Validation 

(Persistence Prediction) 

1.719 1.04 0.37 

Dot product 0.92 0.72 0.40 

Luong’s Method 0.99 0.74 0.38 

Attention with Transition  0.91 0.68 0.35 

 

From Table 14, it can be noted that MSE, MAE and MAPE is lowest in our proposed 

method. The prediction results shows that Attention with Transition has a better prediction 

accuracy compared to other traditional prediction methods. 

If a dataset is uniformly distributed, then the random selection of data will result in 25% 

accuracy i.e., if a data is chosen randomly the probability of getting the right Beam is 25%. Based 

on this, we can say that if the dataset is uniformly distributed, then the accuracy of random 

selection would be 25%. In our dataset, the Beam data are not uniformly distributed, and the 

accuracy will not be 25%. In this dataset, as shown in Figure 40, the total number of Beam 1 is 

17% of the data set, Beam 2 is 37% of the data set, whereas Beam 3 is 21% of the data set and 

Beam 4 is 25% of the data set. If the random selection is Beam 1, the probability of getting it 

correct is 17% and if the random selection is Beam 2, the probability of getting it correct is 37% 

and so on with Beam 3 is 21% and Beam 4 is 25%. When this accuracy is compared with our 

prediction method, we should outperform these accuracies or else the random selection is a better 

method than the machine learning prediction. When we analyze our predicted data, the probability 

of Beam 1 prediction is 80% i.e., 80% of the Beam 1 prediction is correct whereas when we 

randomly choose there is a probability of only 17%. Similarly, the probability of Beam 2 is 55% 
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whereas the random selection is 37%, probability of Beam 3 is 29% whereas the random selection 

is 21% and the probability of Beam 4 is 68% whereas the random selection is 25%. Table 15 shows 

the prediction probability comparison between the random selection, and our prediction method 

which shows that our prediction method performs better than the random selection in all individual 

beam selection method. 

 

Table 15 Random Slection Vs. Attention with Transition 

BEAM RANDOM SELECTION ATTENTION WITH TRANSITION 

Beam 1 0.17 0.45 

Beam 2 0.37 0.47 

Beam 3 0.21 0.31 

Beam 4 0.25 0.48 

 

During the test data prediction, instead of feeding the predicted values as input to the next 

decoder loop, if we provide the actual data to the next decoder loop i.e., guided methodology, the 

Figure 40 Dataset distribution percentage 



 64 

accuracy percentage improves and provides us an accuracy of 46.9%. This method will provide 

better efficiency of prediction if we know the output values during the testing stage. 

5.3.2 Quantitative Analysis 

To validate the model across various dataset, we also collected data from different drive 

zones around the campus as shown in Figure 41 and shown the analysis of the various dataset 

across the different encoder decoder models.  

The performance comparison of various zones is shown below. The analysis indicates that 

Attention with Transition (Our proposed) model performed better than the traditional Encoder 

decoder model. 

 

Figure 41 Various drive Path (Left to Right) Zone 1, 2 and 3 

 

 

 

 

 

 

 

 

 



 65 

Table 16 Performance  comparison of Various zones 

 

It shall be noted from Table 17 the performance improvement from the Dot product Vs. 

Attention with Transition and Luong’s Method Vs. Attention with Transition. The performance 

improvement is calculated from the accuracy percentage as explained in Equation 26. The variance 

in the improvement as seen is dependent on the dataset. Based on our dataset the variance is 

between 10 to 12% improvement. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝐴𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑦 𝑜𝑓 𝐷𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑟 𝐿𝑢𝑜𝑛𝑔 𝑀𝑒𝑡ℎ𝑜𝑑
 

26 

 

 

 

 

 

 

 

Drive 

Zone 

Method Accuracy (%) MAPE MSE 

Zone 1 Persistence Prediction 25.76 0.37 1.71 

Dot product 36.91 0.40 0.92 

Luong’s Method 39.82 0.38 0.99 

Attention with Transition 42.22 0.35 0.91 

Zone 2 Persistence Prediction 23.48 0.47 2.30 

Dot product 26.12 0.46 1.52 

Luong’s Method 26.75 0.50 1.46 

Attention with Transition 29.19 0.44 1.42 

Zone 3 Persistence Prediction 25.51 0.53 2.44 

Dot product 27.19 0.66 1.41 

Luong’s Method 29.38 0.54 1.32 

Attention with Transition 32.89 0.51 1.24 
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Table 17 Performance improvement comparsion 

Drive 

Zone 

Performance Improvement 

Dot Vs Attention with 

Transition (%) 

Luong Vs Attention 

with Transition (%) 

Zone 1 11.43 10.60 

Zone 2 10.91 10.91 

Zone 3 12.09 11.19 

 

The accuracy of the prediction depends upon the dataset and the prediction accuracy falls 

with the entropy of the dataset. The entropy provides the information about the randomness on the 

dataset and our model prediction result follows the entropy of the dataset as well. The entropy is 

calculated as shown in Equation 27. 

𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑏𝑃(𝑥𝑖)

𝑛

𝑖=1

 
27 

 

The entropy is calculated for the theoretical data and for all the three measured zones and 

their corresponding accuracy is plotted in Figure 42. It shall be noted that as the Entropy increases 

the accuracy of prediction decreases which correlates to the Shannon theory. 
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5.3.3 RF Based LSTM 

The prediction accuracy is calculated over the collected data and compared with the 

theoretical random selection which is selecting randomly one of the four beams. Based on the 

dataset which has been collected around University of Michigan – Dearborn campus the results 

shows that the RF based LSTM has a better prediction accuracy than a standard LSTM with 

multivariable input.  

◦ Theoretical Random Selection : 25% 

◦ LSTM : 31.92% 

◦ RFLSTM : 35.54% 

From the results, it is evident that the RF Based LSTM outperforms the standard method 

of prediction. Figure 43 shows the prediction result comparison between the RF based LSTM with 

the standard LSTM along with the baseline measurement. 

Figure 42 Entropy Vs Accuracy 
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Figure 43 Comparision between RFBased LSTM and LSTM 

To compare the performance improvement from the we use the Equation 26 which shows 

the performance improvement compared to other methods which is shown in Table 18. 

Table 18 Performance Improvement of RFLSTM 

Drive 

Location 

Performance Improvement 

Random Selection Vs. 

RFLSTM (%) 

LSTM Vs. RFLSTM 

(%) 

Campus 14.21 11.13 
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Chapter 6 Conclusion 

This research proposes a novel beam selection named “Intelligent Beam Selection” (IBS) 

which enhances the real time prediction of beam by considering all the signal strength from various 

beams. A multi-agency LSTM beamforming prediction model is presented resulting in enhance 

performance than conventional ones including ARIMA and LSTM. The effectiveness of such 

model is verified through C-V2X simulation results in the University campus which resulted in 

prediction improvement of 24% compared to other prediction methods. The robustness of the 

performance of the LSTM MIUO model across various sites signals its widespread applicability 

and repeatability. 

A new Encoder Decoder modified hard attention is shown resulting in enhance 

performance than the conventional one including Encoder Decoder with Attention (Dot product 

and Luong’s method). The effectiveness of such model is verified using actual test data which was 

taken at the university campus using the antenna array which was designed for this application. 

We hope that the results of this paper will encourage future work in using modified hard attention. 

We also expect that the modularity of the encoder-decoder approach combined with modified 

attention to have useful applications in other domains 
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Chapter 7 Future Work 

This research was performed with real-time datasets and valid assumptions were taken to 

develop the concept of the new drive mode. The validation was conducted with specific limitations 

which produced best results as described in the Chapter 5. Hence in this chapter, the following 

ideas were proposed which could augment the deployment of the Intelligent Beam Selection (IBS). 

7.1 Multi-variate System 

This research is focused on the signal strength data, but there are other data which shall be 

used to improve the accuracy of the prediction system.  

7.1.1 GPS Data 

The GPS Data will provide information about the location of the vehicle with respect to 

the transmitter which would enhance the model predictability. By knowing the transmitter location 

and understanding the receiver location, the model could make a predetermination of the beam or 

use the previous prediction results and further train the model for better accuracy 

7.1.2 Vehicle Speed 

The Vehicle speed will provide the information of the doppler shift on the frequency of the 

signal. The vehicle speed provides a determination of how fast the beam selection needs to be 

made and how often the beams need to be switched. The vehicle speed will also provide 

information of the training data set of how often the data is collected and what is the corresponding 

distance between two data collected from the same beam. 
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7.1.3 Foliage Condition 

Foliage plays a vital role in the Radio Frequency performance. The radiation of the signal 

varies a lot based on the Foliage condition. It has been noted by much research that the RF 

performance or radiation performance varies based on Foliage condition. The coverage region 

varies a lot based on the Foliage such as if the trees are blocking the radiation. This information 

will enhance the efficiency of prediction of any model. 

7.1.4 Traffic 

The traffic condition will help us to understand the congestion factor around the vehicle 

and the effect of noise on the receive signal. If the traffic is high in a location, the Signal to Noise 

Ratio (SNR) would be high due to the higher noise factor. The traffic condition also helps in 

training as it might be one of the feature inputs to the model which shall enhance the prediction 

accuracy.  

7.1.5 Urban Vs Rural 

Like the traffic condition, the drivable condition of the location such as Urban or Rural 

would provide information to the prediction model. In an urban scenario, the vehicle movement 

would be higher compared to the rural condition and the selection of beam would be better and 

also helps in the prediction model as the noise factor might be higher in the Urban compared to 

Rural.  

7.1.6 Drive Terrain 

Drive terrain would be a big impact to the prediction model such as mountain or uphill or 

downhill driving. Based on the drive terrain the radiation pattern changes and the accumulation of 

signal will have a huge impact on the signal strength. The Drive terrain would provide the 
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information why the signal strength varies a lot within a quick session, and it helps in the prediction 

model. And the drive terrain would provide the information that the beam would not be an optimal 

selection as the beam would focus more energy which might not be received by the source or the 

receiver. So, the model would make a prediction of switching to omnidirectional rather than beam 

in scenarios based on drive terrain.  

7.2 Cloud Processing 

The model can be stored in the cloud which would enable faster processing and 

computational time. The cloud model would have the ability to store large data set and improve 

the training scenario which leads to better prediction accuracy of the system. The cloud processing 

can also create multiple models based on multiple scenarios as explained in the multi-variate 

system under Future Work.  

7.3 Transmitter Beam 

The test has been performed considering the transmitter to be an omnidirectional antenna 

and the receiver to be a beamforming and the model has been trained in the vehicle to predict the 

right beam for the vehicle. The future work can also involve the transmitter to be a beamforming 

antenna which enables the range of the entire communication, and the model would be able to 

predict both the transmitter beam and the receiver beam. In this scenario, the model can be 

synchronized where the information is shared by the model from the transmitter to the receiver 

and vice-versa so that the prediction model can be enhanced by knowing what the Transmitter 

beam will be and the receiver beam would be. 
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Appendix A: Simulation 

A.1: Simulation Setup 

The simulation is performed in Altair Winprop – ProMan software which provides the 3D 

simulation of the location. The simulation is performed in the University of Michigan-Dearborn 

campus with the prediction area covering the entire campus and the neighboring places to make 

sure the coverage data is not lost.  

Before the execution of the simulation, the path and the material properties of the 

environment is setup using the Altair Winprop -WallMan software which allows us to set the 

heights of the properties around the campus. Shown in Figure 44 the various properties of the 

materials constructed during the simulation and the layout. 

 

Figure 44 Altair-WallMan Simulation Setup 
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The simualtion is performed in the ProMan software with the results recoreded in ASCII 

format. The computational prediction results in the ASCII format are: 

• Field Strenght 

• Path Loss 

• Line of Sight Analysis 

• Delay Spread 

• Minimum Path Delay 

• Channel Impulse Response 

• Propagation paths 

 

Figure 45 Project Parameter 
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A.2: Simulation Data Format 

The results are stored in the ASCII format for better computation. The results contain the 

number of antennas used for the simulation along with their location, their frequency of operation, 

the transmit power and the receiver location with time stamp.  

 

Figure 46 Field Strength Data Format 

 

All the data collected over simulation contains the following fields as shown in Table 19. 
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Table 19 Data field from Simulation 

Field Units 

x-Coordinate Meters 

Y-Coordinate Meters 

z-Coordinate Meters 

Yaw Degree 

Pith Degree 

Roll Degree 

Time Stamp Seconds 

Velocity Meter per second 

Distance to start of trajectory Meters 

Field Strength dB microvolt per Meter 

Line of Sight Status [1 or 0] 

Path Loss dB 

Power dBm 
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Appendix B: Drive Data 

B.1: Real Data Format 

The sample data collected at University of Michigan Dearborn campus is shown below in 

this Appendix. The data is collected for Beam 1, 2, 3 and 4 and the Omni directional antenna. Each 

Beam data has the time stamp in seconds, followed by index number and then followed by the 

signal strength in dBm. 

Table 20 Beam 1 Sample Data Set 

Time Stamp Index Signal Strength 

2491.96 46132 -67 

2492.71 46137 -62 

2493.34 46142 -68 

2494.15 46147 -67 

2494.19 46152 -71 

2494.22 46157 -68 

2494.26 46162 -64 

2494.49 46167 -68 

2494.57 46172 -70 

2495.02 46177 -61 

 

Table 21 Beam 2 Sample Data Set 

Time Stamp Index Signal Strength 

2491.99 46133 -66 

2492.84 46138 -66 

2493.78 46143 -67 

2494.16 46148 -70 

2494.2 46153 -71 

2494.23 46158 -71 

2494.27 46163 -61 

2494.5 46168 -64 

2494.59 46173 -68 

2495.42 46178 -62 
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Table 22 Beam 3 Sample Data Set 

Time Stamp Index Signal Strength 

2492.37 46134 -66 

2492.86 46139 -65 

2493.8 46144 -66 

2494.17 46149 -70 

2494.2 46154 -67 

2494.24 46159 -70 

2494.27 46164 -74 

2494.52 46169 -67 

2494.61 46174 -70 

2495.44 46179 -61 
 

Table 23 Beam 4 Sample Data Set 

Time Stamp Index Signal Strength 

2492.39 46135 -67 

2492.88 46140 -72 

2493.82 46145 -73 

2494.18 46150 -70 

2494.21 46155 -69 

2494.25 46160 -64 

2494.47 46165 -63 

2494.53 46170 -70 

2494.62 46175 -70 

2495.46 46180 -62 

 

Table 24 Omni Sample Dat Set 

Time Stamp Index Signal Strength 

2491.96 46132 -67 

2492.71 46137 -62 

2493.34 46142 -68 

2494.15 46147 -67 

2494.19 46152 -71 

2494.22 46157 -68 

2494.26 46162 -64 

2494.49 46167 -68 

2494.57 46172 -70 

2495.02 46177 -61 
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