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Abstract 

 
Predictive analytics has emerged as a vital field with significant potential in industries 

ranging from energy to mobility. As such, it has become a topic of considerable interest for 

research. Through the use of statistical models, predictive analytics helps reveal patterns and 

relationships in complex datasets, generating accurate predictions about future events or outcomes. 

The development of Artificial Intelligence (AI) architectures and data-driven frameworks has 

further revolutionized the way we perform predictive analytics. However, the broad adoption of 

AI for predictive analytics is limited due to the lack of custom architectures that can effectively 

handle the unique complexities of modern datasets and perform robust and accurate predictions. 

As datasets grow increasingly complex, the need for Bayesian statistics and Deep Learning 

(DL) in predictive analytics has become increasingly evident. Bayesian statistics offers a versatile 

framework for incorporating prior knowledge and external knowledge into AI models. This can 

help mitigate problems such as data sparsity and improve long-term forecasts. Similarly, DL 

architectures, with their ability to identify and learn complex patterns within datasets, have the 

potential to unlock new insights and drive innovation in predictive analytics. However, the 

development of custom AI architectures that leverage such techniques for predictive analytics 

remains challenging due to their several inherent limitations. 

This work aims to bridge this research gap by harnessing the power of Bayesian statistics 

and DL to advance the state-of-the-art in predictive analytics. Specifically, this work proposes 

custom AI architectures and data-driven frameworks that can (i) perform accurate long-term 

estimations, (ii) overcome data drift, (iii) provide uncertainty quantifications, (iv) model and 



 xv 

predict anomalous behavior, (v) leverage concepts of Design of Experiments, and (vi) perform 

collaborative modeling. The proposed models and frameworks are evaluated using compelling 

case studies that demonstrate their effectiveness in improving the accuracy, reliability, and 

robustness of AI architectures for broader use in predictive analytics.  
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Chapter 1 Introduction 

1.1 Motivation and Overview 

 
Figure 1-1 An overview of the larger picture of predictive analytics. While the outer-arc shows its multi-domain 
applications, the inner arc highlights some challenges. We focus on the six highlighted challenges in this work.  

Predictive analytics has a rich history dating back to the field of statistics, where models 

are developed to make inferences about future events based on past data [1]–[4]. Therefore, 

predictive analytics has become a ubiquitous tool for a variety of industries, including 

transportation, healthcare, energy, and manufacturing, among others [5]–[7]. Moreover, the rise of 

big data and the availability of advanced computing resources have led to a rapid evolution of 

predictive analytics, enabling organizations to develop more accurate predictions and improve 

decision-making processes [7]–[11]. By leveraging data from various sources, predictive analytics 

helps organizations to identify patterns and trends that would be difficult to discern otherwise. 

This, in turn, allows them to make more informed decisions and take proactive measures to 

mitigate risks and capitalize on opportunities [10]. In addition, the rise of Artificial Intelligence 

(AI) has enabled the development of powerful predictive models [12]–[14]. Moreover, the advent 
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of Deep Learning (DL) has revolutionized how we approach predictive analytics, making it 

possible to process and analyze vast amounts of data in real-time and uncover new insights that 

would be difficult or impossible to identify using traditional statistical models [15]–[17]. 

While traditional AI architectures have shown remarkable success in many applications, 

their adoption in predictive analytics is limited due to several challenges [17]. One of the main 

challenges is the lack of custom AI architectures that can perform robust long-term predictive 

analytics [18]. While traditional DL models can identify and learn complex patterns within 

datasets, they require large amounts of data [19]–[22]. Such models are therefore limited when 

tasked to perform long-term estimations given limited training data [18]. Moreover, these models 

are often trained on historical data, which may not reflect the current or future state of the modeled 

system [23]. Such data drift leads to inaccurate predictions and limit the applicability of the 

developed models [24]. These problems are further worsened by their lack of ability to perform 

uncertainty quantifications [12], [25].  Issues such as lack of training data add fuel to this fire and 

the developed models are often exhibit anomalous behavior when exposed to unseen data [26]–

[28]. This is primarily due to the lack use of a Design of Experiments (DOE) style frameworks 

that help verify and validate the developed models [26], [29]. Finally, predictive models that use 

traditional AI architectures often lack the ability to perform collaborative modeling [30]–[33]. 

They are thus unable to leverage and combine multimodal data from various sources for effective 

predictive analytics [34], [35]. This leads to inaccurate predictions and hampers the broad adoption 

of AI in predictive analytics. 

To overcome these challenges, we propose several custom AI architectures that can (i) 

perform accurate long-term estimations, (ii) overcome data drift, (iii) provide uncertainty 

quantifications, (iv) identify and predict anomalous behavior, (v) leverage concepts of Design of 
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Experiments, and (vi) perform collaborative modeling, using concepts of Bayesian statistics and 

DL. As shown in Figure 1-1, the architectures proposed in this work focus on the six mentioned 

challenges that may be extended to multiple applications across several industries and domains. 

1.2 Limitations of Existing Approaches 

The development of AI has revolutionized the way we perform predictive analytics [36]–

[38]. Although many AI architectures have been proposed, several challenges remain [17]. Some 

of these are shown in  Figure 1-1.  

One significant limitation of traditional AI architectures is their inability to perform long-

term estimations [39]. While short-term estimation involves predicting the immediate future, long-

term estimation often involves predictions near the End-of-Life (EOL) [18]. Therefore, traditional 

AI architectures such as Recurrent Neural Networks (RNNs) [40] and Long Short-Term Memory 

Networks (LSTMs) [41] fail when performing long-term estimations given limited training data 

[42], [43]. Although the concepts of Transfer Learning (TL) [44] attempt to partially solve this 

problem, these architectures often require hours of re-training on large amounts of training data 

[43]. Long-term estimations are essential for predicting the health and performance of various 

components, including batteries [45], [46] and other parts [21], [47], [48]. Therefore, it is critical 

to develop AI architectures that can perform accurate long-term estimations given limited training 

data while being robust and generalizable. 

Manufacturers often collect and analyze data from various products and their components 

to enhance reliability and customer satisfaction [49], [50]. This allows them to improve the quality 

of the manufactured products by identifying patterns and trends in the millions of manufactured 

parts and components [51]. However, data trends are often a complex function that change with 

time [23]. This is commonly referred to as “data drift” [23]. This is especially the case in 
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manufacturing environments where the products vary due to inherent variation in the 

manufacturing process [52]. Although some work has been done to address this problem, most 

predictive methods only work for a shorter horizon and fail to provide uncertainty quantifications 

[53], [54]. As such, there is a need for custom AI architectures that can effectively leverage 

Bayesian strategies to accommodate data drift and perform effective predictive analytics. 

“Anomalous behavior” refers to the rare, unpredictable and untoward behavior that is 

impossible to predict using traditional statistical models [26], [75]–[77]. In the context of 

predictive analytics using AI, anomalous behavior or events can pose a significant challenge, as 

traditional AI architectures are often developed based on historical data that may not include such 

events  [59], [78], [79]. Therefore, one has a tendency to build a false sense of confidence in the 

built models or systems [26], [59], [80]. Although some work has been done to build data-driven 

frameworks that can predict such behavior, they often use over-simplified test cases [59], [78], 

[79], [81]–[86]. As such, there is a need to develop custom data-driven frameworks that can 

effectively verify and validate AI-driven systems by modeling and predicting such behavior [87]. 

Modern machines such as Autonomous Vehicles (AVs) are expected to operate and 

perform predictive analytics in complex and dynamic environments [55]–[57]. Therefore, more 

recently, the use of Generative models have become quite prevalent in such applications [58]–[64]. 

As the name suggests, Generative models are trained to “generate” new data samples that are 

similar to the input data distribution [34], [65]. However, a significant limitation of Generative 

models is their lack of ability to integrate multimodal data from various sources [20], [66]–[69]. 

Unlike traditional statistical models, Generative models do not explicitly incorporate such data, 

thus making them vulnerable to anomalous behavior [70], [71]. This is particularly problematic in 

applications where the cost of a wrong decision can be significant, such as AVs [34], [35], [65], 
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[72]–[74].  Therefore, there is a need to develop custom AI architectures that can perform 

collaborative modeling by integrating multimodal data from several sources for improved 

predictive analytics, especially in AVs.  

1.3 Goals and Objectives 

 
Figure 1-2 An overview of the goals of this work. 

The use of custom AI architectures have the potential to improve predictive analytics [88]. 

However, to fully realize this potential, there is a need to overcome the limitations of traditional 

AI architectures by developing custom robust, and accurate architectures that can (i) perform 

accurate long-term estimations, (ii) overcome data drift, (iii) provide uncertainty quantifications, 

(iv) identify and predict anomalous behavior, (v) leverage concepts of Design of Experiments, and 

(vi) perform collaborative modeling. Therefore, in this work, we attempt to propose custom AI 

architectures that leverage Bayesian statistics and DL to solve the six mentioned challenges in 

predictive analytics. As shown in Figure 1-2, the efficacy of the proposed architectures is validated 

using compelling case-studies for different applications in the automotive domain. 

More specifically, in Chapter 2 of this work, we focus on developing a custom-built AI 

architecture to address the challenging task of long-term estimations. The proposed DL method, 

USAL [84], uses a multi-task learning strategy to force orthogonality in an autoencoder given 

limited training data. It works by penalizing highly correlated encodings in an autoencoder to 
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efficiently transform measured inputs into a space of informative features. Finally, it leverages 

these uncorrelated learned encodings to support long-term State-of-Charge (SOC) estimations in 

Lithium-ion (Li-ion) batteries of electric vehicles. Figure 1-3 shows the architecture of USAL. 

 
Figure 1-3 USAL: A deep learning architecture for long-term estimations. 

In Chapter 3, we develop a custom AI architecture that leverages Bayesian theories to 

negotiate data drift [52]. Here, we explicitly consider the data drift in warranty data for a large 

automotive manufacturer and try to accommodate its effects by conditioning the input distributions 

in a Gaussian Mixture Model (GMM). The proposed approach, CGMM [52], is a successful 

predictive analytics tool that explicitly considers and models the effects of data drift. Furthermore, 

the proposed approach also provides an epistemic uncertainty quantification without forcing any 

time-based trends on the input data. Figure 1-4 shows the architecture of the proposed CGMM. 

 
Figure 1-4 CGMM: A custom AI architecture for negotiating data drift. 
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In Chapter 4, we focus on developing a custom, robust, and scalable approach for the virtual 

verification and validation of AVs. In this work, we propose BOSE, a Bayesian experimentation 

framework that leverages design of experiments framework [90] to identify “anomalous behavior” 

also known as “emergent behavior” in AVs. The proposed framework uses Bayesian neural 

networks to identify the best experiments that help us completely understand the complex 

interactions in input variables that lead to emergent behavior in an Autonomous Driving System 

(ADS) of an AV. Figure 1-5 shows the BOSE framework. 

 
Figure 1-5 BOSE: A novel data-driven frame that models and predicts black-swan events in an AI-driven systems. 

Finally, in Chapter 5, we develop a custom Generative model called InfraGAN that 

performs collaborative modeling. InfraGAN is the world’s first generative model that leverages 

infrastructure information for accurate trajectory predictions in AVs. However, the input data to 

train models such as InfraGAN is often private and not publicly available. Therefore, in Chapter 5 

of this work, we also introduce a large-scale, synthetically generated, publicly available 

autonomous driving dataset with tags for relevant infrastructure information named VTrackIt [89]. 

Figure 1-6 shows the architecture of the proposed InfraGAN. 
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Figure 1-6 InfraGAN: A custom DL model that performs collaborative modeling. 
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Chapter 2 USAL: Uncorrelated Sparse LSTM Autoencoders for Robust Long-term 

Estimations 

Today, most modern electric and battery-operated devices use Li-ion batteries. 

Consequently, for their safe and reliable operation, accurate SOC estimations are necessary. 

Unfortunately, existing methods often fail to identify patterns relevant to long-term SOC 

estimation due to complex battery cell characteristics such as aging. In this work, we propose the 

Uncorrelated Sparse Autoencoder with Long Short-Term Memory (USAL). USAL is a novel 

neural network that addresses the challenging task of long-term SOC estimation given a limited 

initial history of a cell’s charge-discharge behavior. USAL uses a multi-task learning strategy to 

harness the advantages of sparse autoencoders and LSTM networks by enforcing correlation 

penalties. The USAL simultaneously learns to (i) generate a latent space of informative SOC 

encodings from commonly measured cell characteristics, (ii) penalize for high multicollinearity 

between encodings, and (iii) identify non-trivial long and short temporal correlations between the 

encodings using LSTM cells. USAL outperforms benchmarked models in our experiments when 

trained on five initial charge-discharge cycles across multiple battery cells using three publicly 

available accelerated aging datasets. 

2.1 Introduction 

Li-ion battery cells have been pivotal in the development of intelligent and EVs, drones, 

portable electronics, grid storage systems as well as many other systems and applications. Today, 

these battery cells are used in various electronic devices due to the humongous spectrum of 

advantages they offer over existing energy storage technologies. Some advantages of Li-ion 
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battery cells include their high specific energy, high cycle life, high Coulombic efficiency (up to 

98%), and low self-discharge rates. These are mainly of high benefit to EVs. Their high efficiency 

and power density make the use of Li-ion battery cells extremely lucrative in modern energy-

efficient electric grids [91]. Li-ion battery cells also offer significant performance improvements 

and other environmental benefits [92]. Thus, Li-ion battery cells are considered to be a sufficient 

alternative to existing energy storage systems and technologies. 

 
Figure 2-1 High-level representation of a battery management system in an intelligent vehicle. 

Efficient management of Li-ion battery cells is necessary to ensure a safe operation,  

improved performance, optimized power management, and prolonged service life [93]. These 

operations are commonly performed using a battery management system (BMS). Figure 2-1 shows 

an overview of a BMS in an EV. For a BMS to work efficiently, it is crucial to measure the battery 

parameters accurately. While battery measurements such as voltage, current, and temperature can 

be accurately measured, metrics such as state-of-charge (SOC) and state-of-health (SOH) can only 

be estimated within the control module using the measured inputs. Based on these estimates, the 

BMS controls various operational aspects of the battery while considering user preferences. SOC  

is a metric that is used to describe the ratio between the remaining capacity and the maximum 

(nominal) capacity of a battery measured in Ampere-hours (Ah) at a specific temperature [19]. 

Inaccurate estimation of the SOC may lead to over-charge or discharge conditions forced upon the 
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battery by the BMS control module. Such situations may lead to catastrophic failures of battery 

cells that can potentially harm human life. 

A Li-ion battery is a complex electrochemical system that, upon demand, efficiently stores 

and distributes electrical energy. Thus, it is of high interest to check its operating parameters and 

metrics to make crucial decisions about its operation. SOC is one such metric that is of high 

importance. For example, the driving range in an EV is calculated based on the SOC of a battery. 

When the SOC of a battery nears 15%, the EV displays a ‘Low-Charge’ warning on the dashboard. 

This is very similar to a ‘Low-Fuel’ warning light in a standard gasoline vehicle. However, since 

Li-ion battery cells have non-linear characteristics that depend on various internal and external 

conditions, accurately estimating the SOC is a challenging task [94], [95]. 

Xiong et al. [93] categorize SOC estimation methods into four distinct categories, namely, 

(i) look-up table methods, (ii) integral methods, (iii) model-based methods, and (iv) data-driven 

methods. Look-up table methods are commonly used to map measured characteristics such as 

open-circuit voltage (OCV) to SOC. This OCV-SOC relationship is pre-mapped, and the SOC 

estimations are performed by referencing and locating the closest measured OCV value [96], [97]. 

However, while look-up table-based methods offer accurate SOC estimations, they cannot perform 

online estimations needed by EVs due to isolation requirements [94], [98], [99]. 

Integral methods such as Coulomb counting use integrals of measured cell current over time 

to calculate the SOC. 

𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡0 +
1
𝐶𝐶𝑁𝑁

� 𝜂𝜂 x 𝑖𝑖 𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡0
 (2-1) 

       

In eq. (2-1), 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡 is the SOC estimated at time 𝑡𝑡 and 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡0 is the reference SOC at some time 𝑡𝑡0, 

𝐶𝐶𝑁𝑁 is nominal cell capacity, 𝜂𝜂 is the cell efficiency, and 𝑖𝑖 is the measured cell current in Amps. 
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Although this method can perform online estimations, it is highly dependent on the reference value 

𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡0. Further, it is also limited by its ability to filter noise in the measured current 𝑖𝑖. Thus, due 

to robustness issues caused by their open-loop nature, integral methods are complemented with 

model-based methods [93]. 

 The estimation models are defined using highly complex and non-linear state equations in 

model-based methods. SOC estimation methods using Kalman filter-based approaches are a 

typical example of these methods [100]. Whereas model-based methods are more robust in their 

SOC estimations, they are often limited by their ability to capture cell aging and degradation 

information [101]. Although significant research has improved these models’ accuracy, latency 

remains an unaddressed challenge [102]. Thus, researchers have come up with data-driven 

methods. These approaches are often referred to as ‘black-box’ methods due to their lack of 

explainability [93]. Although data-driven methods can be used for robust and online SOC 

estimations, they often use highly complex Machine Learning (ML) training procedures that 

require large amounts of training data for accurate SOC estimations [18], [103]–[106]. Moreover, 

they often fail to account for cell aging and need frequent retraining [107]. 

 Aging is a complex phenomenon experienced by Li-ion battery cells leading to capacity 

loss over time and use [108], [109]. Aging processes do not have one cause but result from several 

chemical processes and interactions [110]. Palacin [110] provides a detailed analysis of cell aging 

and its effects on capacity. Although cell aging is a well-known and researched phenomenon, little 

work has been done to adopt its effects on long-term SOC estimations. Short-term SOC estimation 

involves estimating the SOC for a few cycles in the immediate future. On the other hand, long-

term SOC estimation involves estimating SOC for cycles near EOL, given some initial charge-
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discharge cycles. Researchers have recently tried to enhance the data-driven models using Transfer 

Learning (TL) with promising results for short-term SOC estimations [19], [43]. 

Although data-driven models show improvement upon other existing models, they often 

require hours of training on large amounts of battery aging data [19], [43]. Further, these models 

need frequent retraining to update their hyper-parameters. This helps them capture the latest aging-

related temporal changes within the battery cell. Such models are also referred to as ‘self-adaptive 

aging models.’ A detailed review of such methods can be found in the work by Lucu et al. [111]. 

In similar work, researchers have also studied combining autoencoders and Long Short-Term 

Memory (LSTM) networks for short-term SOC estimations [112]. Although this study explores 

short-term SOC estimations in detail, it follows a two-step training procedure and fails to discuss 

the effect of correlated encodings on long-term SOC estimations. 

This work proposes the Uncorrelated Sparse Autoencoder with Long Short-Term Memory 

(USAL). USAL is a unique combination of data-driven sparse autoencoders and an LSTM network 

that performs accurate long-term SOC estimations by penalizing high correlations between 

encodings. Correlation penalties within USAL force it to transform commonly measured inputs 

(e.g., voltage) into a space of informative encodings that represent unique statistical features. The 

LSTM network within USAL then identifies temporal trends in this encoded data, supporting 

online and accurate long-term SOC estimations. In our experiments, USAL achieves accurate 

long-term SOC estimations when trained only on the initial five charge-discharge cycles under 

diverse operating conditions. USAL also achieves state-of-the-art when evaluated using dynamic 

loading profiles using a publicly available dataset. To the best of our knowledge, this is one of the 

first works that introduces the problem of long-term SOC estimations. This is also one of the first 

works that analyzes the effects of multicollinearity between encodings generated by an 
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autoencoder for SOC estimations in Li-ion battery cells. In summary, some significant 

contributions of this work include: 

1. Long-Term SOC estimations: Exploration of the challenges in long-term SOC 

estimations and proposition of a novel data-driven solution. 

 

2. Multi-task learning: Proposition of a multi-task learning strategy to simultaneously 

train a sparse autoencoder and an LSTM network given limited training data. 

 

3. Informative encodings: Learning a diverse and informative set of encodings by 

penalizing for high multicollinearity between learned encodings. 

 

4. Age-mapping: Identifying and mapping aging-related trends in Li-ion battery cells for 

accurate and reliable SOC estimations. 

2.2 Uncorrelated Sparse Autoencoder with Long-short-term Memory (USAL) 

 USAL is a state-of-art deep neural network that simultaneously learns to reconstruct inputs 

and perform long-term SOC estimations. The following discussion explores each part within the 

USAL in more detail. 

2.2.1 Sparse Autoencoders 

 Autoencoders are specialized neural networks that are designed to transform inputs into a 

latent space of learned representations (encodings) [113]–[115]. Formally, encodings are defined 

as the ‘learned representation of data that can reconstruct inputs even in the presence of noise’ 

[113], [116], [117].   
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Figure 2-2 Under-complete and over-complete autoencoders. 

 Figure 2-1 shows two autoencoders, each with one hidden layer. In this figure, an m-

dimensional input vector 𝐱𝐱 𝜖𝜖 ℝ𝑚𝑚 =   𝑋𝑋 is mapped to a p-dimensional encoding 𝐡𝐡 𝜖𝜖 ℝ𝑝𝑝 =   𝐹𝐹 in the 

encoder (𝜙𝜙:𝑋𝑋 → 𝐹𝐹). In the decoder, the p-dimensional encodings are then transformed to an m-

dimensional reconstruction 𝐱𝐱� 𝜖𝜖 ℝ𝑚𝑚 =   𝑋𝑋� (𝜓𝜓:𝐹𝐹 → 𝑋𝑋). USAL thus trains its autoencoder by trying 

to find mapping functions 𝜙𝜙, and 𝜓𝜓 that minimize the reconstruction error ℒ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 such that, 

𝜙𝜙,𝜓𝜓 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝜙𝜙,𝜓𝜓(ℒ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) (2-2) 
where, 

ℒ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ���(𝒙𝒙𝑐𝑐,𝑡𝑡 −  𝒙𝒙�𝑐𝑐,𝑡𝑡)2
𝑇𝑇

𝑡𝑡

𝐶𝐶

𝑐𝑐

  (2-3) 

 

 In eq. (2-3), let 𝐱𝐱𝑐𝑐,𝑡𝑡 = [𝑥𝑥1
𝑐𝑐,𝑡𝑡, 𝑥𝑥2

𝑐𝑐,𝑡𝑡, … , 𝑥𝑥𝑚𝑚
𝑐𝑐,𝑡𝑡] be a vector representing a set of 𝑚𝑚 inputs (e.g., 

voltage, current, temperature) given to USAL at some time 𝑡𝑡  in a charge-discharge cycle 𝑐𝑐. Let 

𝐱𝐱�𝑐𝑐,𝑡𝑡 = [𝑥𝑥�1
𝑐𝑐,𝑡𝑡, 𝑥𝑥�2

𝑐𝑐,𝑡𝑡, … , 𝑥𝑥�𝑚𝑚
𝑐𝑐,𝑡𝑡] be a vector representing reconstructed inputs generated by the 

autoencoder at its output at the same time 𝑡𝑡 in a charge-discharge cycle 𝑐𝑐. Thus, eq. (2-3) forms 

the first part of USAL’s loss function, whose objective is to train an efficient autoencoder within 

USAL. 
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For under-complete autoencoders 𝐡𝐡 𝜖𝜖 ℝ𝑝𝑝 where 𝑝𝑝 < 𝑚𝑚 [113]. Typically, for the task of 

SOC estimations, current, voltage, and temperature are the only measured inputs. Thus, by 

choosing 𝑝𝑝 < 𝑚𝑚, we may introduce a strong bias within USAL, limiting its SOC estimation 

capabilities. To overcome this problem, in this work, we use over-complete autoencoders where, 

𝑝𝑝 ≥ 𝑚𝑚 [113], [114]. As per recommendations in literature [113], [116], [118], [119], to avoid 

learning identity functions, we enforce sparsity regularization over the encoding layer in the over-

complete autoencoder within USAL. Identity function mapping can be avoided by limiting neuron 

activations in the encoding layer using L1 regularization [68], [120]. Such sparsity-enforced over-

complete autoencoders are known as ‘Sparse Autoencoders’ [119], [121]. In USAL, sparsity 

constraints are enforced using ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 such that, 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ��|𝒉𝒉𝑐𝑐,𝑡𝑡|
𝑇𝑇

𝑡𝑡

𝐶𝐶

𝑐𝑐

 (2-4) 

 

Here, 𝐡𝐡𝑐𝑐,𝑡𝑡 = [ℎ1
𝑐𝑐,𝑡𝑡,ℎ2

𝑐𝑐,𝑡𝑡, … ,ℎ𝑝𝑝
𝑐𝑐,𝑡𝑡] represents the output of the encoding layer in USAL where, ℎ𝑝𝑝

𝑐𝑐,𝑡𝑡 is 

the output of encoding 𝑝𝑝 given some input 𝐱𝐱𝑐𝑐,𝑡𝑡. 

2.2.2 Correlation Analysis 

While L1 regularization performs sparsity regularization, it offers little help with 

multicollinearity [122]. Multicollinearity is a phenomenon in which two or more variables are 

highly correlated [123]. Usage of such highly correlated encodings may severely limit the ability 

to extract aging information from the encodings [42]. In USAL, to ensure that the encodings learn 

a valuable representation of the input, we introduce the correlation loss  ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, such that, 

ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �� |𝑘𝑘𝑖𝑖,𝑗𝑗|
𝑗𝑗𝑖𝑖

 (2-5) 



 17 

where, 

𝑘𝑘𝑖𝑖,𝑗𝑗 =
1
𝐶𝐶
�

∑ (ℎ𝑖𝑖
𝑐𝑐,𝑡𝑡 − ℎ�𝑖𝑖𝑐𝑐)(ℎ𝑗𝑗

𝑐𝑐,𝑡𝑡 − ℎ�𝑗𝑗𝑐𝑐)𝑇𝑇
𝑡𝑡

�∑ �ℎ𝑖𝑖
𝑐𝑐,𝑡𝑡 − ℎ�𝑖𝑖𝑐𝑐�

2𝑇𝑇
𝑡𝑡 ∑ �ℎ𝑗𝑗

𝑐𝑐,𝑡𝑡 − ℎ�𝑗𝑗𝑐𝑐�
2

𝑇𝑇
𝑡𝑡

𝐶𝐶

𝑐𝑐

   (2-6) 

 

In eq. (2-6), 𝑘𝑘𝑖𝑖,𝑗𝑗 is the correlation between some encoding 𝑖𝑖  and encoding 𝑗𝑗, and ℎ�𝑖𝑖𝑐𝑐  is the 

mean output of some encoding 𝑖𝑖 in cycle 𝑐𝑐. Note that 𝑘𝑘𝑖𝑖,𝑗𝑗 is always equal to 1 if 𝑖𝑖 = 𝑗𝑗. The 

correlation loss thus forms a crucial part of USAL and helps reduce multicollinearity within the 

encodings while simultaneously learning to transform inputs into outputs with minimal distortion. 

2.2.3 Prediction Network 

A prediction network with an LSTM layer forms the final part of USAL. LSTM networks 

are a variant of Recurrent Neural Networks (RNNs) that can learn temporal trends in the input data 

by developing and retaining memories from previous time steps [43], [112], [124]–[128]. USAL 

thus learns to perform accurate SOC estimations by minimizing  ℒ𝑠𝑠𝑠𝑠𝑠𝑠, such that, 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠 = ���
�𝑆𝑆𝑆𝑆𝑆𝑆� 𝑡𝑡

𝑐𝑐 − 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡𝑐𝑐�
2

𝐶𝐶𝐶𝐶

𝑇𝑇

𝑡𝑡

𝐶𝐶

𝑐𝑐

   (2-7) 

 

In eq. (2-7), 𝑆𝑆𝑆𝑆𝑆𝑆� 𝑡𝑡
𝑐𝑐is the SOC estimated by USAL and 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡𝑐𝑐 is the true SOC given some input 𝐱𝐱𝑐𝑐,𝑡𝑡 

in some cycle 𝑐𝑐 at a time 𝑡𝑡. 

In summary, given input 𝐱𝐱𝑐𝑐,𝑡𝑡 USAL simultaneously learns to recreate 𝐱𝐱�𝑐𝑐,𝑡𝑡 using a sparse 

autoencoder and perform accurate SOC estimations (𝑆𝑆𝑆𝑆𝑆𝑆� 𝑡𝑡
𝑐𝑐) using a prediction network while 

penalizing for high multicollinearity between the learned encodings. Equation (2-8) effectively 

summarizes the loss function used for training USAL where 𝜆𝜆𝑟𝑟 , 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑐𝑐 are the reconstruction, 
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sparsity, and correlation regularization hyperparameters. Figure 2-3 helps visualize all components 

and their functions within USAL. 

ℒ𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝜆𝜆𝑟𝑟ℒ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +  𝜆𝜆𝑠𝑠ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜆𝜆𝑐𝑐ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  ℒ𝑠𝑠𝑠𝑠𝑠𝑠 (2-8) 

 

Figure 2-3 Uncorrelated Sparse Autoencoder with Long Short-Term Memory (USAL) for long-term SOC estimations. 

2.3 Case Study 

2.3.1 Datasets 

Table 2-1 Summary of Accelerated Aging Datasets 
Dataset Purpose Cell Type 

(Cathode/Anode) 
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Capacity (Ah) 
Nominal Voltage 

(V) 

Dataset-1 
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18650 LiB 
(LiCoO2/LiC) 2.0 4.2 

Dataset-2 APR18650M1A 
(LFP/Graphite) 1.1 3.3 

Dataset-3 Pouch Cell (LiCoO2/Graphite) 3.36 3.82 

 

This work uses three publicly available accelerated aging datasets that have a wide range 

of applications [99], [129]–[131]. Every considered dataset follows a unique accelerated aging 

process and uses a unique battery configuration. The three considered datasets are heavily studied 

in the literature. Details of each dataset are summarized in Table 2-1. 

This work uses three publicly available accelerated aging datasets that have a wide range 

of applications [99], [129]–[131]. Every considered dataset follows a unique accelerated aging 
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process and uses a unique battery configuration. The three considered datasets are heavily studied 

in literature and acknowledged by industry experts for studying aging behavior in Li-ion battery 

cells. Details of each dataset and the battery cells used are summarized in Table 2-1. The datasets 

used in this study represent a comprehensive coverage of experimentation in accelerated aging for 

Li-ion cells. In our experiments, we extensively use these datasets to analyze the performance of 

USAL for long-term SOC estimations. 

Dataset-1- The first dataset is provided by the NASA Ames Laboratory [129]. It collects 

batches of four Li-ion battery cells that are subject to accelerated aging using three different 

charge-discharge profiles. The recorded data includes measurements such as the current (in Amps), 

the voltage (in Volts), and the temperature (in ℃) of each cell. For this study, from this dataset, 

we use cell ‘B0005’ for validation and hyper-parameter tuning and ‘B0007’ for testing. For all Li-

ion battery cells in this dataset, charging is carried out in Constant Current (CC) mode at 1.5A 

until the cell voltage reaches 4.2V. It is then continued in a Constant Voltage (CV) mode until the 

charge current drops to 20mA. The battery cells are then discharged at a Constant Current (CC) 

level of 2A until the cell voltage drops to 2.7V. Finally, repeated charging and discharging is 

implemented, which results in the accelerated aging of the battery cells. Experiments are stopped 

when the battery cells reach EOL- 30% fade in rated capacity. This dataset is referred to as 

‘Dataset-1.’ 

Dataset-2- The second dataset provided by Severson et al. [130] is a congregation of 124 

LFP/Graphite battery cells (A123 Systems, model APR18650M1A). The recorded data includes 

measurements such as current (in Amps), voltage (in Volts), and temperature (in ℃) for each 

battery cell. This dataset aims to explore the effects of fast charging on cell aging. The battery cells 

are charged from 0% to 80% SOC with one of 72 different one-step and two-step charging policies. 
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They are then charged from 80% to 100% SOC with a uniform 1C CC-CV charging step to 3.6V 

and a current cut-off of C/50 where 1C is 1.1A. During the discharge process, the battery cells are 

discharged under the CC-CV conditions with discharge current set to 4C and 2.0V with a current 

cut-off of C/50. Repeated charging and discharging results in the accelerated aging of the battery 

cells. Experiments are stopped when the battery cells reach EOL- 20% fade in the rated capacity. 

This dataset is referred to as ‘Dataset-2’. 

Dataset-3- The third dataset provided by Diao et al. [131] is a collection of 192 Li-ion 

battery cells. In their experiments, Diao et al. [131] perform accelerated aging of the battery cells 

using three stress factors and a full factorial design of experiments framework. The recorded data 

includes measurements such as the current (in Amps) and each battery cell’s voltage (in Volts). 

This dataset aims to analyze the effect of these stress factors on capacity fade by continuously 

cycling cells. The three stress factors used are- (i) ambient temperature (10 ℃, 25 ℃, 45 ℃, 60 

℃), (ii) charge cut-off C-rate (C/5, C/40), and (iii) discharge current rate (0.7C, 1C, 2C).  In their 

experiments, the battery cells are charged at 1.5C to 4.2V. They are then held at 4.2V until the 

current decreases to 1C (3.36A). Charging is then continued up to 4.4V at 1C. The battery cells 

are held at 4.4V until the current drops to the given charge cut-off rate in stress factor (ii). The 

battery cells are rested for five minutes and finally discharged using the discharge rate given by 

the stress factor (iii). Repeated charging and discharging is implemented, which results in the 

accelerated aging of the battery cells. Experiments are stopped when the battery cells reach EOL- 

50% fade in the rated capacity. Note that the tests are performed at ambient temperature values 

given by stress factor (i). This dataset is referred to as ‘Dataset-3’. 

The datasets used in this study represent a comprehensive coverage of experimentation in 

accelerated aging for Li-ion cells. Figure 2-4 shows the charge-discharge profiles of all test Li-ion 
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battery cells used in this study. More details on the specific test conditions of every considered Li-

ion battery cell are provided and discussed in the following sections. 

 

  
(a) (b) 

 
(c) 

Figure 2-4 Charge and discharge profiles of all cells used in this study in – (a) Dataset-1, (b) Dataset-2, and (c) Dataset-
3. 

2.3.2 Training and Tuning USAL 

 
Figure 2-5 Flow of information within USAL and its loss components using commonly measured inputs in a typical 
Li-ion battery cell. 
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Table 2-2 Summary of Train-Test Data 

Dataset Train Cycles Test Cycles Inputs to USAL 

Dataset-1 
Initial 5 Cycles Final 20 Cycles 

𝐼𝐼𝑐𝑐,𝑡𝑡, 𝑉𝑉𝑐𝑐,𝑡𝑡, 𝑇𝑇𝑐𝑐,𝑡𝑡 
Dataset-2 𝐼𝐼𝑐𝑐,𝑡𝑡, 𝑉𝑉𝑐𝑐,𝑡𝑡, 𝑇𝑇𝑐𝑐,𝑡𝑡, 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐,𝑡𝑡 ,  𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐,𝑡𝑡  

Dataset-3 𝐼𝐼𝑐𝑐,𝑡𝑡, 𝑉𝑉𝑐𝑐,𝑡𝑡 
 

For long-term SOC estimations, USAL is trained using the initial five and tested on the 

final twenty charge-discharge cycles for every considered Li-ion battery cell, unless specified 

otherwise. Table 2-2 summarizes the inputs to USAL along with details of training and testing data 

for all three accelerated aging datasets used in this work. For Li-ion battery cells in ‘Dataset-2’, 

we introduce the moving average of the last five time steps for the measured current and voltage 

as two additional inputs based on the recommendations of Chemali et al. [19]. Figure 2-5 can be 

used to visualize the flow of information within USAL along with its loss components for a typical 

Li-ion battery cell. 

USAL is a highly customizable deep neural network that can be modified according to the 

task on hand. In this section, this task is long-term SOC estimations. We use data from cell ‘Cell-

B0005’ in ‘Dataset-1’ for tuning USAL’s architecture and hyper-parameters. Although several 

architectures for USAL were tried in this case study, we only provide details for the best-

performing architecture. All tested models were trained using the same initializations for a fair 

evaluation. The sparse autoencoder within USAL is an LSTM encoder-decoder network that 

consists of two key LSTM layers 𝐿𝐿1 and 𝐿𝐿2. In our experiments, although several values of 𝑝𝑝 were 

tried, 𝑝𝑝, when set to 10, gave the best results unless specified otherwise. Thus, both 𝐿𝐿1 and 𝐿𝐿2 are 

defined as LSTM layers with 10 nodes each. Further, the prediction network within USAL consists 

of a single LSTM layer, 𝐿𝐿3 with 10 nodes and uses the encodings generated by the encoder within 

USAL as inputs. The lookback steps for all LSTM layers within USAL are set to 50. While the 
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outputs of all layers in USAL are transformed using a ‘tangent hyperbolic’ function, the outputs 

of the reconstruction layer are transformed using a ‘linear’ activation function. 

As in any deep neural network, hyper-parameter tuning is an essential aspect of USAL. As 

such, in our experiments, we run an exhaustive grid search and train-test USAL by varying 𝜆𝜆𝑟𝑟 , 𝜆𝜆𝑠𝑠 

and 𝜆𝜆𝑐𝑐 from 0-1 in eqs. (2-2) - (2-8). Figure 2-6 can be used to visualize the performance of USAL 

for long-term SOC estimations when using validation ‘Cell-B0005’. As can be seen in this figure, 

USAL shows its best performance when 𝜆𝜆𝑟𝑟 ,𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑐𝑐 are set to 0.06, 1e-4, and 1e-3, respectively. 

As can be observed in Figure 2-6, USAL shows poor performance when either 𝜆𝜆𝑟𝑟 , 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑐𝑐 are 

set to zero. This provides evidence that all losses defined in Section 2.2 play a crucial role in 

training USAL. Thus, we use the above-defined architecture, hyper-parameter values, and training 

strategy in all our experiments when performing SOC estimations using USAL. Note that we train 

USAL for 300 epochs in all our experiments using the ‘Adam’ optimizer on an Intel Xeon 5218R 

CPU and a single Nvidia RTX 2080 Ti GPU. 

 
Figure 2-6 Long-term SOC estimation validation performance using different values of  𝜆𝜆𝑟𝑟, 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑐𝑐. 

2.3.3 Comparison Across Battery Configurations 

Proposition of models that estimate SOC only for specific battery cell configuration offers 

limited value to the industry. While one manufacturer may prefer a LiCoO2 cathode, the others  
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Table 2-3 Summary of results under varying cell configurations 
Ambient Temperature (°C) Cathode/Anode Cell Id MAE (%) MAX Error 

(%) RMSE (%) 

Room Temp. LiCoO2/LiC B0007 3.60 68.99 6.63 
25 LFP/Graphite 11 3.07 16.61 4.00 
25 LiCoO2/Graphite 77 1.88 7.00 2.44 

 

may prefer an LFP cathode. To this end, we train and test USAL on three Li-ion battery cells with 

varying configurations. Specifically, we use ‘Cell-B0007’ from ‘Dataset-1’, ‘Cell-11’ from 

‘Dataset-2’, and ‘Cell-77’ from ‘Dataset-3’. We compare the performance of USAL with three 

other data-driven models- a Deep Neural Network (DNN), a standard LSTM network, and another 

autoencoder-based SOC estimation framework, the Autoencod-LSTM [112]. Although several 

architectures for DNN and LSTM networks were tried, we provide details only for the best-

performing architectures. The DNN modeled herein consists of three hidden layers with 16, 8, and 

4 neurons each. The standard LSTM network used for comparisons consists of a single LSTM 

layer with 20 hidden nodes with 50 lookback time steps. The DNN and the standard LSTM 

network are trained using the mean squared error loss function for 300 epochs. We use the same 

architecture and strategy to train the Autoencod-LSTM as given by Fasahat et al. [112]. For a fair 

comparison, all benchmarked models use the same data used to train and test USAL. 

Table 2-4 Cells and their Operating Conditions 
Dataset Cell Id Charge Discharge Ambient Temperature 

Dataset-2 
9 5.4C(40%)-3C 

4 C 30°C 11 5.4C(50%)-3C 
14 5.4C(60%)-3.6C 

Dataset-3 

105 
C/40 

0.7 C 
45°C 121 1 C 

137 2 C 
1 

C/5 0.7 C 
10°C 

97 45°C 
145 60°C 
77 C/40 1 C 25°C 

 

Figure 2-7(a) compares the performance of USAL with the three data-driven models for 

long-term SOC estimations for battery cells given in Table 2-5. Long-term SOC estimations near  
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Table 2-5 Summary of Results Under Varying Cell Configurations 
Ambient Temperature 

(°C) Cathode/Anode Cell Id MAE (%) 
MAX 

Abs. Error 
(%) 

RMSE (%) 

Room Temp. LiCoO2/LiC B0007 3.63 69.10 6.63 
25 LFP/Graphite 11 3.08 16.12 4.06 
25 LiCoO2/Graphite 77 0.88 3.80 1.10 

 

the EOL are most challenging, given only a few charge-discharge cycles. Nevertheless, as shown 

in Figure 2-7(a), USAL comfortably exceeds the other data-driven models’ performance. The poor 

performance of DNNs can be attributed to their lack of ability to capture temporal trends in the 

data. While the standard LSTM network and Autoencod-LSTM improve on this, they cannot learn 

the degradation and aging information from just five training cycles. Furthermore, due to a two-

step training procedure used in the Autoencod-LSTM, there is no guarantee that the generated 

encodings will be tailored specifically for long-term SOC estimations. However, USAL applies a 

multi-task training procedure that penalizes simultaneously for (i) poor SOC estimations, (ii) poor 

reconstructions, and (iii) highly correlated encodings for accurate long-term SOC estimations. As 

a result, USAL outperforms other benchmarked methods. For example, while the Autoencod-

LSTM achieves an MAE of 2.1%, the USAL achieves a significantly lower MAE of 0.88% for 

‘Cell-77’.  Figure 2-8(a) can be used to visualize this difference in the performance for ‘Cell-11.’ 

Using this figure, we can also observe that estimations produced by USAL are less noisy than the 

other data-driven models. Hence, we can conclude that battery cell configurations have no adverse 

effect on USAL’s ability to perform long-term SOC estimations. Table 2-5 summarizes the 

performance of USAL using varying cell configurations. 

2.3.4 Comparisons Across Varying Charge, Discharge, and Temperature Conditions 

Devices such as autonomous vehicles may frequently charge and discharge their battery 

cells under varying operational conditions. It is well-known that Li-ion battery cells age differently 
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under varying charging, discharging, and ambient temperature conditions [110], [131]. Therefore, 

in this section, we perform long-term SOC estimations on battery cells aged under various 

operating conditions. Cells and their respective operational conditions are given in Figure 2-7.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-7 Comparison of USAL with benchmarked models across varying: (a) Cell configurations, (b) Charge 
conditions, (c) Discharge conditions, and (d) Ambient temperatures across twenty test cycles near EOL. 

 

Figure 2-7(b) and Figure 2-7(c) compare the performance of USAL with the other data-

driven models developed in Section 2.3.3 for long-term SOC estimations. From these figures, it 

can be observed that while the other data-driven models are sensitive to changes in the charge- 

discharge patterns, USAL and its estimations are robust to any such changes. Extreme charge and 

discharge conditions age Li-ion battery cells quite quickly, leading to a steep drop in their capacity 

with time. As a result, it is hard to estimate SOC near EOL. This can be observed in the long-term 

SOC estimations for ‘Cell-14’ and Cell-137, which are showcased in Figure 2-8(b) and Figure 

2-8(c), respectively. While other data-driven methods are unlikely to perform well in such 
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situations, the encodings produced by USAL help overcome this drawback. This can be observed 

in estimations for ‘Cell-14’ in Figure 2-8(b). Thus, using results from Figure 2-7 and Figure 2-8, 

we can observe that USAL demonstrates sufficient ability to capture the Li-ion battery cell’s aging 

trends for long-term SOC estimations under varying charging and discharging conditions. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-8 Long-term SOC estimations for final cycle near EOL for (a) Cell-11, (b) Cell-14, (c) Cell-137 and (d) Cell-
145. 

  Li-ion battery cells are known to age quite significantly under higher ambient temperatures 

[108], [130], [131]. Therefore, it is of our high interest to validate the long-term SOC estimation 

performance of USAL aged under the same charge-discharge profiles but at different ambient 

temperatures. In our experiments across three Li-ion battery cells, a familiar pattern emerges, and 

USAL outperforms the other data-driven models for long-term SOC estimations under varying 

ambient temperatures. Out of three tested battery cells, ‘Cell-145’ ages quickly due to a higher 

ambient temperature (60 ℃). Thus, as shown in Figure 2-7(d) and Figure 2-8(d), it is much harder 

for the benchmarked data-driven models to perform accurate long-term SOC estimations. On the 
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other hand, USAL shows overwhelming accuracy in its estimations, achieving a maximum 

absolute error of 5.78% in its SOC estimations over the twenty test cycles for ‘Cell-145’. Table 

2-6 summarizes the performance of USAL across varying charging, discharging, and ambient 

temperature conditions. 

Table 2-6 Summary of Results Under Varying Conditions 
Dataset Cell Id MAE (%) MAX Abs. Error 

(%) RMSE (%) 

Varying Charge Conditions 

Dataset-2 
9 4.55 30.91 6.22 
11 3.08 16.12 4.06 
14 3.51 17.49 5.12 
Varying Discharge Conditions 

Dataset-3 
105 1.43 5.29 1.74 
121 1.29 4.48 1.66 
137 1.67 16.71 2.54 
Varying Ambient Temperatures 

Dataset-3 
1 1.38 4.71 1.90 
97 1.51 5.93 1.22 

145 1.57 5.78 2.24 

2.3.5 Short-term SOC Estimations 

The SOC estimation module is responsible for long-term and short-term SOC estimations 

within the BMS. Therefore, a SOC estimation model that performs excellent long-term SOC 

estimations while suffering from poor performance in short-term SOC estimations is of little 

practical value. Thus, in this section, we perform short-term SOC estimations using ‘Cell-137’ in 

‘Dataset-3’. Here, all models are tested on the 6th charge-discharge cycle. Figure 2-9 can be used 

to visualize the performance of all models for short-term SOC estimations. In Figure 2-9(a), we 

can observe that the standard LSTM shows acceptable performance while estimating the 6th cycle 

in ‘Cell-137’ with an MAE of 1.05%. The Autoencod-LSTM improves over this and achieves an 

MAE of 0.79%. The DNN cannot perform such accurate estimations due to its lack of ability to 

capture time-based trends. As seen in Figure 2-9(a), USAL improves upon the performance of all 

benchmarked models achieving an MAE of 0.65% for short-term SOC estimations. The higher 

dimensional encodings and USAL’s ability to negotiate multicollinearity within these encodings 



 29 

result in noise-free and accurate short-term estimations. Figure 2-9(b) showcases the estimation 

errors for all models for ‘Cell-137.’ As the disconnect between the training and test cycles 

increases, the performance of the benchmarked data-driven models worsens. USAL, on the other 

hand, is much more accurate and reliable. For example, while the Autencod-LSTM achieves an 

MAE of 6.1% on the last cycle near EOL for ‘Cell-137,’ USAL estimates this cycle much better, 

achieving an MAE of 2.5%. The SOC estimations near EOL and associated estimation errors for 

‘Cell-137’ can be seen in Figure 2-9(c) and Figure 2-9(d), respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-9 Comparisons for short-term and long-term SOC estimations in 'Cell-137' for USAL and other benchmarked 
models. 

2.3.6 Effects of Correlations on Long-term SOC Estimations 

In our experiments, although USAL is shown to exceed performance over other 

benchmarked models, it is of our high interest to validate that this performance gain is due to the 

reduced multicollinearity between the learned encodings. Consequently, we choose our most 
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challenging cells – ‘Cell-14’, ‘Cell-137’ and ‘Cell-145’ given in Table 2-7 and compare the 

performance of USAL with and without the correlation loss. We specifically choose these three 

cells since they showcase the most rapid drop in capacity due to extreme test conditions. The 

models are then trained using the same architecture and training strategy as given above, and 

correlation loss is disabled by setting 𝜆𝜆𝑐𝑐 to zero in eq. (2-8). Note that we use the same 

initializations when training with and without correlation loss for a fair comparison. 

As can be observed in Table 2-7, without the correlation loss, the performance of USAL 

worsens across all tested battery cells. As the correlation between the encodings reduces, the sparse 

autoencoder within USAL learns better representations of input data. Such unique data 

representations can then be leveraged to simultaneously reconstruct the inputs while identifying 

long-term aging effects for accurate SOC estimations. Learning such informative, higher-

dimensional encodings is sensitive to the correlation between encodings. While the correlation loss 

increases the diversity between the learned encodings, the sparsity, reconstruction, and prediction 

losses force the network to learn significant aging trends when presented with limited training data.  

 

Table 2-7 Effectiveness of Correlation Loss 
Cell Id MAE (%) MAX Abs. Error (%) RMSE (%) Mean Abs. Correlation Between 

Encodings 
Without Correlation Loss 

14 3.75 19.39 5.43 0.65 
137 7.70 19.54 8.17 0.52 
145 4.13 12.98 5.17 0.59 

With Correlation Loss 
14 3.51 17.49 5.12 0.32 

137 1.67 16.71 2.54 0.34 
145 1.57 5.78 2.24 0.34 

2.3.7 Robustness Evaluation 

Typical, off-the-shelf measurement devices often exhibit noise levels ranging from 2% to 

4% in their measurements [19]. Thus, any SOC estimation method must be robust against such 

noise in the measured inputs. As a result, we evaluate the robustness of USAL using the same 
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approach as Chemali et al. [19]. In particular, we inject random Gaussian noise with zero mean 

and a standard deviation of 4% into the measured inputs. When presented with such noisy inputs, 

as seen in Table 2-8, USAL achieves its worst performance with an MAE of 3.88% for ‘Cell-14’. 

On the other hand, the Autoencod-LSTM achieves an MAE of 5.4% when no noise is injected in 

measured inputs for ‘Cell-14.’ A similar pattern is also observed for ‘Cell-137’ and ‘Cell-145’, 

where the MAE achieved by USAL with injected noise (3.87% and 2.55%) are lower than MAE 

achieved by Autoencod-LSTM with no injected noise (4.37% and 2.75%). We can thus conclude 

that USAL is indeed a robust method that performs accurate long-term SOC estimations even 

under the presence of noisy inputs. 

Table 2-8 Robustness of USAL 

Cell Id MAE (%) MAE (%) with 
noise RMSE (%) RMSE (%) with 

noise 
14 3.51 3.88 5.12 5.50 

137 1.67 3.87 2.54 4.93 
145 1.57 2.55 2.24 3.40 

2.3.8 SOC Estimations for Dynamic Loading Profiles 

State-of-art SOC estimation models are often benchmarked on dynamic loading profiles 

like Dynamic Stress Test (DST), Federal Urban Driving Schedule (FUDS), US06 Highway 

Driving Schedule (US06), and Beijing Dynamic Stress Test (BJDST). This helps prove the 

model’s estimation capabilities in real-life loading conditions. However, high input variability 

combined with random charging and discharging patterns make SOC estimation challenging for 

dynamic loading profiles. Although this work aims to develop a long-term SOC estimation model, 

evaluating its performance on dynamic loading profiles is crucial. To this effect, we use a fourth 

public dataset provided by the Center for Advanced Life Cycle Engineering (CALCE) at the 

University of Maryland [99]. This dataset uses the ‘INR 18650-20R’ cells (LiNiMnCo/Graphite) 

with a capacity rating of 2Ah. Initially, the cells are charged and then discharged so that the SOC 
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reaches 80%. The cells are then loaded based on the selected loading profile. Current (in Amps) 

and voltage (in Volts) are logged every second in this test. The true SOC is calculated every second 

using the ‘Coulomb Counting’ method. Further, the architecture of USAL is optimized based on 

the task at hand, which in this case is SOC estimations under dynamic loading conditions. 

Although several architectures for USAL were tried, we only provide details for the best-

performing architecture in this case study. For hyper-parameter tuning, USAL was trained using 

data from the DST cycle recorded at 45℃ and validated using data from the BJDST driving cycle 

recorded at 25℃. USAL achieved its best performance when 𝑝𝑝 was set to 20. Hence both 𝐿𝐿1 and 

𝐿𝐿2 are defined as LSTM layers with 20 nodes each. Further, the prediction network within USAL 

was reconfigured to have an LSTM layer (𝐿𝐿3) with 20 nodes. For all layers within USAL, the 

lookback steps are set to 50. USAL achieved its best results when no changes were made to output 

functions of neural network layers, 𝜆𝜆𝑟𝑟 , 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑐𝑐. These values are thus set to the same values as 

given in Section 2.3.2. 

Table 2-8 can be used to compare the performance of USAL with other state-of-art methods 

[127], [132], [133]. USAL was trained and tested on the same data as in Table 2-8 for a fair 

comparison with other benchmarked methods. Using this table, we can observe that USAL 

outperforms all other benchmarked methods in all our experiments. Figure 2-10 can be used to 

visualize this SOC estimation performance of USAL for the US06, FUDS, DST, and the BJDST 

driving cycle. These performance gains can be directly attributed to USAL’s ability to learn 

implicit, uncorrelated trends in input data. Autoencod-LSTM [24] is a step-by-step method, while 

the proposed method (USAL) is integrated where each part of the model is trained simultaneously. 

A comparison of Autoencod-LSTM with USAL (and correlation loss) in Table 2-9 helps illustrate  
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Table 2-9 Comparison of USAL with State-of-the-art 

Method Train 
Data 

Test 
Data at 25℃ 

RMSE 
(%) 

MAE 
(%) 

GPR 
FUDS- First 3000 
samples at 25℃ 

US06- First 
3000 samples 

0.76 2.25 
Recurrent GPR w/ two-tap delay 0.63 0.82 
Autoregressive Recurrent GPR 0.24 0.81 

USAL 0.59 0.50 
Stacked LSTM 

DST, US06 at 25℃ FUDS 
1.07 0.84 

Autoencod-LSTM 1.65 0.99 
USAL 0.60 0.48 

Stacked LSTM 
FUDS, US06 at 25℃ DST 

1.39 2.02 
Autoencod-LSTM 1.00 0.66 

USAL 0.57 0.45 
SSMPI 

DST at 0, 25, and 45℃ 
US06 - 0.94 

USAL 0.99 0.81 
SSMPI BJDST - 0.66 
USAL 0.66 0.53 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-10 SOC estimation performance of USAL for – (a) the US06 cycle, (b) the FUDS cycle, (c) the DST cycle, 
and (d) the BJDST cycle. 

 

the contributions of this work in real-world applications. A comparison of Autoencod-LSTM [112] 

with USAL but without correlation loss (𝝀𝝀𝒄𝒄 = 𝟎𝟎) in Table 2-9, helps illustrate the effectiveness of 

the proposed multi-task training strategy.  Thus, we can conclude that USAL is a state-of-art 
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method supporting SOC estimations even under dynamic driving conditions. Furthermore, 

USAL’s size (<100KB) and its ability to capture aging and degradation trends make it a state-of-

art algorithm that can be integrated into a modern BMS for accurate and reliable SOC estimations. 

In our experiments, the average training time for USAL was about 1200 secs (300 epochs), and 

the average estimation time was about 0.65ms per observation. 

2.4 Conclusion 

This work introduces the Uncorrelated Sparse Autoencoder with Long Short-Term 

Memory (USAL) for long-term SOC estimations. Unlike existing methods [19], [43], [112], the 

use of a multi-task training strategy in USAL helps it learn efficient higher-dimensional encodings 

given limited training data. Such encodings may then be used to identify the effect of temporal and 

aging patterns for accurate SOC estimations. While existing methods fail to identify cell aging and 

degradation-related changes, the correlation, reconstruction, sparsity, and prediction penalties 

within USAL force diversity in the learned encodings by penalizing for high multicollinearity. 

Based on our experiments, USAL routinely outperforms other data-driven models for long-term 

SOC estimations. Significant improvements are observed when evaluated under varying datasets, 

cell configurations, charge-discharge profiles, and ambient temperature conditions. While the 

proposed method seems to have a high implementation cost, this cost is only a one-time cost. In 

addition, the benefits that can be achieved by implementing this method in a BMS are priceless, 

especially with rise propositions such as ‘cloud-based’ BMS systems in intelligent vehicles [132], 

[134]. For future work, variations of USAL for Remaining Useful Life (RUL) and battery 

reliability predictions are of high interest [46], [52], [104]. 
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Chapter 3 CGMM: Conditional Gaussian Mixture Model for Predictive Analytics Using 

Bayesian Statistics  

Modern data collection practices allow manufacturers to keep track of vehicle and part 

health in a modern vehicle. Every time a vehicle is serviced under warranty, a claim is reported in 

the manufacturer's database. This helps the manufacturer develop robust predictive analytics for 

forecasting future warranty claims. However, forecasting warranty claims for modern vehicles is 

a reliability challenge for most manufacturers. Several factors increase the complexity of warranty 

claims forecasting, including the limited number of claims reported at the early launch stage, 

reporting delays, dynamic change in the fleet size, and design/manufacturing adjustments for the 

production line. The aggregated data drift of those complexities is henceforth referred to as the 

“warranty data maturation” phenomenon. Unfortunately, most of the existing models for warranty 

claims forecasting fail to consider warranty data maturation explicitly. This work address warranty 

data maturation by proposing the Conditional Gaussian Mixture Model (CGMM). CGMM uses 

historical warranty data from similar products to develop a robust prior joint Gaussian mixture 

distribution of warranty trends at both the current and future maturation levels. CGMM then 

utilizes Bayesian theories to estimate the conditional posterior distribution of the warranty claims 

at the future maturation level conditional on the warranty data available at the current maturation 

level. The CGMM identifies non-parametric temporal warranty trends and automatically clusters 

products into latent groups to establish (learn) an effective prior joint distribution. 
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3.1 Introduction 

Warranty performance reflects customer satisfaction and instills a sense of product 

reliability in consumers’ minds. Often warranty can be a deal-breaker for many consumers when 

all other product features are comparable. Although warranties help market the product better, 

traditionally, offering long-term warranties is costly for the manufacturer. The cost of warranty  

and recalls for a defective product can be quite considerable, deteriorating the company’s profits. 

Due to associated costs, warranty claims forecasting has been an important topic of discussion for 

a long time [135]–[138]. As explained by Krivtsov [53], warranty claims forecasting can either 

follow a ‘Univariate Approach’ (considering either time or usage) or a ‘Bivariate Approach’ 

(considering both time and usage). Models in either of these approaches can further be divided 

into five types. More details about each approach can be found in [47], [50], [139]–[146].  

Researchers have successfully tried forecasting warranty claims using ‘Time-series 

models’ such as ARIMA [21]. Further, more complex approaches like ones using Kalman filters  

have also been tried [147]. Wasserman and Sudjianto [148] use three approaches viz., Orthogonal 

series, Artificial Neural  Networks (ANN), and Kalman filters to forecast warranty claims only to 

conclude that ANNs offer the best results. Wasserman and Sudjianto [148] employ ANNs for 

forecasting warranty claims in one of the earliest works. Wu and Akbarov [149] introduce the 

weighted SVR for forecasting warranty claims when repair rates are available. Recently, 

Khoshkangini et al. [150] used the gradient boost classifiers for forecasting warranty claims using 

logged vehicle data. In recent work, Shokouhyar et al. [151] have used the random forest method  

for forecasting warranty claims using social media data. A detailed discussion of various Machine 

learning (ML) methods for forecasting warranty claims can be seen in [152], [153]. 
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Most mentioned models like the NHPP consider a parametric or a semi-parametric 

approach. Although they achieve promising results, literature proves that there is a better chance 

for a non-parametric approach in forecasting claims with higher accuracy when newly launched 

products are under consideration [154]. In real-life scenarios, during the early stages (of a new  

Figure 3-1 Effect of the warranty data maturation phenomenon on observed claims data and the common root causes. 

 

product), a component’s actual seasonality (another significant factor affecting failure rate trends) 

is unknown. Hence, forcing a seasonal trend based on a parametric model seems farfetched. 

Alternatively, there could be multiple seasonal patterns. Therefore, choosing one particular 

seasonality pattern might be inadequate. Furthermore, all survival models and ANN’s are 

estimated/trained on a dataset specific to a particular family of products. This may cause the 

survival models to force a product-family-specific trend and be less generalizable. ANN’s too, are 

prone to overfitting due to the same problem. To remedy this issue, researchers traditionally have 

been training and deploying these models only on ‘similar products.’ Unfortunately, the concept 

of ‘similar products’ is ill-defined. Fredette and Lawless [155] define products’ similarity as the 

Pearson correlation based on claim rates. Although this works well for the authors (Fredette and 

Lawless [155]), it should be noted that their case study is based on data that shares most of its 

components and hence the failure characteristics. 
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‘Warranty Data Maturation’ is a significant problem in the field of warranty claims 

forecasting [53], [54]. This phenomenon causes the claim trends for a nominally homogeneous 

population to change as a function of the observation time [53]. Figure 3-1 shows this effect and 

some common reasons that lead to the warranty data maturation phenomenon. Although some 

work has been done to address this problem [53], [54], most mentioned warranty claims 

forecasting methods only work for a shorter horizon (<12 months). Although Gupta et al. [142] 

perform a bivariate claims analysis for up to 90 weeks, they assume no reporting delays. As a 

result, problems related to warranty data maturation are not so severe. While trying to address 

warranty data maturation issues, Kalbfleisch et al. [48] propose correcting reporting delays by 

adjusting the risk set of the underlying hazard function, proportional to the probability of the lag 

time. Krivtsov and Yevkin [156] compensate for the seasonality in warranty data by introducing a 

time-dependent covariate into the underlying survival model. Kleyner and Elmore [24] construct 

a parametric structure over the location-scale parameters of the underlying survival distributions, 

evaluated at different observation times.  

In this work, to overcome the limitations of the existing parametric methods and to address 

problems with warranty data maturation, we propose a novel approach under the Bayesian 

framework known as the Conditional Gaussian Mixture Model (CGMM). Whereas traditional 

warranty claims forecasting models are used for short-horizon warranty claims forecasting [157], 

the CGMM performs much better, with a median error of about 2% for forecasts over 18 months. 

The main contribution of the proposed approach lies in the usage of the Bayesian updating scheme 

used to map the current warranty maturation levels to the future warranty maturation levels. 

CGMM offers the following advantages: 
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1. Immature-to-mature warranty mapping: CGMM maps the immature warranty claims 

trends to the mature warranty claims trends by modeling the joint distribution of mature 

and immature warranty trends of historical products as a Gaussian Mixture Model 

(GMM). 

2. Non-parametric: CGMM does not force a time-dependent parametric function for 

forecasting the number of claims. 

3. Product-to-Product Variability: CGMM uses conditional Bayesian inference when 

considering the similarity of products in a cluster. 

4. Robust to over-fitting: CGMM effectively leverages historical warranty data. This 

reduces over-fitting because the training data comprises several products rather than one 

individual product. 

5. Uncertainty Quantification (UQ): Survival and stochastic models provide an UQ 

measure through the prediction interval using known statistical distributions. One step 

further, the CGMM provides an epistemic UQ after updating the GMM parameters 

(Bayesian update) and correcting for bias (conditional distribution). The credible interval 

for the posterior predictive distribution is used as an UQ measure in the CGMM. 

3.2 Gaussian Mixture Models for Warranty Claims Forecasting 

GMMs are commonly used for unsupervised learning [86], [158], [159]. In the field of 

warranty claims forecasting, the commonly constructed GMMs assume that all products are 

represented by a set of 𝐾𝐾 latent clusters and that each product belongs to only one true cluster; 

however, since the true cluster is not available, the products are modeled as a mixture of the 𝐾𝐾 

latent clusters where, the number of claims at different time-in-service (TIS) of each latent cluster 

is jointly modeled using a multivariate Gaussian distribution. Consequently, the number of claims 
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at different TIS points of any product are jointly modeled as a mixture of 𝐾𝐾 multivariate Gaussian 

distributions. Note that these claims at different TIS points of any product represent a varying 

degree of warranty maturation. The mixing coefficients are then calculated using normalized 

likelihoods given by the observed warranty data (number of claims at different TIS points) for the 

product of interest. Figure 3-2 summarizes the GMM framework for modeling the number of 

claims at pre-specified TIS points. The joint random variable �𝒀𝒀𝒁𝒁� corresponds to the observed 

warranty claims at an immature (𝒀𝒀) and a mature warranty level (𝒁𝒁). 

Figure 3-2 The Gaussian Mixture Model (GMM) for warranty forecasting. N is the number of historical training 
products, and K is the number of latent clusters. 

 

Definition 1: Any intermediate warranty maturation level (immature warranty level) is defined by 

the latest observed TIS for the product of interest. For example, Ford Fusion 2018 in May 2019 

shows a similar immature warranty level as Ford Fusion 2019 in May 2020. 

Definition 2: A product reaches full warranty maturation (mature warranty level) when all sold 

manufactured items are past the warranty period. For example, Ford Fusion 2015, after 36 months 

from the last sold Ford Fusion 2015. 

From the theory of mixture models [159] and the law of total probability, the joint 
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𝑓𝑓𝑿𝑿(𝒙𝒙𝑖𝑖′) =  �𝛼𝛼𝑘𝑘𝑓𝑓𝑿𝑿|𝑚𝑚(𝒙𝒙𝑖𝑖′| 𝑚𝑚𝑖𝑖 = 𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

 (3-1) 

 

Here, 𝑚𝑚𝑖𝑖 ∈ {1 …𝐾𝐾} is the latent variable representing the mixture component of 𝑿𝑿, 𝛼𝛼𝑘𝑘 is 

the mixing coefficient of the 𝑘𝑘𝑡𝑡ℎ cluster, 𝒙𝒙𝑖𝑖′ = �𝑦𝑦𝑖𝑖,1, … ,𝑦𝑦𝑖𝑖,𝑇𝑇0 , 𝑧𝑧𝑖𝑖,1, … , 𝑧𝑧𝑖𝑖,𝑇𝑇�
′
 is the observed vector of 

the number of claims at different TIS points for the 𝑖𝑖𝑡𝑡ℎ training product at both the immature (𝑦𝑦) 

and mature warranty levels (𝑧𝑧), 𝑇𝑇0 is the last observed TIS point at the immature warranty level, 

and 𝑇𝑇 is the last observed TIS at the mature warranty level.  

Without loss of generality, we assume that the normalized number of claims follows a 

normal distribution. Such assumption is statistically justifiable for case studies where the sample 

size in each cluster is sufficiently large (>200); otherwise, a closer investigation is required to 

verify the normality assumption. Under the normality assumption, the conditional probability 

distribution for 𝑿𝑿 is given by, 

𝑓𝑓𝑿𝑿|𝑚𝑚(𝒙𝒙|𝑚𝑚 = 𝑘𝑘) = 𝒩𝒩(𝒙𝒙|𝝁𝝁𝑘𝑘,𝜮𝜮𝑘𝑘). (3-2) 

Thus, the distribution of 𝑿𝑿 can be expressed as, 

𝑓𝑓𝑿𝑿(𝒙𝒙) = �𝛼𝛼𝑘𝑘𝒩𝒩(𝒙𝒙|𝝁𝝁𝑘𝑘,𝜮𝜮𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

 (3-3) 

Given the recorded claims of the historical products 𝒙𝒙1′ … , 𝒙𝒙𝑁𝑁′ , the log-likelihood of the 

GMM is expressed as,  

log�𝑓𝑓𝑿𝑿(𝑿𝑿′|𝚯𝚯)� = log��𝑓𝑓𝑿𝑿,𝑚𝑚(𝑿𝑿′,𝑚𝑚 = 𝑘𝑘|𝚯𝚯)
𝑘𝑘

� (3-4) 

 

where 𝜽𝜽 are unknown parameters of the GMM such that, 𝜽𝜽 = {𝝁𝝁1 …𝝁𝝁𝑘𝑘,𝚺𝚺1 …𝚺𝚺𝑘𝑘,𝛼𝛼1 …𝛼𝛼𝑘𝑘}. 

There exist no closed-form solution for the maximum likelihood estimator of 𝜽𝜽 [159]. Thus, the 
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Expectation-Maximization (EM) algorithm is utilized to find the mean and covariance of the 𝐾𝐾 

clusters. More details on the EM algorithm can be seen in our work [52] and Appendix A. 

To decide on the optimal number of clusters 𝐾𝐾, the EM algorithm is applied for different 

choices of 𝐾𝐾 and the value of 𝐾𝐾 that maximizes the Akaike Information Criterion (AIC) is selected. 

The AIC metric penalizes for (i) low likelihood, and (ii) an increased number of parameters 

(clusters); therefore, it provides a reasonable balance to maintain an acceptable performance 

(acceptable likelihood) without overfitting (over-complicating the model with excessive 

parameters). Other metrics are also commonly used for model selection, including the Bayesian 

Information Criterion (BIC) [160]–[162]. In this work, we use the AIC because it is shown to be 

effective even if the true model is not in the pool of potential GMMs. 

While the GMM provides a suitable framework to estimate the joint distribution of the 

number of claims at different TIS points, it cannot be applied for recently launched products before 

the end of the warranty. This is because the GMM requires knowing the number of claims for all 

TIS points, which is not readily available before the end of the warranty period. Therefore, the 

following section extends the GMM to enable warranty claims forecasting for recently launched 

products that did not reach the end of the warranty period. 

3.3 Conditional Gaussian Mixture Model for Warranty Claims Forecasting 

To enable using GMMs for warranty claims forecasting, we first need to distinguish 

between the observed TIS points and the TIS points to be forecasted for the recently launched 

products. We then utilize a multivariate Gaussian distribution to calculate the conditional  

distribution of the number of claims of the TIS points to be forecasted, given the number of claims 

at the observed TIS points. Figure 3-3 shows the operational framework of the CGMM. 
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Figure 3-3 Proposed CGMM for warranty claims forecasting. 

3.3.1 Problem Formulation 

First, we split the number of claims into two sets. The first set corresponds to the observed 

TIS points (immature warranty level), and the second set corresponds to the TIS points that need 

to be forecasted (mature warranty level). Furthermore, the joint distribution of �𝒀𝒀𝒁𝒁� is expressed as 

a mixture of multivariate Gaussian distribution and is given by, 

𝑿𝑿 = �𝒀𝒀𝒁𝒁�~�𝛼𝛼𝑘𝑘𝒩𝒩(𝝁𝝁𝑘𝑘,𝚺𝚺𝑘𝑘

𝐾𝐾

𝑘𝑘=1

), (3-5) 

 

Here, 𝒀𝒀 represents the number of claims for the observed TIS points, and 𝒁𝒁 represents the number 

of claims for the TIS points to be forecasted at the end of the warranty period. The training input 

𝑿𝑿 used to estimate the prior GMM is designed at the same historical maturation level to account 

for warranty maturation. Consequently, the distribution of the number of claims for the observed 

TIS points is given by, 

𝒀𝒀~�𝛼𝛼𝑘𝑘𝒩𝒩(𝝁𝝁𝑘𝑘
𝒚𝒚 ,

𝐾𝐾

𝑘𝑘=1

𝚺𝚺𝑘𝑘
𝒚𝒚) (3-6) 
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𝚺𝚺𝑘𝑘 = �
𝚺𝚺𝑘𝑘
𝒚𝒚 𝚺𝚺𝑘𝑘

𝒚𝒚,𝒛𝒛

𝚺𝚺𝑘𝑘
𝒛𝒛,𝒚𝒚 𝚺𝚺𝑘𝑘𝒛𝒛

� (3-7) 

𝝁𝝁𝑘𝑘 = �𝝁𝝁𝑘𝑘
𝒚𝒚

𝝁𝝁𝑘𝑘𝒛𝒛
� (3-8) 

 

Here, 𝚺𝚺𝑘𝑘 is the covariance matrix of the observed and to be forecasted TIS points and is given by 

eq. (3-7). 

3.3.2 Conditional Predictive Distribution Using CGMM 

In CGMM, we utilize the Bayesian version of the multivariate Gaussian distribution to 

calculate the conditional predictive distribution, 𝑓𝑓𝒁𝒁|𝒀𝒀(𝒛𝒛𝑖𝑖|𝒚𝒚𝑖𝑖). Proofs for deriving eq. (3-9) can be 

seen in our work [52] and Appendix A. 
 

𝑓𝑓𝒁𝒁|𝒀𝒀(𝒛𝒛𝑖𝑖|𝒚𝒚𝑖𝑖) = �(𝛼𝛼𝑘𝑘|𝒚𝒚𝑖𝑖)
𝐾𝐾

𝑘𝑘=1

𝒩𝒩(𝒛𝒛𝑖𝑖;𝝁𝝁𝑘𝑘𝒛𝒛 |𝒚𝒚𝑖𝑖,𝚺𝚺𝑘𝑘𝒛𝒛|𝒚𝒚𝑖𝑖), (3-9) 

where, 

 

𝛼𝛼𝑘𝑘|𝒚𝒚𝑖𝑖 =
𝛼𝛼𝑘𝑘 ∗ 𝑓𝑓𝒀𝒀(𝒚𝒚𝑖𝑖|𝝁𝝁𝑘𝑘

𝒚𝒚 ,𝚺𝚺𝑘𝑘
𝒚𝒚)

∑ �𝛼𝛼𝑟𝑟 ∗ 𝑓𝑓𝒀𝒀(𝒚𝒚𝑖𝑖|𝝁𝝁𝑟𝑟
𝒚𝒚,𝚺𝚺𝑟𝑟

𝒚𝒚)�𝐾𝐾
𝑟𝑟=1

 

 

(3-10) 
 

𝝁𝝁𝑘𝑘𝒛𝒛 |𝒚𝒚𝑖𝑖 = 𝝁𝝁𝑘𝑘𝒛𝒛 − �𝚺𝚺𝑘𝑘
𝒚𝒚,𝒛𝒛�

′
 �𝚺𝚺𝑘𝑘

𝒚𝒚�
−1
�𝝁𝝁𝑘𝑘

𝒚𝒚 − 𝒚𝒚𝒊𝒊� 
(3-11) 

 
𝚺𝚺𝑘𝑘𝒛𝒛|𝒚𝒚𝑖𝑖 = 𝚺𝚺𝑘𝑘𝒛𝒛 − �𝚺𝚺𝑘𝑘

𝒚𝒚,𝒛𝒛�
′
 �𝚺𝚺𝑘𝑘

𝒚𝒚�
−1
�𝚺𝚺𝑘𝑘

𝒚𝒚,𝒛𝒛� (3-12) 
 

The conditional Bayesian inference partially accounts for the product-to-product 

variability by updating the posterior distribution, given the number of claims of the observed TIS 

points for the product of interest. Furthermore, the CGMM provides the conditional distribution 

for the number of claims to be forecasted, given the available history of the observed number of 

claims. Unlike existing models, such advantages of the CGMM make it attractive for warranty 

claims forecasting. 
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3.3.3 Unbiased Conditional Predictive Distribution 

In many practical applications, assuming that products are a mixture of latent clusters 

introduces an algorithmic bias. This is due to the natural cluster-to-cluster variability. Therefore, 

it is natural to consider only the most likely cluster to avoid such algorithmic biases. 

Mathematically, we search for cluster 𝑘𝑘∗ with the maximum normalized likelihood given by, 

𝑘𝑘∗|𝒚𝒚𝑖𝑖 = argmax
𝑘𝑘

(log 𝑓𝑓𝒀𝒀(𝒚𝒚𝑖𝑖|𝝁𝝁𝑘𝑘
𝒚𝒚 ,𝚺𝚺𝑘𝑘

𝒚𝒚))  

 
(3-13) 

Given the most likely cluster 𝑘𝑘∗|𝒚𝒚𝑖𝑖, the enhanced predictive conditional distribution of the 

CGMM is expressed as, 

𝑓𝑓𝒁𝒁|𝒀𝒀(𝒛𝒛𝑖𝑖|𝒚𝒚𝑖𝑖) = 𝒩𝒩(𝒛𝒛𝑖𝑖;𝝁𝝁𝒛𝒛|𝒚𝒚𝒊𝒊,𝚺𝚺𝒛𝒛|𝒚𝒚𝒊𝒊) (3-14) 
 

where, 

𝝁𝝁𝒛𝒛|𝒚𝒚𝑖𝑖 = 𝝁𝝁𝑘𝑘∗
𝒛𝒛 − �𝚺𝚺𝑘𝑘∗

𝒚𝒚,𝒛𝒛�
′
 �𝚺𝚺𝑘𝑘∗

𝒚𝒚 �
−1
�𝝁𝝁𝑘𝑘∗

𝒚𝒚 − 𝒚𝒚𝑖𝑖� 
 

(3-15) 

𝚺𝚺𝒛𝒛|𝒚𝒚𝑖𝑖 = 𝚺𝚺𝑘𝑘∗
𝒛𝒛 − �𝚺𝚺𝑘𝑘∗

𝒚𝒚,𝒛𝒛�
′
 �𝚺𝚺𝑘𝑘∗

𝒚𝒚 �
−1
�𝚺𝚺𝑘𝑘∗

𝒚𝒚,𝒛𝒛� (3-16) 

3.4 Case Study Using Early Launched Automotive Parts 

3.4.1 Description 

Most automotive companies host a reporting platform for dealers to report warranty claims. 

Although these platforms’ primary intent is to keep track of reported warranty claims, they also 

contain information on failure modes and failure time and/or usage that can be used for subsequent 

engineering and statistical analysis. Note that claims are sometimes delayed for verification and 

depend on the individual dealership’s reporting practices. In addition, the number of reported 

claims is expected to increase with more vehicles being continuously produced and sold. This 

increases the challenge of estimating the warranty claims as a function of the TIS because of the 

heterogeneous production quality, usage variability, seasonal effects, and other warranty data 
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maturation factors. Furthermore, various failure modes and a highly non-linear interaction between 

the parts of the vehicle introduce some non-trivial behavior for the trajectory of the number of 

claims as a function of TIS. Such non-linear trajectories often lead to poor long-term (>12 months) 

forecasting using traditional parametric survival models (such as Weibull at a part level) or 

stochastic models (such as the NHPP at a system or vehicle level).  

The automotive warranty claims dataset (scaled for confidentiality) considered in this case 

study includes more than 15,000 vehicle parts installed on more than 10 million vehicles for four 

historical model years (2010-2013). Note that some parts may be only available on one model year 

but not the other; however, there is still a non-trivial correlation that links different vehicle parts 

and different model years. The claims are recorded as events reported from multiple dealerships. 

We aggregate those events monthly at the part level for every unique combination of part code, 

vehicle code, and model year for 36 months. Parts from model years 2010, 2011, and 2012 are 

used for training, and parts from the model year 2013 are considered for validation as described in 

Table 3-1. 

Table 3-1 Training and Validation Data 
Dataset Number of unique parts 

Training (2010, 2011 and 2012) 10,980 
Validation (2013) 4,663 

Total 15,643 

 

In this case study, August 31 (AUG 31) of the year following the model year represents 18 

months after the first sold manufactured vehicle. It thus represents the cumulative claims at an 

immature warranty level since not all sold vehicles have passed the warranty period. Figure 3-4 

shows the cumulative number of claims from thousands of vehicles of a randomly selected 

validation part from the model year 2013 at AUG 31-2014 in red circles (claims at immature 

warranty level), the cumulative number of claims after all the sold vehicles pass the warranty 
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period in black stars (claims at mature warranty level), and the cumulative number of claims 

predicted by the CGMM as green triangles. 

 
Figure 3-4 Example validation part used in this study. 

3.4.2 Model Setup 

Table 3-2 Log-likelihood and AIC as a function of 𝐾𝐾 Latent Clusters 
Number of clusters (𝑲𝑲) Log-likelihood AIC 

1 -8.1999 1.6406 

2 -7.1400 1.4293 

3 -6.9445 1.3908 

4 -6.9223 1.3871 

5 -6.8175 1.3667 

6 -6.7054 1.3450 

7 -6.7612 1.3568 

8 -6.6288 1.3309 

9 -6.6333 1.3325 

10 -6.7136 1.3492 

 

The observed cumulative number of claims for the first 18 months-in-service are denoted 

by 𝒚𝒚𝒊𝒊 = [𝑦𝑦𝑖𝑖,0,𝑦𝑦𝑖𝑖,1,𝑦𝑦𝑖𝑖,2, … , 𝑦𝑦𝑖𝑖,18]′ and the forecasted cumulative number of claims for the TIS 12, 

18, 24, 30, and 36 months after all the sold vehicles pass the warranty period are denoted by 𝒛𝒛𝒊𝒊 =

[𝑧𝑧𝑖𝑖,12, 𝑧𝑧𝑖𝑖,18, 𝑧𝑧𝑖𝑖,24, 𝑧𝑧𝑖𝑖,30, 𝑧𝑧𝑖𝑖,36]′. Note that 𝑦𝑦𝑖𝑖,12 is not necessarily equal to 𝑧𝑧𝑖𝑖,12 due to warranty data 

maturation issues. For the forecasted months-in-service, the CGMM outputs the distribution of 

possible trajectories for 𝒛𝒛𝒊𝒊|𝒚𝒚𝒊𝒊~𝒩𝒩(𝝁𝝁𝒛𝒛|𝒚𝒚𝒊𝒊,𝚺𝚺𝒛𝒛|𝒚𝒚𝒊𝒊) as shown in eq. (3-14). The CGMM thus provides 
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uncertainty quantification 𝚺𝚺𝒛𝒛|𝒚𝒚𝒊𝒊 around the expected value of 𝒛𝒛𝒊𝒊|𝒚𝒚𝒊𝒊. The number of latent clusters 

𝐾𝐾 for the CGMM is varied between 1 and 10, and the number of clusters with the lowest Akaike 

Information Criterion (AIC) is selected. Table 3-2 summarizes the log-likelihood and AIC for all 

the trained CGMMs with a different number of latent clusters. 

3.4.3 Results 

Using results from Table 3-2, we define 𝐾𝐾 = 8 and train the CGMM on parts from the 

model years 2010, 2011, and 2012. The distributions of the percentage error (PE) calculated using 

eq. (3-17) between the actual (mature) and predicted number of claims for the five TIS points (12, 

18, 24, 30, and 36 months) are as shown in Figure 3-5 (a-e). 

𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡) = 100 ×
𝑧𝑧𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑧𝑧|𝑦𝑦𝑖𝑖,𝑡𝑡

𝑧𝑧𝑖𝑖,𝑡𝑡
 (3-17) 

Furthermore, Table 3-3 summarizes some selected quantiles of the error distributions for 

the forecasted TIS 12, 18, 24, 30, and 36 months. This table clearly shows that the error increases 

with TIS.  

Table 3-3 Selected Quantiles for the Error Distributions 

TIS (months) 90% 75% Median 25% 10% 

36 -37.8% -15.6% 2.05% 20.4% 37.7% 
30 -31.7% -12.5% 2.31% 18.5% 34.0% 
24 -23.3% -9.6% 2.34% 15.4% 28.6% 
18 -13.6% -6.1% 2.01% 11.4% 21.8% 
12 -5.81% -2.69% 1.00% 6.38% 13.1% 

 

This is expected because the uncertainty is accumulated in long-term forecasting. Table 

3-3 also shows that the median percentage error is centered around 2%, which is very close to the 

target of 0%. Overall, Table 3-3 shows that the first and third quartiles for all the forecasted TIS 

are bounded between -15% and 20%. This is considered to be a reasonably good performance for 

long-term forecasting. It is important to note that the MAPE for TIS 12 and TIS 18 months is 

sufficiently small. It can thus be concluded that the CGMM is accurately shifting/updating the 
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trend from data reported until AUG 31 towards the mature claims data. The MAPE for those shifts 

is reasonably small, which provides confidence that the CGMM successfully leveraged parts from 

previous model years to capture those shifts. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3-5 The distribution of PE for TIS (a) 36 months, (b) 30 months, (c) 24 months, (d) 18 months, and (e) 12 
months. 

 

Traditional models, such as NHPP, show poor performance for long-term forecasting [21], 

[163]. They tend to show an asymmetric error distribution biased to under-predicting the number 
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of claims due to reporting delays and limited claims counts observed at TIS 16, 17, and 18 months 

on AUG 31 (the 18th TIS observation time). All observations in Table 3-3  show that the CGMM 

is unbiased and successfully forecasts the number of cumulative claims for the next 18 months (up 

to TIS 36 months) with an error of +/-37%. In the following section, we compare the CGMM to 

the standard warranty claims forecasting approach, the NHPP.  

3.4.4 Comparison to Standard NHPP 

A standard reliability model for the repairable system is the NHPP [164]. Below, we 

explain the necessity of developing approaches similar to the CGMM to avoid bias and thus 

improve over the performance shown by NHPP and its derivatives. Note that the classical 

estimation of the NHPP only leverages the warranty claims from the part being modeled. In 

contrast, the CGMM leverages claims from all other parts of all previous model years to capture 

non-trivial trends better. 

 

 
Figure 3-6 Cumulative number of claims for validation part 1 as a function of TIS (in months). 

 

The first case occurs when the NHPP shows acceptable forecasting performance without 

capturing the actual trend of the warranty claims for a specific part from thousands of vehicles. An 

example of a validation part from the model year 2013 is shown in Figure 3-6, where the predicted 
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claims using the NHPP are shown in purple crosses. This figure clearly shows that the NHPP fails 

to capture the non-linearity of the warranty claims, which is mainly attributed to the parametric 

nature of the NHPP. 

 
Figure 3-7 Cumulative number of claims for validation part 2  as a function of TIS (in months). 

 

The second case occurs when the NHPP shows acceptable fitting performance before AUG 

31 but fails to show accurate forecasting performance. An example of a validation part is shown 

in Figure 3-7. For this specific example, in Figure 3-7, the CGMM shows a much better 

performance than the NHPP because it leverages the historical knowledge that links between 

mature warranty claims and a partial subset of recorded claims before AUG 31. Furthermore, the 

CGMM does not force any time-dependent parametric assumptions and utilizes Bayesian schemes 

to update the distribution of possible trends, given the warranty claims recorded before AUG 31. 

This proves a need to leverage historical warranty trends to learn the dynamics and shifts in the 

warranty claims trajectory between the immature observations and the mature claim data. 

The third case occurs when the NHPP captures the warranty claims’ actual curvature but 

shows a bias. An example of a validation part is shown in Figure 3-8. This figure shows that the 

NHPP successfully captures the curvature of the warranty claims but shows a bias, mainly 

attributed to the limited number of claims at TIS 13, 14, 15, 16, 17, and 18 months. The figure also 
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shows that the CGMM successfully learns such biases from historical trends and shows higher 

effectiveness in capturing the curvature and the shift between the observation time AUG 31 and 

the mature claim data. 

 
Figure 3-8 Cumulative number of claims for validation part 3 as a function of TIS (in months). 

 

The fourth case occurs when the claims rate is low with a small number of claims at an 

earlier TIS and then starts to increase for later TIS. An example from validation is shown in Figure 

3-9. The figure shows that the NHPP successfully captured the curvature of the warranty trend 

before AUG 31; however, it failed to adjust for the non-trivial dynamic change in the warranty 

trend. This figure shows that the CGMM successfully learned such jumps and dynamic behavior 

from parts of the previous model years. 

 

 
Figure 3-9 Cumulative number of claims for validation part 4 as a function of TIS (in months). 
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The last case occurs when the NHPP heavily overpredicts the number of claims at the 

forecasted TIS points, as shown for some validation part in Figure 3-10. This figure shows the 

NHPP successfully fitted the cumulative claims for the early months (TIS 10 months and before) 

and started overshooting thereafter. In doing so, the NHPP predicted almost 2500 more claims at 

TIS 36 than actual data. This is mainly attributed to the warranty data maturation problem. The 

figure shows that the CGMM successfully captured such a non-trivial trend. The above examples 

show the importance of leveraging the historical warranty trends. The CGMM is particularly 

effective here and hence outperforms other traditional models that only leverage warranty claims 

from the model year of interest. 

 
Figure 3-10 Cumulative number of claims for validation part 5.as a function of TIS (in months). 
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enforces upper and lower bounds on the expected number of claims at the forecasted TIS points 
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to avoid extreme over/under-prediction when forecasting. Two metrics are considered for 

comparison- the mean absolute percentage error (MAPE) as given in eq. (3-18) and the root mean 

squared error (RMSE) as given in eq. (3-19) for TIS 18, 24, 30, and 36 months. The results in 

Table 3-4 clearly show that the CGMM outperforms the NHPP-W and NHPP-C for all the 

forecasted TIS points with lower MAPE and RMSE values. Next, we show the efficacy of the 

CGMM for warranty maturation compared to NHPP-W and NHPP-C by plotting the distribution 

of the percentage errors at TIS 18 months. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖, 𝑡𝑡) =
100

4663
× � �

𝑧𝑧𝑖𝑖,𝑡𝑡 − 𝑧̂𝑧𝑖𝑖,𝑡𝑡
𝑧𝑧𝑖𝑖,𝑡𝑡

�
4663

𝑖𝑖=1

 (3-18) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖, 𝑡𝑡) =
100
√4663

× �� �
𝑧𝑧𝑖𝑖,𝑡𝑡 − 𝑧̂𝑧𝑖𝑖,𝑡𝑡
𝑧𝑧𝑖𝑖,𝑡𝑡

�
24663

𝑖𝑖=1

 (3-19) 

 

Table 3-4 Comparison with Traditional Warranty Forecasting Models 
TIS (months) METRIC CGMM NHPP-C NHPP-W 

36 MAPE 25.60% 32.20% 31.66% 
RMSE 38.25% 145.0% 145.9% 

30 MAPE 21.77% 24.13% 23.83% 
RMSE 31.50% 43.49% 45.80% 

24 MAPE 17.24% 18.83% 18.93% 
RMSE 24.15% 24.95% 36.10% 

18 MAPE 11.65% 14.47% 15.43% 
RMSE 16.63% 18.93% 72.48% 

 

 
(a) 

 
(b) 

Figure 3-11 The distribution for MAPE of CGMM and (a) NHPP-C, and (b) NHPP-W for TIS 18 months. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3-12 The cumulative number of claims for several validation parts as a function of the TIS (months). 

 

Figure 3-11 shows that the MAPE for CGMM is centered near zero, and thus we can 

conclude that the forecasts by CGMM successfully corrected for maturity at TIS 18. On the other 

hand, NHPP-C and NHPP-W failed to address maturity, and this can be observed in the skewness 

of distribution (towards under-prediction). Such observations are expected since the NHPP-C and 

NHPP-W (unlike the CGMM) do not consider mapping the claims from the immature warranty 
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level to the mature warranty level. This concludes the real-life case study that clearly shows the 

advantages of the proposed CGMM, which include (i) accurate predictions, (ii) capturing non-

trivial trends, (iii) bias correction, and (iv) mapping between the immature and mature spaces. 

Figure 3-12 shows multiple additional comparisons between the benchmark methods and the 

proposed model-CGMM. 

Figure 3-12 also shows, in shaded green, the uncertainty quantification using the one 

standard deviation bound for the CGMM. These figures show that (i) the CGMM is reliable and 

robust for multiple trends, (ii) the CGMM almost consistently outperforms the benchmark 

methods, (iii) the uncertainty increases as the forecast duration increases, and that is a natural 

consequence of the unit-to-unit manufacturing, and (iv) the one standard deviation bound almost 

always covers the actual mature data at the end of the warranty period. These observations provide 

further evidence of the robustness, precision, and accuracy of the proposed CGMM. 

3.4.6 Comparison to Recurrent Neural Networks 

Next, we compare the CGMM to a Recurrent Neural Network (RNN). RNNs are known to 

outperform feedforward neural networks and traditional machine learning models such as support 

vector regression, random forests, and decision trees. The inputs to the RNN are the TIS of interest, 

the number of warranty claims for the past four time-steps, and the output is the cumulative 

warranty claims at the TIS of interest. Table 3-5 summarizes the quantiles for the percentage errors 

from the trained RNN. Table 3-6 summarizes the MAPE for CGMM and RNN. Long-term 

forecasts using RNNs are significantly worse than the CGMM, and thus we only showcase the 

performance of the trained RNN at TIS 12 and 18. 

When comparing Table 3-5 for RNN and Table 3-3 for CGMM, we see that the errors from 

the RNN are not centered. We can also see that this is more evident at TIS 18 months than TIS 12 
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months. Additionally, the tables show that the quantile ranges are wider (higher variance) for the 

RNN compared to the CGMM. This helps conclude that the CGMM achieves lower bias and 

variance than the RNN. 

Table 3-5 Selected Quantiles for the Error Distributions of the RNN Predictions for TIS 12 and 18 Months 
TIS (months) 90% 75% Median 25% 10% 

18 2.99% 7.47% 14.50% 23.43% 33.35% 
12 -3.05% 0.92% 5.08% 10.56% 17.63% 

 

Table 3-6 The MAPE and RMSE Values for the Predictions of the CGMM and RNN at TIS 12 and 18 Months 
TIS (months) METRIC CGMM RNN Percentage 

Improvement 

18 MAPE 11.65% 16.86% 30.90% 
RMSE 16.63% 20.95% 20.95% 

12 MAPE 6.36% 8.33% 23.65% 
RMSE 10.59% 11.89% 10.93% 

 

Table 3-6 summarizes the MAPE and RMSE of both the CGMM and RNN. The results in 

Table 3-6 clearly show that the CGMM outperforms the RNN for at TIS 12 and 18 months with 

an average percentage improvement of around 25% in MAPE and 15% in RMSE. Furthermore, 

Table 3-6 shows that the RNN performance deteriorates at TIS 18 compared to TIS 12, which is 

expected because the warranty data maturation effect is most evident at later TIS values. This 

shows further evidence about the efficacy of the proposed CGMM. 

 
Figure 3-13  The distribution for the MAPE of the CGMM and RNN for TIS 18 months. 
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3.5 Conclusion 

Forecasting warranty claims is challenging because of the unpredictable behavior of claims 

trends due to factors, such as reporting delays. Further, the inventory size is dynamic (i.e., more 

vehicles are produced and sold with time). This makes warranty forecasting quite profound. 

Therefore, there is a need to leverage warranty trends from similar historical products to mitigate 

the challenges mentioned above. A significant problem complicating warranty data forecasting is 

the data drift also referred to as the warranty data maturation phenomenon. This phenomenon 

results in the fact that claims trends for a nominally homogeneous population change as a function 

of the observation time. The reasons causing data maturation include but are not limited to: 

reporting delays, lot rot, warranty expiration, and seasonality.  

In this work, we propose the CGMM for long-term (>12 months) warranty claims 

forecasting. To prove the effectiveness of the proposed CGMM, a real-life dataset consisting of 

more than 15,000 unique parts installed on different vehicle lines for different model years was 

used. The results show that the CGMM can forecast the number of claims for 18 months with a 

median error of 2% and a middle 80% coverage probability of +/-37%. Furthermore, it is shown 

to be superior to the commonly used benchmarked models like the NHPP. The CGMM encourages 

investigation of more ML models for warranty claims forecasting including, deep neural networks, 

deep non-parametric survival models, non-parametric NHPPs, and Gaussian processes.  

The CGMM models the cross-correlation between different time-in-service points, 

enabling it to capture new trends that are not present in historical data. For example, the constant 

improvement in technology will carry its effect on the number of claims at all time-in-service 

points. Therefore, learning the effect of technology improvement on warranty claims at early time-

in-service points enables predictions for the number of claims at later unobserved time-in-service 
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points. However, if the cross-correlation between the time-in-service points for the new part of 

interest is significantly different from the training parts, the CGMM performance may start to 

degrade. For future studies, we plan to extend the CGMM to other non-normal distributions 

including discrete distributions. We also plan to integrate the CGMM with survival models to 

consider censoring based on incomplete warranty data.  

Another major challenge in warranty claims forecasting for complex systems (including 

vehicles) is the high uncertainty at TIS points near the end-of-warranty [137]. This is expected 

because of the warranty expiration rush and accumulated stochasticity in the aging process of 

complex systems. With the advancements in internet-of-things and edge devices, many 

manufacturers including automakers are integrating edge devices for online sensing of the critical 

components of their products. For future studies, it is of significant value to utilize such online 

sensing data from edge devices to construct high-precision prognostics, which can then be utilized 

for more precise forecasting of warranty claims.
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Chapter 4 BOSE: A Bayesian Architecture for Verification and Validation of Autonomous 

Vehicles 

The advent of AI models has enabled the development of AVs [17]. AVs commonly utilize 

a combination of sensors, cameras, and a range of AI-driven subsystems to analyze data in real-

time, making informed decisions and navigating through traffic without human intervention [18]. 

However, the input space for exhaustively testing complex systems such as AVs that involve the 

use of AI-driven ADSs is infinite. Therefore, scaling the ‘V-model’ defined under ISO 26262 to 

accurately identify and predict “anomalous behavior” is challenging. To overcome this issue, state-

of-the-art scenario-based test approaches often limit their scope to a single Advanced Driver 

Assistance System (ADAS) feature. Alternatively, some approaches attempt to test an ADS using 

low-dimensional scenarios. Such approaches are, therefore, limited given complex multi-

dimensional scenarios. To improve over these limitations, we propose, Bayesian Optimization for 

Scenario Exploration (BOSE). BOSE is an automated, purpose-driven, search-based framework 

that limits the sequential scenario-based simulations required to explore and understand complex, 

multi-dimensional scenarios. Furthermore, the Bayesian design structure of BOSE continues to 

explore every test scenario until convergence. Such a strategy combined with Latin Hypercube 

Sampling (LHS) helps BOSE expedite scenario exploration by efficiently learning complex 

interactions between scenario parameters. In our experiments with a custom Level V ADS, BOSE 

reduced scenario exploration effort by over 30% when compared to a state-of-the-art approach. 
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4.1 Introduction 

National Highway Traffic Safety Administration (NHTSA) defines five (5) distinct levels 

of autonomy. Each incremental level of autonomy adds more driving duties to the vehicles’ 

systems and provides additional benefits to the average driver [229], [230]. More details on levels 

of autonomy are shown in Table 4-1. Specifically, above Level III, limited driving and monitoring 

duties are given to the vehicle’s driver. At this stage, the ADS must successfully achieve its driving 

task under every possible environment and traffic condition that falls within its Operational Design 

Domain (ODD) [28]. Empirically, researchers claim that a Level V ADS needs to be tested for 

more than 11 billion miles to have a 95% confidence that it is at least 20% safer than its human 

counterparts [22]. Thus, before it is deployed in the real world, any ADS’ safety, robustness, and 

reliability must be sufficiently evaluated.  In this work,   

• Safety is defined as “the freedom from unacceptable risk of physical injury or damage to the 

health of vehicle occupants by the ADS.” 

• Robustness is defined as “the degree to which the ADS can function correctly in the presence of 

invalid inputs or stressful environmental conditions.” 

• Reliability is defined as “the probability that the ADS performs its required functions for the 

desired period without failure given an ODD with the desired confidence.” 

Table 4-1 Levels of Autonomy 

Level Automation Characteristics 

0 No Autonomy Full control by user. 
I Driver Assistance Full control but assisted by some features like AEB, ACC, etc. 

II Partial Automation Assisted by automated acceleration, braking etc., but needs 
monitoring of environment by driver. 

III Conditional Automation Driver is necessary but not required to monitor environment. 
Needs to take control in certain situations. 

IV High Automation Driver is needed only in certain conditions. 
V Full Automation Driver is not needed at all. 
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While traditional test approaches, as given under ISO 26262 [231], are still relevant to 

mechanical components, ensuring that an ADS possesses a certain level of safety, robustness, and 

reliability under the definitions of ISO 26262 is challenging. More specifically, due to the infinite-

dimensional nature of ADSs, scaling the traditional ‘V-model’ becomes hard [85]. It is, therefore, 

impossible to manually identify and generate all test cases that the ADS needs to be evaluated 

across. The non-deterministic nature of several Deep Neural Networks (DNNs) and AI driven 

subsystems further complicate this problem. Existing test approaches are thus deemed insufficient 

for testing ADSs [28]. Recent crashes reported by the NHTSA1 are a testament to the insufficiency 

of existing test approaches [89], [232]. 

 
Figure 4-1 Scope of ISO 21448 and ISO 262262 for safety of ADSs. 

To address these challenges, researchers have recently proposed using scenario exploration 

methods under the umbrella of ISO/PAS 21448 [26], [59], [233]. Figure 4-1 provides a graphical 

summary of the scopes of ISO 26262 and ISO 21448 [231], [233]. Scenario exploration methods 

overcome the problem of generating relevant test scenarios by automatically identifying critical 

ones that help explore and understand the underlying functional scenario. Therefore, scenario 

exploration methods not only help identify complex interactions but also help identify any 

“anomalous behavior” henceforth referred to as “emergent behavior” within the ADS. However, 

 
1https://www.nhtsa.gov/laws-regulations/standing-general-order-crash-reporting 
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while scenario exploration provides a rigorous testing approach, scaling it across complex, multi-

dimensional functional scenarios is challenging [22], [78], [234]. To overcome this challenge, 

state-of-the-art scenario exploration methods often limit their scope to a single ADAS feature [78], 

[234]. Alternatively, some methods attempt to test the complete ADS, although using low-

dimensional scenarios [22], [78]. However, such methods are often inadequate and often fail to 

sufficiently comprehend the interactions between the features of multi-dimensional scenarios. 

Figure 4-2 formalizes the definitions of functional, logical, and concrete scenarios used in this 

work. 

 
Figure 4-2 Formalized scenario definitions used in this work. 

To overcome these limitations and to provide a true understanding of the underlying 

functional scenario, we propose the Bayesian Optimization for Scenario Exploration (BOSE). 

BOSE is an automated, purpose-driven, search-based framework that limits the sequential scenario 

exploration effort required to understand a given multi-dimensional functional scenario. BOSE 

employs optimal Bayesian design strategies to accurately sample high-entropy concrete scenarios 

in the multi-dimensional design space. These concrete scenarios and their observed responses are 

then used to train a Bayesian DNN that develops robust priors over this multi-dimensional design 

space. Such a strategy combined with Laten Hypercube Sampling (LHS) in BOSE helps it identify 
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functional scenario. In our tests with a custom Level V ADS, BOSE reduced scenario simulation 

needs by over 30% compared to a state-of-the-art testing approach. In summary, BOSE exhibits 

the following advantages: 

 
1. Interpretability: BOSE learns robust priors that may be leveraged for better scenario 

understanding across multi-dimensional test scenarios. 

2. Efficiency: The entropy-based design of BOSE combined with LHS ensures fast 

convergence by only simulating those scenarios that maximize scenario understanding. 

3. Scalability: The use of a Bayesian DNN within BOSE allows it to scale effortlessly across 

complex, multi-dimensional scenarios. 

4. Automation: The simulation-based approach allows for automated test generation and 

scenario exploration in BOSE. 

4.2 Related Work 

4.2.1 Scenario Generation Approaches 

Several scenario-generation approaches have been proposed in the literature. In their work, 

Ding et al. [235] categorize all scenario generation approaches into the following three categories, 

namely, (i) Data-driven methods, (ii) Adversarial methods, and (iii) Knowledge-based methods. 

Data-driven methods for ADSs often rely on sampling scenarios from existing scenario 

libraries to improve exposure to rare, high-risk scenarios (e.g. scenario replay, clustering, and 

random generation) [236], [237]. To increase diversity, some researchers have begun using 

randomized generation of constrained variants of collected scenarios [237]. Additionally, other 

researchers have used Bayesian methods such as Importance Sampling (IS) to generate scenarios 

[87]. Although, these techniques are useful in generating risky scenarios, they may struggle when 
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it comes to multi-dimensional scenarios. In recent years, deep learning models have also been used 

to generate scenarios as they are able to handle high-dimensional scenarios more effectively [238]. 

The use of Adversarial methods has gained popularity in generating risky scenarios for 

ADSs [239]–[243]. Adversarial methods can be classified into two types, (i) static methods, and 

(ii) dynamic methods. Static methods typically target sensor modules that require single-frame 

data as inputs, while dynamic methods target control and driving policies that need smooth, 

dynamic movements within the generated data [244]. Methods that manipulate the initial 

conditions of the adversaries to generate scenarios are particularly effective for dynamic 

adversarial scenario generation because of their lower computational costs [239], [242]. Many 

methods have been proposed that attempt to control adversarial objects, often set up as 

Reinforcement Learning (RL) problems [240], [241]. However, it should be noted that the methods 

are limited by their ability to replicate sensor data and do not cover the entirety of test spaces for 

dynamic systems [22]. 

While data-driven and adversarial methods generate scenarios with little consideration of 

constraints such as traffic regulations, knowledge-based methods integrate domain-knowledge to 

generate high-risk scenarios efficiently [245]–[250]. Knowledge-based methods can be further 

classified as rule-based methods and guided methods. Rule-based methods typically attempt to 

replicate real-world scenarios [245], [249] and have been used in ADS evaluation platforms [246], 

[248], [250]. However, these methods lack diversity, and researchers have traditionally augmented 

them using other exploration methods [251]. This approach not only encourages diversity between 

the generated scenarios but also encourages high interpretability of the underlying functional 

scenario. In a recent work, Kluck et al. [234] proposed a genetic algorithm-based exploration 

method that reduces simulation needs for scenario exploration. However, they did not test a 
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complete ADS and limited their experiments to testing a single ADAS feature. Gangopadhyay et 

al. [22] proposed another sequential learning approach using Bayesian optimization and a Level 

IV ADS, but only evaluated it using a single low-dimensional scenario. Therefore, to overcome 

over these limitations, in this work we propose the BOSE framework. 

4.2.2 Simulation Platforms 

Table 4-2 Comparison of Common Simulation Platforms used for Scenario Generation 
Variable 

Simulator 
Open 

Source 
Realistic 

Perception  Back-end Realistic 
Maps 

ROS 
Integration 

Scenario 
Scripting 

Scripting 
Language 

CARLA   UE4    Python / C++ 

CarSim   -    
MATLAB / 

Simulink 

SMARTS   -    Python 

TORCS   -    C++ 

L2R   UE4    Python 

AutoDrive   Unity    Python / C++ 

Webots   ODE    Python / C++ 

GTA   RAGE    - 

Autonovi-sim    PhysX    - 

LGVSL    Unity    Python 

 

In order to develop a practical framework for synthetic scenario exploration, various 

stakeholders have developed driving simulators. Some of them include SMARTS [247], TORCS 

[192], CarSim [252], L2R [253], CARLA [184], and many more [190], [191], [193], [254]–[258]. 

Unfortunately, simulators such as SMARTS and TORCS lack the realism and complexity needed 

for modern driving. Further, standard simulators such as CarSim and L2R lack the interaction 

needed between a vehicle, its sensors, and its environment to replicate real-world conditions. 

Finally, high-fidelity simulators such as GTA-V [191] and Autonovi-sim [190]  are not open 

source, limiting the developmental resources needed for advanced research. Thus, to overcome 
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these issues, developers along with academia have been developing simulators such as L2R [253], 

CARLA, LGVSL [259], Webots [255], and AutoDrive [254] that are not only open source but also 

offer high fidelity and customizations for realistic simulations. Especially, CARLA, with its close 

integration with software packages like RoadRunner [260] and VectorZero [261] to replicate real-

world road maps using tools like OpenStreetMap [262], has made its use more prolific. 

Furthermore, its close integration with tools such as ROS [263] and custom scenario generation 

capabilities make it an ideal choice for scenario generation. Table 4-2 Comparison of Common 

Simulation Platforms used for Scenario Generation summarizes the aforementioned simulation 

platforms and their important caveats. 

4.3 Bayesian Optimization for Scenario Exploration (BOSE) 

4.3.1 The Non-sequential Case 

Consider a design problem that is non-sequential. Let 𝜽𝜽 ∈ 𝚯𝚯 be model parameters with 

prior 𝑝𝑝(𝜽𝜽) and a likelihood model 𝑝𝑝(𝑦𝑦|𝜽𝜽,𝒅𝒅) where, 𝒅𝒅 ∈ 𝑫𝑫 represents a multi-dimensional 

concrete scenario, and 𝑦𝑦 ∈ 𝑌𝑌 is the possible outcome of the concrete scenario. In our case, 𝑌𝑌 ∈

{0,1} since the outcome of every simulated concrete scenario can be either ‘Crash’ (𝑦𝑦 = 1) or 

‘Normal’ (𝑦𝑦 = 0). Next, we assume that we are free to choose 𝒅𝒅, but the subsequent outcome will 

be probabilistic and distributed according to, 

𝑝𝑝(𝑦𝑦|𝒅𝒅) =  �𝑝𝑝(𝑦𝑦,𝜽𝜽 |𝒅𝒅)𝑑𝑑𝜽𝜽 =  �𝑝𝑝(𝑦𝑦|𝜽𝜽,𝒅𝒅)𝑝𝑝(𝜽𝜽|𝒅𝒅)𝑑𝑑𝜽𝜽 (4-1) 

 

Since 𝜽𝜽 is independent of 𝒅𝒅, we have 𝑝𝑝(𝜽𝜽|𝒅𝒅) = 𝑝𝑝(𝜽𝜽). Thus, eq. (4-1) can be rewritten as, 

𝑝𝑝(𝑦𝑦|𝒅𝒅) = �𝑝𝑝(𝑦𝑦|𝜽𝜽,𝒅𝒅)𝑝𝑝(𝜽𝜽)𝑑𝑑𝜽𝜽 (4-2) 
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Let 𝑈𝑈(𝑦𝑦,𝒅𝒅) be some utility function representing the utility of choosing some concrete 

scenario 𝒅𝒅 and observing response 𝑦𝑦. Thus, our goal is to maximize the information about 𝜽𝜽. This 

can be done using the Shannon information  [264] between the prior and the posterior, 

𝑈𝑈(𝑦𝑦,𝒅𝒅) =  �𝑝𝑝(𝜽𝜽|𝑦𝑦,𝒅𝒅) log�𝑝𝑝(𝜽𝜽|𝑦𝑦,𝒅𝒅)� 𝑑𝑑𝜽𝜽
���������������������

Entropy of Posterior

− �𝑝𝑝(𝜽𝜽) log�𝑝𝑝(𝜽𝜽)�𝑑𝑑𝜽𝜽 
���������������

Entropy of Prior

 (4-3) 

 

However, since the outcome 𝑦𝑦 is still uncertain, we define the expected utility 𝑈𝑈�(𝒅𝒅) with respect 

to 𝑝𝑝(𝑦𝑦|𝒅𝒅), such that, 

𝑈𝑈�(𝒅𝒅) =  �𝑈𝑈(𝑦𝑦,𝒅𝒅)𝑝𝑝(𝑦𝑦|𝒅𝒅)𝑑𝑑𝑑𝑑 (4-4) 

                                         = ��𝑝𝑝(𝑦𝑦,𝜽𝜽|𝒅𝒅) log�𝑝𝑝(𝜽𝜽|𝑦𝑦,𝒅𝒅)� 𝑑𝑑𝜽𝜽𝑑𝑑𝑑𝑑 − �𝑝𝑝(𝜽𝜽) log�𝑝𝑝(𝜽𝜽)�𝑑𝑑𝜽𝜽  (4-5) 

  =  ��𝑝𝑝(𝑦𝑦,𝜽𝜽|𝒅𝒅) log�
𝑝𝑝(𝜽𝜽|𝑦𝑦,𝒅𝒅)
𝑝𝑝(𝜽𝜽)

�𝑑𝑑𝜽𝜽𝑑𝑑𝑑𝑑 . (4-6) 

 

Since our goal is to maximize the mutual information, under the Bayesian adaptive strategy, the 

next best concrete scenario that can be simulated is given by,  

𝒅𝒅∗ =  argmax
𝒅𝒅∈𝑫𝑫

𝑈𝑈�(𝒅𝒅). (4-7) 

 

𝒅𝒅∗ can thus be interpreted as the next best concrete scenario that most reduces uncertainty over 

model parameters 𝜽𝜽 over design space 𝑫𝑫. However, in practice, the likelihood model approximates 

the ADS under test. While we would like the system to be completely deterministic, several 

stochastic processes are involved in the ADS’ decision-making, making it almost impossible to 

construct a perfect distribution over 𝜽𝜽. As a result, 𝑝𝑝(𝜽𝜽|𝑦𝑦,𝒅𝒅) is considered intractable and is rarely 

known in a closed form. Thus, it becomes crucial to approximate 𝑝𝑝(𝜽𝜽|𝑦𝑦,𝒅𝒅). Although a full-

factorial design that runs an exhaustive-grid search over 𝑫𝑫 will help provide an estimate of 
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𝑝𝑝(𝜽𝜽|𝑦𝑦,𝒅𝒅), it is often impractical [265]. Such a design will need infinite concrete scenario 

simulations when given a multi-dimensional functional scenario. Therefore, using the Bayes rule, 

𝑝𝑝(𝜽𝜽|𝑦𝑦,𝒅𝒅) =
𝑝𝑝(𝜽𝜽)𝑝𝑝(𝑦𝑦|𝜽𝜽,𝒅𝒅)

𝑝𝑝(𝑦𝑦|𝒅𝒅)
 (4-8) 

 

Thus, we can rewrite eq. (4-6) such that, 

      𝑈𝑈�(𝒅𝒅)  =  ��𝑝𝑝(𝑦𝑦,𝜽𝜽|𝒅𝒅) log �
𝑝𝑝(𝑦𝑦|𝜽𝜽,𝒅𝒅)
𝑝𝑝(𝑦𝑦|𝒅𝒅)

�𝑑𝑑𝜽𝜽𝑑𝑑𝑑𝑑  (4-9) 

     = ��𝑝𝑝(𝑦𝑦,𝜽𝜽|𝒅𝒅) log�𝑝𝑝(𝑦𝑦|𝜽𝜽,𝒅𝒅)� 𝑑𝑑𝜽𝜽𝑑𝑑𝑑𝑑 − �𝑝𝑝(𝑦𝑦|𝒅𝒅) log�𝑝𝑝(𝑦𝑦|𝒅𝒅)�𝑑𝑑𝑑𝑑  (4-10) 

 

Equation (4-10) can now be solved using Monte-Carlo simulations under the Bernoulli 

approximation of 𝑌𝑌 ∈ {0,1} such that, 

𝑈𝑈�(𝒅𝒅) =  𝑍̂𝑍(𝒅𝒅) − 𝑃𝑃� log�𝑃𝑃�� − �1 − 𝑃𝑃�� log�1 − 𝑃𝑃�� +  𝜖𝜖 (4-11) 
 

Where 𝜖𝜖 is the approximation error and, 

            𝑍̂𝑍(𝒅𝒅) =
1
𝑁𝑁
�𝑝𝑝(𝑦𝑦 = 1|𝜽𝜽𝑛𝑛,𝒅𝒅) log�𝑝𝑝(𝑦𝑦 = 1|𝜽𝜽𝑛𝑛,𝒅𝒅)� +
𝑁𝑁

𝑛𝑛=1

 

                       
1
𝑁𝑁
�(1 −  𝑝𝑝(𝑦𝑦 = 1|𝜽𝜽𝑛𝑛,𝒅𝒅)) log(1 − 𝑝𝑝(𝑦𝑦 = 1|𝜽𝜽𝑛𝑛,𝒅𝒅))
𝑁𝑁

𝑛𝑛=1

 
 

(4-12) 

𝑃𝑃� =
1
𝑁𝑁
�𝑝𝑝(𝑦𝑦 = 1|𝜽𝜽𝑛𝑛,𝒅𝒅) ≈ 𝑝𝑝(𝑦𝑦 = 1|𝒅𝒅)
𝑁𝑁

𝑛𝑛=1

 (4-13) 

Therefore, as 𝑁𝑁 →  ∞, 𝜖𝜖 → 0. 

4.3.2 The Sequential Case 

In practice, scenario exploration is a sequential experimental procedure, and hence 𝒅𝒅𝑡𝑡∗ is 

sampled based on previous 𝑡𝑡 − 1 scenario simulations. As such, we replace 𝑝𝑝(𝜽𝜽) with 
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𝑝𝑝(𝜽𝜽|𝒅𝒅1:𝑡𝑡−1,𝑦𝑦1:𝑡𝑡−1) where 𝒅𝒅1:𝑡𝑡−1 and 𝑦𝑦1:𝑡𝑡−1 are simulated concrete scenarios and their observed 

responses. Therefore, we can rewrite eq. (4-10) such that, 

            𝑈𝑈�𝑡𝑡(𝒅𝒅)   = ��𝑝𝑝(𝜽𝜽|𝒅𝒅1:𝑡𝑡−1,𝑦𝑦1:𝑡𝑡−1)𝑝𝑝(𝑦𝑦𝑡𝑡|𝜽𝜽,𝒅𝒅𝑡𝑡) log�𝑝𝑝(𝑦𝑦𝑡𝑡|𝜽𝜽,𝒅𝒅𝑡𝑡)� 𝑑𝑑𝜽𝜽𝑑𝑑𝑦𝑦𝑡𝑡  

−  �𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1,𝒅𝒅1:𝑡𝑡) log�𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1𝒅𝒅1:𝑡𝑡)�𝑑𝑑𝑦𝑦𝑡𝑡 (4-14) 

where, 

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1,𝒅𝒅1:𝑡𝑡) = �𝑝𝑝(𝜽𝜽|𝒅𝒅1:𝑡𝑡−1,𝑦𝑦1:𝑡𝑡−1)𝑝𝑝(𝑦𝑦𝑡𝑡|𝜽𝜽,𝒅𝒅𝑡𝑡)𝑑𝑑𝜽𝜽. (4-15) 

 

Note that in the sequential case, the expectations are taken with respect to 

𝑝𝑝(𝜽𝜽|𝒅𝒅1:𝑡𝑡−1,𝑦𝑦1:𝑡𝑡−1) instead of 𝑝𝑝(𝜽𝜽). Here, it is impossible to sample from or evaluate 

𝑝𝑝(𝜽𝜽|𝒅𝒅1:𝑡𝑡−1,𝑦𝑦1:𝑡𝑡−1). Hence, we need Bayesian inference to estimate it. 

4.3.3 Sequential Design using Bayesian Deep Neural Networks 

In Deep Neural Networks (DNNs) functions 𝒇𝒇� that are most likely to fit our experiments 

are defined using the weights of the DNN. Let, 𝝎𝝎 = (𝜽𝜽𝑖𝑖)𝑖𝑖=1𝐿𝐿  represent our sufficient statistics for 

a DNN with 𝐿𝐿 layers. Consequently, we are interested in understanding the posterior over the 

weights given our observables 𝑦𝑦1:𝑡𝑡−1, 𝒅𝒅1:𝑡𝑡−1:𝑝𝑝(𝝎𝝎|𝒅𝒅1:𝑡𝑡−1,𝑦𝑦1:𝑡𝑡−1). Since this is intractable for a 

DNN, we use the variational inference procedure to approximate it. Let 𝑞𝑞(𝜽𝜽𝑖𝑖) be the approximate 

variational distribution for every layer 𝑖𝑖 of the DNN such that, 

𝜽𝜽𝑖𝑖 = 𝑴𝑴𝑖𝑖diag ��𝑧𝑧𝑖𝑖,𝑗𝑗�𝑗𝑗=1
𝐾𝐾𝑖𝑖 � (4-16) 

𝑧𝑧𝑖𝑖,𝑗𝑗~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑖𝑖) ∀ 𝑖𝑖 = 1, … , 𝐿𝐿 and 𝑗𝑗 = 1, … ,𝐾𝐾𝑖𝑖−1 (4-17) 
 

Here, 𝑧𝑧𝑖𝑖,𝑗𝑗 are Bernoulli distributed random variables with some probabilities 𝑝𝑝𝑖𝑖, and 𝑴𝑴𝑖𝑖 are 

variational parameters to be optimized. The diag(·) operator maps vectors to diagonal matrices. 

The approximate predictive distribution 𝑞𝑞(𝜽𝜽𝑖𝑖) can thus be calculated by minimizing the Kullback-
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Liebler divergence, KL�𝑞𝑞(𝝎𝝎) ||  𝑝𝑝(𝝎𝝎|𝒅𝒅1:𝑡𝑡−1,𝑦𝑦1:𝑡𝑡−1)�. This is equivalent to maximizing the log 

evidence lower bound and is given by, 

ℒ̂𝑉𝑉𝑉𝑉 ∶= �E �𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑑𝑑𝑖𝑖,𝝎𝝎�𝑖𝑖)� − KL(𝑞𝑞(𝝎𝝎)||𝑝𝑝(𝝎𝝎))
𝑁𝑁

𝑖𝑖=1

 
 

(4-18) 

 

where, 𝝎𝝎�𝑖𝑖~𝑞𝑞(𝝎𝝎) and 𝐸𝐸(∙,∙) is expected value of the binary classification loss. Note that sampling 

from 𝑞𝑞(𝜽𝜽𝑖𝑖) is identical to performing dropout on layer 𝑖𝑖 in a DNN whose weights are (𝑴𝑴𝑖𝑖)𝑖𝑖=1𝐿𝐿 . 

The binary variable 𝑧𝑧𝑖𝑖,𝑗𝑗  =  0 corresponds to unit 𝑗𝑗 in layer 𝑖𝑖 −  1 being dropped out as an input 

to the 𝑖𝑖th layer. The effective DNN with dropout thus forms a Bayesian DNN resulting in the same 

model parameters that best explain the previous 𝑡𝑡 − 1 experiments. More details about Bayesian 

DNNs can be seen in [90], [266], [267].   

Since our goal is to maximize the mutual information, using Bayesian inference, the next 

best concrete scenario that can be simulated is given by,  

𝒅𝒅𝑡𝑡∗ =  argmax
𝒅𝒅∈𝑫𝑫

𝑈𝑈�𝑡𝑡(𝒅𝒅) (4-19) 

 

We now see that the estimation procedure in Section 4.3.2 only needs samples of 𝝎𝝎�𝑛𝑛 as input. We 

can therefore estimate 𝑈𝑈�𝑡𝑡(𝒅𝒅) such that, 

𝑈𝑈�𝑡𝑡(𝒅𝒅) =  
𝑍̂𝑍𝑡𝑡(𝒅𝒅) − 𝑃𝑃�𝑡𝑡 log�𝑃𝑃�𝑡𝑡� − �1 − 𝑃𝑃�𝑡𝑡� log�1 − 𝑃𝑃�𝑡𝑡� +  𝜖𝜖 (4-20) 

where,  

𝑃𝑃�𝑡𝑡 = 𝑝𝑝(𝑦𝑦𝑡𝑡 = 1|𝑦𝑦1:𝑡𝑡−1,𝒅𝒅1:𝑡𝑡) ≈ �𝑝𝑝(𝑦𝑦𝑡𝑡 = 1|𝝎𝝎,𝒅𝒅) 𝑞𝑞(𝝎𝝎)𝑑𝑑𝝎𝝎 
 

(4-21) 

𝑃𝑃�𝑡𝑡 ≈
1
𝑁𝑁
�𝑝𝑝(𝑦𝑦𝑡𝑡 = 1|𝝎𝝎�𝑛𝑛,𝒅𝒅)
𝑁𝑁

𝑛𝑛=1

 (4-22) 

and, 
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𝑍𝑍𝑡𝑡� (𝒅𝒅) = 
1
𝑁𝑁
�𝑝𝑝(𝑦𝑦𝑡𝑡|𝝎𝝎�𝑛𝑛,𝒅𝒅) log�𝑝𝑝(𝑦𝑦𝑡𝑡|𝝎𝝎�𝑛𝑛,𝒅𝒅)� + �1 −  𝑝𝑝(𝑦𝑦𝑡𝑡|𝝎𝝎�𝑛𝑛,𝒅𝒅)� log�1 − 𝑝𝑝(𝑦𝑦𝑡𝑡|𝝎𝝎�𝑛𝑛,𝒅𝒅)�
𝑁𝑁

𝑛𝑛=1

 (4-23) 

 

 
Figure 4-3 Overview of the proposed BOSE framework in autonomous vehicles. 
 

Table 4-3 Algorithm I: BOSE 
Require: Record initial 𝑡𝑡 − 1 observations for a given functional scenario; Maximum evaluations 𝑇𝑇𝑈𝑈; 𝑘𝑘 concrete scenarios 
using LHS; posterior samples {𝝎𝝎�𝑛𝑛}𝑛𝑛=1𝑁𝑁 ; stopping criteria 𝛾𝛾 = 0.1. 
Generate: Concrete scenarios using LHS such that   
𝑫𝑫 = {𝒅𝒅1, … ,𝒅𝒅𝑡𝑡, … ,𝒅𝒅𝑘𝑘}. 
Simulate: Initial 𝑡𝑡 − 1 concrete scenarios to generate training data {𝒅𝒅1:𝑡𝑡−1, 𝑦𝑦1:𝑡𝑡−1}. 
while 𝑡𝑡 ≤  𝑇𝑇𝑈𝑈 do 

 

Fit a Bayesian DNN for binary classification using {𝒅𝒅1:𝑡𝑡−1, 𝑦𝑦1:𝑡𝑡−1}. 
Set  𝑫𝑫 = {𝒅𝒅𝑡𝑡 , … ,𝒅𝒅𝑘𝑘}. 
Compute expected utility 𝑈𝑈�𝑡𝑡(𝒅𝒅) of all concrete scenarios 𝑫𝑫. 
Select concrete scenario 𝒅𝒅𝑡𝑡∗ with maximum utility using eq. (4-19). 
if the utility of 𝒅𝒅𝑡𝑡∗ ≤ 𝛾𝛾 then 
 Break 
end if 
Simulate concrete scenario 𝒅𝒅𝑡𝑡∗ and record response 𝑦𝑦𝑡𝑡∗. 

 𝑡𝑡 = 𝑡𝑡 + 1 
end while 

 

Table 4-3 effectively summarizes the overall working of the proposed BOSE framework 

using a real-life ADS and a NHTSA-defined functional scenario. A concrete scenario is only 

tagged as a ‘Crash’ (𝑦𝑦 = 1) if the ego vehicle loses control (crosses lane lines), experiences lateral 

acceleration above 0.3g, or makes contact with any other actor within the simulation. Since our 

goal is to maximize the mutual information, we follow the sequential design strategy given in 

Bayesian Optimization for Scenario Exploration
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Section 4.3.3 and find the next best concrete scenario 𝒅𝒅𝑡𝑡∗ with utility 𝑈𝑈�𝑡𝑡(𝒅𝒅∗). In our evaluations 

with BOSE, although several architectures for Bayesian DNN were tried, we only provide details 

for the best-performing architecture. We obtained the best results when the Bayesian DNN is 

designed using two layers with four and one neuron(s) each. The Bayesian DNN is then trained 

for 20 epochs using the ADAM optimizer with a dropout rate of 50% per layer while trying to 

minimize the binary classification loss at every iteration of BOSE. We set 𝑁𝑁 = 500 in all our 

experiments. The initial training data {𝒅𝒅1:𝑡𝑡−1,𝑦𝑦1:𝑡𝑡−1} is generated by sequentially simulating and 

observing 𝑡𝑡 − 1 concrete scenarios in an autonomous driving simulator, CARLA [184]. As can be 

seen in Algorithm I, 𝛾𝛾 when set to lower values, provides a better understanding of the underlying 

functional scenario at the expense of simulation resources. In our experiments, 𝛾𝛾, when set to 0.1, 

achieved the best trade-off by accurately predicting outcomes given a concrete scenario 𝒅𝒅.  

4.4 Case Study Using A Custom ADS 

In this section, we evaluate and benchmark the proposed algorithm using a custom Level 

V ADS and two complex, multi-dimensional functional scenarios. In this work, we evaluate all 

methods by defining several concrete scenarios from a given functional scenario using the 

ontological process defined by Menzel et al. [245]. More specifically, a selected functional 

scenario is decomposed into 𝑝𝑝 critical design parameters, such that 𝒅𝒅 ∈  ℝ𝑝𝑝. The defined concrete 

scenarios 𝒅𝒅 are then simulated in CARLA and the response 𝑦𝑦 is recorded. 
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4.4.1 Low-Dimensional Scenario 

 
Figure 4-4  Underlying scenario typology for Scenario A. The ‘red’ solid line shows the expected path of the 
motorcyclist while the dotted ‘green’ line shows the expected path followed by ego vehicle under ‘Normal’ 
circumstances. 

Functional Scenario Description: Ego vehicle attempts to negotiate a curve in an urban area, in 

daylight, under wet weather conditions, and then loses control leading to a crash with an oncoming 

motorcyclist. We refer to this scenario as Scenario A in this work and is explained visually using 

Figure 4-4. 

Table 4-4 Parameter Ranges for Scenario A 

Parameter Range Unit Characteristic 

Max ego vehicle speed [30-40] KPH Influences vehicle control. 
ADS proximity threshold [8-30] Meters Influences sensor outputs 
ADS Minimum Time-to-
Collision (ADS minTTC) [2-6] Seconds Influences braking behavior 

ADS safe braking distance [2-5] Meters 
 

Each concrete scenario for functional Scenario A is defined using four critical parameters 

in our experiments. These are given in Table 4-4. These parameters and their ranges are of high 

interest to us and are extracted from naturalistic driving studies such as [195], [200], [202], [212]. 

While the ‘Max Ego Speed’ variable controls the maximum speed the ego vehicle can achieve, a 

combination of the remaining three variables controls the ego vehicle policy. Therefore, a 

combination of the four given variables sufficiently characterize the behavior of the ego vehicle 

given functional Scenario A. Furthermore, to avoid confounding effects, the motorcyclist and the 

Ego Vehicle

Motorcyclist

Scenario A
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ego vehicle always start from the same location on the map and the motorcyclist follows the same 

speed profile when handling the curve in all our simulations.  Finally, based on our computing 

budget, we set 𝑘𝑘 = 165 and 𝑡𝑡 =  50 (~30% of the design space 𝑫𝑫) for experiments with Scenario 

A. The goal, therefore, is to completely explore the given scenario by identifying a decision 

boundary that can sufficiently separate ‘Crashes’ (𝑦𝑦 = 1) from ‘Normal’ (𝑦𝑦 = 0) scenarios, given 

a scenario space 𝑫𝑫. 

 
Figure 4-5 Performance comparison of BOSE with other benchmarked methods for functional Scenario A. 

In our experiments, we evaluate and benchmark the proposed method across other well-

known active learning methods such as Uncertainty Sampling (US), Margin Sampling (MS), and 

Entropy Sampling (ES) [268]. All of these methods are implemented using their default values in 

the modAL toolbox [269] and use the same DNN architecture and training strategy as given in 

Section 4.3.  Next, we create a test set of 100 random concrete scenarios for Scenario A and 

evaluate the mentioned traditional active learning methods along with the BaysOptMinPoint 

(BOMP) method [22]. Sufficient care is taken to exclude these 100 test scenarios from those given 

in 𝑫𝑫. For a fair comparison, we set a budget of 100 concrete scenario simulations with 𝑇𝑇𝑈𝑈 = 100. 

In our experiments with the test set, BOSE is shown to clearly outperform the other benchmark 

methods. As can be seen in Table 4-5, although the traditional active learning methods perform 

fairly well, BOMP and BOSE clearly outperform them reaching test accuracies over 90% within 
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the first 50 concrete scenario simulations. This is primarily due to the advantages of the Bayesian 

strategies leveraged by these methods. 

Table 4-5 Comparison of Performance for Scenario A 

Model 
Maximum Test 

Accuracy 
(%) 

Scenarios 
Simulated 

to reach 90% 
Test Accuracy 

Time per 
Iteration 

(Secs) 

Total 
Run Time (Secs) 

Uncertainty Sampling (US) 90.8 100 0.3 1530.0 
Margin Sampling (MS) 90.1 96 0.3 1468.8 
Entropy Sampling (ES) 93.6 45 0.3 688.5 

BaysOptMinPoint (BOMP) 94.8 23 0.6 372.6 
BOSE 97.1 16 1.6 265.6 

 

While any scenario exploration method needs to be accurate, it is our high interest to 

analyze whether it is scalable and robust. Therefore, we compare and report the average 

performance of all tested methods averaged over five runs for functional Scenario A in Table 4-5. 

As can be seen in this table and figure, BOSE only needs about 16 concrete scenario simulations 

to achieve a test accuracy of 90% thus reducing the need for simulations by over 30% over the 

closest benchmarked method. While BOSE is marginally slower than BOMP on an iteration basis, 

it is about 107 secs faster than the BaysOptMinPoint method when total run time is considered. 

This is primarily due to the overhead incurred in running additional simulations since the simulator 

needs about 15 secs to simulate every concrete scenario for Scenario A.  

 

   
(a) (b) (c) 

Figure 4-6  Progression of decision boundaries after, (a) 40 simulations, (b) 60 simulations, and (c) after convergence 
for BOSE and the BaysOptMinPoint method. Here, ‘yellow’ dots represent ‘Crash’ scenarios where y=1, and purple 
dots represent ‘Normal’ scenario. 

BOSEBOSE BaysOptMinPoint(BOMP) BOSE BaysOptMinPoint(BOMP) BOSE BaysOptMinPoint(BOMP)
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To better understand the decision-making process of BOSE given scenario A, we re-run 

the top two methods, i.e., the BOMP method and BOSE with 𝑇𝑇𝑈𝑈 = 500 and only stop when 

convergence is achieved where 𝑈𝑈�𝑡𝑡(𝒅𝒅∗) ≤ 𝛾𝛾. Here, we find a high correlation between the 

outcomes of the simulated concrete scenarios and two design parameters, namely, (i) Max Ego 

Vehicle Speed and (ii) ADS Proximity Threshold. As can be seen in Figure 4-6, due to its ability 

to define robust priors, BOSE is quick to identify an interaction between these two variables and 

establish a decision boundary. As a result, while it takes 60 simulations for BOSE to converge, it 

takes about 116 simulations for BOMP to converge. Here, in contrast to BOSE, BOMP starts from 

random initial states and spends much of its initial effort in understanding the scenario space. The 

LHS-driven initializations within BOSE help it overcome this drawback by performing better 

exploratory experiments during its initial phase. As can be seen in Figure 4-8, while BOSE 

performs well-targeted experiments that help it establish a clear decision boundary, much of the 

initial effort by the benchmarked method is spent in randomly exploring the space. Often, scenarios 

are more complicated and involve two or more participants. Therefore, in the following section, 

we evaluate the proposed method on a complex multi-dimensional scenario characterized by 

several design parameters and multiple actors. 

4.4.2 High-Dimensional Scenario 

Functional Scenario Description: Ego vehicle attempts to negotiate a roundabout in an urban area 

under daylight and then crashes with one of the two vehicles violating a roundabout yield. We 

refer to this scenario as Scenario B in this work and is explained visually using Figure 4-7. 

In our experiments, Scenario B can be decomposed into several concrete scenarios using 

the twelve parameters given in Table 4-6. The parameters and their ranges are of high interest to 

us and are extracted from naturalistic driving studies such as [195], [200], [202], [212]. While the  
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Figure 4-7 Underlying scenario typology for Scenario B. The ‘red’ solid line shows the expected path of both vehicle 
violating roundabout yield, while the dotted ‘green’ line shows the expected path followed by ego vehicle under 
‘Normal’ circumstances. 

Table 4-6 Parameter Ranges for Scenario B 

Parameter Range Unit Characteristic 

Ego Vehicle 
Max vehicle velocity (𝑣𝑣𝑒𝑒) [20-50] KPH Influences vehicle control. 
ADS proximity threshold [8-30] Meters Influences sensor outputs 

ADS Minimum Time-to-Collision (ADS 
minTTC) [2-6] Seconds Influences braking behavior 

ADS safe braking distance (𝑏𝑏𝑒𝑒) [2-5] Meters 
Vehicle 1 

Max Vehicle velocity (𝑣𝑣1) [14-42] KPH 

Influences the probability and the 
severity of crash near  

the round about 

Initial distance of vehicle from ego vehicle in 
y-direction (𝑑𝑑𝑑𝑑1) [24-32] Meters 

Initial distance of vehicle from ego vehicle in 
y-direction (𝑑𝑑𝑑𝑑1) [21-38]  

ADS safe braking distance (𝑏𝑏1) [2-5] Meters Influences braking behavior 
Vehicle 2 

Max Vehicle velocity (𝑣𝑣2) [25-40] KPH 
Influences the probability and the 

severity of crash 
 near the round about 

Initial distance of vehicle from ego vehicle in 
y-direction (𝑑𝑑𝑑𝑑2) [32-50] Meters 

Initial distance of vehicle from ego vehicle in 
y-direction (𝑑𝑑𝑑𝑑2) [26-38] Meters 

ADS safe braking distance (𝑏𝑏2) [2-5] Meters Influences braking behavior 
 

ego vehicle parameters influence the behavior and response of the ego vehicle, a complex 

combination of the remaining eight parameters influence the behavior of the two adversary 

vehicles, namely, ‘Vehicle 1’ and ‘Vehicle 2.’ Variables such as 𝑑𝑑𝑥𝑥1, 𝑑𝑑𝑦𝑦1,𝑑𝑑𝑥𝑥2, and 𝑑𝑑𝑦𝑦2 can then 

be used to change the locations of ‘Vehicle 1’ and ‘Vehicle 2’, respectively. Note that ‘Vehicle 1’ 

and ‘Vehicle 2’ will always attempt to violate the roundabout yield but may perform precautionary 

braking. Thus, a scenario is tagged as a ‘Crash’ or ‘Normal’ using the same criteria in Section 4.3. 

Ego Vehicle

Vehicle 2

Scenario B

Vehicle 1

y-axis

x-axis
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Finally, based on our computing budget, we set 𝑘𝑘 = 350 and 𝑡𝑡 =  105 (~30% of the design space 

𝑫𝑫) for experiments with Scenario B. 

 
Figure 4-8 Performance comparison of BOSE with other benchmarked methods for Scenario B. 

In our experiments, we benchmark the proposed method across other well-known active 

learning methods using a test set of 100 random concrete scenarios for Scenario B. Sufficient care 

is taken to exclude these 100 test scenarios from those given in 𝑫𝑫. In our experiments with this 

test set, BOSE clearly outperforms the other benchmark methods. As can be seen in Figure 4-8, 

the high dimensionality of the underlying functional scenario overwhelms the traditional active 

learning methods. They, thus, barely cross the 75% test accuracy barrier when given a budget of 

100 concrete scenario simulations. On the other hand, the BOMP method performs slightly better 

reaching a maximum accuracy of 78% but only after 79 concrete scenario simulations. While no 

method is able to cross the 90% test accuracy barrier, BOSE clearly outperforms all benchmarked 

methods achieving a maximum test accuracy of 83.2%. As can be seen in Table 4-7 and Figure 

4-8, BOSE only needs 19 concrete scenario simulations to achieve a test accuracy of 75% thus 

reducing the need for simulations by over 43% over the closest benchmarked method. However, 

in comparison to Scenario A, the improvement in test accuracy is much slower for BOSE and all 

benchmark methods. This may be primarily due to the complex interactions that exist in Scenario 

B. While BOSE is slower on an iteration basis, it is about 243 secs faster than the BOMP method 
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when total run time is considered (averaged over 5 runs). This is primarily due to the overhead 

incurred in running additional simulations since the simulator needs about 20 secs to simulate 

every concrete scenario for Scenario B. 

Table 4-7 Comparison of Performance for Scenario B 

Model 
Maximum Test 

Accuracy 
(%) 

Scenarios 
Simulated 

to reach 75% Test 
Accuracy  

Time per 
Iteration 

(Secs) 

Total 
Run Time (Secs) 

Uncertainty Sampling (US) 75.1 86 20.7 1780.2 
Margin Sampling (MS) 75.0 84 20.7 1738.8 
Entropy Sampling (ES) 75.3 84 20.7 1738.8 

BaysOptMinPoint (BOMP) 78.6 32 21.2 678.4 
BOSE 83.2 19 22.9 435.1 

 

To better understand the decision-making process of BOSE given scenario B, we re-run 

the top two methods, i.e., the BOMP method and BOSE with 𝑇𝑇𝑈𝑈 = 500 and only stop when 

convergence is achieved where 𝑈𝑈�𝑡𝑡(𝒅𝒅∗) ≤ 𝛾𝛾. While BOSE can achieve convergence after 101 

scenarios, BOMP requires over 200 scenarios. While the LHS-driven initializations help in 

improving the exploratory performance, the Bayesian DNN within BOSE helps in quickly 

identifying the multi-dimensional clusters in the underlying scenario space. It is thus able to 

develop a robust prior over the design space 𝑫𝑫. This helps BOSE quickly explore and search the 

scenario space. 

 As mentioned earlier, a complex interaction exists between the twelve design variables 

mentioned in Table 4-6. Thus, due to the complexity of the underlying scenario, it may be 

challenging to visualize a clean decision boundary in two dimensions. Figure 4-9 can be used to 

visualize some of these complex interactions identified by BOSE that exist in the underlying 

scenario space. Therefore, we have a sufficient belief to hypothesize that a decision boundary in 

higher dimensions may exist that the scenario exploration methods should be able to identify. 
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Figure 4-9 can be used to visualize some examples of concrete scenarios, their predicted, and 

observed outcomes. 

   
(a) (b) (c) 

Figure 4-9 Risky clusters with high probability of crashes identified by BOSE in (a) 𝑑𝑑𝑥𝑥1 and 𝑣𝑣2, (b) 𝑣𝑣1 and 𝑑𝑑𝑥𝑥2, and 
(c) 𝑑𝑑𝑦𝑦1 and 𝑑𝑑𝑦𝑦2. Here, ‘yellow’ dots represent ‘crash’ scenarios where y=1, and purple dots represent ‘normal’ 
scenarios where y=0. 

4.5 Conclusion 

Traditional test approaches are often deemed insufficient when testing modern systems that 

involve a myriad of AI-driven subsystems. One example of such systems are the ADSs in AVs. 

Therefore, modeling and predicting anomalous behavior becomes challenging. To overcome this 

challenge, traditional methods use scenario-based tests. However, given the infinite-dimensional 

nature of the ADS, scaling the traditional ‘V-model’ to identify and predict emergent behavior is 

challenging. Therefore, to improve over this limitation, in this work, we propose the Bayesian 

Optimization for Scenario Exploration (BOSE) framework. BOSE is an automated, purpose-

driven, search-based framework that uses Bayesian theories and LHS-driven initializations to 

explore the scenario space efficiently and identify complex interactions in an ADS. In tests with a 

custom Level V ADS, BOSE performed fast and accurate scenario exploration, reducing 

simulation needs by more than 30% over state-of-the-art methods. For future work, we plan to 

evaluate this work using more complex scenarios while attempting to improve its inference speed.

Risky clusters

Risky cluster

Risky clusters



 82 

Chapter 5 Collaborative Modeling using Infrastructure Information for Improved 

Predictive Analytics in Autonomous Vehicles 

V2V and V2I communications are vital components of AVs. Such technologies enable 

these vehicles to communicate with each other (V2V) and with infrastructure (V2I), creating a 

network of interconnected devices that can provide valuable information of the driving 

environment. Advancements in V2I and V2V technologies offer a path to limiting the uncertainties 

in an AV’s systems. However, these systems do not use AI models that leverage such information 

since publicly available datasets do not include explicit annotations for infrastructure and pooled 

vehicle data. To overcome these challenges, in this work, we first introduce VTrackIt, the first 

comprehensive synthetic dataset, which explicitly includes annotations for intelligent 

infrastructure and pooled vehicle information. Next, to demonstrate the effectiveness of 

collaborative modeling, we introduce InfraGAN. InfraGAN is a novel deep learning model that 

uses the information provided in the VTrackIt dataset for accurate trajectory predictions. Our 

experiments with InfraGAN showcase the power of VTrackIt and its data. With VTrackIt and 

InfraGAN, this work lays the foundation for the development of informed applications that support 

higher levels of connected, safer, and reliable AVs. 
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5.1 Introduction 

 
Figure 5-1 An overview of the VTrackIt dataset with infrastructure and pooled vehicle information. Observed 
trajectories are labeled as ‘History’ and future trajectories are labeled as ‘Ground Truth’. Predicted trajectories using 
state-of-the-art benchmark (without infrastructure and pooled vehicle information) are labeled as ‘Before.’ Predicted 
trajectories using infrastructure and pooled vehicle information in VTrackIt are labeled as ‘After.’ 

Advancements in electronic and communication technologies will soon help realize near 

real-time Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) data transfer [165]. These 

technologies provide an unprecedented opportunity to limit the uncertainties in an AV’s systems 

by relaying accurate and reliable data, even in adverse situations [30], [166]. Examples of V2V 

data include speed, heading, and pedal positions. Examples of V2I data include red light status, 

speed limits, and lane data [167]. Vehicle-to-Everything (V2X) encompasses both V2V and V2I 

data [32], [33], [168]. Therefore, it is evident that V2X data will be necessary for higher levels of 

safe, resilient, robust, and reliable autonomous driving. Multiple research efforts have explored 

the potential of infrastructure and pooled vehicle information to develop individual AV 

applications [32], [33], [168]–[171]. A detailed review by Jeong et al. [172] summarizes many of 

these research efforts. Unfortunately, the broad availability of public datasets with explicit 

annotations for infrastructure and pooled vehicle information is limited to large-scale industrial 

efforts in the form of proprietary collected data [69]. This limits the progress within the self-driving 

community to develop reliable models for AV applications that support higher levels of 

autonomous driving. To address this research challenge, we introduce a synthetically generated 
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self-driving dataset named VTrackIt [89]. The name VTrackIt reflects tracking infrastructure and 

surrounding vehicle information in real-time. VTrackIt aims to attract the attention of the larger 

self-driving community to integrate infrastructure and pooled vehicle information in their AV 

applications for safer and more reliable autonomous driving. Moreover, VTrackIt also contains 

out-of-distribution data to expose the developed models to rare, high-risk edge cases. The 

VTrackIt2 dataset is publicly available for use upon request [89].  

VTrackIt is inspired by existing datasets like Level5 [69], NuScenes [173], Argoverse 

[174], ApolloScape [175], Waymo [176], DAIR-V2X [177], AIODrive [178], and V2X-Sim [31]. 

However, Argoverse, NuScenes, ApolloScape, AIODrive, V2X-Sim, and DAIR-V2X do not 

provide explicit tags for relevant infrastructure information like lane line annotations, lane widths, 

speed limits, stop signs, and many more. In contrast, it is assumed that such information can be 

sensed using perception sensors in an AV. However, extracting such information from collected 

perception data is complemented by severe uncertainties due to the non-deterministic nature of DL 

models involved [179]. One dataset that seems to record relevant infrastructure information is the 

Level5 dataset; however, it fails to provide data from a pool of surrounding vehicles like speed, 

lateral and longitudinal accelerations, and pedal positions, among others. It is worth noting that 

although some datasets offer semantic maps, they are biased to scenarios within their given 

Operational Design Domain (ODD) [69], [174], [176]. Furthermore, they lack out-of-distribution 

data and thus introduce an inherent training bias in the developed DL models [178]. VTrackIt 

provides a more comprehensive vision of integrating infrastructure and pooled vehicle 

information. In our work, we validate these advantages of VTrackIt by developing a Generative 

Adversarial Network (GAN) called InfraGAN for trajectory predictions. Our experiments with 

 
2 https://vtrackit.irda.club/ 
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InfraGAN show that accuracy and high-risk edge cases can be reduced by training DL models 

using data from the VTrackIt dataset. The contributions of this work are multifold: 

1. A large-scale, synthetic, self-driving dataset with infrastructure and pooled vehicle 

information. 

2. Inclusion of high-risk out-of-distribution data, that complements and expands beyond 

real-world datasets. 

3. A video database with high-resolution Birds-Eye-View (BEV) and 360° views of the ego 

vehicle for better scenario understanding and visualizations. 

4. The first GAN (InfraGAN) that integrates infrastructure and pooled vehicle information 

for trajectory predictions. 

We acknowledge that synthetically generated datasets will not replace real-world datasets. 

We also acknowledge that presently it is hard to integrate or access such information in real-time. 

Therefore, VTrackIt and other similar synthetic datasets should be used to explore the benefits that 

infrastructure and pooled vehicle information may provide before being integrated into real-world 

AV applications. 

5.2 Existing Datasets and Related Work 

5.2.1 Real-world Driving Datasets  

NGSIM [180] is one of the earliest naturalistic self-driving datasets used to develop several 

Machine Learning (ML) solutions. This dataset provides limited infrastructure information such 

as lane ids, lane section id, and lane direction. Provided surrounding vehicle information includes 

vehicle extents, class, speed, and accelerations. This data is captured at 10 Frames-Per-Second 

(FPS). However, NGSIM is limited by rigid location constraints using a small section on the 

southbound US-101 and Lankershim Boulevard in Los Angeles, CA, eastbound I-80 in 
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Emeryville, CA, and Peachtree Street in Atlanta, Georgia. Huang et al. [175]  proposed the 

ApolloScape dataset that logs over 2 hours of driving, including 103 scenarios with complex 

vehicle and pedestrian traffic flows captured at 2 FPS. However, ApolloScape does not include 

annotations for relevant infrastructure information. Chang et al. [174] proposed Argoverse, the 

first large-scale self-driving dataset with detailed semantic maps for the cities of Pittsburgh and 

Miami captured at 10 FPS. Although the Argoverse dataset logs about 320 hours of driving across 

324k scenarios using a semantic map encoded with lane centers, it fails to explicitly annotate 

crucial infrastructure information such as lane line type, color, among others. Instead, it is assumed 

that the provided semantic maps implicitly carry such information. The Argoverse dataset is 

supplemented by rasterized maps identifying drivable areas and corresponding ground height 

information. In a major limitation, this dataset represents traffic vehicles using centroids, and no 

other information is provided apart from their locations. The Argoverse dataset also fails to offer 

detailed surrounding vehicle information. Houston et al. [69] proposed the Level5 dataset that 

logged 1,118 hours of driving across 170k scenes with some surrounding vehicle information 

captured at 10 FPS. This dataset provides semantic maps with limited infrastructure information. 

A significant limitation of this dataset is its bias toward a single heavily trafficked route under 

rigid location constraints. Holger et al. [173] released the NuScenes dataset that logged over 15 

hours of driving across 1000 scenarios captured at 2 FPS. The NuScenes dataset includes 

annotations for vehicle category, locations, extents, and yaw for a pool of surrounding vehicles. 

However, only limited infrastructure information is provided. Another heavily used dataset for 

developing DL solutions for AVs is the KITTI dataset [181] which logged 22 minutes of driving 

captured at 10 FPS. Osinski et al. [182] proposed the OpenDD dataset with 501 scenarios recorded 

at 30 FPS; however, again, with limited infrastructure information. IntentNet [183] is a dataset 
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used to develop DL solutions for AV applications but is not publicly available. More recently, 

datasets such as the DAIR-V2X [177] have also been released. While such datasets support 

cooperative autonomous driving using V2I and V2V information, they lack explicit annotation for 

several important V2I and V2V features. In summary, although important, real-world datasets need 

to be complemented by synthetic datasets to include out-of-distribution data that maybe hard to 

collect due safety or regulatory reasons. 

5.2.2 Synthetic Driving Datasets 

To expose the DL algorithms in AV applications to such risky scenarios, some work has 

also been done to collect synthetic data using state-of-art simulators such as CARLA [184]. For 

example, Weng et al. [178] released the AIODrive dataset. Although this dataset includes data 

from different synchronized sensors, it lacks infrastructure information, lacks diversity in road 

conditions. Xu et al. [185] introduced the OPV2V dataset with 73 interesting scenarios; however, 

this dataset does not investigate use of infrastructure information. KITTI-CARLA [186] is another 

publicly available synthetic dataset that records information identical to the KITTI dataset over 

seven simulated scenarios at 10 FPS. Some other synthetic datasets such as V2X-Sim [187], 

CODD [188], and Copper [189] have also been made publicly available using simulation-based 

environments in recent years. However, most of these datasets are purpose-driven and only focus 

on LiDAR and/or perception-driven tasks. Moreover, they also lack explicit annotations for 

surrounding vehicle and infrastructure information. Table 5-1 presents an overview of all 

significant datasets used to develop several modern AV applications. While multiple efforts collect 

limited information from surrounding vehicles, there is a clear gap of annotating and leveraging 

infrastructure information for most of the discussed datasets. Next, we introduce the VTrackIt 

dataset. 
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Table 5-1 Comparison of Major Driving Datasets for Autonomous Vehicle Applications 
Variable 

 
Dataset 

Scenarios Maps Synthetic Frequency  
(FPS) BEV 

V2V 
Info. 
Tags 

V2I 
Info. 
Tags 

Diverse 
Road 

Conditions 

Low  
Light 

Conditions 

Level5 170k; 
25s each 

Single route 
in Palo Alto, 

CA 
- 10 

  
(Aerial + 
Semantic) 

  
(Partial) - - 

NuScenes  1000; 20s 
each 

Boston, 
Singapore - 2  

(Semantic)  -   

Argoverse  324k; 
6s each 

Pittsburgh, 
Pa /Miami, 

FL 
- 10  

(Semantic) -  
(Partial)   

ApolloScape 103; 
60s each China - 2 -  - -  

DAIR-V2X 350; 
60s each 

City, 
highway and 
Intersections 
typologies 

- 20 -  
(Partial) 

 
(Partial)  - 

AIODrive  100; 
100s each 

8 Virtual 
maps with 

varying 
typologies 

 10 -  -   

NGSIM  - 

Sections of 
US-101, and 

I-80 
highways 

- 10 -   
(Partial) - - 

KITTI 50 Karlsruhe - 10   - - - 

OpenDD  
501; 

5-15 min 
each 

7 Round-
abouts - 30 

  
(Aerial + 
Semantic) 

 - -  

V2X-Sim  100;  
20s each 

3 virtual 
maps with 

varying 
typologies 

 20 
  

(Aerial + 
Semantic) 

 
(Partial) 

 
(Partial) - - 

VTrackIt 
(Proposed) 

600; 
30s each 

6 virtual 
maps with 

varying 
typologies 

 20  (Aerial)     

 

5.3 The VTrackIt Dataset 

The VTrackIt dataset consists of 600 scenarios (360 training, 120 validation, and 120 test), 

each recorded for a maximum of 30 seconds (the duration of some out-of-distribution scenarios 

where the ego vehicle had a crash may be less than 30 seconds.) Uniquely, VTrackIt tracks and 

provides annotations for infrastructure information. Further, it also provides annotations for 
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information collected from a pool of vehicles surrounding the ego vehicle within a 50-meter radius. 

All scenarios in VTrackIt are generated using the CARLA simulator 0.9.13 [184]. Although 

several state-of-art simulators such as Nvidia DriveSim3, Autonovi-sim [190], and GTA-V [191] 

exist, these simulators are not open source and may limit the future extension of this dataset. 

Although simulators such as TORCS [192] and AirSim [193] are publicly available, they offer 

limited sensor suites and lack the photorealistic rendering capabilities needed to train modern 

perception-based DL algorithms. Due to its seamless integration with Unreal Engine4, CARLA 

offers several advantages over other mentioned simulators, such as (i) enhanced realism, (ii) 

sophisticated vehicle dynamics, (iii) map customizations, and (iv) realistic traffic customizations. 

The VTrackIt dataset only includes information from RGB sensors at this time since the 

information extracted from other sensors such as LiDAR and Radar are readily available in the 

V2I and V2V tags with no uncertainty. The VTrackIt dataset is generated using ‘DirectSim,’ a 

custom synthetic scenario generation platform that will be released soon and is considered to be 

out-of-scope in this discussion. 

5.3.1 Sensing Package, Lane Annotations, and Aerial BEV 

Table 5-2 Sensing Package 
Sensor Sensor Position 

Code 
Location (in m) Sensor Details X Y Z 

RGB Camera (Front) a 0.90 0.0 1.44 
Forward facing stereo camera 

with 120° field-of-view. RGB Camera (Right) b 0.90 1.20 1.44 
RGB Camera (Left) c 0.90 -1.20 1.44 
RGB Camera (Rear) d -0.90 -1.20 1.44 

IMU e 0.0 0.0 0.0 
Inertial measurement sensor 

to record ego vehicle 
information. 

GNSS e 0.0 0.0 0.0 
Global navigation sensor 
used to record ego vehicle 

pose information. 

 
3 https://developer.nvidia.com/drive/simulation 
4 https://www.unrealengine.com/ 
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To generate synthetic data for the VTrackIt dataset, we equip the ego vehicle (Tesla Model 

3) with four highly synchronized RGB cameras, one IMU, and one GNSS sensor. Specifications 

of the sensing package are given in Table 5-2. Figure 5-2 visualizes the sensor positions and their 

orientations from the vehicle center as defined in CARLA. While the four RGB cameras with 120° 

Field-of-View (FoV) provide a 360° view around the ego vehicle, VTrackIt also provides an aerial 

BEV of the ego vehicle. All scenarios are captured and tagged at 20 FPS. 

 
Figure 5-2 Co-ordinate system for data recorded and locations of sensors with their respective sensor codes in the 
VTrackIt dataset. 

 
Figure 5-3 360-degree perception coverage around the ego vehicle using four RGB cameras. 

Data from the surrounding vehicles can thus be used to train DL solutions for AVs in 

addition to the ego vehicle data. Therefore, in addition to the provided perception information, 

VTrackIt also includes annotations for surrounding vehicle information, including their locations 

(x, y, and z), attributes, color, extents (length, width, and height), heading, steer, throttle, and brake 

pedal positions, along with the relative position from the center of the ego vehicle to the center of 

Left View

Front View

Rear View

Right View



 91 

the tracked traffic vehicle. Furthermore, VTrackIt also annotates several infrastructure information 

variables, including lane line color and lane line type on both sides, possible maneuvers (lane 

restrictions), lane width, vehicle deviation from the centerline, and red-light status. Such data is 

provided for the ego vehicle and a pool of surrounding vehicles. Table 5-3 provides detailed 

information on all annotated variables, data types, ranges, and measurement units. A brief 

description of each variable can also be seen in Table 5-3. Figure 5-3 shows a sample frame in a 

random scenario captured by all four RGB cameras giving the ego vehicle a 360° view of its 

surroundings. Note that each variable is annotated with a corresponding frame number that helps 

synchronize perception-based sensor information with other variables in the VTrackIt dataset. 

In our experiments with ‘VTrackIt,’ we equip the ego vehicle with four highly 

synchronized RGB cameras, one IMU, and one GNSS sensor. Specifications of all attached 

sensors are given in Table 5-2. Figure 5-2 visualizes the sensor positions and their orientations 

from the vehicle center as defined in CARLA. While the four RGB cameras provide a 360° view 

around the vehicle, we also provide an aerial BEV of the ego vehicle. All sequences are recorded 

and tagged at 20 FPS along with corresponding IMU and GNSS measurements. In addition to 

RGB images, we also provide advanced vehicle information for all tracked vehicles, including 

their locations, attributes, color, extents, heading, steer, throttle, brake pedal positions, along with 

the relative position from the center of the ego vehicle. Recorded lane information includes lane 

line color and lane line type on both sides, lane type, possible maneuvers, lane width, vehicle 

deviation from the centerline, and red-light status. Similar lane information is also provided for all 

tracked vehicles surrounding the ego vehicle. Data from these vehicles can thus be used to train 

ML algorithms in addition to the ego vehicle data. 

 

 



 92 

Table 5-3 Details of Variables Recorded at Every Frame in the VTrackIt Dataset 

Recorded Property Data 
Type Description Range / Possible 

Values 
Unit of 

Measurement 

timestamp Float Time stamp of the measurement 
[0,inf) 

Increments by 
0.05 

Seconds 

frame Integer Frame number of measurement [0,inf) 
Increments by 1 - 

actor_id Integer Unique id given to every actor in simulation [0,inf) - 

actor_type String Identifier given to distinguish ego vehicle 
from traffic vehicles Ego / Traffic - 

attr String Classification of vehicle in CARLA 
standards  - 

color Tuple RGB values of given actor (0-255,0-255,0-
255) - 

pos_x Float Global location of given actor along X-axis 
in cartesian co-ordinate system [-inf,inf] Meters 

pos_y Float Global location of actor along Y-axis in 
cartesian co-ordinate system [-inf,inf] Meters 

pos_z Float Global location of actor along Z-axis in 
cartesian co-ordinate system [-inf,inf] Meters 

heading Float Global heading of actor relative to true 
North (0,360] Degrees 

extents List Actor length and width measured end-to-
end [0,inf] Meters 

speed Float Actor speed - KMPH 
acceleration List Actor acceleration in X and Y-axis - 𝑚𝑚/𝑠𝑠2 

throttle Float Throttle pedal position for a given actor (0,1) - 
steer Float Steer angle for a given actor (-1,1) - 
brake Float Brake pedal position a given actor (0,1) - 

red_light Binary Unique identifier that is set to ‘1’ if the 
vehicle is directly affected by a red light. 0/1 - 

rel_angle Float 
Relative angle of a traffic vehicle measured 
from the center of ego vehicle; for example, 

vehicle in front is 90° 
(0,360] Degrees 

rel_x Float 
Relative position of a traffic vehicle 

measured from the center of ego vehicle 
along its y-axis; 

(0,50) Meters 

rel_y Float 
Relative position of a traffic vehicle 

measured from the center of ego vehicle 
along its x-axis 

(0,50) Meters 

lane_type String Lane type affecting actor location Driving / Junction 
/ Shoulder - 

right_lane_mark_type String Right lane marking type affecting given 
actor location 

Solid / Broken / 
SolidSolid / 

NONE 
- 

right_lane_mark_color String Right lane marking color affecting given 
actor location White / Yellow - 

left_lane_mark_type String Left lane marking type affecting given actor 
location 

Solid / Broken / 
SolidSolid / 

NONE 
- 

left_lane_mark_color String Left lane marking color affecting given 
actor location White / Yellow - 

possible_manuvers String Permissible lane changes for a given actor 
based on its location 

Left / Right / Both 
/ None - 

lane_width Float Width of driving lane based on given actor 
location (0,inf] Meters 

off_center Float Deviations along lane center lines recorded 
in along given actor’s X-axis. (0,inf] Meters 
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5.3.2 Diversity in Weather and Typologies 

A significant limitation of existing synthetic datasets is their lack of ability to replicate real-

world driving conditions. Thus, it is of high interest to, (i) simulate scenarios that depict close to 

real-life road typologies, and (ii) simulate scenarios that adequately consider the interaction of 

vehicles with their surrounding environment. Furthermore, a synthetic dataset such as VTrackIt 

must also include scenarios under varying operating conditions, including those induced by 

adverse weather. We thus randomize the weather in different maps in VTrackIt. Typically, we 

define and randomly sample weather from various weather conditions ranging from noon to sunset, 

clear to foggy, and from dry to wet. We also modify the road friction to closely mimic real-life 

conditions based on values given by Hall et al. [194] for wet weather scenarios. Figure 5-4 

visualizes some of these weather conditions. Table 5-4 details various CARLA maps in VTrackIt. 

 
Figure 5-4 Diverse set of weather and typologies included in the VTrackIt dataset. 

Table 5-4 Map and Road Features 

Map Name Location Salient Road Features 

Town01 Low density urban (20-45 kmph ) 3-way intersections, single-lane roads, traffic lights, 
and stop signs. 

Town03 Urban-Highway (20-90kmph) 5-lane intersections, roundabouts, uneven grades, 
tunnels, highways, traffic lights, and stop signs. 

Town04 Highway 
(20-90kmph) Lane merges, highway ramps, 4-way junctions. 

Town05 Hybrid 
(20-90 kmph) Multiple highway and urban lanes, 4-way junctions. 

Town06 Highways 
(20-90 kmph) 

Long highways, ramps, Michigan-left, round abouts, 
lane merges. 

Town10HD Urban 
(20-45 kmph) 

High fidelity road textures, parking lanes, stop signs, 
traffic lights, pedestrian crossings, and junctions. 
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5.3.3 Traffic and Ego Vehicle Customizations 

As mentioned earlier, interactions with the surrounding environment and traffic regulations 

play a significant role in developing DL solutions for AVs. Traffic is undoubtedly one aspect of 

it. However, no two vehicles are the same in real life because of the complex interaction between 

factors such as driver behavior and intrinsic differences in the vehicle, such as tire wear, vehicle 

age, and many more. Unfortunately, most synthetically generated datasets fail to intelligently 

model such vehicle attributes and assume similar attributes for all traffic actors. In their work, 

Weng et al. [178] briefly discuss and try to address this issue. In our case, we adopt a fuzzing 

strategy and randomize every traffic actor in every scenario by varying its (i) vehicle type, (ii) 

vehicle color, (iii) minimum following distance, (iv) maximum speed over/under speed limits, (v) 

probability of ignoring other vehicles, and (vi) probability of ignoring traffic regulations, as 

defined in the CARLA documentation [184]. All of these variable values are sampled randomly 

from a uniform distribution for every variable, for every actor, in every scenario, based on real-

life values extracted from naturalistic driving studies such as [195]–[199]. Furthermore, a few 

selected vehicles in every scenario are uniquely modified using out-of-distribution values to 

represent overly aggressive and cautious drivers. Such drivers are known to pose additional risks 

to the ego vehicle that may result in edge cases. Finally, to augment the realism of wet weather 

scenarios with low friction conditions, we modify the road-surface friction values based on [194]. 

Further, we also modify the speed limits in that scenario based on naturalistic driving studies 

[200]–[202]. 

In our experiments, we use the same ego vehicle model in all scenarios to remain consistent 

with other real-life datasets. The simulator parameters for every scenario are sampled from 

predefined statistical distributions. Sampled parameters include safe distance, maximum speed 
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over/under speed limits, probability of ignoring other vehicles, and probability of ignoring traffic 

regulations. 

5.3.4 Comparisons to Real-world Datasets 

  
(a) (b) 

  
(c) (d) 

Figure 5-5 Comparison of VTrackIt dataset using – (a) traffic speed distributions from the ApolloScape, and Argoverse 
datasets (for non-stationary vehicles), (b) ego speed distribution from the Argoverse dataset (for non-stationary 
vehicles), and (c) BEV in the VTrackIt dataset, and (d) BEV in Level 5 dataset. 

In this work, we are specifically interested in replicating real-world traffic speed 

distributions and expanding beyond its right tail to encourage out-of-distribution events that may 

lead to high-risk edge cases. Such scenarios are purposely excluded in real-world driving for 

obvious safety reasons; however, this introduces a bias towards safe scenarios. As shown in Figure 

5-5 (a-b), while the ApolloScape and Argoverse datasets contain many low-speed vehicles, the 

VTrackIt dataset expands the right-tail of the distribution by spawning more medium-high speed 

vehicles. The VTrackIt dataset thus capitalizes on the power of synthetic data generation tools to 

generate a wider distribution of traffic and ego vehicles. Such vehicles are more likely to result in 

edge cases in a real-world scenario but not in a scenario released by companies promoting AV 

solutions. Finally, Figure 5-5 (c-d) shows the realism of the BEV provided by VTrackIt compared 
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to the BEV provided by the Level5 dataset. Table 5-5 highlights some salient features of the 

VTrackIt dataset compared to other state-of-the-art self-driving datasets.  

Table 5-5 Diversity of VTrackIt in Comparison with Commonly Used Self-driving Datasets 

Dataset Crashes 

Varying 
Road 

Surface 
Conditions 

Dynamic 
Speed 
Limits 

Highway 
Driving 

Traffic 
Rule 

Violations 

Average Lane 
Width (m) 

Lane 
Center 

Annotations 

360° 
Cameras 
w/ BEV 

ApolloScape -  - - - - - - 

Argoverse -  - - - 3.84(Miami); 
3.97(Pittsburgh)  - 

AIODrive  - -   3.5 - 
 

(No 
BEV) 

VTrackIT 
(Proposed)      3.5 

 
(lane 

deviations 
are given by 
‘off_center’) 

 
360° and 

BEV 

5.4 Case Study for Trajectory Predictions 

Although the VTrackIt dataset can be used for a wide range of self-driving applications, 

we focus on trajectory prediction tasks in this section. Trajectory prediction is commonly 

employed in AVs to identify vehicles that present a higher risk to the ego vehicle given its planned 

trajectory [203]. In their work, Lefèvre et al. [203] categorize all trajectory prediction models into 

three broad categories, namely, (i) Physics-based models [204], [205], (ii) Maneuver-based models 

[206]–[210] and, (iii) Interaction-aware models [58], [60], [63], [64], [66], [68], [183], [211]–

[218]. Today, Graph-based interaction-aware models leveraging semantic maps are considered 

state-of-the-art [60], [214], [219], [220]. Recently, many DL models that leverage BEV 

representations to capture complex interactions with other road agents have been proposed [20], 

[221]–[225]. Having said that, such models often ignore traffic rules’ effect due to limited access 

to infrastructure and surrounding vehicle information. Although many trajectory prediction 

approaches have been proposed [34], [35], [65], [72]–[74], in this work, we propose the first model 

(InfraGAN) that leverages infrastructure and pooled vehicle information for accurate trajectory 

predictions. As shown in Figure 5-6, InfraGAN is a two-part network that consists of an 
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interaction-aware prediction module: PGAN (Pooled-GAN) and an LSTM network with a 

Correction Module (CM). Details of the InfraGAN and its individual components are provided in 

the following sections. 

 
Figure 5-6 Overview of the InfraGAN baseline for trajectory prediction using infrastructure and pooled vehicle 
information in the VTrackIt dataset. The variables 𝑠𝑠𝑡𝑡

𝑖𝑖,1, … , 𝑠𝑠𝑡𝑡
𝑖𝑖,14 represent the 14 annotated information variables 

emboldened in  

Table 5-3. 

5.4.1 InfraGAN: PGAN Module 

The PGAN module is similar to common GAN-based DL models that consist of two 

competing LSTM-autoencoders (Generator and Discriminator) trained to achieve a zero-sum game 

where the Discriminator attempts to distinguish between generated and actual samples [20]. The 

Generator (𝐺𝐺) outputs an array of predicted trajectories (𝒀𝒀�) for several pooled vehicles 𝐺𝐺(𝑧𝑧,𝑿𝑿), 

given a random seed 𝑧𝑧 and an array of observed trajectories 𝑿𝑿. The Discriminator (𝐷𝐷) then 

classifies these predicted trajectories by returning 𝐷𝐷(𝒀𝒀�|𝑿𝑿) where 𝐷𝐷(𝒀𝒀�|𝑿𝑿) represents the 

probability that the predicted trajectories are real (from training data rather than the Generator). 

The objective of PGAN is thus to train a robust generator that outputs potential samples of 

predicted trajectories by solving the min-max problem in eq. (5-1). 

Generator

timestamp [1,2,, …, ]

pos_x [ , , …, ]

pos_y [ , , …, ]

lane_type [ , , …, ]

right_lane_mark_type [ , , …, ]

right_lane_mark_color [ , , …, ]
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left_lane_mark_color [ , , …, ]

… …

possible_maneuvers [ , , …, ]
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LSTM
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min
𝐺𝐺

max
𝐷𝐷

 𝐸𝐸𝒀𝒀�|𝑿𝑿�log𝐷𝐷�𝒀𝒀�|𝑿𝑿�� + 𝐸𝐸𝑍𝑍[log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧,𝑿𝑿)|𝑿𝑿)] (5-1) 

 

Here, 𝑿𝑿 = [𝑿𝑿1, … ,𝑿𝑿𝑛𝑛] and 𝒀𝒀 = [𝒀𝒀1, … ,𝒀𝒀𝑛𝑛], where 𝑛𝑛 is the number of pooled vehicles, including 

the ego vehicle. Let  𝑿𝑿𝑖𝑖  = ��𝑥𝑥𝑡𝑡𝑖𝑖 ,𝑦𝑦𝑡𝑡𝑖𝑖  ��𝑡𝑡≤𝑡𝑡obs  summarize the observed trajectory of vehicle 𝑖𝑖, and 

𝒀𝒀𝑖𝑖  = ��𝑥𝑥𝑡𝑡𝑖𝑖 ,𝑦𝑦𝑡𝑡𝑖𝑖 ��𝑡𝑡obs<𝑡𝑡≤𝑡𝑡obs+𝑇𝑇 summarize the actual trajectory of vehicle 𝑖𝑖, where 𝑥𝑥𝑡𝑡𝑖𝑖 and 𝑦𝑦𝑡𝑡𝑖𝑖 

represent the 𝑥𝑥 and 𝑦𝑦 co-ordinates of vehicle 𝑖𝑖. 𝑇𝑇 is the number of prediction timesteps, and 𝑧𝑧 is 

sampled from 𝒩𝒩(0,1). 

When given an input 𝑿𝑿𝑖𝑖, 𝐺𝐺 outputs a predicted trajectory 𝒀𝒀�𝑖𝑖. The Discriminator then uses 

this predicted trajectory 𝒀𝒀�𝑖𝑖 or the actual trajectory 𝒀𝒀𝑖𝑖 as input and classifies it as ‘Real’ or ‘Fake.’ 

To standardize the input data, we encode the position of a vehicle 𝑖𝑖 at time 𝑡𝑡 such that, 

𝑒𝑒𝑡𝑡𝑖𝑖 = 𝜙𝜙(𝑥𝑥𝑡𝑡𝑖𝑖 ,𝑦𝑦𝑡𝑡𝑖𝑖;𝑊𝑊𝑒𝑒𝑒𝑒) (5-2) 

 

Here, 𝜙𝜙(. ) represents a single layer, shallow neural network with ‘ReLU’ non-linearity, and 𝑊𝑊𝑒𝑒𝑒𝑒 

are the weights of the shallow neural network. The LSTM-encoder then uses 𝑒𝑒𝑡𝑡𝑖𝑖 as an input and 

produces encodings ℎ𝑡𝑡𝑒𝑒𝑒𝑒 for every vehicle 𝑖𝑖 at time 𝑡𝑡 such that, 

ℎ𝑡𝑡𝑒𝑒𝑒𝑒 = LSTMe(ℎ𝑡𝑡−1𝑒𝑒𝑒𝑒 , 𝑒𝑒𝑡𝑡𝑖𝑖;𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) (5-3) 

 

Here, 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 represents the weights of the LSTM encoder (LSTMe) that are shared between all 

input vehicles at time 𝑡𝑡 based on suggestions given by Alahi et al. [222].  The trajectory predictions 

can thus be obtained such that, 

(𝑥𝑥�𝑡𝑡𝑖𝑖,𝑦𝑦�𝑡𝑡𝑖𝑖) = 𝛾𝛾(ℎ𝑡𝑡𝑑𝑑𝑑𝑑) (5-4) 

ℎ𝑡𝑡𝑑𝑑𝑑𝑑 = LSTMd(ℎ𝑡𝑡−1𝑑𝑑𝑑𝑑 , 𝑒𝑒𝑡𝑡𝑖𝑖;𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) (5-5) 

𝑒𝑒𝑡𝑡𝑖𝑖 = 𝜙𝜙(𝑥𝑥𝑡𝑡−1𝑖𝑖 ,𝑦𝑦𝑡𝑡−1𝑖𝑖 ;𝑊𝑊𝑑𝑑𝑑𝑑) (5-6) 
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Here, 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents the weights of the LSTM-decoder (LSTMd), 𝑊𝑊𝑑𝑑𝑑𝑑 represents embedding 

weights, and 𝛾𝛾 is an MLP. The probability of a trajectory being real/fake is obtained by applying 

an MLP on the encoder’s final hidden state. Note that 𝑥𝑥�𝑡𝑡𝑖𝑖 and 𝑦𝑦�𝑡𝑡𝑖𝑖 represent the predicted 𝑥𝑥 and 𝑦𝑦 

co-ordinates for some vehicle 𝑖𝑖 at time 𝑡𝑡. While LSTM-encoder consists of 16 cells, the LSTM-

decoder consists of 32 cells.  

5.4.2 InfraGAN: Correction Module (CM) 

To leverage infrastructure and surrounding vehicle information given in the VTrackIt 

dataset, the spatial co-ordinates and 14 additional variables emboldened in Table 5-3 are given as 

input to an LSTM network with ten cells and a CM. The LSTM network combined with the CM 

reasons and corrects the PGAN predicted trajectories using this additional infrastructure and 

surrounding vehicle information, if necessary.  For example, the CM tends to correct trajectories 

that violate lane regulations or trajectories that may lead to crashes. 𝒀𝒀�𝑖𝑖 represents the trajectories 

predicted using InfraGAN and are mathematically given by the CM such that, 

𝒀𝒀�𝑖𝑖 = 𝒀𝒀�𝑖𝑖 + tanh�𝑪𝑪𝑖𝑖� ∗  𝒀𝒀�𝑖𝑖 (5-7) 

 

Here, tanh�𝑪𝑪𝑖𝑖� is the correction factor for the PGAN predictions using the LSTM network that 

utilizes the infrastructure and surrounding vehicle information provided in the VTrackIt dataset. 

The PGAN is first trained for 200 epochs to produce acceptable trajectories using both the 

adversarial loss in eq. (5-1) and the mean squared error between the predicted and actual 

trajectories. Then, the entire InfraGAN is trained to correct for PGAN predictions using the 

‘Adam’ optimizer for additional 200 epochs with an adaptive learning rate. The PGAN is expected 
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to adjust its weights to work in tandem with the LSTM network to achieve reliably corrected 

trajectories that minimize the loss function of the InfraGAN given in eq. (5-8). 

ℒInfraGAN =  ����𝒀𝒀�𝑖𝑖 −  𝒀𝒀𝑖𝑖�
2
2

+
1

‖𝑪𝑪𝑖𝑖‖1
�

𝑘𝑘𝑖𝑖

 (5-8) 

 

In all our experiments, we configure the InfraGAN to generate five likely trajectories (𝑘𝑘 =

5) for every input vehicle 𝑖𝑖 by randomly sampling 𝑧𝑧 from a standard normal distribution.  

5.4.3 Trajectory Prediction Benchmarks 

Most trajectory prediction models and AV modules operate at 2-2.5 FPS [20], [58], [67], 

[214], [226]–[228]. Thus, we down sample the VTrackIt dataset to 2.5 FPS in this case study. The 

scenarios in the VTrackIt ‘train’ and ‘val’ sets are then used to train and validate the PGAN and 

the InfraGAN models. More importantly, to avoid divergence while training the DL model, we 

exclude scenarios where the ego vehicle had a collision but may still have scenarios where 

surrounding actors collide. In all our experiments, we observe vehicle trajectory for eight timesteps 

(or 3.2 secs) and predict trajectory for the following eight timesteps unless mentioned otherwise. 

We perform evaluations during testing using the three most used criteria [174], [175], [178]. The 

Minimum Average Displacement Error (minADE) is the average displacement error for the best-

predicted trajectory over all scenarios. The Minimum Final Displacement Error (minFDE) is the 

Final Displacement Error for the best-predicted trajectory averaged over all scenarios. The Miss 

Rate is the percentage of all predicted trajectories with the final displacement error above 2.0 

meters over all scenarios. 

While the goal of this work is not to compare baseline models, it is critical to understand 

how the additional infrastructure and pooled vehicle information affects the trajectory prediction 

algorithms. Moreover, emphasis is given on analyzing the right tails of error distributions. Right 
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tails of error distributions represent infrequent cases with high errors and are typically referred to 

as ‘edge cases.’ Therefore, in our work, to provide a fair comparison to future models, we provide 

benchmarks using both: the PGAN and the InfraGAN models. Note that the results reported using 

the PGAN model do not use any infrastructure and pooled vehicle information apart from the ego 

and tracked vehicle’s 𝑥𝑥 and 𝑦𝑦 co-ordinates. As intuition suggests, the InfraGAN significantly 

improves over the PGAN by accurately predicting trajectories using the infrastructure and pooled 

vehicle information in the VTrackIt dataset. This performance gain can be seen in Figure 5-7. 

 
Figure 5-7 Performance comparison with and without infrastructure and pooled vehicle information. 

Table 5-6 can be used to verify this performance improvement using the InfraGAN over 

the PGAN when predicting 𝑘𝑘 most likely trajectories using the specified metrics. As is observed 

in similar GAN-based approaches [20], the PGAN performs significantly worse when put to the 

test using smaller values for 𝑘𝑘. Further, we also report individualized metrics for every considered 

map in the test set using Table 5-7. Table 5-8 can be used to analyze the performance of both 

considered models over varying prediction horizons. Figure 5-8 and Figure 5-9 show a clear 

improvement in the error distributions across ADE and FDE for all predicted trajectories using the 

PGAN and InfraGAN models. From these figures, we can clearly see a shorter right tail in the 

error distributions using InfraGAN. Thus, we can conclude that the infrastructure and pooled 
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vehicle information provided by VTrackIt can support the development of newer trajectory 

prediction models that experience significantly fewer edge cases. 

 

Table 5-6 Trajectory Prediction Benchmarks Using Top 𝑘𝑘 Predictions 
Metric K=1 K=3 K=5 Average 

Without Infrastructure and Pooled Vehicle Information (PGAN) 
minADE 3.19 2.11 1.87 2.39 
minFDE 7.15 4.55 3.97 5.22 

Miss Rate 0.74 0.60 0.56 0.63 
With Infrastructure and Pooled Vehicle Information (InfraGAN) 

minADE 1.56 1.56 1.55 1.55 
minFDE 3.58 3.57 3.56 3.56 

Miss Rate 0.43 0.42 0.42 0.42 
 

 

Table 5-7 Comparison of Benchmark Models on the VTrackIt Test Set Per Map 

Metric Town01 Town03 Town04 Town05 Town06 Town10 Overall 

Without Infrastructure and Pooled Vehicle Information (PGAN) 
minADE 1.50 1.93 2.74 1.13 2.45 1.62 1.87 
minFDE 3.20 4.14 5.61 2.43 5.15 3.52 3.97 

Miss Rate 0.45 0.58 0.70 0.34 0.70 0.51 0.56 
With Infrastructure and Pooled Vehicle Information (InfraGAN) 

minADE 1.29 1.69 2.07 0.91 2.33 1.20 1.55 
minFDE 2.93 3.89 4.75 2.15 5.34 2.75 3.56 

Miss Rate 0.32 0.44 0.51 0.25 0.59 0.35 0.42 
 

 

Table 5-8 Comparison of Benchmark Models on the VTrackIt Test Set Over Varying Prediction Horizons 

Metric Pred (2s) 
5 Time steps 

Pred (2.4s) 
6 Time steps 

Pred (3.2s) 
8 Time steps Average 

Without Infrastructure and Pooled Vehicle Information (PGAN) 
minADE 0.63 0.95 1.87 1.17 
minFDE 1.93 2.53 3.97 2.81 
Miss rate 0.36 0.44 0.56 0.54 

With Infrastructure and Pooled Vehicle Information (InfraGAN) 
minADE 0.49 0.75 1.55 0.93 
minFDE 1.56 2.14 3.56 2.42 
Miss rate 0.28 0.34 0.42 0.34 
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(a) (b) 

Figure 5-8 Comparison of error distributions with and without infrastructure and pooled vehicle information using the 
VTrackIt test set over – (a) ADE, and (b) FDE. Errors for trajectories predicted using PGAN and are labeled as 
‘Before’. Errors for trajectories predicted using InfraGAN and are labeled as ‘After.’Ego Trajectory Prediction 
Baseline 

 

 

Figure 5-9 Comparison of baseline models using the VTrackIt test set. Errors for trajectories predicted using PGAN 
and are labeled as ‘Before’. Errors for trajectories predicted using InfraGAN and are labeled as ‘After.’ 

5.4.4 Ego Trajectory Prediction Benchmarks 

Table 5-9 Ego Trajectory Prediction Benchmarks Using Top 𝑘𝑘 Predictions on the VTRACKIT Test Set 
Metric 𝒌𝒌 = 𝟏𝟏 𝒌𝒌 = 𝟑𝟑 𝒌𝒌 = 𝟓𝟓 Average 

Without Infrastructure and Pooled Vehicle Information (PGAN) 
minADE 3.87 2.28 1.89 2.68 
minFDE 8.63 4.81 3.88 5.77 

Miss Rate 0.75 0.57 0.51 0.61 
With Infrastructure and Pooled Vehicle Information (InfraGAN) 

minADE 1.80 1.79 1.78 1.79 
minFDE 4.21 4.18 4.17 4.18 

Miss Rate 0.40 0.40 0.40 0.40 
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Datasets such as VTrackIt may also be used to build robust motion planning algorithms. 

As a related task, we use the VTrackIt dataset and utilize recorded data for all tracked vehicles 

around the ego vehicle while only predicting the trajectory for the ego vehicle. Table 5-9 can be 

used to compare the results of the baseline models when predicting 𝑘𝑘 most likely trajectories using 

mentioned metrics. Using this table, we observe a similar pattern where the InfraGAN outperforms 

the PGAN. This performance gain can also be attributed to the additional infrastructure and vehicle 

information provided in the VTrackIt dataset. 

5.5 Conclusion 

In this study, we present VTrackIt [89], a novel, publicly available synthetic dataset 

specifically designed for advancing AV research. VTrackIt stands out as one of the largest datasets 

of its kind, explicitly annotated with infrastructure and pooled vehicle information. This dataset 

aims to apprise researchers of the benefits such data may provide in building advanced algorithms 

for AV applications. The VTrackIt dataset has been generated to closely emulate real-world 

driving conditions, and includes out-of-distribution scenarios, which may be hard to collect in real-

world conditions. The efficacy of data provided by the VTrackIt dataset is validated using a 

compelling case study on trajectory predictions. For this, we develop a novel deep learning model 

named InfraGAN that leverages the data provided in the VTrackIt dataset. The results of our 

experiments using InfraGAN show that the use of infrastructure and surrounding vehicle 

information vastly helps improve trajectory predictions, with fewer edge cases. For future work, 

we plan to enhance the VTrackIt dataset by adding more sensor data and challenging scenarios, as 

well as exploring other use cases that highlight the importance of the information in the dataset. 
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Chapter 6 Summary of Original Contributions and Future Work 

6.1 Summary of Original Contributions 

This work largely contributes to the field of predictive analytics. More specifically, this 

dissertation proposes custom AI architectures and frameworks that leverage Bayesian statistics 

and DL methods for improved predictive analytics. The major contributions of this work are: 

1. Uncorrelated Sparse Autoencoders with Long Short-term Memory for Long-term Memory 

(USAL) for State-of-Charge (SOC) Estimations in Battery Cells. 

This work: (i) proposes a multi-task training strategy to learn efficient encodings given 

limited training data, (ii) penalizes the learned encodings for high correlations to efficiently 

transform measured inputs into a space of informative features, and (iii) identifies and maps data-

driven trends to support long-term estimations. The proposed method, USAL, is designed to be a 

data-driven SOC estimation method that is, (i) capable of alerting the user to a faulty cell when 

integrated into a real-life Battery Management System (BMS) and (ii) identifying the relative 

quality of a battery cell from only a few initial charge-discharge cycles. The experimental results 

show that the proposed USAL outperforms state-of-the-art while performing (i) long-term SOC 

estimations, (ii) short-term SOC estimations, and (iii) SOC estimations in dynamic cycles. 

2. Conditional Gaussian Mixture Model (CGMM) for Warranty Claims Forecasting 

This work proposes CGMM, a custom AI architecture for long-term warranty claims 

forecasting. The proposed CGMM (i) attempts to provide a solution to the data drift in warranty 

data by modeling the joint distribution of mature and immature warranty claims as a Gaussian 

Mixture Model (GMM), (ii) avoids forcing a time-dependent parametric function for claim’s 
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forecasting, (iii) uses conditional Bayesian inference to consider part similarity, and (iv) provides 

an epistemic uncertainty quantification measure. The effectiveness of the proposed CGMM was 

proven using a real-life dataset consisting of more than 15,000 unique parts installed on different 

vehicle lines for different model years. The results show that the CGMM can outperform 

commonly used benchmarked models like the NHPP, NHPP-W, NHPP-C and RNNs.  

3. VTrackIt: A Synthetic Self-Driving Dataset with Infrastructure and Pooled Vehicle Information. 

This work introduces InfraGAN, a novel deep learning architecture that performs 

collaborative modeling using infrastructure and pooled vehicle information for accurate trajectory 

predictions. The results of our experiments using InfraGAN show that the use of infrastructure and 

surrounding vehicle information vastly helps improve trajectory predictions with fewer edge cases. 

However, the data required to train such models is not publicly available. Therefore, in this work, 

we also publicly release VTrackIt, a synthetic dataset explicitly annotated with intelligent 

infrastructure and pooled vehicle information. VTrackIt is the largest dataset of its kind that 

includes (i) explicit tags for infrastructure and pooled vehicle information, (ii) scenarios generated 

to replicate real-world driving data and expand its tails to generate out-of-distribution data, (iii) a 

video database with high-resolution Birds-Eye-View (BEV) and 360° views of the ego vehicle for 

better scenario understanding and visualizations. 

4. Bayesian Optimization for Scenario Exploration (BOSE) in Autonomous Vehicles (AVs) 

This work proposes BOSE, an automated, search-based framework for scenario 

exploration in AVs. The proposed framework (i) learns robust priors that help identify critical 

scenarios of failure while developing a complete understanding of the underlying functional 

scenario, (ii) ensures fast convergence by sampling high-entropy scenarios limiting sequential 

scenario exploration effort, and (iii) employs a Bayesian DNN with LHS to scale effortlessly 



 107 

across complex, multi-dimensional scenario spaces. The proposed framework is thus shown to be 

interpretable, efficient, and scalable given low as well as high-dimensional scenarios. In our 

experiments, BOSE was shown to reduce sequential scenario exploration experiments by over 

30% when compared to the state-of-the-art. BOSE is, therefore, a robust yet accurate scenario 

exploration method that helps in the verification and validation of modern AVs by accurately 

modeling and predicting anomalous events in an AI-driven system. 

6.2 Future Work 

Although this work focusses on the development of custom AI models and data-driven 

frameworks that solve some challenges in the area of predictive analytics, there are some 

improvements that can be made in future studies. 

1.   Extension of Proposed Custom AI Models Across Multiple Domains 

Although the proposed custom AI architectures in this dissertation focus on automotive 

applications, they are built to provide solutions to the six mentioned challenges in predictive 

analytics. Therefore, it is of high interest to extend these architectures across multiple domains and 

verify and validate their performance. In one example, while USAL’s combination of training 

losses is effective for the given task, it still faces limitations in achieving completely orthogonal 

encodings in the sparse autoencoder. Therefore, it is of our high interest to develop theoretically 

sound AI architectures that enforce complete orthogonality for accurate long-term estimations. 

2.   Development of Bayesian Models for Verification and Validation of Autonomous Vehicles 

The verification and validation of ADSs can be a complex undertaking due to the “black-

box” nature of the many sub-systems used in ADSs. While the BOSE approach has demonstrated 

the ability to explore and comprehend “known” low and high-dimensional scenarios with a Level 

V ADS, it is essential to extend this work to address “unknown” scenarios. Many real-world ADSs 
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encounter unforeseen situations that can result in anomalous events or emergent behavior. 

Therefore, it may be necessary to develop a Bayesian-style framework that can predict the response 

of the entire system without conducting simulations in the near future. This approach would 

provide a more comprehensive understanding of the system’s behavior and allow for adequate 

verification and validation of ADSs in the presence of “unknown” scenarios. 

3. AI-Driven Predictive Analytics for Improved Reliability of Charging Stations 

The increasing adoption of EVs has resulted in a growing demand for electric charging 

infrastructure, leading to the development of thousands of charging stations worldwide. However, 

maintaining the reliability of these chargers is a significant challenge, as they are subjected to 

various environmental and usage-related stresses, including extreme temperatures, voltage 

fluctuations, and physical damage. These issues can result in equipment failures, reducing the 

availability of charging stations and negatively impacting the EV user experience. Using Bayesian 

statistics and DL methods, it may be possible to tackle this challenge by enabling predictive 

analytics for the prediction of charging station performance. By analyzing data from sensors, 

performing collaborative modeling, and adjusting for data drift, AI-powered predictive analytics 

may be able to identify potential faults and predict when maintenance is required. This will help 

develop proactive maintenance practices and minimize unplanned downtime. Thus, predictive 

analytics using Bayesian statistics and DL methods may have the potential to improve the overall 

reliability of electric charging infrastructure and increase user confidence in the use of EVs. 
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Appendix A Expectation-Maximization (EM) in CGMM 

The EM algorithm is one common approach used to approximate the maximum likelihood 

estimate for the GMM. In the expectation step, the parameter values 𝜽𝜽0 at the current iteration are 

used to find the posterior distribution of the latent variable given by 𝑃𝑃(𝑚𝑚|𝑿𝑿,𝜽𝜽0) [161], [162]. 

Then, the expected value of the complete data log-likelihood 𝑄𝑄(𝜽𝜽,𝜽𝜽0) can be expressed in the 

following form, 

𝑄𝑄(𝜽𝜽,𝜽𝜽0) = 𝐸𝐸𝑚𝑚|𝑿𝑿,𝜽𝜽0 �log �𝑓𝑓𝑿𝑿,𝑚𝑚(𝑿𝑿′,𝒎𝒎′|𝚯𝚯)�� (A-1) 

where, 

𝑓𝑓𝑿𝑿,𝑚𝑚(𝑿𝑿′,𝒎𝒎′|𝚯𝚯) =  ��𝛼𝛼𝑘𝑘
𝐼𝐼(𝑚𝑚𝑖𝑖=𝑘𝑘)𝒩𝒩(𝒙𝒙𝑖𝑖′;𝝁𝝁𝑘𝑘,𝜮𝜮𝑘𝑘)𝐼𝐼(𝑚𝑚𝑖𝑖=𝑘𝑘)

𝐾𝐾

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 (A-2) 

Here, 𝐼𝐼(. ) is an indicator function. Thus, the expected value of the complete data log-likelihood 

can be written as, 

log �𝑓𝑓𝑿𝑿,𝑚𝑚(𝑿𝑿′,𝒎𝒎′|𝚯𝚯)� =  ��𝐼𝐼(𝑚𝑚𝑖𝑖 = 𝑘𝑘)�log(𝛼𝛼𝑘𝑘) + log�𝒩𝒩(𝒙𝒙𝑖𝑖′;𝝁𝝁𝑘𝑘,𝜮𝜮𝑘𝑘)��
𝐾𝐾

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 (A-3) 

In the maximization step, we find the maximum likelihood estimator 𝜽𝜽� by solving the following 

optimization problem, 

𝜽𝜽� = argmax𝜽𝜽𝑄𝑄(𝜽𝜽,𝜽𝜽0) (A-4) 

 
With further simplifications of the optimization problem in eq. (A-4) and the log-likelihood in eq. 

(A-3), the parameters of the GMM are calculated using the iterative EM algorithm:  
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Initialization step: For fair initialization, the chance of product 𝑖𝑖 belonging to 𝑘𝑘𝑡𝑡ℎ cluster is given 

by, 

𝑃𝑃(𝑚𝑚𝑖𝑖 = 𝑘𝑘|𝒙𝒙𝑖𝑖′) = 𝑞𝑞𝑖𝑖𝑖𝑖 (A-5) 

Here, 

𝑞𝑞𝑖𝑖𝑖𝑖 =
 𝑓𝑓𝑿𝑿(𝒙𝒙𝑖𝑖′|𝝁𝝁𝒌𝒌,𝚺𝚺𝒌𝒌)

∑  𝑓𝑓𝑿𝑿(𝒙𝒙𝑖𝑖′�𝝁𝝁𝒌𝒌,𝚺𝚺𝒌𝒌)𝐾𝐾
𝑘𝑘=1

 (A-6) 

where, 𝝁𝝁𝒌𝒌  is the initial mean and 𝚺𝚺𝒌𝒌 is the covariance matrix of the 𝑘𝑘𝑡𝑡ℎ cluster given by the K-

means algorithm [160]–[162]. 

𝛼𝛼𝑘𝑘 =
𝑁𝑁𝑘𝑘
𝑁𝑁

 (A-7) 

where, 𝑁𝑁𝑘𝑘 is the number of points in 𝑘𝑘𝑡𝑡ℎ cluster given by the K-means algorithm. 

Iterative expectation step: 

𝑞𝑞𝑖𝑖𝑖𝑖 =
𝛼𝛼𝑘𝑘 ∗ 𝑓𝑓𝑿𝑿(𝒙𝒙𝑖𝑖′|𝝁𝝁𝑖𝑖 = 𝝁𝝁𝑘𝑘,𝚺𝚺𝑖𝑖 = 𝚺𝚺𝑘𝑘)

∑ 𝛼𝛼𝑟𝑟 ∗ 𝑓𝑓𝑿𝑿(𝒙𝒙𝑖𝑖′�𝝁𝝁𝑖𝑖 = 𝝁𝝁𝑟𝑟 ,𝚺𝚺𝑖𝑖 = 𝚺𝚺𝑟𝑟)𝐾𝐾
𝑟𝑟=1

 (A-8) 

Iterative maximization step for 𝛼𝛼𝑘𝑘: 

𝛼𝛼𝑘𝑘 =
∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1

 (A-9) 

Iterative maximization step for 𝝁𝝁𝑘𝑘|𝛼𝛼𝑘𝑘: 

𝝁𝝁𝑘𝑘 =
∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝒙𝒙𝑖𝑖′𝑁𝑁
𝑖𝑖=1
∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (A-10) 

Iterative maximization step for 𝚺𝚺𝑘𝑘|𝛼𝛼𝑘𝑘,𝝁𝝁𝑘𝑘: 

𝚺𝚺𝑘𝑘 =
∑ 𝑞𝑞𝑖𝑖𝑖𝑖(𝒙𝒙𝑖𝑖′ − 𝝁𝝁𝑘𝑘)(𝒙𝒙𝑖𝑖′ − 𝝁𝝁𝑘𝑘)′𝑁𝑁
𝑖𝑖=1

∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (A-11) 

 

Given that the joint distribution of �
𝒚𝒚𝑖𝑖
𝒛𝒛𝑖𝑖� is expressed as a multivariate Gaussian distribution. 

Let, 

𝒙𝒙𝑖𝑖 = �
𝒚𝒚𝑖𝑖
𝒛𝒛𝑖𝑖�~ 𝒩𝒩(𝝁𝝁,𝚺𝚺) (A-12) 
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Here, 𝒚𝒚𝒊𝒊 is the vector representing the number of claims for the observed TIS points, and 𝒛𝒛𝒊𝒊 is the 

vector representing the number of claims for the TIS points to be forecasted. According to the 

theory of multivariate Gaussian Distribution, the joint Probability Density Function (PDF) for 𝒙𝒙𝒊𝒊 

is given by, 

𝑓𝑓𝒀𝒀,𝒁𝒁(𝒚𝒚𝑖𝑖,𝒛𝒛𝑖𝑖) =
1

(2𝜋𝜋)T/2|𝚺𝚺|1/2 exp �−
1
2
𝑄𝑄(𝒚𝒚𝑖𝑖, 𝒛𝒛𝑖𝑖)� (A-13) 

where 𝑄𝑄(𝒚𝒚𝒊𝒊, 𝒛𝒛𝒊𝒊) is defined as, 

𝑄𝑄(𝒚𝒚𝑖𝑖, 𝒛𝒛𝑖𝑖) = (𝒙𝒙𝑖𝑖 − 𝝁𝝁𝒊𝒊)′𝚺𝚺−1(𝒙𝒙𝑖𝑖 − 𝝁𝝁𝒊𝒊) (A-14) 
𝑄𝑄(𝒚𝒚𝑖𝑖, 𝒛𝒛𝑖𝑖) = �𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚𝒊𝒊�

′
𝚺𝚺𝒚𝒚,𝒚𝒚�𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚𝑖𝑖� + 2�𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚𝑖𝑖�

′
𝚺𝚺𝒚𝒚,𝒛𝒛�𝒛𝒛𝑖𝑖 − 𝝁𝝁𝒛𝒛𝑖𝑖� + 

�𝒛𝒛𝑖𝑖 − 𝝁𝝁𝒛𝒛𝑖𝑖�
′
𝚺𝚺𝒛𝒛,𝒛𝒛(𝒛𝒛𝑖𝑖 − 𝝁𝝁𝒛𝒛𝑖𝑖) 

(A-15) 

Here, it is assumed that, 

𝚺𝚺−1 = �
𝚺𝚺𝒚𝒚,𝒚𝒚 𝚺𝚺𝒚𝒚,𝒛𝒛
𝚺𝚺𝒛𝒛,𝒚𝒚 𝚺𝚺𝒛𝒛,𝒛𝒛

�
−1

= �𝚺𝚺
𝒚𝒚,𝒚𝒚 𝚺𝚺𝒚𝒚,𝒛𝒛

𝚺𝚺𝒛𝒛,𝒚𝒚 𝚺𝚺𝒛𝒛,𝒛𝒛� (A-16) 

Let, 

𝚺𝚺𝒚𝒚,𝒚𝒚 = �𝚺𝚺𝒚𝒚,𝒚𝒚 − 𝚺𝚺𝒚𝒚,𝒛𝒛𝚺𝚺𝒛𝒛,𝒛𝒛
−1𝚺𝚺𝒚𝒚,𝒛𝒛

′ �
−1

 (A-17) 

𝚺𝚺𝒛𝒛,𝒛𝒛 = �𝚺𝚺𝒛𝒛,𝒛𝒛 − 𝚺𝚺𝒚𝒚,𝒛𝒛
′ 𝚺𝚺𝒚𝒚,𝒚𝒚

−1𝚺𝚺𝒚𝒚,𝒛𝒛�
−1

 (A-18) 

𝚺𝚺𝒚𝒚,𝒛𝒛 = (𝚺𝚺𝒛𝒛,𝒚𝒚)′  = −𝚺𝚺𝒚𝒚,𝒚𝒚
−1𝚺𝚺𝒚𝒚,𝒛𝒛�𝚺𝚺𝒛𝒛,𝒛𝒛 − 𝚺𝚺𝒚𝒚,𝒛𝒛

′ 𝚺𝚺𝒚𝒚,𝒚𝒚
−1𝚺𝚺𝒚𝒚,𝒛𝒛�

−1
 (A-19) 

On substituting eq. (A-16)-(A-19) in eq. (A-15), we get, 

𝑄𝑄(𝒚𝒚𝑖𝑖, 𝒛𝒛𝑖𝑖) =  �𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚�
′
𝚺𝚺𝒚𝒚,𝒚𝒚
−1�𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚� + �(𝒛𝒛𝑖𝑖 − 𝝁𝝁𝒛𝒛) − 𝚺𝚺𝒚𝒚,𝒛𝒛

′ 𝚺𝚺𝒚𝒚,𝒚𝒚
−1�𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚��

′
 

�𝚺𝚺𝒛𝒛,𝒛𝒛 − 𝚺𝚺𝒚𝒚,𝒛𝒛
′ 𝚺𝚺𝒚𝒚,𝒚𝒚

−1𝚺𝚺𝒚𝒚,𝒛𝒛�
−1
�(𝒛𝒛𝑖𝑖 − 𝝁𝝁𝒛𝒛) − 𝚺𝚺𝒚𝒚,𝒛𝒛

′ 𝚺𝚺𝒚𝒚,𝒚𝒚
−1�𝒛𝒛𝑖𝑖 − 𝝁𝝁𝒚𝒚�� 

(A-20) 

Let, 

𝒃𝒃𝑖𝑖 ≜  𝝁𝝁𝒛𝒛 +  𝚺𝚺𝒚𝒚,𝒛𝒛
′ 𝚺𝚺𝒚𝒚,𝒚𝒚

−1  (𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚) (A-21) 

𝑨𝑨 ≜  𝚺𝚺𝒛𝒛,𝒛𝒛 − 𝚺𝚺𝒚𝒚,𝒛𝒛
′ 𝚺𝚺𝒚𝒚,𝒚𝒚

−1𝚺𝚺𝒚𝒚,𝒛𝒛 (A-22) 

𝑄𝑄𝒚𝒚𝑖𝑖(𝒚𝒚𝑖𝑖) ≜ �𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚�
′
𝚺𝚺𝒚𝒚,𝒚𝒚
−1�𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚� (A-23) 

𝑄𝑄𝒛𝒛𝑖𝑖(𝒚𝒚𝑖𝑖,𝒛𝒛𝑖𝑖) ≜ �(𝒛𝒛𝑖𝑖 − 𝝁𝝁𝒛𝒛) − 𝚺𝚺𝒚𝒚,𝒛𝒛
′ 𝚺𝚺𝒚𝒚,𝒚𝒚

−1�𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚��
′
�𝚺𝚺𝒛𝒛,𝒛𝒛 − 𝚺𝚺𝒚𝒚,𝒛𝒛

′ 𝚺𝚺𝒚𝒚,𝒚𝒚
−1𝚺𝚺𝒚𝒚,𝒛𝒛�

−1
 

�(𝒛𝒛𝑖𝑖 − 𝝁𝝁𝒛𝒛) − 𝚺𝚺𝒚𝒚,𝒛𝒛
′ 𝚺𝚺𝒚𝒚,𝒚𝒚

−1�𝒚𝒚𝑖𝑖 − 𝝁𝝁𝒚𝒚�� 
(A-24) 

Thus, 
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𝑄𝑄𝒛𝒛𝑖𝑖(𝒚𝒚𝑖𝑖, 𝒛𝒛𝑖𝑖) = (𝒛𝒛𝑖𝑖 − 𝒃𝒃𝑖𝑖)′𝑨𝑨−1(𝒛𝒛𝑖𝑖 − 𝒃𝒃𝑖𝑖) (A-25) 
𝑄𝑄(𝒚𝒚𝑖𝑖, 𝒛𝒛𝑖𝑖) =  𝑄𝑄𝒚𝒚𝑖𝑖(𝒚𝒚𝑖𝑖) +  𝑄𝑄𝒛𝒛𝑖𝑖(𝒚𝒚𝑖𝑖, 𝒛𝒛𝑖𝑖) (A-26) 

Using eq. (A-25) and eq. (A-26) the joint distribution function can now be written as, 

𝑓𝑓𝒁𝒁|𝒀𝒀(𝒛𝒛𝑖𝑖|𝒚𝒚𝑖𝑖) = 𝑁𝑁�𝒚𝒚𝑖𝑖;𝝁𝝁𝑦𝑦,𝚺𝚺𝑦𝑦,𝑦𝑦�𝒩𝒩(𝒛𝒛𝑖𝑖;𝒃𝒃𝑖𝑖,𝑨𝑨) (A-27) 
The conditional distribution of 𝒛𝒛𝑖𝑖 given 𝒚𝒚𝑖𝑖 is thus given by, 

𝑓𝑓𝒁𝒁|𝒀𝒀(𝒛𝒛𝑖𝑖|𝒚𝒚𝑖𝑖) =
𝑓𝑓𝒀𝒀,𝒁𝒁(𝒚𝒚𝑖𝑖, 𝒛𝒛𝑖𝑖)
𝑓𝑓𝒀𝒀(𝒚𝒚𝑖𝑖)

= 𝒩𝒩(𝒛𝒛𝑖𝑖|𝒚𝒚𝑖𝑖;𝒃𝒃𝑖𝑖,𝑨𝑨) (A-28) 

Extending eq. (A-28) to the GMM with 𝐾𝐾 clusters where �
𝒚𝒚𝑖𝑖
𝒛𝒛𝑖𝑖� is expressed as a mixture of 

multivariate Gaussian distribution based on the GMM we get, 

𝑓𝑓𝒁𝒁|𝒀𝒀(𝒛𝒛𝑖𝑖|𝒚𝒚𝑖𝑖) = �(𝛼𝛼𝑘𝑘|𝒚𝒚𝑖𝑖)
𝐾𝐾

𝑘𝑘=1

𝒩𝒩�𝒛𝒛𝑖𝑖|𝒚𝒚𝑖𝑖;𝒃𝒃𝑖𝑖,𝑘𝑘,𝑨𝑨𝑘𝑘� (A-29) 

where, 

𝛼𝛼𝑘𝑘|𝒚𝒚𝑖𝑖 =
𝛼𝛼𝑘𝑘 ∗ 𝑓𝑓𝒀𝒀(𝒚𝒚𝑖𝑖|𝝁𝝁𝑘𝑘

𝒚𝒚 ,𝚺𝚺𝑘𝑘
𝒚𝒚)

∑ �𝛼𝛼𝑟𝑟 ∗ 𝑓𝑓𝒀𝒀(𝒚𝒚𝑖𝑖|𝝁𝝁𝑟𝑟
𝒚𝒚,𝚺𝚺𝑟𝑟

𝒚𝒚)�𝐾𝐾
𝑟𝑟=1

 (A-30) 

𝒃𝒃𝑖𝑖,𝑘𝑘 =  𝝁𝝁𝑘𝑘𝒛𝒛 |𝒚𝒚𝑖𝑖 = 𝝁𝝁𝑘𝑘𝒛𝒛 + �𝚺𝚺𝑘𝑘
𝒚𝒚,𝒛𝒛�

′
 �𝚺𝚺𝑘𝑘

𝒚𝒚�
−1
�𝒚𝒚𝑖𝑖 − 𝝁𝝁𝑘𝑘

𝒚𝒚� (A-31) 

𝑨𝑨𝑘𝑘 = 𝚺𝚺𝑘𝑘𝒛𝒛|𝒚𝒚𝑖𝑖 = 𝚺𝚺𝑘𝑘𝒛𝒛 − �𝚺𝚺𝑘𝑘
𝒚𝒚,𝒛𝒛�

′
 �𝚺𝚺𝑘𝑘

𝒚𝒚�
−1
�𝚺𝚺𝑘𝑘

𝒚𝒚,𝒛𝒛� (A-32) 
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Appendix B Experimental Evaluation of BOSE 

In our experiments, BOSE is able to rightly identify and tag risky concrete scenarios with 

a high probability of ‘crash’ 𝑝𝑝(𝑦𝑦 =  1). Figure B-1 shows examples of concrete scenarios and 

their predicted outcomes for functional Scenario A and Scenario B. 

In Figure B-1 (a), while the ego vehicle is traveling at 36 KPH, the ADS Proximity 

Threshold is set to 12 meters. The Bayesian DNN within BOSE is able to identify this risky 

combination and tag this scenario with a high probability of ‘crash’ (𝑝𝑝(𝑦𝑦 =  1)  =  94%). On the 

other hand, in Figure B-1 (b), while the ego vehicle is traveling at 31 KPH, the ADS Proximity 

Threshold is set to 18 meters. Thus, the ADS has sufficient time to identify the oncoming 

motorcyclist and correct any erroneous behavior. BOSE rightly identifies this interaction and tags 

this scenario as ‘normal’ with a low probability of ‘crash’ (𝑝𝑝(𝑦𝑦 =  1)  =  16%). Figure 4-6 can 

be used to visualize the decision boundaries established by BOSE given functional Scenario A. In 

Figure B-1 (c), while the ego vehicle is traveling at 44 KPH, 𝑣𝑣1 and 𝑣𝑣2 are set to 35 and 36 KPH, 

respectively. Thus, the ADS has very little time to respond to the yield violations performed by 

the other two vehicles. Again, BOSE is able to identify this risky combination and tag this scenario 

with a high probability of ‘crash’ (𝑝𝑝(𝑦𝑦 =  1)  =  88%). On the other hand, in Figure B-1 (d) while 

the ego vehicle is traveling at 31 KPH, 𝑣𝑣1, and 𝑣𝑣2 are set to 18 and 22 KPH respectively. Thus, the 

ADS has sufficient time to identify the yield violations and apply emergency braking, thus 

avoiding a ‘crash’. Although complicated by the remaining factors, BOSE rightly identifies this 

interaction and tags this scenario as ‘normal’ with a low probability of ‘crash’ (𝑝𝑝(𝑦𝑦 =  1)  =



 115 

 11%). Figure 4-9 can be used to visualize the risky clusters established by BOSE given functional 

Scenario B. 

 
Figure B-1 Sample concrete scenarios and their predicted crash probability by BOSE for functional Scenario A and 
Scenario B from their respective test sets. Here, BOSE accurately predicts the scenario outcome tagging the true 
positives with a high probability crash. 
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(a)
True Outcome: Crash

Predicted Crash Probability: 94%

(c)
True Outcome: Crash

Predicted Crash Probability: 88%

Functional Scenario A

(d)
True Outcome: Normal

Predicted Crash Probability: 11%

Functional Scenario B

(b)
True Outcome: Normal

Predicted Crash Probability: 16%
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