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Web Appendix A. Technical proofs

Web Appendix A.1 Lemmas

We list three lemmas that are used for proving Theorem 1. Without loss of generality, we denote

the dimension of the parameter ξ by p instead of (p + 1) to simplify the notation in the proofs.

Consequently, the matrices such as Σξ and Θξ are considered as p×p matrices. This simplification

of notation does not affect the following derivations.

Lemma 1 bounds the estimation error and the prediction error of the lasso estimator under our

assumptions.

LEMMA 1: Under Assumptions 1–5, we have ‖ξ̂ − ξ0‖1 = OP (s0λ) and ‖X(ξ̂ − ξ0)‖22/n =

OP (s0λ
2).

Proof. Because λmin(Σξ0) > 0 in Assumption 2, the compatibility condition holds for all index

sets S ⊂ {1, . . . , p} by Lemma 6.23 (Bühlmann and van de Geer, 2011) and the fact that the adap-

tive restricted eigenvalue condition implies the compatibility condition. Exploiting Hoeffding’s

concentration inequality, we have ‖Σ̂ξ0 − Σξ0‖∞ = OP [{log(p)/n}1/2]. Then by Lemma 6.17 of

Bühlmann and van de Geer (2011), we have the Σ̂ξ0-compatibility condition. Finally, the first part

of Lemma 1 follows from Theorem 6.4 in Bühlmann and van de Geer (2011).

For the second claim, Ning and Liu (2017) showed that

(ξ̂ − ξ0)T Σ̂ξ0(ξ̂ − ξ0) = (ξ̂ − ξ0)T (XTW 2
ξ0X/n)(ξ̂ − ξ0) = OP (s0λ

2),

then under Assumption 4, the variance terms in W 2
ξ0 are bounded away from 0, and we obtain the

desired result that ‖X(ξ̂ − ξ0)‖22/n = OP (s0λ
2).

Lemma 2 depicts the convergence rate of the inverse Hessian matrix Θ̂ to the true inverse

information matrix Θξ0 .

LEMMA 2: Suppose the covariate vectors xi, i = 1, . . . , n, are independent and identically

distributed sub-Gaussian random vectors. Under Assumptions 1–5, if we further assume that
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s0λ→ 0 and p/n→ 0, then Θ̂ converges to Θξ0 such that

‖Θ̂−Θξ0‖ = OP{(p/n)1/2 + s0λ}.

Proof. Since Σ̂−1
ξ̂
− Σ−1ξ0 = Σ̂−1

ξ̂

(
Σξ0 − Σ̂ξ̂

)
Σ−1ξ0 , we have

‖Σ̂−1
ξ̂
− Σ−1ξ0 ‖ 6 ‖Σ̂

−1
ξ̂
‖ · ‖Σ̂ξ̂ − Σξ0‖ · ‖Σ−1ξ0 ‖. (1)

By Assumption 2, ‖Σ−1ξ0 ‖ is bounded. We obtain the convergence rate of ‖Σ̂−1
ξ̂
−Σ−1ξ0 ‖ by calculat-

ing the convergence rate of ‖Σ̂ξ̂−Σξ0‖ and showing that ‖Σ̂−1
ξ̂
‖ is bounded with probability going

to 1.

Note that ‖Σ̂ξ̂ − Σξ0‖ 6 ‖Σ̂ξ̂ − Σ̂ξ0‖+ ‖Σ̂ξ0 − Σξ0‖. When the rows of X are sub-Gaussian, so

are the rows of Xξ0 due to the boundedness of the weights wi in Assumption 3. It can be shown

that L = ‖Σ−1/2ξ0 x1ω1(ξ
0)‖ψ2 = O(1). First, for ‖Σ̂ξ0 − Σξ0‖, Vershynin (2012) shows that for

every t > 0, it holds with probability at least 1− 2 exp(−c′Lt2) that

‖Σ̂ξ0 − Σξ0‖ 6 ‖Σξ0‖max(δ, δ2) 6 cmax max(δ, δ2), (2)

where δ = CL(p/n)1/2 + t/n1/2. Here CL, c′L > 0 depend only on L = ‖Σ−1/2ξ0 x1ω1(ξ
0)‖ψ2 .

In fact c′L = c1/L
4 and CL = L2(log 9/c1)

1/2, where c1 is an absolute constant. For s > 0 and

t = sCLp
1/2, the probability becomes 1 − 2 exp(−c2s2p), c2 > 0 being some absolute constant,

and δ = (s+ 1)CL(p/n)1/2. Thus ‖Σ̂ξ0 − Σξ0‖ = OP{L2(p/n)1/2} = OP{(p/n)1/2}.

Note that

‖Σ̂ξ̂ − Σ̂ξ0‖ = ‖XT (W 2
ξ̂
−W 2

ξ0)X/n‖

6 ‖XT‖ · ‖X‖/n · ‖W 2
ξ̂
−W 2

ξ0‖

= λmax(X
TX/n) · ‖W 2

ξ̂
−W 2

ξ0‖.

By Assumptions 1 and 3,

‖W 2
ξ̂
−W 2

ξ0‖ = maxi |ρ̈(yi, x
T
i ξ̂)− ρ̈(yi, x

T
i ξ

0)|

6 cLip ·maxi |xTi (ξ̂ − ξ0)|

6 cLipK · ‖ξ̂ − ξ0‖1.

(3)

By Lemma 1, we have ‖ξ̂−ξ0‖1 = OP (s0λ). In this case, ‖W 2
ξ̂
−W 2

ξ0‖ = OP (s0λ). By Assumption
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5 and Vershynin (2012), λmax(X
TX/n) = OP (1). Thus ‖Σ̂ξ̂ − Σ̂ξ0‖ = OP (s0λ). Therefore, after

combining the two parts, we have ‖Σ̂ξ̂ − Σξ0‖ = OP{L2(p/n)1/2 + s0λ}. Under p/n = o(1) and

s0λ = o(1), we have ‖Σ̂ξ̂ − Σξ0‖ = oP (1).

Now for any vector x with ‖x‖2 = 1, we have

inf
‖y‖2=1

‖Σ̂ξ̂y‖2 6 ‖Σ̂ξ̂x‖2 6 ‖Σξ0x‖2 + ‖(Σ̂ξ̂ − Σξ0)x‖2 6 ‖Σξ0x‖2 + sup
‖z‖2=1

‖(Σ̂ξ̂ − Σξ0)z‖2,

which indicates that λmin(Σ̂ξ̂) 6 λmin(Σξ0) + ‖Σ̂ξ̂ − Σξ0‖. Similarly, we have λmin(Σξ0) 6

λmin(Σ̂ξ̂) + ‖Σ̂ξ̂ − Σξ0‖. So |λmin(Σξ0) − λmin(Σ̂ξ̂)| 6 ‖Σ̂ξ̂ − Σξ0‖. Thus, for any 0 < ε <

min{‖Σξ0‖, λmin(Σξ0)/2}, we have that

pr

(
‖Σ̂−1

ξ̂
‖ > 1

λmin(Σξ0)− ε

)
= pr(λmin(Σ̂ξ̂) 6 λmin(Σξ0)− ε)

6 pr(|λmin(Σ̂ξ̂)− λmin(Σξ0)| > ε)

6 pr(‖Σ̂ξ̂ − Σξ0‖ > ε).

Since ‖Σ̂ξ̂ −Σξ0‖ = oP (1), we have ‖Σ̂−1
ξ̂
‖ = OP (1). Finally, by (1), ‖Σ̂−1

ξ̂
−Σ−1ξ0 ‖ = OP (‖Σ̂ξ̂ −

Σξ0‖) = OP{(p/n)1/2 + s0λ}.

LEMMA 3: Under Assumptions 1–3, when p/n→ 0, it holds that for any vector αn ∈ Rp with

‖αn‖2 = 1,

n1/2αTnΘξ0Pnρ̇ξ0

(αTnΘξ0αn)1/2
→ N(0, 1)

in distribution as n→∞.

Proof. We invoke the Lindeberg-Feller Central Limit Theorem. For i = 1, . . . , n, let

Zni = n−1/2αTnΘξ0 ρ̇ξ0(yi, xi) = n−1/2αTnΘξ0xiρ̇(yi, x
T
i ξ

0),

and s2n = V ar (
∑n

i=1 Zni). Note that E{ρ̇(yi, x
T
i ξ

0) | xi} = 0 and consequently E(Zni) = 0.

Because {(yi, x̃i)}ni=1 are independent and identically distributed, we can show that s2n = αTnΘξ0αn.

To show
∑n

i=1 Zni/sn → N(0, 1) in distribution, we first check the Lindeberg condition and then

the conclusion shall follow by the Lindeberg-Feller Central Limit Theorem. Specifically, for any
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ε > 0, we show that as n→∞,

1

s2n

n∑
i=1

E
{
Z2
ni · 1(|Zni|>εsn)

}
→ 0.

Due to the boundedness of the eigenvalues of Σξ0 , αTnΘξ0αn > λmin(Θξ0) = 1/λmax(Σξ0) > c−1max.

On the other hand, by the Cauchy-Schwarz inequality, it holds almost surely that(
αTnΘξ0xi

)2
6 ‖αn‖22 · ‖Θξ0xi‖22 6 [‖Θξ0‖ · ‖xi‖2]2 6 c−2min · O(pK2).

Inside the indicator, it holds almost surely that

Z2
ni

s2n
=

[ρ̇(yi, x
T
i ξ0)]

2
(
αTnΘξ0xi

)2
nαTnΘξ0αn

6 [ρ̇(yi, x
T
i ξ0)]

2 · c−2mincmax · O(K2 p

n
)

6 K2
1c
−2
mincmax · O(K2 p

n
),

where the last inequality follows from the boundedness of ρ̇(yi, x
T
i ξ0) in Assumption 3. Hence,

we have Z2
ni/s

2
n → 0 almost surely as p/n → 0. When n is large enough, Z2

ni/s
2
n < ε2 and all

the indicators become 0. Therefore, the Lindeberg condition holds and the Lindeber-Feller Central

Limit Theorem guarantees the asymptotic normality.

Web Appendix A.2 Proof of Theorem 1

The invertibility of Σ̂ξ̂ is shown in the proof of Lemma 2. Now with the bias decomposition Eq.

(6) in the main text,

n1/2αTn (̂b− ξ0)− n1/2αTn Θ̂∆ = −n1/2αTn Θ̂Pnρ̇ξ0 ,

we first show that αTn Θ̂αn − αTnΘξ0αn = oP (1) and that

n1/2αTn Θ̂Pnρ̇ξ0/(α
T
n Θ̂αn)1/2 = n1/2αTnΘξ0Pnρ̇ξ0/(α

T
nΘξ0αn)1/2 + oP (1),

Then by Slutsky’s Theorem, the asymptotic distribution of the target n1/2αTn Θ̂Pnρ̇ξ0/(α
T
n Θ̂αn)1/2

can be derived by using the asymptotic distribution of n1/2αTnΘξ0Pnρ̇ξ0/(α
T
nΘξ0αn)1/2, which

has been proved in Lemma 3. In the final step, as long as n1/2αTn Θ̂∆ = oP (1), the asymptotic

distribution of n1/2αTn (̂b− ξ0)/(αTn Θ̂αn)1/2 follows immediately.
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According to Lemma 2, it follows that

|αTn Θ̂αn − αTnΘξ0αn| = |αTn (Θ̂−Θξ0)αn| 6 ‖Θ̂−Θξ0‖ · ‖αn‖22 = oP (1).

By the Cauchy-Schwartz inequality,

n1/2|αTn Θ̂Pnρ̇ξ0 − αTnΘξ0Pnρ̇ξ0| 6 n1/2‖αn‖2 · ‖(Θ̂−Θξ0)Pnρ̇ξ0‖2

6 n1/2‖Θ̂−Θξ0‖ · ‖Pnρ̇ξ0‖2,

then we have

n1/2|αTn Θ̂Pnρ̇ξ0 − αTnΘξ0Pnρ̇ξ0| 6 n1/2 · ‖Pnρ̇ξ0‖2 · OP{(p/n)1/2 + s0λ}.

By definition,

‖Pnρ̇ξ0‖22 =

p∑
j=1

{n−1
n∑
i=1

xij ρ̇(yi, x
T
i ξ

0)}2

= n−2
p∑
j=1

n∑
i=1

n∑
k=1

xijxkj ρ̇(yi, x
T
i ξ

0)ρ̇(yk, x
T
k ξ

0).

With independent observations and E{xij ρ̇(yi, x
T
i ξ

0)} = 0 for any i, it follows that

E‖Pnρ̇ξ0‖22 =
1

n2

p∑
j=1

n∑
i=1

E{x2ij ρ̇2(yi, xTi ξ0)}.

By Assumptions 1 and 3, we have |xij ρ̇(yi, x
T
i ξ

0)| 6 KK1 almost surely holds for all i and j, so

E‖Pnρ̇ξ0‖22 = O(p/n). This implies that ‖Pnρ̇ξ0‖2 = OP{(p/n)1/2}. Then we have

n1/2|αTn Θ̂Pnρ̇ξ0 − αTnΘξ0Pnρ̇ξ0 | 6 OP
(
p/n1/2 + s0λp

1/2
)
,

which is oP (1) by our assumption in Theorem 1.

Finally, we prove |n1/2αTn Θ̂∆| = oP (1). By the Cauchy-Schwartz inequality, |n1/2αTn Θ̂∆| 6

n1/2‖Θ̂∆‖2, we only need that n1/2‖Θ̂∆‖2 = oP (1). Note that

∆j =
1

n

n∑
i=1

{
ρ̈(yi, a

∗
i )− ρ̈(yi, x

T
i ξ̂ )

}
xijx

T
i (ξ0 − ξ̂ ),
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where a∗i lies between xTi ξ̂ and xTi ξ
0, i.e. |a∗i − xTi ξ̂ | 6 |xTi (ξ̂ − ξ0)|. Then uniformly for all j,

|∆j| 6
1

n

n∑
i=1

|ρ̈(yi, a
∗
i )− ρ̈(yi, x

T
i ξ̂)| · |xij| · |xTi (ξ0 − ξ̂)|

6
1

n

n∑
i=1

cLip|a∗i − xTi ξ̂| ·K · |xTi (ξ0 − ξ̂)|

6 cLipK ·
1

n

n∑
i=1

|xTi (ξ0 − ξ̂)|2

= cLipK · OP (s0λ
2)

= OP (s0λ
2),

where the last equality holds by Lemma 1. Since ‖Θξ0‖ = O(1) and ‖Θ̂−Θξ0‖ = oP (1), it follows

that ‖Θ̂‖ = OP (1), and

n1/2‖Θ̂∆‖2 6 n1/2‖Θ̂‖ · ‖∆‖2

6 n1/2OP (1) · p1/2‖∆‖∞

6 OP ((np)1/2s0λ
2).

By the assumption of (np)1/2s0λ
2 = o(1) in Theorem 1, n1/2‖Θ̂∆‖2 = oP (1). Applying Slutsky’s

Theorem and Lemma 3 gives the result.

Part (ii) in Theorem 1 can be proved using Cramér-Wold device. For any ã ∈ Rm, let αn = ATn ã

in Theorem 1(i), which would still hold when ‖αn‖2 6 c′ for some constant c′ > 0. In this case,

‖αn‖2 = ‖ATn ã‖2 6 ‖ATn‖‖ã‖2 6 c∗‖ã‖2 is upper bounded by a constant since ã has a fixed

dimension. Then, as n→∞,

n1/2ãTAn(̂b− ξ0)
(ãTAnΘ̂ATn ã)1/2

D→ N(0, 1).

The variance |ãTAnΘ̂ATn ã − ãTAnΘξ0A
T
n ã| 6 ‖Θ̂ − Θξ0‖‖ATn ã‖22 = oP (1). Hence, by Slutsky’s

Theorem,

n1/2ãTAn(̂b− ξ0) D→ N(0, ãTF ã).
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Web Appendix B. Additional Simulations

Web Appendix B.1 Simulation studies: large n, diverging p

We examined the scenario with smaller sample sizes, where we simulated n = 500 observations

with p = 20, 100, 200, 300 covariates in logistic regression models. The rest of the settings were

identical to those with n = 1000 in the main text. Figures S1 – S3 display the results from

three types of covariance structures, including the identity matrix, the autoregressive structure of

order 1 or AR(1) with correlation 0.7, and the compound symmtry structure with correlation 0.7,

respectively. Figure S3 shows that with n = 500, p = 300 and the compound symmetry structure,

neither of the de-biased lasso methods worked well, which is not surprising given the relatively

small sample size and highly correlated covariates.

We also varied the correlation ρ = 0.2 in the covariance matrix Σx for the autoregressive and

compound symmetry structures to reflect the presence of less correlated covariates; see Figure S4

and Figure S5, respectively. These results are close to the independent covariate case. To sum-

marize, our proposed refined de-biased lasso approach, in most cases, can provide the best bias

correction and honest confidence intervals.

In Section 4, additional simulation results have been shown to demonstrate that generally µn = 0

leads to the best performance empirically in Eq. (5). In the presented logistic regression setting, we

simulate n = 500 observations and p = 40, 100, 200, 300, 400 covariates for 200 times. Covariates

follow a multivariate Gaussian distribution with mean zero and AR(1) covariance matrix (ρ = 0.7).

Only two coefficients are non-zero (1 and 0.5) and the rest are noises. We pre-specify a sequence

of values in [0, 1] for the tuning parameter µn in Eq. (5), equally spaced in log scale. The de-biased

lasso estimator based on Eq. (5) is referred to by “tuning”.

Figure S6 (already shown in Section 4 of the main article) and Figure S7 show the simulation

results for the coefficients ξ0j = 1 and ξ0j = 0.5 respectively, where the three columns correspond to

average estimation bias, coverage probability for its 95% confidence interval, and the ratio between
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its average model-based standard error and empirical standard error, over 200 replications. Since

our main focus is good bias correction and honest confidence interval coverage, we find that over

a very wide range of number of covariates, µn = 0 performs the best empirically.

Web Appendix B.2 Simulation studies: large p, small n

We also present simulation studies that feature logistic regression models in the “large p, small n”

setting, with n = 300 observations and p = 500 covariates. For simplicity, covariates are simulated

from Np(0,Σx), where Σx,ij = 0.7|i−j|, and truncated at ±6. In the true coefficient vector β0, the

intercept β0
0 = 0 and β0

1 varies from 0 to 1.5 with 40 equally spaced increments. To examine the

impacts of different true model sizes, we arbitrarily choose s̄0 =2, 4 or 10 additional coefficients

from the rest in β0, and fix them at 1 throughout the simulation. At each value of β0
1 , a total of 500

simulated datasets are generated. We focus on the de-biased estimates and inference for β0
1 using

the method of van de Geer et al. (2014).

Figure S8, with the true model size increasing from the top to the bottom, shows that the de-

biased lasso estimate for β0
1 has a bias which almost linearly increases with the true size of β0

1 .

This undermines the credibility of the consequent confidence intervals. Meanwhile, the model-

based variance overestimates the true variance for smaller signals and underestimates it for larger

signals in the two models with smaller model sizes, as shown by the top two rows in Figure S8. This

partially explains the over- and under-coverage for smaller and larger signals, respectively. Due to

penalized estimation in node-wise lasso, the variance of the original de-biased lasso estimator is

even smaller than the oracle maximum likelihood estimator obtained as if the true model were

known; see the bottom two rows in Fig. S8. The empirical coverage probability decreases to about

50% as the signal β0
1 goes to 1.5, and when the true model size reaches 5; see the middle row

in Figure S8. The bias correction is sensitive to the true model size, which becomes worse for

larger true models. We have also conducted simulations by changing the covariance structure of
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covariates to be independent or compound symmetry with correlation coefficient 0.7 and variance

1, and have obtained similar results.

Web Appendix C. Demographics of the Boston Lung Cancer Survivor Cohort

Table S1 summarizes the demographics of the 1,374 individuals studied in the main text, stratified

by their smoking status.

Web Appendix D. Discussion on the difference between sparsity assumptions in our work

and van de Geer et al. (2014)

We first notice there are two kinds of sparsity parameters: one for the sparsity of regression

coefficients (denoted by s0), and the other for the sparsity of the inverse of the information matrix,

Θξ0 (denoted by sj , the number of non-zero elements in the jth row of Θξ0). The following clarifies

the extent to which the assumptions of our Theorem 1 differs from those of van de Geer et al.

(2014). For the model sparsity s0, our assumption s0 log(p)(p/n)1/2 → 0 is indeed more stringent

than s0 log(p)/
√
n → 0 required by van de Geer et al. (2014), whereas for the sparsity of the

inverse information matrix, van de Geer et al. (2014) assumed sj = o(
√
n/ log(p)) for all j and

we do not make any assumptions on sj directly. A related condition set by us is p2/n → 0, which

is weaker than sj = o(
√
n/ log(p)) by a logarithmic factor if sj � p.

Below we elaborate on how these sparsity differences lead to different results obtained by our

manuscript and van de Geer et al. (2014), which indeed have different inferential objectives, and

the rationale why our assumptions fit our inferential objectives.

First, these two works differ in inferential objectives. We aim to infer any linear combinations

of the regression parameter, i.e. αTn ξ
0, where the only constraint on αn is ‖αn‖2 = 1 (in fact,

bounded ‖αn‖2 would suffice). Thus, we have to control the behavior of the (p + 1) × (p + 1)

matrix {Θ̂−Θξ0}. In contrast, van de Geer et al. (2014) inferred individual components in ξ0 one
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at a time, making it sufficient to control the rates of {Θ̂j−Θξ0,j} (here the subscript j indicates the

jth row of a matrix) for one row at a time, and the node-wise lasso provides such required rates.

Second, besides the essential assumptions that both papers require (our Assumptions 1–4), van de

Geer et al. (2014) has another important assumption that we do not need to assume, that is,

‖Xβ0,−jγ
0
β0,j‖∞ = O(1) (see their Theorem 3.3 (iv)), which results in ‖XΘ̂T

j ‖∞ = OP (K) in

their condition (C5). In our notation, this assumption would be equivalent to the boundedness on

‖Θξ0xi‖∞ and would result in ‖Θ̂xi‖∞ being bounded in probability. However, we have elected

not to directly make such assumptions on the inverse of the informative matrix and its estimate as

they may be closely related to the sparsity requirement of Θξ0 under Assumption 1, and may not

hold or be verifiable in GLM settings.

Finally, we clarify that our specified order assumption on s0 with respect to n and p is to ensure

|n1/2αTn Θ̂∆| = oP (1) in the proof of Theorem 1 (please see Pages 5–6 in Web Appendix A), which

is for inference on any linear combinations of regression coefficients. However, if we had aimed

for a weaker result of inferring an individual coefficient only as in van de Geer et al. (2014), we

would have let αn = ej (a p-dimensional vector with the jth element being 1 and all the other

elements being zero) corresponding to drawing inference on the effect of the jth covariate, and

also with a condition of ‖Θ̂xi‖∞ = OP (1) as in van de Geer et al. (2014), we would have had

|
√
nΘ̂j∆| = |

√
n

1

n

n∑
i=1

{
ρ̈(yi, a

∗
i )− ρ̈(yi, x

T
i ξ̂)
}

Θ̂jxix
T
i (ξ0 − ξ̂)|

6
√
n

1

n

n∑
i=1

|ρ̈(yi, a
∗
i )− ρ̈(yi, x

T
i ξ̂)| · |Θ̂jxi| · |xTi (ξ0 − ξ̂)|

6
√
n

1

n

n∑
i=1

cLip|xTi (ξ0 − ξ̂)| · OP (1) · |xTi (ξ0 − ξ̂)|

=
√
nOP (1)

1

n

n∑
i=1

|xTi (ξ0 − ξ̂)|2

= OP (
√
ns0λ

2).

Therefore, to infer ξ0j alone, we would have reached the same assumption that s0 log(p)/
√
n → 0

as in van de Geer et al. (2014) with λ �
√

log(p)/n.
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In summary, our work may be meritorious by providing readers with these explicit rates for

guaranteeing proper inferences when directly inverting the information matrix.
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Figure S1. Simulation results: Bias, coverage probability, empirical standard error, and model-
based standard error for β0

1 in a logistic regression. Covariates are simulated from Np(0p, I)
before being truncated at ±6. The sample size is n = 500 and the number of covariates
p = 20, 100, 200, 300. The oracle estimator, that is the maximum likelihood estimator under the
true model, is plotted as a reference in orange solid lines. The methods in comparisons include
our proposed refined de-biased lasso in olive dot-dash lines, the original de-biased lasso by van de
Geer et al. (2014) in blue dashed lines, and the maximum likelihood estimation in red dotted lines.
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Figure S2. Simulation results: Bias, coverage probability, empirical standard error, and model-
based standard error for β0

1 in a logistic regression. Covariates are simulated from Np(0p,Σx)
before being truncated at ±6, where Σx has an autoregressive covariance structure of order 1 with
ρ = 0.7. The sample size is n = 500 and the number of covariates p = 20, 100, 200, 300. The oracle
estimator, that is the maximum likelihood estimator under the true model, is plotted as a reference
in orange solid lines. The methods in comparisons include our proposed refined de-biased lasso in
olive dot-dash lines, the original de-biased lasso by van de Geer et al. (2014) in blue dashed lines,
and the maximum likelihood estimation in red dotted lines.
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Figure S3. Simulation results: Bias, coverage probability, empirical standard error, and model-
based standard error for β0

1 in a logistic regression. Covariates are simulated from Np(0p,Σx)
before being truncated at ±6, where Σx has a compound symmetry structure with ρ = 0.7. The
sample size is n = 500 and the number of covariates p = 20, 100, 200, 300. The oracle estimator,
that is the maximum likelihood estimator under the true model, is plotted as a reference in orange
solid lines. The methods in comparisons include our proposed refined de-biased lasso in olive dot-
dash lines, the original de-biased lasso by van de Geer et al. (2014) in blue dashed lines, and the
maximum likelihood estimation in red dotted lines.
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Figure S4. Simulation results: Bias, coverage probability, empirical standard error, and model-
based standard error for β0

1 in a logistic regression. Covariates are simulated from Np(0p,Σx)
before being truncated at ±6, where Σx has an autoregressive covariance structure of order 1 with
ρ = 0.2. The sample size is n = 500 and the number of covariates p = 20, 100, 200, 300. The oracle
estimator, that is the maximum likelihood estimator under the true model, is plotted as a reference
in orange solid lines. The methods in comparisons include our proposed refined de-biased lasso in
olive dot-dash lines, the original de-biased lasso by van de Geer et al. (2014) in blue dashed lines,
and the maximum likelihood estimation in red dotted lines.
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Figure S5. Simulation results: Bias, coverage probability, empirical standard error, and model-
based standard error for β0

1 in a logistic regression. Covariates are simulated from Np(0p,Σx)
before being truncated at ±6, where Σx has a compound symmetry structure with ρ = 0.2. The
sample size is n = 500 and the number of covariates p = 20, 100, 200, 300. The oracle estimator,
that is the maximum likelihood estimator under the true model, is plotted as a reference in orange
solid lines. The methods in comparisons include our proposed refined de-biased lasso in olive dot-
dash lines, the original de-biased lasso by van de Geer et al. (2014) in blue dashed lines, and the
maximum likelihood estimation in red dotted lines.
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Figure S6. Simulation results that verify the selection of the tuning parameter µn = 0 in Eq. (5)
for ξ0j = 1.
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Figure S7. Simulation results that verify the selection of the tuning parameter µn = 0 in Eq. (5)
for ξ0j = 0.5.
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Figure S8. Simulation results of a logistic regression with sample size n = 300 and p = 500
covariates. Covariates are simulated from Np(0p,Σx) before being truncated at ±6, where Σx has
an autoregressive covariance structure of order 1 with ρ = 0.7. The left column presents estimation
bias, the middle column presents empirical coverage probability, and the right column presents
standard error, both model-based and empirical, of the estimated β0

1 . Horizontal panels correspond
to models with 2, 4 and 10 additional signals fixed at 1 from the top to the bottom, respectively. In
the left and middle columns, blue dashed lines represent the original de-biased lasso approach by
van de Geer et al. (2014), and orange solid lines represent the oracle estimator. In the right column,
blue dashed lines and black dotted lines represent the empirical standard error and the model-based
standard error from the method of van de Geer et al. (2014), respectively, and orange solid lines
for the empirical standard error of the oracle estimator.
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Table S1
Characteristics of the individuals in the analytical data set of the Boston Lung Cancer Survivor Cohort

Information Overall Among smokers Among non-smokers
Count (%) / Mean (SD1) Count (%) / Mean (SD) Count (%) / Mean (SD)

Total 1374 (100%) 1077 (100%) 297 (100%)
Lung cancer

Yes 651 (47.4%) 595 (55.2%) 56 (18.9%)
No 723 (52.6%) 482 (44.8%) 241 (81.1%)

Education
No high school 153 (11.1%) 139 (12.9%) 14 (4.7%)
High school graduate 374 (27.2%) 309 (28.7%) 65 (21.9%)
At least 1-2 years of college 847 (61.7%) 629 (58.4%) 218 (73.4%)

Gender
Female 845 (61.5%) 644 (59.8%) 201 (67.7%)
Male 529 (38.5%) 433 (40.2%) 96 (32.3%)

Age 60.0 (10.6) 60.7 (10.2) 57.7 (11.7)


