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Abstract
Modeling and drawing inference on the joint associations between single-
nucleotide polymorphisms and a disease has sparked interest in genome-wide
associations studies. In the motivating Boston Lung Cancer Survival Cohort
(BLCSC) data, the presence of a large number of single nucleotide polymor-
phisms of interest, though smaller than the sample size, challenges inference on
their joint associations with the disease outcome. In similar settings, we find that
neither the debiased lasso approach (van de Geer et al., 2014), which assumes
sparsity on the inverse information matrix, nor the standard maximum likeli-
hood method can yield confidence intervals with satisfactory coverage probabil-
ities for generalized linearmodels. Under this “large 𝑛, diverging 𝑝” scenario, we
propose an alternative debiased lasso approach by directly inverting the Hessian
matrix without imposing the matrix sparsity assumption, which further reduces
bias compared to the original debiased lasso and ensures valid confidence inter-
vals with nominal coverage probabilities. We establish the asymptotic distribu-
tions of any linear combinations of the parameter estimates, which lays the theo-
retical ground for drawing inference. Simulations show that the proposed refined
debiased estimating method performs well in removing bias and yields honest
confidence interval coverage. We use the proposed method to analyze the afore-
mentioned BLCSC data, a large-scale hospital-based epidemiology cohort study
investigating the joint effects of genetic variants on lung cancer risks.
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1 INTRODUCTION

To identify disease-related genetic markers, traditional
genome-wide association studies typically analyze the
marginal associations of the disease outcome with single-
nucleotide polymorphisms (SNPs), one at a time. As
marginal associations do not account for the dependence
among SNPs, false positive discoveries may occur as SNPs
can be claimed as significant when they are correlated
with the causal variants (Schaid et al., 2018). Alternatively,

modeling the joint effects of SNPs within the target genes
can reduce false positives around true causal SNPs and
improve prediction accuracy (He and Lin, 2010), and also
can pinpoint functionally impactful loci in the coding
regions (Taylor et al., 2001; Repapi et al., 2010) so as to
better understand the molecular mechanisms underlying
cancer (Guan and Stephens, 2011). For example, among
a subset of 1374 patients from the Boston Lung Cancer
Survival Cohort (BLCSC), an epidemiology study that
investigates molecular mechanisms underlying lung
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cancer, our goal is to study the joint associations of
lung cancer risk with over 100 SNPs residing in nine
target genes that have been reported to harbor relevant
genetic variants (McKay et al., 2017). The results may
aid in personalized medicine by properly implicating
relevant genetic variants and their joint roles in pharma-
cogenomics (Evans and Relling, 2004). Statistically, the
analysis requires reliable estimation and inference on a
fairly large number of regression parameters.
With lung cancer mechanisms differing by smoking

predisposition (Bossé and Amos, 2018), analyzing BLCSC
among the 1077 smokers and 297 nonsmokers, separately
is necessary. Included in our models are 103 SNPs and 4
demographic variables, which, though smaller than the
number of smokers or nonsmokers, are large enough to
defy the conventional maximum likelihood estimation
(MLE) approach. In particular, for nonsmokers, Table 2
in Section 5 has shown unreasonably large MLE estimates
with wide confidence intervals, for example, a point esti-
mate of −19.64 with a 95% confidence interval (−6705.04,
6665.75) for SNP AX-62479186. Failures of MLE in similar
scenarios have been documented in Sur andCandès (2019),
and further evidenced by our later simulation studies.
The asymptotic framework underlying these cases can

be characterized as the number of parameters 𝑝 increas-
ing with the sample size 𝑛, rather than staying fixed,
which is often referred to as the “large 𝑛, diverging 𝑝”
scenario. Drawing inference with generalized linear mod-
els (GLMs) under this framework may facilitate a range
of applications, because the setting enables us to build
valid models when the collected information increases
with more subjects included in the study (Wang, 2011).
Several authors (Huber, 1973; Yohai and Maronna, 1979;
Portnoy, 1984, 1985) investigated the relative order between
𝑝 and 𝑛 that ensures the validity of M-estimators in lin-
ear regression; He and Shao (2000) studied the consis-
tency and the asymptotic normality of the M-estimators
under different conditions and showed that𝑝2 log(𝑝)∕𝑛 →

0would be needed for linear and logistic regression; Wang
(2011) developed an asymptotic theory for the estimated
regression parameters from generalized estimating equa-
tions with clustered binary outcomes, provided 𝑝3∕𝑛 → 0.
However, most of these methods incur substantial biases
in empirical studies unless 𝑝 is very small.
Penalized regressionmethods have been developed over

the decades to accommodate a large number of covariates.
These methods, including the lasso (Tibshirani, 1996), the
elastic net (Zou and Hastie, 2005) and the Dantzig selec-
tor (Candès and Tao, 2007) among many others, are con-
sidered to be useful alternatives to the traditional variable
selection methods such as forward or stepwise selection,
especially in genetic studies (Schaid et al., 2018). These reg-
ularized methods yield biased estimates, and thus, cannot

be directly used for drawing inference such as constructing
confidence intervals with a nominal coverage probability.
One stream of inferential methods is the postselec-

tion inference conditional on selected models (Lee et al.,
2016), which requires conditional coverage to quantify the
uncertainty associated with model selection. Other super-
efficient procedures, such as SCAD (Fan and Li, 2001; Fan
and Peng, 2004) and adaptive lasso (Zou, 2006), share the
flavor of postselection inference that is not the focus of this
article. In particular, the inference based on the oracle esti-
mation of Fan and Peng (2004) requires 𝑝5∕𝑛 → 0.
Another school of methods is to draw inference by debi-

asing the lasso estimates, termed debiased lasso or despar-
sified lasso, which relieves the restrictions of postselec-
tion inference and possesses nice theoretical and numer-
ical properties in linear regression models (van de Geer
et al. 2014; Zhang and Zhang 2014; Javanmard and Mon-
tanari 2014).
van de Geer et al. (2014) extended debiased lasso to

GLMs and developed the asymptotic normality theory for
each component of the coefficient estimates; based on this
work, Zhang and Cheng (2017) proposed a multiplier boot-
strap procedure to draw inference on a group of coefficients
in GLMs. However, the debiased lasso approach presented
subpar performance with nonnegligible biases and poor
coverage of confidence intervals, as seen from Figures 1
and 2 for a logistic example in Section 4 that mimics the
BLCSC setting, because a key sparsity assumption on the
inverse information matrix may not hold in GLM settings.
To address the limitation and for valid inference with

GLMs, we propose a refined debiased lasso estimating
method specifically tailored to the “large 𝑛, diverging 𝑝”
scenario as in the motivating BLCSC dataset. Our pro-
posed method estimates the inverse information matrix
by directly inverting the sample Hessian matrix, which
requires no structural assumptions on the inverse infor-
mation matrix. We establish the asymptotic distributions
for any linear combinations of the resulting estimates,
laying the theoretical foundation for applications. Sim-
ulations demonstrate its better performance in reducing
biases and preserving confidence interval coverage prob-
abilities than the conventional MLE and the original debi-
ased lasso (van de Geer et al., 2014) for a wide range of 𝑝∕𝑛
ratios, and all three methods yield almost identical results
when 𝑝 is rather small relative to 𝑛.
The rest of this article is organized as follows. Section 2

describes in detail the model setup and the proposed
refined debiased lasso estimating method. Asymptotic
results for the proposed method are provided in Section 3,
followed by simulation studies in Section 4. Findings on
the joint associations between SNPs in target genes and
lung cancer risks by applying the proposed method to the
motivating BLCSC data are reported in Section 5. Not to



346 XIA et al.

deviate from the main flow, we put off the discussion of
the distinctions of the proposed method from the existing
high-dimensional inference literature to Section 6.

2 METHOD

2.1 Background and setup in
generalized linear models

We start with some commonly used notation. For a vec-
tor 𝒂, ‖𝒂‖𝑞 denotes its 𝓁𝑞 norm, 𝑞 ≥ 1. Denote by 𝜆max(𝑨)

and 𝜆min(𝑨) the largest and the smallest eigenvalues of a
symmetric matrix 𝑨, respectively. For a real matrix 𝑨 =

(𝐴𝑖𝑗), let ‖𝑨‖ = sup‖𝒙‖2=1 ‖𝑨𝒙‖2 = [𝜆max(𝑨
𝑇𝑨)]1∕2 be the

spectral norm of 𝑨. The induced matrix 𝓁1 norm is
‖𝑨‖1 = max𝑗

∑
𝑖 |𝐴𝑖𝑗|, and when 𝑨 is symmetric, ‖𝑨‖1 =

max𝑖
∑

𝑗 |𝐴𝑖𝑗| also holds. The element-wise 𝓁∞ norm is
‖𝑨‖∞ = max𝑖,𝑗 |𝐴𝑖𝑗|. With two positive sequences 𝑎𝑛 and
𝑏𝑛, write 𝑎𝑛 = (𝑏𝑛) if there exist 𝑐 > 0 and 𝑁 > 0 such
that 𝑎𝑛 < 𝑐𝑏𝑛 for all 𝑛 > 𝑁, and 𝑎𝑛 = 𝑜(𝑏𝑛) if 𝑎𝑛∕𝑏𝑛 → 0 as
𝑛 → ∞. We write 𝑎𝑛 ≍ 𝑏𝑛 if 𝑎𝑛 = (𝑏𝑛) and 𝑏𝑛 = (𝑎𝑛).
Denote by 𝑦𝑖 the response variable and 𝒙𝑖 = (1, 𝒙𝑇𝑖 )

𝑇 ∈

ℝ𝑝+1 for 𝑖 = 1, … , 𝑛, where “1” corresponds to the inter-
cept term, and 𝒙𝑖 represents the 𝑝 covariates. Let 𝑿 be
the 𝑛 × (𝑝 + 1) covariate matrix with 𝒙𝑇

𝑖
being the 𝑖th

row. We assume that {(𝑦𝑖, 𝒙𝑖)}𝑛𝑖=1 are independent and
identically distributed copies of (𝑦, 𝒙). Define the negative
log-likelihood function as the following, up to an additive
constant irrelevant to the unknown parameters, when the
conditional density of 𝑦 given 𝒙 belongs to an exponential
family:

𝜌𝝃 (𝑦, 𝒙) = 𝜌(𝑦, 𝒙𝑇𝝃 ) = −𝑦𝒙𝑇𝝃 + 𝑏(𝒙𝑇𝝃 ) (1)

where 𝑏(⋅) is a known twice continuously differentiable
function, 𝝃 = (𝛽0, 𝜷

𝑇)𝑇 ∈ ℝ𝑝+1 denotes the vector of
coefficients, and 𝛽0 ∈ ℝ is the intercept parameter. The
unknown true coefficient vector is 𝝃 0 = (𝛽00, 𝜷

0𝑇)𝑇 .

2.2 Debiased lasso

With 𝜌𝝃 (𝑦, 𝒙) = 𝜌(𝑦, 𝒙𝑇𝝃 ) given in (1), denote by �̇�𝝃
and �̈�𝝃 its first- and second-order derivatives with
respect to 𝝃 , respectively. For any function 𝑔(𝑦, 𝒙), let
𝑃𝑛𝑔 = 𝑛−1

∑𝑛

𝑖=1 𝑔(𝑦𝑖, 𝒙𝑖). Then for any 𝝃 ∈ ℝ𝑝+1, we
denote the empirical loss function based on the ran-
dom sample {(𝑦𝑖, 𝒙𝑖)}

𝑛
𝑖=1

by 𝑃𝑛𝜌𝝃 = 𝑛−1
∑𝑛

𝑖=1 𝜌𝝃 (𝑦𝑖, 𝒙𝑖),
and its first- and second-order derivatives with respect
to 𝝃 by 𝑃𝑛�̇�𝝃 = 𝑛−1

∑𝑛

𝑖=1 𝜕𝜌𝝃 (𝑦𝑖, 𝒙𝑖)∕𝜕𝝃 and �̂�𝝃 = 𝑃𝑛�̈�𝝃 =

𝑛−1
∑𝑛

𝑖=1 𝜕
2𝜌𝝃 (𝑦𝑖, 𝒙𝑖)∕𝜕𝝃𝜕𝝃

𝑇 . Two important population-
level matrices are the information matrix, 𝚺𝝃 = 𝐸(�̂�𝝃 ) =

𝐸(𝑃𝑛�̈�𝝃 ), and its inverse𝚯𝝃 = 𝚺−1
𝝃
. With a tuning parame-

ter 𝜆 > 0, the lasso estimator for 𝝃 0 is defined as

𝝃 = argmin
𝝃=(𝛽0, 𝜷𝑇)𝑇∈ℝ𝑝+1

{
𝑃𝑛𝜌𝝃 + 𝜆‖𝜷‖1}, (2)

where we suppress the dependence of 𝜆 on 𝑛 and 𝑝 for
notational ease. We clarify that we do not penalize the
intercept 𝛽0 in (2). As such, the theoretical properties for
𝝃 , including the bounds of estimation errors and prediction
errors, are still the same as those in van de Geer (2008) and
van de Geer et al. (2014), where all of the parameters are
estimated via penalization (Bühlmann and van de Geer,
2011).
We briefly review the debiased lasso estimator and its

bias decomposition. The first-order Taylor expansion of
𝑃𝑛�̇�𝝃0 at 𝝃 gives

𝑃𝑛�̇�𝝃0 = 𝑃𝑛�̇�𝝃 + 𝑃𝑛�̈�𝝃 (𝝃
0 − 𝝃) + 𝚫, (3)

where 𝚫 is a (𝑝 + 1)-dimensional vector of remainder
terms with the 𝑗th element

Δ𝑗 =
1

𝑛

𝑛∑
𝑖=1

{�̈�(𝑦𝑖, 𝑎
∗
𝑗
) − �̈�(𝑦𝑖, 𝒙

𝑇
𝑖
𝝃 )}𝑥𝑖𝑗𝒙

𝑇
𝑖
(𝝃 0 − 𝝃),

in which �̈�(𝑦, 𝑎) = 𝜕2𝜌(𝑦, 𝑎)∕𝜕𝑎2, and 𝑎∗
𝑗
lies between 𝒙𝑇

𝑖
𝝃

and 𝒙𝑇
𝑖
𝝃 0. In linear regression models,𝚫 = 𝟎, which is not

always the case for GLMs. Let 𝑴 be a (𝑝 + 1) × (𝑝 + 1)

matrix approximating𝚯𝝃0 . Multiplying both sides of (3) by
𝑴𝑗 , the 𝑗th row of𝑴, we obtain the following equality for
the 𝑗th component

𝜉𝑗 − 𝜉0𝑗 +

𝐼𝑗
⏞ ⎴⎴⏞ ⎴⎴⏞(
−𝑴𝑗𝑃𝑛�̇�𝝃

)
+

𝐼𝐼𝑗
⏞⎴⏞⎴⏞(
−𝑴𝑗𝚫

)

+

𝐼𝐼𝐼𝑗
⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞(
𝑴𝑗𝑃𝑛�̈�𝝃 − 𝒆𝑇

𝑗

)(
𝝃 − 𝝃0

)
= −𝑴𝑗𝑃𝑛�̇�𝝃0 , (4)

where 𝒆𝑗 is the unit vector with the 𝑗th element being 1.
van de Geer et al. (2014) obtained the above decomposition
by inverting the Karush–Kuhn–Tucker condition while
using the node-wise lasso estimate of 𝚯𝝃0 , denoted by �̃�,
to be the approximation matrix 𝑴. Originally proposed
for neighborhood selection in high-dimensional graphs
(Meinshausen and Bühlmann, 2006), the node-wise lasso
approach estimates a sparse matrix 𝚯𝝃0 that consists of
many zero elements. In (4), the asymptotic bias term 𝐼𝑗 is
estimable, and 𝜉𝑗 + 𝐼𝑗 corresponds to the debiased lasso
estimator in van de Geer et al. (2014) with 𝑴 = �̃�. In
practice, the 𝐼𝐼𝑗 and 𝐼𝐼𝐼𝑗 terms in (4) are not computable
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because they involve the unknown 𝝃 0, and ignoring them
may not help fully remove biases. Particularly, the sparse
estimator �̃�may result in nonnegligible 𝐼𝐼𝑗 and 𝐼𝐼𝐼𝑗 terms
compared to 𝐼𝑗 . Consequently, the �̃�-based debiased lasso
estimator (van de Geer et al., 2014) incurs much bias
and possesses an unsatisfactory inference performance for
GLMs as evidenced by our simulations.
On the other hand, without the matrix sparsity assump-

tion, one may obtain𝑴 by solving an optimization prob-
lem originally proposed for linear models (Javanmard and
Montanari, 2014):

min{𝜻 𝑇�̂�
𝝃
𝜻 ∶ 𝜻 ∈ ℝ𝑝+1, ‖�̂�

𝝃
𝜻 − 𝒆𝑗‖∞ ≤ 𝜇𝑛} (5)

for 𝑗 = 1,… , 𝑝 + 1 and 𝜇𝑛 ≥ 0. Under the conditions in
Theorem 1 of Section 3, the Hessian matrix �̂�

𝝃
is invertible

with probability going to one as 𝑛 → ∞, and the rows of
�̂�−1
𝝃
are solutions to (5) when 𝜇𝑛 = 0. As confirmed by our

simulations in a variety of regimes, 𝜇𝑛 = 0 generally per-
forms the best in overall bias correction to 𝐼𝐼𝑗 + 𝐼𝐼𝐼𝑗 and
statistical inference as 𝜇𝑛 varies from 0 to 1; see Section 4.
This motivates us to replace 𝑴 with �̂� = �̂�−1

𝝃
, denote by

�̂�𝑗 the 𝑗th row of �̂�, and reexpress (4) as

𝝃 − 𝝃0 +
(
−�̂�𝑃𝑛�̇�𝝃

)
+
(
−�̂�𝚫

)
= −�̂�𝑃𝑛�̇�𝝃0 . (6)

Therefore, we propose a refined debiased lasso estimator
based on �̂�:

𝒃 = 𝝃 − �̂�𝑃𝑛�̇�𝝃 . (7)

We will show that our proposed method possesses desir-
able asymptotic properties and, in general, performs bet-
ter than the original debiased lasso approach (van de Geer
et al., 2014) in finite sample settings.

3 THEORETICAL RESULTS

Without loss of generality, we assume that each covari-
ate has been centered to have mean zero. Let 𝑿𝝃 = 𝑾𝝃𝑿

be the weighted design matrix, where 𝑾𝝃 is a diagonal
matrix with elements 𝜔𝑖(𝝃 ) = {�̈�(𝑦𝑖, 𝒙

𝑇
𝑖
𝝃 )}1∕2, 𝑖 = 1, … , 𝑛.

Then, for any 𝝃 ∈ ℝ𝑝+1, �̂�𝝃 can be rewritten as �̂�𝝃 =

𝑿𝑇
𝝃
𝑿𝝃∕𝑛. Recall that the population information matrix

𝚺𝝃 = 𝐸(�̂�𝝃 ) = 𝐸(𝑃𝑛�̈�𝝃 ), and its inverse matrix is 𝚯𝝃 =

𝚺−1
𝝃
, which are, respectively, equal to 𝐸(𝑿𝑇𝑿∕𝑛) and

{𝐸(𝑿𝑇𝑿∕𝑛)}−1 only for linear models, but not for GLMs.
The 𝜓2-norm (Vershynin, 2012) is useful for character-
izing the convergence rate of �̂� = �̂�−1

𝝃
. Explicitly, for a

random variable 𝑌, its 𝜓2-norm is defined as ‖𝑌‖𝜓2 =

sup𝑟≥1 𝑟
−1∕2(𝐸|𝑌|𝑟)1∕𝑟, and 𝑌 is defined to be a sub-

Gaussian random variable if ‖𝑌‖𝜓2 < ∞. For a random
vector 𝒁 ∈ ℝ𝑝+1, its 𝜓2-norm is defined as ‖𝒁‖𝜓2 =
sup‖𝒂‖2=1 ‖⟨𝒁, 𝒂⟩‖𝜓2 , and𝒁 is called sub-Gaussian if ⟨𝒁, 𝒂⟩
is a sub-Gaussian random variable for all 𝒂 ∈ ℝ𝑝+1 with
‖𝒂‖2 = 1 (Vershynin, 2012). We list the regularity condi-
tions as follows.

Assumption 1. The elements in 𝑿 are bounded almost
surely. That is, ‖𝑿‖∞ ≤ 𝐾 almost surely for a constant
𝐾 > 0. In addition, the rows of 𝑿 are sub-Gaussian ran-
dom vectors.

Assumption 2. 𝚺𝝃0 is positive definite with bounded
eigenvalues such that, for two positive constants 𝑐min and
𝑐max , 𝑐min ≤ 𝜆min(𝚺𝝃0) ≤ 𝜆max(𝚺𝝃0) ≤ 𝑐max < ∞.

Assumption 3. The derivatives �̇�(𝑦, 𝑎) = 𝜕𝜌(𝑦, 𝑎)∕𝜕𝑎 and
�̈�(𝑦, 𝑎) = 𝜕2𝜌(𝑦, 𝑎)∕𝜕𝑎2 exist for all (𝑦, 𝑎). Further, in some
𝛿-neighborhood, 𝛿 > 0, �̈�(𝑦, 𝑎) is Lipschitz such that for
some absolute constant 𝑐𝐿𝑖𝑝 > 0,

max
𝑎0∈{𝒙

𝑇
𝑖
𝝃 0}

sup
max(|𝑎−𝑎0|,|𝑎−𝑎0|)≤𝛿

sup
𝑦∈

|�̈�(𝑦, 𝑎) − �̈�(𝑦, 𝑎)|
|𝑎 − 𝑎| ≤ 𝑐𝐿𝑖𝑝.

And the derivatives are bounded in the sense that there
exist two constants 𝐾1, 𝐾2 > 0 such that

max
𝑎0∈{𝒙

𝑇
𝑖
𝝃 0}

sup
𝑦∈

|�̇�(𝑦, 𝑎0)| ≤ 𝐾1,

max
𝑎0∈{𝒙

𝑇
𝑖
𝝃 0}

sup|𝑎−𝑎0|≤𝛿
sup
𝑦∈

|�̈�(𝑦, 𝑎)| ≤ 𝐾2.

Assumption 4. ‖𝑿𝝃0‖∞ is bounded from above
almost surely.

Assumption 5. The covariance matrix 𝐸(𝑿𝑇𝑿∕𝑛) is pos-
itive definite with eigenvalues bounded away from 0 and
from above.

It is common to assume bounded covariates as in
Assumption 1 and bounded eigenvalues for the informa-
tion matrix as in Assumption 2 in high-dimensional infer-
ence literature (van de Geer et al., 2014; Ning and Liu,
2017). Assumption 2 is needed to derive the rate of conver-
gence for 𝝃 . Assumption 3 specifies the required smooth-
ness and local properties of the loss function 𝜌(𝑦, 𝒙𝑇𝝃 )

(van de Geer et al., 2014). As each element of 𝑿𝝃0 is the
(transformed) conditional mean of 𝑦𝑖 , it is reasonable to
assume its boundedness in Assumption 4 as in van de Geer
et al. (2014) andNing and Liu (2017) for GLMs, and inKong
and Nan (2014) and Fang et al. (2017) for the Cox mod-
els. Also Assumption 4 is needed to bound the variance of
𝑦𝑖 and keep it away from 0 for GLMs. Assumption 5 is a
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mild requirement for random covariates; a similar condi-
tion on the sample covariancematrix can be found inWang
(2011). Unlike van de Geer et al. (2014), we have avoided an
assumption on the boundedness of ‖𝚯𝝃0𝒙𝑖‖∞, which is not
verifiable and closely related to the sparsity requirement of
𝚯𝝃0 under Assumption 1.
Let 𝑠0 denote the number of nonzero elements in 𝝃 0, and

consider𝒃 = 𝝃 − �̂�𝑃𝑛�̇�𝝃 as defined in (7). Theorem 1 estab-
lishes asymptotic normality for (multiple) linear combina-
tions of 𝒃, with a proof provided in Web Appendix A.

Theorem 1. With 𝜆 ≍ {log(𝑝)∕𝑛}1∕2, assume that 𝑝2∕𝑛 →

0 and 𝑠0 log(𝑝)(𝑝∕𝑛)
1∕2 → 0 as 𝑛 → ∞. Under Assump-

tions 1–5, we have that �̂�
𝝃
is invertible with probability going

to one, and that

(i) for a constant vector 𝜶𝑛 ∈ ℝ𝑝+1 with ||𝜶𝑛||2 = 1,

𝑛1∕2𝜶𝑇𝑛 (𝒃 − 𝝃0)

(𝜶𝑇𝑛 �̂�𝜶𝑛)
1∕2



→ 𝑁(0, 1) as 𝑛 → ∞;

(ii) for a fixed integer 𝑚 > 1 and a constant matrix 𝑨𝑛 ∈

ℝ𝑚×(𝑝+1) satisfying ‖𝑨𝑇
𝑛‖ ≤ 𝑐∗ for some constant 𝑐∗ and

𝑨𝑛𝚯𝝃0𝑨
𝑇
𝑛 → 𝑭 for some 𝑭 ∈ ℝ𝑚×𝑚,

𝑛1∕2𝑨𝑛(𝒃 − 𝝃0)


→ 𝑁𝑚(𝟎, 𝑭) as 𝑛 → ∞.

Remark 1. Theorem 1 enables us to construct
a 100 × (1 − 𝑟)% confidence interval for 𝜶𝑇𝑛 𝝃

0 as
[𝜶𝑇𝑛 𝒃 − 𝑧𝑟∕2(𝜶

𝑇
𝑛 �̂�𝜶𝑛∕𝑛)

1∕2, 𝜶𝑇𝑛 𝒃 + 𝑧𝑟∕2(𝜶
𝑇
𝑛 �̂�𝜶𝑛∕𝑛)

1∕2 ],
where 0 < 𝑟 < 1 and 𝑧𝑟∕2 is the upper (𝑟∕2)th quan-
tile of the standard normal distribution. Here,
𝜶𝑛 can be arbitrarily dense, instead of having
only a few nonzero elements such as 𝜶𝑛 = 𝒆𝑗 in
van de Geer et al. (2014). A 100 × (1 − 𝑟)% con-
fidence region for 𝑨𝑛𝝃

0 can be constructed as
{𝒂 ∈ ℝ𝑚 ∶ 𝑛(𝑨𝑛𝒃 − 𝒂)𝑇(𝑨𝑛�̂�𝑨

𝑇
𝑛)

−1(𝑨𝑛𝒃 − 𝒂) ≤ 𝜒2
𝑚,𝑟},

where 𝜒2
𝑚,𝑟 is the upper 𝑟th quantile of 𝜒2

𝑚.

Remark 2. In a linear regression setting with 𝒀 =

(𝑦1, … , 𝑦𝑛)
𝑇 , some algebra shows that the proposed esti-

mator (7) is identical to the MLE, (𝑿𝑇𝑿)−1𝑿𝑇𝒀, regard-
less of the choice of the initial estimate, 𝝃 . Therefore, as
a by-product, Theorem 1 characterizes the asymptotics of
the MLE for linear models with a diverging number of
coefficients, which only requires 𝑝2∕𝑛 → 0. This can be
shown following a similar proof of Theorem 1 with 𝚫 = 0

for linear regression models, where �̂� is free of regression
parameters. It is obvious that regularity conditions can be
simplified for linear regression models.

Remark 3. Binary covariates, particularly dummy vari-
ables for categorical covariates, satisfy the assumptions for

Theorem 1. Therefore, applications of Theorem 1 encom-
pass inference for categorical covariates, such as draw-
ing inference on comparisons between multiple interven-
tion groups or testing associations of multilevel categorical
covariates with outcomes.

4 NUMERICAL EXPERIMENTS

Under the “large 𝑛, diverging 𝑝” scenario, we compare
the estimation biases and coverage probabilities of con-
fidence intervals across the following estimators: (i) the
original debiased lasso estimator obtained by using the
node-wise lasso estimator �̃� in van de Geer et al. (2014)
(ORIG-DS), (ii) the conventional maximum likelihood
estimator (MLE), and (iii) our proposed refined debiased
lasso estimator 𝒃, based on the inverse matrix estimation
�̂� = �̂�−1

𝝃
(REF-DS).

Simulations using the logistic and Poisson regression
models yield similar observations, and we only report
results from logistic regression. A total of 𝑛 = 1000 obser-
vations, eachwith𝑝 = 40, 100, 300, 400 covariates, are sim-
ulated. Within 𝒙𝑖 = (1, 𝒙𝑇

𝑖
)𝑇 , 𝒙𝑖 are independently gen-

erated from 𝑁𝑝(𝟎, 𝚺𝑥) before being truncated at ±6,
and 𝑦𝑖 ∣ 𝒙𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜇𝑖), where 𝜇𝑖 = exp(𝒙𝑇𝑖 𝝃

0)∕{1 +

exp(𝒙𝑇𝑖 𝝃
0)}. The intercept 𝛽00 = 0, and 𝛽01 varies from 0 to

1.5 with 40 equally spaced increments. In addition, four
arbitrarily chosen elements of 𝜷0 take nonzero values, two
with 0.5 and the other two with 1, and are fixed through-
out the simulation. In some settings, the maximum likeli-
hood estimates do not exist due to divergence and are not
shown. The covariance matrix 𝚺𝑥 of 𝒙𝑖 takes an autore-
gressive structure of order 1, that is, AR(1), with correla-
tion 𝜌 = 0.7, or a compound symmetry structure with cor-
relation 𝜌 = 0.7. The tuning parameter in the 𝓁1 penal-
ized regression is selected by 10-fold cross-validation, and
the tuning parameter for the node-wise lasso estimator
�̃� is selected using fivefold cross-validation. Both tuning
parameter selection procedures are implemented using
glmnet (Friedman et al., 2010). For every 𝛽01 value, we
summarize the average bias, empirical coverage probabil-
ity, empirical standard error, and model-based estimated
standard error over 200 replications.
Figure 1 illustrates the simulation results for estimat-

ing 𝛽01 under the autoregressive covariance structure, and
Figure 2 under the compound symmetry structure. The
three methods in comparison behave similarly with only
40 covariates included in the model, and the MLE yields
slightly larger biases. The MLE estimates display much
more biases than those obtained by the other two meth-
ods with 100 covariates, and do not always exist due
to divergence. When the MLE estimates do exist, they
manifest more variability than the original and refined
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F IGURE 1 Simulation results: Bias, coverage probability, empirical standard error, and model-based standard error for 𝛽01 in logistic
regression. Covariates are simulated from 𝑁𝑝(𝟎, 𝚺𝑥) before being truncated at ±6, where 𝚺𝑥 has an AR(1) with 𝜌 = 0.7. The sample size is
𝑛 = 1000 and the number of covariates 𝑝 = 40, 100, 300, 400. The oracle estimator, that is, the maximum likelihood estimator under the true
model, is plotted as a reference in orange solid lines. The methods in comparison include our proposed refined debiased lasso in olive
dot-dash lines, the original debiased lasso by van de Geer et al. (2014) in blue dashed lines, and the maximum likelihood estimation in red
dotted lines. This figure appears in color in the electronic version of this article, and any mention of color refers to that version

debiased lasso estimates, and are with lower cover-
age probabilities. In contrast, our refined debiased lasso
approach outperforms the MLE because the former uti-
lizes sparse lasso estimates as the initial estimates and is
numerically more stable than the latter.
There are systematic biases in the original debiased lasso

estimator by van de Geer et al. (2014), which increase
with the magnitude of 𝛽01 . When signals are nonzero, the
model-based standard errors produced by van deGeer et al.

(2014) slightly underestimate the true variability. These
factors contribute to the poor coverage probabilities of
van de Geer et al. (2014) when the signal size is not zero.
In contrast, the refined debiased lasso estimator gives the
smallest biases and has an empirical coverage probabil-
ity closest to the nominal level across different settings,
though with slightly higher variability than van de Geer
et al. (2014). This is likely because our proposed debiased
lasso approach does not utilize a penalized estimator of
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F IGURE 2 Simulation results: Bias, coverage probability, empirical standard error, and model-based standard error for 𝛽01 in a logistic
regression. Covariates are simulated from 𝑁𝑝(𝟎, 𝚺𝑥) before being truncated at ±6, where 𝚺𝑥 has a compound symmetry structure with
𝜌 = 0.7. The sample size is 𝑛 = 1000 and the number of covariates 𝑝 = 40, 100, 300, 400. The oracle estimator, that is, the maximum likelihood
estimator under the true model, is plotted as a reference in orange solid lines. The methods in comparisons include our proposed refined
debiased lasso in olive dot-dash lines, the original debiased lasso by van de Geer et al. (2014) in blue dashed lines, and the maximum
likelihood estimation in red dotted lines. This figure appears in color in the electronic version of this article, and any mention of color refers to
that version

the inverse information matrix. We take note that as the
refined debiased lasso method needs to invert the Hessian
matrix, which could become more ill-conditioned if the
dimension increases, its performance may deteriorate as
the dimension of covariates increases.

As we alluded to in Section 2, the refined debiased
lasso estimator is related to Javanmard and Montanari
(2014), and we have conducted additional simulations
to compare them, referred to as “REF-DS” and “Tun-
ing,” respectively. Figure 3, which depicts the results of a
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F IGURE 3 Simulation results: Bias, coverage probability, and ratio between average model-based standard error and empirical standard
error in a logistic regression to verify the selection of the tuning parameter 𝜇𝑛 = 0 in Equation (5) for 𝜉0𝑗 = 1. This figure appears in color in
the electronic version of this article, and any mention of color refers to that version
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logistic regression model with 𝑛 = 500 observations and
𝑝 = 40, 100, 200, 300, 400 covariates, shows that 𝜇𝑛 = 0

generally performs the best in bias correction and hon-
est confidence interval coverage when 𝜇𝑛 varies from 0 to
1; see the simulation setup and additional results in Web
Appendix B.

5 BOSTON LUNG CANCER DATA
ANALYSIS

Lung cancer is the top cause of cancer death in the
United States. The BLCSC, one of the largest hospital-
based cohorts in the country, investigates the molecular
causes of lung cancer. Recruited to the study were the lung
cancer cases and controls from the Massachusetts General
Hospital and the Dana-Farber Cancer Institute since 1992
(Miller et al., 2002). We apply the proposed refined debi-
ased lasso approach, together with the method by van de
Geer et al. (2014) and the MLE for comparison, to a subset
of the BLCSC data and examine the joint effects of SNPs
from nine target genes on the overall risk of lung cancer.
Genotypes from Axiom array and clinical information

were originally available on 1459 individuals. Out of those
individuals, 14 (0.96%) had missing smoking status, 8
(0.55%) had missing race information, and 1386 (95%) were
Caucasian. We include a final number of 𝑛 = 1374 Cau-
casians with complete data, where 𝑛0 = 723 were con-
trols and 𝑛1 = 651 were cases. Denote the binary disease
outcome by 𝑦𝑖 = 1 for cases and 0 for controls. Among
the 1077 smokers, 595 had lung cancer, whereas out of
the 297 nonsmokers, 56 were cases. Other demographic
characteristics, such as education level, gender, and age,
are summarized in Web Appendix C. Using the target
gene approach, we focus on the following lung cancer-
related genes: AK5 on region 1p31.1, RNASET2 on region
6q27, CHRNA2 and EPHX2 on region 8p21.2, BRCA2 on
region 13q13.1, SEMA6D and SECISBP2L on region 15q21.1,
CHRNA5 on region 15q25.1, andCYP2A6 on region 19q13.2.
These genes may harbor SNPs associated with the overall
lung cancer risks (McKay et al., 2017). In our dataset, each
SNP is coded as 0,1,2, reflecting the number of copies of
the minor allele, and minor alleles are assumed to have
additive effects. After applying filters on the minor allele
frequency, genotype call rate, and excluding highly corre-
lated SNPs, 103 SNPs remain in themodel. As smokingmay
modify associations between lung cancer risks and SNPs,
for example, those residing in region 15q25.1 (Amos et al.,
2008; Gabrielsen et al., 2013), we conduct analysis strati-
fied by smoking status. Among the smokers and nonsmok-
ers, we fit separate logistic regressionmodels, adjusting for
education, gender, and age.

We apply these methods to draw inference on all of the
107 predictors, two of which are dummy variables for edu-
cation originally with three levels, no high school, high
school, and at least 1–2 years of college. Our data anal-
ysis may shed light on the molecular mechanism under-
lying lung cancer. Due to limited space, Table 1 lists the
estimates for 11 selected SNPs and demographic variables
among smokers, and Table 2 for nonsmokers. These SNPs
are listed as they are significant based on at least one of the
three methods among either the smokers or the nonsmok-
ers. Details of the other SNPs are omitted. As the number
of the nonsmokers is only about one-third of the smok-
ers, the MLE has the largest standard errors and tends to
break down among the nonsmokers; see, for example, AX-
62479186 in Table 2, whereas the two debiased lasso meth-
ods give more stable estimates. The estimates by our pro-
posed refined debiased lasso method (REF-DS) and the
method by van de Geer et al. (2014) (ORIG-DS) share more
similarities in the smokers in Table 1 than in the nonsmok-
ers in Table 2. Overall, the method by van de Geer et al.
(2014) has slightly narrower confidence intervals than our
proposed debiased lasso estimator due to the penalized
estimation for 𝚯𝝃0 . These results generally agree with our
simulation studies.
For some SNPs, our proposed method and the method

by van de Geer et al. (2014) yield estimates with opposite
directions; seeAX-38419741 andAX-15934253 in Table 1 and
AX-42391645 in Table 2. Among the nonsmokers, the 95%
confidence interval for AX-31620127 in SEMA6D by our
proposed method is all positive and excludes 0, whereas
the confidence interval by the method of van de Geer
et al. (2014) includes 0; the directions for AX-88907114 in
CYP2A6 are the opposite in Table 2. CHRNA5 is a gene
known for predisposition to nicotine dependence (Amos
et al., 2008; Gabrielsen et al., 2013; Halldén et al., 2016).
Though AX-39952685 and AX-88891100 in CHRNA5 are
not significant at level 0.05 in marginal analysis among
the smokers, their 95% confidence intervals in Table 1
exclude 0 by all of the threemethods. Indeed, AX-88891100,
or rs503464, mapped to the same physical location in
the dbSNP database, was found to “decrease CHRNA5
promoter-derived luciferase activity” (Doyle et al., 2011).
The same SNP was also reported to be significantly asso-
ciated with nicotine dependence at baseline, as well as
response to varenicline, bupropion, and nicotine replace-
ment therapy for smoking cessation (Pintarelli et al., 2017).
AX-39952685 was found to be strongly correlated with
SNP AX-39952697 in CHRNA5, which was mapped to the
same physical location as rs11633585 in dbSNP. All of these
markers were found to be significantly associated with
nicotine dependence (Stevens et al., 2008). The stratified
analysis also suggests that molecular mechanisms of lung
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cancer differ between smokers and nonsmokers, though
additional confirmatory studies are needed.

6 CONCLUDING REMARKS

We have proposed a refined debiased lasso estimating
method for GLMs by directly inverting Hessian matrices
in the “large 𝑛, diverging 𝑝” framework. We have showed
that if 𝑝2∕𝑛 = 𝑜(1) and (𝑝∕𝑛)1∕2𝑠0 log(𝑝) = 𝑜(1), along
with some other mild conditions, any linear combinations
of the resulting estimates are asymptotically normal
and can be used for constructing hypothesis tests and
confidence intervals. By way of empirical studies, we have
shown that when 𝑝 is small relative to 𝑛, the proposed
refined debiased lasso yields estimates nearly identical to
the MLE and the original debiased lasso by van de Geer
et al. (2014). In contrast, the proposedmethod outperforms
the latter two in bias correction and confidence interval
coverage probabilities when 𝑝 < 𝑛 but 𝑝 is relatively large,
indicating a broad applicability.
Additional simulations for linear regression models

(results not shown) indicate that, however, both our pro-
posed method (equivalent to the MLE, see Remark 2) and
the original debiased lasso method perform well with no
obvious difference between these two methods for wide
ranges of 𝑝∕𝑛. This is likely due to the fact that theHessian
matrix for a linear model is free of regression parameters.
Theorem 1 gives some sufficient range of 𝑝 relative to 𝑛

to guide practical settings, but does not necessarily exhaust
all possible working scenarios in a finite sample setting. In
fact, we have shown through simulations that the asymp-
totic approximations given inTheorem 1workwell in finite
sample settings with wide ranges of 𝑝 and 𝑛. Nevertheless,
searching for more relaxed conditions of 𝑝 and 𝑛 warrants
more in-depth investigations.
With a slightly stronger requirement of

𝑠0 log(𝑝)(𝑝∕𝑛)
1∕2 → 0 than 𝑠0 log(𝑝)∕

√
𝑛 → 0 speci-

fied in van de Geer et al. (2014), Theorem 1 obtains
stronger results than theirs in (i) drawing inference for
any linear combinations of regression coefficients, (ii)
releasing sparsity assumptions on 𝚯𝝃0 , and (iii) dropping
the boundedness assumption on ‖𝚯𝝃0𝒙𝑖‖∞; see Web
Appendix D for detailed discussion. Moreover, a referee
pointed out a recent work on linear regression models
(Bellec et al., 2018) that may help provide slightly less
stringent sparsity conditions by relaxing the logarithmic
factor; however, such generalization to GLMs is beyond
our scope.
Lastly, we comment on the difficulties of applying some

existingmethods to draw inference with high-dimensional
GLMs. With extensive simulations, we have discovered

unsatisfactory bias correction and confidence interval cov-
erage with the original debiased lasso in GLM settings
(van de Geer et al., 2014); for example, see the simula-
tion results under the “large 𝑝, small 𝑛” scenario in Web
Appendix B. Our further investigation pinpoints an essen-
tial assumption that hardly holds for GLMs in general,
which is that the number of nonzero elements in the rows
of the high-dimensional inverse information matrix𝚯𝝃0 is
sparse and of order 𝑜[{𝑛∕ log(𝑝)}1∕2] (van de Geer et al.,
2014). The theoretical developments in van de Geer et al.
(2014) rely heavily on this sparse matrix assumption. The
𝓁0 sparsity conditions on high-dimensional matrices are
not uncommon in the literature of high-dimensional infer-
ence. A related 𝓁0 sparsity condition on 𝒘∗ = 𝑰∗−1𝛄𝛄𝑰

∗
𝛄𝜃

can be found in Ning and Liu (2017), where 𝑰∗ is the infor-
mation matrix under the truth, but it is not well justified
in a general setting for GLMs. When testing a global null
hypothesis 𝜷0 = 0, the sparsity of 𝚯𝝃0 reduces to the spar-
sity of the covariate precision matrix, which becomes less
of an issue (Ma et al., 2021). Therefore, we generally do
not recommend the debiased lasso method when 𝑝 > 𝑛

for GLMs.

ACKNOWLEDGMENTS
This work was partially supported by the United
States National Institutes of Health (R01AG056764,
R01CA249096, and U01CA209414), and the National
Science Foundation (DMS-1915711). The authors thank Dr.
David Christiani for providing the Boston Lung Cancer
Survival Cohort data, and the Editor, the Associate Editor,
and the two referees for valuable comments.

DATA AVAILAB IL ITY STATEMENT
The Boston Lung Cancer Survival Cohort data are not pub-
licly available due to access restrictions.

ORCID
BinNan https://orcid.org/0000-0002-5218-6869
YiLi https://orcid.org/0000-0003-1720-2760

REFERENCES
Amos, C.I., Wu, X., Broderick, P., Gorlov, I.P., Gu, J., Eisen, T. et al.
(2008) Genome-wide association scan of tag SNPs identifies a sus-
ceptibility locus for lung cancer at 15q25. 1. Nature Genetics, 40,
616–622.

Bellec, P.C., Lecué, G.& Tsybakov, A.B. (2018) Slope meets lasso:
improved oracle bounds and optimality. The Annals of Statistics,
46, 3603–3642.

Bossé, Y.& Amos, C.I. (2018) A decade of GWAS results in
lung cancer. Cancer Epidemiology, Biomarkers & Prevention, 27,
363–379.

Bühlmann, P. & van de Geer, S. (2011) Statistics for high-dimensional
data: methods, theory and applications. Berlin: Springer.

https://orcid.org/0000-0002-5218-6869
https://orcid.org/0000-0002-5218-6869
https://orcid.org/0000-0003-1720-2760
https://orcid.org/0000-0003-1720-2760


356 XIA et al.

Candès, E.&Tao, T. (2007) TheDantzig selector: statistical estimation
when 𝑝 is much larger than 𝑛. The Annals of Statistics, 35, 2313–
2351.

Doyle, G.A., Wang, M.-J., Chou, A.D., Oleynick, J.U., Arnold, S.E.,
Buono, R.J. et al. (2011) In vitro and ex vivo analysis of CHRNA3
and CHRNA5 haplotype expression. PLoS One, 6, e23373.

Evans, W.E.& Relling, M.V. (2004) Moving towards individualized
medicine with pharmacogenomics. Nature, 429, 464–468.

Fan, J.& Li, R. (2001) Variable selection via nonconcave penalized
likelihood and its oracle properties. Journal of the American Sta-
tistical Association, 96, 1348–1360.

Fan, J.& Peng, H. (2004) Nonconcave penalized likelihood with a
diverging number of parameters. The Annals of Statistics, 32, 928–
961.

Fang, E.X., Ning, Y.& Liu, H. (2017) Testing and confidence intervals
for high dimensional proportional hazards models. Journal of the
Royal Statistical Society: Series B (StatisticalMethodology), 79, 1415–
1437.

Friedman, J., Hastie, T.& Tibshirani, R. (2010) Regularization paths
for generalized linear models via coordinate descent. Journal of
Statistical Software, 33, 1–22.

Gabrielsen, M.E., Romundstad, P., Langhammer, A., Krokan, H.E.&
Skorpen, F. (2013) Association between a 15q25 gene variant,
nicotine-related habits, lung cancer and COPD among 56307 indi-
viduals from the HUNT study in Norway. European Journal of
Human Genetics, 21, 1293–1299.

Guan, Y.& Stephens, M. (2011) Bayesian variable selection regres-
sion for genome-wide association studies and other large-
scale problems. The Annals of Applied Statistics, 5, 1780–
1815.

Halldén, S., Sjögren, M., Hedblad, B., Engström, G., Hamrefors, V.,
Manjer, J. et al. (2016) Gene variance in the nicotinic receptor
cluster (CHRNA5-CHRNA3-CHRNB4) predicts death from car-
diopulmonary disease and cancer in smokers. Journal of Internal
Medicine, 279, 388–398.

He, Q.& Lin, D.-Y. (2010) A variable selection method for genome-
wide association studies. Bioinformatics, 27, 1–8.

He, X.& Shao, Q.-M. (2000) On parameters of increasing dimensions.
Journal of Multivariate Analysis, 73, 120–135.

Huber, P.J. (1973) Robust regression: asymptotics, conjectures and
Monte Carlo. The Annals of Statistics, 1, 799–821.

Javanmard, A.& Montanari, A. (2014) Confidence intervals and
hypothesis testing for high-dimensional regression. Journal of
Machine Learning Research, 15, 2869–2909.

Kong, S.& Nan, B. (2014) Non-asymptotic oracle inequalities for the
high-dimensional Cox regression via lasso. Statistica Sinica, 24,
25–42.

Lee, J.D., Sun, D.L., Sun, Y.& Taylor, J.E. (2016) Exact post-selection
inference, with application to the lasso. The Annals of Statistics,
44, 907–927.

Ma, R., Cai, T.T.& Li, H. (2021) Global and simultaneous hypothesis
testing for high-dimensional logistic regressionmodels. Journal of
the American Statistical Association, 116, 984–998.

McKay, J.D., Hung, R.J., Han, Y., Zong, X., Carreras-Torres, R., Chris-
tiani, D.C. et al. (2017) Large-scale association analysis identifies
new lung cancer susceptibility loci and heterogeneity in genetic
susceptibility across histological subtypes. Nature Genetics, 49,
1126–1132.

Meinshausen, N.& Bühlmann, P. (2006) High-dimensional graphs
and variable selection with the lasso. The Annals of Statistics, 34,
1436–1462.

Miller, D.P., Liu, G., De Vivo, I., Lynch, T.J., Wain, J.C., Su, L. et al.
(2002) Combinations of the variant genotypes of GSTP1, GSTM1,
and p53 are associated with an increased lung cancer risk. Cancer
Research, 62, 2819–2823.

Ning, Y.& Liu, H. (2017) A general theory of hypothesis tests and con-
fidence regions for sparse high dimensionalmodels. The Annals of
Statistics, 45, 158–195.

Pintarelli, G., Galvan, A., Pozzi, P., Noci, S., Pasetti, G., Sala, F. et al.
(2017) Pharmacogenetic study of seven polymorphisms in three
nicotinic acetylcholine receptor subunits in smoking-cessation
therapies. Scientific Reports, 7, 16730.

Portnoy, S. (1984) Asymptotic behavior of M-estimators of 𝑝 regres-
sion parameters when 𝑝2∕𝑛 is large, I. Consistency. The Annals of
Statistics, 12, 1298–1309.

Portnoy, S. (1985) Asymptotic behavior of M-estimators of 𝑝 regres-
sion parameters when 𝑝2∕𝑛 is large, II. Normal approximation.
The Annals of Statistics, 13, 1403–1417.

Repapi, E., Sayers, I., Wain, L.V., Burton, P.R., Johnson, T., Obei-
dat, M. et al. (2010) Genome-wide association study identifies
five loci associated with lung function. Nature Genetics, 42, 36–
44.

Schaid, D.J., Chen,W.& Larson, N.B. (2018) From genome-wide asso-
ciations to candidate causal variants by statistical fine-mapping.
Nature Reviews Genetics, 19, 491–504.

Stevens, V.L., Bierut, L.J., Talbot, J.T., Wang, J.C., Sun, J., Hinrichs,
A.L. et al. (2008) Nicotinic receptor gene variants influence sus-
ceptibility to heavy smoking. Cancer Epidemiology, Biomarkers &
Prevention, 17, 3517–3525.

Sur, P.& Candès, E.J. (2019) A modern maximum-likelihood the-
ory for high-dimensional logistic regression. Proceedings of the
National Academy of Sciences of the United States of America, 116,
14516–14525.

Taylor, J.G., Choi, E.-H., Foster, C.B.& Chanock, S.J. (2001) Using
genetic variation to study human disease. Trends in Molecular
Medicine, 7, 507–512.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 58, 267–288.

van de Geer, S.A. (2008) High-dimensional generalized linear mod-
els and the lasso. The Annals of Statistics, 36, 614–645.

van de Geer, S., Bühlmann, P., Ritov, Y.& Dezeure, R. (2014) On
asymptotically optimal confidence regions and tests for high-
dimensional models. The Annals of Statistics, 42, 1166–1202.

Vershynin, R. (2012) Introduction to the non-asymptotic analysis of
randommatrices. In: Compressed sensing. Cambridge: Cambridge
University Press, pp. 210–268.

Wang, L. (2011) GEE analysis of clustered binary data with diverging
number of covariates. The Annals of Statistics, 39, 389–417.

Yohai, V.J.& Maronna, R.A. (1979) Asymptotic behavior of M-
estimators for the linearmodel.TheAnnals of Statistics, 7, 258–268.

Zhang, X.& Cheng, G. (2017) Simultaneous inference for high-
dimensional linear models. Journal of the American Statistical
Association, 112, 757–768.

Zhang, C.-H.&Zhang, S.S. (2014)Confidence intervals for lowdimen-
sional parameters in high dimensional linear models. Journal of



XIA et al. 357

the Royal Statistical Society: Series B (Statistical Methodology), 76,
217–242.

Zou, H. (2006) The adaptive lasso and its oracle properties. Journal
of the American Statistical Association, 101, 1418–1429.

Zou, H.& Hastie, T. (2005) Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 67, 301–320.

SUPPORT ING INFORMATION
Web Appendices referenced in Sections 3, 4, 5 and 6
are available with this paper at the Biometrics web-

site on Wiley Online Library. R code and a simulated
example are available online with this paper in the Sup-
porting Information and at https://github.com/luxia-bios/
DebiasedLassoGLMs/.

How to cite this article: Xia, L., Nan, B., Li, Y.
(2023) Debiased lasso for generalized linear models
with a diverging number of covariates. Biometrics,
79, 344–357. https://doi.org/10.1111/biom.13587

https://github.com/luxia-bios/DebiasedLassoGLMs/
https://github.com/luxia-bios/DebiasedLassoGLMs/
https://doi.org/10.1111/biom.13587

	Debiased lasso for generalized linear models with a diverging number of covariates
	Abstract
	1 | INTRODUCTION
	2 | METHOD
	2.1 | Background and setup in generalized linear models
	2.2 | Debiased lasso

	3 | THEORETICAL RESULTS
	4 | NUMERICAL EXPERIMENTS
	5 | BOSTON LUNG CANCER DATA ANALYSIS
	6 | CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


