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Abstract1

Workload management is a critical concern in shared control of unmanned ground2

vehicles. In response to this challenge, prior studies have developed methods to3

estimate human operators’ workload by analyzing their physiological data. However,4

these studies have primarily adopted a single-model-single-feature or a5

single-model-multiple-feature approach. The present study proposes a Bayesian6

inference model to estimate workload, which leverages different machine learning models7

for different features. We conducted a human subject experiment with 24 participants,8

in which a human operator teleoperated a simulated High Mobility Multipurpose9

Wheeled Vehicle (HMMWV) with the help from an autonomy while performing a10

surveillance task simultaneously. Participants’ eye-related features, including gaze11

trajectory and pupil size change, were used as the physiological input to the proposed12

Bayesian inference model. Results show that the Bayesian inference model achieves a13

0.823 F1 score, 0.824 precision, and 0.821 recall, outperforming the single models.14

Keyword: Human-automation interaction, Human-autonomy interaction,15

Bayesian inference, workload estimation16
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Introduction1

Despite significant research and development efforts, it has been established that2

fully driverless vehicles are still at least several decades away (Leonard, Mindell, &3

Stayton, 2020). As such, there has been a growing focus on alternative approaches to4

leverage the potential benefits of advanced driving automation. One such approach is5

adaptive shared control, in which the human driver and the vehicle autonomy control6

the vehicle concurrently. Recent studies have suggested that adaptive shared control,7

when implemented in a manner that is sensitive to the human driver’s workload, can8

lead to improved driving performance, higher levels of trust, and reduced control effort9

(Luo et al., 2021; Weng et al., 2020). The adaptive shared control system allocates10

higher control authority to the vehicle autonomy if the driver is overloaded; This11

scheme is especially beneficial when the driver needs to handle multiple tasks12

simultaneously and the cumulative workload can become excessive.13

The success of such a adaptive shared control system hinges on the accurate14

estimation of a driver’s cumulative workload. Human workload can be measured offline15

or online. Offline measures are assessed after a human operator finishes a task, typically16

using a questionnaire (e.g., NASA Task Load Index (Hart & Staveland, 1988)).17

However, offline measures are not applicable for designing real-time adaptive systems.18

To measure workload online, prior studies have used primary task performance (Hicks19

& Wierwille, 1979; Lansdown, Brook-Carter, & Kersloot, 2004; Liu, 2019), secondary20

task performance (Chang, Boyle, Lee, & Jenness, 2017; Lu, Zhang, Ersal, & Yang, 2019;21

Miller, Boyle, Jenness, & Lee, 2018; Owen, McMillan, Laird, & Bullmore, 2005), and22

physiological measures (Moacdieh, Devlin, Jundi, & Riggs, 2020; Sun et al., 2021).23

Primary and secondary task measures require task performance data, which may not be24

available in real time. Therefore, assessing workload using physiological measures has25

received substantial research attention.26

Physiological measures of workload rely on changes in human physiological27

signals. Prior research has looked into various types of physiological signals for28

workload estimation, including electroencephalogram (EEG), functional near-infrared29
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spectroscopy (fNIRS), galvanic skin response (GSR), heart rate indices, and eye-related1

signals (see Heard, Harriott, and Adams (2018) and Skaramagkas, Giannakakis, et al.2

(2021) for detailed reviews). Eye-related signals, due to their non-intrusiveness and3

robustness to movement (Moacdieh et al., 2020; Zhou, Yang, & de Winter, 2022), have4

been increasingly used to assess operators’ workload, and are the focus of the present5

study. Various types of eye-related signals have been examined in previous literature.6

They can be broadly categorized into three groups: 1) pupil-related features, 2)7

blink-related features, and 3) gaze-related features. Table 1 illustrate some metrics in8

each category. Please note that Table 1 should not be treated as an exhaustive list.9

1) Pupil-related features. Pupil diameters are widely used to assess human10

workload (Demberg, 2013; Palinko, Kun, Shyrokov, & Heeman, 2010; van der Wel &11

van Steenbergen, 2018). Prior research reveals that pupil diameter, pupil diameter12

change, and pupil diameter change rate increase under high workload (Palinko et al.,13

2010; van der Wel & van Steenbergen, 2018). Ahlstrom and Friedman-Berg (2006)14

found that the human operators’ mean pupil diameter was significantly larger when15

using a static storm forecast tool (i.e., high workload) than when using a dynamic16

storm forecast tool. Pupil diameter change is the difference between people’s pupil17

diameter and the baseline pupil diameter, whereas pupil diameter change rate is the18

first order derivative of pupil diameter over time. Klingner, Kumar, and Hanrahan19

(2008) found that the pupil diameter change increased under high workload during20

three standard tasks: mental arithmetic tasks, short-term memory tasks (memorizing21

and repeating a sequence of digits), and aural vigilance task (identifying the misspoken22

digit in a sequence of numbers). Palinko et al. (2010) found that the mean pupil23

diameter change rate was sensitive to cognitive load during driving. The rate increased24

when drivers experienced high workload.25
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TABLE 1: The list of eye-related features that has been used to
indicate or estimate workload.

Metric References

Pupil diameter
Ahlstrom and Friedman-Berg (2006); M. A. Recarte and Nunes (2000, 2003)

Vogels, Demberg, and Kray (2018)
M. Á. Recarte, Pérez, Conchillo, and Nunes (2008)

Pupil diameter change

Ahern and Beatty (1979); Backs and Walrath (1992)
Klingner et al. (2008)

Kun, Palinko, Medenica, and Heeman (2013)
Benedetto et al. (2011); Palinko and Kun (2011)

Palinko et al. (2010); Skaramagkas, Ktistakis, et al. (2021)

Pupil diameter change rate Palinko et al. (2010)

ICA
Marshall (2000, 2002)

Demberg (2013); Vogels et al. (2018)
Rerhaye, Blaser, and Alexander (2018)

Blink duration
De Waard (1996); Van Orden, Limbert, Makeig, and Jung (2001)

Ahlstrom and Friedman-Berg (2006); Benedetto et al. (2011)
Skaramagkas, Ktistakis, et al. (2021)

Blink rate
De Waard (1996); Van Orden et al. (2001)

Benedetto et al. (2011); M. Á. Recarte et al. (2008)
Skaramagkas, Ktistakis, et al. (2021); Tsai, Viirre, Strychacz, Chase, and Jung (2007)

Blink latency Carmody (1994); Eggemeier et al. (1990)

Fixation frequency Backs and Walrath (1992); Skaramagkas, Ktistakis, et al. (2021); Van Orden et al. (2001)

Fixation duration
Backs and Walrath (1992); Rayner and Morris (1990)

M. A. Recarte and Nunes (2000); Skaramagkas, Ktistakis, et al. (2021)
Li, Chiu, and Wu (2012); Marquart, Cabrall, and de Winter (2015)

Variability of fixation duration M. A. Recarte and Nunes (2000)

Variability of fixation position M. A. Recarte and Nunes (2000); Reimer (2009)

Percentage of fixations
in area of interest (AOI) M. A. Recarte and Nunes (2000)

Saccadic extent
May, Kennedy, Williams, Dunlap, and Brannan (1990)

M. A. Recarte and Nunes (2000); Van Orden et al. (2001)
Skaramagkas, Ktistakis, et al. (2021)

Saccadic amplitude Moacdieh et al. (2020); Skaramagkas, Ktistakis, et al. (2021)

Saccadic velocity Mallick, Slayback, Touryan, Ries, and Lance (2016)
Bodala, Ke, Mir, Thakor, and Al-Nashash (2014); He, Wang, Gao, and Chen (2012)

Saccadic rate Menekse Dalveren and Cagiltay (2018); Y. Yang, McDonald, and Zheng (2012)
Gao, Yan, and Sun (2015)

NNI (Nearest Neighbor Index) Di Nocera, Camilli, and Terenzi (2007)

Spatial density Moacdieh et al. (2020)

Stationary entropy Moacdieh et al. (2020)

Scanpath length Moacdieh et al. (2020)

Transition rate Moacdieh et al. (2020)

Furthermore, instead of directly using pupil diameter, pupil diameter change, and1

pupil diameter change rate, researchers defined the Index of Cognitive Activity (ICA)2

by applying a wavelet decomposition to the pupil diameter signal to calculate the3

frequency of rapid pupil dilations (i.e., average number of abrupt discontinuities in pupil4

diameter per second) (Marshall, 2000, 2002). The ICA has been used as a general index5
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for human workload, where higher ICA values indicate higher cognitive workload1

(Demberg, 2013; Rerhaye et al., 2018; Vogels et al., 2018).2

2) Blink-related features. Various blink-related features have been investigated3

in the previous literature, such as blink duration, blink rate, and blink latency (De4

Waard, 1996; Heard et al., 2018; Marquart et al., 2015). Blink duration is the length of5

a blink, and it decreases under high workload (Ahlstrom & Friedman-Berg, 2006). Blink6

rate, also called blink frequency, is the number of blinks per minute. M. Á. Recarte et7

al. (2008) investigated human blink duration and blink rate under different cognitive8

tasks (listening, talking, and calculating) and visual demand (with visual search or9

without visual search). Their results showed that blink duration decreased as cognitive10

workload increased or visual demand increased. However, blink rate decreased for higher11

visual workload and increased for higher mental workload. In addition, Benedetto et al.12

(2011) found that blink duration is more sensitive and reliable than blink rate for13

measuring a driver’s visual workload in a simulated driving experiment. Blink latency is14

the time between consecutive blinks. Prior studies showed that blink latency increases15

as cognitive and visual workload increases (Carmody, 1994; Eggemeier et al., 1990).16

3) Gaze-related features. Gaze-related features are based on fixations and17

saccades, the two phases of eye movement. Fixations are the phases when humans18

maintain their gaze points at a location for a time period and gather new information19

from the area they are examining (Jacob, 1995; Rayner, 1995, 2009), whereas saccades20

are the rapid eye movements between fixations (Jacob, 1995; Jacob & Karn, 2003;21

Salvucci & Goldberg, 2000). The metrics computed from fixations and saccades can be22

broadly categorized into two groups: temporal information and spatial information23

(Marquart et al., 2015). Temporal information includes fixation duration and fixation24

frequency (i.e., number of fixations in one minute). Both fixation duration and fixation25

frequency increase when a person experiences high workload (Backs & Walrath, 1992;26

Marquart et al., 2015; Rayner & Morris, 1990; M. A. Recarte & Nunes, 2000;27

Van Orden et al., 2001). Spatial information includes various measures to describe gaze28

distribution. For example, M. A. Recarte and Nunes (2000) investigated a number of29
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fixation-related features when drivers perform mental tasks (verbal or spatial imagery)1

while driving on highways and on regular roads. They found that gaze distribution2

decreased when mental tasks were performed, and they used metrics like variability of3

fixation position, percentage of fixations in an area of interest (AOI), and saccadic size4

(i.e., range of saccadic extent). Similarly, Moacdieh et al. (2020) also found gaze5

distribution decreased under high workload, and they used metrics like spatial density,6

stationary entropy, saccadic amplitude, scanpath length per second, and transition rate.7

Di Nocera et al. (2007) proposed the Nearest Neighbor Index (NNI) to measure the8

spatial dispersion of eye fixations, which is the ratio between the average of the9

minimum distances between fixation points and the mean random distance, if the10

distribution is expected to be random.11

Previous studies looking into eye-related features have largely focused on12

uncovering the relationships between physiological features and workload (Demberg,13

2013; Kun et al., 2013; Palinko et al., 2010); for example, pupil diameter increases as14

workload increases. Recently, researchers started to use machine learning techniques for15

workload estimation by formulating it as a supervised classification problem (Heard et16

al., 2018) (Table 2).17

Kosch, Hassib, Buschek, and Schmidt (2018) applied Support Vector Machines18

(SVMs) with a linear kernel to human operators’ pupil dilation data for workload19

classification and achieved a 0.79 accuracy on average. Instead of using pupil diameters20

in a time domain, Yokoyama, Eihata, Muramatsu, and Fujiwara (2018) used high- and21

low-frequency power of pupil size variations with linear SVMs to estimate human22

workload while driving. In addition to pupil-related measures, researchers have23

investigated other eye-related features. For instance, Halverson, Estepp, Christensen,24

and Monnin (2012) used SVMs with various kernels (i.e., linear, quadratic, polynomial,25

multilayer perceptron [MLP], and Gaussian radial basis function [RBF]) to estimate26

human workload with features extracted from different time windows (1, 5, 10, and 3027

seconds). Among the numerous features they studied (i.e., blink duration, blink28

frequency, closure, fixation duration, NNI, percentage of eye closure [PERCLOS], pupil29
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diameter, saccade duration, saccade frequency, and saccade velocity), they found that1

pupil diameter from a five-second time window with a linear kernel achieved the best2

performance.3

TABLE 2: Machine learning studies for workload estimation using
eye-related features. “Within-participants” means that the the
training data and testing data are from the same participant.
“Cross-participants” means that the training data and testing data are
from different participants.

Reference Model Feature Evaluation
Method

Chen and Epps (2013) Gaussian Mixture Models
(GMMs)

Pupil diameter,
saccadic amplitude,

fixation duration
Within-participants

Liang, Reyes, and Lee (2007) SVM (RBF kernel),
Logistic Regression

Fixation duration,
mean and standard deviation of

fixation positions,
mean of blink frequency,

other driving-related feature

Within-participants

Halverson et al. (2012)
SVM (linear, RBF,

quadratic, polynomial,
MLP kernel)

Pupil diameter, fixation duration,
saccade duration, blink duration,

blink frequency, saccade frequency,
saccade velocity, NNI,
percentage eye closure

Within-participants

Yokoyama et al. (2018) SVM (linear kernel) High and low Frequency power
of pupil size variation Within-participants

Kosch, Hassib, Buschek, and Schmidt (2018) SVM (linear kernel) Pupil dilation Within-participants

Kosch, Hassib, Woźniak, Buschek, and Alt (2018) SVM Gaze deviation
from reference track

Within- and
cross-participants

Zhang, Owechko, and Zhang (2008) Decision Tree

Mean and standard deviation of
pupil size,

number of gazes in AOI,
portion of time in AOI,
mean visit time of AOI,

other driving related features

Within- and
cross-participants

Fridman, Reimer, Mehler, and Freeman (2018)
HMM,

Convolutional neural network
(CNN)

Gaze trajectory, eye image Cross-participants

Hogervorst, Brouwer, and Van Erp (2014) SVM (linear kernel),
Elastic net

Pupil size,
blink rate,

blink duration,
other EEG and ECG features

Within-participants

Unlike the above previous studies, which focused on a single machine learning4

model for a single feature, researchers have also used a single machine learning model5

for multiple features by concatenating several features into one feature vector (Chen &6

Epps, 2013; Liang et al., 2007; Zhang et al., 2008). For example, Liang et al. (2007)7

combined eye-related measurements (i.e., fixation duration, mean and standard8

deviation of fixation positions, and mean of blink frequency) and driving-related9

measurements into one feature vector for SVMs with an RBF kernel. Similarly, Zhang10

et al. (2008) used decision trees to combine gaze-related measurements (i.e., number of11
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gazes in AOI, portion of time in AOI, and mean visit time of AOI), pupil-related1

measurements (i.e., mean and standard deviation of pupil size), and driving-related2

measurements. Instead of concatenating all measurements together, Chen and Epps3

(2013) selected top candidate measurements based on multiple regression analysis and4

used the Gaussian Mixture Model (GMM) to classify human workload into different5

levels. Recently, Fridman et al. (2018) used a novel convolutional neural network (CNN)6

with raw eye images and the HMM with gaze trajectories to estimate a driver’s7

workload.8

As Table 2 shows, the majority of previous studies have focused on a single9

machine learning model for a single feature or a single machine learning model for10

multiple features by concatenating them into one feature vector. These methods have11

two major limitations: First, the single machine learning model for a single feature12

method lacks robustness and is susceptible for changes in contextual and environmental13

factors. For example, SVM works well with pupil diameter data under constant lighting14

conditions, however, it is not suitable for outside environment where dramatic lighting15

changes might happen. Second, the single machine learning model for multiple features16

method may have difficulty analyzing all available features due to the inherent property17

of a machine learning model. For example, SVM requires a constant feature size (i. e.,18

the length of the feature vector should be the same), and therefore cannot be used when19

both pupil diameter and fixation trajectory data are available, because the feature size20

for the fixation trajectory data varies among people (i. e., During a period, a person21

may fixate his/her eye on one spot or several spots, leading to different feature sizes.)22

To over come the above-mentioned limitations, in the present study, we propose a23

Bayesian inference model to estimate human workload. The Bayesian inference24

approach can leverage different machine learning models, each of which may work best25

for particular features. For example, prior literature shows the SVM model has superior26

results in analyzing pupil size change and the HMM model has superior results in27

analyzing gaze trajectory. The proposed Bayesian inference approach is able to “merge”28

the two machine learning models, each of which has been proven to work well with a29
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particular feature. In the present study, we used the Bayesian inference approach to1

merge four different machine learning models for four different features, i.e., SVMs for2

pupil size change, HMM for gaze trajectory, SVMs for fixation feature, and GMMs for3

fixation trajectory.4

Methods5

This research complied with the American Psychological Association code of6

ethics and was approved by the Institutional Review Board at the University of7

Michigan (Application #: HUM00154094).8

Participants9

A total of 25 university students participated in the experiment. Data from one10

participant were discarded due to equipment malfunction. The remaining 2411

participants were on average 25.9 years old (SD = 3.4 years) and had an average of 6.512

years of driving experience (SD = 3.9 years). There were 10 females and 14 males in the13

remaining 24 participants.14

Participants in the study met the following inclusion criteria: (1) be 18 years old15

and above; (2) be in possession of a valid driving license; (3) have normal or corrected16

to normal vision; and (4) have normal or corrected-to-normal hearing.17

Experimental apparatus and stimuli18

The study employed a dual-task shared control simulation platform for19

teleoperation of a simulated notional High Mobility Multipurpose Wheeled Vehicle20

(HMMWV). In this testbed, participants performed two tasks simultaneously: a driving21

task and a surveillance task, as shown in Figure 1. In the driving task, a participant22

and an autonomy shared the control of the steering of the HMMWV at a fixed cruising23

speed of 15 m/s (around 34 mph) to drive as close to the centerline as possible. To24

simulate perception failures of the autonomy, an offset was introduced such that the25

autonomy tracked a line which deviated from the centerline by one meter. During the26

experiment, the positions of the monitors and the steering wheel were fixed. The screen27
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of the driving task was approximately 95 cm in front of the participant. The experiment1

was under the normal room lighting condition.2

Figure 1 . Illustration of the dual-task shared control simulation platform. The left
screen shows the surveillance task and the right screen shows the driving task.

In the surveillance task, the participant received image feeds and identified3

potential threats (Figure 2). If the participant identified a threat, s/he needed to press4

the red paddle on the steering wheel to report “danger." Otherwise, the participant5

pressed the green paddle to report “clear" (see Figure 1). The potential threat appeared6

in only one of the four images in a given set with threat. The screenshots were selected7

with the same difficulty benchmarking prior studies (Du, Huang, & Yang, 2020; Guo &8

Yang, 2021; X. J. Yang, Unhelkar, Li, & Shah, 2017).9
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Figure 2 . Illustration of the surveillance task. A threat appears in the lower left.

Figure 3 shows the flow of the surveillance task. There was a transition period1

with a white screen between two sets of image feeds. Participants needed to identify the2

potential threats within a certain time budget, which was varied to manipulate the3

workload level (See Appendix B for more details on the selection of time budgets used4

in the present study).5

Figure 3 . Pipeline for surveillance task. Participants receive image feeds and identify
potential threats within the time budget. There is a transition period two sets of image
feeds using a white screen. The transition period lasts for one second.
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Experiment design1

We manipulated the workload of the task by varying the time budgets for2

detection in the surveillance task. During the experiment, the participants drove on six3

different tracks, each lasting for approximately three minutes (see Appendix A for more4

details on the selection of tracks). Every track was equally segmented into three5

portions, and each portion had a different time budget for detection, 1.5, or 2.5, or6

6.5 s. The order of presentation for the time budgets on each track was balanced by two7

3 × 3 Latin squares.8

Measures9

Participants wore a pair of the Tobii Pro Glasses 2 (Tobii Pro AB, 2014), to10

measure human pupil sizes and gaze points in real time. In our study, we required11

human gaze points in the world frame, indicated as OW in Figure 4b (i. e., the12

coordinates of the gaze point should be with respect to the world) to estimate human13

workload. However, the frame of reference of the Tobii Pro Glasses 2 is with respect to14

the Tobii front camera, indicated as OF in Figure 4a). To convert the frame of reference15

from the Tobii front camera to the world frame in real time, we built one additional16

camera on top of the Tobii Pro Glasses 2, indicated as Oc and performed homography17

transformation. To perform this conversion, the additional camera detects the locations18

of the AprilTags (Wang & Olson, 2016) attached on top of the monitors (see Figure 4b).19

Although the Tobii Pro Glasses 2 provides gaze points and pupil sizes at 50 Hz, we20

down-sampled the Tobii Pro Glasses 2 to 30 Hz due to the computation limitation, i.e.,21

the additional camera can only capture and process images at 30 Hz.22
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(a) Tobii front camera (OF ) and additional camera (OC) frames

(b) World image frame (OW )

Figure 4 . Coordinate systems for the Tobii front camera (OF ), the additional camera
(OC), and the world frame (OW ).

Experiment procedure1

Participants provided a signed informed consent and filled in a demographic2

survey. After that, they received a training session, in which they first performed a3

driving-only task for approximately 1.5 minutes to become familiar with the haptic4

shared control with autonomy and then performed three 1-minute trials of the5

surveillance task with the 6.5−, 2.5−, 1.5−second time budget for detection. After that,6

the participants performed the driving and surveillance tasks together on three different7

tracks, each lasting 1.5 minutes.8

After the training session, participants were assisted to wear the eye tracker and9
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underwent the calibration. With the normal room light and without any specific tasks,1

the experimenter measured each participant’s baseline pupil diameters twice, each2

about 30 s. Participants were asked to sit down, look at the white wall, relax, and clear3

their minds during the measurement of the baseline pupil diameters. During the formal4

experiment, participants performed the driving task and the surveillance task on six5

different tracks, each lasting approximately three minutes.6

Bayesian Inference Model for Workload Estimation7

As mentioned in Table 2, researchers have investigated different machine learning8

models for different eye-related features for workload estimation. For example, previous9

studies showed that SVMs could be used with human pupil dilation (Kosch, Hassib,10

Buschek, & Schmidt, 2018) and fixation features (i.e., fixation duration) (Liang et al.,11

2007) to estimate human workload. In addition, different kernels have been used for12

different features (i.e., the linear kernel for pupil dilation (Kosch, Hassib, Buschek, &13

Schmidt, 2018) and the RBF kernel for fixation duration (Liang et al., 2007)). In the14

present study, we propose a Bayesian inference model that can leverage the different15

machine learning models that work best for different features.16

Figure 5 shows the graphical representation of our proposed Bayesian inference

model, where WL is human workload; M1, M2, ..., Mn represent the workload estimated

by different machine learning models; and X1, X2, ..., Xn represent the different features

for different machine learning models. The shaded circles represent the observed data,

and the unshaded circles represent the hidden states. WL, M1, M2, ..., Mn are discrete

random variables, representing different workload levels. The maximum a posteriori

(MAP) estimate of workload is used to compute arg max
WL

p(WL|X1, X2, ..., Xn). Given

the probabilistic graphical model, we had the following equations based on the Bayes’

15



rule and the law of total probability:

p(WL|X1, X2, ..., Xn)

∝ p(X1, X2, ..., Xn|WL)p(WL)

= p(WL) ∑
M1,M2,...,Mn

p(X1, X2, ..., Xn, M1, M2, ..., Mn|WL)

= p(WL) ∑
M1,M2,...,Mn

p(X1, X2, ..., Xn|M1, M2, ..., Mn, WL)P (M1, M2, ..., Mn|WL)

= p(WL) ∑
M1,M2,...,Mn

{∏
Mi

p(Mi|WL)p(Xi|Mi)}

= p(WL) ∏
Mi

{∑
Mi

p(Mi|WL)p(Xi|Mi)}

(1)

p(WL) is the prior distribution of the human workload. p(Mi|WL) is the prior1

knowledge of the performance of the machine learning model Mi. p(Xi|Mi) is the2

likelihood of each feature Xi given the machine learning model Mi. Both p(WL) and3

p(Mi|WL) could be obtained by manual design based on prior knowledge or from the4

training data. We used the frequency in the training data to determine p(WL). For5

p(Mi|WL), we segmented the training data into a validation set and a training set and6

used the performance of Mi on the validation set as p(Mi|WL).7

In the present study, we investigated four eye-related features. We selected three8

features from the literature, including the gaze trajectory (Fridman et al., 2018), pupil9

size change (Halverson et al., 2012), and fixation feature (Halverson et al., 2012). In10

addition, we proposed a new feature – the fixation trajectory feature. For each of the11

four features, we used a machine learning model that works well for a feature.12

Figure 5 . A graphical representation of the Bayesian inference model. WL is the
human’s workload. Mi represents the workload estimated by different machine learning
models. Xi is the feature for the different machine learning models.
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Support-vector machines (SVMs) for pupil size change1

In the experiment, we used the Tobii Pro Glasses 2 to measure the pupil size.2

Upon each participant’s arrival, we measured their baseline pupil size DB. We asked the3

participants to relax while looking at a white wall and then measured their pupil sizes4

for 30 seconds twice. The baseline pupil size DB is the average pupil size during this5

time period for each participant.6

The pupil size change feature is the relative changes in the human pupil size.7

Given a sequence of pupil sizes D = {D1, ..., DT }, the pupil size change feature vector is8

X1 = {Dt−DB

DB
}t=1,2,...,T . Previous literature used SVMs to estimate human workload9

using the pupil size change feature (Halverson et al., 2012; Hogervorst et al., 2014;10

Kosch, Hassib, Buschek, & Schmidt, 2018). The SVM is a supervised learning algorithm11

that aims to find the optimal hyperplane that separates data points into clusters. We12

found that using an RBF kernel can achieve better performance than a linear kernel for13

the pupil size change feature. We used pairwise coupling to estimate probability14

p(X1|M1) for a multi-class classification problem, where each class represents a15

workload level (Wu, Lin, & Weng, 2004).16

Hidden Markov Model (HMM) for gaze trajectory17

Gaze trajectory X2 is a time series of gaze points, and X2 = {(gt
x, gt

y)}t=1,2,...,T ,18

where (gt
x, gt

y) is the human gaze point location mapped to the world frame at time t19

captured by the eye tracker. Previous literature used the HMM to model human gaze20

trajectory to estimate human workload (Fridman et al., 2018).21

An HMM is a probabilistic model of the joint probability of a collection of random22

variables {O1, O2, ..., OT , S1, S2, ..., ST }. St is a discrete variable that represents the23

hidden state at time step t. St can take values from {1, 2, ..., N}, where N is the24

number of hidden states. Ot represents the observations at time step t. T represents the25

termination time step. An HMM also contains a tuple of parameters as Θ = (π, A, B).26

π ∈ RN is the prior distribution of P (S1). A ∈ RN×N is the stochastic transition matrix,27

where A = {ai,j} = P (St = j|St−1 = i). B = {bj(·)} is a set of observation model for28

17



every hidden state j ∈ {1, 2, ..., N}, where bj(ot) = P (Ot = ot|St = j) and ot is a given1

observation at time step t.2

In the present study, the observations ot are the gaze points (gt
x, gt

y) shown as the3

magenta dots in Figure 6. The observation models are a set of multivariate4

distributions over the gaze points, i.e., bj(ot) = P (Ot = ot|St = j) ∼ N (µj, Σj), shown5

as the ellipsoids in Figure 6. Thus, B = {µj, Σj}.6

Figure 6 . Example of using the Hidden Markov Model to model gaze trajectory to
estimate workload. Magenta dots: gaze points. Ellipsoids: Multivariate normal
distributions.

We trained multiple HMMs, each for a different workload level w. For each

workload level w, we collected a set of L gaze trajectories

Dw = {Ol|Ol = {ol
1, ol

2, ..., ol
T }}, where l = {1, 2, ..., L}. Thus, the learning process

learned sets of HMM parameters Θw = (π, A, B), one set for each workload level using

data Dw. The parameters of the HMMs were learned by the Expectation

Maximization(EM) algorithm using the open source implementations from Rozo,

Silverio, Calinon, and Caldwell (2016) and Calinon (2016). To learn the parameters, we

defined four probabilities:

αl
i(t)k = P (O1 = ol

1, ..., Ot = ol
t, St = i|Θk)

βl
i(t)k = P (Ot+1 = ol

t+1, ..., OT = ol
T |St = i, Θk)

γl
i(t)k = P (St = i|Ol, Θk)

ξl
i,j(t)k = P (St = i, St+1 = j|Ol, Θk)

(2)
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where k represents the kth iteration in the EM algorithm. The EM algorithm is then:

E-step:

Recursively update α:

αl
i(1)k+1 = πk

i N (ol
1; µk

i , Σk
i )

αl
j(t + 1)k+1 = [∑N

i=1 αl
i(t)k+1ak

i,j]N (ol
t+1; µk

j , Σk
j )

Recursively update β:

βl
i(T )k+1 = 1

βl
i(t)k+1 = ∑N

j=1 ak
i,jβ

l
j(t + 1)k+1N (ol

t+1; µk
j , Σk

j )

Update γ:

γl
i(t)k+1 = αl

i(t)
k+1βl

i(t)k+1∑N

j=1 αl
j(t)k+1βl

j(t)k+1

Update ξ:

ξl
i,j(t)k+1 = γl

i(t)k+1ak
i,jβl

j(t+1)k+1N (ol
t+1;µk

j ,Σk
j )

βl
i(t)k+1

M-step:

µk+1
i =

∑L

l=1

∑T

t=1 γl
i(t)k+1ol

t∑L

l=1

∑T

t=1 γl
i(t)k+1

Σk+1
i =

∑L

l=1

∑T

t=1 γl
i(t)k+1(ol

t−µk+1
i )(ol

t−µk+1
i )T∑L

l=1

∑T

t=1 γl
i(t)k+1

πk+1
i =

∑L

l=1 γl
i(1)

L

k+1

ak+1
i,j =

∑L

l=1

∑T

t=1 ξl
i,j(t)k+1∑L

l=1

∑T

t=1 γl
i(t)k+1

The two steps were iterated until convergence. The number of hidden states was1

determined by the Bayesian Information Criterion (BIC) (Calinon & Billard, 2005;2

Schwarz et al., 1978).3

Given a gaze trajectory O = {o1, o2, ..., oT }, we computed the likelihood of

P (O|Θ̃w) via the forward algorithm, where Θ̃w represents parameters for different

learned HMMs for different workload levels w. The forward algorithm is similar to the

recursive update of α in the E-step of the EM algorithm. We have

P (O|Θ̃w) = ∑N
i=1 α̃i(T ). As p(X2|M2) is the probability density of the gaze trajectory,

the longer the trajectory is, the smaller this value is. To eliminate the influence of

trajectory length, we used a geometric mean of the probability density of a trajectory

19



(Luo, Hayne, & Berenson, 2018), shown as follows:

p̂(X2|M2 = w) = T
√

P (O|Θ̃w) (3)

Support-vector machines (SVMs) for fixation feature1

Human eye movement can be broken into phases: fixations and saccades.2

Fixations are the phases in which humans maintain their gaze points at a location for a3

time period and gather new information from the area they are examining (Jacob, 1995;4

Rayner, 1995, 2009). Saccades are the rapid eye movements between fixations (Jacob,5

1995; Jacob & Karn, 2003; Salvucci & Goldberg, 2000). Given a sequence of gaze6

points, researchers have proposed various criteria to determine a fixation. The center of7

a fixation is typically within 2 − 3◦ (Robinson, 1979), and the fixations last at least 1008

- 150 ms. We used the criterion that the fixations were constrained in a 3◦ spatial area9

and lasted at least 100 ms, in line with Goldberg and Kotval (1999). Figure 7 illustrates10

a set of fixations and saccades mapped on the world image. The red dots are the gaze11

points. The red dashed circles are the fixations. The yellow arrows are the saccades12

between fixations. We used the same fixation-clustering algorithm as in Goldberg and13

Kotval (1999) to determine fixations and saccades given a sequence of gaze points.14

Researchers have found that a number of measurements related to fixations and15

saccades can indicate human workload (Moacdieh et al., 2020; M. A. Recarte & Nunes,16

2000). Fixation feature X3 is a vector of these measurements. In our experiment, we17

defined X3 = (nf , tf , r, l), where nf is the number of fixations within the time window18

T ; tf is the total fixation duration in the time window T ; r = tf

ts
is the ratio between19

fixation duration and saccade duration; and l is the mean saccadic amplitude. The20

mean saccadic amplitude is the sum of the distances between consecutive fixations21

divided by the number of fixations minus one within the time window T .22

Previous studies have used SVMs for the fixation feature to estimate human23

workload (Liang et al., 2007). We found that using a linear kernel can achieve better24

performance than an RBF kernel for the fixation feature. Similar to pupil size change,25
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Figure 7 . Illustration of fixations and saccades mapped on the world image. Red dots
are gaze points. Red dashed circles are fixations. Yellow arrows are saccades.

we can use the pairwise coupling method to estimate p(X3|M3).1

Gaussian mixture models (GMMs) for fixation trajectory2

The fixation feature X3 ignores the spatial information of the fixations. Therefore,3

we developed a new feature: fixation trajectory. Fixation trajectory X4 is a series of4

fixation centers and their durations, such as X4 = {(f l
x, f l

y, dtl)}l=1,2,...,L, where (f l
x, f l

y) is5

the center of a fixation, dtl is the duration for this fixation, and L is the length of the6

fixation trajectory, which is the number of fixations within the time window T = 4 s. As7

the number of fixations L during a time window varies, the length of each feature vector8

varies. The order of the fixations does not matter. Therefore, we used GMMs to model9

the fixation trajectory. Similar to the HMM, we learned a GMM for each level of10

workload Mw
4 , where w represents different workload levels. Given an observation X4,11

the output of a GMM was the likelihood p(X4|Mw
4 ).12

Each GMM Mw
4 is a combination of K multivariate Gaussians gck for

k = 1, 2, 3, ..., K. Let ξl = (f l
x, f l

y, dtl)T be the l th fixation in the fixation trajectory X4.

The probability of ξl in GMM Mw
4 represented by K multivariate Gaussians is given by:

p(ξl|Mw
4 ) =

K∑
k=1

p(gck|Mw
4 )p(ξl|gck, Mw

4 ) (4)
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where ξl is the l th fixation in the fixation trajectory X4, and p(gck|Mw
4 ) = πk is the

prior probability of component gck in Mw
4 . The probability of ξl given gck and Mw

4 is

defined as follows:

p(ξl|gck, Mw
4 ) = N (µk, Σk)

= 1√
(2π)D|Σk|

e− 1
2 (ξl−µk)T Σ−1

k
(ξl−µk)

(5)

where {µk, Σk} are the mean and covariance parameters of the Gaussian component

gck, and D is the dimension of ξl, which is 3 in the present study. Thus, the probability

of trajectory X4 in Mw
4 is defined as follows:

p̂(X4|Mw
4 ) =

L∏
l=1

p(ξl|Mw
4 ) (6)

Similar to the HMM, p(X4|Mw
4 ) is the probability density of the fixation

trajectory. Therefore, to eliminate the influence of trajectory length, we used the

geometric mean of the probability density of a trajectory (Luo et al., 2018), shown as

follows:

p(X4|Mw
4 ) = L

√√√√ L∏
l=1

p(ξl|Mw
4 ) (7)

Similar to the HMM, we used the BIC (Calinon & Billard, 2005; Schwarz et al.,1

1978) to determine the best number of Gaussians K, and we found that K = 3 is the2

best fit. The parameters of GMMs {π, µk, Σk}w were trained using the EM algorithm.3

Results4

Data processing5

Participants drove on six different tracks. Each track was segmented into three6

portions, and each portion had a different time budget for detecting potential threats.7

We treated the portion with 1.5 s time budget as the high workload portion and the8

portion with 6.5 s time budget as the moderate workload portion (see Appendix A for9

details).10

We evaluated our proposed Bayesian inference model against other single models11
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Figure 8 . An example for 5 sequences of data selected from a portion for
cross-participants evaluation. Blue boxes represents the randomly selected sequences of
data, each lasting 4 s.

in two evaluation methods: cross-participants evaluation and within-participants1

evaluation. For the cross-participants evaluation, we randomly selected five sequences of2

data from each portion in each trial, with each sequence lasting 4 s as shown in3

Figure 8. For the within-participants evaluation, we randomly selected 20 sequences of4

data from each portion in each trial as shown in Figure 9. For each 4-second sequence5

of data, we extracted the four features X1, ..., X4.6

Cross-participants evaluation7

The cross-participants evaluation separates the training data and testing data8

across the participants (i.e., data from some participants are treated as training data9

and data from other participants are treated as testing data). We used the10

leave-one-out evaluation method for cross-participants evaluation. Specifically, we11

randomly selected the data of six participants as the testing dataset and the data of the12

remaining 18 participants as the training dataset in each run of the holdout. We ran 5013

holdouts to evaluate the performance of our proposed Bayesian inference model and the14

four single models. In each round of holdouts, we computed the means (µi) and15

standard deviations (σi) for every feature (Xi) using the training dataset, and then16

normalized all the data using these means and standard deviations, i.e., X̂i = Xi−µi

σi
. To17

obtain the prior knowledge p(Mi|WL) of each machine learning model Mi, we ran 1018

rounds of leave-one-out evaluation over the training dataset with 18 participants. In19

each round, we randomly selected 12 participants from the 18 participants as prior20

training data and the remaining six participants as validation data. We then computed21
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Figure 9 . An example for 20 sequences of data selected from a portion for
within-participants evaluation. Blue boxes represents the randomly selected sequences
of data, each lasting 4 s. The shades indicates potential overlaps between two adjacent
sequences.

the confusion matrix of each machine learning model on the validation data to obtain1

the estimated prior knowledge p(Mi|WL).2

For cross-participants evaluation, we computed the performance (i.e., F1 score,3

precision, and recall) for the entire testing dataset in each round of holdouts and the4

overall performance shown in Table 3 is the mean and standard error over the 50 rounds5

of holdouts. Table 4 shows the pairwise t-test results for the overall performance6

between our proposed Bayesian inference model.7

TABLE 3: Overall performance of the Bayesian inference (BI) model
and other single models for cross-participants evaluation.

Bayesian
inference (BI)

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

F1 score 0.823 ± 0.004 0.772 ± 0.006 0.653 ± 0.005 0.745 ± 0.003 0.674 ± 0.005

Precision 0.824 ± 0.004 0.773 ± 0.006 0.656 ± 0.005 0.749 ± 0.003 0.679 ± 0.006

Recall 0.821 ± 0.004 0.771 ± 0.006 0.650 ± 0.005 0.741 ± 0.003 0.668 ± 0.005

TABLE 4: Pairwise t-tests between the Bayesian inference model (BI)
and other single models.

BI vs. SVM
pupil size change

BI vs. HMM
gaze trajectory

BI vs. SVM
fixation feature

BI vs. GMMs
fixation trajectory

F1 score t(49) = 10.66, p < .001 t(49) = 37.85, p < .001 t(49) = 22.99, p < .001 t(49) = 32.17, p < .001

Precision t(49) = 10.95, p < .001 t(49) = 35.24, p < .001 t(49) = 21.41, p < .001 t(49) = 29.97, p < .001

Recall t(49) = 10.34, p < .001 t(49) = 39.38, p < .001 t(49) = 24.12, p < .001 t(49) = 32.70, p < .001

The results indicate that our proposed Bayesian inference model significantly8

outperforms the single models alone using cross-participants evaluation. Our proposed9

Bayesian inference model achieved a 0.823 ± 0.004 F1 score, 0.824 ± 0.004 precision, and10

24



0.821 ± 0.004 recall using cross-participants.1

Within-participants evaluation2

The within-participants evaluation separates the training data and testing data3

across the trials for each participant (i.e., data from some trials are treated as training4

data and data from other trials are treated as testing data), and can be considered a5

personalized model. We used the k-fold cross validation for the within-participants6

evaluation, where k was 6, as there were 6 trials for each workload level. Specifically, we7

used data from one of the six trials as testing data and data from the other trials as8

training data. Similar to the cross-participants evaluation, we used the training data to9

obtain the estimated prior knowledge p(Mi|WL), except that we used five-fold cross10

validation over the five training trials.11

Table 5 shows the performance (i.e., F1 score, precision, and recall) of our12

proposed Bayesian inference model and other single models for each participant and the13

average performance. The results reveal that our proposed Bayesian inference model14

achieved a 0.85 ± 0.01 F1 score, 0.86 ± 0.01 precision, and 0.85 ± 0.01 recall on average15

using within-participants evaluation.16

TABLE 5: Performance (F1 score, precision, and recall) of the Bayesian
inference model (BI) and other single models for within-participants
evaluation.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.78 ± 0.03 0.77 ± 0.02 0.69 ± 0.07 0.67 ± 0.05 0.67 ± 0.04
0.79 ± 0.03 0.77 ± 0.02 0.70 ± 0.07 0.69 ± 0.05 0.68 ± 0.04
0.77 ± 0.03 0.76 ± 0.03 0.67 ± 0.07 0.66 ± 0.05 0.65 ± 0.04

P2
0.95 ± 0.02 0.95 ± 0.02 0.62 ± 0.07 0.72 ± 0.03 0.67 ± 0.03
0.95 ± 0.02 0.95 ± 0.02 0.62 ± 0.08 0.74 ± 0.03 0.69 ± 0.03
0.95 ± 0.02 0.95 ± 0.02 0.62 ± 0.07 0.70 ± 0.03 0.66 ± 0.03

P3
0.82 ± 0.05 0.81 ± 0.04 0.74 ± 0.07 0.75 ± 0.05 0.73 ± 0.07
0.83 ± 0.04 0.83 ± 0.04 0.78 ± 0.07 0.76 ± 0.04 0.74 ± 0.07
0.80 ± 0.05 0.80 ± 0.05 0.71 ± 0.07 0.73 ± 0.05 0.71 ± 0.07

P4
0.94 ± 0.01 0.93 ± 0.01 0.75 ± 0.05 0.87 ± 0.02 0.81 ± 0.03
0.94 ± 0.01 0.93 ± 0.01 0.76 ± 0.05 0.88 ± 0.02 0.82 ± 0.04
0.94 ± 0.01 0.92 ± 0.01 0.74 ± 0.05 0.86 ± 0.03 0.81 ± 0.03

Continued on next page
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Table 5 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P5
0.90 ± 0.02 0.86 ± 0.02 0.68 ± 0.05 0.86 ± 0.03 0.81 ± 0.02
0.90 ± 0.02 0.87 ± 0.03 0.69 ± 0.06 0.86 ± 0.03 0.82 ± 0.02
0.89 ± 0.02 0.86 ± 0.02 0.67 ± 0.05 0.85 ± 0.03 0.80 ± 0.03

P6
0.80 ± 0.02 0.76 ± 0.02 0.52 ± 0.04 0.73 ± 0.03 0.60 ± 0.05
0.80 ± 0.02 0.77 ± 0.02 0.52 ± 0.04 0.74 ± 0.03 0.61 ± 0.05
0.79 ± 0.02 0.76 ± 0.02 0.52 ± 0.04 0.72 ± 0.03 0.60 ± 0.05

P7
0.78 ± 0.04 0.59 ± 0.05 0.69 ± 0.07 0.77 ± 0.03 0.68 ± 0.07
0.78 ± 0.04 0.59 ± 0.05 0.69 ± 0.07 0.79 ± 0.03 0.68 ± 0.07
0.77 ± 0.03 0.59 ± 0.05 0.69 ± 0.07 0.76 ± 0.04 0.67 ± 0.07

P8
0.82 ± 0.03 0.82 ± 0.03 0.71 ± 0.04 0.76 ± 0.08 0.76 ± 0.06
0.83 ± 0.03 0.83 ± 0.03 0.76 ± 0.04 0.78 ± 0.08 0.78 ± 0.06
0.81 ± 0.03 0.82 ± 0.03 0.68 ± 0.04 0.75 ± 0.08 0.74 ± 0.06

P9
0.74 ± 0.07 0.65 ± 0.02 0.69 ± 0.05 0.67 ± 0.06 0.70 ± 0.04
0.75 ± 0.07 0.65 ± 0.02 0.70 ± 0.06 0.67 ± 0.06 0.71 ± 0.04
0.74 ± 0.07 0.65 ± 0.02 0.67 ± 0.05 0.66 ± 0.05 0.69 ± 0.04

P10
0.90 ± 0.02 0.85 ± 0.01 0.78 ± 0.04 0.75 ± 0.03 0.86 ± 0.04
0.90 ± 0.02 0.86 ± 0.01 0.79 ± 0.04 0.75 ± 0.03 0.86 ± 0.04
0.90 ± 0.02 0.84 ± 0.02 0.77 ± 0.05 0.74 ± 0.03 0.86 ± 0.04

P11
0.84 ± 0.06 0.66 ± 0.06 0.69 ± 0.06 0.81 ± 0.05 0.77 ± 0.05
0.85 ± 0.06 0.67 ± 0.06 0.70 ± 0.05 0.81 ± 0.05 0.78 ± 0.05
0.84 ± 0.06 0.66 ± 0.05 0.67 ± 0.06 0.80 ± 0.05 0.75 ± 0.05

P12
0.94 ± 0.03 0.93 ± 0.02 0.76 ± 0.04 0.76 ± 0.03 0.83 ± 0.06
0.94 ± 0.03 0.93 ± 0.02 0.78 ± 0.04 0.78 ± 0.03 0.84 ± 0.06
0.94 ± 0.03 0.93 ± 0.02 0.74 ± 0.04 0.75 ± 0.03 0.82 ± 0.06

P13
0.86 ± 0.03 0.75 ± 0.05 0.67 ± 0.03 0.85 ± 0.03 0.61 ± 0.04
0.87 ± 0.03 0.76 ± 0.05 0.68 ± 0.03 0.86 ± 0.03 0.61 ± 0.04
0.86 ± 0.03 0.75 ± 0.06 0.66 ± 0.03 0.84 ± 0.03 0.60 ± 0.04

P14
0.79 ± 0.04 0.74 ± 0.06 0.64 ± 0.05 0.58 ± 0.05 0.76 ± 0.05
0.80 ± 0.04 0.74 ± 0.06 0.65 ± 0.05 0.58 ± 0.05 0.76 ± 0.05
0.79 ± 0.04 0.73 ± 0.06 0.62 ± 0.04 0.58 ± 0.05 0.76 ± 0.05

P15
0.88 ± 0.03 0.76 ± 0.04 0.60 ± 0.04 0.84 ± 0.03 0.73 ± 0.05
0.89 ± 0.03 0.76 ± 0.04 0.64 ± 0.05 0.84 ± 0.03 0.74 ± 0.05
0.88 ± 0.03 0.75 ± 0.04 0.57 ± 0.03 0.83 ± 0.02 0.72 ± 0.05

P16
0.84 ± 0.03 0.79 ± 0.05 0.73 ± 0.05 0.81 ± 0.03 0.75 ± 0.05
0.84 ± 0.03 0.80 ± 0.05 0.74 ± 0.04 0.82 ± 0.03 0.75 ± 0.05
0.83 ± 0.03 0.79 ± 0.05 0.72 ± 0.05 0.80 ± 0.03 0.75 ± 0.05

P17
0.88 ± 0.03 0.85 ± 0.03 0.67 ± 0.06 0.73 ± 0.06 0.67 ± 0.04
0.88 ± 0.03 0.86 ± 0.03 0.67 ± 0.06 0.74 ± 0.06 0.68 ± 0.04
0.87 ± 0.03 0.85 ± 0.04 0.67 ± 0.06 0.72 ± 0.06 0.67 ± 0.04

P18
0.88 ± 0.02 0.86 ± 0.01 0.66 ± 0.06 0.82 ± 0.03 0.76 ± 0.04
0.89 ± 0.02 0.87 ± 0.01 0.67 ± 0.06 0.82 ± 0.03 0.76 ± 0.04
0.88 ± 0.02 0.86 ± 0.01 0.66 ± 0.06 0.82 ± 0.03 0.75 ± 0.04

P19
0.86 ± 0.03 0.77 ± 0.04 0.64 ± 0.04 0.80 ± 0.01 0.75 ± 0.02
0.87 ± 0.03 0.78 ± 0.04 0.65 ± 0.04 0.81 ± 0.01 0.76 ± 0.03

Continued on next page
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Table 5 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

0.86 ± 0.03 0.76 ± 0.04 0.63 ± 0.04 0.80 ± 0.01 0.74 ± 0.02

P20
0.85 ± 0.02 0.69 ± 0.03 0.77 ± 0.04 0.82 ± 0.02 0.80 ± 0.02
0.85 ± 0.02 0.70 ± 0.03 0.79 ± 0.04 0.83 ± 0.02 0.81 ± 0.02
0.84 ± 0.03 0.68 ± 0.03 0.75 ± 0.05 0.80 ± 0.02 0.78 ± 0.02

P21
0.90 ± 0.03 0.88 ± 0.03 0.70 ± 0.05 0.76 ± 0.04 0.66 ± 0.04
0.90 ± 0.03 0.88 ± 0.03 0.72 ± 0.05 0.77 ± 0.03 0.68 ± 0.05
0.90 ± 0.03 0.88 ± 0.03 0.68 ± 0.05 0.75 ± 0.04 0.65 ± 0.04

P22
0.92 ± 0.03 0.83 ± 0.04 0.66 ± 0.07 0.89 ± 0.02 0.80 ± 0.03
0.92 ± 0.03 0.84 ± 0.04 0.67 ± 0.09 0.90 ± 0.02 0.81 ± 0.03
0.92 ± 0.03 0.82 ± 0.04 0.67 ± 0.05 0.89 ± 0.02 0.80 ± 0.03

P23
0.86 ± 0.02 0.80 ± 0.02 0.68 ± 0.10 0.81 ± 0.04 0.81 ± 0.05
0.87 ± 0.02 0.80 ± 0.02 0.67 ± 0.11 0.82 ± 0.04 0.82 ± 0.05
0.85 ± 0.02 0.80 ± 0.02 0.70 ± 0.08 0.80 ± 0.04 0.80 ± 0.05

P24
0.69 ± 0.08 0.69 ± 0.06 0.64 ± 0.05 0.70 ± 0.08 0.68 ± 0.04
0.69 ± 0.09 0.70 ± 0.07 0.64 ± 0.05 0.70 ± 0.08 0.68 ± 0.04
0.69 ± 0.08 0.69 ± 0.06 0.63 ± 0.05 0.69 ± 0.08 0.67 ± 0.04

Avg
0.85 ± 0.01 0.79 ± 0.02 0.68 ± 0.01 0.77 ± 0.01 0.74 ± 0.01
0.86 ± 0.01 0.80 ± 0.02 0.69 ± 0.01 0.78 ± 0.01 0.74 ± 0.01
0.85 ± 0.01 0.79 ± 0.02 0.67 ± 0.01 0.76 ± 0.01 0.73 ± 0.01

1

Discussion and Conclusion2

In the present study, we proposed a Bayesian inference model for workload3

estimation that can leverage different machine learning models for different features. By4

merging four different machine learning models for four different features, i.e., SVMs for5

pupil size change, HMM for gaze trajectory, SVMs for fixation feature, and GMMs for6

fixation trajectory, our proposed Bayesian inference model can achieve an average F17

score of 0.823 ± 0.004 using cross-participants evaluation and an average F1 score of8

0.85 ± 0.01 using within-participants evaluation for workload estimation. As shown in9

Figure 5, the proposed Bayesian inference model can integrate workload estimation10

results of any machine learning models including deep learning models. In the present11

study, the base models were SVM, HMM and GMM, all of which are considered12

traditional machine learning models. They were chosen because that they required less13

data and offered interpretale results. Furthermore, this Bayesian inference model model14
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can be applied to any scenario where a non-intrusive measure of workload is needed,1

including adaptive shared control (Luo et al., 2021).2

The cross-participants evaluation and the within-participants evaluation have3

their advantages and disadvantages, and therefore are particularly suitable for certain4

contexts. The cross-participants evaluation can be considered a population-based model,5

which is generalizable to any human operator. This approach is convenient to use once6

developed. However, in order to build it, a set of training data is required. The7

within-participants evaluation can be considered a personalized model. Using this8

approach, a portion of data collected from one participant was used to train a model for9

this particular participant. On average, within-participants evaluation provides better10

performance than cross-participants evaluation. In addition, within-participants11

evaluation does not need an extra training dataset. However, this approach requires12

more trials for each participant and hence much longer experiment time.13

We notice several limitations and directions for future research. In the present14

study, the different levels of human workload were induced by manipulating the15

surveillance task urgency. The results indicate that our proposed Bayesian inference16

model distinguishes the different workload levels caused by different surveillance task17

urgency. However, it is unknown if the proposed Bayesian inference model is able to18

classify different workload levels caused by other factors. Also, the population of19

participants in our experiments were young adults. Different age groups may have20

different patterns for certain physiological signals under different workload conditions.21

Future research should investigate the generalizability of the proposed method to other22

contexts where varying workload is caused by other factors such as driving speed, road23

curvature, surrounding traffic, weather, and etc., and to other populations.24

In addition, in the present study, we treated the workload estimation problem as a25

classification problem and segmented the time series of physiological signals into26

sequences of data (i.e., each sequence of data lasts for 4 s time window). Therefore, we27

treated each sequence of data as one data point and extracted feature vectors for28

classifiers. Future work could take into account the workload dynamics (i. e., patterns29

28



of workload changes over time) to improve the workload estimation performance. As1

our proposed Bayesian inference model is based on the graphical model, it can be2

naturally extended to a graphical model with time series data by connecting the hidden3

state of workload, with the workload dynamics modeled as the transition between the4

hidden states.5
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Appendix A

Pilot Study 1 – Track Selection

In Pilot Study 1, we developed and selected six driving tracks with two1

considerations. First, the driving tracks should have the same difficulty. Second, along2

each track, the difficulty at every point should be roughly the same. The two3

considerations ensured that the difficulty of the dual-task mission can be easily4

manipulated by varying the surveillance task urgency, because the difficulty of the5

driving task is fairly constant.6

Participants: Ten participants (age: mean = 21.8 years, SD = 2.7 years; two7

females, eight males) took part in Pilot Study 1. All participants had normal or8

corrected-to-normal vision and hearing, with an average of 4.1 years of driving9

experience (SD = 1.7 years).10

Experimental apparatus and stimuli: Pilot study 1 used the same platform11

as in the experiment except that only driving task was involved. We did not present the12

surveillance task to the participants, as we only wanted to evaluate the difficulty of the13

driving task.14

Experimental design: Pilot Study 1 used a within-subjects design with 1015

different candidate tracks (Figure A1). The presentation of tracks followed a 10 × 1016

Latin square design to eliminate potential order effects.17

Figure A1 . Candidate tracks. Magenta dots indicate the locations where the
participants reported the difficulty of driving.

Measures: Along each track, participants reported the difficulty of driving at 1118

30



locations using a 7-point Likert scale (1: easiest; 7: most difficult). The magenta dots in1

Figure A1 indicate the locations where the participants reported the difficulty of2

driving. After completing each track, participants also evaluated to what extent the3

track had the same difficulty anywhere along it using another 7-point Likert scale (1:4

the same; 7: significantly different). We named it the “uniformity score." For each track,5

we calculated the average of the 11 reported difficulty scores as the “overall difficulty6

score" of the track.7

Experimental procedure: Participants provided signed informed consent and8

filled in a demographic survey. During the training session, the participants performed9

two trials on the training tracks, and each trial took approximately 1.5 minutes. In the10

first trial, the participants only drove on the track and did not report difficulty.11

However, in the second trial, the participants drove on the track and reported12

difficulties at the four designed locations, indicated by a sign on the side of the road in13

the driving simulator.14

In the official pilot study, the participants drove on 10 different tracks and15

reported difficulties at the 11 designed locations. After each track, the participants were16

asked to evaluate whether driving was the same or significantly different at any location17

of the track using a 7-point Likert scale.18

After finishing all 10 trials, the subjects were required to fill out a debriefing19

survey about any outstanding questions and their opinions of or suggestions for the20

experiment they had just completed.21

Results: One-way repeated measures analysis of variance (ANOVA) was22

conducted for the driving tracks as the within-subjects variable. The results showed a23

non-significant difference between the 10 tracks in their overall difficulty scores24

(F (9, 81) = 1.161, p = 0.331) and in their uniformity score (F (9, 81) = 0.557,25

p = 0.828). Based on the results, we selected tracks 2, 3, 5, 6, 8, and 9 to be used in26

Pilot Study 2 and the experiment.27
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Appendix B

Pilot Study 2 – Design of Surveillance Task

In the present study, we aimed to manipulate the difficulty of the dual-task1

mission and, hence, the human operators’ workload by varying the surveillance task2

urgency. In Pilot Study 2, we selected a fixed time budget for the detection period of3

the surveillance task so that the difficulty and workload of the dual-task mission could4

be manipulated.5

Participants: Seven participants took part in Pilot Study 2. The data from one6

participant were discarded due to an equipment malfunction. The remaining six7

participants were on average 25.3 years old (SD = 1.6 years) and had an average of 2.78

years of driving experience (SD = 1.6 years). There were two females and four males in9

the remaining six participants. All participants had normal or corrected-to-normal10

vision.11

Experimental apparatus and stimuli: Pilot study 2 used the same platform12

as in the experiment.13

Experimental design: Pilot Study 2 used a within-subjects design with six14

different time budgets for the detection period of the surveillance task: 1.5, 2.5, 3.5, 4.5,15

5.5, and 6.5 seconds (i.e., participants had to complete the detection task within the16

given time budget). The six time budgets were selected based on the results from our17

previous study (Luo et al., 2019). Participants performed both the driving task and the18

surveillance task on six different tracks, each with a different constant time budget for19

the detection period. The presentation of surveillance task conditions followed a 6 × 620

Latin square design to eliminate potential order effects.21

Measures: Participants reported their workload of the dual-task mission using22

the NASA TLX survey (Hart & Staveland, 1988), and their perceived difficulty of the23

dual-task mission.24

Experimental procedure: Participants provided signed informed consent and25

filled out a demographic survey. After that, they were provided with instructions and26

training. Participants were first trained on the driving task alone, followed by the27
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surveillance task alone. After that, they performed both the driving and surveillance1

tasks on three different tracks. Each track had a different time budget for the2

surveillance task: 5.5, 3.5, and 1.5 seconds.3

During the official pilot study, participants performed the driving task and4

surveillance task on six different tracks with six different surveillance task fixed time5

budgets. Each track took approximately three minutes. After each trial, the6

participants were asked to fill out a survey regarding their workload and difficulty7

during each track.8

After finishing all six trials, the subjects were required to fill out a debriefing9

survey regarding any outstanding questions and their opinions of or suggestions for the10

experiment they had just completed.11

Results: We first conducted an omnibus test to see if the time budget affected12

participants’ difficulty and workload. A Wilcoxon Signed Ranks showed that the 1.5 s13

condition is significantly more difficult than the 6.5 s condition (Z = −2.214, p = .027),14

and the 1.5 s condition has a significantly higher workload than the 6.5 s condition15

(Z = −3.066, p = .002). We then performed paired-sample t tests to select two16

time-budgets to be used in the experiment. We expected to see large differences in17

difficulty and workload between the selected time budgets and therefore focused on the18

difference between the 1.5 s and the 6.5 s conditions. The Shapiro–Wilk test showed19

normality for the difference of difficulty and of workload (difficulty: D = .215, p = .2;20

workload: D = .174, p = .2). A paired-sample t-test showed that the 1.5 s condition is21

significantly more difficult than the 6.5 s condition (t = 8.306, p < .001, Cohen’s22

d = 3.39, large effect), and the 1.5s condition has a significantly higher workload than23

the 6.5s condition (t(11) = 7.45, p < .001, Cohen’s d = 2.15, large effect).24

Based on the results, we selected 1.5 s and 6.5 s time budgets to be used in the25

experiment to induce varying levels of workload. Note that in the experiment, we also26

included the 2.5 s time budget, as we were interested in exploring participants’27

performance with a slightly larger time budget compared to the 1.5 s time budget.28

33



References1

Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary2

with scholastic aptitude test scores. Science, 205 (4412), 1289–1292.3

Ahlstrom, U., & Friedman-Berg, F. J. (2006). Using eye movement activity as a4

correlate of cognitive workload. International Journal of Industrial Ergonomics,5

36 (7), 623–636.6

Backs, R. W., & Walrath, L. C. (1992). Eye movement and pupillary response indices7

of mental workload during visual search of symbolic displays. Applied Ergonomics,8

23 (4), 243–254.9

Benedetto, S., Pedrotti, M., Minin, L., Baccino, T., Re, A., & Montanari, R. (2011).10

Driver workload and eye blink duration. Transportation Research Part F: Traffic11

Psychology and Behaviour , 14 (3), 199–208.12

Bodala, I. P., Ke, Y., Mir, H., Thakor, N. V., & Al-Nashash, H. (2014). Cognitive13

workload estimation due to vague visual stimuli using saccadic eye movements. In14

2014 36th annual international conference of the ieee engineering in medicine and15

biology society (pp. 2993–2996).16

Calinon, S. (2016). A tutorial on task-parameterized movement learning and retrieval.17

Intelligent Service Robotics, 9 (1), 1–29.18

Calinon, S., & Billard, A. (2005). Recognition and reproduction of gestures using a19

probabilistic framework combining PCA, ICA and HMM. In Proceedings of the20

22nd international conference on machine learning (pp. 105–112).21

Carmody, M. A. (1994). Current issues in the measurement of military aircrew22

performance: A consideration of the relationship between available metrics and23

operational concerns. (Tech. Rep.). Naval Air Warfare Center.24

Chang, C.-C., Boyle, L. N., Lee, J. D., & Jenness, J. (2017). Using tactile detection25

response tasks to assess in-vehicle voice control interactions. Transportation26

Research Part F: Traffic Psychology and Behaviour , 51 , 38–46.27

Chen, S., & Epps, J. (2013). Automatic classification of eye activity for cognitive load28

measurement with emotion interference. Computer Methods and Programs in29

34



Biomedicine, 110 (2), 111–124.1

De Waard, D. (1996). The measurement of drivers’ mental workload (Unpublished2

doctoral dissertation). Netherlands: University of Groningen.3

Demberg, V. (2013). Pupillometry: the index of cognitive activity in a dual-task study.4

In Proceedings of the annual meeting of the cognitive science society (Vol. 35).5

Di Nocera, F., Camilli, M., & Terenzi, M. (2007). A random glance at the flight deck:6

Pilots’ scanning strategies and the real-time assessment of mental workload.7

Journal of Cognitive Engineering and Decision Making, 1 (3), 271–285.8

Du, N., Huang, K. Y., & Yang, X. J. (2020). Not All Information Is Equal: Effects of9

Disclosing Different Types of Likelihood Information on Trust, Compliance and10

Reliance, and Task Performance in Human-Automation Teaming. Human Factors,11

62 (6), 987–1001.12

Eggemeier, F., Biers, D., Wickens, C., Andre, A., Vreuls, D., Billman, E., & Schueren,13

J. (1990). Performance assessment and workload evaluation systems: Analysis of14

candidate measures (Tech. Rep.). Human Systems Division, Air Force Systems15

Command.16

Fridman, L., Reimer, B., Mehler, B., & Freeman, W. T. (2018). Cognitive load17

estimation in the wild. In Proceedings of the 2018 chi conference on human18

factors in computing systems (p. 652).19

Gao, X., Yan, H., & Sun, H.-j. (2015). Modulation of microsaccade rate by task20

difficulty revealed through between-and within-trial comparisons. Journal of21

vision, 15 (3), 3–3.22

Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye23

movements: methods and constructs. International Journal of Industrial24

Ergonomics, 24 (6), 631–645.25

Guo, Y., & Yang, X. J. (2021). Modeling and predicting trust dynamics in26

human–robot teaming: A bayesian inference approach. International Journal of27

Social Robotics, 13 , 1899–1909.28

Halverson, T., Estepp, J., Christensen, J., & Monnin, J. (2012). Classifying workload29

35



with eye movements in a complex task. Proceedings of the Human Factors and1

Ergonomics Society Annual Meeting, 56 (1), 168-172.2

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index):3

Results of empirical and theoretical research. In Advances in psychology (Vol. 52,4

pp. 139–183). Elsevier.5

He, X., Wang, L., Gao, X., & Chen, Y. (2012). The eye activity measurement of mental6

workload based on basic flight task. In Ieee 10th international conference on7

industrial informatics (pp. 502–507).8

Heard, J., Harriott, C. E., & Adams, J. A. (2018). A survey of workload assessment9

algorithms. IEEE Transactions on Human-Machine Systems, 48 (5), 434–451.10

Hicks, T. G., & Wierwille, W. W. (1979). Comparison of five mental workload11

assessment procedures in a moving-base driving simulator. Human Factors, 21 (2),12

129–143.13

Hogervorst, M. A., Brouwer, A.-M., & Van Erp, J. B. (2014). Combining and14

comparing EEG, peripheral physiology and eye-related measures for the15

assessment of mental workload. Frontiers in Neuroscience, 8 , 322.16

Jacob, R. J. (1995). Eye tracking in advanced interface design. Virtual Environments17

and Advanced Interface Design, 258 , 288.18

Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and19

usability research: Ready to deliver the promises. In The mind’s eye (pp.20

573–605). Elsevier.21

Klingner, J., Kumar, R., & Hanrahan, P. (2008). Measuring the task-evoked pupillary22

response with a remote eye tracker. In Proceedings of the 2008 symposium on eye23

tracking research & applications (pp. 69–72).24

Kosch, T., Hassib, M., Buschek, D., & Schmidt, A. (2018). Look into my eyes: Using25

pupil dilation to estimate mental workload for task complexity adaptation. In26

Extended abstracts of the 2018 chi conference on human factors in computing27

systems (p. 1–6). New York, NY, USA: Association for Computing Machinery.28

Kosch, T., Hassib, M., Woźniak, P. W., Buschek, D., & Alt, F. (2018). Your eyes tell:29

36



Leveraging smooth pursuit for assessing cognitive workload. In Proceedings of the1

2018 chi conference on human factors in computing systems (pp. 1–13).2

Kun, A. L., Palinko, O., Medenica, Z., & Heeman, P. A. (2013). On the feasibility of3

using pupil diameter to estimate cognitive load changes for in-vehicle spoken4

dialogues. In Interspeech (pp. 3766–3770).5

Lansdown, T. C., Brook-Carter, N., & Kersloot, T. (2004). Distraction from multiple6

in-vehicle secondary tasks: vehicle performance and mental workload implications.7

Ergonomics, 47 (1), 91–104.8

Leonard, J. J., Mindell, D. A., & Stayton, E. L. (2020). Autonomous vehicles, mobility,9

and employment policy: The10

roads ahead. MIT Task Force on Work of the Future Research Brief . Retrieved from11

https://workofthefuture.mit.edu/research-post/autonomous-vehicles-mobility-and-employment-policy-the-roads-ahead/12

13

Li, W.-C., Chiu, F.-C., & Wu, K.-J. (2012). The evaluation of pilots performance and14

mental workload by eye movement. In Proceeding of the 30th european association15

for aviation psychology conference.16

Liang, Y., Reyes, M. L., & Lee, J. D. (2007). Real-time detection of driver cognitive17

distraction using support vector machines. IEEE Transactions on Intelligent18

Transportation Systems, 8 (2), 340–350.19

Liu, K. (2019). Measuring and quantifying driver workload on limited access roads20

(Unpublished doctoral dissertation). University of Michigan.21

Lu, S., Zhang, M. Y., Ersal, T., & Yang, X. J. (2019). Workload management in22

teleoperation of unmanned ground vehicles: Effects of a delay compensation aid23

on human operators’ workload and teleoperation performance. International24

Journal of Human–Computer Interaction, 1–11.25

Luo, R., Hayne, R., & Berenson, D. (2018). Unsupervised early prediction of human26

reaching for human–robot collaboration in shared workspaces. Autonomous27

Robots, 42 (3), 631–648.28

Luo, R., Wang, Y., Weng, Y., Paul, V., Brudnak, M. J., Jayakumar, P., . . . Yang, X. J.29

37



(2019). Toward real-time assessment of workload: A bayesian inference approach.1

In Proceedings of the human factors and ergonomics society annual meeting.2

Luo, R., Weng, Y., Wang, Y., Jayakumar, P., Brudnak, M. J., Paul, V., . . . Yang, X. J.3

(2021). A workload adaptive haptic shared control scheme for semi-autonomous4

driving. Accident Analysis & Prevention, 152 , 105968.5

Mallick, R., Slayback, D., Touryan, J., Ries, A. J., & Lance, B. J. (2016). The use of6

eye metrics to index cognitive workload in video games. In 2016 ieee second7

workshop on eye tracking and visualization (etvis) (pp. 60–64).8

Marquart, G., Cabrall, C., & de Winter, J. (2015). Review of eye-related measures of9

drivers’ mental workload. Procedia Manufacturing, 3 , 2854–2861.10

Marshall, S. P. (2000, Jul). Method and apparatus for eye tracking and monitoring pupil11

dilation to evaluate cognitive activity.12

Marshall, S. P. (2002). The index of cognitive activity: Measuring cognitive workload.13

In Proceedings of the ieee 7th conference on human factors and power plants (pp.14

7–7).15

May, J. G., Kennedy, R. S., Williams, M. C., Dunlap, W. P., & Brannan, J. R. (1990).16

Eye movement indices of mental workload. Acta Psychologica, 75 (1), 75–89.17

Menekse Dalveren, G. G., & Cagiltay, N. E. (2018). Insights from surgeons’18

eye-movement data in a virtual simulation surgical training environment: effect of19

experience level and hand conditions. Behaviour & Information Technology,20

37 (5), 517–537.21

Miller, E. E., Boyle, L. N., Jenness, J. W., & Lee, J. D. (2018). Voice control tasks on22

cognitive workload and driving performance: Implications of modality, difficulty,23

and duration. Transportation Research Record, 2672 (37), 84–93.24

Moacdieh, N. M., Devlin, S. P., Jundi, H., & Riggs, S. L. (2020). Effects of workload25

and workload transitions on attention allocation in a dual-task environment:26

Evidence from eye tracking metrics. Journal of Cognitive Engineering and27

Decision Making, 1555343419892184.28

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working29

38



memory paradigm: A meta-analysis of normative functional neuroimaging studies.1

Human Brain Mapping, 25 (1), 46–59.2

Palinko, O., & Kun, A. (2011). Exploring the influence of light and cognitive load on3

pupil diameter in driving simulator studies.4

Palinko, O., Kun, A. L., Shyrokov, A., & Heeman, P. (2010). Estimating cognitive load5

using remote eye tracking in a driving simulator. In Proceedings of the 20106

symposium on eye-tracking research & applications (pp. 141–144).7

Rayner, K. (1995). Eye movements and cognitive processes in reading, visual search,8

and scene perception. In Studies in visual information processing (Vol. 6, pp.9

3–22). Elsevier.10

Rayner, K. (2009). The 35th sir frederick bartlett lecture: Eye movements and11

attention in reading, scene perception, and visual search. Quarterly Journal of12

Experimental Psychology, 62 (8), 1457–1506.13

Rayner, K., & Morris, R. K. (1990). Do eye movements reflect higher order processes in14

reading? In From eye to mind: Information acquisition in perception, search, and15

reading. (pp. 179–190). Oxford, England: North-Holland.16

Recarte, M. A., & Nunes, L. M. (2000). Effects of verbal and spatial-imagery tasks on17

eye fixations while driving. Journal of Experimental Psychology: Applied, 6 (1),18

31.19

Recarte, M. A., & Nunes, L. M. (2003). Mental workload while driving: effects on20

visual search, discrimination, and decision making. Journal of Experimental21

Psychology: Applied, 9 (2), 119.22

Recarte, M. Á., Pérez, E., Conchillo, Á., & Nunes, L. M. (2008). Mental workload and23

visual impairment: Differences between pupil, blink, and subjective rating. The24

Spanish Journal of Psychology, 11 (2), 374.25

Reimer, B. (2009). Impact of cognitive task complexity on drivers’ visual tunneling.26

Transportation Research Record, 2138 (1), 13–19.27

Rerhaye, L., Blaser, T., & Alexander, T. (2018). Evaluation of the index of cognitive28

activity (ICA) as an instrument to measure cognitive workload under differing29

39



light conditions. In Congress of the international ergonomics association (pp.1

350–359).2

Robinson, G. H. (1979). Dynamics of the eye and head during movement between3

displays: A qualitative and quantitative guide for designers. Human Factors,4

21 (3), 343–352.5

Rozo, L., Silverio, J., Calinon, S., & Caldwell, D. G. (2016). Learning controllers for6

reactive and proactive behaviors in human–robot collaboration. Frontiers in7

Robotics and AI , 3 , 30.8

Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in9

eye-tracking protocols. In Proceedings of the 2000 symposium on eye tracking10

research & applications (pp. 71–78).11

Schwarz, G., et al. (1978). Estimating the dimension of a model. The Annals of12

Statistics.13

Skaramagkas, V., Giannakakis, G., Ktistakis, E., Manousos, D., Karatzanis, I., Tachos,14

N., . . . Tsiknakis, M. (2021). Review of eye tracking metrics involved in emotional15

and cognitive processes. IEEE Reviews in Biomedical Engineering.16

Skaramagkas, V., Ktistakis, E., Manousos, D., Tachos, N. S., Kazantzaki, E., Tripoliti,17

E. E., . . . Tsiknakis, M. (2021). Cognitive workload level estimation based on eye18

tracking: A machine learning approach. In 2021 ieee 21st international conference19

on bioinformatics and bioengineering (bibe) (pp. 1–5).20

Sun, Z., Li, B., Duan, F., Jia, H., Wang, S., Liu, Y., . . . Solé-Casals, J. (2021). Wlnet:21

Towards an approach for robust workload estimation based on shallow neural22

networks. IEEE Access, 9 , 3165-3173. doi: 10.1109/ACCESS.2020.304473223

Tobii Pro AB. (2014). Tobii pro lab. Computer software. Danderyd, Stockholm.24

Retrieved from http://www.tobiipro.com/25

Tsai, Y.-F., Viirre, E., Strychacz, C., Chase, B., & Jung, T.-P. (2007). Task26

performance and eye activity: predicting behavior relating to cognitive workload.27

Aviation, Space, and Environmental Medicine, 78 (5), B176–B185.28

van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in29

40



cognitive control tasks: A review. Psychonomic Bulletin & Review, 25 (6),1

2005–2015.2

Van Orden, K. F., Limbert, W., Makeig, S., & Jung, T.-P. (2001). Eye activity3

correlates of workload during a visuospatial memory task. Human Factors, 43 (1),4

111–121.5

Vogels, J., Demberg, V., & Kray, J. (2018). The index of cognitive activity as a6

measure of cognitive processing load in dual task settings. Frontiers in7

Psychology, 9 , 2276.8

Wang, J., & Olson, E. (2016, October). AprilTag 2: Efficient and robust fiducial9

detection. In Proceedings of the IEEE/RSJ international conference on intelligent10

robots and systems (IROS).11

Weng, Y., Luo, R., Jayakumar, P., Brudnak, M. J., Paul, V., Desaraju, V. R., . . . Ersal,12

T. (2020). Design and evaluation of a workload-adaptive haptic shared control13

framework for semi-autonomous driving. In 2020 american control conference14

(acc) (pp. 4369–4374).15

Wu, T.-F., Lin, C.-J., & Weng, R. C. (2004). Probability estimates for multi-class16

classification by pairwise coupling. Journal of Machine Learning Research,17

5 (Aug), 975–1005.18

Yang, X. J., Unhelkar, V. V., Li, K., & Shah, J. A. (2017). Evaluating effects of user19

experience and system transparency on trust in automation. In 2017 12th20

acm/ieee international conference on human-robot interaction (hri) (pp. 408–416).21

Yang, Y., McDonald, M., & Zheng, P. (2012). Can drivers’ eye movements be used to22

monitor their performance? a case study. IET Intelligent Transport Systems,23

6 (4), 444–452.24

Yokoyama, H., Eihata, K., Muramatsu, J., & Fujiwara, Y. (2018). Prediction of driver’s25

workload from slow fluctuations of pupil diameter. In 2018 21st international26

conference on intelligent transportation systems (itsc) (pp. 1775–1780).27

Zhang, Y., Owechko, Y., & Zhang, J. (2008). Learning-based driver workload28

estimation. In Computational intelligence in automotive applications (pp. 1–17).29

41



Springer.1

Zhou, F., Yang, X. J., & de Winter, J. C. F. (2022). Using eye-tracking data to predict2

situation awareness in real time during takeover transitions in conditionally3

automated driving. IEEE Transactions on Intelligent Transportation Systems,4

23 (3), 2284-2295. doi: 10.1109/TITS.2021.30697765

42


