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Abstract:  
Remote sensing offers a low-cost method for estimating yields at large spatio-temporal scales. 
However, the use of high spatial and temporal resolution remote sensors to map field-level yields 
in heterogeneous smallholder systems in the developing world is not well understood. Here we 
examined the ability of Sentinel-2 satellite imagery to map field-level maize yields across 
smallholder farms in two regions in Oromia district, Ethiopia. We specifically evaluated how 
effectively different indices, MTCI, GCVI, and NDVI, and different models, linear regression 
and random forest regression, can be used to map field-level yields. We also examined how 
generalizable our models were if trained in one region and applied to another region, where no 
data were used for model calibration. We found that linear regression models that use MTCI led 
to the highest yield prediction accuracies (R2 ranging from 0.24 to 0.47), particularly when using 
only localized data for training the model. These models were not very generalizable, especially 
when models were applied to regions that still had significant haze remaining in the imagery. 
Our results highlight the ability of Sentinel-2 imagery to map field-level yields in smallholder 
systems, though accuracies are limited in regions with high cloud cover and haze.    

1. Introduction 

Efforts to meet global food demand in the coming decades will be challenged by 
population growth and climate change (Godfray et al. 2010, Tilman et al. 2011). One way to 
meet this growing demand is to increase agricultural production. Yet, increasing agricultural 
production through agricultural extensification is associated with various environmental costs, 
such as greenhouse gas emissions and biodiversity loss (Godfray et al. 2010). Instead, closing 
yield gaps, or narrowing the gap between current agricultural yields and potential agricultural 
yields on existing land, could be a way to meet future food demand more sustainably (Lobell et 
al. 2009). This is especially important in regions such as sub-Saharan Africa (SSA), where yield 
gaps are large (Mueller et al 2012), climatic impacts are severe (IPCC, 2022), and population 
growth is large (FAO 2022). In particular, Ethiopia, which is the second most populous country 
in SSA, is one of the countries in SSA that is most food insecure and vulnerable to climate 
change (Mohamed 2017, Di Falco et al. 2011). Closing yield gaps for maize will be especially 
important in this region, given that maize provides nearly 20% of the nation’s calories (Abate et 
al. 2015) and is one crop that is projected to be the most negatively impacted by climate change 
(FAO 2022). 

In order to identify the causes of and potential solutions to close yield gaps, we must be 
able to reliably estimate yields across large spatial and temporal scales. Yet, to date this has been 
challenging through on-the-ground data collection efforts. This is because such on-the-ground 
surveys are expensive, difficult to conduct at larger spatial scales, and tend to rely on often-
inaccurate, self-reported data (Carletto et al. 2013, Paliwal and Jain, 2020). A potential low-cost 
way to produce agricultural statistics at scale is to use remote sensing. However, mapping field-
level yields in smallholder systems such as Ethiopia can be challenging given small field sizes (< 



1 ha) and a high degree of between-field variability due to heterogeneity of management 
practices and environmental conditions. The launch of high spatial and temporal resolution 
satellites, such as the public Sentinel constellations and other private satellites, such as 
PlanetScope, have helped overcome such challenges (Azzari et al. 2017). For example, several 
recent studies have demonstrated the potential of optical Sentinel-2 data to map field-level yields 
in heterogeneous smallholder systems ( Jin et al. 2019, Sweeney et al. 2015, Hunt et al. 2019). 
Sentinel-2 imagery also has frequent revisit times (5-day), which has been linked with a higher 
degree of accuracy when mapping yields (Jain et al. 2016). 

Various vegetation indices have been used to map crop yields, and efficacy may depend 
on crop type and local conditions (Zhang et al. 2021). While the Normalized Difference 
Vegetation Index (NDVI) has been used extensively to map yields (Zhang et al. 2021), 
vegetation indices that use the green rather than the red band to optimize for chlorophyll 
sensitivity may be more reliable for crop yield estimation (Clevers & Gitelson 2013, Houborg & 
McCabe 2018). Specifically, previous studies have shown that the Green Chlorophyll Vegetation 
Index (GCVI), which is more sensitive to moderate to high levels of canopy chlorophyll, can 
outperform more traditional vegetation indices such as NDVI (Burke & Lobell 2017, Nguy-
Robertson et al. 2014, Zhang et al. 2021). In addition, the Medium Resolution Imaging 
Spectrophotometer (MERIS) Terrestrial Chlorophyll Index (MTCI), which uses red-edge 
reflectance, is sensitive to canopy chlorophyll and nitrogen content, and has also been shown to 
outperform NDVI and GCVI in previous comparisons (Jin et al. 2017, Nguy-Robertson et al. 
2014, Clevers & Gitelson 2013). However, MTCI indices generated from Sentinel-2 imagery 
have a coarser spatial resolution than NDVI and GCVI, owing to the reliance on the red edge 
(RE) band (band 5), which is provided at 20 m instead of 10 m spatial resolution. Thus, the 
potential of MTCI to map crop yields in small fields should be further investigated.   

Previous studies have used ground-based yield measurements, such as crop cuts, to train 
linear regression models that translate vegetation indices into yield estimates (Lobell et al. 2015). 
Linear regression models have been favored for their simplicity and ease of implementation, 
especially when applied in cloud computing platforms such as Google Earth Engine (GEE), and 
because of the observed linear relationships between vegetation indices and yield (Lobell et al. 
2015, Jain et al. 2016). However, it is possible that machine learning models, such as random 
forest, may outperform such linear regression models as they can account for interactions among 
explanatory variables (Jain et al. 2017). They are also considered to be resistant to overfitting 
(Farmonov et al. 2023).   

Finally, there is concern that models that require ground calibration are limited in their 
scalability (Sibley et al. 2014). This is because the relationship between vegetation indices and 
yields varies depending on region, crop, and management practices (Lobell et al. 2015). Thus, it 
is suggested that these models should be recalibrated using new ground data before they are 
applied to other geographic areas (Jin et al. 2017). It is unclear to what extent such models can be 
used to estimate spatial patterns in yield outside the region in which they are calibrated. 
Approaches that utilize crop growth models have been advanced as a possible solution. 
However, these approaches are computationally intensive, and require various agro-



meteorological inputs (Desloires et al. 2023). Satellite based crop yield models that rely on 
ground data should thus be validated on data outside of their geographic area before 
extrapolating over larger regions.  

This study adds to the growing body of work that assesses the ability of using high 
spatio-temporal resolution satellite data to map field-level yields in smallholder systems at scale. 
We compare multiple methods to estimate maize yield in two regions within Oromia District, 
Ethiopia during the 2021 growing season. In this study, we specifically examine:  

(1) How well can we map field level yields in smallholder maize systems in Ethiopia 
using Sentinel-2 imagery? 

(2) Which vegetation index results in the highest yield prediction accuracies: NDVI, 
GCVI, or MTCI? 

(3) Which model leads to higher prediction accuracies: multiple linear regression or 
random forest regression?  

(4) Is it possible to create a generalizable model that accurately estimates yields across 
multiple regions using limited ground data for training? 

  

 Our results will provide important insights into the ability of Sentinel-2 imagery to map 
field-level yields in heterogeneous smallholder systems. This is critically important as 
smallholder systems are projected to face some of the largest increases in food demand over the 
coming decades, and such yield information can help identify where yield gaps are the largest 
and potential interventions that may help close these yield gaps.  

2. Study Area 

Our study area spans a 30,000 km2 region in Oromia district, Ethiopia (Figure 1), with data 
collected in two distinct sub-regions. The first sub-region comprises an approximately 8,800 km2 
area straddling parts of the East Shewa and Garaghe Zones. The second sub-region comprises a 
1,700 km2 area in the western Jimma Zone. The greater region is dominated by smallholder 
agriculture, with cropland covering over 72% of the land area. There are two agricultural 
growing seasons in Ethiopia when grain is grown: the long rainy season (Meher) and the short 
rainy season (Belg) (Hadado et al. 2009). The focus of this study is the long rainy season of 
Meher, when the majority of grain is grown, which spans from April to September (Wakjira et 
al. 2021). Agricultural management practices and soil conditions are highly heterogeneous over 
the study region. Most of the fields surveyed (81%) were less than 5 hectares, and approximately 
one quarter of all fields (26%) were less than two hectares. Most farmers applied fertilizer 
(93%), such as DAP and urea, but inputs varied from 0 to 300 kg throughout the season. There 
was likewise a diversity of maize varieties planted, with the most common varieties being 
BH661, Limu, Damote, and Shone. Soil texture was either silt, clay, or sand, with silt being the 
most common (40%). A majority of fields (67%) had fruiting trees, but only 20% of fields were 
intercropped with other species, of which beans were the most common. None of the fields 
surveyed used irrigation. Although sow date and harvest date varied slightly, most fields (90%) 
were sown in April or May, and all fields were harvested in November.  



 

 

 

Figure 1: Map of study area with (a) countrywide map of Ethiopia with field locations, (b) 
Jimma Zone with field locations, (c) East Shewa and Guraghe Zones with field locations, (d) 
detail of panel (b) showing field boundaries over high resolution aerial imagery, and (e) detail of 
panel (c) showing field boundaries over high resolution aerial imagery. Aerial imagery via 
Google Earth 7.3.6 (2023) CNES/Airbus [Accessed 4/18/2023].  

3. Methods 

 We processed Sentinel-2 imagery (Section 3.2) to estimate maize yields across fields 
where we collected on-the-ground crop cut yield information (Section 3.1). To answer our main 
research questions, we created and compared several different vegetation indices (Section 3.2.). 
We also compared two different yield estimation models, linear regression and random forest 
regression (Section 3.3). Finally, we examined how generalizable our yield estimation algorithms 
may be across the full study region by training a model using data from only one region and then 
applying and validating it in the other region (Section 3.4).  

3.1. Crop Cut Data  

Most methods for estimating crop yield use field level yield data to calibrate remote 
sensing models (Jain et al. 2016). The gold standard for yield estimation in field is through 
collecting crop cuts, which we used to estimate yield at the end of the growing season (Tiedeman 
et al. 2022). Agricultural surveys and crop cuts were administered by collaborators working with 
the International Maize and Wheat Improvement Centre for 600 fields across our study area in 
2021. Each maize field was split into four quadrants. At the center of each quadrant, a 5 m x 8 m 
area was harvested. The maize was dried and threshed before it was weighed in-field. We 



averaged all subplot yields to obtain field-level yields. GPS coordinates were collected for each 
crop cut sub-plot, as well as for the larger field boundaries. Field boundary polygons were 
constructed in Python using the Shapely package version 2.0.1 (Gillies et al. 2007). Boundaries 
were then manually corrected in Google Earth Pro by aligning field boundaries with visible 
boundaries from the latest available high-resolution aerial imagery in Google Earth Pro. Field 
boundaries were described as ‘low’, ‘medium’, or ‘high’ confidence based on how closely they 
corresponded to visible boundaries in the aerial imagery. We retained only the 321 ‘high’ 
confidence fields for our analysis. These were fields which had raw GPS coordinates that lined 
up well with field boundaries in the latest available very high-resolution (VHR) aerial imagery 
and required little to no manual adjustment. This comprised 158 fields in the Jimma sub-region 
and 163 fields in the East Shewa-Garaghe sub-region. 

3.2. Sentinel-2 Imagery  

We accessed Level 2A, atmospherically corrected surface reflectance Sentinel-2 imagery 
through the Google Earth Engine (GEE) platform (Gorelick et al. 2017). As the growing season 
coincided with the rainy season, many of the Sentinel-2 images had a high number of cloudy 
pixels. Therefore, pixel-wise cloud masking was performed in GEE using the cloud probability 
score generated by the Sentinel Hub Cloud Detector algorithm using the s2Cloudless Python 
library (Zupanc 2017). Sentinel Hub Cloud Detector is a readily available machine learning 
cloud and cloud shadow masking algorithm for use in conjunction with Sentinel-2 surface 
reflectance imagery. Based on visual inspection of cloud removal, we set the cloud probability 
threshold parameter at 40% and the cloud filter threshold parameter to 100%. As the result, every 
image from the Sentinel-2 surface reflectance image collection from 3/15/2021 to 12/05/2021 
was retained for our analysis, regardless of cloud cover percentage, and pixels with a cloud 
probability greater than 40% were masked.   

Three vegetation indices commonly used in satellite-based yield estimation studies, namely 
NDVI, GCVI, and MTCI, were calculated for each Sentinel-2 image following the application of 
the cloud mask. The relevant Sentinel-2 bands used to calculate each vegetation index are 
recorded in Table 1, and the formula for each index is listed in Table 2. We then created 
maximum vegetation index composites at the finest temporal resolution that allowed for wall-to-
wall coverage of imagery using the 'qualityMosaic' function in GEE. Specifically, maximum 
values were computed on a pixel-by-pixel basis for all available, cloud-free pixels. For the East 
Shewa-Garaghe sub-region (Figure 1b) we were able to create bi-weekly mosaics. However, for 
the Jimma sub-region (Figure 1c), there was more cloud cover and we were only able to create 
monthly mosaics. At the regional level that spanned both sites, we created monthly mosaics as 
this was the finest temporal resolution over which we could produce wall-to-wall mosaics across 
the study area. The specific compositing windows and the number of Sentinel-2 tiles that 
contributed to each composite are recorded in the supplementary materials (Table S1). The mean 
value of each vegetation index was calculated for each field and for each compositing window 
using the 'reduceRegions’ function in GEE.  

 



 

 

 

3.3. Model Parameterization and Validation 

We compared two models to estimate yield, a linear regression model and a random 
forest regression model. The linear regression model was estimated using Equation 1.    

 

where Yield is observed yield at the field scale calculated via crop cuts, B1VI1 represents the 
coefficient for the mean VI value for each field for the first composite window, B2VI2 represents 
the coefficient for the mean VI value for each field for the second composite window, and BnVIn 
represents the coefficient for the mean VI for each field for the nth composite window. The linear 
regression models that we developed used VIs from all possible compositing windows, as 
preliminary analyses and previous studies suggested that models that used all image dates had 
higher prediction accuracies in general. Separate linear regression models were run for each 
vegetation index and each region, resulting in three linear regression models for each region. The 
linear regressions were performed in Python using the ‘sklearn.linear_model.LinearRegression’ 
routine from the Scikit-Learn version 1.2.2 machine learning library (Pedregosa et al. 2011).  

The second model we created was a random forest regression that used the same 
predictor variables as our linear regression model (Equation 1). Random forest is an ensemble 
learning method which creates multiple decision trees using randomly drawn subsamples of the 



data (Breiman 2011). The average is calculated across all decision trees to output a final model. 
We developed the random forest regression models using the 
‘sklearn.ensemble.RandomForestRegressor’ routine from the Scikit-learn Python module with 
default hyperparameters. Separate random forest regression models were run for each vegetation 
index and each region, resulting in three random forest regression models for each region.  

To validate our models, a 70:30 train-test split was used for each model, meaning that 
70% of the fields were used to train our algorithms and 30% of the fields were used to validate 
the accuracy of our algorithms. The linear regression model and random forest regression model 
for each region and VI parameterization were trained and evaluated using the same train-test split 
polygons. Models were scored on the basis of their coefficient of determination (R2) and Root 
Mean Squared Error (RMSE) when compared to the observed crop cut yield estimates for each 
field.  

3.4. Comparison of Models by sub-region: 

We assessed the spatial generalizability of our modeling approaches by validating the 
model developed in one sub-region on observations from the other sub-region. Contrary to our 
initial approach in which a train-test split was used to validate the models, here, for each sub-
region, models were generated using all available observations in the sub-region. Observations 
from the remaining sub-region were then used to validate the models, and R2 and RMSE values 
were recorded. This analysis was performed for both the East Shewa-Guraghe sub-region and the 
Jimma sub-region.  

4. Results 

Considering our main research question which was to evaluate how well we could map 
yield in smallholder maize systems in Ethiopia,  we found that we were able to map field-level 
yields fairly well, with R2 values reaching 0.24 to 0.47. This compares well with previous studies 
in smallholder systems, which generally find R2 values between 0.4 and 0.6. for the best fit 
models in each region (Table 3). Comparing the three different indices used, GCVI, NDVI, and 
MTCI, we found that overall MTCI led to the highest prediction accuracies across all models and 
locations, as evidenced by higher R2 values and lower RMSEs. This was true across all models 
except for the random forest regression model in the eastern region, where GCVI slightly 
outperformed MTCI. On average, MTCI improved R2 values by 0.065 and reduced RMSE by 79 
kg/ha compared to the next best performing vegetation index. After MTCI, GCVI led to the 
highest prediction accuracies, outperforming NDVI across all models and locations.   

We next examined which model type led to the highest yield prediction accuracies, linear 
regression models, or random forest regressions. We found that when we developed localized 
models, linear regressions outperformed random forest regression models, though the difference 
in R2 was generally small (< 0.05). Specifically, in the East Shewa-Guraghe sub-region, the sub-
region with highest model performance on average, the linear regression models improved R2 by 
0.0167 and reduced RMSE by 65.8 kg/ha over the random forest regression models. The 
difference in performance was larger in the Jimma sub-region, where the linear regression 
models improved R2 by 0.09 and reduced RMSE by 103.2 kg/ha on average compared to the 



random forest regression models. However, for the regional models, we found that random forest 
regression was a slight improvement over the linear regression model, though the difference was 
small. Random forest regression models improved R2 by 0.0167 and reduced RMSE by 17.7 
kg/ha compared to the linear regression models.  

Finally, considering the generalizability of our models, we find that our results are not 
very generalizable. One indicator of poor generalizability was the variability in model 
performance between the two sub-regions of our study. We observed much higher accuracies in 
the East Shewa-Guraghe sub-region, where the best performing model had a high R2 value of 
0.47 and lower RMSE equal to 1607.5 kg/ha (linear regression model with MTCI). In the Jimma 
sub-region, the best performing model had an R2 of only 0.24 and a higher RMSE value of 
1879.2 kg/ha (linear regression model with MTCI). One potential reason for this difference in 
accuracy was the length of the temporal mosaic, given that the East Shewa-Guraghe sub-region 
had less cloud cover, which allowed us to create biweekly mosaics; in the Jimma sub-region, 
there was more cloud cover and haze allowing us to only create monthly mosaics. To test how 
much of a reduction in accuracy was due to differences in the temporal mosaic length, we reran 
the best performing model (linear regression model with MTCI) in the East Shewa-Guraghe sub-
region using monthly mosaics. We found that the R2 dropped to 0.33 and the RMSE increased to 
1815.2 kg/ha. This suggests that some of the difference in accuracy is due to the presence of 
cloud cover and the reduction in available imagery, though the monthly model in the East 
Shewa-Guraghe sub-region still outperformed a similar model in the Jimma sub-region.  

 

 We also developed general, regional models across both sub-regions to test 
generalizability (Table 3). The best performing regional model was the random forest regression 
model using monthly MTCI composites (R2 = 0.26, RMSE = 1876.5 kg/ha, Table 3). This model 
performed comparably to the best performing model in the Jimma sub-region. However, when 
compared to the best performing model in the East Shewa-Guraghe sub-region, R2 was reduced 



by 0.21 and RMSE was increased by 269 kg/ha. This suggests that localized models can lead to 
higher prediction accuracy in this study region.  

Finally, we tested generalizability by validating the models produced in one region on 
test data from the other region. Overall, we found that our models were not very generalizable, 
particularly when taking models developed in the East Shewa-Guraghe sub-region and applying 
them to the Jimma sub-region (Table 4). When we did this, we found that most models resulted 
in negative R2 values and large RMSE values (> 2000 kg/ha). The highest scoring model was the 
random forest regression model with MTCI composites (R2 = 0.13, RMSE = 1834.25  kg/ha). 
The Jimma sub-region models, however, were more generalizable to the East Shewa-Guraghe 
sub-region. For the most part, these results had a moderate R2 values around 0.2, with the best 
performing linear regression MTCI model reaching R2 values of 0.31 (RMSE = 1796.5  kg/ha).  

 

 

 

5. Discussion 

This study adds to the growing body of work that assesses the use of high spatio-temporal 
resolution Sentinel-2 satellite data to map field-level yields in smallholder systems. Using over 
300 crop cut field measures of yield, we developed field-level maize yield estimates for the main 
growing season in 2021. We examined which vegetation indices (NDVI, GCVI, and MTCI) and 
which yield model (linear regression and random forest) led to the highest yield prediction 
accuracies. Finally, we analyzed the generalizability of our yield estimation models over larger 
spatial scales, outside of the region in which the model was originally trained. Overall, we found 
that we were able to map yields with high accuracy (with R2 values up to 0.47), principally when 
using linear regression models with MTCI. We did find, however, that our results were not very 
generalizable and models developed using local training data led to substantial increases in R2 
and reductions in RMSE. These results suggest that Sentinel-2 satellite data can be used to 
successfully map field-level yields even in smallholder systems, but more generalizable 
algorithms need to be used if these models are to be applied across large spatial scales.  



Considering which vegetation index led to the highest accuracy, we found that models 
using MTCI led to the highest accuracies, followed by models using GCVI. There are several 
reasons MTCI likely outperformed the other vegetation indices considered in our study. First, 
MTCI and GCVI are optimized for chlorophyll detection, while NDVI has been shown to be 
related to leaf area index (LAI) (Dash & Curran, 2007). Previous studies have suggested that 
indices with increased sensitivity to chlorophyll concentrations are better able to account for the 
effects of nutrient stress on yields (Burke & Lobell 2017), which could be particularly important 
in our study region where fertilizer application rates were low and fields were likely nitrogen 
limited. Second, NDVI may have performed poorly because it is more likely than MTCI or 
GCVI to become saturated at high levels of biomass (Tucker 1977, Sellers 1985, Gu et al. 2013, 
Ulfa et al. 2022, Dash et al. 2008). To support this theory, we found low correlation values 
between NDVI and yield compared to that of other VIs during late season periods of peak 
biomass (Figures S1, S2, and S3). Third, the three vegetation indices considered in our study are 
differentially impacted by haze and atmospheric scattering. Specifically, MTCI is less sensitive 
to haze and atmospheric effects than GCVI and NDVI because it is computed using two nearby 
spectral bands that are affected similarly by atmospheric scattering (Dash & Curran 2007, Lobell 
et al. 2020). This could be particularly important for our study region where we observed patches 
of haze in various images (Figure S4) despite cloud masking and image compositing. These 
results suggest that MTCI may do especially well compared to other VIs during the rainy 
growing season, when cloud cover and haze are extensive. Finally, we found that MTCI still 
performed best despite its availability at a coarser spatial resolution compared to the other VIs 
considered in this study (20 m vs 10 m). This is likely because the fields considered in our study 
were still relatively large; the mean plot size across all fields was 3.5 ha, and only 11 fields (3% 
of all fields) were smaller than one hectare. Future work should examine if MTCI still 
outperforms other indices in locations with very small field sizes (< 0.5 ha).  

We found that the linear regression model outperformed the random forest regression in 
most cases. However, in the East Shewa-Guraghe sub-regional and regional scale analyses, this 
difference was very slight. This is likely because the relationship between VIs and yield is 
largely linear, and the linear regression model better captured this relationship while still 
remaining generalizable. Even so, other studies have suggested that random forest regressions 
have great potential for crop yield estimation, as they easily allow for the integration of 
additional predictor variables, such as temperature, precipitation, solar radiation, and soil 
moisture (Sakamoto et al. 2020). For example, Hunt et al. (2019) show that random forest 
regressions can allow for the inclusion of environmental variables, such as the soil water index 
(SWI), that have no direct relationship with yield, but do have an underlying relationship with 
spectral reflectance. Future work should examine how much yield estimation can be improved by 
including additional environmental data, and whether random forest regression models are better 
able to handle potential complex and non-linear relationships than linear regression models. 

Differences in model performance between the two sub-regions in our study area were 
notable. Models performed much better overall in the East Shewa-Guraghe sub-region than in 
the Jimma sub-region across all VIs and model types. This difference in accuracy could not be 
fully explained by the differences in the temporal availability of imagery, as we found that a 



linear regression model trained using monthly MTCI values performed better in the East Shewa-
Guraghe sub-region (R2 = 0.33, RMSE = 1815.2) compared to in the Jimma sub-region (R2 = 
0.24, RMSE = 1879.2). One reason for this may be because, despite our extensive cloud masking 
and mosaicking, there was still significantly more haze seen in imagery in the Jimma region 
compared to the East Shewa-Guraghe sub-region (Figure S4). Future work should examine 
whether including additional imagery that is less sensitive to cloud cover and haze, such as radar 
Sentinel-1 imagery, may improve yield prediction accuracies in regions plagued by high cloud 
cover during the rainy growing season. 

Considering the generalizability of our model, we found that a regional model that was 
trained using data from both sub-regions performed similarly for the Jimma sub-region but 
poorer for the East Shewa-Guraghe sub-region, with the model only explaining 26% of the 
observed variation in yield (Table S3). We also found that the models trained in one region and 
applied to another region, where no data were used for training, performed relatively poorly, 
particularly when applying models to Jimma that were trained in the East sub-region. This may 
be because the two sub-regions are located in different agroecological zones (Amede et al. 2015) 
with differences in overall yields and yield variation; The Jimma sub-region, which is located in 
a cool/humid zone, had higher observed yields on average with less variability (mean = 6235 
kg/ha, sd = 1967 kg/ha) compared to the East Shewa-Guraghe sub-region (mean = 5461 kg/ha, 
sd = 2168 kg/ha), which is located in a cool/subhumid zone. Such differences likely affect model 
generalizability as the relationship between VIs and yield vary across space, and VIs are not 
always able to capture yield variability due to environmental stress (Sakamoto 2020, Jain et al. 
2017). Future work should examine how other approaches that may be more generalizable, such 
as those that use crop model simulations to train algorithms instead of localized ground data, 
perform when mapping yield across disparate regions. 

In conclusion, we found that we were able to use Sentinel-2 satellite imagery to map 
field-level maize yields accurately, particularly in the eastern portion of our study region, where 
we achieved an R2 of 0.47 in our best performing model. Across the East Shewa-Guraghe sub-
region, model accuracies were comparable to those found in other studies that used high-
resolution satellite imagery to map field-level grain yields in smallholder systems (Jain et al. 
2019). We found that linear regression models that used MTCI data largely led to the best 
performing models, though these models were not very generalizable. One of the main reasons 
for this difference in performance across regions may be extensive cloud cover and haze that was 
difficult to remove for the western Jimma study region. Our results broadly show the promise of 
Sentinel-2 for mapping field-level yields, even during the rainy season in regions with 
heterogeneous smallholder fields. 
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Supplementary Information 



 

Table S1. The number of Sentinel-2 Scenes per composite window in each sub-region. 

 



 

Figure S1. Pairwise correlation heatmap of yield and monthly NDVI composites for (a) the 
Jimma Subregion and (b) the East Shewa-Guraghe sub-region during the 2021 Meher growing 
season. 



 

Figure S2. Pairwise correlation heatmap of yield and monthly GCVI composites for (a) the 
Jimma Subregion and (b) the East Shewa-Guraghe sub-region during the 2021 Meher growing 
season. 

 



 

Figure S3. Pairwise correlation heatmap of yield and monthly MTCI composites for (a) the 
Jimma Subregion and (b) the East Shewa-Guraghe sub-region during the 2021 Meher growing 
season. 

 

 

 



 

 

 

Figure S4. (a) Sentinel-2A 30-day image composite (9/15/2021-10/15/2021) rgb display (B4, 
B3, B2) and (b) detail with haze and cloud omissions circled in red.  

 


