
Flynn Allen J (Orcid ID: 0000-0002-3471-3063)

CBK Model Composition Using Paired Web Services and Executable Functions:
A Demonstration for Individualizing Preventive Services

Adam Beck, Department of Learning Health Sciences, Medical School University of Michigan
adambeck@umich.edu

Peter Boisvert, Department of Learning Health Sciences, Medical School University of Michigan
pboisver@umich.edu

Philip Boonstra, School of Public Health, University of Michigan
philb@umich.edu

Tanner Caverly, Department of Learning Health Sciences, Medical School University of Michigan
tcaverly@umich.edu

Nate Gittlen, Department of Learning Health Sciences, Medical School University of Michigan
nathaniel.gittlen@gmail.com

George Meng, Department of Learning Health Sciences, Medical School University of Michigan
gqmeng.meng@gmail.com

Brooke Raths, Department of Learning Health Sciences, Medical School University of Michigan
braths@med.umich.edu

Glen Taksler, Cleveland Clinic
takslerg@ccf.org

Charles P. Friedman, Department of Learning Health Sciences, Medical School University of Michigan
cpfried@umich.edu

Corresponding author:
Allen Flynn, Department of Learning Health Sciences, Medical School University of Michigan
ajflynn@umich.edu
734.223.7483

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/lrh2.10325

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/lrh2.10325
http://dx.doi.org/10.1002/lrh2.10325

Abstract

Introduction
Learning health systems are challenged to combine computable biomedical knowledge (CBK) models.
Using common technical capabilities of the World Wide Web (WWW), digital objects called Knowledge
Objects, and a new pattern of activating CBK models brought forth here, we aim to show that it is
possible to compose CBK models in more highly standardized and potentially easier, more useful ways.

Methods
Using previously specified compound digital objects called Knowledge Objects, CBK models are
packaged with metadata, API descriptions, and runtime requirements. Using open-source runtimes and
a tool we developed called the KGrid Activator, CBK models can be instantiated inside runtimes and
made accessible via RESTful APIs by the KGrid Activator. The KGrid Activator then serves as a gateway
and provides a means to interconnect CBK model outputs and inputs, thereby establishing a CBK model
composition method.

Results
To demonstrate our model composition method, we developed a complex composite CBK model from
42 CBK submodels. The resulting model called CM-IPP is used to compute life-gain estimates for
individuals based their personal characteristics. Our result is an externalized, highly modularized CM-IPP
implementation that can be distributed and made runnable in any common server environment.

Discussion
CBK model composition using compound digital objects and the distributed computing technologies i s
feasible. Our method of model composition might be usefully extended to bring about large ecosystems
of distinct CBK models that can be fitted and re-fitted in various ways to form new composites.
Remaining challenges related to the design of composite models include identifying appropriate model
boundaries and organizing submodels to separate computational concerns while optimizing reuse
potential.

Conclusion
Learning health systems need methods for combining CBK models from a variety of sources to create
more complex and useful composite models. It is feasible to leverage Knowledge Objects and common
API methods in combination to compose CBK models into complex composite models.

Keywords: computable biomedical knowledge, model composition, decentralized web technology

INTRODUCTION:

In 2009, Tsafnat and Coiera discussed several challenges related to reasoning across multiple
biomedical models1. They highlighted the challenges of computer-aided model construction,
automated model selection, and model composition. This paper focuses on model composition,
which is the process of building up better reasoning capabilities by connecting or combining
multiple models to form composite models1,2.

The topic of model composition is not new, but it is timely3-6. In biomedicine, there is growing
evidence from fields including whole-cell modeling and integrated systems biology that
composite models can improve our understanding of biology and human health6,7. It is now
conceivable that model composition could become central to a lot of future scientific work in
biomedicine8. Hence, for learning health systems, model composition seems vital9.

Throughout this paper, “model” refers to computer-processable implementations of results and
insights previously revealed through empirical scientific inquiry and learning. In these types of
models, such results and insights are expressed concretely and formally as conceptual, logical,
mathematical, or statistical statements about variables and the relationships between
variables, including causal and correlative relationships10.

This paper contributes a new method for building composite models by connecting them via
their inputs and outputs. We recognize that model composition in software is nothing new.
Software that brings many models together by interrelating the inputs and outputs of discrete
functions has been around for a long time. What is new here is that how the models we
combine are individually externalized and modularized using compound digital objects called
Knowledge Objects (KOs). We have previously published our Knowledge Object Reference
Ontology (KORO) which describes the parts and pieces of Knowledge Objects in detail11.
Following KORO, the KOs for this study enable models to be treated both as static resources
and active web services.

Using multiple KOs, we are primarily interested in composing models of computable biomedical
knowledge (CBK). CBK models may also be called CDS artifacts or machine learning, deep
learning, AI, decision, and business process models, or even actionable knowledge units12-14.
Here we generally refer to any model that represents biomedical results and insights as a CBK
model. To better support learning health systems, we demonstrate the building of composite
CBK models by interconnecting multiple distinct CBK submodels packaged inside many
individual KOs.
This model composition work is generally motivated by three main drivers relevant to learning
health systems. First, the relational nature of knowledge calls for connections between
disparate results and insights15-17. Second, the acceleration of scientific activity and attendant
accumulation of new results and insights increase the need to connect new and prior
knowledge to extend and apply what is learned18. Third, different types of knowledge exist and
necessarily have dissimilar computer-processable representations19-21. Hence, to advance
biomedical science, enable learning health systems, and improve human health, more distinct

computable models represented variously need to be connected or combined effectively than
in the past22.

Research and development on decentralized web technology for model reuse strongly
influences our approach23. Web app developers will be familiar with our approach since they
are accustomed to building web applications with reusable software libraries or packages,
some of which contain “models” per our definition of the term24. Similarly, data scientists
perform model composition using tools and languages that strongly support code reuse, such
as Machine Learning in Julia (MLJ)2. In addition, to compute with models represented variously,
polyglot virtual machines supporting a wide variety of runtimes (or software execution engines)
enable model composition of submodels encoded in different programming languages and
formats25.

Our CBK model composition method ultimately relies on connecting pairs of web services and
corresponding executable functions backing the web services. We apply our method to connect
and combine preventive medicine models into a composite model with 42 submodels to
support individualized precision prevention (IPP). In the end, the composite model we produce
computes individualized estimates of life gain for 21 different evidence-based preventive
services26.

Next, in the Methods section, we begin by outlining our general technical approach to model
composition. After that, we detail key technical items and give examples. Later, in the Results
section, we describe the IPP composite model we developed with our methods and explain its
use in an initial study of preventive service practices. Finally, we discuss our progress in the
Discussion section and reflect on some key remaining challenges before concluding.

METHODS:

GENERAL TECHNICAL APPROACH TO MODEL COMPOSITION

Our primary goal is to support both the developers and end-users of end-user or client
applications by giving developers and end-users ready access to powerful composite CBK
models. As portrayed in Figure 1 below, our approach uses a stack of technical components for
managing and deploying KOs, which are digital packages holding CBK models27. In Figure 1, the
two yellow-shaded areas are where we make new technical contributions.

In the Server Layer of our technology stack just below the client applications layer, we rely on
established World Wide Web (WWW) network components to handle standard HTTP requests
and responses to and from lower-level microservices. In the Microservices Layer, custom
microservice tools from our team, especially the Knowledge Grid (KGrid) Activator27, organize,
mobilize, and instantiate CBK models to get them running and make them network accessible.

In the lowest static CBK Layer of our stack, we specify the structure and contents of modular
Knowledge Objects11,28. Each KO is stored as an individually identifiable package that bundles a

distinct CBK model along with some other essential content described below. KOs can then be
used for computing with assistance from the KGrid Activator tool.

Our stack brings in well-supported runtimes built by others for executing the CBK models
packaged in KOs (Figure 1). To date, we have used runtimes for JavaScript (e.g., V8), Python,
and R. Theoretically, there is no limit to the number of runtimes that can be incorporated in our
technical infrastructure. Therefore, CBK models encoded in almost any programming language
or format can be deployed and connected to form composites thereby extending our approach.

Figure 1. Technical Stack Enabling Model Composition

Next, we cover more about our approach to CBK model composition. The first key item we
review in further detail is the Knowledge Object or KO packages holding CBK models (Figure 1).

KNOWLEDGE OBJECTS AND THEIR CONTENTS

Our approach to CBK model management begins with formalized Digital Objects (DOs)28. All
DOs have three things, (1) a bit sequence expressing some core content, (2) metadata
describing object properties, and (3) a persistent unique identifier28. We previously specified the
new class of DOs called Knowledge Objects (KOs) diagrammed in Figure 2 below11.
KOs provide the means to manage CBK models both as static resources and to deploy CBK
models as web services. As static resources, CBK model creators and owners can place their
models inside KOs as files and then transmit and share KOs over computer networks, organize
KOs in digital repositories, build collections and libraries of KOs, and archive KOs for long-term
safekeeping29. When deployed as web services, CBK models can be engaged via APIs23,27.

We have previously shown how CBK model deployers can use KOs with the tools we have built
to instantiate web services quickly and systematically30. The web services that result offer
persistent, interactive, remote computational capabilities. These web services can also provide
a mechanism to distribute CBK models directly to client applications on demand. Some of the
ancillary content inside KOs exists to help establish web services for computing with CBK
models.

Figure 2. The Contents of a Knowledge Object (KO)11, a particular subclass of Compound Digital Objects28

We continue exploring how best to construct easily deployable, interoperable KOs that meet
the needs of multiple CBK model stakeholders, including CBK model creators, owners,
organizers, deployers, and of course client application developers and users. Recently, some of
our team members have closely examined the metadata needed to make large numbers of CBK
models packaged in compound digital objects findable, accessible, interoperable, and reusable
(the FAIR principles31)32. Next, following from the innermost to outermost components shown
in Figure 2 above, we give examples of the information content for each component of the
generic KO.

EXAMPLE OF A SIMPLE CBK MODEL HELD INSIDE A KNOWLEDGE OBJECT

We created a KO that holds a simple CBK model (Box 1). This model uses JavaScript code to
relate two variables in a common formula for body mass index (BMI). The code shown is a
computer-executable representation of the mathematical function for BMI (Box 2).

function bmi(inputs){
 height = inputs.features.height; // height in inches
 weight = inputs.features.weight; // weight in pounds
 return weight/height/height*703;
}

Box 1. Body mass function encoded in the JavaScript programming language

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵𝐵𝐵𝐵𝐵) =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑡𝑡(𝑙𝑙𝑙𝑙)

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡(𝑖𝑖𝑖𝑖)

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡(𝑖𝑖𝑖𝑖) * 703

Box 2. Body mass index formula

The purpose of a CBK model expressing the BMI formula (Box 1) is to compute an index for
body weight relative to height. Originally dubbed the Quetelet Index after its inventor and later
labeled the Body Mass Index (BMI) by Keys, when concretized in code, this simple CBK model
plays an ongoing role in biomedical research and practice33. While it makes a good example, the
simplicity of this CBK model for BMI is misleading since CBK models are often much more
complex.

We currently limit the CBK model content held in Knowledge Objects to explicit instances of
executable code or machine-readable data and do not support Knowledge Objects containing
pointers to CBK models kept elsewhere. This limitation reflects the high priority we give to
making CBK models accessible and their use secure by running them nearby protected health
data sources. We recognize other CBK model use cases may be better supported by using
pointers.

EXAMPLE OF THE DEPLOYMENT DESCRIPTION CONTENT INSIDE A KNOWLEDGE OBJECT

Every KO carries a Deployment Description file rendered in a simple format that we devised
(Box 3). Deployment Description files convey a small amount of critical content. For example,
the Deployment Description given in Box 3 below specifies a suitable runtime for executing the
CBK models packaged in KOs (engine:node), the name of an executable file to be used as an
entry point (“bmi.js”), a list of executable artifacts (here there is only one, bmi.js), and the
name of an instantiable function for computing body mass index (function: bmi).

/bmi:
 post:
 engine: node
 entry: bmi.js
 artifact: bmi.js
 function: bmi

Box 3. Example of actual Deployment Description File Content

To improve standardization, we are exploring possible conventions for representing runtime
information34. Also, our work is so far limited to CBK models that are pure, stateless executable
functions, like BMI. Pure functions associate one or more inputs to a single output34. Pure
functions make no changes to variables outside of the function’s scope, warding off software
side effects. In the future, we plan to extend our work to cover stateful CBK models too.

EXAMPLE OF THE SERVICE DESCRIPTION CONTENT INSIDE A KNOWLEDGE OBJECT

Alongside CBK models, KOs hold Service Description files. These files specify an application
programming interface (API) for each web service associated with a CBK model. We currently
render API specifications in the machine-readable Open API 3.0 format for RESTful web service
APIs35. Other formats could be used, such as AsyncApi 2.0 for event-driven web service APIs36.

A snippet from an actual Service Description file in the Open API 3.0 format is provided in Box 4
below. The version of the web service version (1.0) is different from versions of the CBK model
or versions of the whole KO, which appear elsewhere in our metadata. Looking at the content
of the Service Description, when put together with a deployed server’s IP address (not shown),
the partial URL given (/ipp/bmicalculator/1.0) and the path specification (/bmi) comprise a
reachable URL access API endpoint that a developer can use to engage the BMI CBK model as a
webservice.

openapi: 3.0.0
info:
 version: '1.0'
 title: BMI Calc
 description: Calculates BMI
 license:
 name: GNU General Public License v3 (GPL-3)
 url: >-
 https://tldrlegal.com/license/gnu-general-public-license-v3-(gpl-3)#fulltext
 contact:
 name: KGrid Team
 email: kgrid-developers@umich.edu
 url: 'http://kgrid.org'
servers:
 - url: /ipp/bmicalculator/1.0
 description: BMI Calculator
tags:
 - name: BMI Calculator Endpoint
paths:

 /bmi:

Box 4. Snippet Showing Content from an actual Service Description File

OTHER CONTENT INSIDE A KNOWLEDGE OBJECT

We have covered the CBK model, Service Description, and Deployment Description packaged
inside of KOs. In addition to this content, KOs also contain a metadata file with a linked data
representation of the title, authors or owners, and KO version. Inside our metadata files, one
also finds the persistent unique identifier (PUID) for the KO. This PUID, along with the rest of
the KO metadata, supports the search and discovery of large numbers of uniquely identified
KOs.
Next, in support of our general technical approach, we describe the KGrid Activator we have
built. This tool sits in the Microservices Layer of our technical stack (Figure 1).

THE KGRID ACTIVATOR MICROSERVICE TOOL

To enable our model composition method, we designed and developed the KGrid Activator. The
KGrid Activator is a server-side backend tool that apps can communicate with. It is built as a
Java microservice tool37 with the help of the Java Spring Framework38. The KGrid Activator is
KO-aware. It activates KOs and then serves as an API gateway, orchestrating the execution of
the
CBK models packaged in KOs27. The KGrid Activator is a reference implementation of a backend
tool. It enables us to continuously test our commitment that all models held in KOs will run.

To assist CBK model deployers, the KGrid Activator implements a repeatable pattern to
“activate” CBK models. In this case, activation of CBK models is the rapid and consistent
deployment of web services backed by running CBK models. To demonstrate the feasibility of
our approach to technical experts who might be tasked with deploying web services backed by
CBK models, we set an initial performance benchmark to “activate” CBK models held inside KOs
in five seconds or less by giving simple commands to the KGrid Activator. A five second time-to-
deployment is in keeping with the time required by other container-based deployment
infrastructures like Docker.

Figure 3 below portrays how the KGrid Activator works to support one or more end-user client
applications with web services backed by CBK models. Starting at the top of Figure 3, three
client applications are shown, an EHR next to a cardiology and pathology app. These and other
apps (including SMART apps and CDS Hooks) can be programmed to engage executable CBK
models via calls to typical web servers (e.g., Tomcat) that in turn shuttle information to and
from the web services enabled by the Activator.

Figure 3 includes four very simple example CBK models encoded in JavaScript. The first CBK
model is the BMI model described previously (1.BMI). The second is a formula for body surface
area (2.BSA). The third is a formula for computing cardiac output using stroke volume and heart
rate (3.CO). The fourth is a formula for calculating creatinine clearance by the kidneys (4.CrCL).

In Figure 3, the first three models have been deployed and activated by an instance of the
Activator, giving rise to three pairs of corresponding web services (cones) and deployed
executables (dots). Once activated, the deployed executables (dots) are shown running on
demand inside an instance of the JavaScript V8 runtime. Note that the fourth model (4.CrCL) is
held inside a KO at the bottom of Figure 3 alongside what could potentially be many other KOs
that are in storage but ready to be activated and used anytime. These stored KOs are not
currently deployed.
Moving further down the technology stack depicted in Figure 3, the KGrid Activator activates
KOs with the help of a specific Runtime Adapter that we have built. This adapter allows the
KGrid Activator to communicate with the JavaScript V8 runtime. Using it, the Activator can
command the JavaScript V8 runtime to accept and run CBK models 1, 2, and 3, as shown.
Finally, on the bottom right of Figure 3, two other runtimes, Python Anaconda and GNU-R, are
portrayed. These two additional runtimes have not yet been instantiated and connected to the
Activator, although they could be if KOs with CBK models encoded in Python or R needed to be
activated as well.

Figure 3. View of the KGrid Activator operating in the Microservices Layer

Summarizing, in Figure 3, activation of three CBK models for body mass index (BMI), body
surface area (BSA), and cardiac output (CO) establishes three corresponding web services
(green, pink, and blue cones). After the KGrid Activator provides web service endpoints to the
Server Layer, it plays an API gateway role by routing incoming requests from external Client
Applications to the CBK models running as executable functions inside one or more deployed
runtimes. Now that we have covered the content of KOs, activation and the KGrid Activator, the
last item to introduce as part of our technical methods is the Runtime Context.
HOW A RUNTIME CONTEXT ENABLES CBK MODEL COMPOSITION

As part of the work of activating CBK models held inside KOs, each instance of the KGrid
Activator establishes and maintains a dynamic list of every CBK model it has deployed with an
internal reference pointer to each deployed CBK model (Figure 4). This list is the Runtime
Context.

The Runtime Context provided by the KGrid Activator is accessible programmatically. For our
method of model composition, when a request from the code of one CBK model is made to use
another CBK model the KGrid Activator uses its current Runtime Context to operate as a
gateway. In its gateway role, the KGrid Activator resolves CBK model references and oversees
request-response execution. This is how one deployed CBK models can call on any other
deployed CBK model without having to know its implementation or instantiation details (Figure
4).

Going deeper into how this works, complete resolution of the reference pointers to deployed
CBK models is achieved by the KGrid Activator working in conjunction with each runtime. This is
where our runtime adapters come into play. We provide adapters to handle programming
language and runtime-specific concerns. (As one example, an adapter for the JavaScript V8
runtime is depicted in Figure 3.) Each adapter defines and implements a common
communication protocol (i.e., interface) we developed to integrate different runtimes with the
KGrid Activator. Upon successful deployment of a CBK model into its corresponding runtime by
the KGrid Activator, the model is registered by the adapter resulting in a new entry to the KGrid
Activator’s current Runtime Context. As a result, working in conjunction with the KGrid
Activator, adapters allow CBK model-to-model request-response activity to finally happen.

The Runtime Context is critical for interconnecting models and enabling model composition. For
now, we have this capability only when every CBK model being connected is deployed inside
the same runtime. We see a need for flexibility and power and plan to develop new capabilities
so that future model composition can span multiple runtimes with the help of an enhanced
KGrid Activator. Once additional CBK model-to-model request-response capabilities are
developed, KOs handling separate parts of the complex calculations can be deployed in
separate runtimes. This will make it possible to build composite CBK models using component
CBK models that are encoded in more than one format or programming language.

To summarize, as portrayed in Figure 4 below, the Runtime Context is a dynamic list or map
maintained by an instance of the KGrid Activator. The Runtime Context supports all possible
request-response calls between activated CBK models running inside one runtime instance at
any moment in time. As the number of CBK models deployed into that runtime instance
changes, the Runtime Context is consistently refreshed and remains current. This approach is
what finally enables our technology stack to support CBK model composition.

Figure 4. Inside the KGrid Activator, the Runtime Context is a dynamic l ist of CBK Models running locally

CREATING COMPOSITE CBK MODELS

Instead of building all new technology for doing model composition, the KGrid Activator
marshals the specific contents of KOs and then uses existing web server and runtime
technologies for model composition. Together, the modular components in our technology
stack are sufficient to create three general kinds of composite models (Figure 5). These three
kinds of composite models – serial, hierarchical, and conditional – derive from a larger
collection of common computational workflow patterns that have appeared repeatedly over
the years in many other computer science works39.

Figure 5. Three General Kinds of Composite CBK Models

On the left in Figure 5, a serial composite CBK model relies on the procedural knowledge about
a model composition represented in an Executive Submodel (orange dot) to engage three
submodels sequentially in steps 1, 2, and 3.

Similarly, in the middle of Figure 5, a hierarchical composite CBK model has a top-level
Executive Submodel connected to another Executive Submodel at Level 1 (green dot), which in
turn encodes procedures to connect the two other submodels at Level 2 (purple and blue dots).

Additionally, it is possible to insert conditional “IF-THEN-ELSE” logic into composite models. As an
example of this, on the right in Figure 5 is a conditional composite CBK model with an Executive
Submodel that, depending on some condition, connects to one or the other (but not both) of
the two submodels shown (purple and blue dots). The procedural knowledge encoded into the
logic of Executive Submodels expresses model compositions. All three general kinds of
composite models in Figure 5 – and mixtures of them – can be composed using our technical
approach.

TECHNICAL FEASIBILITY DEMONSTRATION: BUILDING AND USING THE CM-IPP

As a demonstration of the feasibility of our technical approach to model composition, we
created the Composite Model for Individualized Precision Prevention (CM-IPP). We used the CM-
IPP to conduct a concordance study which we will report elsewhere. (The concordance study
sought to answer the research question. “To what degree do primary care providers collectively
agree with the value-based rankings of 21 preventive services computed by the CM-IPP?”)

According to the United States Preventive Services Task Force (USPSTF), the 21 preventive
services covered by the CM-IPP are supported by high-quality “A” or “B” level evidence.
Examples of these services include screening services (e.g., screening for colorectal cancer) and
other measures (e.g., taking aspirin to lower the risk of a heart attack). Studies show that in the
U.S., many people receive some recommended preventive services, but few receive them all26.
The ultimate purpose of composite models like the CM-IPP is to enable computerized
individualized prioritization of recommended preventive services during routine primary care
encounters. Next, for our results, we provide a detailed technical description of the CM-IPP.

RESULTS:

We successfully re-implemented a multi-component statistical model created and originally
implemented as a Markov Cohort model inside a spreadsheet by Taksler and colleagues as part
of their work in preventive medicine26. Working with Dr. Taksler and his group, using KOs and
our technical approach, we arrived at the new CM-IPP composite CBK model for computing an
individual’s life-gain arising for 21 recommended preventive medical services. When client
applications engage the new CM-IPP, the applications receive a ranked list of relevant
preventive services for an individual. The CM-IPP applies static and simplified results of Markov
Cohort modeling to compute estimated life-gain from regression formulas where some Markov
Cohort model information is lost. In the future, the Taksler research team plans to use
microsimulation modeling techniques40 and provide results either as lookup tables or
mathematical equations.

CM-IPP INPUTS AND OUTPUTS

The input to the CM-IPP includes more than 100 features about a person. Any client application
with these input data can post an instance of our proprietary JSON data object (Box 5) to the
web service backed by the CM-IPP’s top-level Executive Submodel. Client applications receive
computed rankings of 21 relevant preventive services by estimated lifespan gain in years (Box
6).

 INPUT {
 "patient":{
 "id": "ipp-patient-E01",
 "features":{
 "age":50,
 "race":"Black",
 "gender":"Male",
 "height":73.0,
 "weight":220.0,
 "systolic":147,
 "diastolic":68,
 "totalcholesterol":110,
 "HDL":32,
 "LDL":42,
 "triglycerides":181,
 "a1c":9,
 "cvd":false,

 [88 more features listed as key:value pairs go here]

Box 5. Partial List of Inputs for the CM-IPP web service

OUTPUT "lifeexpectancy": {
 "aspirinPrevention": {
 "total": {
 "life-gain": 0.3175741769690106 }
 },
 "crcScreening": {
 "total": {
 "life-gain": 0.0919283879684265 }
 },
 "diabetesControl": {
 "total": {
 "life-gain": 1.5806718157369808 }
 },
 [more computed results go here]

Box 6. Partial List of Outputs Provided by the CM-IPP web service

MORE TECHNICAL DETAILS ABOUT THE CM-IPP

The CM-IPP is a mixed serial-hierarchical-conditional composite model that performs a long and
complex call chain of computations about an individual. This complex call chain (not shown)
takes advantage of the 42 submodels of the CM-IPP that are arrayed graphically in Figure 6
below.

As depicted in Figure 6, the CM-IPP’s top-level Executive Submodel calls on 29 other submodels
directly, three of which are lower-level Executive Submodels (orange dots). The three lower-
level Executive Submodels call on a total of 13 more submodels. Conditional logic inside the
top-level Executive Submodel makes it so that only the relevant Net Benefit submodels (gray
dots) are engaged while doing computations about a given person. In addition, the top-level
Executive Submodel includes more computable knowledge to compute benefit estimates for
five preventive services directly.

Figure 6. Graphical View of the CBK Composite Model for Individualized Precision Prevention (CM-IPP)

Overall, we used 11 different types of submodels to build the CM-IPP. Table 1 has descriptions
of each of the 11 submodel types that contribute to the overall CM-IPP.

Submodel Type Description of Submodel Type Quantity in

CBK-CM-IPP

Executive

These include one top-level and three lower-level mostly procedural submodels with
logic representing model composites. The web service backed by the top-level Executive
model accepts a large data object as its input from an external Client Application to
kickoff CM-IPP processing. The three lower-level executive submodels compute various
intermediate results with the help of other submodels.

4

Patient Feature
Derivation

These submodels further process original patient data input to derive additional patient
features (i.e., BMI and common risk scores). 5

Recommended
Preventive Service
Criteria

This submodel encodes inclusion and exclusion criteria, including age ranges, sex, and
other criteria for all included preventive medical services covered in the CM-IPP. 1

Life
Table

This submodel contains final numeric results for baseline mortality rates by age, race,
and sex from the US Centers for Disease Control and Prevention. 1

Life Expectancy
Estimator

This submodel calculates an individual’s life expectancy using a given age range and a
previously computed set of age-ordered mortality rates. 1

Life Expectancy
Gain Estimator

This submodel accepts two life expectancy estimates computed with the Life Expectancy
Estimator submodel as inputs and computes their difference. 1

Net Benefit
Estimators

These submodels compute the estimated net benefit in terms of marginal life-gain
arising from implementing most preventive services and related interventions. 15

Detection Gain
Estimator

This submodel calculates an individual’s life expectancy gain from detection of HIV
through routine testing. 1

Diet Risk Models These two submodels estimate relative and absolute risks related to maintaining or not
maintaining a healthy diet. 2

Mortality Risk
Adjustment

These three submodels support computed adjustments in all-cause mortality risk based
on an individual’s degree of obesity and alcohol and tobacco use. 3

Partial Background
Risk Estimation

These submodels compute background absolute risk for several diseases (e.g., lung
cancer) and several treatments or interventions (e.g., taking aspirin.) 8

Table 1. The Eleven Types of Submodels connected to create the CBK Composite Model for IPP (CM-IPP)

USING THE CM-IPP IN PREVENTIVE SERVICES RESEARCH

Table 2 summarizes the end results of computations made using the CM-IPP for 12 fictitious
but realistic patient cases. These cases are part of a research study about preventive services.

Fictitious
Patient

Case

Source
of

Ranking

Top-
ranked
Service

Second-
ranked
Service

Third-
ranked
Service

Fictitious
Patient

Case

Source
of

Ranking

Top-
ranked
Service

Second-
ranked
Service

Third-
ranked
Service

#4 CM-IPP BRE CRC DIET #2 CM-IPP LUN STA DIET
#6 CM-IPP BP SMO ALC #7 CM-IPP CRC DIET AAA
#5 CM-IPP SMO BP DIET #8 CM-IPP DIET WEI LUN
#11 CM-IPP SMO DIET BP #10 CM-IPP BRE CRC DIET
#1 CM-IPP DIET CRC ASA #12 CM-IPP DIET ALC SMO
#3 CM-IPP ALC DIA BP #9 CM-IPP ALC DIET WEI

Table 2: For each fictitious case, the Top 3 ranked services computed by the CM-IPP are l isted. The letter codes stand

for abdominal aortic aneurysm screening (AAA), reducing alcohol use (ALC), aspirin use (ASA), treating blood
pressure (BP), breast cancer screening (BRE), colorectal cancer screening (CRC), treating diabetes (DIA), diet

counseling (DIET), statin use for cholesterol (STA), smoking cessation (SMO), and losing 10 pounds of weight (WEI).

DISCUSSION:

We set out to compose distinct biomedical models using a repeatable and transferable method
and achieved our goal. We built the CM-IPP, a composite model that reasons and computes
with 42 submodels representing biomedical knowledge from different sources (e.g., AHRQ and
CDC).

Our model composition method makes a strong commitment to decentralized web technology.
For client applications that can access the web, our method takes advantage of HTTP server
technology, common web service architectural patterns, and publicly available runtimes, such
as JavaScript V8. Thus, our work aligns well with that of the WWW community and its massive
installed base.

On the plus side, much of the software in this installed base interoperates and scales well
already. However, we also inherit many challenges with the WWW. First among them, to make
good on our approach, we must gain widespread adoption of new model packaging and
activation specifications implemented using Knowledge Objects and the KGrid Activator,
respectively. Second, all WWW security issues apply. At every level of our technology stack, the
implementation of security protocols is required to protect CBK model stakeholders from harm.
Third, many issues remain with measuring and expressing the quality of CBK models. We have
demonstrated how to compose CBK models but not how to ensure the models composed are
safe and effective for their intended use. In our future work, we anticipate using more than one
evidence-based composite model to generate advice and then using other composite models to

prioritize competing and conflicting advice based on evidence grades and other relevant
factors.
In this initial work we have achieved a measure of syntactic interoperability via RESTful APIs but
have yet to work on semantic interoperability for the inputs and outputs of CBK models41. We
have also packaged the CM-IPP so that client application developers can build it directly into a
code base instead of engaging it as a web service.

For composite model design, our work highlights the need for more and better principles to
guide submodel modularization and composition. We struggled with issues of submodel scope
and performance. For example, the top-level Executive Submodel in the CM-IPP mixes
overarching procedural code for model composition with domain-specific logic for five
preventive services, making it more difficult to reuse this submodel in other contexts. Also, in
hindsight, the 15 submodels used for net benefit estimation might have built into a single
submodel instead.

Our experience does at least suggest two principles to inform decisions about submodel scope.
First, a distinct submodel may be justified when it is subject to very frequent updates. Second, a
distinct submodel may be justified if it can be reused in many composite models. Otherwise,
the extra work of packaging and managing a distinct submodel seems not to be worth it.

Our work on model composition raises important knowledge management issues too. One of
them is versioning many items, including the parts of KOs and model subcomponents,
composite models, and the web services backed by such models. Good dependency
management relies on item-level versioning. We wish to extend our version-control capabilities
by applying lessons learned by those who have used software package metadata, automation,
and human workflows to keep up with direct and transitive dependencies in decentralized web
systems.

Another knowledge management challenge is how to categorize different types of submodels.
We labeled any submodel containing a part or whole representation of a composite model as
an “Executive Submodel.” In addition, we attempted to categorize submodels further by their
function and the outputs they produce. We found this somewhat difficult to do and think our
current ad hoc submodel categories are shaky and that better methods of submodel
categorization are needed.

CONCLUSION

In support of biomedical research and learning health systems, we offer a new method for CBK
model composition that relies on decentralized web technology. Our method uses special
digital objects called Knowledge Objects to establish operable pairs of web services and running
computer-processable functions. In this way, complex composite models are made accessible
via the World Wide Web. As a feasibility demonstration, we connected 42 packaged submodels
into a composite CBK model called CM-IPP. We then used the CM-IPP to compute individualized
life-gain estimates for a host of evidence-based preventive services. By accessing CM-IPP via a

web service, client applications gain powerful computational and reasoning capabilities quickly
and easily. Using this approach, CBK model-makers can build network-accessible composite
models to advance research, education, and learning health systems.

PROJECT SPONSOR

The Agency Healthcare Research and Quality sponsored this work through R21 grant number
HS026257-01. More information about this funded project is available here.

ACKNOWLEDGMENTS

We are very grateful for the expert professional support of Astrid Fishstrom and Lisa Ferguson
in the Department of Learning Health Sciences at the University of Michigan Medical School.
For their insights about this work, we thank our colleagues, Zach Landis-Lewis, Rachel
Richesson, Josh Rubin, and Doug Van Houweling.

CONFLICTS OF INTEREST

Dr. Taksler received consulting fees from the University of Michigan, Ann Arbor on a grant
funded by the Agency for Healthcare Research and Quality (R21HS026257), directly related to
the submitted work. The other authors assert they have no conflicts of interest.

REFERENCES

1. Tsafnat G, Coiera EW. Computational reasoning across multiple models. Journal of the
American Medical Informatics Association. 2009 Nov 1;16(6):768-74.

2. Blaom AD, Kiraly F, Lienart T, Simillides Y, Arenas D, Vollmer SJ. MLJ: A Julia package for
composable machine learning. arXiv preprint arXiv:2007.12285. 2020 Jul 23.

3. Allen R, Garlan D. A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology (TOSEM). 1997 Jul 1;6(3):213-49.

4. Bézivin J, Bouzitouna S, Del Fabro MD, Gervais MP, Jouault F, Kolovos D, Kurtev I, Paige
RF. A canonical scheme for model composition. In European Conference on Model
Driven Architecture-Foundations and Applications 2006 Jul 10 (pp. 346-360). Springer,
Berlin, Heidelberg.

5. Tang K, Liu X, Harper SL, Steevens JA, Xu R. NEIMiner: nanomaterial environmental
impact data miner. International journal of nanomedicine. 2013;8(Suppl 1):15.

6. Purcell O, Jain B, Karr JR, Covert MW, Lu TK. Towards a whole-cell modeling approach
for synthetic biology. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2013 Jun
13;23(2):025112.

7. Mulder S, Hamidi H, Kretzler M, Ju W. An integrative systems biology approach for
precision medicine in diabetic kidney disease. Diabetes, Obesity and Metabolism. 2018
Oct;20:6-13.

8. Friedman CP, Flynn AJ. Computable knowledge: an imperative for learning health
systems. Learning health systems. 2019 Oct;3(4).

9. Zeigler BP, Mittal S, Traore MK. Fundamental requirements and DEVS approach for
modeling and simulation of complex adaptive system of systems: Healthcare reform. In
Proceedings of the Symposium on Modeling and Simulation of Complexity in Intelligent,
Adaptive and Autonomous Systems 2018 Apr 15 (pp. 1-12).

10. Seidewitz E. What models mean. IEEE software. 2003 Sep 15;20(5):26-32.
11. Flynn AJ, Friedman CP, Boisvert P, Landis‐Lewis Z, Lagoze C. The Knowledge Object

Reference Ontology (KORO): a formalism to support management and sharing of
computable biomedical knowledge for learning health systems. Learning Health
Systems. 2018 Apr;2(2):e10054.

12. Lomotan EA, Meadows G, Michaels M, Michel JJ, Miller K. To share is human! Advancing
evidence into practice through a national repository of interoperable clinical decision
support. Applied clinical informatics. 2020 Jan;11(01):112-21.

13. De Smedt K, Koureas D, Wittenburg P. FAIR Digital Objects for Science: From Data Pieces
to Actionable Knowledge Units. Publications. 2020 Jun;8(2):21.

14. Drexl, Hilty et al., Technical Aspects of Artificial Intelligence: An Understanding from an
Intellectual Property Law Perspective, Version 1.0, October 2019, available at:
https://ssrn.com/abstract=3465577

15. Müller ME. Relational Knowledge Discovery. Cambridge University Press; 2012 Jun 21.
16. Floridi L. Semantic information and the network theory of account. Synthese. 2012 Feb

1;184(3):431-54.
17. Speer R, Havasi C. ConceptNet 5: A large semantic network for relational knowledge. In

The People’s Web Meets NLP 2013 (pp. 161-176). Springer, Berlin, Heidelberg.

18. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question:
understanding time lags in translational research. Journal of the Royal Society of
Medicine. 2011 Dec;104(12):510-20.

19. Alavi M, Leidner DE. Knowledge management and knowledge management systems:
Conceptual foundations and research issues. MIS quarterly. 2001 Mar 1:107-36.

20. Krishnamurthi S, Fisler K. Programming paradigms and beyond. The Cambridge
Handbook of Computing Education Research. 2019;37.

21. Harrison R, Samaraweera LG, Dobie MR, Lewis PH. Comparing programming paradigms:
an evaluation of functional and object-oriented programs. Software Engineering Journal.
1996 Jul 1;11(4):247-54.

22. Neal ML, Cooling MT, Smith LP, Thompson CT, Sauro HM, Carlson BE, Cook DL, Gennari
JH. A reappraisal of how to build modular, reusable models of biological systems. PLoS
Comput Biol. 2014 Oct 2;10(10):e1003849.

23. De Meester B, Seymoens T, Dimou A, Verborgh R. Implementation-independent
function reuse. Future Generation Computer Systems. 2020 Sep 1;110:946-59

24. Goswami P, Gupta S, Li Z, Meng N, Yao D. Investigating The Reproducibility of NPM
Packages. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME) 2020 Sep 1 (pp. 677-681). IEEE.

25. Niephaus F, Felgentreff T, Hirschfeld R. Towards polyglot adapters for the graalvm. In
Proceedings of the Conference Companion of the 3rd International Conference on Art,
Science, and Engineering of Programming 2019 Apr 1 (pp. 1-3).

26. Taksler GB, Keshner M, Fagerlin A, Hajizadeh N, Braithwaite RS. Personalized estimates
of benefit from preventive care guidelines: a proof of concept. Annals of internal
medicine. 2013 Aug 6;159(3):161-8.

27. Flynn AJ, Boisvert P, Lagoze C, Meng G, Friedman CP. Architecture and initial
development of a knowledge-as-a-service activator for computable knowledge objects
for health. Building Continents of Knowledge in Oceans of Data: The Future of Co-
Created eHealth. 2018 May 18;247:401.

28. Wittenburg P, Strawn G, Mons B, Boninho L, Schultes E. Digital objects as drivers
towards convergence in data infrastructures. Technical paper. doi. 2018;10:b2share.

29. Flynn AJ, Bahulekar N, Boisvert P, Lagoze C, Meng G, Rampton J, Friedman CP.
Architecture and initial development of a digital library platform for computable
knowledge objects for health. In Informatics for Health: Connected Citizen-Led Wellness
and Population Health 2017 (pp. 496-500). IOS Press.

30. In Press. Flynn AJ, Huang C, Lampa N, Meng, G, Gittlen N, Beck A, Raths B, Boisvert P. An
Experiment to Convert Structured Product Labels into Computable Prescribing
Information. In Proceedings, 9th IEEE International Conference on Healthcare
Informatics, August 2021.

31. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N,
Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data. 2016 Mar 15;3(1):1-9.

32. Alper BS, Flynn A, Bray BE, Conte ML, Eldredge C, Gold S, Greenes RA, Haug P, Jacoby K,
Koru G, McClay J. Categorizing metadata to help mobilize computable biomedical
knowledge. 2021.

33. Garabed E, Adolphe Quetelet (1796–1874)—the average man and indices of obesity,
Nephrology Dialysis Transplantation, Volume 23, Issue 1, January 2008, Pages 47–51,
https://doi.org/10.1093/ndt/gfm517

34. De Meester B, Dimou A, Verborgh R, Mannens E. An ontology to semantically declare
and describe functions. In European Semantic Web Conference 2016 May 29 (pp. 46-
49). Springer, Cham.

35. Fielding RT. REST: architectural styles and the design of network-based software
architectures. Doctoral dissertation, University of California. 2000.

36. Gómez A, Iglesias-Urkia M, Urbieta A, Cabot J. A model-based approach for developing
event-driven architectures with AsyncAPI. InProceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems 2020 Oct
18 (pp. 121-131).

37. Microservices. https://spring.io/microservices Accessed April 10, 2022.
38. Spring. https://spring.io/ Accessed April 10, 2022.
39. Knyazkov KV, Kovalchuk SV, Tchurov TN, Maryin SV, Boukhanovsky AV. CLAVIRE: e-

Science infrastructure for data-driven computing. Journal of Computational Science.
2012 Nov 1;3(6):504-10.

40. Treeage. https://www.treeage.com/ Accessed April 10, 2022.
41. Serrano D, Stroulia E, Lau D, Ng T. Linked REST APIs: a middleware for semantic REST API

integration. In 2017 IEEE International Conference on Web Services (ICWS) 2017 Jun 25
(pp. 138-145). IEEE.

LRH2_10325_ActivatorGraphic2021.v7.png

LRH2_10325_ComputeSequence2021.v4.png

LRH2_10325_GeneralModelComposition2021.v3.png

LRH2_10325_KnowledgeObjectGraphic2021.v4-01.png

LRH2_10325_OverviewGraphic2021.v2.png

LRH2_10325_RuntimeContextGraphic2021.v4-01.png

