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Abstract 
 
Introduction 
Learning health systems are challenged to combine computable biomedical knowledge (CBK) models. 
Using common technical capabilities of the World Wide Web (WWW), digital objects called Knowledge 
Objects, and a new pattern of activating CBK models brought forth here, we aim to show that it is 
possible to compose CBK models in more highly standardized and potentially easier, more useful ways. 
 
Methods 
Using previously specified compound digital objects called Knowledge Objects, CBK models are 
packaged with metadata, API descriptions, and runtime requirements. Using open-source runtimes and 
a tool we developed called the KGrid Activator, CBK models can be instantiated inside runtimes and 
made accessible via RESTful APIs by the KGrid Activator. The KGrid Activator then serves as a gateway 
and provides a means to interconnect CBK model outputs and inputs, thereby establishing a CBK model  
composition method. 
 
Results 
To demonstrate our model composition method, we developed a complex composite CBK model  from 
42 CBK submodels. The resulting model called CM-IPP is used to compute life-gain estimates for 
individuals based their personal characteristics. Our result is an externalized, highly modularized CM-IPP 
implementation that can be distributed and made runnable in any common server environment. 
 
Discussion 
CBK model composition using compound digital objects and the distributed computing technologies i s 
feasible. Our method of model composition might be usefully extended to bring about large ecosystems 
of distinct CBK models that can be fitted and re-fitted in various ways to form new composites. 
Remaining challenges related to the design of composite models include identifying appropriate model 
boundaries and organizing submodels to separate computational concerns while optimizing reuse 
potential.  
 
Conclusion 
Learning health systems need methods for combining CBK models from a variety of sources to create 
more complex and useful composite models. It is feasible to leverage Knowledge Objects and common 
API methods in combination to compose CBK models into complex composite models.  
 
Keywords: computable biomedical knowledge, model composition, decentralized web technology 

  



 
 

INTRODUCTION:  
 
In 2009, Tsafnat and Coiera discussed several challenges related to reasoning across multiple 
biomedical models1. They highlighted the challenges of computer-aided model construction, 
automated model selection, and model composition. This paper focuses on model composition, 
which is the process of building up better reasoning capabilities by connecting or combining 
multiple models to form composite models1,2.  
 
The topic of model composition is not new, but it is timely3-6. In biomedicine, there is growing 
evidence from fields including whole-cell modeling and integrated systems biology that 
composite models can improve our understanding of biology and human health6,7. It is now 
conceivable that model composition could become central to a lot of future scientific work in 
biomedicine8. Hence, for learning health systems, model composition seems vital9. 
  
Throughout this paper, “model” refers to computer-processable implementations of results and 
insights previously revealed through empirical scientific inquiry and learning. In these types of 
models, such results and insights are expressed concretely and formally as conceptual, logical, 
mathematical, or statistical statements about variables and the relationships between 
variables, including causal and correlative relationships10. 
 
This paper contributes a new method for building composite models by connecting them via 
their inputs and outputs. We recognize that model composition in software is nothing new. 
Software that brings many models together by interrelating the inputs and outputs of discrete 
functions has been around for a long time. What is new here is that how the models we 
combine are individually externalized and modularized using compound digital objects called 
Knowledge Objects (KOs). We have previously published our Knowledge Object Reference 
Ontology (KORO) which describes the parts and pieces of Knowledge Objects in detail11. 
Following KORO, the KOs for this study enable models to be treated both as static resources 
and active web services. 
 
Using multiple KOs, we are primarily interested in composing models of computable biomedical 
knowledge (CBK). CBK models may also be called CDS artifacts or machine learning, deep 
learning, AI, decision, and business process models, or even actionable knowledge units12-14. 
Here we generally refer to any model that represents biomedical results and insights as a CBK 
model. To better support learning health systems, we demonstrate the building of composite 
CBK models by interconnecting multiple distinct CBK submodels packaged inside many 
individual KOs.  
This model composition work is generally motivated by three main drivers relevant to learning 
health systems. First, the relational nature of knowledge calls for connections between 
disparate results and insights15-17. Second, the acceleration of scientific activity and attendant 
accumulation of new results and insights increase the need to connect new and prior 
knowledge to extend and apply what is learned18. Third, different types of knowledge exist and 
necessarily have dissimilar computer-processable representations19-21. Hence, to advance 
biomedical science, enable learning health systems, and improve human health, more distinct 



 
 

computable models represented variously need to be connected or combined effectively than 
in the past22.  
 
Research and development on decentralized web technology for model reuse strongly 
influences our approach23. Web app developers will be familiar with our approach since they 
are accustomed to building web applications with reusable software libraries or packages, 
some of which contain “models” per our definition of the term24. Similarly, data scientists 
perform model composition using tools and languages that strongly support code reuse, such 
as Machine Learning in Julia (MLJ)2. In addition, to compute with models represented variously, 
polyglot virtual machines supporting a wide variety of runtimes (or software execution engines) 
enable model composition of submodels encoded in different programming languages and 
formats25.  
 
Our CBK model composition method ultimately relies on connecting pairs of web services and 
corresponding executable functions backing the web services. We apply our method to connect 
and combine preventive medicine models into a composite model with 42 submodels to 
support individualized precision prevention (IPP). In the end, the composite model we produce 
computes individualized estimates of life gain for 21 different evidence-based preventive 
services26.  
 
Next, in the Methods section, we begin by outlining our general technical approach to model 
composition. After that, we detail key technical items and give examples. Later, in the Results 
section, we describe the IPP composite model we developed with our methods and explain its 
use in an initial study of preventive service practices. Finally, we discuss our progress in the 
Discussion section and reflect on some key remaining challenges before concluding. 
 
METHODS:  
 
GENERAL TECHNICAL APPROACH TO MODEL COMPOSITION 
 
Our primary goal is to support both the developers and end-users of end-user or client 
applications by giving developers and end-users ready access to powerful composite CBK 
models. As portrayed in Figure 1 below, our approach uses a stack of technical components for 
managing and deploying KOs, which are digital packages holding CBK models27. In Figure 1, the 
two yellow-shaded areas are where we make new technical contributions. 
 
In the Server Layer of our technology stack just below the client applications layer, we rely on 
established World Wide Web (WWW) network components to handle standard HTTP requests 
and responses to and from lower-level microservices. In the Microservices Layer, custom 
microservice tools from our team, especially the Knowledge Grid (KGrid) Activator27, organize, 
mobilize, and instantiate CBK models to get them running and make them network accessible.  
 
In the lowest static CBK Layer of our stack, we specify the structure and contents of modular 
Knowledge Objects11,28. Each KO is stored as an individually identifiable package that bundles  a 



 
 

distinct CBK model along with some other essential content described below. KOs can then be 
used for computing with assistance from the KGrid Activator tool. 
 
Our stack brings in well-supported runtimes built by others for executing the CBK models 
packaged in KOs (Figure 1). To date, we have used runtimes for JavaScript (e.g., V8), Python, 
and R. Theoretically, there is no limit to the number of runtimes that can be incorporated in our 
technical infrastructure. Therefore, CBK models encoded in almost any programming language 
or format can be deployed and connected to form composites thereby extending our approach.  
 

 
 

Figure 1. Technical Stack Enabling Model Composition 
 
Next, we cover more about our approach to CBK model composition. The first key item we 
review in further detail is the Knowledge Object or KO packages holding CBK models (Figure 1).   
 
KNOWLEDGE OBJECTS AND THEIR CONTENTS 
 
Our approach to CBK model management begins with formalized Digital Objects (DOs)28. All 
DOs have three things, (1) a bit sequence expressing some core content, (2) metadata 
describing object properties, and (3) a persistent unique identifier28. We previously specified the 
new class of DOs called Knowledge Objects (KOs) diagrammed in Figure 2 below11. 
KOs provide the means to manage CBK models both as static resources and to deploy CBK 
models as web services. As static resources, CBK model creators and owners can place their 
models inside KOs as files and then transmit and share KOs over computer networks, organize 
KOs in digital repositories, build collections and libraries of KOs, and archive KOs for long-term 
safekeeping29. When deployed as web services, CBK models can be engaged via APIs23,27. 



 
 

 
We have previously shown how CBK model deployers can use KOs with the tools we have built 
to instantiate web services quickly and systematically30. The web services that result offer 
persistent, interactive, remote computational capabilities. These web services can also provide 
a mechanism to distribute CBK models directly to client applications on demand. Some of the 
ancillary content inside KOs exists to help establish web services for computing with CBK 
models. 
  

 
 

Figure 2. The Contents of a Knowledge Object (KO)11, a particular subclass of Compound Digital Objects28 
 
We continue exploring how best to construct easily deployable, interoperable KOs that meet 
the needs of multiple CBK model stakeholders, including CBK model creators, owners, 
organizers, deployers, and of course client application developers and users. Recently, some of 
our team members have closely examined the metadata needed to make large numbers of CBK 
models packaged in compound digital objects findable, accessible, interoperable, and reusable 
(the FAIR principles31)32. Next, following from the innermost to outermost components shown 
in Figure 2 above, we give examples of the information content for each component of the 
generic KO. 
 
  



 
 

EXAMPLE OF A SIMPLE CBK MODEL HELD INSIDE A KNOWLEDGE OBJECT 
 
We created a KO that holds a simple CBK model (Box 1). This model uses JavaScript code to 
relate two variables in a common formula for body mass index (BMI). The code shown is a 
computer-executable representation of the mathematical function for BMI (Box 2). 
 
 
function bmi(inputs){ 
  height = inputs.features.height; // height in inches 
  weight = inputs.features.weight; // weight in pounds 
  return weight/height/height*703; 
} 

 
Box 1. Body mass function encoded in the JavaScript programming language 

 
 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵𝐵𝐵𝐵𝐵) =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑡𝑡(𝑙𝑙𝑙𝑙)

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡(𝑖𝑖𝑖𝑖)

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡(𝑖𝑖𝑖𝑖)  * 703 

 
Box 2. Body mass index formula 

 
The purpose of a CBK model expressing the BMI formula (Box 1) is to compute an index for 
body weight relative to height. Originally dubbed the Quetelet Index after its inventor and later 
labeled the Body Mass Index (BMI) by Keys, when concretized in code, this simple CBK model 
plays an ongoing role in biomedical research and practice33. While it makes a good example, the 
simplicity of this CBK model for BMI is misleading since CBK models are often much more 
complex. 
 
We currently limit the CBK model content held in Knowledge Objects to explicit instances of 
executable code or machine-readable data and do not support Knowledge Objects containing 
pointers to CBK models kept elsewhere. This limitation reflects the high priority we give to 
making CBK models accessible and their use secure by running them nearby protected health 
data sources. We recognize other CBK model use cases may be better supported by using 
pointers.       
 
EXAMPLE OF THE DEPLOYMENT DESCRIPTION CONTENT INSIDE A KNOWLEDGE OBJECT 
 
Every KO carries a Deployment Description file rendered in a simple format that we devised  
(Box 3). Deployment Description files convey a small amount of critical content. For example, 
the Deployment Description given in Box 3 below specifies a suitable runtime for executing the 
CBK models packaged in KOs (engine:node), the name of an executable file to be used as an 
entry point (“bmi.js”), a list of executable artifacts (here there is only one, bmi.js),  and the 
name of an instantiable function for computing body mass index (function: bmi). 
 
 



 
 

 
 
 
/bmi: 
  post: 
    engine: node 
    entry: bmi.js 
    artifact: bmi.js 
    function: bmi 

 
Box 3. Example of actual Deployment Description File Content 

 
To improve standardization, we are exploring possible conventions for representing runtime 
information34. Also, our work is so far limited to CBK models that are pure, stateless executable 
functions, like BMI. Pure functions associate one or more inputs to a single output34. Pure 
functions make no changes to variables outside of the function’s scope, warding off software 
side effects. In the future, we plan to extend our work to cover stateful CBK models too. 
 
EXAMPLE OF THE SERVICE DESCRIPTION CONTENT INSIDE A KNOWLEDGE OBJECT 
 
Alongside CBK models, KOs hold Service Description files. These files specify an application 
programming interface (API) for each web service associated with a CBK model. We currently 
render API specifications in the machine-readable Open API 3.0 format for RESTful web service 
APIs35. Other formats could be used, such as AsyncApi 2.0 for event-driven web service APIs36.   
 
A snippet from an actual Service Description file in the Open API 3.0 format is provided in Box 4 
below.  The version of the web service version (1.0) is different from versions of the CBK model 
or versions of the whole KO, which appear elsewhere in our metadata. Looking at the content 
of the Service Description, when put together with a deployed server’s IP address (not shown), 
the partial URL given (/ipp/bmicalculator/1.0) and the path specification (/bmi) comprise a 
reachable URL access API endpoint that a developer can use to engage the BMI CBK model as a 
webservice. 
 
 
openapi: 3.0.0 
info: 
  version: '1.0' 
  title: BMI Calc 
  description: Calculates BMI 
  license: 
    name: GNU General Public License v3 (GPL-3) 
    url: >- 
      https://tldrlegal.com/license/gnu-general-public-license-v3-(gpl-3)#fulltext 
  contact: 
    name: KGrid Team 
    email: kgrid-developers@umich.edu 
    url: 'http://kgrid.org' 
servers: 
  - url: /ipp/bmicalculator/1.0 
    description: BMI Calculator 
tags: 
  - name: BMI Calculator Endpoint 
paths: 



 
 

  /bmi: 

 
Box 4. Snippet Showing Content from an actual Service Description File 

OTHER CONTENT INSIDE A KNOWLEDGE OBJECT 
 
We have covered the CBK model, Service Description, and Deployment Description packaged 
inside of KOs. In addition to this content, KOs also contain a metadata file with a linked data 
representation of the title, authors or owners, and KO version. Inside our metadata files, one 
also finds the persistent unique identifier (PUID) for the KO. This PUID, along with the rest of 
the KO metadata, supports the search and discovery of large numbers of uniquely identified 
KOs.  
Next, in support of our general technical approach, we describe the KGrid Activator we have 
built. This tool sits in the Microservices Layer of our technical stack (Figure 1). 
 
THE KGRID ACTIVATOR MICROSERVICE TOOL 
 
To enable our model composition method, we designed and developed the KGrid Activator. The 
KGrid Activator is a server-side backend tool that apps can communicate with. It is built as a 
Java microservice tool37 with the help of the Java Spring Framework38. The KGrid Activator is  
KO-aware. It activates KOs and then serves as an API gateway, orchestrating the execution of 
the  
CBK models packaged in KOs27. The KGrid Activator is a reference implementation of a backend 
tool. It enables us to continuously test our commitment that all models held in KOs will run. 
 
To assist CBK model deployers, the KGrid Activator implements a repeatable pattern to 
“activate” CBK models. In this case, activation of CBK models is the rapid and consistent 
deployment of web services backed by running CBK models. To demonstrate the feasibility of 
our approach to technical experts who might be tasked with deploying web services backed by 
CBK models, we set an initial performance benchmark to “activate” CBK models held inside KOs 
in five seconds or less by giving simple commands to the KGrid Activator. A five second time-to-
deployment is in keeping with the time required by other container-based deployment 
infrastructures like Docker.  
 
Figure 3 below portrays how the KGrid Activator works to support one or more end-user client 
applications with web services backed by CBK models. Starting at the top of Figure 3, three 
client applications are shown, an EHR next to a cardiology and pathology app. These and other 
apps (including SMART apps and CDS Hooks) can be programmed to engage executable CBK 
models via calls to typical web servers (e.g., Tomcat) that in turn shuttle information to and 
from the web services enabled by the Activator.  
 
Figure 3 includes four very simple example CBK models encoded in JavaScript. The first CBK 
model is the BMI model described previously (1.BMI). The second is a formula for body surface 
area (2.BSA). The third is a formula for computing cardiac output using stroke volume and heart 
rate (3.CO). The fourth is a formula for calculating creatinine clearance by the kidneys (4.CrCL). 



 
 

In Figure 3, the first three models have been deployed and activated by an instance of the 
Activator, giving rise to three pairs of corresponding web services (cones) and deployed 
executables (dots). Once activated, the deployed executables (dots) are shown running on 
demand inside an instance of the JavaScript V8 runtime. Note that the fourth model (4.CrCL) is 
held inside a KO at the bottom of Figure 3 alongside what could potentially be many other KOs 
that are in storage but ready to be activated and used anytime. These stored KOs are not 
currently deployed. 
Moving further down the technology stack depicted in Figure 3, the KGrid Activator activates 
KOs with the help of a specific Runtime Adapter that we have built. This adapter allows the 
KGrid Activator to communicate with the JavaScript V8 runtime. Using it, the Activator can 
command the JavaScript V8 runtime to accept and run CBK models 1, 2, and 3, as shown. 
Finally, on the bottom right of Figure 3, two other runtimes, Python Anaconda and GNU-R, are 
portrayed. These two additional runtimes have not yet been instantiated and connected to the 
Activator, although they could be if KOs with CBK models encoded in Python or R needed to be 
activated as well.   
 

 
 

Figure 3. View of the KGrid Activator operating in the Microservices Layer 



 
 

 
Summarizing, in Figure 3, activation of three CBK models for body mass index (BMI), body 
surface area (BSA), and cardiac output (CO) establishes three corresponding web services 
(green, pink, and blue cones). After the KGrid Activator provides web service endpoints to the 
Server Layer, it plays an API gateway role by routing incoming requests from external Client 
Applications to the CBK models running as executable functions inside one or more deployed 
runtimes. Now that we have covered the content of KOs, activation and the KGrid Activator, the 
last item to introduce as part of our technical methods is the Runtime Context.   
HOW A RUNTIME CONTEXT ENABLES CBK MODEL COMPOSITION 
 
As part of the work of activating CBK models held inside KOs, each instance of the KGrid 
Activator establishes and maintains a dynamic list of every CBK model it has deployed with an 
internal reference pointer to each deployed CBK model (Figure 4). This list is the Runtime 
Context.  
 
The Runtime Context provided by the KGrid Activator is accessible programmatically. For our 
method of model composition, when a request from the code of one CBK model is made to use 
another CBK model the KGrid Activator uses its current Runtime Context to operate as a 
gateway. In its gateway role, the KGrid Activator resolves CBK model references and oversees 
request-response execution. This is how one deployed CBK models can call on any other 
deployed CBK model without having to know its implementation or instantiation details (Figure 
4). 
 
Going deeper into how this works, complete resolution of the reference pointers to deployed 
CBK models is achieved by the KGrid Activator working in conjunction with each runtime. This is 
where our runtime adapters come into play. We provide adapters to handle programming 
language and runtime-specific concerns. (As one example, an adapter for the JavaScript V8 
runtime is depicted in Figure 3.) Each adapter defines and implements a common 
communication protocol (i.e., interface) we developed to integrate different runtimes with the 
KGrid Activator. Upon successful deployment of a CBK model into its corresponding runtime by 
the KGrid Activator, the model is registered by the adapter resulting in a new entry to the KGrid 
Activator’s current Runtime Context. As a result, working in conjunction with the KGrid 
Activator, adapters allow CBK model-to-model request-response activity to finally happen.  
 
The Runtime Context is critical for interconnecting models and enabling model composition. For 
now, we have this capability only when every CBK model being connected is deployed inside 
the same runtime. We see a need for flexibility and power and plan to develop new capabilities 
so that future model composition can span multiple runtimes with the help of an enhanced 
KGrid Activator. Once additional CBK model-to-model request-response capabilities are 
developed, KOs handling separate parts of the complex calculations can be deployed in 
separate runtimes. This will make it possible to build composite CBK models using component 
CBK models that are encoded in more than one format or programming language. 
 



 
 

To summarize, as portrayed in Figure 4 below, the Runtime Context is a dynamic list or map 
maintained by an instance of the KGrid Activator. The Runtime Context supports all possible 
request-response calls between activated CBK models running inside one runtime instance at 
any moment in time. As the number of CBK models deployed into that runtime instance 
changes, the Runtime Context is consistently refreshed and remains current. This approach is 
what finally enables our technology stack to support CBK model composition.  
 

 
 

Figure 4. Inside the KGrid Activator, the Runtime Context is a dynamic l ist of CBK Models running locally 
  



 
 

CREATING COMPOSITE CBK MODELS 
 
Instead of building all new technology for doing model composition, the KGrid Activator 
marshals the specific contents of KOs and then uses existing web server and runtime 
technologies for model composition. Together, the modular components in our technology 
stack are sufficient to create three general kinds of composite models (Figure 5). These three 
kinds of composite models – serial, hierarchical, and conditional – derive from a larger 
collection of common computational workflow patterns that have appeared repeatedly over 
the years in many other computer science works39. 
 

 
 

Figure 5. Three General Kinds of Composite CBK Models 
 
On the left in Figure 5, a serial composite CBK model relies on the procedural knowledge about 
a model composition represented in an Executive Submodel (orange dot) to engage three 
submodels sequentially in steps 1, 2, and 3. 
 
Similarly, in the middle of Figure 5, a hierarchical composite CBK model has a top-level 
Executive Submodel connected to another Executive Submodel at Level 1 (green dot), which in 
turn encodes procedures to connect the two other submodels at Level 2 (purple and blue dots). 
 
Additionally, it is possible to insert conditional “IF-THEN-ELSE” logic into composite models. As an 
example of this, on the right in Figure 5 is a conditional composite CBK model with an Executive 
Submodel that, depending on some condition, connects to one or the other (but not both) of 
the two submodels shown (purple and blue dots). The procedural knowledge encoded into the 
logic of Executive Submodels expresses model compositions. All three general kinds of 
composite models in Figure 5 – and mixtures of them – can be composed using our technical 
approach. 
 
TECHNICAL FEASIBILITY DEMONSTRATION:  BUILDING AND USING THE CM-IPP 
 
As a demonstration of the feasibility of our technical approach to model composition, we 
created the Composite Model for Individualized Precision Prevention (CM-IPP). We used the CM-
IPP to conduct a concordance study which we will report elsewhere. (The concordance study 
sought to answer the research question. “To what degree do primary care providers collectively 
agree with the value-based rankings of 21 preventive services computed by the CM-IPP?”)  



 
 

 
According to the United States Preventive Services Task Force (USPSTF), the 21 preventive 
services covered by the CM-IPP are supported by high-quality “A” or “B” level evidence. 
Examples of these services include screening services (e.g., screening for colorectal cancer) and 
other measures (e.g., taking aspirin to lower the risk of a heart attack). Studies show that in the 
U.S., many people receive some recommended preventive services, but few receive them all26. 
The ultimate purpose of composite models like the CM-IPP is to enable computerized 
individualized prioritization of recommended preventive services during routine primary care 
encounters. Next, for our results, we provide a detailed technical description of the CM-IPP. 
 
RESULTS:  
 
We successfully re-implemented a multi-component statistical model created and originally 
implemented as a Markov Cohort model inside a spreadsheet by Taksler and colleagues as part 
of their work in preventive medicine26. Working with Dr. Taksler and his group, using KOs and 
our technical approach, we arrived at the new CM-IPP composite CBK model for computing an 
individual’s life-gain arising for 21 recommended preventive medical services. When client 
applications engage the new CM-IPP, the applications receive a ranked list of relevant 
preventive services for an individual. The CM-IPP applies static and simplified results of Markov 
Cohort modeling to compute estimated life-gain from regression formulas where some Markov 
Cohort model information is lost. In the future, the Taksler research team plans to use 
microsimulation modeling techniques40 and provide results either as lookup tables or 
mathematical equations.  
 
CM-IPP INPUTS AND OUTPUTS 
 
The input to the CM-IPP includes more than 100 features about a person. Any client application 
with these input data can post an instance of our proprietary JSON data object (Box 5) to the 
web service backed by the CM-IPP’s top-level Executive Submodel. Client applications receive 
computed rankings of 21 relevant preventive services by estimated lifespan gain in years (Box 
6). 
 
 
  INPUT { 
      "patient":{ 
        "id": "ipp-patient-E01", 
        "features":{ 
          "age":50, 
          "race":"Black", 
          "gender":"Male", 
          "height":73.0, 
          "weight":220.0, 
          "systolic":147, 
          "diastolic":68, 
          "totalcholesterol":110, 
          "HDL":32, 
          "LDL":42, 
          "triglycerides":181, 
          "a1c":9, 
          "cvd":false, 



 
 

          [ 88 more features listed as key:value pairs go here ] 

 
Box 5. Partial List of Inputs for the CM-IPP web service 

 
OUTPUT "lifeexpectancy": { 
      "aspirinPrevention": { 
        "total": { 
          "life-gain": 0.3175741769690106 } 
      }, 
      "crcScreening": { 
        "total": { 
          "life-gain": 0.0919283879684265 } 
      }, 
      "diabetesControl": { 
        "total": { 
          "life-gain": 1.5806718157369808 } 
     }, 
     [ more computed results go here ] 

 
Box 6. Partial List of Outputs Provided by the CM-IPP web service 

 
MORE TECHNICAL DETAILS ABOUT THE CM-IPP 
 
The CM-IPP is a mixed serial-hierarchical-conditional composite model that performs a long and 
complex call chain of computations about an individual. This complex call chain (not shown) 
takes advantage of the 42 submodels of the CM-IPP that are arrayed graphically in Figure 6 
below.  
 
As depicted in Figure 6, the CM-IPP’s top-level Executive Submodel calls on 29 other submodels 
directly, three of which are lower-level Executive Submodels (orange dots). The three lower-
level Executive Submodels call on a total of 13 more submodels. Conditional logic inside the 
top-level Executive Submodel makes it so that only the relevant Net Benefit submodels (gray 
dots) are engaged while doing computations about a given person. In addition, the top-level 
Executive Submodel includes more computable knowledge to compute benefit estimates for 
five preventive services directly.   
  



 
 

 
 

Figure 6. Graphical View of the CBK Composite Model for Individualized Precision Prevention (CM-IPP) 
 
Overall, we used 11 different types of submodels to build the CM-IPP.  Table 1 has descriptions 
of each of the 11 submodel types that contribute to the overall CM-IPP.   
 
Submodel Type Description of Submodel Type Quantity in 

CBK-CM-IPP 

Executive 

These include one top-level and three lower-level mostly procedural submodels with 
logic representing model composites. The web service backed by the top-level Executive 
model accepts a large data object as its input from an external Client Application to 
kickoff CM-IPP processing. The three lower-level executive submodels compute various 
intermediate results with the help of other submodels. 

4 

Patient Feature  
Derivation 

These submodels further process original patient data input to derive additional patient 
features (i.e., BMI and common risk scores). 5 

Recommended 
Preventive Service  
Criteria 

This submodel encodes inclusion and exclusion criteria, including age ranges, sex, and 
other criteria for all included preventive medical services covered in the CM-IPP. 1 

Life 
Table 

This submodel contains final numeric results for baseline mortality rates by age, race, 
and sex from the US Centers for Disease Control and Prevention. 1 

Life Expectancy 
Estimator 

This submodel calculates an individual’s life expectancy using a given age range and a 
previously computed set of age-ordered mortality rates. 1 

Life Expectancy 
Gain Estimator 

This submodel accepts two life expectancy estimates computed with the Life Expectancy 
Estimator submodel as inputs and computes their difference. 1 

Net Benefit 
Estimators 

These submodels compute the estimated net benefit in terms of marginal life-gain 
arising from implementing most preventive services and related interventions. 15 

Detection Gain 
Estimator 

This submodel calculates an individual’s life expectancy gain from detection of HIV 
through routine testing. 1 

Diet Risk Models These two submodels estimate relative and absolute risks related to maintaining or not 
maintaining a healthy diet. 2 

Mortality Risk 
Adjustment 

These three submodels support computed adjustments in all-cause mortality risk based 
on an individual’s degree of obesity and alcohol and tobacco use. 3 

Partial Background 
Risk Estimation 

These submodels compute background absolute risk for several diseases (e.g., lung 
cancer) and several treatments or interventions (e.g., taking aspirin.) 8 

 



 
 

Table 1. The Eleven Types of Submodels connected to create the CBK Composite Model for IPP (CM-IPP) 
 
  



 
 

USING THE CM-IPP IN PREVENTIVE SERVICES RESEARCH 
 

Table 2 summarizes the end results of computations made using the CM-IPP for 12 fictitious 
but realistic patient cases. These cases are part of a research study about preventive services.  
 

Fictitious 
Patient 

Case 

Source 
of 

Ranking 

Top-
ranked 
Service 

Second-
ranked 
Service 

Third-
ranked 
Service 

Fictitious 
Patient 

Case 

Source 
of 

Ranking 

Top-
ranked 
Service 

Second-
ranked 
Service 

Third-
ranked 
Service 

#4 CM-IPP BRE CRC DIET #2 CM-IPP LUN STA DIET 
#6 CM-IPP BP SMO ALC #7 CM-IPP CRC DIET AAA 
#5 CM-IPP SMO BP DIET #8 CM-IPP DIET WEI LUN 
#11 CM-IPP SMO DIET BP #10 CM-IPP BRE CRC DIET 
#1 CM-IPP DIET CRC ASA #12 CM-IPP DIET ALC SMO 
#3 CM-IPP ALC DIA BP #9 CM-IPP ALC DIET WEI 

 

 
Table 2: For each fictitious case, the Top 3 ranked services computed by the CM-IPP are l isted. The letter codes stand 

for abdominal aortic aneurysm screening (AAA), reducing alcohol use (ALC), aspirin use (ASA), treating blood 
pressure (BP), breast cancer screening (BRE), colorectal cancer screening (CRC), treating diabetes (DIA), diet 

counseling (DIET), statin use for cholesterol (STA), smoking cessation (SMO), and losing 10 pounds of weight (WEI). 
 

DISCUSSION:  
  
We set out to compose distinct biomedical models using a repeatable and transferable method 
and achieved our goal. We built the CM-IPP, a composite model that reasons and computes 
with 42 submodels representing biomedical knowledge from different sources (e.g., AHRQ and 
CDC).  
 
Our model composition method makes a strong commitment to decentralized web technology. 
For client applications that can access the web, our method takes advantage of HTTP server 
technology, common web service architectural patterns, and publicly available runtimes, such 
as JavaScript V8. Thus, our work aligns well with that of the WWW community and its massive 
installed base.  
 
On the plus side, much of the software in this installed base interoperates and scales well 
already. However, we also inherit many challenges with the WWW. First among them, to make 
good on our approach, we must gain widespread adoption of new model packaging and 
activation specifications implemented using Knowledge Objects and the KGrid Activator, 
respectively. Second, all WWW security issues apply. At every level of our technology stack, the 
implementation of security protocols is required to protect CBK model stakeholders from harm. 
Third, many issues remain with measuring and expressing the quality of CBK models. We have 
demonstrated how to compose CBK models but not how to ensure the models composed are 
safe and effective for their intended use. In our future work, we anticipate using more than one 
evidence-based composite model to generate advice and then using other composite models to 



 
 

prioritize competing and conflicting advice based on evidence grades and other relevant 
factors. 
In this initial work we have achieved a measure of syntactic interoperability via RESTful APIs but 
have yet to work on semantic interoperability for the inputs and outputs of CBK models41. We 
have also packaged the CM-IPP so that client application developers can build it directly into a 
code base instead of engaging it as a web service.  
 
For composite model design, our work highlights the need for more and better principles to 
guide submodel modularization and composition. We struggled with issues of submodel scope 
and performance. For example, the top-level Executive Submodel in the CM-IPP mixes 
overarching procedural code for model composition with domain-specific logic for five 
preventive services, making it more difficult to reuse this submodel in other contexts. Also, in 
hindsight, the 15 submodels used for net benefit estimation might have built into a single 
submodel instead.  
 
Our experience does at least suggest two principles to inform decisions about submodel scope. 
First, a distinct submodel may be justified when it is subject to very frequent updates. Second, a 
distinct submodel may be justified if it can be reused in many composite models. Otherwise, 
the extra work of packaging and managing a distinct submodel seems not to be worth it. 
 
Our work on model composition raises important knowledge management issues too. One of 
them is versioning many items, including the parts of KOs and model subcomponents, 
composite models, and the web services backed by such models. Good dependency 
management relies on item-level versioning. We wish to extend our version-control capabilities 
by applying lessons learned by those who have used software package metadata, automation, 
and human workflows to keep up with direct and transitive dependencies in decentralized web 
systems.  
 
Another knowledge management challenge is how to categorize different types of submodels. 
We labeled any submodel containing a part or whole representation of a composite model as 
an “Executive Submodel.” In addition, we attempted to categorize submodels further by their 
function and the outputs they produce. We found this somewhat difficult to do and think our 
current ad hoc submodel categories are shaky and that better methods of submodel 
categorization are needed.      
 
CONCLUSION  
 
In support of biomedical research and learning health systems, we offer a new method for CBK 
model composition that relies on decentralized web technology. Our method uses special 
digital objects called Knowledge Objects to establish operable pairs of web services and running 
computer-processable functions. In this way, complex composite models are made accessible 
via the World Wide Web. As a feasibility demonstration, we connected 42 packaged submodels 
into a composite CBK model called CM-IPP. We then used the CM-IPP to compute individualized 
life-gain estimates for a host of evidence-based preventive services. By accessing CM-IPP via a 



 
 

web service, client applications gain powerful computational and reasoning capabilities quickly 
and easily. Using this approach, CBK model-makers can build network-accessible composite 
models to advance research, education, and learning health systems. 
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